WO2015001828A1 - フロントエンド回路 - Google Patents

フロントエンド回路 Download PDF

Info

Publication number
WO2015001828A1
WO2015001828A1 PCT/JP2014/060248 JP2014060248W WO2015001828A1 WO 2015001828 A1 WO2015001828 A1 WO 2015001828A1 JP 2014060248 W JP2014060248 W JP 2014060248W WO 2015001828 A1 WO2015001828 A1 WO 2015001828A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
circuit
terminal
transmission
communication
Prior art date
Application number
PCT/JP2014/060248
Other languages
English (en)
French (fr)
Inventor
佐藤剛
柳原真悟
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to PCT/JP2014/067328 priority Critical patent/WO2015002127A1/ja
Publication of WO2015001828A1 publication Critical patent/WO2015001828A1/ja
Priority to US14/977,814 priority patent/US10128796B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • H03F1/565Modifications of input or output impedances, not otherwise provided for using inductive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/111Indexing scheme relating to amplifiers the amplifier being a dual or triple band amplifier, e.g. 900 and 1800 MHz, e.g. switched or not switched, simultaneously or not
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/318A matching circuit being used as coupling element between two amplifying stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/411Indexing scheme relating to amplifiers the output amplifying stage of an amplifier comprising two power stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/20Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F2203/21Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F2203/211Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • H03F2203/21139An impedance adaptation circuit being added at the output of a power amplifier stage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0416Circuits with power amplifiers having gain or transmission power control

Definitions

  • the present invention relates to a front-end circuit that transmits and receives high-frequency signals.
  • the front end circuit described in Patent Document 1 includes a wideband power amplifier, a band switch, and a duplexer.
  • the broadband power amplifier is a multimode / multiband power amplifier.
  • a plurality of duplexers are provided for each communication band.
  • the broadband power amplifier and the duplexer are connected via a band switch.
  • the transmission signal amplified by the broadband power amplifier is sent to the duplexer corresponding to the communication band via the band switch.
  • the duplexer sends the transmission signal to the antenna and prevents the transmission signal from entering the receiving circuit.
  • the front end circuit described in Patent Document 1 can transmit and receive high-frequency signals in a plurality of communication bands.
  • An object of the present invention is to provide a small front-end circuit having excellent communication characteristics in each of a plurality of communication bands within a wide band.
  • the front end circuit of the present invention is configured as follows.
  • the front end circuit includes a circulator, an antenna, a reception circuit, and a transmission circuit.
  • the circulator has first to third terminals.
  • the antenna is connected to the first terminal.
  • the receiving circuit is connected to the second terminal.
  • the transmission circuit is connected to the third terminal.
  • the circulator outputs a high-frequency signal input to the first terminal to the second terminal and a high-frequency signal input to the third terminal to the first terminal in a frequency range including a plurality of communication bands.
  • the transmission circuit includes a plurality of amplifying elements connected in cascade and a variable filter circuit connected between the amplifying elements. The amplifying element amplifies the transmission signal in a frequency range including a plurality of communication bands.
  • variable filter circuit uses a transmission band corresponding to the used communication band as a pass band and a reception band corresponding to the used communication band as an attenuation band. To do.
  • the circulator corresponds to a frequency range including a plurality of communication bands.
  • the circulator is smaller than a plurality of duplexers provided for each communication band.
  • the variable filter circuit attenuates reception band noise generated when the transmission signal is amplified by the amplification element. For this reason, the reception band noise output from the transmission circuit is reduced. As a result, the reception band noise that wraps around from the third terminal to the second terminal is suppressed, so that the reception sensitivity hardly deteriorates. Therefore, it is possible to obtain a small front-end circuit that has excellent communication characteristics in a plurality of communication bands.
  • the variable filter circuit preferably includes a plurality of filter components and a switch circuit that switches the filter components.
  • the attenuation band of the variable filter circuit can be continuously changed.
  • variable filter circuit is preferably a bandpass filter.
  • variable filter circuit is preferably a band elimination filter.
  • the front-end circuit can be easily designed.
  • FIG. 1A is an equivalent circuit diagram of the front end circuit according to the first embodiment.
  • FIG. 1B is an equivalent circuit diagram of the PA module 18.
  • FIG. 2A is an equivalent circuit diagram of a front-end circuit having a conventional configuration.
  • FIG. 2B is an equivalent circuit diagram of the PA module 38.
  • FIG. 3A is a diagram showing the pass characteristics of the PA module 18.
  • FIG. 3B is a diagram for explaining the communication band.
  • FIG. 1A is an equivalent circuit diagram of the front-end circuit 10.
  • the front end circuit 10 includes an antenna 11, a reception circuit 12, a transmission circuit 13 and a circulator 14.
  • the receiving circuit 12 includes a low noise amplifier 16 and a receiving unit 17.
  • the transmission circuit 13 includes a PA (Power Amplifier) module 18 and a transmission unit 19.
  • the reception unit 17 and the transmission unit 19 are provided in an RFIC (Radio Frequency Integrated Circuit) 15.
  • RFIC Radio Frequency Integrated Circuit
  • the circulator 14 has terminals P1 to P3.
  • the high frequency signal input from the terminal P1 is output to the terminal P2.
  • the high frequency signal input from the terminal P3 is output to the terminal P1.
  • the circulator 14 transmits a high-frequency signal with low loss in a wide frequency range including a plurality of communication bands.
  • a broadband circulator as described in the patent document (Japanese Patent Laid-Open No. 6-343005).
  • the terminal P1 corresponds to the first terminal of the present invention.
  • the terminal P2 corresponds to the second terminal of the present invention.
  • the terminal P3 corresponds to the third terminal of the present invention.
  • the antenna 11 is connected to the terminal P1.
  • the input terminal of the low noise amplifier 16 is connected to the terminal P2.
  • the output terminal of the low noise amplifier 16 is connected to the receiving unit 17.
  • the output terminal of the PA module 18 is connected to the terminal P3.
  • the input terminal of the PA module 18 is connected to the transmitter 19.
  • a signal processing unit including a filter component may be connected between the output terminal of the PA module 18 and the terminal P3.
  • the signal processing unit passes a transmission signal having a predetermined frequency band.
  • the transmission signal generated by the transmission unit 19 is amplified by the PA module 18, passes through terminals P 3 and P 1 of the circulator 14, and is sent to the antenna 11.
  • the received signal received by the antenna 11 passes through the terminals P 1 and P 2 of the circulator 14, is amplified by the low noise amplifier 16, and is sent to the receiving unit 17.
  • FIG. 1B is an equivalent circuit diagram of the PA module 18.
  • the PA module 18 includes amplification elements 21a and 21b, a variable filter circuit 22, and a matching circuit 23.
  • the input terminal of the amplifying element 21 a is connected to the transmitter 19.
  • the output terminal of the amplifying element 21a is connected to the input terminal of the amplifying element 21b via the variable filter circuit 22.
  • the output terminal of the amplifying element 21b is connected to the terminal P3 of the circulator 14 through the matching circuit 23.
  • the amplifying elements 21a and 21b are multimode / multiband power amplifiers that can be used in a plurality of communication systems and a plurality of communication bands.
  • the amplification elements 21a and 21b are formed, for example, in one PAIC (Power (Amplifier Integrated Circuit).
  • the amplifying element 21a is a first-stage amplifying element, and the amplifying element 21b is a last-stage amplifying element.
  • the variable filter circuit 22 has a low input / output impedance.
  • the input / output impedance of the variable filter circuit 22 is equal to the input / output impedance of the PAIC, for example, and is 18 ⁇ .
  • the variable filter circuit 22 is disposed close to the PAIC, for example, and is connected to the PAIC by wire bonding or the like.
  • the variable filter circuit 22 is configured by, for example, a SAW (Surface / Acoustic / Wave) filter, a BAW (Boundary Acoustic / Wave) filter, or the like.
  • the variable filter circuit 22 includes switch circuits 221a and 221b and filter components 222a to 222c.
  • the switch circuits 221a and 221b have a common terminal and first to third individual terminals.
  • the common terminal is connected to any one of the first to third individual terminals by a control signal.
  • the filter components 222a to 222c are band pass filters.
  • the pass band characteristics of the filter components 222a to 222c are different from each other, and are set according to the communication band to be used.
  • the attenuation characteristics of the filter components 222a to 222c can be made steep by configuring the filter components 222a to 222c with SAW filters or the like. Thereby, only the high frequency signal of the communication band to pass through can be transmitted with low loss. That is, it is possible to transmit only the high-frequency signal in the communication band that is desired to pass, and to significantly attenuate the high-frequency signal in the other communication band.
  • the filter component may be a band elimination filter. Since the band elimination filter can be reduced in size as compared with the bandpass filter, it is easy to design the variable filter circuit and the front end circuit.
  • the common terminal of the switch circuit 221a is connected to the output terminal of the amplifying element 21a.
  • the first individual terminal of the switch circuit 221a is connected to the first individual terminal of the switch circuit 221b via the filter component 222a.
  • the second individual terminal of the switch circuit 221a is connected to the second individual terminal of the switch circuit 221b via the filter component 222b.
  • the third individual terminal of the switch circuit 221a is connected to the third individual terminal of the switch circuit 221b through the filter component 222c.
  • the common terminal of the switch circuit 221b is connected to the input terminal of the amplifying element 21b.
  • Switch circuits 221a and 221b in the variable filter circuit 22 switch the signal path according to the communication method or communication band. Thereby, the variable filter circuit 22 switches the pass band or the attenuation band in accordance with the communication method or the communication band. That is, the variable filter circuit 22 functions as a selectable filter.
  • variable filter circuit may be a tunable filter capable of continuously changing the pass band or the attenuation band, for example.
  • the transmission signal input to the PA module 18 is amplified by the amplification element 21a.
  • the amplified transmission signal is input to the variable filter circuit 22.
  • the transmission signal input to the variable filter circuit 22 passes through a filter component suitable for the communication method and communication band.
  • the transmission signal that has passed through the variable filter circuit 22 is further amplified by the amplification element 21 b and output from the PA module 18.
  • FIG. 2A is an equivalent circuit diagram of a front-end circuit 30 having a conventional configuration.
  • the front end circuit 30 includes an antenna 11, a duplexer 34, a low noise amplifier 16, a PA module 38 and an RFIC 15.
  • the input terminal of the low noise amplifier 16 is connected to the antenna 11 through the reception side filter of the duplexer 34.
  • the output terminal of the low noise amplifier 16 is connected to the RFIC 15.
  • the output terminal of the PA module 38 is connected to the antenna 11 via the transmission side filter of the duplexer 34.
  • the input terminal of the PA module 38 is connected to the RFIC 15.
  • the transmission signal generated by the RFIC 15 is amplified by the PA module 38, passes through the transmission side filter of the duplexer 34, and is sent to the antenna 11. Further, the received signal received by the antenna 11 passes through the reception side filter of the duplexer 34, is amplified by the low noise amplifier 16, and is sent to the RFIC 15.
  • FIG. 2B is an equivalent circuit diagram of the PA module 38.
  • the PA module 38 includes amplification elements 21a and 21b, matching circuits 23a and 23b, a switch circuit 221 and passive elements 24a and 24b.
  • the input terminal of the amplifying element 21a is connected to the RFIC 15.
  • the output terminal of the amplifying element 21a is connected to the input terminal of the amplifying element 21b via the matching circuit 23a.
  • the output terminal of the amplifying element 21b is connected to the duplexer 34 via the matching circuit 23b.
  • the common terminal of the switch circuit 221 is connected to the matching circuit 23a.
  • the first individual terminal of the switch circuit 221 is connected to the ground via the passive element 24a.
  • the second individual terminal of the switch circuit 221 is connected to the ground via the passive element 24b.
  • FIG. 3A is a diagram showing the pass characteristics of the PA module 18.
  • the vertical axis is the amount of attenuation, and the horizontal axis is the frequency.
  • the solid line 101 is a pass characteristic of the PA module 18 when the communication band B 1 is selected.
  • the solid line 102 is a pass characteristic of the PA module 18 when the communication band B 2 is selected.
  • Dashed line 103 is the pass characteristic of the PA module 38 when the communication band B 1 is selected.
  • Dashed line 104 is the pass characteristic of the PA module 38 when the communication band B 2 is selected.
  • the communication band B 1 is an 800 MHz band
  • the communication band B 2 is a 1 GHz band.
  • the transmission frequency ⁇ T1 indicates the center frequency of the transmission band B T1 corresponding to the communication band B 1 .
  • the reception frequency ⁇ R1 indicates the center frequency of the reception band B R1 corresponding to the communication band B 1 .
  • the transmission frequency ⁇ T2 indicates the center frequency of the transmission band B T2 corresponding to the communication band B 2 .
  • the reception frequency ⁇ R2 indicates the center frequency of the reception band B R2 corresponding to the communication band B 2 .
  • the PA module 18 When the communication band B 1 as used communication bandwidth is selected, the PA module 18, a high-frequency signal transmission band B T1 is substantially pass, high-frequency signal of the reception band B R1 is greatly attenuated.
  • the high-frequency signal in the transmission band B T1 passes almost like the PA module 18, but the high-frequency signal in the reception band B R1 is not attenuated so much.
  • a high-frequency signal transmission band B T2 is substantially pass, high-frequency signal of the reception band B R2 is greatly attenuated.
  • the high-frequency signal in the transmission band B T2 almost passes, but the high-frequency signal in the reception band B R2 is not attenuated so much.
  • the filter part 222a is to the passband transmission band B T1, the reception band B R1 and the attenuation band.
  • Filter components 222b is a transmission band B T2 and pass band and the reception band B R2 and the attenuation band. If the communication band B 1 is selected as the used communication band transmission signal passes through the filter part 222a. If the communication band B 2 is selected as the used communication band transmission signal passes through the filter part 222b.
  • the variable filter circuit 22 and thus the PA module 18 have the pass characteristics shown in FIG.
  • the circulator 14 transmits a high-frequency signal with a low loss in a wide frequency range including a plurality of communication bands. That is, the transmission loss between the antenna 11 and the RFIC 15 can be reduced. Further, the circulator 14 is smaller than a plurality of duplexers provided for each communication band. Therefore, it is considered that when the circulator 14 is used to demultiplex the transmission signal and the reception signal, a small front-end circuit that communicates in a plurality of communication bands can be obtained.
  • reception band noise when a transmission signal is amplified by a power amplifier, harmonic distortion occurs and noise is generated.
  • This noise includes reception band noise having a frequency within the reception band. For this reason, if the transmission signal amplified by the power amplifier is simply input to the circulator, the reception band noise may be circulated to the reception circuit, which may deteriorate the reception sensitivity.
  • variable filter circuit 22 attenuates the reception band noise generated when the transmission signal is amplified by the amplifying element 21a. For this reason, the reception band noise output from the PA module 18 is reduced. As a result, the level of the reception band noise that wraps around from the terminal P3 to the terminal P2 is suppressed, so that deterioration in reception sensitivity can be prevented. That is, even if the circulator 14 is used to demultiplex a transmission signal and a reception signal, high isolation can be ensured between transmission and reception.
  • Such a front-end circuit can be used for cognitive radio.
  • the reception band noise generated when the transmission signal is amplified by the amplification element 21a is amplified by the amplification element 21b.
  • the variable filter circuit 22 attenuates reception band noise generated when the transmission signal is amplified by the amplification element 21a. For this reason, it is suppressed that reception band noise is amplified by the amplification element 21b. As a result, the PA module 18 can reduce power loss compared to the front end circuit 30.
  • a PA module having two amplifying elements has been described as an example, but a PA module having three or more amplifying elements may be used.
  • the level of the reception band noise generated during transmission can be reduced by inserting a variable filter circuit between the amplifying elements, as in the present embodiment.
  • a variable filter circuit is inserted between the last stage amplifying element and the previous stage amplifying element connected adjacent to the amplifying element, the effect of reducing the reception band noise is the highest.

Abstract

 フロントエンド回路(10)は、サーキュレータ(14)、アンテナ(11)、受信回路(12)および送信回路(13)を備える。サーキュレータ(14)は端子(P1~P3)を有する。アンテナ(11)は端子(P1)に接続される。受信回路(12)は端子(P2)に接続される。送信回路(13)は端子(P3)に接続される。サーキュレータ(14)は、複数の通信帯域を含む周波数範囲に対応する。送信回路(13)は、縦続接続される増幅素子(21a,21b)と、その間に接続される可変フィルタ回路(22)とを有する。増幅素子(21a,21b)は、複数の通信帯域を含む周波数範囲に対応する。複数の通信帯域から選択される使用通信帯域で、送信回路(13)が送信するときには、可変フィルタ回路(22)は、使用通信帯域に対応する送信帯域を通過帯域とし、使用通信帯域に対応する受信帯域を減衰帯域とする。

Description

フロントエンド回路
 本発明は、高周波信号を送受信するフロントエンド回路に関する。
 フロントエンド回路として、例えば、特許文献1に開示されたものがある。特許文献1に記載のフロントエンド回路は、広帯域パワーアンプ、バンドスイッチおよびデュプレクサを備える。広帯域パワーアンプはマルチモード/マルチバンドパワーアンプである。デュプレクサは通信帯域ごとに複数設けられている。広帯域パワーアンプとデュプレクサとはバンドスイッチを介して接続されている。
 ある通信帯域で送信する場合、広帯域パワーアンプで増幅された送信信号は、バンドスイッチを介して、その通信帯域に対応するデュプレクサに送られる。デュプレクサは、送信信号をアンテナに送るとともに、送信信号が受信回路に回り込むのを防止する。これにより、特許文献1に記載のフロントエンド回路は、複数の通信帯域で高周波信号を送受信することができる。
特開2011-182271号公報
 上述のように、特許文献1に記載のフロントエンド回路では、複数の通信帯域で送信信号と受信信号を分波するために、複数のデュプレクサを設ける必要がある。このため、フロントエンド回路のサイズが大きくなる問題があった。
 本発明の目的は、広帯域内の複数の通信帯域のそれぞれにおいて通信特性に優れる、小型のフロントエンド回路を提供することにある。
 本発明のフロントエンド回路は次にように構成される。
(1)フロントエンド回路は、サーキュレータ、アンテナ、受信回路および送信回路を備える。サーキュレータは第1ないし第3端子を有する。アンテナは第1端子に接続される。受信回路は第2端子に接続される。送信回路は第3端子に接続される。サーキュレータは、複数の通信帯域を含む周波数範囲で、第1端子に入力される高周波信号を第2端子に出力し、第3端子に入力される高周波信号を第1端子に出力する。送信回路は、縦続接続される複数の増幅素子と、増幅素子の間に接続される可変フィルタ回路とを有する。増幅素子は、複数の通信帯域を含む周波数範囲で、送信信号を増幅する。複数の通信帯域から選択される使用通信帯域で、送信回路が送信するときには、可変フィルタ回路は、使用通信帯域に対応する送信帯域を通過帯域とし、使用通信帯域に対応する受信帯域を減衰帯域とする。
 この構成によれば、サーキュレータは、複数の通信帯域を含む周波数範囲に対応する。また、サーキュレータは、通信帯域ごとに設けられた複数のデュプレクサに比べて小型である。さらに、可変フィルタ回路は、送信信号が増幅素子で増幅されたときに発生した受信帯域雑音を減衰させる。このため、送信回路から出力される受信帯域雑音が小さくなる。これにより、第3端子から第2端子に回り込む受信帯域雑音が抑制されるため、受信感度はほとんど劣化しない。従って、複数の通信帯域で通信特性に優れる、小型のフロントエンド回路を得ることができる。
(2)可変フィルタ回路は、複数のフィルタ部品と、フィルタ部品を切り換えるスイッチ回路とを有することが好ましい。
(3)好ましくは、可変フィルタ回路の減衰帯域を連続的に変化させることができる。
(4)可変フィルタ回路はバンドパスフィルタであることが好ましい。
(5)可変フィルタ回路はバンドエリミネーションフィルタであることが好ましい。
 この構成によれば、バンドパスフィルタに比べて、そのサイズを小さくすることができるので、フロントエンド回路を設計することが容易となる。
 本発明によれば、広帯域内に複数の通信帯域が設定されていても、それぞれの通信帯域で通信特性に優れる、小型のフロントエンド回路を実現することができる。
図1(A)は、第1の実施形態に係るフロントエンド回路の等価回路図である。図1(B)は、PAモジュール18の等価回路図である。 図2(A)は、従来構成のフロントエンド回路の等価回路図である。図2(B)は、PAモジュール38の等価回路図である。 図3(A)は、PAモジュール18の通過特性を示す図である。図3(B)は、通信帯域について説明するための図である。
 本発明の第1の実施形態に係るフロントエンド回路10について説明する。図1(A)は、フロントエンド回路10の等価回路図である。フロントエンド回路10は、アンテナ11、受信回路12、送信回路13およびサーキュレータ14を備える。受信回路12は低雑音増幅器16および受信部17を有する。送信回路13はPA(Power Amplifier)モジュール18および送信部19を有する。受信部17および送信部19はRFIC(Radio Frequency Integrated Circuit)15内に設けられている。
 サーキュレータ14は端子P1~P3を有する。端子P1から入力された高周波信号は端子P2に出力される。端子P3から入力された高周波信号は端子P1に出力される。サーキュレータ14は、複数の通信帯域を含む広い周波数範囲で高周波信号を低損失に伝送する。例えば、特許文献(特開平6-343005)に記載のような広帯域のサーキュレータを設計することは可能である。
 端子P1は本発明の第1端子に相当する。端子P2は本発明の第2端子に相当する。端子P3は本発明の第3端子に相当する。
 アンテナ11は端子P1に接続されている。低雑音増幅器16の入力端子は端子P2に接続されている。低雑音増幅器16の出力端子は受信部17に接続されている。PAモジュール18の出力端子は端子P3に接続されている。PAモジュール18の入力端子は送信部19に接続されている。なお、PAモジュール18の出力端子と端子P3との間に、フィルタ部品を備える信号処理部が接続されてもよい。信号処理部は、所定の周波数帯域を有する送信信号を通過させる。
 送信部19で生成された送信信号は、PAモジュール18で増幅され、サーキュレータ14の端子P3,P1を通過し、アンテナ11に送られる。また、アンテナ11で受信された受信信号は、サーキュレータ14の端子P1,P2を通過して、低雑音増幅器16で増幅され、受信部17に送られる。
 図1(B)は、PAモジュール18の等価回路図である。PAモジュール18は、増幅素子21a,21b、可変フィルタ回路22および整合回路23を備える。増幅素子21aの入力端子は送信部19に接続されている。増幅素子21aの出力端子は可変フィルタ回路22を介して増幅素子21bの入力端子に接続されている。増幅素子21bの出力端子は整合回路23を介してサーキュレータ14の端子P3に接続されている。
 増幅素子21a,21bは、複数の通信方式および複数の通信帯域で使用することができるマルチモード/マルチバンドパワーアンプである。増幅素子21a,21bは、例えば、1つのPAIC(Power Amplifier Integrated Circuit)に形成されている。なお、増幅素子21aは初段の増幅素子であり、増幅素子21bは最終段の増幅素子である。
 可変フィルタ回路22は低入出力インピーダンスを有する。可変フィルタ回路22の入出力インピーダンスは、例えば、PAICの入出力インピーダンスと等しく、18Ωである。可変フィルタ回路22は、例えば、PAICに近接配置され、ワイヤボンディング等によりPAICに接続される。可変フィルタ回路22は、例えば、SAW(Surface Acoustic Wave)フィルタ、BAW(BoundaryAcoustic Wave)フィルタ等によって構成される。
 可変フィルタ回路22は、スイッチ回路221a,221bおよびフィルタ部品222a~222cを有する。スイッチ回路221a,221bは、共通端子および第1~第3個別端子を有する。共通端子は、制御信号により、第1~第3個別端子のいずれか1つに接続される。フィルタ部品222a~222cはバンドパスフィルタである。フィルタ部品222a~222cの通過帯域特性は、互いに異なり、使用する通信帯域に応じて設定されている。
 なお、フィルタ部品222a~222cをSAWフィルタ等によって構成することで、フィルタ部品222a~222cの減衰特性を急峻にすることができる。これにより、通過させたい通信帯域の高周波信号のみを低損失に伝送させることができる。すなわち、通過させたい通信帯域の高周波信号のみを伝送させ、他の通信帯域の高周波信号を大幅に減衰させることができる。
 また、フィルタ部品はバンドエリミネーションフィルタでもよい。バンドエリミネーションフィルタでは、バンドパスフィルタに比べて、そのサイズを小さくすることができるので、可変フィルタ回路延いてはフロントエンド回路を設計することが容易となる。
 スイッチ回路221aの共通端子は増幅素子21aの出力端子に接続されている。スイッチ回路221aの第1個別端子はフィルタ部品222aを介してスイッチ回路221bの第1個別端子に接続されている。スイッチ回路221aの第2個別端子はフィルタ部品222bを介してスイッチ回路221bの第2個別端子に接続されている。スイッチ回路221aの第3個別端子はフィルタ部品222cを介してスイッチ回路221bの第3個別端子に接続されている。スイッチ回路221bの共通端子は増幅素子21bの入力端子に接続されている。
 可変フィルタ回路22内のスイッチ回路221a,221bは、通信方式または通信帯域に合わせて、信号経路を切り換える。これにより、可変フィルタ回路22は、通信方式または通信帯域に合わせて、通過帯域または減衰帯域を切り換える。すなわち、可変フィルタ回路22はセレクタブルフィルタとして機能する。
 なお、可変フィルタ回路は、例えば、通過帯域または減衰帯域を連続的に変化させることができるチューナブルフィルタでもよい。
 PAモジュール18に入力された送信信号は、増幅素子21aで増幅される。増幅された送信信号は可変フィルタ回路22に入力される。可変フィルタ回路22に入力された送信信号は、通信方式および通信帯域に合ったフィルタ部品を通過する。可変フィルタ回路22を通過した送信信号は、増幅素子21bでさらに増幅され、PAモジュール18から出力される。
 ここで、フロントエンド回路10と比較するために、従来構成のフロントエンド回路30について説明する。図2(A)は、従来構成のフロントエンド回路30の等価回路図である。フロントエンド回路30は、アンテナ11、デュプレクサ34、低雑音増幅器16、PAモジュール38およびRFIC15を備える。
 低雑音増幅器16の入力端子はデュプレクサ34の受信側フィルタを介してアンテナ11に接続されている。低雑音増幅器16の出力端子はRFIC15に接続されている。PAモジュール38の出力端子はデュプレクサ34の送信側フィルタを介してアンテナ11に接続されている。PAモジュール38の入力端子はRFIC15に接続されている。
 RFIC15で生成された送信信号は、PAモジュール38で増幅され、デュプレクサ34の送信側フィルタを通過し、アンテナ11に送られる。また、アンテナ11で受信された受信信号は、デュプレクサ34の受信側フィルタを通過して、低雑音増幅器16で増幅され、RFIC15に送られる。
 図2(B)は、PAモジュール38の等価回路図である。PAモジュール38は、増幅素子21a,21b、整合回路23a,23b,スイッチ回路221および受動素子24a,24bを備える。
 増幅素子21aの入力端子はRFIC15に接続されている。増幅素子21aの出力端子は整合回路23aを介して増幅素子21bの入力端子に接続されている。増幅素子21bの出力端子は整合回路23bを介してデュプレクサ34に接続されている。
 スイッチ回路221の共通端子は整合回路23aに接続されている。スイッチ回路221の第1個別端子は受動素子24aを介してグランドに接続されている。スイッチ回路221の第2個別端子は受動素子24bを介してグランドに接続されている。
 整合回路23aに接続される受動素子をスイッチ回路221で切り換えることにより、通信方式または通信帯域に合わせて、増幅素子21aと増幅素子21bとの間の整合をとる。
 図3(A)は、PAモジュール18の通過特性を示す図である。縦軸は減衰量であり、横軸は周波数である。実線101は、通信帯域Bが選択されたときのPAモジュール18の通過特性である。実線102は、通信帯域Bが選択されたときのPAモジュール18の通過特性である。破線103は通信帯域Bが選択されたときのPAモジュール38の通過特性である。破線104は通信帯域Bが選択されたときのPAモジュール38の通過特性である。例えば、通信帯域Bは800MHz帯であり、通信帯域Bは1GHz帯である。
 図3(B)に示すように、送信周波数ωT1は、通信帯域Bに対応する送信帯域BT1の中心周波数を示す。受信周波数ωR1は、通信帯域Bに対応する受信帯域BR1の中心周波数を示す。送信周波数ωT2は、通信帯域Bに対応する送信帯域BT2の中心周波数を示す。受信周波数ωR2は、通信帯域Bに対応する受信帯域BR2の中心周波数を示す。
 使用通信帯域として通信帯域Bが選択されたとき、PAモジュール18では、送信帯域BT1の高周波信号はほぼ通過するが、受信帯域BR1の高周波信号は大きく減衰する。従来のPAモジュール38では、送信帯域BT1の高周波信号はPAモジュール18と同様にほぼ通過するが、受信帯域BR1の高周波信号はあまり減衰しない。
 同様に、使用通信帯域として通信帯域Bが選択されたとき、PAモジュール18では、送信帯域BT2の高周波信号はほぼ通過するが、受信帯域BR2の高周波信号は大きく減衰する。従来のPAモジュール38では、送信帯域BT2の高周波信号はほぼ通過するが、受信帯域BR2の高周波信号はあまり減衰しない。
 例えば、フィルタ部品222aは、送信帯域BT1を通過帯域とし、受信帯域BR1を減衰帯域とする。フィルタ部品222bは、送信帯域BT2を通過帯域とし、受信帯域BR2を減衰帯域とする。使用通信帯域として通信帯域Bが選択された場合、送信信号はフィルタ部品222aを通過する。使用通信帯域として通信帯域Bが選択された場合、送信信号はフィルタ部品222bを通過する。これにより、可変フィルタ回路22、延いては、PAモジュール18は、図3(A)に示す通過特性を有する。
 上述のように、サーキュレータ14は、複数の通信帯域を含む広い周波数範囲で高周波信号を低損失に伝送する。すなわち、アンテナ11とRFIC15との間の伝送損失を小さくすることができる。また、サーキュレータ14は、通信帯域ごとに設けられた複数のデュプレクサに比べて小型である。そこで、送信信号と受信信号と分波するためにサーキュレータ14を用いると、複数の通信帯域で通信する、小型のフロントエンド回路を得ることができると考えられる。
 しかし、送信信号をパワーアンプで増幅する場合、高調波歪みが生じ、雑音が発生する。この雑音には受信帯域内の周波数を有する受信帯域雑音が含まれる。このため、パワーアンプで増幅された送信信号を単にサーキュレータに入力すると、受信帯域雑音が受信回路に回り込むため、受信感度が劣化するおそれがある。
 第1の実施形態では、図3(A)に示すように、可変フィルタ回路22は、送信信号が増幅素子21aで増幅されたときに発生した受信帯域雑音を減衰させる。このため、PAモジュール18から出力される受信帯域雑音が小さくなる。これにより、端子P3から端子P2に回り込む受信帯域雑音のレベルが抑制されるため、受信感度の劣化を防ぐことができる。すなわち、送信信号と受信信号と分波するためにサーキュレータ14を用いても、送受信間で、高いアイソレーションを確保することができる。
 従って、複数の通信帯域で通信特性に優れる、小型のフロントエンド回路を得ることができる。なお、このようなフロントエンド回路はコグニティブ無線に利用することができる。
 また、従来構成のフロントエンド回路30では、送信信号が増幅素子21aにより増幅されたときに発生した受信帯域雑音が、増幅素子21bにより増幅される。一方、第1の実施形態に係るフロントエンド回路10では、可変フィルタ回路22が、送信信号が増幅素子21aで増幅されたときに発生した受信帯域雑音を減衰させる。このため、受信帯域雑音が増幅素子21bにより増幅されることが抑制される。この結果、PAモジュール18では、フロントエンド回路30に比べて、電力損失を低減させることができる。
 なお、本実施形態では、2つの増幅素子を有するPAモジュールを例に説明したが、3つ以上の増幅素子を有するPAモジュールを用いてもよい。この構成でも、本実施形態と同様に、増幅素子の間に可変フィルタ回路を挿入することで、送信時に発生する受信帯域雑音のレベルを低減することができる。この場合、最終段の増幅素子と、当該増幅素子に隣接して接続される前段の増幅素子との間に、可変フィルタ回路を挿入すると、受信帯域雑音の低減効果が最も高くなる。
P1…端子(第1端子)
P2…端子(第2端子)
P3…端子(第3端子)
10,30…フロントエンド回路
11…アンテナ
12…受信回路
13…送信回路
14…サーキュレータ
15…RFIC
16…低雑音増幅器
17…受信部
18,38…PAモジュール
19…送信部
21a,21b…増幅素子
22…可変フィルタ回路
23,23a,23b…整合回路
24a,24b…受動素子
34…デュプレクサ
221,221a,221b…スイッチ回路
222a~222c…フィルタ部品

Claims (5)

  1.  第1ないし第3端子を有するサーキュレータと、
     前記第1端子に接続されるアンテナと、
     前記第2端子に接続される受信回路と、
     前記第3端子に接続される送信回路とを備え、
     前記サーキュレータは、複数の通信帯域を含む周波数範囲で、前記第1端子に入力される高周波信号を前記第2端子に出力し、前記第3端子に入力される高周波信号を前記第1端子に出力し、
     前記送信回路は、縦続接続される複数の増幅素子と、前記増幅素子の間に接続される可変フィルタ回路とを有し、
     前記増幅素子は、前記複数の通信帯域を含む周波数範囲で、送信信号を増幅し、
     前記複数の通信帯域から選択される使用通信帯域で、前記送信回路が送信するときには、前記可変フィルタ回路は、前記使用通信帯域に対応する送信帯域を通過帯域とし、前記使用通信帯域に対応する受信帯域を減衰帯域とするフロントエンド回路。
  2.  前記可変フィルタ回路は、複数のフィルタ部品と、前記フィルタ部品を切り換えるスイッチ回路とを有する、請求項1に記載のフロントエンド回路。
  3.  前記可変フィルタ回路の前記減衰帯域を連続的に変化させることができる、請求項1に記載のフロントエンド回路。
  4.  前記可変フィルタ回路はバンドパスフィルタである、請求項1ないし3のいずれかに記載のフロントエンド回路。
  5.  前記可変フィルタ回路はバンドエリミネーションフィルタである、請求項1ないし3のいずれかに記載のフロントエンド回路。
PCT/JP2014/060248 2013-07-01 2014-04-09 フロントエンド回路 WO2015001828A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/067328 WO2015002127A1 (ja) 2013-07-01 2014-06-30 電力増幅モジュールおよびフロントエンド回路
US14/977,814 US10128796B2 (en) 2013-07-01 2015-12-22 Power amplification module and front end circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-137675 2013-07-01
JP2013137675 2013-07-01

Publications (1)

Publication Number Publication Date
WO2015001828A1 true WO2015001828A1 (ja) 2015-01-08

Family

ID=52143422

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/060248 WO2015001828A1 (ja) 2013-07-01 2014-04-09 フロントエンド回路
PCT/JP2014/067328 WO2015002127A1 (ja) 2013-07-01 2014-06-30 電力増幅モジュールおよびフロントエンド回路

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067328 WO2015002127A1 (ja) 2013-07-01 2014-06-30 電力増幅モジュールおよびフロントエンド回路

Country Status (2)

Country Link
US (1) US10128796B2 (ja)
WO (2) WO2015001828A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057567A1 (ja) 2015-10-02 2017-04-06 株式会社村田製作所 電力増幅モジュール、フロントエンド回路および通信装置
WO2017057568A1 (ja) 2015-10-02 2017-04-06 株式会社村田製作所 電力増幅モジュール、フロントエンド回路および通信装置
KR102060406B1 (ko) * 2015-11-04 2019-12-30 가부시키가이샤 무라타 세이사쿠쇼 분파 장치 및 그 설계 방법
JP6451605B2 (ja) * 2015-11-18 2019-01-16 株式会社村田製作所 高周波モジュール及び通信装置
CN109075751B (zh) 2016-03-30 2022-06-07 株式会社村田制作所 高频信号放大电路、功率放大模块、前端电路及通信装置
JP2018107502A (ja) 2016-12-22 2018-07-05 株式会社村田製作所 通信モジュール
WO2020003676A1 (ja) * 2018-06-26 2020-01-02 株式会社村田製作所 高周波モジュールおよび通信装置
JP2022002364A (ja) 2020-06-19 2022-01-06 株式会社村田製作所 高周波モジュール及び通信装置
US20220029646A1 (en) * 2020-07-27 2022-01-27 Corning Research & Development Corporation Radio frequency transceiver filter circuit having inter-stage impedance matching
WO2023199663A1 (ja) * 2022-04-12 2023-10-19 株式会社村田製作所 高周波回路
WO2023248631A1 (ja) * 2022-06-21 2023-12-28 株式会社村田製作所 高周波回路

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000115016A (ja) * 1998-10-08 2000-04-21 Kokusai Electric Co Ltd 全二重無線機とその回り込み防止方法
JP2004194097A (ja) * 2002-12-12 2004-07-08 Hitachi Kokusai Electric Inc 全二重無線機

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4422047A (en) * 1981-11-23 1983-12-20 E-Systems, Inc. Solid state autotune power amplifier
JP3438414B2 (ja) * 1995-06-09 2003-08-18 松下電器産業株式会社 増幅回路
KR100534159B1 (ko) * 1995-06-09 2006-01-27 마쯔시다덴기산교 가부시키가이샤 증폭기
US6489862B1 (en) * 2000-10-03 2002-12-03 Agilent Technologies, Inc. Method for reducing noise generated in a power amplifier
US6806767B2 (en) * 2002-07-09 2004-10-19 Anadigics, Inc. Power amplifier with load switching circuit
US7863983B2 (en) * 2003-05-20 2011-01-04 Epic Communications, Inc. Smart linearized power amplifier and related systems and methods
JP2007060455A (ja) * 2005-08-26 2007-03-08 Sanyo Electric Co Ltd 送信装置
US7796953B2 (en) * 2006-03-17 2010-09-14 Nokia Corporation Transmitter, power amplifier and filtering method
US8160275B2 (en) * 2008-04-28 2012-04-17 Samsung Electronics Co., Ltd. Apparatus and method for an integrated, multi-mode, multi-band, and multi-stage power amplifier
US8213537B2 (en) * 2009-01-23 2012-07-03 Verizon Patent And Licensing Inc. Apparatuses, systems, and methods for reducing spurious emissions resulting from carrier leakage
US9143172B2 (en) * 2009-06-03 2015-09-22 Qualcomm Incorporated Tunable matching circuits for power amplifiers
US20110117862A1 (en) * 2009-11-16 2011-05-19 Oluf Bagger Multiband RF Device
KR101087629B1 (ko) * 2009-12-30 2011-11-30 광주과학기술원 다중 대역 전력증폭기
JP2011182271A (ja) 2010-03-03 2011-09-15 Nec Corp 無線送信回路、無線通信機器及びそれらに用いる無線送信回路の構成方法
JP2011234155A (ja) * 2010-04-28 2011-11-17 Renesas Electronics Corp 送信器
JP5581126B2 (ja) * 2010-06-15 2014-08-27 ルネサスエレクトロニクス株式会社 半導体集積回路装置および無線通信システム
JP5594372B2 (ja) * 2011-01-31 2014-09-24 富士通株式会社 整合装置、送信増幅器及び無線通信装置
US8634789B2 (en) * 2011-11-10 2014-01-21 Skyworks Solutions, Inc. Multi-mode power amplifier
JP2013110619A (ja) * 2011-11-22 2013-06-06 Mitsubishi Electric Corp 増幅器
US9049664B2 (en) * 2013-06-24 2015-06-02 Mediatek Inc. Wireless communications circuit for improving current consumption and RF performance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000115016A (ja) * 1998-10-08 2000-04-21 Kokusai Electric Co Ltd 全二重無線機とその回り込み防止方法
JP2004194097A (ja) * 2002-12-12 2004-07-08 Hitachi Kokusai Electric Inc 全二重無線機

Also Published As

Publication number Publication date
US10128796B2 (en) 2018-11-13
WO2015002127A1 (ja) 2015-01-08
US20160112009A1 (en) 2016-04-21

Similar Documents

Publication Publication Date Title
WO2015001828A1 (ja) フロントエンド回路
US11336238B2 (en) High-frequency module and communication apparatus
JP6965581B2 (ja) 高周波モジュール及び通信装置
US10476531B2 (en) High-frequency front-end circuit
US10148297B2 (en) Splitter
US11101839B2 (en) High frequency filter, multiplexer, high frequency front-end circuit, and communication device
WO2018030277A1 (ja) マルチプレクサ、高周波フロントエンド回路及び通信装置
US10476535B2 (en) High-frequency front end circuit and communication apparatus
JP2021125775A (ja) マルチプレクサ、フロントエンド回路および通信装置
JP2015061198A (ja) 電子回路
JP6673467B2 (ja) 周波数可変フィルタ、rfフロントエンド回路、および、通信端末
WO2019235181A1 (ja) 高周波フロントエンドモジュールおよび通信装置
CN108631813B (zh) 前端模块
US11437959B2 (en) High frequency amplification circuit, high frequency front-end circuit, and communication device
KR102323572B1 (ko) 수신밴드 가변 필터링 기능을 갖는 다중밴드 고주파 송신 장치
US10009052B2 (en) UL CA TX-TX tunable cross-isolation method
WO2018123913A1 (ja) 高周波モジュール、送受信モジュールおよび通信装置
US9787334B2 (en) High frequency power amplifier, high frequency front-end circuit, and radio communication device
US10979096B2 (en) High-frequency front-end circuit
US9893750B2 (en) Tunable transmit cancellation in acoustic receiver filters
KR101609637B1 (ko) 필터 장치
WO2014141897A1 (ja) デュプレクサ
US11190163B2 (en) Filter device and multiplexer
WO2020202891A1 (ja) 高周波モジュール及び通信装置
KR101675964B1 (ko) 피드포워드 구조를 이용한 높은 리젝션의 n-패스 대역통과 필터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14819339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14819339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP