WO2023248631A1 - 高周波回路 - Google Patents
高周波回路 Download PDFInfo
- Publication number
- WO2023248631A1 WO2023248631A1 PCT/JP2023/017295 JP2023017295W WO2023248631A1 WO 2023248631 A1 WO2023248631 A1 WO 2023248631A1 JP 2023017295 W JP2023017295 W JP 2023017295W WO 2023248631 A1 WO2023248631 A1 WO 2023248631A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- power amplifier
- class
- switch
- circuit
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims description 157
- 230000005540 biological transmission Effects 0.000 claims description 69
- 238000004891 communication Methods 0.000 description 91
- 238000010586 diagram Methods 0.000 description 33
- 238000000034 method Methods 0.000 description 20
- 239000000463 material Substances 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000003321 amplification Effects 0.000 description 5
- 238000003199 nucleic acid amplification method Methods 0.000 description 5
- 238000010897 surface acoustic wave method Methods 0.000 description 4
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/38—Impedance-matching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/02—Transmitters
- H04B1/04—Circuits
Definitions
- the present invention relates to high frequency circuits.
- band In mobile communication systems used in mobile phones, etc., in addition to frequency bands that require a radio station license (hereinafter referred to as licensed bands), there are also frequency bands that do not require a radio station license (hereinafter referred to as unlicensed bands). (band)) is being utilized.
- a power class that allows higher maximum output power hereinafter referred to as "high power class”
- a power class that is limited to a lower maximum output power hereinafter referred to as "low power class”
- the present invention provides a high frequency circuit that can support both high power class and low power class.
- a high frequency circuit is a high frequency circuit configured to support a first power class and a second power class having a lower maximum output power than the first power class, and includes a first power amplifier, a first filter, and a first power class. and a second filter, a switch circuit including a first terminal connected to the output terminal of the first power amplifier, a second terminal connected to the first filter, and a third terminal connected to the second filter.
- the first power class is applied, the first power supply voltage is supplied to the first power amplifier, the first filter is connected to the first power amplifier by the switch circuit, and the second power class is applied.
- the second power supply voltage is supplied to the first power amplifier, and the second filter is connected to the first power amplifier by the switch circuit, the first power supply voltage is higher than the second power supply voltage, and the second power supply voltage is higher than the second power supply voltage.
- the input impedance is lower than the input impedance of the second filter.
- the high frequency circuit it is possible to support both high power class and low power class.
- FIG. 1 is a circuit configuration diagram of a communication device according to the first embodiment.
- FIG. 2 is a circuit configuration diagram of an example of the variable load matching circuit according to the first embodiment.
- FIG. 3 is a circuit configuration diagram of another example of the variable load matching circuit according to the first embodiment.
- FIG. 4 is a circuit configuration diagram of a communication device according to the second embodiment.
- FIG. 5 is a circuit configuration diagram of an example of a variable load matching circuit according to the second embodiment.
- FIG. 6 is a circuit configuration diagram of another example of the variable load matching circuit according to the second embodiment.
- FIG. 7 is a circuit configuration diagram of a communication device according to Embodiment 3.
- FIG. 8 is a circuit configuration diagram of a variable load matching circuit according to the third embodiment.
- FIG. 9 is a circuit configuration diagram of a communication device according to Embodiment 4.
- FIG. 10 is a circuit configuration diagram of a communication device according to Embodiment 5.
- FIG. 11 is a circuit configuration diagram of a communication device according to Embodiment 6.
- FIG. 12 is a circuit configuration diagram of a communication device according to Embodiment 7.
- FIG. 13 is a circuit configuration diagram of a communication device according to Embodiment 8.
- FIG. 14 is a circuit configuration diagram of a communication device according to Embodiment 9.
- FIG. 15 is a circuit configuration diagram of a communication device according to Embodiment 10.
- FIG. 16 is a circuit configuration diagram of a communication device according to another embodiment.
- each figure is a schematic diagram with emphasis, omission, or ratio adjustment as appropriate to illustrate the present invention, and is not necessarily strictly illustrated, and the actual shape, positional relationship, and ratio may differ. It may be different.
- substantially the same configurations are denoted by the same reference numerals, and overlapping explanations may be omitted or simplified.
- connection includes not only the case of direct connection with a connection terminal and/or wiring conductor, but also the case of electrical connection via another circuit element.
- Connected between A and B means connected to both A and B between A and B, and means arranged in series on a path connecting A and B.
- a terminal means a point where a conductor within an element terminates. Note that if the impedance of the path between elements is sufficiently low, a terminal is interpreted not only as a single point but also as any point on the path between elements or the entire path.
- the communication device 6 corresponds to a user terminal (UE: User Equipment) in a cellular network, and is typically a mobile phone, a smartphone, a tablet computer, a wearable device, or the like.
- UE User Equipment
- the communication device 6 includes IoT (Internet of Things) sensor devices, medical/healthcare devices, cars, unmanned aerial vehicles (UAVs) (so-called drones), and automated guided vehicles (AGVs). It may be.
- IoT Internet of Things
- UAVs unmanned aerial vehicles
- AGVs automated guided vehicles
- FIG. 1 is a circuit configuration diagram of a communication device 6 according to this embodiment.
- FIG. 1 is an exemplary circuit configuration, and the communication device 6 and high frequency circuit 1 may be implemented using any of a wide variety of circuit implementations and circuit techniques. Therefore, the description of the communication device 6 and the high frequency circuit 1 provided below should not be interpreted in a limiting manner.
- the communication device 6 includes a high frequency circuit 1 , an antenna 2 , an RFIC (Radio Frequency Integrated Circuit) 3 , a BBIC (Baseband Integrated Circuit) 4 , and a power supply circuit 5 .
- RFIC Radio Frequency Integrated Circuit
- BBIC Baseband Integrated Circuit
- the high frequency circuit 1 transmits high frequency signals between the antenna 2 and the RFIC 3.
- the circuit configuration of the high frequency circuit 1 will be described later.
- the antenna 2 is connected to the antenna connection terminal 100 of the high frequency circuit 1.
- Antenna 2 receives a high frequency signal from high frequency circuit 1 and outputs it to the outside of communication device 6 . Further, the antenna 2 may receive a high frequency signal from outside the communication device 6 and output it to the high frequency circuit 1. Note that the antenna 2 does not need to be included in the communication device 6.
- the communication device 6 may further include one or more antennas.
- the RFIC 3 is an example of a signal processing circuit that processes high frequency signals. Specifically, the RFIC 3 processes the transmission signal input from the BBIC 4 by up-converting or the like, and outputs the high-frequency transmission signal generated by the signal processing to the high-frequency circuit 1. Further, the RFIC 3 includes a control section that controls the switches, power amplifiers, etc. included in the high frequency circuit 1 and/or the power supply circuit 5. Note that part or all of the function of the control unit of the RFIC 3 may be configured outside the RFIC 3, for example, in the BBIC 4, the high frequency circuit 1, or the power supply circuit 5.
- the antenna connection terminal 100 is an external connection terminal of the high frequency circuit 1, and is a terminal for supplying a transmission signal to the outside of the high frequency circuit 1.
- the antenna connection terminal 100 is connected to the antenna 2 outside the high frequency circuit 1 and to the filter 31 inside the high frequency circuit 1.
- the power amplifier 11 is an example of a first power amplifier. An input terminal of power amplifier 11 is connected to input terminal 111 . The output end of the power amplifier 11 is connected to a variable load matching circuit 21 or 22. Furthermore, power amplifier 11 is connected to power supply voltage terminal 121 .
- Such a power amplifier 11 can be configured with a heterojunction bipolar transistor (HBT), and can be manufactured using a semiconductor material.
- the semiconductor material for example, silicon germanium (SiGe) or gallium arsenide (GaAs) can be used.
- the amplification transistor of the power amplifier 11 is not limited to an HBT.
- the power amplifier 11 may be configured with a HEMT (High Electron Mobility Transistor) or a MESFET (Metal-Semiconductor Field Effect Transistor).
- HEMT High Electron Mobility Transistor
- MESFET Metal-Semiconductor Field Effect Transistor
- gallium nitride (GaN) or silicon carbide (SiC) may be used as the semiconductor material.
- the power amplifier 11 can support a first power class, a second power class, and a third power class. In a situation where the first power class is applied, the power supply voltage Vcc1 is supplied to the power amplifier 11, and in a situation where the second power class and the third power class are applied, the power supply voltage Vcc2 is supplied to the power amplifier 11. Note that the power amplifier 11 does not need to be compatible with the third power class.
- the first power class has a higher maximum output power than the second power class and the third power class, and corresponds to a high power class.
- the second power class has a lower maximum output power than the first power class and the third power class, and corresponds to a low power class.
- the third power class has a lower maximum output power than the first power class and a higher maximum output power than the second power class, and corresponds to a middle power class.
- the maximum output power of a terminal is defined as the maximum output power at the antenna end of the terminal.
- the maximum output power of a terminal is measured using a method defined by 3GPP or the like. For example, in FIG. 1, the maximum output power is measured by measuring the radiated power at antenna 2. Note that instead of measuring the radiated power, the maximum output power of the antenna 2 can also be measured by providing a terminal near the antenna 2 and connecting a measuring device (for example, a spectrum analyzer) to the terminal.
- a measuring device for example, a spectrum analyzer
- power class 2 is used as the first power class
- power class 5 is used as the second power class
- power class 3 is used as the third power class.
- the combination of the first power class, second power class, and third power class is not limited to this.
- power class 1.5 may be used as the first power class
- power class 3 may be used as the second power class
- power class 2 may be used as the third power class.
- a surface acoustic wave (SAW) filter, a bulk acoustic wave (BAW) filter, an LC resonance filter, a dielectric resonance filter, or any combination thereof is used.
- SAW surface acoustic wave
- BAW bulk acoustic wave
- LC resonance filter a dielectric resonance filter
- dielectric resonance filter a dielectric resonance filter
- FIG. 2 is a circuit configuration diagram of the variable load matching circuit 21 according to this embodiment.
- variable load matching circuit 21 may be implemented using any of a wide variety of circuit implementations and circuit techniques. Therefore, the description of variable load matching circuit 21 provided below should not be construed as limiting.
- the variable load matching circuit 21 includes inductors L211 and L212, capacitors C211 to C214, switches SW211 to SW214, an input terminal T211, and an output terminal T212.
- Capacitor C213 is an example of a first capacitor. One end of the capacitor C213 is connected to the switch SW211. The other end of the capacitor C213 is connected to the switch SW212.
- Capacitor C214 is an example of a second capacitor. One end of the capacitor C214 is connected to the switch SW213. The other end of capacitor C214 is connected to switch SW214.
- the variable load matching circuit 22 includes inductors L221 to L223, capacitors C220 to C223, switches SW221 and SW222, an input terminal T221, and an output terminal T222.
- capacitors C220 to C223 are connected in parallel between the path between the input terminal T221 and the output terminal T222 and the ground. Specifically, capacitor C220 is connected between the path between input terminal T221 and inductor L221 and ground. Capacitor C221 is connected between the path between inductors L221 and L222 and ground. Capacitor C222 is an example of a first capacitor, and is connected between the path between inductor L222 and output terminal T222 and the ground. Capacitor C223 and switch SW222 are examples of a second capacitor and a second switch, respectively, and are connected in series between the path between inductor L222 and output terminal T222 and the ground, and connected in parallel with capacitor C222.
- the switch SW221 is opened when the first power class and the third power class are applied, and closed when the second power class is applied.
- the switch SW222 is closed when the first power class and the third power class are applied, and is opened when the second power class is applied.
- at least one end of the inductor L223 is not connected to the path between the input terminal T221 and the output terminal T222, and both ends of the capacitor C223 are connected to the path between the input terminal T221 and the output terminal T222. They are respectively connected to the path between the output terminals T222 and the ground.
- both ends of the inductor L223 are connected to the path between the input terminal T221 and the output terminal T222, and at least one end of the capacitor C223 is connected to the path between the input terminal T221 and the output terminal T222. Not connected to path or ground.
- the load impedance seen from the node N1 becomes higher in a situation where the first power class and the third power class are applied, and becomes lower in a situation where the second power class is applied.
- the pi-type matching circuit composed of capacitors C220 and C221 and inductor L221 functions as an impedance inverter. Therefore, the load impedance seen from the input terminal T221 becomes lower in a situation where the first power class and the third power class are applied, and becomes higher in a situation where the second power class is applied.
- the load impedance seen from the power amplifier 11 is adjusted to a lower first impedance (for example, 3 ohms) in situations where the first and third power classes are applied, and to a higher one in situations where the second power class is applied. Adjusted to a second impedance (eg 6 ohms).
- the high frequency circuit 1 is a high frequency circuit 1 configured to support a first power class and a second power class whose maximum output power is lower than the first power class, and includes a power amplifier 11. and a variable load matching circuit 21 or 22 connected to the output terminal of the power amplifier 11, in a situation where the first power class is applied, the power supply voltage Vcc1 is supplied to the power amplifier 11, and the variable load matching circuit 21 or 22 is connected to the output terminal of the power amplifier 11.
- both the power supply voltage and the load impedance are adjusted according to the first power class and the second power class, so the power amplifier 11 can support both the first power class and the second power class.
- the power supply voltage is fixed when the difference between the maximum output power of the first power class and the maximum output power of the second power class is large, the adjustment range of the load impedance will be expanded, and switch loss will increase at low load impedance. Therefore, by adjusting both the power supply voltage and the load impedance, it is possible to suppress the adjustment range of the load impedance from expanding and suppress switch loss.
- the load impedance is fixed when the difference between the maximum output power of the first power class and the maximum output power of the second power class is large, a higher power supply voltage is required, and the power amplifier 11 is required to have higher voltage resistance. be done. Therefore, by adjusting both the power supply voltage and the load impedance, the requirement for voltage resistance of the power amplifier 11 can be suppressed.
- the power amplifier 11 further corresponds to a third power class whose maximum output power is lower than the first power class and whose maximum output power is higher than the second power class.
- the power supply voltage Vcc2 is supplied to the power amplifier 11, and the load impedance seen from the power amplifier 11 is changed to the first impedance by the variable load matching circuit 21 or 22. May be adjusted.
- the same power supply voltage as that of the second power class is supplied, and the load impedance is adjusted to be the same as that of the first power class. Therefore, it is possible to suppress an increase in power supply voltage in the third power class and improve power efficiency.
- the variable load matching circuit 21 includes a capacitor C213 connected in series between the power amplifier 11 and the antenna connection terminal 100, and a switch SW211 and/or SW212. , a capacitor C213 and a capacitor C214 connected in parallel with the switch SW211 and/or SW212 and in series with each other, and a switch SW213 and/or SW214 between the power amplifier 11 and the antenna connection terminal 100.
- the capacitance of the capacitor C213 is larger than the capacitance of the capacitor C214, and in a situation where the first power class is applied, the switches SW211 and/or SW212 are closed, and the switches SW213 and /or SW214 may be opened, and in situations where the second power class is applied, switch SW211 and/or SW212 may be opened and switch SW213 and/or SW214 may be closed.
- the variable load matching circuit 22 includes an inductor L222 connected between the power amplifier 11 and the antenna connection terminal 100, and an inductor L222 connected between the power amplifier 11 and the antenna connection terminal 100.
- an inductor L223 and a switch SW221 are connected in parallel with the inductor L222 and in series with each other, and a capacitor C222 is connected between the path between the power amplifier 11 and the antenna connection terminal 100 and the ground.
- switch SW221 may be open and switch SW222 may be closed, and in situations where a second power class is applied, switch SW221 may be closed and switch SW222 may be opened.
- FIG. 4 is a circuit configuration diagram of a communication device 6A according to this embodiment.
- the power amplifier 11 is an example of a first power amplifier. An input end of power amplifier 11 is connected to transformer 41 . The output end of power amplifier 11 is connected to transformer 42 . Power amplifier 11 can amplify one of the differential signals output from transformer 41.
- Such a power amplifier 12 can be configured with an HBT and can be manufactured using a semiconductor material.
- the semiconductor material for example, SiGe or GaAs can be used, but the semiconductor material is not limited thereto.
- the transformer 41 includes a primary coil L411 and a secondary coil L412 coupled to the primary coil L411.
- One end of the primary coil L411 is connected to the input terminal 111, and the other end of the primary coil L411 is connected to ground.
- Both ends of the secondary coil L412 are connected to the input ends of power amplifiers 11 and 12, respectively.
- the transformer 42 includes a primary coil L421 and a secondary coil L422 coupled to the primary coil L421. Both ends of the primary coil L421 are connected to the output ends of the power amplifiers 11 and 12, respectively. Further, the primary coil L421 is divided into two coils, and the power supply voltage terminal 121 is connected to a node between the two coils. One end of the secondary coil L422 is connected to the variable load matching circuit 23 or 24. The other end of the secondary coil L422 is connected to ground.
- variable load matching circuit 23 may be implemented using any of a wide variety of circuit implementations and circuit techniques. Therefore, the description of variable load matching circuit 23 provided below should not be construed as limiting.
- the variable load matching circuit 24 includes inductors L222 and L223, capacitors C221 to C223, switches SW221 and SW222, an input terminal T241, and an output terminal T242.
- the variable load matching circuit 24 corresponds to a circuit in which the inductor L221 and the capacitor C220 are removed and the input terminal T221 and the output terminal T222 are replaced with the input terminal T241 and the output terminal T242 in the variable load matching circuit 22 of the first embodiment. do.
- the switch SW221 is opened in a situation where the first power class and the third power class are applied, and closed in a situation where the second power class is applied.
- the switch SW222 is closed when the first power class and the third power class are applied, and is opened when the second power class is applied.
- at least one end of the inductor L223 is not connected to the path between the input terminal T241 and the output terminal T242, and both ends of the capacitor C223 are connected to the path between the input terminal T241 and the output terminal T242. They are respectively connected to the path between the output terminals T242 and the ground.
- the high frequency circuit 1A is a high frequency circuit 1A configured to correspond to the first power class and the second power class whose maximum output power is lower than the first power class, and includes the power amplifier 11. and a variable load matching circuit 23 or 24 connected to the output terminal of the power amplifier 11.
- the power supply voltage Vcc1 is supplied to the power amplifier 11, and the variable load matching circuit 23 or 24 is connected to the output terminal of the power amplifier 11.
- the variable load matching circuit 23 includes a capacitor C213 connected in series between the power amplifier 11 and the antenna connection terminal 100, and a switch SW211 and/or SW212. , a capacitor C213 and a capacitor C214 connected in parallel with the switch SW211 and/or SW212 and in series with each other, and a switch SW213 and/or SW214 between the power amplifier 11 and the antenna connection terminal 100.
- switch SW221 may be open and switch SW222 may be closed, and in situations where a second power class is applied, switch SW221 may be closed and switch SW222 may be opened.
- the power supply voltage Vcc2 is supplied to the power amplifiers 11 and 12, and the variable load matching
- the load impedance seen from the power amplifiers 11 and 12 may be adjusted to the second impedance by the circuit 23 or 24.
- the variable load matching circuit 25 is a variable impedance matching circuit configured to adjust the load impedance seen from the power amplifiers 11 and 12 according to the power class.
- the variable load matching circuit 25 includes inductors L222 and L223, capacitors C221, C251 and C252, switches SW221 and SW251, an input terminal T251, and an output terminal T252.
- the capacitors C222 and C223 and the switch SW222 are replaced with the capacitors C251 and C252 and the switch SW251 in the variable load matching circuit 24 of the second embodiment, and the input terminal T241 and the output terminal T242 are replaced with the input terminal T251 and the switch SW251. This corresponds to the circuit replaced by the output terminal T252.
- the power supply voltage Vcc2 is supplied to the power amplifier 11, and the load impedance seen from the power amplifier 11 is adjusted by The load impedance is adjusted to a second impedance, the power supply voltage Vcc1 is higher than the power supply voltage Vcc2, and the first impedance is lower than the second impedance.
- the power amplifier 12 the primary coil L421 whose both ends are connected to the output terminal of the power amplifier 11 and the output terminal of the power amplifier 12, respectively, and one end connected to the variable load matching circuit 25. and a secondary coil L422 to which the transformer 42 is connected.
- the high frequency signal can be amplified using the two power amplifiers 11 and 12, so the requirement for the maximum output power of each of the power amplifiers 11 and 12 in the first power class can be reduced. Furthermore, since the operation of the power amplifier 12 can be stopped in the second power class where the maximum output power is low, it is possible to suppress a decrease in power efficiency in the second power class.
- the variable load matching circuit 25 includes an inductor L222 connected between the secondary coil L422 and the antenna connection terminal 100, and an inductor L222 connected between the secondary coil L422 and the antenna connection terminal 100.
- An inductor L223 and a switch SW221 are connected in parallel with the inductor L222 and connected in series with each other, and a path between the power amplifier 11 and the antenna connection terminal 100 and the ground are connected in series.
- the high frequency circuit 1B may further include capacitors C251 and C252 connected between the power amplifier 12 and the primary coil L421, and a switch SW251 connected between the path between the capacitors C251 and C252 and the ground.
- a capacitor C12 and a switch SW11 may be provided which are connected in series between the path and the ground, and in a situation where the first power class is applied, each of the switches SW221 and SW11 may be opened and the switch SW251 may be closed. Often, in situations where the second power class is applied, each of switches SW221 and SW11 may be closed and switch SW251 may be opened.
- the high frequency signal can be amplified using the two power amplifiers 11 and 12, so the requirement for the maximum output power of each of the power amplifiers 11 and 12 in the first power class can be reduced. Furthermore, since the operation of the power amplifier 12 can be stopped in the second power class where the maximum output power is low, it is possible to suppress a decrease in power efficiency in the second power class.
- Embodiment 4 differs from the first embodiment mainly in that a Wilkinson type amplifier circuit is used as the power amplifier circuit.
- the present embodiment will be described below with reference to the drawings, focusing on the differences from the first embodiment.
- FIG. 9 is a circuit configuration diagram of a communication device 6C according to this embodiment.
- FIG. 9 is an exemplary circuit configuration, and the communication device 6C and high frequency circuit 1C can be implemented using any of a wide variety of circuit implementations and circuit techniques. Therefore, the description of the communication device 6C and the high frequency circuit 1C provided below should not be interpreted in a limited manner.
- the communication device 6C is the same as the communication device 6 except that it includes a high frequency circuit 1C instead of the high frequency circuit 1, so a description thereof will be omitted.
- the high frequency circuit 1C includes power amplifiers 11 and 12, a variable load matching circuit 23 or 24, a filter 31, a Wilkinson divider 43, a Wilkinson coupler 44, an antenna connection terminal 100, an input terminal 111, and a power supply voltage terminal 121. and.
- the power amplifier 11 is an example of a first power amplifier.
- the input end of the power amplifier 11 is connected to a Wilkinson divider 43.
- the output end of power amplifier 11 is connected to Wilkinson coupler 44 .
- the power amplifier 11 can amplify one of the in-phase signals output from the Wilkinson divider 43.
- the power amplifier 12 is an example of a second power amplifier.
- the input end of the power amplifier 12 is connected to a Wilkinson divider 43.
- the output end of power amplifier 12 is connected to Wilkinson coupler 44 .
- Power amplifier 12 can amplify the other in-phase signal output from Wilkinson divider 43.
- the power amplifiers 11 and 12 can correspond to a first power class, a second power class, and a third power class. In a situation where the first power class is applied, the power supply voltage Vcc1 is supplied to the power amplifiers 11 and 12, and in a situation where the second power class and the third power class are applied, the power supply voltage Vcc2 is supplied to the power amplifiers 11 and 12. . Note that the power amplifiers 11 and 12 do not need to be compatible with the third power class.
- the Wilkinson divider 43 includes transmission lines TL431 and TL432 and a resistor R431.
- Transmission line TL431 is connected between input terminal 111 and the input end of power amplifier 11.
- Transmission line TL432 is connected between input terminal 111 and the input end of power amplifier 12.
- Resistor R431 is connected between the input terminal of power amplifier 11 and the input terminal of power amplifier 12 in parallel with transmission lines TL431 and TL432.
- the Wilkinson divider 43 can divide the high frequency signal supplied from the RFIC 3 via the input terminal 111 into two high frequency signals in phase.
- the two divided high frequency signals (that is, in-phase signals) are supplied to power amplifiers 11 and 12.
- the Wilkinson divider 43 does not need to be included in the high frequency circuit 1C.
- the high frequency circuit 1C may include two input terminals 111 for receiving the in-phase signal from the RFIC 3, for example.
- the Wilkinson coupler 44 includes transmission lines TL441 and TL442 and a resistor R441.
- the transmission line TL441 is an example of a first transmission line, and is connected between the output end of the power amplifier 11 and the variable load matching circuit 23 or 24.
- the transmission line TL442 is an example of a second transmission line, and is connected between the output end of the power amplifier 12 and the variable load matching circuit 23 or 24.
- Resistor R441 is connected between the output end of power amplifier 11 and the output end of power amplifier 12 in parallel with transmission lines TL441 and TL442.
- the Wilkinson coupler 44 can combine the in-phase signals amplified by the power amplifiers 11 and 12 into one high-frequency signal.
- the synthesized high frequency signal is transmitted to the antenna connection terminal 100 via the variable load matching circuit 23 or 24 and the filter 31.
- quarter wavelength transmission lines can be used as the transmission lines TL431, TL432, TL441, and TL442, but the present invention is not limited thereto.
- LC circuits may be used as the transmission lines TL431, TL432, TL441, and TL442.
- the high frequency circuit 1C is a high frequency circuit 1C configured to correspond to the first power class and the second power class whose maximum output power is lower than the first power class, and includes the power amplifier 11. and a variable load matching circuit 23 or 24 connected to the output terminal of the power amplifier 11.
- the power supply voltage Vcc1 is supplied to the power amplifier 11, and the variable load matching circuit 23 or 24 is connected to the output terminal of the power amplifier 11.
- the power supply voltage Vcc2 is supplied to the power amplifier 11, and the variable load matching circuit 23 or 24
- the load impedance seen from the power amplifier 11 is adjusted to the second impedance, and the power supply voltage Vcc1 is higher than the power supply voltage Vcc2, and the first impedance is lower than the second impedance.
- both the power supply voltage and the load impedance are adjusted according to the first power class and the second power class, so the power amplifier 11 can support both the first power class and the second power class.
- the power supply voltage is fixed when the difference between the maximum output power of the first power class and the maximum output power of the second power class is large, the adjustment range of the load impedance will be expanded, and switch loss will increase at low load impedance. Therefore, by adjusting both the power supply voltage and the load impedance, it is possible to suppress the adjustment range of the load impedance from expanding and suppress switch loss.
- the load impedance is fixed when the difference between the maximum output power of the first power class and the maximum output power of the second power class is large, a higher power supply voltage is required, and the power amplifier 11 is required to have higher voltage resistance. be done. Therefore, by adjusting both the power supply voltage and the load impedance, the requirement for voltage resistance of the power amplifier 11 can be suppressed.
- the power amplifier 11 further corresponds to a third power class whose maximum output power is lower than the first power class and whose maximum output power is higher than the second power class.
- the power supply voltage Vcc2 is supplied to the power amplifier 11, and the load impedance seen from the power amplifier 11 is changed to the first impedance by the variable load matching circuit 23 or 24. May be adjusted.
- the same power supply voltage as that of the second power class is supplied, and the load impedance is adjusted to be the same as that of the first power class. Therefore, it is possible to suppress an increase in power supply voltage in the third power class and improve power efficiency.
- the variable load matching circuit 23 includes a capacitor C213 connected in series between the power amplifier 11 and the antenna connection terminal 100, and a switch SW211 and/or SW212. , a capacitor C213 and a capacitor C214 connected in parallel with the switch SW211 and/or SW212 and in series with each other, and a switch SW213 and/or SW214 between the power amplifier 11 and the antenna connection terminal 100.
- the capacitance of the capacitor C213 is larger than the capacitance of the capacitor C214, and in a situation where the first power class is applied, the switches SW211 and/or SW212 are closed, and the switches SW213 and /or SW214 may be opened, and in situations where the second power class is applied, switch SW211 and/or SW212 may be opened and switch SW213 and/or SW214 may be closed.
- the load impedance seen from the power amplifier 11 can be adjusted to the first impedance and the second impedance.
- the variable load matching circuit 24 includes an inductor L222 connected between the power amplifier 11 and the antenna connection terminal 100, and an inductor L222 connected between the power amplifier 11 and the antenna connection terminal 100.
- an inductor L223 and a switch SW221 are connected in parallel with the inductor L222 and in series with each other, and a capacitor C222 is connected between the path between the power amplifier 11 and the antenna connection terminal 100 and the ground.
- switch SW221 may be open and switch SW222 may be closed, and in situations where a second power class is applied, switch SW221 may be closed and switch SW222 may be opened.
- the load impedance seen from the power amplifier 11 is changed to the second power class.
- the impedance can be adjusted.
- the switch SW221 on the signal path since the switch SW221 on the signal path is not closed, signal loss due to the switch SW221 can be suppressed.
- the high frequency circuit 1C further includes a transmission line TL441 connected between the power amplifier 12 and the output end of the power amplifier 11 and the variable load matching circuit 23 or 24; A transmission line TL442 connected between the output terminal and the variable load matching circuit 23 or 24, and a resistor R441 connected in parallel with the transmission lines TL441 and TL442 between the output terminal of the power amplifier 11 and the output terminal of the power amplifier 12.
- the power supply voltage Vcc1 is supplied to the power amplifiers 11 and 12, and the load impedance seen from the power amplifiers 11 and 12 is adjusted by the variable load matching circuit 23 or 24.
- the high frequency signal can be amplified using the two power amplifiers 11 and 12, so the requirement for the maximum output power of each of the power amplifiers 11 and 12 in the first power class can be reduced.
- Embodiment 5 Next, Embodiment 5 will be described.
- This embodiment mainly differs from the first and fourth embodiments in that a Wilkinson type amplifier circuit is used as the power amplifier circuit, and the operation of one of the two power amplifiers is stopped in the second power class.
- the present embodiment will be described below with reference to the drawings, focusing on the differences from the first and fourth embodiments.
- FIG. 10 is a circuit configuration diagram of a communication device 6D according to this embodiment.
- FIG. 10 is an exemplary circuit configuration, and the communication device 6D and high frequency circuit 1D can be implemented using any of a wide variety of circuit implementations and circuit techniques. Therefore, the description of the communication device 6D and the high frequency circuit 1D provided below should not be interpreted in a limited manner.
- the communication device 6D is the same as the communication device 6 except that it includes a high frequency circuit 1D instead of the high frequency circuit 1, so a description thereof will be omitted.
- the high frequency circuit 1D includes power amplifiers 11 and 12, a variable load matching circuit 23 or 24, a filter 31, a Wilkinson divider 43, a Wilkinson coupler 44D, a capacitor C12, a switch SW11, an antenna connection terminal 100, and an input It includes a terminal 111 and a power supply voltage terminal 121.
- the high frequency circuit 1D corresponds to a circuit in which the Wilkinson coupler 44 is replaced with a Wilkinson coupler 44D in the high frequency circuit 1C of the fourth embodiment, and a capacitor C12 and a switch SW11 are added.
- the Wilkinson coupler 44D includes a switch SW441 (an example of a fourth switch) in addition to transmission lines TL441 and TL442 and a resistor R441.
- the switch SW441 and the resistor R441 are connected in parallel with the transmission lines TL441 and TL442 between the output end of the power amplifier 11 and the output end of the power amplifier 12, and are connected in series with each other.
- the operation of the power amplifier 12 is stopped in situations where the second power class and the third power class are applied. Conversely, in a situation where the first power class is applied, the operation of the power amplifier 12 is not stopped.
- the supply of bias to the power amplifier 12 is stopped, the switch SW11 is closed, and the switch SW441 is opened, so that the operation of the power amplifier 12 is stopped and the power amplifier 11
- the amplified high frequency signal is transmitted to variable load matching circuit 23 or 24.
- a bias is supplied to the power amplifier 12 and the switch SW11 is opened to start/continue the operation of the power amplifier 12, and the high frequency signals amplified by the power amplifiers 11 and 12 are combined. The signal is transmitted to the variable load matching circuit 23 or 24.
- the high frequency circuit 1D is a high frequency circuit 1D configured to support the first power class and the second power class whose maximum output power is lower than the first power class, and includes the power amplifier 11. and a variable load matching circuit 23 or 24 connected to the output terminal of the power amplifier 11.
- the power supply voltage Vcc1 is supplied to the power amplifier 11, and the variable load matching circuit 23 or 24 is connected to the output terminal of the power amplifier 11.
- the power supply voltage Vcc2 is supplied to the power amplifier 11, and the variable load matching circuit 23 or 24
- the load impedance seen from the power amplifier 11 is adjusted to the second impedance, and the power supply voltage Vcc1 is higher than the power supply voltage Vcc2, and the first impedance is lower than the second impedance.
- both the power supply voltage and the load impedance are adjusted according to the first power class and the second power class, so the power amplifier 11 can support both the first power class and the second power class.
- the power supply voltage is fixed when the difference between the maximum output power of the first power class and the maximum output power of the second power class is large, the adjustment range of the load impedance will be expanded, and switch loss will increase at low load impedance. Therefore, by adjusting both the power supply voltage and the load impedance, it is possible to suppress the adjustment range of the load impedance from expanding and suppress switch loss.
- the power amplifier 11 further corresponds to a third power class whose maximum output power is lower than the first power class and higher than the second power class.
- the power supply voltage Vcc2 is supplied to the power amplifier 11, and the load impedance seen from the power amplifier 11 is changed to the first impedance by the variable load matching circuit 23 or 24. May be adjusted.
- the same power supply voltage as that of the second power class is supplied, and the load impedance is adjusted to be the same as that of the first power class. Therefore, it is possible to suppress an increase in power supply voltage in the third power class and improve power efficiency.
- the variable load matching circuit 23 includes a capacitor C213 connected in series between the power amplifier 11 and the antenna connection terminal 100, and a switch SW211 and/or SW212. , a capacitor C213 and a capacitor C214 connected in parallel with the switch SW211 and/or SW212 and in series with each other, and a switch SW213 and/or SW214 between the power amplifier 11 and the antenna connection terminal 100.
- the capacitance of the capacitor C213 is larger than the capacitance of the capacitor C214, and in a situation where the first power class is applied, the switches SW211 and/or SW212 are closed, and the switches SW213 and /or SW214 may be opened, and in situations where the second power class is applied, switch SW211 and/or SW212 may be opened and switch SW213 and/or SW214 may be closed.
- the load impedance seen from the power amplifier 11 can be adjusted to the first impedance and the second impedance.
- the variable load matching circuit 24 includes an inductor L222 connected between the power amplifier 11 and the antenna connection terminal 100, and an inductor L222 connected between the power amplifier 11 and the antenna connection terminal 100.
- an inductor L223 and a switch SW221 are connected in parallel with the inductor L222 and in series with each other, and a capacitor C222 is connected between the path between the power amplifier 11 and the antenna connection terminal 100 and the ground.
- switch SW221 may be open and switch SW222 may be closed, and in situations where a second power class is applied, switch SW221 may be closed and switch SW222 may be opened.
- the load impedance seen from the power amplifier 11 is changed to the second power class.
- the impedance can be adjusted.
- the switch SW221 on the signal path since the switch SW221 on the signal path is not closed, signal loss due to the switch SW221 can be suppressed.
- the high frequency circuit 1D further includes a transmission line TL441 connected between the power amplifier 12 and the output terminal of the power amplifier 11 and the variable load matching circuit 23 or 24; A transmission line TL442 connected between the output terminal and the variable load matching circuit 23 or 24, and a resistor R441 connected in parallel with the transmission lines TL441 and TL442 between the output terminal of the power amplifier 11 and the output terminal of the power amplifier 12.
- the power supply voltage Vcc1 is supplied to the power amplifiers 11 and 12, and the load impedance seen from the power amplifiers 11 and 12 is adjusted by the variable load matching circuit 23 or 24.
- the power supply voltage Vcc2 is supplied to the power amplifier 11, and the load impedance seen from the power amplifier 11 is adjusted by the variable load matching circuit 23 or 24.
- the impedance may be adjusted to the second impedance, and the operation of the power amplifier 12 may be stopped.
- the high frequency signal can be amplified using the two power amplifiers 11 and 12, so the requirement for the maximum output power of each of the power amplifiers 11 and 12 in the first power class can be reduced. Furthermore, since the operation of the power amplifier 12 can be stopped in the second power class where the maximum output power is low, it is possible to suppress a decrease in power efficiency in the second power class.
- the high frequency circuit 1D further includes a capacitor C12 and a switch SW11 connected in series between the path between the power amplifier 12 and the second transmission line and the ground, and the power amplifier 11.
- a switch SW441 connected in series with a resistor R441 between the output terminal and the output terminal of the power amplifier 12 may be provided, and in a situation where the first power class is applied, the switch SW11 is opened and the switch SW441 is connected in series with the resistor R441. may be closed, and in situations where the second power class is applied, switch SW11 may be closed and switch SW441 may be opened.
- the high frequency signal can be amplified using the two power amplifiers 11 and 12, so the requirement for the maximum output power of each of the power amplifiers 11 and 12 in the first power class can be reduced. Furthermore, since the operation of the power amplifier 12 can be stopped in the second power class where the maximum output power is low, it is possible to suppress a decrease in power efficiency in the second power class.
- Table 1 below shows specific examples of combinations of pass bands or corresponding bands and power classes of the filter 31 that can be used in the first to fifth embodiments described above.
- Embodiment 6 mainly differs from the first embodiment in that two filters with different input impedances are used instead of a variable load matching circuit to adjust the load impedance seen from the power amplifier.
- the present embodiment will be described below with reference to the drawings, focusing on the differences from the first embodiment.
- FIG. 11 is a circuit configuration diagram of a communication device 6E according to this embodiment.
- FIG. 11 is an exemplary circuit configuration, and the communication device 6E and the high frequency circuit 1E can be implemented using any of a wide variety of circuit implementations and circuit techniques. Therefore, the description of the communication device 6E and the high frequency circuit 1E provided below should not be interpreted in a limited manner.
- the communication device 6E includes a high frequency circuit 1E, antennas 2a and 2b, an RFIC (Radio Frequency Integrated Circuit) 3, a BBIC (Baseband Integrated Circuit) 4, and a power supply circuit 5.
- RFIC Radio Frequency Integrated Circuit
- BBIC Baseband Integrated Circuit
- the high frequency circuit 1E transmits a high frequency signal between the antenna 2 and the RFIC 3.
- the circuit configuration of the high frequency circuit 1E will be described later.
- the antennas 2a and 2b are connected to antenna connection terminals 100a and 100b of the high frequency circuit 1E, respectively. Each of the antennas 2a and 2b receives a high frequency signal from the high frequency circuit 1E and outputs it to the outside of the communication device 6E. Further, the antennas 2a and 2b may receive a high frequency signal from outside the communication device 6E and output it to the high frequency circuit 1E. Note that at least one of the antennas 2a and 2b may not be included in the communication device 6E. Further, the communication device 6E may further include one or more antennas in addition to the antennas 2a and 2b.
- the high frequency circuit 1E includes a power amplifier 11, filters 32 and 33, switch circuits 51 and 52, antenna connection terminals 100a and 100b, an input terminal 111, and a power supply voltage terminal 121.
- Each of the antenna connection terminals 100a and 100b is an external connection terminal of the high frequency circuit 1E, and is a terminal for supplying a transmission signal to the outside of the high frequency circuit 1E.
- Antenna connection terminals 100a and 100b are connected to antennas 2a and 2b, respectively, outside the high-frequency circuit 1E, and are connected to filters 32 and 33 via a switch circuit 52 inside the high-frequency circuit 1E. Note that one of the antenna connection terminals 100a and 100b may not be included in the high frequency circuit 1E.
- the power amplifier 11 is an example of a first power amplifier. An input terminal of power amplifier 11 is connected to input terminal 111 . The output end of power amplifier 11 is selectively connected to filters 32 and 33 via switch circuit 51. Furthermore, power amplifier 11 is connected to power supply voltage terminal 121 .
- the power amplifier 11 uses power supply voltages Vcc1 and Vcc2 supplied from the power supply circuit 5 through the power supply voltage terminal 121 to generate a high-frequency signal supplied from the RFIC 3 through the input terminal 111. Can be amplified. Moreover, the power amplifier 11 can correspond to a first power class, a second power class, and a third power class. In a situation where the first power class is applied, the power supply voltage Vcc1 is supplied to the power amplifier 11, and in a situation where the second power class and the third power class are applied, the power supply voltage Vcc2 is supplied to the power amplifier 11. Note that the power amplifier 11 does not need to be compatible with the third power class.
- the filter 32 is an example of a first filter, and is connected between the antenna connection terminals 100a and 100b and the power amplifier 11. Specifically, one end of the filter 32 is connected to the power amplifier 11 via the switch circuit 51, and the other end of the filter 32 is connected to the antenna connection terminal 100a or 100b via the switch circuit 52.
- the filter 32 is a bandpass filter that corresponds to a predetermined band and has a pass band that includes the predetermined band.
- the filter 32 has power durability compatible with the first power class.
- the filter 32 may be a SAW filter, a BAW filter, an LC resonant filter, a dielectric resonant filter, or any combination thereof, and is not limited thereto.
- the filter 33 is an example of a second filter, and is connected between the antenna connection terminals 100a and 100b and the power amplifier 11. Specifically, one end of the filter 33 is connected to the power amplifier 11 via the switch circuit 51, and the other end of the filter 33 is connected to the antenna connection terminal 100a or 100b via the switch circuit 52.
- the filter 33 is a bandpass filter having a pass band including a predetermined band, and has power durability that can support the second power class.
- the filter 33 may be a SAW filter, a BAW filter, an LC resonance filter, a dielectric resonance filter, or any combination thereof, and is not limited to these.
- the filters 32 and 33 have different input impedances. Specifically, the input impedance of filter 32 is lower than the input impedance of filter 33. As a result, when the filter 32 is connected to the power amplifier 11, the load impedance seen from the power amplifier 11 is adjusted to the lower first impedance, and when the filter 33 is connected to the power amplifier 11, the load impedance seen from the power amplifier 11 is adjusted to the lower first impedance. The impedance is adjusted to a higher second impedance.
- the input impedance of the filters 32 and 33 can be specified by measuring the impedance at the center frequency of a predetermined band using a network analyzer.
- the switch circuit 51 is connected between the power amplifier 11 and the filters 32 and 33.
- switch circuit 51 includes terminals 511-513.
- Terminal 511 is an example of a first terminal and is connected to the output end of power amplifier 11.
- Terminal 512 is an example of a second terminal and is connected to filter 32.
- Terminal 513 is an example of a third terminal and is connected to filter 33.
- the switch circuit 51 can exclusively connect the terminal 511 to the terminals 512 and 513 based on a control signal from the RFIC 3, for example. That is, the switch circuit 51 can selectively connect the power amplifier 11 to the filters 32 and 33. More specifically, the switch circuit 51 can connect the power amplifier 11 to the filter 32 in situations where the first power class and the third power class are applied, and connect the power amplifier 11 to the filter 32 in situations where the second power class is applied. It can be connected to filter 33.
- the switch circuit 51 is composed of, for example, an SPDT (Single-Pole Double-Throw) type switch circuit.
- the switch circuit 52 is connected between the filters 32 and 33 and the antenna connection terminals 100a and 100b. Specifically, switch circuit 52 includes terminals 521-524. Terminal 521 is connected to antenna connection terminal 100a. Terminal 522 is connected to antenna connection terminal 100b. Terminal 523 is connected to filter 32 . Terminal 524 is connected to filter 33 .
- the switch circuit 52 can exclusively connect the terminal 521 to the terminals 523 and 524, and connect the terminal 522 exclusively to the terminals 523 and 524, based on a control signal from the RFIC 3, for example. be able to.
- the switch circuit 52 is configured of, for example, a DPDT (Double-Pole Double-Throw) type switch circuit.
- switches 32 and 33 may be fixedly connected to antenna connection terminals 100a and 100b, respectively.
- the high frequency circuit 1E is a high frequency circuit 1E configured to correspond to the first power class and the second power class whose maximum output power is lower than the first power class, and includes the power amplifier 11. and a switch circuit 51 including a filter 32, a filter 33, a terminal 511 connected to the output end of the power amplifier 11, a terminal 512 connected to the filter 32, and a terminal 513 connected to the filter 33,
- the power supply voltage Vcc1 is supplied to the power amplifier 11
- the filter 32 is connected to the power amplifier 11 by the switch circuit 51
- the power supply voltage Vcc2 is supplied to the power amplifier 11
- the filter 33 is connected to the power amplifier 11 by the switch circuit 51
- the power supply voltage Vcc1 is higher than the power supply voltage Vcc2
- the input impedance of the filter 32 is higher than the input impedance of the filter 33. low.
- connection of the power amplifier 12 can be switched between the filters 32 and 33 having different input impedances according to the first power class and the second power class, so the load impedance seen from the power amplifier 11 can be switched. Therefore, since both the power supply voltage and the load impedance are adjusted according to the first power class and the second power class, the power amplifier 11 can support both the first power class and the second power class. In particular, if the power supply voltage is fixed when the difference between the maximum output power of the first power class and the maximum output power of the second power class is large, the adjustment range of the load impedance will be expanded, and switch loss will increase at low load impedance.
- the load impedance is fixed when the difference between the maximum output power of the first power class and the maximum output power of the second power class is large, a higher power supply voltage is required, and the power amplifier 11 is required to have higher voltage resistance. be done. Therefore, by adjusting both the power supply voltage and the load impedance, the requirement for voltage resistance of the power amplifier 11 can be suppressed.
- the power amplifier 11 further corresponds to a third power class whose maximum output power is lower than the first power class and whose maximum output power is higher than the second power class.
- the power supply voltage Vcc2 may be supplied to the power amplifier 11, and the filter 32 may be connected to the power amplifier 11 by the switch circuit 51.
- the same power supply voltage as the second power class is supplied, and the same filter 32 as in the first power class is connected to the power amplifier 11. Therefore, it is possible to suppress an increase in power supply voltage in the third power class and improve power efficiency.
- Embodiment 7 differs from the sixth embodiment mainly in that a differential amplification type amplifier circuit is used as the power amplifier circuit. This embodiment will be described below with reference to the drawings, focusing on the differences from the sixth embodiment.
- FIG. 12 is a circuit configuration diagram of the communication device 6F according to this embodiment.
- FIG. 12 is an exemplary circuit configuration, and the communication device 6F and the high frequency circuit 1F can be implemented using any of a wide variety of circuit implementations and circuit techniques. Therefore, the description of the communication device 6F and the high frequency circuit 1F provided below should not be interpreted in a limited manner.
- the communication device 6F is the same as the communication device 6E except that it includes a high frequency circuit 1F instead of the high frequency circuit 1E, so a description thereof will be omitted.
- the high frequency circuit 1F includes power amplifiers 11 and 12, filters 32 and 33, transformers 41 and 42, switch circuits 51 and 52, a capacitor C11, antenna connection terminals 100a and 100b, and an input terminal 111.
- a power supply voltage terminal 121 is provided. Note that the high frequency circuit 1F corresponds to a combination of the above-described embodiments 2 and 6, so a detailed explanation will be omitted.
- the high frequency circuit 1F is a high frequency circuit 1F configured to correspond to the first power class and the second power class whose maximum output power is lower than the first power class, and includes the power amplifier 11. and a switch circuit 51 including a filter 32, a filter 33, a terminal 511 connected to the output end of the power amplifier 11, a terminal 512 connected to the filter 32, and a terminal 513 connected to the filter 33,
- the power supply voltage Vcc1 is supplied to the power amplifier 11
- the filter 32 is connected to the power amplifier 11 by the switch circuit 51
- the power supply voltage Vcc2 is supplied to the power amplifier 11
- the filter 33 is connected to the power amplifier 11 by the switch circuit 51
- the power supply voltage Vcc1 is higher than the power supply voltage Vcc2
- the input impedance of the filter 32 is higher than the input impedance of the filter 33. low.
- connection of the power amplifier 12 can be switched between the filters 32 and 33 having different input impedances according to the first power class and the second power class, so the load impedance seen from the power amplifier 11 can be switched. Therefore, since both the power supply voltage and the load impedance are adjusted according to the first power class and the second power class, the power amplifier 11 can support both the first power class and the second power class. In particular, if the power supply voltage is fixed when the difference between the maximum output power of the first power class and the maximum output power of the second power class is large, the adjustment range of the load impedance will be expanded, and switch loss will increase at low load impedance.
- the load impedance is fixed when the difference between the maximum output power of the first power class and the maximum output power of the second power class is large, a higher power supply voltage is required, and the power amplifier 11 is required to have higher voltage resistance. be done. Therefore, by adjusting both the power supply voltage and the load impedance, the requirement for voltage resistance of the power amplifier 11 can be suppressed.
- the power amplifier 11 further corresponds to a third power class whose maximum output power is lower than the first power class and whose maximum output power is higher than the second power class.
- the power supply voltage Vcc2 may be supplied to the power amplifier 11, and the filter 32 may be connected to the power amplifier 11 by the switch circuit 51.
- the same power supply voltage as the second power class is supplied, and the same filter 32 as in the first power class is connected to the power amplifier 11. Therefore, it is possible to suppress an increase in power supply voltage in the third power class and improve power efficiency.
- the high frequency circuit 1F further includes a power amplifier 12, a primary coil L421 whose both ends are connected to the output terminal of the power amplifier 11 and the output terminal of the power amplifier 12, and a terminal of the switch circuit 51. 511, and a secondary coil L422 having one end connected to the switch.
- the filter 32 may be connected to the transformer 42 by the circuit 51, and in a situation where the second power class is applied, the power supply voltage Vcc2 is supplied to the power amplifiers 11 and 12, and the filter 33 is connected to the transformer 42 by the switch circuit 51. May be connected.
- the high frequency signal can be amplified using the two power amplifiers 11 and 12, so the requirement for the maximum output power of each of the power amplifiers 11 and 12 in the first power class can be reduced.
- Embodiment 8 Next, Embodiment 8 will be described.
- This embodiment mainly differs from the sixth and seventh embodiments in that a differential amplification type amplifier circuit is used as the power amplifier circuit, and the operation of one of the two power amplifiers is stopped in the second power class.
- the present embodiment will be described below with reference to the drawings, focusing on the differences from the sixth and seventh embodiments.
- FIG. 13 is a circuit configuration diagram of a communication device 6G according to this embodiment.
- FIG. 13 is an exemplary circuit configuration, and the communication device 6G and high frequency circuit 1G can be implemented using any of a wide variety of circuit implementations and circuit techniques. Therefore, the description of the communication device 6G and the high frequency circuit 1G provided below should not be interpreted in a limited manner.
- the communication device 6G is the same as the communication device 6E except that it includes a high frequency circuit 1G instead of the high frequency circuit 1E, so a description thereof will be omitted.
- the high frequency circuit 1G includes power amplifiers 11 and 12, filters 32 and 33, transformers 41 and 42, switch circuits 51 and 52, capacitors C11 and C12, switch SW11, antenna connection terminals 100a and 100b, and inputs. It includes a terminal 111 and a power supply voltage terminal 121. Note that the high frequency circuit 1G corresponds to a combination of the third and sixth embodiments, so detailed explanation will be omitted.
- the high frequency circuit 1G is a high frequency circuit 1G configured to support the first power class and the second power class whose maximum output power is lower than the first power class, and includes the power amplifier 11. and a switch circuit 51 including a filter 32, a filter 33, a terminal 511 connected to the output end of the power amplifier 11, a terminal 512 connected to the filter 32, and a terminal 513 connected to the filter 33,
- the power supply voltage Vcc1 is supplied to the power amplifier 11
- the filter 32 is connected to the power amplifier 11 by the switch circuit 51
- the power supply voltage Vcc2 is supplied to the power amplifier 11
- the filter 33 is connected to the power amplifier 11 by the switch circuit 51
- the power supply voltage Vcc1 is higher than the power supply voltage Vcc2
- the input impedance of the filter 32 is higher than the input impedance of the filter 33. low.
- connection of the power amplifier 12 can be switched between the filters 32 and 33 having different input impedances according to the first power class and the second power class, so the load impedance seen from the power amplifier 11 can be switched. Therefore, since both the power supply voltage and the load impedance are adjusted according to the first power class and the second power class, the power amplifier 11 can support both the first power class and the second power class. In particular, if the power supply voltage is fixed when the difference between the maximum output power of the first power class and the maximum output power of the second power class is large, the adjustment range of the load impedance will be expanded, and switch loss will increase at low load impedance.
- the load impedance is fixed when the difference between the maximum output power of the first power class and the maximum output power of the second power class is large, a higher power supply voltage is required, and the power amplifier 11 is required to have higher voltage resistance. be done. Therefore, by adjusting both the power supply voltage and the load impedance, the requirement for voltage resistance of the power amplifier 11 can be suppressed.
- the power amplifier 11 further corresponds to a third power class whose maximum output power is lower than the first power class and whose maximum output power is higher than the second power class.
- the power supply voltage Vcc2 may be supplied to the power amplifier 11, and the filter 32 may be connected to the power amplifier 11 by the switch circuit 51.
- the same power supply voltage as the second power class is supplied, and the same filter 32 as in the first power class is connected to the power amplifier 11. Therefore, it is possible to suppress an increase in power supply voltage in the third power class and improve power efficiency.
- the high frequency circuit 1G further includes a power amplifier 12, a primary coil L421 whose both ends are connected to the output end of the power amplifier 11 and the output end of the power amplifier 12, and a terminal of the switch circuit 51. 511, and a secondary coil L422 having one end connected to the switch.
- the filter 32 may be connected to the transformer 42 by the circuit 51, and in a situation where the second power class is applied, the power supply voltage Vcc2 is supplied to the power amplifier 11, and the filter 33 is connected to the transformer 42 by the switch circuit 51. , and the operation of the power amplifier 12 may be stopped.
- the high frequency signal can be amplified using the two power amplifiers 11 and 12, so the requirement for the maximum output power of each of the power amplifiers 11 and 12 in the first power class can be reduced. Furthermore, since the operation of the power amplifier 12 can be stopped in the second power class where the maximum output power is low, it is possible to suppress a decrease in power efficiency in the second power class.
- Embodiment 9 differs from the sixth embodiment mainly in that a Wilkinson type amplifier circuit is used as the power amplifier circuit.
- the present embodiment will be described below with reference to the drawings, focusing on the differences from the sixth embodiment.
- FIG. 14 is a circuit configuration diagram of a communication device 6H according to this embodiment.
- FIG. 14 is an exemplary circuit configuration, and the communication device 6H and high frequency circuit 1H can be implemented using any of a wide variety of circuit implementations and circuit techniques. Therefore, the description of the communication device 6H and the high frequency circuit 1H provided below should not be interpreted in a limited manner.
- the communication device 6H is the same as the communication device 6E except that it includes a high frequency circuit 1H instead of the high frequency circuit 1E, so a description thereof will be omitted.
- the high frequency circuit 1H includes power amplifiers 11 and 12, filters 32 and 33, a Wilkinson divider 43, a Wilkinson coupler 44, switch circuits 51 and 52, antenna connection terminals 100a and 100b, an input terminal 111, and a power supply voltage. A terminal 121 is provided. Note that the high frequency circuit 1H corresponds to a combination of the above-mentioned embodiments 4 and 6, so a detailed explanation will be omitted.
- the high frequency circuit 1H is a high frequency circuit 1H configured to correspond to the first power class and the second power class whose maximum output power is lower than the first power class, and includes the power amplifier 11. and a switch circuit 51 including a filter 32, a filter 33, a terminal 511 connected to the output end of the power amplifier 11, a terminal 512 connected to the filter 32, and a terminal 513 connected to the filter 33,
- the power supply voltage Vcc1 is supplied to the power amplifier 11
- the filter 32 is connected to the power amplifier 11 by the switch circuit 51
- the power supply voltage Vcc2 is supplied to the power amplifier 11
- the filter 33 is connected to the power amplifier 11 by the switch circuit 51
- the power supply voltage Vcc1 is higher than the power supply voltage Vcc2
- the input impedance of the filter 32 is higher than the input impedance of the filter 33. low.
- connection of the power amplifier 12 can be switched between the filters 32 and 33 having different input impedances according to the first power class and the second power class, so the load impedance seen from the power amplifier 11 can be switched. Therefore, since both the power supply voltage and the load impedance are adjusted according to the first power class and the second power class, the power amplifier 11 can support both the first power class and the second power class. In particular, if the power supply voltage is fixed when the difference between the maximum output power of the first power class and the maximum output power of the second power class is large, the adjustment range of the load impedance will be expanded, and switch loss will increase at low load impedance.
- the load impedance is fixed when the difference between the maximum output power of the first power class and the maximum output power of the second power class is large, a higher power supply voltage is required, and the power amplifier 11 is required to have higher voltage resistance. be done. Therefore, by adjusting both the power supply voltage and the load impedance, the requirement for voltage resistance of the power amplifier 11 can be suppressed.
- the power amplifier 11 further corresponds to a third power class whose maximum output power is lower than the first power class and whose maximum output power is higher than the second power class.
- the power supply voltage Vcc2 may be supplied to the power amplifier 11, and the filter 32 may be connected to the power amplifier 11 by the switch circuit 51.
- the same power supply voltage as the second power class is supplied, and the same filter 32 as in the first power class is connected to the power amplifier 11. Therefore, it is possible to suppress an increase in power supply voltage in the third power class and improve power efficiency.
- the high frequency circuit 1H further includes a transmission line TL441 connected between the power amplifier 12, the output end of the power amplifier 11, and the terminal 511 of the switch circuit 51, and the output of the power amplifier 12.
- a transmission line TL442 connected between the end and the terminal 511 of the switch circuit 51; and a resistor R441 connected in parallel with the transmission lines TL441 and TL442 between the output end of the power amplifier 11 and the output end of the power amplifier 12.
- the high frequency signal can be amplified using the two power amplifiers 11 and 12, so the requirement for the maximum output power of each of the power amplifiers 11 and 12 in the first power class can be reduced.
- Embodiment 10 differs from the sixth and ninth embodiments in that a Wilkinson type amplifier circuit is used as the power amplifier circuit, and the operation of one of the two power amplifiers is stopped in the second power class.
- the present embodiment will be described below with reference to the drawings, focusing on the differences from the above-mentioned embodiments 6 and 9.
- FIG. 15 is a circuit configuration diagram of a communication device 6I according to this embodiment.
- FIG. 15 is an exemplary circuit configuration, and the communication device 6I and high frequency circuit 1I may be implemented using any of a wide variety of circuit implementations and circuit techniques. Therefore, the description of the communication device 6I and the high frequency circuit 1I provided below should not be interpreted in a limiting manner.
- the communication device 6I is the same as the communication device 6E except that it includes a high frequency circuit 1I instead of the high frequency circuit 1E, so a description thereof will be omitted.
- the high frequency circuit 1I includes power amplifiers 11 and 12, filters 32 and 33, a Wilkinson divider 43, a Wilkinson coupler 44D, switch circuits 51 and 52, a capacitor C12, a switch SW11, and antenna connection terminals 100a and 100b. , an input terminal 111, and a power supply voltage terminal 121. Note that the high frequency circuit 1I corresponds to a combination of the fifth and sixth embodiments described above, so a detailed explanation will be omitted.
- the high frequency circuit 1I is a high frequency circuit 1I configured to correspond to the first power class and the second power class whose maximum output power is lower than the first power class, and includes the power amplifier 11. and a switch circuit 51 including a filter 32, a filter 33, a terminal 511 connected to the output end of the power amplifier 11, a terminal 512 connected to the filter 32, and a terminal 513 connected to the filter 33,
- the power supply voltage Vcc1 is supplied to the power amplifier 11
- the filter 32 is connected to the power amplifier 11 by the switch circuit 51
- the power supply voltage Vcc2 is supplied to the power amplifier 11
- the filter 33 is connected to the power amplifier 11 by the switch circuit 51
- the power supply voltage Vcc1 is higher than the power supply voltage Vcc2
- the input impedance of the filter 32 is higher than the input impedance of the filter 33. low.
- connection of the power amplifier 12 can be switched between the filters 32 and 33 having different input impedances according to the first power class and the second power class, so the load impedance seen from the power amplifier 11 can be switched. Therefore, since both the power supply voltage and the load impedance are adjusted according to the first power class and the second power class, the power amplifier 11 can support both the first power class and the second power class. In particular, if the power supply voltage is fixed when the difference between the maximum output power of the first power class and the maximum output power of the second power class is large, the adjustment range of the load impedance will be expanded, and switch loss will increase at low load impedance.
- the load impedance is fixed when the difference between the maximum output power of the first power class and the maximum output power of the second power class is large, a higher power supply voltage is required, and the power amplifier 11 is required to have higher voltage resistance. be done. Therefore, by adjusting both the power supply voltage and the load impedance, the requirement for voltage resistance of the power amplifier 11 can be suppressed.
- the power amplifier 11 further corresponds to a third power class whose maximum output power is lower than the first power class and whose maximum output power is higher than the second power class.
- the power supply voltage Vcc2 may be supplied to the power amplifier 11, and the filter 32 may be connected to the power amplifier 11 by the switch circuit 51.
- the same power supply voltage as the second power class is supplied, and the same filter 32 as in the first power class is connected to the power amplifier 11. Therefore, it is possible to suppress an increase in power supply voltage in the third power class and improve power efficiency.
- the high frequency circuit 1I further includes a transmission line TL441 connected between the power amplifier 12, the output end of the power amplifier 11, and the terminal 511 of the switch circuit 51, and the output of the power amplifier 12.
- a transmission line TL442 connected between the end and the terminal 511 of the switch circuit 51, and a resistor R441 connected in parallel with the transmission lines TL441 and TL442 between the output end of the power amplifier 11 and the output end of the power amplifier 12.
- the power supply voltage Vcc1 is supplied to the power amplifiers 11 and 12
- the filter 32 may be connected to the power amplifiers 11 and 12 by the switch circuit 51.
- the power supply voltage Vcc2 is supplied to the power amplifier 11
- the filter 33 is connected to the power amplifier 11 by the switch circuit 51, and the operation of the power amplifier 12 is stopped. good.
- the high frequency signal can be amplified using the two power amplifiers 11 and 12, so the requirement for the maximum output power of each of the power amplifiers 11 and 12 in the first power class can be reduced. Furthermore, since the operation of the power amplifier 12 can be stopped in the second power class where the maximum output power is low, it is possible to suppress a decrease in power efficiency in the second power class.
- Table 2 below shows specific examples of combinations of pass bands or corresponding bands and power classes of the filters 32 and 33 that can be used in the seventh to tenth embodiments described above.
- the high frequency circuit according to the present invention has been described above based on the embodiments, the high frequency circuit according to the present invention is not limited to the above embodiments.
- another circuit element, wiring, etc. may be inserted between the paths connecting the respective circuit elements and signal paths disclosed in the drawings.
- an inductor and/or a capacitor may be inserted between the power supply voltage terminal and the power amplifier.
- FIG. 16 is a circuit configuration diagram of a communication device 6J according to another embodiment.
- the communication device 6J includes a high frequency circuit 1J, two antennas 2, an RFIC 3, a BBIC 4, and a power supply circuit 5.
- the high frequency circuit 1J includes two power amplifiers 11, two variable load matching circuits 21 or 22, two filters 31, two antenna connection terminals 100, two input terminals 111, a power supply voltage terminal 121, Equipped with.
- a high frequency circuit configured to support a first power class and a second power class having a lower maximum output power than the first power class, a first power amplifier; a variable load matching circuit connected to the output end of the first power amplifier, In a situation where the first power class is applied, a first power supply voltage is supplied to the first power amplifier, and the load impedance seen from the first power amplifier is adjusted to the first impedance by the variable load matching circuit, In a situation where the second power class is applied, a second power supply voltage is supplied to the first power amplifier, and the load impedance seen from the first power amplifier is adjusted to a second impedance by the variable load matching circuit, the first power supply voltage is higher than the second power supply voltage, the first impedance is lower than the second impedance, High frequency circuit.
- the first power amplifier is further configured to correspond to a third power class that has a lower maximum output power than the first power class and a higher maximum output power than the second power class, In a situation where the third power class is applied, the second power supply voltage is supplied to the first power amplifier, and the variable load matching circuit adjusts the load impedance seen from the first power amplifier to the first impedance. be done, The high frequency circuit according to ⁇ 1>.
- the variable load matching circuit includes: a first capacitor and a first switch connected in series between the first power amplifier and the antenna connection terminal; a second capacitor and a second switch connected in parallel with the first capacitor and the first switch and connected in series with each other between the first power amplifier and the antenna connection terminal; The capacitance of the first capacitor is larger than the capacitance of the second capacitor, In a situation where the first power class is applied, the first switch is closed and the second switch is opened; In a situation where the second power class is applied, the first switch is opened and the second switch is closed.
- the high frequency circuit according to ⁇ 1> or ⁇ 2>.
- the variable load matching circuit includes: a first inductor connected between the first power amplifier and the antenna connection terminal; a second inductor and a first switch connected in parallel with the first inductor and in series with each other between the first power amplifier and the antenna connection terminal; a first capacitor connected between a path between the first power amplifier and the antenna connection terminal and ground; a second capacitor and a second switch connected in parallel with the first capacitor and in series with each other between the path between the first power amplifier and the antenna connection terminal and ground; including, In a situation where the first power class is applied, the first switch is open and the second switch is closed; In situations where the second power class is applied, the first switch is closed and the second switch is opened.
- the high frequency circuit according to ⁇ 1> or ⁇ 2>.
- the high frequency circuit further includes: a second power amplifier; a transformer including a primary coil having both ends connected to the output end of the first power amplifier and the output end of the second power amplifier, and a secondary coil having one end connected to the variable load matching circuit,
- the first power supply voltage is supplied to the first power amplifier and the second power amplifier
- the variable load matching circuit supplies the first power supply voltage to the first power amplifier and the second power amplifier.
- Load impedance seen from the amplifier is adjusted to the first impedance
- the second power supply voltage is supplied to the first power amplifier and the second power amplifier
- the variable load matching circuit supplies the second power supply voltage to the first power amplifier and the second power amplifier.
- a load impedance viewed from the amplifier is adjusted to the second impedance.
- the high frequency circuit further includes: a second power amplifier; a transformer including a primary coil having both ends connected to the output end of the first power amplifier and the output end of the second power amplifier, and a secondary coil having one end connected to the variable load matching circuit,
- the first power supply voltage is supplied to the first power amplifier and the second power amplifier
- the variable load matching circuit supplies the first power supply voltage to the first power amplifier and the second power amplifier.
- Load impedance seen from the amplifier is adjusted to the first impedance
- the variable load matching circuit adjusts the load impedance seen from the first power amplifier to the second impedance. and the operation of the second power amplifier is stopped.
- the high frequency circuit according to ⁇ 1> or ⁇ 2>.
- the variable load matching circuit includes: a first inductor connected between the secondary coil and the antenna connection terminal; a second inductor and a first switch connected in parallel with the first inductor and in series with each other between the secondary coil and the antenna connection terminal; a first capacitor and a second capacitor connected in series between a path between the first power amplifier and the antenna connection terminal and ground; a second switch connected between a path between the first capacitor and the second capacitor and ground;
- the high frequency circuit further includes a third capacitor and a third switch connected in series between a path between the second power amplifier and the primary coil and ground, In a situation where the first power class is applied, each of the first switch and the third switch is opened, and the second switch is closed; In a situation where the second power class is applied, each of the first switch and the third switch is closed, and the second switch is opened.
- the high frequency circuit according to ⁇ 6>.
- the high frequency circuit further includes: a second power amplifier; a first transmission line connected between the output end of the first power amplifier and the variable load matching circuit; a second transmission line connected between the output end of the second power amplifier and the variable load matching circuit; A resistor connected in parallel with the first transmission line and the second transmission line between the output end of the first power amplifier and the output end of the second power amplifier, In a situation where the first power class is applied, the first power supply voltage is supplied to the first power amplifier and the second power amplifier, and the first power amplifier and the second power supply voltage are supplied by the variable load matching circuit.
- Load impedance seen from the amplifier is adjusted to the first impedance
- the second power supply voltage is supplied to the first power amplifier and the second power amplifier, and the variable load matching circuit supplies the second power supply voltage to the first power amplifier and the second power amplifier.
- a load impedance viewed from the amplifier is adjusted to the second impedance.
- the high frequency circuit according to any one of ⁇ 1> to ⁇ 4>.
- the high frequency circuit further includes: a second power amplifier; a first transmission line connected between the output end of the first power amplifier and the variable load matching circuit; a second transmission line connected between the output end of the second power amplifier and the variable load matching circuit; A resistor connected in parallel with the first transmission line and the second transmission line between the output end of the first power amplifier and the output end of the second power amplifier, In a situation where the first power class is applied, the first power supply voltage is supplied to the first power amplifier and the second power amplifier, and the first power amplifier and the second power supply voltage are supplied by the variable load matching circuit.
- Load impedance seen from the amplifier is adjusted to the first impedance, In a situation where the second power class is applied, the second power supply voltage is supplied to the first power amplifier, and the load impedance seen from the first power amplifier is adjusted to the second impedance by the variable load matching circuit. and the operation of the second power amplifier is stopped.
- the high frequency circuit according to any one of ⁇ 1> to ⁇ 4>.
- the high frequency circuit further includes: a third capacitor and a third switch connected in series between a path between the second power amplifier and the second transmission line and ground; a fourth switch connected in series with the resistor between the output terminal of the first power amplifier and the output terminal of the second power amplifier, In a situation where the first power class is applied, the third switch is opened and the fourth switch is closed; In a situation where the second power class is applied, the third switch is closed and the fourth switch is opened.
- the high frequency circuit according to ⁇ 9>.
- a high frequency circuit configured to support a first power class and a second power class having a lower maximum output power than the first power class, a first power amplifier; a first filter; a second filter; a switch circuit including a first terminal connected to the output end of the first power amplifier, a second terminal connected to the first filter, and a third terminal connected to the second filter, In a situation where the first power class is applied, a first power supply voltage is supplied to the first power amplifier, and the first filter is connected to the first power amplifier by the switch circuit, In a situation where the second power class is applied, a second power supply voltage is supplied to the first power amplifier, and the second filter is connected to the first power amplifier by the switch circuit, the first power supply voltage is higher than the second power supply voltage, The input impedance of the first filter is lower than the input impedance of the second filter. High frequency circuit.
- the first power amplifier is further configured to correspond to a third power class that has a lower maximum output power than the first power class and a higher maximum output power than the second power class, In a situation where the third power class is applied, the second power supply voltage is supplied to the first power amplifier, and the first filter is connected to the first power amplifier by the switch circuit.
- the high frequency circuit according to ⁇ 11>.
- the high frequency circuit further includes: a second power amplifier; a transformer including a primary coil having both ends connected to the output end of the first power amplifier and the output end of the second power amplifier, and a secondary coil having one end connected to the first terminal of the switch circuit; Equipped with In a situation where the first power class is applied, the first power supply voltage is supplied to the first power amplifier and the second power amplifier, and the first filter is connected to the transformer by the switch circuit, In a situation where the second power class is applied, the second power supply voltage is supplied to the first power amplifier and the second power amplifier, and the second filter is connected to the transformer by the switch circuit.
- the high frequency circuit according to ⁇ 11> or ⁇ 12>.
- the high frequency circuit further includes: a second power amplifier; a transformer including a primary coil having both ends connected to the output end of the first power amplifier and the output end of the second power amplifier, and a secondary coil having one end connected to the first terminal of the switch circuit; Equipped with In a situation where the first power class is applied, the first power supply voltage is supplied to the first power amplifier and the second power amplifier, and the first filter is connected to the transformer by the switch circuit, In a situation where the second power class is applied, the second power supply voltage is supplied to the first power amplifier, the second filter is connected to the transformer by the switch circuit, and the second power amplifier operation is stopped,
- the high frequency circuit according to ⁇ 11> or ⁇ 12>.
- the high frequency circuit further includes: a second power amplifier; a first transmission line connected between the output end of the first power amplifier and the first terminal of the switch circuit; a second transmission line connected between the output end of the second power amplifier and the first terminal of the switch circuit; A resistor connected in parallel with the first transmission line and the second transmission line between the output end of the first power amplifier and the output end of the second power amplifier, In a situation where the first power class is applied, the first power supply voltage is supplied to the first power amplifier and the second power amplifier, and the first filter is connected to the first power amplifier and the second power amplifier by the switch circuit.
- the second power supply voltage is supplied to the first power amplifier and the second power amplifier, and the second filter is supplied to the first power amplifier and the second power amplifier by the switch circuit. connected to a second power amplifier;
- the high frequency circuit according to ⁇ 11> or ⁇ 12>.
- the high frequency circuit further includes: a second power amplifier; a first transmission line connected between the output end of the first power amplifier and the first terminal of the switch circuit; a second transmission line connected between the output end of the second power amplifier and the first terminal of the switch circuit; A resistor connected in parallel with the first transmission line and the second transmission line between the output end of the first power amplifier and the output end of the second power amplifier, In a situation where the first power class is applied, the first power supply voltage is supplied to the first power amplifier and the second power amplifier, and the first filter is connected to the first power amplifier and the second power amplifier by the switch circuit.
- the present invention can be widely used in communication devices such as mobile phones as a high frequency circuit placed in a front end section.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Amplifiers (AREA)
Abstract
高周波回路(1)は、電力増幅器(11)と、電力増幅器(11)の出力端に接続される可変負荷整合回路(21又は22)と、を備え、第1パワークラスが適用される状況において、電源電圧(Vcc1)が電力増幅器(11)に供給され、かつ、可変負荷整合回路(21又は22)によって電力増幅器(11)からみた負荷インピーダンスが第1インピーダンスに調整され、第1パワークラスよりも最大出力電力が低い第2パワークラスが適用される状況において、電源電圧(Vcc2)が電力増幅器(11)に供給され、かつ、可変負荷整合回路(21又は22)によって電力増幅器(11)からみた負荷インピーダンスが第2インピーダンスに調整され、電源電圧(Vcc1)は、電源電圧(Vcc2)よりも高く、第1インピーダンスは、第2インピーダンスよりも低い。
Description
本発明は、高周波回路に関する。
携帯電話等で用いられる移動通信システムでは、無線局免許が必要な周波数バンド(以下、ライセンスバンド(licensed band)という)に加えて、無線局免許が不要な周波数バンド(以下、アンライセンスバンド(unlicensed band)という)の利活用が進められている。ライセンスバンドでは、より高い最大出力電力が許容されるパワークラス(以下、高パワークラスという)が用いられ、アンライセンスバンドでは、より低い最大出力電力に制限されるパワークラス(以下、低パワークラスという)が用いられる。
特許文献1には、ライセンスバンドに加えてアンライセンスバンドを利用可能な高周波回路が開示されている。
しかしながら、上記従来の技術では、電力増幅器を高パワークラス及び低パワークラスとの両方に対応させることが難しい。
そこで、本発明は、高パワークラス及び低パワークラスの両方に対応することができる高周波回路を提供する。
本発明の一態様に係る高周波回路は、第1パワークラス及び第1パワークラスよりも最大出力電力が低い第2パワークラスに対応するよう構成された高周波回路であって、第1電力増幅器と、第1電力増幅器の出力端に接続される可変負荷整合回路と、を備え、第1パワークラスが適用される状況において、第1電源電圧が第1電力増幅器に供給され、かつ、可変負荷整合回路によって第1電力増幅器からみた負荷インピーダンスが第1インピーダンスに調整され、第2パワークラスが適用される状況において、第2電源電圧が第1電力増幅器に供給され、かつ、可変負荷整合回路によって第1電力増幅器からみた負荷インピーダンスが第2インピーダンスに調整され、第1電源電圧は、第2電源電圧よりも高く、第1インピーダンスは、第2インピーダンスよりも低い。
本発明の一態様に係る高周波回路は、第1パワークラス及び第1パワークラスよりも最大出力電力が低い第2パワークラスに対応するよう構成された高周波回路であって、第1電力増幅器と、第1フィルタと、第2フィルタと、第1電力増幅器の出力端に接続される第1端子、第1フィルタに接続される第2端子及び第2フィルタに接続される第3端子を含むスイッチ回路と、を備え、第1パワークラスが適用される状況において、第1電源電圧が第1電力増幅器に供給され、かつ、スイッチ回路によって第1フィルタが第1電力増幅器に接続され、第2パワークラスが適用される状況において、第2電源電圧が第1電力増幅器に供給され、かつ、スイッチ回路によって第2フィルタが第1電力増幅器に接続され、第1電源電圧は、第2電源電圧よりも高く、第1フィルタの入力インピーダンスは、第2フィルタの入力インピーダンスよりも低い。
本発明に係る高周波回路によれば、高パワークラス及び低パワークラスの両方に対応することができる。
以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態などは、一例であり、本発明を限定する主旨ではない。
なお、各図は、本発明を示すために適宜強調、省略、又は比率の調整を行った模式図であり、必ずしも厳密に図示されたものではなく、実際の形状、位置関係、及び比率とは異なる場合がある。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡素化される場合がある。
本発明の回路構成において、「接続される」とは、接続端子及び/又は配線導体で直接接続される場合だけでなく、他の回路素子を介して電気的に接続される場合も含む。「A及びBの間に接続される」とは、A及びBの間でA及びBの両方に接続されることを意味し、A及びBを結ぶ経路に直列配置される意味する。
本発明に回路構成おいて、「端子」とは、要素内の導体が終了するポイントを意味する。なお、要素間の経路のインピーダンスが十分に低い場合には、端子は、単一のポイントだけでなく、要素間の経路上の任意のポイント又は経路全体と解釈される。
(実施の形態1)
実施の形態1について説明する。本実施の形態に係る通信装置6は、セルラーネットワークにおけるユーザ端末(UE:User Equipment)に相当し、典型的には、携帯電話、スマートフォン、タブレットコンピュータ、ウェアラブル・デバイス等である。なお、通信装置6は、IoT(Internet of Things)センサ・デバイス、医療/ヘルスケア・デバイス、車、無人航空機(UAV:Unmanned Aerial Vehicle)(いわゆるドローン)、無人搬送車(AGV:Automated Guided Vehicle)であってもよい。
実施の形態1について説明する。本実施の形態に係る通信装置6は、セルラーネットワークにおけるユーザ端末(UE:User Equipment)に相当し、典型的には、携帯電話、スマートフォン、タブレットコンピュータ、ウェアラブル・デバイス等である。なお、通信装置6は、IoT(Internet of Things)センサ・デバイス、医療/ヘルスケア・デバイス、車、無人航空機(UAV:Unmanned Aerial Vehicle)(いわゆるドローン)、無人搬送車(AGV:Automated Guided Vehicle)であってもよい。
本実施の形態に係る通信装置6及び高周波回路1の回路構成について、図1を参照しながら説明する。図1は、本実施の形態に係る通信装置6の回路構成図である。
なお、図1は、例示的な回路構成であり、通信装置6及び高周波回路1は、多種多様な回路実装及び回路技術のいずれかを使用して実装され得る。したがって、以下に提供される通信装置6及び高周波回路1の説明は、限定的に解釈されるべきではない。
[1.1 通信装置6の回路構成]
まず、本実施の形態に係る通信装置6について図1を参照しながら説明する。通信装置6は、高周波回路1と、アンテナ2と、RFIC(Radio Frequency Integrated Circuit)3と、BBIC(Baseband Integrated Circuit)4と、電源回路5と、を備える。
まず、本実施の形態に係る通信装置6について図1を参照しながら説明する。通信装置6は、高周波回路1と、アンテナ2と、RFIC(Radio Frequency Integrated Circuit)3と、BBIC(Baseband Integrated Circuit)4と、電源回路5と、を備える。
高周波回路1は、アンテナ2とRFIC3との間で高周波信号を伝送する。高周波回路1の回路構成については後述する。
アンテナ2は、高周波回路1のアンテナ接続端子100に接続される。アンテナ2は、高周波回路1から高周波信号を受信して通信装置6の外部に出力する。また、アンテナ2は、通信装置6の外部から高周波信号を受信して高周波回路1へ出力してもよい。なお、アンテナ2は、通信装置6に含まれなくてもよい。また、通信装置6は、アンテナ2に加えて、さらに1以上のアンテナを備えてもよい。
RFIC3は、高周波信号を処理する信号処理回路の一例である。具体的には、RFIC3は、BBIC4から入力された送信信号をアップコンバート等により信号処理し、当該信号処理して生成された高周波送信信号を、高周波回路1に出力する。また、RFIC3は、高周波回路1及び/又は電源回路5が有するスイッチ及び電力増幅器等を制御する制御部を有する。なお、RFIC3の制御部としての機能の一部又は全部は、RFIC3の外部に構成されてもよく、例えば、BBIC4、高周波回路1又は電源回路5に構成されてもよい。
BBIC4は、高周波回路1が伝送する高周波信号よりも低周波の中間周波数帯域を用いて信号処理するベースバンド信号処理回路である。BBIC4で処理される信号としては、例えば、画像表示のための画像信号、及び/又は、スピーカを介した通話のために音声信号が用いられる。なお、BBIC4は、通信装置6に含まれなくてもよい。
電源回路5は、高周波回路1に電源電圧を供給するよう構成される。このとき、電源回路5は、少なくとも2つのレベルの電源電圧Vcc1及びVcc2を選択的に供給することができる。電源電圧Vcc1は、第1電源電圧の一例であり、電源電圧Vcc2よりも高い。電源電圧Vcc2は、第2電源電圧の一例であり、電源電圧Vcc1よりも低い。電源電圧Vcc1としては、例えば6ボルトの電圧レベルが用いられ、電源電圧Vcc2としては、例えば3ボルトの電圧レベルが用いられる。
[1.2 高周波回路1の回路構成]
次に、本実施の形態に係る高周波回路1について図1を参照しながら説明する。高周波回路1は、電力増幅器11と、可変負荷整合回路21又は22と、フィルタ31と、アンテナ接続端子100と、入力端子111と、電源電圧端子121と、を備える。
次に、本実施の形態に係る高周波回路1について図1を参照しながら説明する。高周波回路1は、電力増幅器11と、可変負荷整合回路21又は22と、フィルタ31と、アンテナ接続端子100と、入力端子111と、電源電圧端子121と、を備える。
アンテナ接続端子100は、高周波回路1の外部接続端子であり、高周波回路1の外部に送信信号を供給するための端子である。アンテナ接続端子100は、高周波回路1の外部でアンテナ2に接続され、高周波回路1の内部でフィルタ31に接続される。
入力端子111は、高周波回路1の外部接続端子であり、高周波回路1の外部から送信信号を受けるための端子である。入力端子111は、高周波回路1の外部でRFIC3に接続され、高周波回路1の内部で電力増幅器11に接続される。これにより、入力端子111を介してRFIC3から受けた送信信号は、電力増幅器11に供給される。
電源電圧端子121は、高周波回路1の外部接続端子であり、電源回路5から電源電圧Vcc1及びVcc2を受けるための端子である。電源電圧端子121は、高周波回路1の外部で電源回路5に接続され、高周波回路1の内部で電力増幅器11に接続される。これにより、電源電圧端子121を介して電源回路5から受けた電源電圧Vcc1及びVcc2は、電力増幅器11に供給される。
電力増幅器11は、第1電力増幅器の一例である。電力増幅器11の入力端は、入力端子111に接続される。電力増幅器11の出力端は、可変負荷整合回路21又は22に接続される。さらに、電力増幅器11は、電源電圧端子121に接続される。
この接続構成において、電力増幅器11は、電源回路5から電源電圧端子121を介して供給される電源電圧Vcc1及びVcc2を用いて、RFIC3から入力端子111を介して供給される高周波信号を増幅することができる。
このような電力増幅器11は、ヘテロ接合バイポーラトランジスタ(HBT:Heterojunction Bipolar Transistor)で構成することができ、半導体材料を用いて製造することができる。半導体材料としては、例えばシリコンゲルマニウム(SiGe)又はガリウムヒ素(GaAs)を用いることができる。なお、電力増幅器11の増幅トランジスタはHBTに限定されない。例えば、電力増幅器11は、HEMT(High Electron Mobility Transistor)又はMESFET(Metal-Semiconductor Field Effect Transistor)で構成されてもよい。この場合、半導体材料としては、窒化ガリウム(GaN)又は炭化シリコン(SiC)が用いられてもよい。
なお、電力増幅器11は、第1パワークラス、第2パワークラス及び第3パワークラスに対応することができる。第1パワークラスが適用される状況において、電力増幅器11に電源電圧Vcc1が供給され、第2パワークラス及び第3パワークラスが適用される状況において、電力増幅器11に電源電圧Vcc2が供給される。なお、電力増幅器11は、第3パワークラスに対応できなくてもよい。
第1パワークラスは、第2パワークラス及び第3パワークラスよりも最大出力電力が高く、ハイパワークラスに相当する。第2パワークラスは、第1パワークラス及び第3パワークラスよりも最大出力電力が低く、ローパワークラスに相当する。第3パワークラスは、第1パワークラスよりも最大出力電力が低く、かつ、第2パワークラスよりも最大出力電力が高く、ミドルパワークラスに相当する。
なお、パワークラスとは、最大出力電力で規定される端末の出力電力の分類であり、パワークラスの値が小さいほどより高い出力電力を許容することを示す。例えば、3GPP(登録商標)(3rd Generation Partnership Project)では、パワークラス1の最大出力電力は31dBmであり、パワークラス1.5の最大出力電力は29dBmであり、パワークラス2の最大出力電力は26dBmであり、パワークラス3の最大出力電力は23dBmであり、パワークラス5の最大出力電力は20dBmである。
端末の最大出力電力は、端末のアンテナ端における最大出力電力で定義される。端末の最大出力電力の測定は、3GPP等によって定義された方法で行われる。例えば、図1において、アンテナ2における放射電力を測定することで最大出力電力が測定される。なお、放射電力の測定の代わりに、アンテナ2の近傍に端子を設けて、その端子に計測器(例えばスペクトルアナライザなど)を接続することで、アンテナ2の最大出力電力を測定することもできる。
電力増幅器が対応するパワークラスは、電力増幅器の最大出力電力により特定することができる。例えば、パワークラス2に対応する電力増幅器の最大出力電力は26dBmよりも大きい。
本実施の形態では、第1パワークラスとしてパワークラス2が用いられ、第2パワークラスとしてパワークラス5が用いられ、第3パワークラスとしてパワークラス3が用いられる。なお、第1パワークラス、第2パワークラス及び第3パワークラスの組み合わせは、これに限定されない。例えば、第1パワークラスとしてパワークラス1.5が用いられ、第2パワークラスとしてパワークラス3が用いられ、第3パワークラスとしてパワークラス2が用いられてもよい。
可変負荷整合回路21及び22は、パワークラスに応じて電力増幅器11からみた負荷インピーダンスを調整するよう構成された可変インピーダンス整合回路である。高周波回路1には、可変負荷整合回路21及び22のどちらかが含まれる。なお、可変負荷整合回路21及び22の回路構成については、図2及び図3を用いて後述する。
フィルタ31は、アンテナ接続端子100と可変負荷整合回路21又は22との間に接続される。具体的には、フィルタ31の一端は、可変負荷整合回路21又は22に接続され、フィルタ31の他端はアンテナ接続端子100に接続される。フィルタ31は、所定バンドに対応しており、所定バンドを含む通過帯域を有するバンドパスフィルタである。フィルタ31は、第1パワークラスに対応可能な耐電力性を有する。フィルタ31の通過帯域としては、例えば、5150~7125MHz、5925~7125MHz、又は、6425~7125MHzを用いることができるが、フィルタ31の通過帯域はこれらに限定されない。フィルタ31としては、弾性表面波(SAW:Surface Acoustic Wave)フィルタ、バルク弾性波(BAW:Bulk Acoustic Wave)フィルタ、LC共振フィルタ、もしくは誘電体共振フィルタ、又は、これらの任意の組み合わせが用いられてもよく、さらには、これらには限定されない。なお、フィルタ31は、高周波回路1に含まれなくてもよい。
所定バンドは、無線アクセス技術(RAT:Radio Access Technology)を用いて構築される通信システムのための周波数バンドである。所定バンドは、標準化団体など(例えば3GPP及びIEEE(Institute of Electrical and Electronics Engineers)等)によって予め定義される。通信システムの例としては、5GNR(5th Generation New Radio)システム、LTE(Long Term Evolution)システム及びWLAN(Wireless Local Area Network)システム等を挙げることができる。例えば、所定バンドとして、5GNRのためのn46、n96、n102若しくはn104、又は、これらの任意の組み合わせを用いることができるが、所定バンドはこれらに限定されない。
[1.3 可変負荷整合回路の回路構成]
ここで、本実施の形態に係る可変負荷整合回路の互いに異なる例として、可変負荷整合回路21及び22について順に説明する。
ここで、本実施の形態に係る可変負荷整合回路の互いに異なる例として、可変負荷整合回路21及び22について順に説明する。
[1.3.1 可変負荷整合回路21の回路構成]
まず、本実施の形態に係る可変負荷整合回路の一例である可変負荷整合回路21の回路構成について、図2を参照しながら説明する。図2は、本実施の形態に係る可変負荷整合回路21の回路構成図である。
まず、本実施の形態に係る可変負荷整合回路の一例である可変負荷整合回路21の回路構成について、図2を参照しながら説明する。図2は、本実施の形態に係る可変負荷整合回路21の回路構成図である。
なお、図2は、例示的な回路構成であり、可変負荷整合回路21は、多種多様な回路実装及び回路技術のいずれかを使用して実装され得る。したがって、以下に提供される可変負荷整合回路21の説明は、限定的に解釈されるべきではない。
可変負荷整合回路21は、インダクタL211及びL212と、キャパシタC211~C214と、スイッチSW211~SW214と、入力端子T211と、出力端子T212と、を備える。
入力端子T211は、可変負荷整合回路21外で電力増幅器11の出力端に接続され、可変負荷整合回路21内でインダクタL211に接続される。出力端子T212は、可変負荷整合回路21外でフィルタ31を介してアンテナ接続端子100に接続され、可変負荷整合回路21内でキャパシタC213及びC214に接続される。
入力端子T211及び出力端子T212の間には、インダクタL211及びL212、スイッチSW211、キャパシタC213、並びに、スイッチSW212が直列に接続される。さらに、スイッチSW213、キャパシタC214及びスイッチSW214は、インダクタL212と出力端子T212との間に直列に接続され、スイッチSW211、キャパシタC213及びスイッチSW212と並列に接続される。
キャパシタC211及びC212は、入力端子T211及び出力端子T212の間の経路とグランドとの間に並列に接続される。具体的には、キャパシタC211は、インダクタL211及びL212の間の経路の間に接続される。キャパシタC212は、インダクタL212とキャパシタC213及びC214との間の経路とグランドとの間に接続される。
スイッチSW211及びSW212の各々は、第1スイッチの一例であり、SPST(Single-Pole Single-Throw)型のスイッチ回路で構成される。スイッチSW211の一端は、インダクタL212に接続される。スイッチSW211の他端は、キャパシタC213に接続される。スイッチSW212の一端は、キャパシタC213に接続される。スイッチSW212の他端は、出力端子T212に接続される。なお、スイッチSW211及びSW212の一方は、可変負荷整合回路21に含まれなくてもよい。
キャパシタC213は、第1キャパシタの一例である。キャパシタC213の一端は、スイッチSW211に接続される。キャパシタC213の他端は、スイッチSW212に接続される。
スイッチSW213及びSW214の各々は、第2スイッチの一例であり、SPST型のスイッチ回路で構成される。スイッチSW213の一端は、インダクタL212に接続され、スイッチSW213の他端は、キャパシタC214に接続される。スイッチSW214の一端は、キャパシタC214に接続され、スイッチSW214の他端は、出力端子T212に接続される。なお、スイッチSW213及びSW214の一方は、可変負荷整合回路21に含まれなくてもよい。
キャパシタC214は、第2キャパシタの一例である。キャパシタC214の一端は、スイッチSW213に接続される。キャパシタC214の他端は、スイッチSW214に接続される。
このような接続構成において、スイッチSW211及びSW212の各々は、第1パワークラス及び第3パワークラスが適用される状況において閉じられ(つまり、オンされ)、第2パワークラスが適用される状況において開かれる(つまり、オフされる)。一方、スイッチSW213及びSW214の各々は、第1パワークラス及び第3パワークラスが適用される状況において開かれ、第2パワークラスが適用される状況において閉じられる。言い換えると、第1パワークラス及び第3パワークラスが適用される状況においてキャパシタC213が選択され、第2パワークラスが適用される状況においてキャパシタC214が選択される。
キャパシタC214の静電容量は、キャパシタC213の静電容量よりも小さい。逆に言えば、キャパシタC213の静電容量は、キャパシタC214の静電容量よりも大きい。これにより、電力増幅器11からみた負荷インピーダンスは、第1パワークラス及び第3パワークラスが適用される状況においてより低い第1インピーダンス(例えば3オーム)に調整され、第2パワークラスが適用される状況においてより高い第2インピーダンス(例えば6オーム)に調整される。
なお、キャパシタC213及びC214の静電容量は、LCRメータを用いて測定することができる。このとき、測定方式としては、自動平衡ブリッジ法を用いることができる。また、電力増幅器11からみた負荷インピーダンスは、ネットワークアナライザを用いて所定バンドの中心周波数におけるインピーダンスを測定することで特定することができる。
[1.3.2 可変負荷整合回路22の回路構成]
次に、本実施の形態に係る可変負荷整合回路の別の例である可変負荷整合回路22の回路構成について、図3を参照しながら説明する。図3は、本実施の形態に係る可変負荷整合回路22の回路構成図である。
次に、本実施の形態に係る可変負荷整合回路の別の例である可変負荷整合回路22の回路構成について、図3を参照しながら説明する。図3は、本実施の形態に係る可変負荷整合回路22の回路構成図である。
なお、図3は、例示的な回路構成であり、可変負荷整合回路22は、多種多様な回路実装及び回路技術のいずれかを使用して実装され得る。したがって、以下に提供される可変負荷整合回路22の説明は、限定的に解釈されるべきではない。
可変負荷整合回路22は、インダクタL221~L223と、キャパシタC220~C223と、スイッチSW221及びSW222と、入力端子T221と、出力端子T222と、を備える。
入力端子T221は、可変負荷整合回路22外で電力増幅器11の出力端に接続され、可変負荷整合回路22内でインダクタL221に接続される。出力端子T222は、可変負荷整合回路22外でフィルタ31を介してアンテナ接続端子100に接続され、可変負荷整合回路22内でインダクタL222及びL223に接続される。
入力端子T221及び出力端子T222の間には、インダクタL221及びL222が直列に接続される。ここで、インダクタL222は、第1インダクタの一例である。さらに、スイッチSW221及びインダクタL223は、それぞれ第1スイッチ及び第2インダクタの一例であり、インダクタL221と出力端子T222との間に直列に接続され、かつ、インダクタL222と並列に接続される。
キャパシタC220~C223は、入力端子T221及び出力端子T222の間の経路とグランドとの間に並列に接続される。具体的には、キャパシタC220は、入力端子T221及びインダクタL221の間の経路とグランドとの間に接続される。キャパシタC221は、インダクタL221及びL222の間の経路とグランドとの間に接続される。キャパシタC222は、第1キャパシタの一例であり、インダクタL222及び出力端子T222の間の経路とグランドとの間に接続される。キャパシタC223及びスイッチSW222は、それぞれ第2キャパシタ及び第2スイッチの一例であり、インダクタL222及び出力端子T222の間の経路とグランドとの間に直列に接続され、キャパシタC222と並列に接続される。
このような接続構成において、スイッチSW221は、第1パワークラス及び第3パワークラスが適用される状況において開かれ、第2パワークラスが適用される状況において閉じられる。一方、スイッチSW222は、第1パワークラス及び第3パワークラスが適用される状況において閉じられ、第2パワークラスが適用される状況において開かれる。言い換えると、第1パワークラス及び第3パワークラスが適用される状況において、インダクタL223の少なくとも一端は、入力端子T221及び出力端子T222の間の経路に接続されず、キャパシタC223の両端は、入力端子T221及び出力端子T222の間の経路及びグランドにそれぞれ接続される。一方、第2パワークラスが適用される状況において、インダクタL223の両端は、入力端子T221及び出力端子T222の間の経路に接続され、キャパシタC223の少なくとも一端は、入力端子T221及び出力端子T222の間の経路及びグランドに接続されない。
これにより、ノードN1からみた負荷インピーダンスは、第1パワークラス及び第3パワークラスが適用される状況においてより高くなり、第2パワークラスが適用される状況においてより低くなる。このとき、キャパシタC220及びC221並びにインダクタL221で構成されるパイ型整合回路は、インピーダンスインバータとして機能する。したがって、入力端子T221からみた負荷インピーダンスは、第1パワークラス及び第3パワークラスが適用される状況においてより低くなり、第2パワークラスが適用される状況においてより高くなる。その結果、電力増幅器11からみた負荷インピーダンスは、第1パワークラス及び第3パワークラスが適用される状況においてより低い第1インピーダンス(例えば3オーム)に調整され、第2パワークラスが適用される状況においてより高い第2インピーダンス(例えば6オーム)に調整される。
[1.4 効果など]
以上のように、本実施の形態に係る高周波回路1は、第1パワークラス及び第1パワークラスよりも最大出力電力が低い第2パワークラスに対応するよう構成された高周波回路1であって、電力増幅器11と、電力増幅器11の出力端に接続される可変負荷整合回路21又は22と、を備え、第1パワークラスが適用される状況において、電源電圧Vcc1が電力増幅器11に供給され、かつ、可変負荷整合回路21又は22によって電力増幅器11からみた負荷インピーダンスが第1インピーダンスに調整され、第2パワークラスが適用される状況において、電源電圧Vcc2が電力増幅器11に供給され、かつ、可変負荷整合回路21又は22によって電力増幅器11からみた負荷インピーダンスが第2インピーダンスに調整され、電源電圧Vcc1は、電源電圧Vcc2よりも高く、第1インピーダンスは、第2インピーダンスよりも低い。
以上のように、本実施の形態に係る高周波回路1は、第1パワークラス及び第1パワークラスよりも最大出力電力が低い第2パワークラスに対応するよう構成された高周波回路1であって、電力増幅器11と、電力増幅器11の出力端に接続される可変負荷整合回路21又は22と、を備え、第1パワークラスが適用される状況において、電源電圧Vcc1が電力増幅器11に供給され、かつ、可変負荷整合回路21又は22によって電力増幅器11からみた負荷インピーダンスが第1インピーダンスに調整され、第2パワークラスが適用される状況において、電源電圧Vcc2が電力増幅器11に供給され、かつ、可変負荷整合回路21又は22によって電力増幅器11からみた負荷インピーダンスが第2インピーダンスに調整され、電源電圧Vcc1は、電源電圧Vcc2よりも高く、第1インピーダンスは、第2インピーダンスよりも低い。
これによれば、第1パワークラス及び第2パワークラスに応じて、電源電圧及び負荷インピーダンスの両方が調整されるので、電力増幅器11で第1パワークラス及び第2パワークラスの両方に対応することができる。特に、第1パワークラスの最大出力電力と第2パワークラスの最大出力電力との差が大きい場合に電源電圧が固定されれば、負荷インピーダンスの調整範囲が広がり、低負荷インピーダンス時にスイッチ損失が増大する。したがって、電源電圧及び負荷インピーダンスの両方を調整することで、負荷インピーダンスの調整範囲が広がることを抑制し、スイッチ損失を抑制することができる。また、第1パワークラスの最大出力電力と第2パワークラスの最大出力電力との差が大きい場合に負荷インピーダンスが固定されれば、より高い電源電圧が必要となり、電力増幅器11により高い耐電圧性が要求される。したがって、電源電圧及び負荷インピーダンスの両方を調整することで、電力増幅器11の耐電圧性に対する要求を抑制することができる。
また例えば、本実施の形態に係る高周波回路1において、電力増幅器11は、さらに、第1パワークラスよりも最大出力電力が低く、かつ、第2パワークラスよりも最大出力電力が高い第3パワークラスに対応するよう構成されてもよく、第3パワークラスが適用される状況において、電源電圧Vcc2が電力増幅器11に供給され、かつ、可変負荷整合回路21又は22によって電力増幅器11からみた負荷インピーダンスが第1インピーダンスに調整されてもよい。
これによれば、第1パワークラスと第2パワークラスとの間の第3パワークラスでは、第2パワークラスと同じ電源電圧が供給され、第1パワークラスと同じ負荷インピーダンスに調整される。したがって、第3パワークラスにおける電源電圧の増加を抑制して、電力効率を向上させることができる。
また例えば、本実施の形態に係る高周波回路1において、可変負荷整合回路21は、電力増幅器11とアンテナ接続端子100との間に直列に接続されるキャパシタC213、及び、スイッチSW211及び/又はSW212と、電力増幅器11とアンテナ接続端子100との間に、キャパシタC213、及び、スイッチSW211及び/又はSW212と並列に接続され、かつ、互いに直列に接続されるキャパシタC214、及び、スイッチSW213及び/又はSW214と、を含んでもよく、キャパシタC213の静電容量は、キャパシタC214の静電容量よりも大きく、第1パワークラスが適用される状況において、スイッチSW211及び/又はSW212は閉じられ、かつ、スイッチSW213及び/又はSW214は開かれてもよく、第2パワークラスが適用される状況において、スイッチSW211及び/又はSW212は開かれ、かつ、スイッチSW213及び/又はSW214は閉じられてもよい。
これによれば、信号経路上のキャパシタC213及びC214を切り替えることで、電力増幅器11からみた負荷インピーダンスを第1インピーダンス及び第2インピーダンスに調整することができる。
また例えば、本実施の形態に係る高周波回路1において、可変負荷整合回路22は、電力増幅器11とアンテナ接続端子100との間に接続されるインダクタL222と、電力増幅器11とアンテナ接続端子100との間に、インダクタL222と並列に接続され、かつ、互いに直列に接続されるインダクタL223及びスイッチSW221と、電力増幅器11及びアンテナ接続端子100の間の経路とグランドとの間に接続されるキャパシタC222と、電力増幅器11及びアンテナ接続端子100の間の経路とグランドとの間に、キャパシタC222と並列に接続され、かつ、互いに直列に接続されるキャパシタC223及びスイッチSW222と、を含んでもよく、第1パワークラスが適用される状況において、スイッチSW221は開かれ、スイッチSW222は閉じられてもよく、第2パワークラスが適用される状況において、スイッチSW221は閉じられ、スイッチSW222は開かれてもよい。
これによれば、第2パワークラスにおいて、信号経路上のインダクタL222にインダクタL223を並列に接続し、信号経路及びグランドの間にキャパシタC223を接続することで、電力増幅器11からみた負荷インピーダンスを第2インピーダンスに調整することができる。特に、第1パワークラスでは、信号経路上のスイッチSW221が閉じられないので、スイッチSW221による信号損失を抑制することができる。
(実施の形態2)
次に、実施の形態2について説明する。本実施の形態では、電力増幅回路として差動増幅型の増幅回路が用いられる点が上記実施の形態1と主として異なる。以下に、上記実施の形態1と異なる点を中心に本実施の形態について図面を参照しながら説明する。
次に、実施の形態2について説明する。本実施の形態では、電力増幅回路として差動増幅型の増幅回路が用いられる点が上記実施の形態1と主として異なる。以下に、上記実施の形態1と異なる点を中心に本実施の形態について図面を参照しながら説明する。
本実施の形態に係る通信装置6A及び高周波回路1Aの回路構成について、図4を参照しながら説明する。図4は、本実施の形態に係る通信装置6Aの回路構成図である。
なお、図4は、例示的な回路構成であり、通信装置6A及び高周波回路1Aは、多種多様な回路実装及び回路技術のいずれかを使用して実装され得る。したがって、以下に提供される通信装置6A及び高周波回路1Aの説明は、限定的に解釈されるべきではない。
また、通信装置6Aは、高周波回路1の代わりに高周波回路1Aを備える点を除いて、通信装置6と同様であるので説明を省略する。
[2.1 高周波回路1Aの回路構成]
本実施の形態に係る高周波回路1Aについて図4を参照しながら説明する。高周波回路1Aは、電力増幅器11及び12と、可変負荷整合回路23又は24と、フィルタ31と、トランスフォーマ41及び42と、キャパシタC11と、アンテナ接続端子100と、入力端子111と、電源電圧端子121と、を備える。
本実施の形態に係る高周波回路1Aについて図4を参照しながら説明する。高周波回路1Aは、電力増幅器11及び12と、可変負荷整合回路23又は24と、フィルタ31と、トランスフォーマ41及び42と、キャパシタC11と、アンテナ接続端子100と、入力端子111と、電源電圧端子121と、を備える。
電力増幅器11は、第1電力増幅器の一例である。電力増幅器11の入力端は、トランスフォーマ41に接続される。電力増幅器11の出力端は、トランスフォーマ42に接続される。電力増幅器11は、トランスフォーマ41から出力される差動信号の一方を増幅することができる。
電力増幅器12は、第2電力増幅器の一例である。電力増幅器12の入力端は、トランスフォーマ41に接続される。電力増幅器12の出力端は、トランスフォーマ42に接続される。電力増幅器12は、トランスフォーマ41から出力される差動信号の他方を増幅することができる。
このような電力増幅器12は、HBTで構成することができ、半導体材料を用いて製造することができる。半導体材料としては、例えばSiGe又はGaAsを用いることができるが、これに限定されない。
電力増幅器11及び12は、第1パワークラス、第2パワークラス及び第3パワークラスに対応することができる。第1パワークラスが適用される状況において、電力増幅器11及び12に電源電圧Vcc1が供給され、第2パワークラス及び第3パワークラスが適用される状況において、電力増幅器11及び12に電源電圧Vcc2が供給される。なお、電力増幅器11及び12は、第3パワークラスに対応できなくてもよい。
トランスフォーマ41は、一次コイルL411及び一次コイルL411に結合される二次コイルL412を備える。一次コイルL411の一端は、入力端子111に接続され、一次コイルL411の他端は、グランドに接続される。二次コイルL412の両端は、電力増幅器11及び12の入力端にそれぞれ接続される。
この接続構成により、トランスフォーマ41は、RFIC3から入力端子111を介して供給された高周波信号を互いに逆相の2つの高周波信号に分配することができる。分配された2つの高周波信号(つまり差動信号)は、電力増幅器11及び12に供給される。
なお、トランスフォーマ41は、高周波回路1Aに含まれなくてもよい。この場合、高周波回路1Aは、例えば、RFIC3から差動信号を受けるために2つの入力端子111を備えてもよい。
トランスフォーマ42は、一次コイルL421及び一次コイルL421に結合される二次コイルL422を備える。一次コイルL421の両端は、電力増幅器11及び12の出力端にそれぞれ接続される。また、一次コイルL421は、2つのコイルに分割され、当該2つのコイルの間のノードに電源電圧端子121が接続される。二次コイルL422の一端は、可変負荷整合回路23又は24に接続される。二次コイルL422の他端は、グランドに接続される。
この接続構成により、トランスフォーマ42は、電力増幅器11及び12でそれぞれ増幅された差動信号を1つの高周波信号に合成することができる。合成された高周波信号は、可変負荷整合回路23又は24、及び、フィルタ31を介して、アンテナ接続端子100に伝送される。
キャパシタC11は、電力増幅器11の出力端と電力増幅器12の出力端との間にトランスフォーマ42の一次コイルL421と並列に接続される。具体的には、キャパシタC11の一端は、電力増幅器11の出力端と一次コイルL421の一端とに接続され、キャパシタC11の他端は、電力増幅器12の出力端と一次コイルL421の他端とに接続される。
可変負荷整合回路23及び24は、パワークラスに応じて電力増幅器11及び12からみた負荷インピーダンスを調整するよう構成された可変インピーダンス整合回路である。高周波回路1Aには、可変負荷整合回路23及び24のどちらかが含まれる。
[2.2 可変負荷整合回路の回路構成]
ここで、本実施の形態に係る可変負荷整合回路の異なる例として、可変負荷整合回路23及び24について順に説明する。
ここで、本実施の形態に係る可変負荷整合回路の異なる例として、可変負荷整合回路23及び24について順に説明する。
[2.2.1 可変負荷整合回路23の回路構成]
まず、本実施の形態に係る可変負荷整合回路の一例である可変負荷整合回路23の回路構成について、図5を参照しながら説明する。図5は、本実施の形態に係る可変負荷整合回路23の回路構成図である。
まず、本実施の形態に係る可変負荷整合回路の一例である可変負荷整合回路23の回路構成について、図5を参照しながら説明する。図5は、本実施の形態に係る可変負荷整合回路23の回路構成図である。
なお、図5は、例示的な回路構成であり、可変負荷整合回路23は、多種多様な回路実装及び回路技術のいずれかを使用して実装され得る。したがって、以下に提供される可変負荷整合回路23の説明は、限定的に解釈されるべきではない。
可変負荷整合回路23は、キャパシタC213及びC214と、スイッチSW211~SW214と、入力端子T231と、出力端子T232と、を備える。可変負荷整合回路23は、実施の形態1の可変負荷整合回路21において、インダクタL211及びL212とキャパシタC211及びC212とが取り除かれ、入力端子T211及び出力端子T212が入力端子T231及び出力端子T232に置き換えられた回路に相当する。
入力端子T231は、可変負荷整合回路23外でトランスフォーマ42の二次コイルL422に接続され、可変負荷整合回路23内でキャパシタC213及びC214に接続される。出力端子T232は、可変負荷整合回路23外でフィルタ31を介してアンテナ接続端子100に接続され、可変負荷整合回路23内でキャパシタC213及びC214に接続される。
実施の形態1に係る可変負荷整合回路21と同様に、スイッチSW211及びSW212の各々は、第1パワークラス及び第3パワークラスが適用される状況において閉じられ、第2パワークラスが適用される状況において開かれる。一方、スイッチSW213及びSW214の各々は、第1パワークラス及び第3パワークラスが適用される状況において開かれ、第2パワークラスが適用される状況において閉じられる。言い換えると、第1パワークラス及び第3パワークラスが適用される状況においてキャパシタC213が選択され、第2パワークラスが適用される状況においてキャパシタC214が選択される。
キャパシタC213の静電容量はキャパシタC214の静電容量よりも大きいので、電力増幅器11及び12からみた負荷インピーダンスは、第1パワークラス及び第3パワークラスが適用される状況においてより低い第1インピーダンス(例えば3オーム)に調整され、第2パワークラスが適用される状況においてより高い第2インピーダンス(例えば6オーム)に調整される。
[2.2.2 可変負荷整合回路24の回路構成]
次に、本実施の形態に係る可変負荷整合回路の別の例である可変負荷整合回路24の回路構成について、図6を参照しながら説明する。図6は、本実施の形態に係る可変負荷整合回路24の回路構成図である。
次に、本実施の形態に係る可変負荷整合回路の別の例である可変負荷整合回路24の回路構成について、図6を参照しながら説明する。図6は、本実施の形態に係る可変負荷整合回路24の回路構成図である。
なお、図6は、例示的な回路構成であり、可変負荷整合回路24は、多種多様な回路実装及び回路技術のいずれかを使用して実装され得る。したがって、以下に提供される可変負荷整合回路24の説明は、限定的に解釈されるべきではない。
可変負荷整合回路24は、インダクタL222及びL223と、キャパシタC221~C223と、スイッチSW221及びSW222と、入力端子T241と、出力端子T242と、を備える。可変負荷整合回路24は、実施の形態1の可変負荷整合回路22において、インダクタL221及びキャパシタC220が取り除かれ、入力端子T221及び出力端子T222が入力端子T241及び出力端子T242に置き換えられた回路に相当する。
入力端子T241は、可変負荷整合回路24外でトランスフォーマ42の二次コイルL422に接続され、可変負荷整合回路24内でインダクタL222及びL223に接続される。出力端子T242は、可変負荷整合回路24外でフィルタ31を介してアンテナ接続端子100に接続され、可変負荷整合回路24内でインダクタL222及びL223に接続される。
実施の形態1に係る可変負荷整合回路22と同様に、スイッチSW221は、第1パワークラス及び第3パワークラスが適用される状況において開かれ、第2パワークラスが適用される状況において閉じられる。一方、スイッチSW222は、第1パワークラス及び第3パワークラスが適用される状況において閉じられ、第2パワークラスが適用される状況において開かれる。言い換えると、第1パワークラス及び第3パワークラスが適用される状況において、インダクタL223の少なくとも一端は、入力端子T241及び出力端子T242の間の経路に接続されず、キャパシタC223の両端は、入力端子T241及び出力端子T242の間の経路及びグランドにそれぞれ接続される。一方、第2パワークラスが適用される状況において、インダクタL223の両端は、入力端子T241及び出力端子T242の間の経路に接続され、キャパシタC223の少なくとも一端は、入力端子T241及び出力端子T242の間の経路及びグランドに接続されない。
これにより、ノードN1からみた負荷インピーダンスは、第1パワークラス及び第3パワークラスが適用される状況においてより高くなり、第2パワークラスが適用される状況においてより低くなる。このとき、キャパシタC221及びトランスフォーマ42は、インピーダンスインバータとして機能する。その結果、電力増幅器11及び12からみた負荷インピーダンスは、第1パワークラス及び第3パワークラスが適用される状況においてより低い第1インピーダンス(例えば3オーム)に調整され、第2パワークラスが適用される状況においてより高い第2インピーダンス(例えば6オーム)に調整される。
[2.3 効果など]
以上のように、本実施の形態に係る高周波回路1Aは、第1パワークラス及び第1パワークラスよりも最大出力電力が低い第2パワークラスに対応するよう構成された高周波回路1Aであって、電力増幅器11と、電力増幅器11の出力端に接続される可変負荷整合回路23又は24と、を備え、第1パワークラスが適用される状況において、電源電圧Vcc1が電力増幅器11に供給され、かつ、可変負荷整合回路23又は24によって電力増幅器11からみた負荷インピーダンスが第1インピーダンスに調整され、第2パワークラスが適用される状況において、電源電圧Vcc2が電力増幅器11に供給され、かつ、可変負荷整合回路23又は24によって電力増幅器11からみた負荷インピーダンスが第2インピーダンスに調整され、電源電圧Vcc1は、電源電圧Vcc2よりも高く、第1インピーダンスは、第2インピーダンスよりも低い。
以上のように、本実施の形態に係る高周波回路1Aは、第1パワークラス及び第1パワークラスよりも最大出力電力が低い第2パワークラスに対応するよう構成された高周波回路1Aであって、電力増幅器11と、電力増幅器11の出力端に接続される可変負荷整合回路23又は24と、を備え、第1パワークラスが適用される状況において、電源電圧Vcc1が電力増幅器11に供給され、かつ、可変負荷整合回路23又は24によって電力増幅器11からみた負荷インピーダンスが第1インピーダンスに調整され、第2パワークラスが適用される状況において、電源電圧Vcc2が電力増幅器11に供給され、かつ、可変負荷整合回路23又は24によって電力増幅器11からみた負荷インピーダンスが第2インピーダンスに調整され、電源電圧Vcc1は、電源電圧Vcc2よりも高く、第1インピーダンスは、第2インピーダンスよりも低い。
これによれば、第1パワークラス及び第2パワークラスに応じて、電源電圧及び負荷インピーダンスの両方が調整されるので、電力増幅器11で第1パワークラス及び第2パワークラスの両方に対応することができる。特に、第1パワークラスの最大出力電力と第2パワークラスの最大出力電力との差が大きい場合に電源電圧が固定されれば、負荷インピーダンスの調整範囲が広がり、低負荷インピーダンス時にスイッチ損失が増大する。したがって、電源電圧及び負荷インピーダンスの両方を調整することで、負荷インピーダンスの調整範囲が広がることを抑制し、スイッチ損失を抑制することができる。また、第1パワークラスの最大出力電力と第2パワークラスの最大出力電力との差が大きい場合に負荷インピーダンスが固定されれば、より高い電源電圧が必要となり、電力増幅器11により高い耐電圧性が要求される。したがって、電源電圧及び負荷インピーダンスの両方を調整することで、電力増幅器11の耐電圧性に対する要求を抑制することができる。
また例えば、本実施の形態に係る高周波回路1Aにおいて、電力増幅器11は、さらに、第1パワークラスよりも最大出力電力が低く、かつ、第2パワークラスよりも最大出力電力が高い第3パワークラスに対応するよう構成されてもよく、第3パワークラスが適用される状況において、電源電圧Vcc2が電力増幅器11に供給され、かつ、可変負荷整合回路23又は24によって電力増幅器11からみた負荷インピーダンスが第1インピーダンスに調整されてもよい。
これによれば、第1パワークラスと第2パワークラスとの間の第3パワークラスでは、第2パワークラスと同じ電源電圧が供給され、第1パワークラスと同じ負荷インピーダンスに調整される。したがって、第3パワークラスにおける電源電圧の増加を抑制して、電力効率を向上させることができる。
また例えば、本実施の形態に係る高周波回路1Aにおいて、可変負荷整合回路23は、電力増幅器11とアンテナ接続端子100との間に直列に接続されるキャパシタC213、及び、スイッチSW211及び/又はSW212と、電力増幅器11とアンテナ接続端子100との間に、キャパシタC213、及び、スイッチSW211及び/又はSW212と並列に接続され、かつ、互いに直列に接続されるキャパシタC214、及び、スイッチSW213及び/又はSW214と、を含んでもよく、キャパシタC213の静電容量は、キャパシタC214の静電容量よりも大きく、第1パワークラスが適用される状況において、スイッチSW211及び/又はSW212は閉じられ、かつ、スイッチSW213及び/又はSW214は開かれてもよく、第2パワークラスが適用される状況において、スイッチSW211及び/又はSW212は開かれ、かつ、スイッチSW213及び/又はSW214は閉じられてもよい。
これによれば、信号経路上のキャパシタC213及びC214を切り替えることで、電力増幅器11からみた負荷インピーダンスを第1インピーダンス及び第2インピーダンスに調整することができる。
また例えば、本実施の形態に係る高周波回路1Aにおいて、可変負荷整合回路24は、電力増幅器11とアンテナ接続端子100との間に接続されるインダクタL222と、電力増幅器11とアンテナ接続端子100との間に、インダクタL222と並列に接続され、かつ、互いに直列に接続されるインダクタL223及びスイッチSW221と、電力増幅器11及びアンテナ接続端子100の間の経路とグランドとの間に接続されるキャパシタC222と、電力増幅器11及びアンテナ接続端子100の間の経路とグランドとの間に、キャパシタC222と並列に接続され、かつ、互いに直列に接続されるキャパシタC223及びスイッチSW222と、を含んでもよく、第1パワークラスが適用される状況において、スイッチSW221は開かれ、スイッチSW222は閉じられてもよく、第2パワークラスが適用される状況において、スイッチSW221は閉じられ、スイッチSW222は開かれてもよい。
これによれば、第2パワークラスにおいて、信号経路上のインダクタL222にインダクタL223を並列に接続し、信号経路及びグランドの間にキャパシタC223を接続することで、電力増幅器11からみた負荷インピーダンスを第2インピーダンスに調整することができる。特に、第1パワークラスでは、信号経路上のスイッチSW221が閉じられないので、スイッチSW221による信号損失を抑制することができる。
また例えば、本実施の形態に係る高周波回路1Aは、さらに、電力増幅器12と、電力増幅器11の出力端及び電力増幅器12の出力端に両端がそれぞれ接続される一次コイルL421と可変負荷整合回路23又は24に一端が接続される二次コイルL422とを含むトランスフォーマ42と、を備え、第1パワークラスが適用される状況において、電源電圧Vcc1が電力増幅器11及び12に供給され、かつ、可変負荷整合回路23又は24によって電力増幅器11及び12からみた負荷インピーダンスが第1インピーダンスに調整され、第2パワークラスが適用される状況において、電源電圧Vcc2が電力増幅器11及び12に供給され、かつ、可変負荷整合回路23又は24によって電力増幅器11及び12からみた負荷インピーダンスが第2インピーダンスに調整されてもよい。
これによれば、2つの電力増幅器11及び12を用いて高周波信号を増幅することができるので、第1パワークラスにおける電力増幅器11及び12の個々の最大出力電力に対する要求を低下させることができる。
(実施の形態3)
次に、実施の形態3について説明する。本実施の形態では、電力増幅回路として差動増幅型の増幅回路が用いられ、第2パワークラスにおいて2つの電力増幅器の一方の動作が停止される点が上記実施の形態1及び2と主として異なる。以下に、上記実施の形態1及び2と異なる点を中心に本実施の形態について図面を参照しながら説明する。
次に、実施の形態3について説明する。本実施の形態では、電力増幅回路として差動増幅型の増幅回路が用いられ、第2パワークラスにおいて2つの電力増幅器の一方の動作が停止される点が上記実施の形態1及び2と主として異なる。以下に、上記実施の形態1及び2と異なる点を中心に本実施の形態について図面を参照しながら説明する。
本実施の形態に係る通信装置6B及び高周波回路1Bの回路構成について、図7を参照しながら説明する。図7は、本実施の形態に係る通信装置6Bの回路構成図である。
なお、図7は、例示的な回路構成であり、通信装置6B及び高周波回路1Bは、多種多様な回路実装及び回路技術のいずれかを使用して実装され得る。したがって、以下に提供される通信装置6B及び高周波回路1Bの説明は、限定的に解釈されるべきではない。
また、通信装置6Bは、高周波回路1の代わりに高周波回路1Bを備える点を除いて、通信装置6と同様であるので説明を省略する。
[3.1 高周波回路1Bの回路構成]
本実施の形態に係る高周波回路1Bについて図7を参照しながら説明する。高周波回路1Bは、電力増幅器11及び12と、可変負荷整合回路25と、フィルタ31と、トランスフォーマ41及び42と、キャパシタC11及びC12と、スイッチSW11と、アンテナ接続端子100と、入力端子111と、電源電圧端子121と、を備える。高周波回路1Bは、実施の形態2の高周波回路1Aにおいて、可変負荷整合回路23又は24が可変負荷整合回路25に置き換えられ、キャパシタC12及びスイッチSW11が追加された回路に相当する。
本実施の形態に係る高周波回路1Bについて図7を参照しながら説明する。高周波回路1Bは、電力増幅器11及び12と、可変負荷整合回路25と、フィルタ31と、トランスフォーマ41及び42と、キャパシタC11及びC12と、スイッチSW11と、アンテナ接続端子100と、入力端子111と、電源電圧端子121と、を備える。高周波回路1Bは、実施の形態2の高周波回路1Aにおいて、可変負荷整合回路23又は24が可変負荷整合回路25に置き換えられ、キャパシタC12及びスイッチSW11が追加された回路に相当する。
キャパシタC12及びスイッチSW11は、それぞれ第3キャパシタ及び第3スイッチの一例であり、電力増幅器12及びトランスフォーマ42の間の経路とグランドとの間に直列に接続される。ここでは、スイッチSW11は、キャパシタC12とグランドとの間に接続されているが、キャパシタC12が、スイッチSW11とグランドとの間に接続されてもよい。
このような回路構成において、電力増幅器12は、第2パワークラス及び第3パワークラスが適用される状況において、その動作が停止される。逆に、第1パワークラスが適用される状況では、電力増幅器12の動作は停止されない。例えば、第2パワークラス及び第3パワークラスでは、電力増幅器12へのバイアス及び/又は電源電圧の供給が停止されることで、電力増幅器12の動作が停止される。このとき、スイッチSW11が閉じられることにより、電力増幅器11で増幅された高周波信号は、トランスフォーマ42を介して可変負荷整合回路25に伝送される。逆に、第1パワークラスでは、電力増幅器12にバイアス及び電源電圧Vcc1が供給され、かつ、スイッチSW11が開かれることにより、電力増幅器11及び12で高周波信号が増幅され、増幅された高周波信号がトランスフォーマ42により合成され、可変負荷整合回路25に伝送される。
可変負荷整合回路25は、パワークラスに応じて電力増幅器11及び12からみた負荷インピーダンスを調整するよう構成された可変インピーダンス整合回路である。
[3.2 可変負荷整合回路25の回路構成]
ここで、本実施の形態に係る可変負荷整合回路25の回路構成について、図8を参照しながら説明する。図8は、本実施の形態に係る可変負荷整合回路25の回路構成図である。
ここで、本実施の形態に係る可変負荷整合回路25の回路構成について、図8を参照しながら説明する。図8は、本実施の形態に係る可変負荷整合回路25の回路構成図である。
なお、図8は、例示的な回路構成であり、可変負荷整合回路25は、多種多様な回路実装及び回路技術のいずれかを使用して実装され得る。したがって、以下に提供される可変負荷整合回路25の説明は、限定的に解釈されるべきではない。
可変負荷整合回路25は、インダクタL222及びL223と、キャパシタC221、C251及びC252と、スイッチSW221及びSW251と、入力端子T251と、出力端子T252と、を備える。可変負荷整合回路25は、実施の形態2の可変負荷整合回路24において、キャパシタC222及びC223とスイッチSW222がキャパシタC251及びC252とスイッチSW251に置き換えられ、入力端子T241及び出力端子T242が入力端子T251及び出力端子T252に置き換えられた回路に相当する。
入力端子T251は、可変負荷整合回路25外でトランスフォーマ42の二次コイルL422に接続され、可変負荷整合回路25内でインダクタL222及びL223に接続される。出力端子T252は、可変負荷整合回路25外でフィルタ31を介してアンテナ接続端子100に接続され、可変負荷整合回路25内でインダクタL222及びL223に接続される。
インダクタL222は、第1インダクタの一例であり、入力端子T251と出力端子T252との間に接続される。
インダクタL223及びスイッチSW221は、それぞれ第2インダクタ及び第1スイッチの一例であり、入力端子T251と出力端子T252との間に、インダクタL222と並列に接続され、かつ、互いに直列に接続される。
キャパシタC251及びC252は、それぞれ第1キャパシタ及び第2キャパシタの一例であり、インダクタL222及びL223と出力端子T252との間の経路とグランドとの間に直列に接続される。
スイッチSW251は、第2スイッチの一例であり、キャパシタC251及びC252の間の経路とグランドとの間に接続される。
このような接続構成において、スイッチSW221は、第1パワークラス及び第3パワークラスが適用される状況において開かれ、第2パワークラスが適用される状況において閉じられる。一方、スイッチSW251は、第1パワークラス及び第3パワークラスが適用される状況において閉じられ、第2パワークラスが適用される状況において開かれる。言い換えると、第1パワークラス及び第3パワークラスが適用される状況において、インダクタL223の少なくとも一端は、入力端子T251及び出力端子T252の間の経路に接続されず、キャパシタC251の一端は、キャパシタC252を介さずにグランドに接続される。一方、第2パワークラスが適用される状況において、インダクタL223の両端は、入力端子T251及び出力端子T252の間の経路に接続され、キャパシタC251の一端は、キャパシタC252を介してグランドに接続される。
これにより、ノードN1からみた負荷インピーダンスは、第1パワークラス及び第3パワークラスが適用される状況においてより高くなり、第2パワークラスが適用される状況においてより低くなる。このとき、キャパシタC221及びトランスフォーマ42は、インピーダンスインバータとして機能する。その結果、第1パワークラス及び第3パワークラスが適用される状況において、電力増幅器11及び12からみた負荷インピーダンスは、より低い第1インピーダンス(例えば3オーム)に調整され、第2パワークラスが適用される状況において、電力増幅器11からみた負荷インピーダンスは、より高い第2インピーダンス(例えば6オーム)に調整される。
[3.3 効果など]
以上のように、本実施の形態に係る高周波回路1Bは、第1パワークラス及び第1パワークラスよりも最大出力電力が低い第2パワークラスに対応するよう構成された高周波回路1Bであって、電力増幅器11と、電力増幅器11の出力端に接続される可変負荷整合回路25と、を備え、第1パワークラスが適用される状況において、電源電圧Vcc1が電力増幅器11に供給され、かつ、可変負荷整合回路25によって電力増幅器11からみた負荷インピーダンスが第1インピーダンスに調整され、第2パワークラスが適用される状況において、電源電圧Vcc2が電力増幅器11に供給され、かつ、可変負荷整合回路25によって電力増幅器11からみた負荷インピーダンスが第2インピーダンスに調整され、電源電圧Vcc1は、電源電圧Vcc2よりも高く、第1インピーダンスは、第2インピーダンスよりも低い。
以上のように、本実施の形態に係る高周波回路1Bは、第1パワークラス及び第1パワークラスよりも最大出力電力が低い第2パワークラスに対応するよう構成された高周波回路1Bであって、電力増幅器11と、電力増幅器11の出力端に接続される可変負荷整合回路25と、を備え、第1パワークラスが適用される状況において、電源電圧Vcc1が電力増幅器11に供給され、かつ、可変負荷整合回路25によって電力増幅器11からみた負荷インピーダンスが第1インピーダンスに調整され、第2パワークラスが適用される状況において、電源電圧Vcc2が電力増幅器11に供給され、かつ、可変負荷整合回路25によって電力増幅器11からみた負荷インピーダンスが第2インピーダンスに調整され、電源電圧Vcc1は、電源電圧Vcc2よりも高く、第1インピーダンスは、第2インピーダンスよりも低い。
これによれば、第1パワークラス及び第2パワークラスに応じて、電源電圧及び負荷インピーダンスの両方が調整されるので、電力増幅器11で第1パワークラス及び第2パワークラスの両方に対応することができる。特に、第1パワークラスの最大出力電力と第2パワークラスの最大出力電力との差が大きい場合に電源電圧が固定されれば、負荷インピーダンスの調整範囲が広がり、低負荷インピーダンス時にスイッチ損失が増大する。したがって、電源電圧及び負荷インピーダンスの両方を調整することで、負荷インピーダンスの調整範囲が広がることを抑制し、スイッチ損失を抑制することができる。また、第1パワークラスの最大出力電力と第2パワークラスの最大出力電力との差が大きい場合に負荷インピーダンスが固定されれば、より高い電源電圧が必要となり、電力増幅器11により高い耐電圧性が要求される。したがって、電源電圧及び負荷インピーダンスの両方を調整することで、電力増幅器11の耐電圧性に対する要求を抑制することができる。
また例えば、本実施の形態に係る高周波回路1Bにおいて、電力増幅器11は、さらに、第1パワークラスよりも最大出力電力が低く、かつ、第2パワークラスよりも最大出力電力が高い第3パワークラスに対応するよう構成されてもよく、第3パワークラスが適用される状況において、電源電圧Vcc2が電力増幅器11に供給され、かつ、可変負荷整合回路25によって電力増幅器11からみた負荷インピーダンスが第1インピーダンスに調整されてもよい。
これによれば、第1パワークラスと第2パワークラスとの間の第3パワークラスでは、第2パワークラスと同じ電源電圧が供給され、第1パワークラスと同じ負荷インピーダンスに調整される。したがって、第3パワークラスにおける電源電圧の増加を抑制して、電力効率を向上させることができる。
また例えば、本実施の形態に係る高周波回路1Bにおいて、電力増幅器12と、電力増幅器11の出力端及び電力増幅器12の出力端に両端がそれぞれ接続される一次コイルL421と可変負荷整合回路25に一端が接続される二次コイルL422とを含むトランスフォーマ42と、を備えてもよく、第1パワークラスが適用される状況において、電源電圧Vcc1が電力増幅器11及び12に供給され、かつ、可変負荷整合回路25によって電力増幅器11及び12からみた負荷インピーダンスが第1インピーダンスに調整されてもよく、第2パワークラスが適用される状況において、電源電圧Vcc2が電力増幅器11に供給され、かつ、可変負荷整合回路25によって電力増幅器11からみた負荷インピーダンスが第2インピーダンスに調整され、かつ、電力増幅器12の動作が停止されてもよい。
これによれば、2つの電力増幅器11及び12を用いて高周波信号を増幅することができるので、第1パワークラスにおける電力増幅器11及び12の個々の最大出力電力に対する要求を低下させることができる。さらに、最大出力電力が低い第2パワークラスでは、電力増幅器12の動作を停止させることができるので、第2パワークラスにおける電力効率の低下を抑制することができる。
また例えば、本実施の形態に係る高周波回路1Bにおいて、可変負荷整合回路25は、二次コイルL422とアンテナ接続端子100との間に接続されるインダクタL222と、二次コイルL422とアンテナ接続端子100との間に、インダクタL222と並列に接続され、かつ、互いに直列に接続されるインダクタL223及びスイッチSW221と、電力増幅器11及びアンテナ接続端子100の間の経路とグランドとの間に直列に接続されるキャパシタC251及びC252と、キャパシタC251及びC252の間の経路とグランドとの間に接続されるスイッチSW251と、を含んでもよく、高周波回路1Bは、さらに、電力増幅器12及び一次コイルL421の間の経路とグランドとの間に直列に接続されるキャパシタC12及びスイッチSW11を備えてもよく、第1パワークラスが適用される状況において、スイッチSW221及びSW11の各々は開かれ、スイッチSW251は閉じられてもよく、第2パワークラスが適用される状況において、スイッチSW221及びSW11の各々は閉じられ、スイッチSW251は開かれてもよい。
これによれば、2つの電力増幅器11及び12を用いて高周波信号を増幅することができるので、第1パワークラスにおける電力増幅器11及び12の個々の最大出力電力に対する要求を低下させることができる。さらに、最大出力電力が低い第2パワークラスでは、電力増幅器12の動作を停止させることができるので、第2パワークラスにおける電力効率の低下を抑制することができる。
(実施の形態4)
次に、実施の形態4について説明する。本実施の形態では、電力増幅回路としてウィルキンソン型の増幅回路が用いられる点が上記実施の形態1と主として異なる。以下に、上記実施の形態1と異なる点を中心に本実施の形態について図面を参照しながら説明する。
次に、実施の形態4について説明する。本実施の形態では、電力増幅回路としてウィルキンソン型の増幅回路が用いられる点が上記実施の形態1と主として異なる。以下に、上記実施の形態1と異なる点を中心に本実施の形態について図面を参照しながら説明する。
本実施の形態に係る通信装置6C及び高周波回路1Cの回路構成について、図9を参照しながら説明する。図9は、本実施の形態に係る通信装置6Cの回路構成図である。
なお、図9は、例示的な回路構成であり、通信装置6C及び高周波回路1Cは、多種多様な回路実装及び回路技術のいずれかを使用して実装され得る。したがって、以下に提供される通信装置6C及び高周波回路1Cの説明は、限定的に解釈されるべきではない。
また、通信装置6Cは、高周波回路1の代わりに高周波回路1Cを備える点を除いて、通信装置6と同様であるので説明を省略する。
[4.1 高周波回路1Cの回路構成]
本実施の形態に係る高周波回路1Cについて図9を参照しながら説明する。高周波回路1Cは、電力増幅器11及び12と、可変負荷整合回路23又は24と、フィルタ31と、ウィルキンソンデバイダ43と、ウィルキンソンカプラ44と、アンテナ接続端子100と、入力端子111と、電源電圧端子121と、を備える。
本実施の形態に係る高周波回路1Cについて図9を参照しながら説明する。高周波回路1Cは、電力増幅器11及び12と、可変負荷整合回路23又は24と、フィルタ31と、ウィルキンソンデバイダ43と、ウィルキンソンカプラ44と、アンテナ接続端子100と、入力端子111と、電源電圧端子121と、を備える。
電力増幅器11は、第1電力増幅器の一例である。電力増幅器11の入力端は、ウィルキンソンデバイダ43に接続される。電力増幅器11の出力端は、ウィルキンソンカプラ44に接続される。電力増幅器11は、ウィルキンソンデバイダ43から出力される同相信号の一方を増幅することができる。
電力増幅器12は、第2電力増幅器の一例である。電力増幅器12の入力端は、ウィルキンソンデバイダ43に接続される。電力増幅器12の出力端は、ウィルキンソンカプラ44に接続される。電力増幅器12は、ウィルキンソンデバイダ43から出力される同相信号の他方を増幅することができる。
電力増幅器11及び12は、第1パワークラス、第2パワークラス及び第3パワークラスに対応することができる。第1パワークラスが適用される状況において、電力増幅器11及び12に電源電圧Vcc1が供給され、第2パワークラス及び第3パワークラスが適用される状況において、電力増幅器11及び12に電源電圧Vcc2が供給される。なお、電力増幅器11及び12は、第3パワークラスに対応できなくてもよい。
ウィルキンソンデバイダ43は、伝送線路TL431及びTL432と抵抗R431とを備える。伝送線路TL431は、入力端子111と電力増幅器11の入力端との間に接続される。伝送線路TL432は、入力端子111と電力増幅器12の入力端との間に接続される。抵抗R431は、電力増幅器11の入力端と電力増幅器12の入力端との間に伝送線路TL431及びTL432と並列に接続される。
この接続構成により、ウィルキンソンデバイダ43は、RFIC3から入力端子111を介して供給された高周波信号を同相の2つの高周波信号に分配することができる。分配された2つの高周波信号(つまり同相信号)は、電力増幅器11及び12に供給される。
なお、ウィルキンソンデバイダ43は、高周波回路1Cに含まれなくてもよい。この場合、高周波回路1Cは、例えば、RFIC3から同相信号を受けるために2つの入力端子111を備えてもよい。
ウィルキンソンカプラ44は、伝送線路TL441及びTL442と抵抗R441とを備える。伝送線路TL441は、第1伝送線路の一例であり、電力増幅器11の出力端と可変負荷整合回路23又は24との間に接続される。伝送線路TL442は、第2伝送線路の一例であり、電力増幅器12の出力端と可変負荷整合回路23又は24との間に接続される。抵抗R441は、電力増幅器11の出力端と電力増幅器12の出力端との間に伝送線路TL441及びTL442と並列に接続される。
この接続構成により、ウィルキンソンカプラ44は、電力増幅器11及び12でそれぞれ増幅された同相信号を1つの高周波信号に合成することができる。合成された高周波信号は、可変負荷整合回路23又は24、及び、フィルタ31を介して、アンテナ接続端子100に伝送される。
なお、伝送線路TL431、TL432、TL441及びTL442としては、1/4波長伝送線路を用いることができるが、これに限定されない。例えば、伝送線路TL431、TL432、TL441及びTL442としてLC回路が用いられてもよい。
[4.2 効果など]
以上のように、本実施の形態に係る高周波回路1Cは、第1パワークラス及び第1パワークラスよりも最大出力電力が低い第2パワークラスに対応するよう構成された高周波回路1Cであって、電力増幅器11と、電力増幅器11の出力端に接続される可変負荷整合回路23又は24と、を備え、第1パワークラスが適用される状況において、電源電圧Vcc1が電力増幅器11に供給され、かつ、可変負荷整合回路23又は24によって電力増幅器11からみた負荷インピーダンスが第1インピーダンスに調整され、第2パワークラスが適用される状況において、電源電圧Vcc2が電力増幅器11に供給され、かつ、可変負荷整合回路23又は24によって電力増幅器11からみた負荷インピーダンスが第2インピーダンスに調整され、電源電圧Vcc1は、電源電圧Vcc2よりも高く、第1インピーダンスは、第2インピーダンスよりも低い。
以上のように、本実施の形態に係る高周波回路1Cは、第1パワークラス及び第1パワークラスよりも最大出力電力が低い第2パワークラスに対応するよう構成された高周波回路1Cであって、電力増幅器11と、電力増幅器11の出力端に接続される可変負荷整合回路23又は24と、を備え、第1パワークラスが適用される状況において、電源電圧Vcc1が電力増幅器11に供給され、かつ、可変負荷整合回路23又は24によって電力増幅器11からみた負荷インピーダンスが第1インピーダンスに調整され、第2パワークラスが適用される状況において、電源電圧Vcc2が電力増幅器11に供給され、かつ、可変負荷整合回路23又は24によって電力増幅器11からみた負荷インピーダンスが第2インピーダンスに調整され、電源電圧Vcc1は、電源電圧Vcc2よりも高く、第1インピーダンスは、第2インピーダンスよりも低い。
これによれば、第1パワークラス及び第2パワークラスに応じて、電源電圧及び負荷インピーダンスの両方が調整されるので、電力増幅器11で第1パワークラス及び第2パワークラスの両方に対応することができる。特に、第1パワークラスの最大出力電力と第2パワークラスの最大出力電力との差が大きい場合に電源電圧が固定されれば、負荷インピーダンスの調整範囲が広がり、低負荷インピーダンス時にスイッチ損失が増大する。したがって、電源電圧及び負荷インピーダンスの両方を調整することで、負荷インピーダンスの調整範囲が広がることを抑制し、スイッチ損失を抑制することができる。また、第1パワークラスの最大出力電力と第2パワークラスの最大出力電力との差が大きい場合に負荷インピーダンスが固定されれば、より高い電源電圧が必要となり、電力増幅器11により高い耐電圧性が要求される。したがって、電源電圧及び負荷インピーダンスの両方を調整することで、電力増幅器11の耐電圧性に対する要求を抑制することができる。
また例えば、本実施の形態に係る高周波回路1Cにおいて、電力増幅器11は、さらに、第1パワークラスよりも最大出力電力が低く、かつ、第2パワークラスよりも最大出力電力が高い第3パワークラスに対応するよう構成されてもよく、第3パワークラスが適用される状況において、電源電圧Vcc2が電力増幅器11に供給され、かつ、可変負荷整合回路23又は24によって電力増幅器11からみた負荷インピーダンスが第1インピーダンスに調整されてもよい。
これによれば、第1パワークラスと第2パワークラスとの間の第3パワークラスでは、第2パワークラスと同じ電源電圧が供給され、第1パワークラスと同じ負荷インピーダンスに調整される。したがって、第3パワークラスにおける電源電圧の増加を抑制して、電力効率を向上させることができる。
また例えば、本実施の形態に係る高周波回路1Cにおいて、可変負荷整合回路23は、電力増幅器11とアンテナ接続端子100との間に直列に接続されるキャパシタC213、及び、スイッチSW211及び/又はSW212と、電力増幅器11とアンテナ接続端子100との間に、キャパシタC213、及び、スイッチSW211及び/又はSW212と並列に接続され、かつ、互いに直列に接続されるキャパシタC214、及び、スイッチSW213及び/又はSW214と、を含んでもよく、キャパシタC213の静電容量は、キャパシタC214の静電容量よりも大きく、第1パワークラスが適用される状況において、スイッチSW211及び/又はSW212は閉じられ、かつ、スイッチSW213及び/又はSW214は開かれてもよく、第2パワークラスが適用される状況において、スイッチSW211及び/又はSW212は開かれ、かつ、スイッチSW213及び/又はSW214は閉じられてもよい。
これによれば、信号経路上のキャパシタC213及びC214を切り替えることで、電力増幅器11からみた負荷インピーダンスを第1インピーダンス及び第2インピーダンスに調整することができる。
また例えば、本実施の形態に係る高周波回路1Cにおいて、可変負荷整合回路24は、電力増幅器11とアンテナ接続端子100との間に接続されるインダクタL222と、電力増幅器11とアンテナ接続端子100との間に、インダクタL222と並列に接続され、かつ、互いに直列に接続されるインダクタL223及びスイッチSW221と、電力増幅器11及びアンテナ接続端子100の間の経路とグランドとの間に接続されるキャパシタC222と、電力増幅器11及びアンテナ接続端子100の間の経路とグランドとの間に、キャパシタC222と並列に接続され、かつ、互いに直列に接続されるキャパシタC223及びスイッチSW222と、を含んでもよく、第1パワークラスが適用される状況において、スイッチSW221は開かれ、スイッチSW222は閉じられてもよく、第2パワークラスが適用される状況において、スイッチSW221は閉じられ、スイッチSW222は開かれてもよい。
これによれば、第2パワークラスにおいて、信号経路上のインダクタL222にインダクタL223を並列に接続し、信号経路及びグランドの間にキャパシタC223を接続することで、電力増幅器11からみた負荷インピーダンスを第2インピーダンスに調整することができる。特に、第1パワークラスでは、信号経路上のスイッチSW221が閉じられないので、スイッチSW221による信号損失を抑制することができる。
また例えば、本実施の形態に係る高周波回路1Cは、さらに、電力増幅器12と、電力増幅器11の出力端及び可変負荷整合回路23又は24の間に接続される伝送線路TL441と、電力増幅器12の出力端及び可変負荷整合回路23又は24の間に接続される伝送線路TL442と、電力増幅器11の出力端及び電力増幅器12の出力端の間に伝送線路TL441及びTL442と並列に接続される抵抗R441と、を備えてもよく、第1パワークラスが適用される状況において、電力増幅器11及び12に電源電圧Vcc1が供給され、かつ、可変負荷整合回路23又は24によって電力増幅器11及び12からみた負荷インピーダンスが第1インピーダンスに調整されてもよく、第2パワークラスが適用される状況において、電力増幅器11及び12に電源電圧Vcc2が供給され、かつ、可変負荷整合回路23又は24によって電力増幅器11及び12からみた負荷インピーダンスが第2インピーダンスに調整されてもよい。
これによれば、2つの電力増幅器11及び12を用いて高周波信号を増幅することができるので、第1パワークラスにおける電力増幅器11及び12の個々の最大出力電力に対する要求を低下させることができる。
(実施の形態5)
次に、実施の形態5について説明する。本実施の形態では、電力増幅回路としてウィルキンソン型の増幅回路が用いられ、第2パワークラスにおいて2つの電力増幅器の一方の動作が停止される点が上記実施の形態1及び4と主として異なる。以下に、上記実施の形態1及び4と異なる点を中心に本実施の形態について図面を参照しながら説明する。
次に、実施の形態5について説明する。本実施の形態では、電力増幅回路としてウィルキンソン型の増幅回路が用いられ、第2パワークラスにおいて2つの電力増幅器の一方の動作が停止される点が上記実施の形態1及び4と主として異なる。以下に、上記実施の形態1及び4と異なる点を中心に本実施の形態について図面を参照しながら説明する。
本実施の形態に係る通信装置6D及び高周波回路1Dの回路構成について、図10を参照しながら説明する。図10は、本実施の形態に係る通信装置6Dの回路構成図である。
なお、図10は、例示的な回路構成であり、通信装置6D及び高周波回路1Dは、多種多様な回路実装及び回路技術のいずれかを使用して実装され得る。したがって、以下に提供される通信装置6D及び高周波回路1Dの説明は、限定的に解釈されるべきではない。
また、通信装置6Dは、高周波回路1の代わりに高周波回路1Dを備える点を除いて、通信装置6と同様であるので説明を省略する。
[5.1 高周波回路1Dの回路構成]
本実施の形態に係る高周波回路1Dについて図10を参照しながら説明する。高周波回路1Dは、電力増幅器11及び12と、可変負荷整合回路23又は24と、フィルタ31と、ウィルキンソンデバイダ43と、ウィルキンソンカプラ44Dと、キャパシタC12と、スイッチSW11と、アンテナ接続端子100と、入力端子111と、電源電圧端子121と、を備える。高周波回路1Dは、実施の形態4の高周波回路1Cにおいて、ウィルキンソンカプラ44がウィルキンソンカプラ44Dに置き換えられ、キャパシタC12及びスイッチSW11が追加された回路に相当する。
本実施の形態に係る高周波回路1Dについて図10を参照しながら説明する。高周波回路1Dは、電力増幅器11及び12と、可変負荷整合回路23又は24と、フィルタ31と、ウィルキンソンデバイダ43と、ウィルキンソンカプラ44Dと、キャパシタC12と、スイッチSW11と、アンテナ接続端子100と、入力端子111と、電源電圧端子121と、を備える。高周波回路1Dは、実施の形態4の高周波回路1Cにおいて、ウィルキンソンカプラ44がウィルキンソンカプラ44Dに置き換えられ、キャパシタC12及びスイッチSW11が追加された回路に相当する。
ウィルキンソンカプラ44Dは、伝送線路TL441及びTL442と抵抗R441とに加えてスイッチSW441(第4スイッチの一例)を備える。スイッチSW441及び抵抗R441は、電力増幅器11の出力端と電力増幅器12の出力端との間に、伝送線路TL441及びTL442と並列に接続され、互いに直列に接続される。
キャパシタC12及びスイッチSW11は、それぞれ第3キャパシタ及び第3スイッチの一例であり、電力増幅器12及びウィルキンソンカプラ44Dの間の経路とグランドとの間に直列に接続される。ここでは、スイッチSW11は、キャパシタC12とグランドとの間に接続されているが、キャパシタC12が、スイッチSW11とグランドとの間に接続されてもよい。
このような回路構成において、電力増幅器12は、第2パワークラス及び第3パワークラスが適用される状況において、その動作が停止される。逆に、第1パワークラスが適用される状況では、電力増幅器12の動作は停止されない。例えば、第2パワークラス及び第3パワークラスでは、電力増幅器12へのバイアスの供給が停止され、スイッチSW11が閉じられ、スイッチSW441が開かれることにより、電力増幅器12の動作が停止され、電力増幅器11で増幅された高周波信号が可変負荷整合回路23又は24に伝送される。また、第1パワークラスでは、電力増幅器12にバイアスが供給され、スイッチSW11が開かれることにより、電力増幅器12の動作が始動/続行され、電力増幅器11及び12で増幅された高周波信号が合成され、可変負荷整合回路23又は24に伝送される。
[5.2 効果など]
以上のように、本実施の形態に係る高周波回路1Dは、第1パワークラス及び第1パワークラスよりも最大出力電力が低い第2パワークラスに対応するよう構成された高周波回路1Dであって、電力増幅器11と、電力増幅器11の出力端に接続される可変負荷整合回路23又は24と、を備え、第1パワークラスが適用される状況において、電源電圧Vcc1が電力増幅器11に供給され、かつ、可変負荷整合回路23又は24によって電力増幅器11からみた負荷インピーダンスが第1インピーダンスに調整され、第2パワークラスが適用される状況において、電源電圧Vcc2が電力増幅器11に供給され、かつ、可変負荷整合回路23又は24によって電力増幅器11からみた負荷インピーダンスが第2インピーダンスに調整され、電源電圧Vcc1は、電源電圧Vcc2よりも高く、第1インピーダンスは、第2インピーダンスよりも低い。
以上のように、本実施の形態に係る高周波回路1Dは、第1パワークラス及び第1パワークラスよりも最大出力電力が低い第2パワークラスに対応するよう構成された高周波回路1Dであって、電力増幅器11と、電力増幅器11の出力端に接続される可変負荷整合回路23又は24と、を備え、第1パワークラスが適用される状況において、電源電圧Vcc1が電力増幅器11に供給され、かつ、可変負荷整合回路23又は24によって電力増幅器11からみた負荷インピーダンスが第1インピーダンスに調整され、第2パワークラスが適用される状況において、電源電圧Vcc2が電力増幅器11に供給され、かつ、可変負荷整合回路23又は24によって電力増幅器11からみた負荷インピーダンスが第2インピーダンスに調整され、電源電圧Vcc1は、電源電圧Vcc2よりも高く、第1インピーダンスは、第2インピーダンスよりも低い。
これによれば、第1パワークラス及び第2パワークラスに応じて、電源電圧及び負荷インピーダンスの両方が調整されるので、電力増幅器11で第1パワークラス及び第2パワークラスの両方に対応することができる。特に、第1パワークラスの最大出力電力と第2パワークラスの最大出力電力との差が大きい場合に電源電圧が固定されれば、負荷インピーダンスの調整範囲が広がり、低負荷インピーダンス時にスイッチ損失が増大する。したがって、電源電圧及び負荷インピーダンスの両方を調整することで、負荷インピーダンスの調整範囲が広がることを抑制し、スイッチ損失を抑制することができる。また、第1パワークラスの最大出力電力と第2パワークラスの最大出力電力との差が大きい場合に負荷インピーダンスが固定されれば、より高い電源電圧が必要となり、電力増幅器11により高い耐電圧性が要求される。したがって、電源電圧及び負荷インピーダンスの両方を調整することで、電力増幅器11の耐電圧性に対する要求を抑制することができる。
また例えば、本実施の形態に係る高周波回路1Dにおいて、電力増幅器11は、さらに、第1パワークラスよりも最大出力電力が低く、かつ、第2パワークラスよりも最大出力電力が高い第3パワークラスに対応するよう構成されてもよく、第3パワークラスが適用される状況において、電源電圧Vcc2が電力増幅器11に供給され、かつ、可変負荷整合回路23又は24によって電力増幅器11からみた負荷インピーダンスが第1インピーダンスに調整されてもよい。
これによれば、第1パワークラスと第2パワークラスとの間の第3パワークラスでは、第2パワークラスと同じ電源電圧が供給され、第1パワークラスと同じ負荷インピーダンスに調整される。したがって、第3パワークラスにおける電源電圧の増加を抑制して、電力効率を向上させることができる。
また例えば、本実施の形態に係る高周波回路1Dにおいて、可変負荷整合回路23は、電力増幅器11とアンテナ接続端子100との間に直列に接続されるキャパシタC213、及び、スイッチSW211及び/又はSW212と、電力増幅器11とアンテナ接続端子100との間に、キャパシタC213、及び、スイッチSW211及び/又はSW212と並列に接続され、かつ、互いに直列に接続されるキャパシタC214、及び、スイッチSW213及び/又はSW214と、を含んでもよく、キャパシタC213の静電容量は、キャパシタC214の静電容量よりも大きく、第1パワークラスが適用される状況において、スイッチSW211及び/又はSW212は閉じられ、かつ、スイッチSW213及び/又はSW214は開かれてもよく、第2パワークラスが適用される状況において、スイッチSW211及び/又はSW212は開かれ、かつ、スイッチSW213及び/又はSW214は閉じられてもよい。
これによれば、信号経路上のキャパシタC213及びC214を切り替えることで、電力増幅器11からみた負荷インピーダンスを第1インピーダンス及び第2インピーダンスに調整することができる。
また例えば、本実施の形態に係る高周波回路1Dにおいて、可変負荷整合回路24は、電力増幅器11とアンテナ接続端子100との間に接続されるインダクタL222と、電力増幅器11とアンテナ接続端子100との間に、インダクタL222と並列に接続され、かつ、互いに直列に接続されるインダクタL223及びスイッチSW221と、電力増幅器11及びアンテナ接続端子100の間の経路とグランドとの間に接続されるキャパシタC222と、電力増幅器11及びアンテナ接続端子100の間の経路とグランドとの間に、キャパシタC222と並列に接続され、かつ、互いに直列に接続されるキャパシタC223及びスイッチSW222と、を含んでもよく、第1パワークラスが適用される状況において、スイッチSW221は開かれ、スイッチSW222は閉じられてもよく、第2パワークラスが適用される状況において、スイッチSW221は閉じられ、スイッチSW222は開かれてもよい。
これによれば、第2パワークラスにおいて、信号経路上のインダクタL222にインダクタL223を並列に接続し、信号経路及びグランドの間にキャパシタC223を接続することで、電力増幅器11からみた負荷インピーダンスを第2インピーダンスに調整することができる。特に、第1パワークラスでは、信号経路上のスイッチSW221が閉じられないので、スイッチSW221による信号損失を抑制することができる。
また例えば、本実施の形態に係る高周波回路1Dは、さらに、電力増幅器12と、電力増幅器11の出力端及び可変負荷整合回路23又は24の間に接続される伝送線路TL441と、電力増幅器12の出力端及び可変負荷整合回路23又は24の間に接続される伝送線路TL442と、電力増幅器11の出力端及び電力増幅器12の出力端の間に伝送線路TL441及びTL442と並列に接続される抵抗R441と、を備えてもよく、第1パワークラスが適用される状況において、電力増幅器11及び12に電源電圧Vcc1が供給され、かつ、可変負荷整合回路23又は24によって電力増幅器11及び12からみた負荷インピーダンスが第1インピーダンスに調整されてもよく、第2パワークラスが適用される状況において、電力増幅器11に電源電圧Vcc2が供給され、かつ、可変負荷整合回路23又は24によって電力増幅器11からみた負荷インピーダンスが第2インピーダンスに調整され、かつ、電力増幅器12の動作が停止されてもよい。
これによれば、2つの電力増幅器11及び12を用いて高周波信号を増幅することができるので、第1パワークラスにおける電力増幅器11及び12の個々の最大出力電力に対する要求を低下させることができる。さらに、最大出力電力が低い第2パワークラスでは、電力増幅器12の動作を停止させることができるので、第2パワークラスにおける電力効率の低下を抑制することができる。
また例えば、本実施の形態に係る高周波回路1Dは、さらに、電力増幅器12及び第2伝送線路の間の経路とグランドとの間に直列に接続されるキャパシタC12及びスイッチSW11と、電力増幅器11の出力端及び電力増幅器12の出力端の間に抵抗R441と直列に接続されるスイッチSW441と、を備えてもよく、第1パワークラスが適用される状況において、スイッチSW11は開かれ、かつ、スイッチSW441は閉じられてもよく、第2パワークラスが適用される状況において、スイッチSW11は閉じられ、かつ、スイッチSW441は開かれてもよい。
これによれば、2つの電力増幅器11及び12を用いて高周波信号を増幅することができるので、第1パワークラスにおける電力増幅器11及び12の個々の最大出力電力に対する要求を低下させることができる。さらに、最大出力電力が低い第2パワークラスでは、電力増幅器12の動作を停止させることができるので、第2パワークラスにおける電力効率の低下を抑制することができる。
以上の実施の形態1~5において利用可能なフィルタ31の通過帯域又は対応バンドとパワークラスとの組み合わせの具体例を以下の表1に示す。
(実施の形態6)
次に、実施の形態6について説明する。本実施の形態では、入力インピーダンスが異なる2つのフィルタを可変負荷整合回路の代わりに用いて電力増幅器からみた負荷インピーダンスが調整される点が、上記実施の形態1と主として異なる。以下に、上記実施の形態1と異なる点を中心に本実施の形態について図面を参照しながら説明する。
次に、実施の形態6について説明する。本実施の形態では、入力インピーダンスが異なる2つのフィルタを可変負荷整合回路の代わりに用いて電力増幅器からみた負荷インピーダンスが調整される点が、上記実施の形態1と主として異なる。以下に、上記実施の形態1と異なる点を中心に本実施の形態について図面を参照しながら説明する。
本実施の形態に係る通信装置6E及び高周波回路1Eの回路構成について、図11を参照しながら説明する。図11は、本実施の形態に係る通信装置6Eの回路構成図である。
なお、図11は、例示的な回路構成であり、通信装置6E及び高周波回路1Eは、多種多様な回路実装及び回路技術のいずれかを使用して実装され得る。したがって、以下に提供される通信装置6E及び高周波回路1Eの説明は、限定的に解釈されるべきではない。
[6.1 通信装置6Eの回路構成]
本実施の形態に係る通信装置6Eについて図11を参照しながら説明する。通信装置6Eは、高周波回路1Eと、アンテナ2a及び2bと、RFIC(Radio Frequency Integrated Circuit)3と、BBIC(Baseband Integrated Circuit)4と、電源回路5と、を備える。
本実施の形態に係る通信装置6Eについて図11を参照しながら説明する。通信装置6Eは、高周波回路1Eと、アンテナ2a及び2bと、RFIC(Radio Frequency Integrated Circuit)3と、BBIC(Baseband Integrated Circuit)4と、電源回路5と、を備える。
高周波回路1Eは、アンテナ2とRFIC3との間で高周波信号を伝送する。高周波回路1Eの回路構成については後述する。
アンテナ2a及び2bは、高周波回路1Eのアンテナ接続端子100a及び100bにそれぞれ接続される。アンテナ2a及び2bの各々は、高周波回路1Eから高周波信号を受信して通信装置6Eの外部に出力する。また、アンテナ2a及び2bは、通信装置6Eの外部から高周波信号を受信して高周波回路1Eへ出力してもよい。なお、アンテナ2a及び2bの少なくとも一方は、通信装置6Eに含まれなくてもよい。また、通信装置6Eは、アンテナ2a及び2bに加えて、さらに1以上のアンテナを備えてもよい。
[6.2 高周波回路1Eの回路構成]
次に、本実施の形態に係る高周波回路1Eについて図11を参照しながら説明する。高周波回路1Eは、電力増幅器11と、フィルタ32及び33と、スイッチ回路51及び52と、アンテナ接続端子100a及び100bと、入力端子111と、電源電圧端子121と、を備える。
次に、本実施の形態に係る高周波回路1Eについて図11を参照しながら説明する。高周波回路1Eは、電力増幅器11と、フィルタ32及び33と、スイッチ回路51及び52と、アンテナ接続端子100a及び100bと、入力端子111と、電源電圧端子121と、を備える。
アンテナ接続端子100a及び100bの各々は、高周波回路1Eの外部接続端子であり、高周波回路1Eの外部に送信信号を供給するための端子である。アンテナ接続端子100a及び100bは、高周波回路1Eの外部でアンテナ2a及び2bにそれぞれ接続され、高周波回路1Eの内部でスイッチ回路52を介してフィルタ32及び33に接続される。なお、アンテナ接続端子100a及び100bの一方は、高周波回路1Eに含まれなくてもよい。
電力増幅器11は、第1電力増幅器の一例である。電力増幅器11の入力端は、入力端子111に接続される。電力増幅器11の出力端は、スイッチ回路51を介してフィルタ32及び33に選択的に接続される。さらに、電力増幅器11は、電源電圧端子121に接続される。
実施の形態1と同様に、電力増幅器11は、電源回路5から電源電圧端子121を介して供給される電源電圧Vcc1及びVcc2を用いて、RFIC3から入力端子111を介して供給される高周波信号を増幅することができる。また、電力増幅器11は、第1パワークラス、第2パワークラス及び第3パワークラスに対応することができる。第1パワークラスが適用される状況において、電力増幅器11に電源電圧Vcc1が供給され、第2パワークラス及び第3パワークラスが適用される状況において、電力増幅器11に電源電圧Vcc2が供給される。なお、電力増幅器11は、第3パワークラスに対応できなくてもよい。
フィルタ32は、第1フィルタの一例であり、アンテナ接続端子100a及び100bと電力増幅器11との間に接続される。具体的には、フィルタ32の一端は、スイッチ回路51を介して電力増幅器11に接続され、フィルタ32の他端はスイッチ回路52を介してアンテナ接続端子100a又は100bに接続される。フィルタ32は、所定バンドに対応しており、所定バンドを含む通過帯域を有するバンドパスフィルタである。フィルタ32は、第1パワークラスに対応可能な耐電力性を有する。フィルタ32としては、SAWフィルタ、BAWフィルタ、LC共振フィルタ、もしくは誘電体共振フィルタ、又は、これらの任意の組み合わせが用いられてもよく、さらには、これらには限定されない。
フィルタ33は、第2フィルタの一例であり、アンテナ接続端子100a及び100bと電力増幅器11との間に接続される。具体的には、フィルタ33の一端は、スイッチ回路51を介して電力増幅器11に接続され、フィルタ33の他端はスイッチ回路52を介してアンテナ接続端子100a又は100bに接続される。フィルタ33は、所定バンドを含む通過帯域を有するバンドパスフィルタであり、第2パワークラスに対応可能な耐電力性を有する。フィルタ33としては、SAWフィルタ、BAWフィルタ、LC共振フィルタ、もしくは誘電体共振フィルタ、又は、これらの任意の組み合わせが用いられてもよく、さらには、これらには限定されない。
フィルタ32及び33は、互いに異なる入力インピーダンスを有する。具体的には、フィルタ32の入力インピーダンスは、フィルタ33の入力インピーダンスよりも低い。これにより、電力増幅器11にフィルタ32が接続されたときに電力増幅器11からみた負荷インピーダンスがより低い第1インピーダンスに調整され、電力増幅器11にフィルタ33が接続されたときに電力増幅器11からみた負荷インピーダンスがより高い第2インピーダンスに調整される。
なお、フィルタ32及び33の入力インピーダンスは、ネットワークアナライザを用いて所定バンドの中心周波数におけるインピーダンスを測定することで特定することができる。
スイッチ回路51は、電力増幅器11とフィルタ32及び33との間に接続される。具体的には、スイッチ回路51は、端子511~513を含む。端子511は、第1端子の一例であり、電力増幅器11の出力端に接続される。端子512は、第2端子の一例であり、フィルタ32に接続される。端子513は、第3端子の一例であり、フィルタ33に接続される。
この接続構成において、スイッチ回路51は、例えばRFIC3からの制御信号に基づいて、端子511を端子512及び513に排他的に接続することができる。つまり、スイッチ回路51は、電力増幅器11をフィルタ32及び33に選択的に接続することができる。より具体的には、スイッチ回路51は、第1パワークラス及び第3パワークラスが適用される状況において電力増幅器11をフィルタ32に接続することができ、第2パワークラスが適用される状況において電力増幅器11をフィルタ33に接続することができる。スイッチ回路51は、例えばSPDT(Single-Pole Double-Throw)型のスイッチ回路で構成される。
スイッチ回路52は、フィルタ32及び33とアンテナ接続端子100a及び100bとの間に接続される。具体的には、スイッチ回路52は、端子521~524を含む。端子521は、アンテナ接続端子100aに接続される。端子522は、アンテナ接続端子100bに接続される。端子523は、フィルタ32に接続される。端子524は、フィルタ33に接続される。
この接続構成において、スイッチ回路52は、例えばRFIC3からの制御信号に基づいて、端子521を端子523及び524に排他的に接続することができ、端子522を端子523及び524に排他的に接続することができる。スイッチ回路52は、例えばDPDT(Double-Pole Double-Throw)型のスイッチ回路で構成される。
なお、スイッチ回路52は、高周波回路1Eに含まれなくてもよい。この場合、フィルタ32及び33は、アンテナ接続端子100a及び100bにそれぞれ固定的に接続されてもよい。
[6.3 効果など]
以上のように、本実施の形態に係る高周波回路1Eは、第1パワークラス及び第1パワークラスよりも最大出力電力が低い第2パワークラスに対応するよう構成された高周波回路1Eであって、電力増幅器11と、フィルタ32と、フィルタ33と、電力増幅器11の出力端に接続される端子511、フィルタ32に接続される端子512及びフィルタ33に接続される端子513を含むスイッチ回路51と、を備え、第1パワークラスが適用される状況において、電源電圧Vcc1が電力増幅器11に供給され、かつ、スイッチ回路51によってフィルタ32が電力増幅器11に接続され、第2パワークラスが適用される状況において、電源電圧Vcc2が電力増幅器11に供給され、かつ、スイッチ回路51によってフィルタ33が電力増幅器11に接続され、電源電圧Vcc1は、電源電圧Vcc2よりも高く、フィルタ32の入力インピーダンスは、フィルタ33の入力インピーダンスよりも低い。
以上のように、本実施の形態に係る高周波回路1Eは、第1パワークラス及び第1パワークラスよりも最大出力電力が低い第2パワークラスに対応するよう構成された高周波回路1Eであって、電力増幅器11と、フィルタ32と、フィルタ33と、電力増幅器11の出力端に接続される端子511、フィルタ32に接続される端子512及びフィルタ33に接続される端子513を含むスイッチ回路51と、を備え、第1パワークラスが適用される状況において、電源電圧Vcc1が電力増幅器11に供給され、かつ、スイッチ回路51によってフィルタ32が電力増幅器11に接続され、第2パワークラスが適用される状況において、電源電圧Vcc2が電力増幅器11に供給され、かつ、スイッチ回路51によってフィルタ33が電力増幅器11に接続され、電源電圧Vcc1は、電源電圧Vcc2よりも高く、フィルタ32の入力インピーダンスは、フィルタ33の入力インピーダンスよりも低い。
これによれば、第1パワークラス及び第2パワークラスに応じて、電力増幅器12の接続を入力インピーダンスが異なるフィルタ32及び33の間で切り替えられるので、電力増幅器11からみた負荷インピーダンスを切り替えることができる。したがって、第1パワークラス及び第2パワークラスに応じて、電源電圧及び負荷インピーダンスの両方が調整されるので、電力増幅器11で第1パワークラス及び第2パワークラスの両方に対応することができる。特に、第1パワークラスの最大出力電力と第2パワークラスの最大出力電力との差が大きい場合に電源電圧が固定されれば、負荷インピーダンスの調整範囲が広がり、低負荷インピーダンス時にスイッチ損失が増大する。したがって、電源電圧及び負荷インピーダンスの両方を調整することで、負荷インピーダンスの調整範囲が広がることを抑制し、スイッチ損失を抑制することができる。また、第1パワークラスの最大出力電力と第2パワークラスの最大出力電力との差が大きい場合に負荷インピーダンスが固定されれば、より高い電源電圧が必要となり、電力増幅器11により高い耐電圧性が要求される。したがって、電源電圧及び負荷インピーダンスの両方を調整することで、電力増幅器11の耐電圧性に対する要求を抑制することができる。
また例えば、本実施の形態に係る高周波回路1Eにおいて、電力増幅器11は、さらに、第1パワークラスよりも最大出力電力が低く、かつ、第2パワークラスよりも最大出力電力が高い第3パワークラスに対応するよう構成されてもよく、第3パワークラスが適用される状況において、電源電圧Vcc2が電力増幅器11に供給され、かつ、スイッチ回路51によってフィルタ32が電力増幅器11に接続されてもよい。
これによれば、第1パワークラスと第2パワークラスとの間の第3パワークラスでは、第2パワークラスと同じ電源電圧が供給され、第1パワークラスと同じフィルタ32が電力増幅器11に接続される。したがって、第3パワークラスにおける電源電圧の増加を抑制して、電力効率を向上させることができる。
(実施の形態7)
次に、実施の形態7について説明する。本実施の形態では、電力増幅回路として差動増幅型の増幅回路が用いられる点が上記実施の形態6と主として異なる。以下に、上記実施の形態6と異なる点を中心に本実施の形態について図面を参照しながら説明する。
次に、実施の形態7について説明する。本実施の形態では、電力増幅回路として差動増幅型の増幅回路が用いられる点が上記実施の形態6と主として異なる。以下に、上記実施の形態6と異なる点を中心に本実施の形態について図面を参照しながら説明する。
本実施の形態に係る通信装置6F及び高周波回路1Fの回路構成について、図12を参照しながら説明する。図12は、本実施の形態に係る通信装置6Fの回路構成図である。
なお、図12は、例示的な回路構成であり、通信装置6F及び高周波回路1Fは、多種多様な回路実装及び回路技術のいずれかを使用して実装され得る。したがって、以下に提供される通信装置6F及び高周波回路1Fの説明は、限定的に解釈されるべきではない。
また、通信装置6Fは、高周波回路1Eの代わりに高周波回路1Fを備える点を除いて、通信装置6Eと同様であるので説明を省略する。
また、高周波回路1Fは、電力増幅器11及び12と、フィルタ32及び33と、トランスフォーマ41及び42と、スイッチ回路51及び52と、キャパシタC11と、アンテナ接続端子100a及び100bと、入力端子111と、電源電圧端子121と、を備える。なお、高周波回路1Fは、上記実施の形態2及び6の組み合わせに相当するので詳細な説明は省略する。
以上のように、本実施の形態に係る高周波回路1Fは、第1パワークラス及び第1パワークラスよりも最大出力電力が低い第2パワークラスに対応するよう構成された高周波回路1Fであって、電力増幅器11と、フィルタ32と、フィルタ33と、電力増幅器11の出力端に接続される端子511、フィルタ32に接続される端子512及びフィルタ33に接続される端子513を含むスイッチ回路51と、を備え、第1パワークラスが適用される状況において、電源電圧Vcc1が電力増幅器11に供給され、かつ、スイッチ回路51によってフィルタ32が電力増幅器11に接続され、第2パワークラスが適用される状況において、電源電圧Vcc2が電力増幅器11に供給され、かつ、スイッチ回路51によってフィルタ33が電力増幅器11に接続され、電源電圧Vcc1は、電源電圧Vcc2よりも高く、フィルタ32の入力インピーダンスは、フィルタ33の入力インピーダンスよりも低い。
これによれば、第1パワークラス及び第2パワークラスに応じて、電力増幅器12の接続を入力インピーダンスが異なるフィルタ32及び33の間で切り替えられるので、電力増幅器11からみた負荷インピーダンスを切り替えることができる。したがって、第1パワークラス及び第2パワークラスに応じて、電源電圧及び負荷インピーダンスの両方が調整されるので、電力増幅器11で第1パワークラス及び第2パワークラスの両方に対応することができる。特に、第1パワークラスの最大出力電力と第2パワークラスの最大出力電力との差が大きい場合に電源電圧が固定されれば、負荷インピーダンスの調整範囲が広がり、低負荷インピーダンス時にスイッチ損失が増大する。したがって、電源電圧及び負荷インピーダンスの両方を調整することで、負荷インピーダンスの調整範囲が広がることを抑制し、スイッチ損失を抑制することができる。また、第1パワークラスの最大出力電力と第2パワークラスの最大出力電力との差が大きい場合に負荷インピーダンスが固定されれば、より高い電源電圧が必要となり、電力増幅器11により高い耐電圧性が要求される。したがって、電源電圧及び負荷インピーダンスの両方を調整することで、電力増幅器11の耐電圧性に対する要求を抑制することができる。
また例えば、本実施の形態に係る高周波回路1Fにおいて、電力増幅器11は、さらに、第1パワークラスよりも最大出力電力が低く、かつ、第2パワークラスよりも最大出力電力が高い第3パワークラスに対応するよう構成されてもよく、第3パワークラスが適用される状況において、電源電圧Vcc2が電力増幅器11に供給され、かつ、スイッチ回路51によってフィルタ32が電力増幅器11に接続されてもよい。
これによれば、第1パワークラスと第2パワークラスとの間の第3パワークラスでは、第2パワークラスと同じ電源電圧が供給され、第1パワークラスと同じフィルタ32が電力増幅器11に接続される。したがって、第3パワークラスにおける電源電圧の増加を抑制して、電力効率を向上させることができる。
また例えば、本実施の形態に係る高周波回路1Fは、さらに、電力増幅器12と、電力増幅器11の出力端及び電力増幅器12の出力端に両端がそれぞれ接続される一次コイルL421とスイッチ回路51の端子511に一端が接続される二次コイルL422とを含むトランスフォーマ42と、を備えてもよく、第1パワークラスが適用される状況において、電源電圧Vcc1が電力増幅器11及び12に供給され、かつ、スイッチ回路51によってフィルタ32がトランスフォーマ42に接続されてもよく、第2パワークラスが適用される状況において、電源電圧Vcc2が電力増幅器11及び12に供給され、かつ、スイッチ回路51によってフィルタ33がトランスフォーマ42に接続されてもよい。
これによれば、2つの電力増幅器11及び12を用いて高周波信号を増幅することができるので、第1パワークラスにおける電力増幅器11及び12の個々の最大出力電力に対する要求を低下させることができる。
(実施の形態8)
次に、実施の形態8について説明する。本実施の形態では、電力増幅回路として差動増幅型の増幅回路が用いられ、第2パワークラスにおいて2つの電力増幅器の一方の動作が停止される点が上記実施の形態6及び7と主として異なる。以下に、上記実施の形態6及び7と異なる点を中心に本実施の形態について図面を参照しながら説明する。
次に、実施の形態8について説明する。本実施の形態では、電力増幅回路として差動増幅型の増幅回路が用いられ、第2パワークラスにおいて2つの電力増幅器の一方の動作が停止される点が上記実施の形態6及び7と主として異なる。以下に、上記実施の形態6及び7と異なる点を中心に本実施の形態について図面を参照しながら説明する。
本実施の形態に係る通信装置6G及び高周波回路1Gの回路構成について、図13を参照しながら説明する。図13は、本実施の形態に係る通信装置6Gの回路構成図である。
なお、図13は、例示的な回路構成であり、通信装置6G及び高周波回路1Gは、多種多様な回路実装及び回路技術のいずれかを使用して実装され得る。したがって、以下に提供される通信装置6G及び高周波回路1Gの説明は、限定的に解釈されるべきではない。
通信装置6Gは、高周波回路1Eの代わりに高周波回路1Gを備える点を除いて、通信装置6Eと同様であるので説明を省略する。
高周波回路1Gは、電力増幅器11及び12と、フィルタ32及び33と、トランスフォーマ41及び42と、スイッチ回路51及び52と、キャパシタC11及びC12と、スイッチSW11と、アンテナ接続端子100a及び100bと、入力端子111と、電源電圧端子121と、を備える。なお、高周波回路1Gは、上記実施の形態3及び6の組み合わせに相当するので詳細な説明は省略する。
以上のように、本実施の形態に係る高周波回路1Gは、第1パワークラス及び第1パワークラスよりも最大出力電力が低い第2パワークラスに対応するよう構成された高周波回路1Gであって、電力増幅器11と、フィルタ32と、フィルタ33と、電力増幅器11の出力端に接続される端子511、フィルタ32に接続される端子512及びフィルタ33に接続される端子513を含むスイッチ回路51と、を備え、第1パワークラスが適用される状況において、電源電圧Vcc1が電力増幅器11に供給され、かつ、スイッチ回路51によってフィルタ32が電力増幅器11に接続され、第2パワークラスが適用される状況において、電源電圧Vcc2が電力増幅器11に供給され、かつ、スイッチ回路51によってフィルタ33が電力増幅器11に接続され、電源電圧Vcc1は、電源電圧Vcc2よりも高く、フィルタ32の入力インピーダンスは、フィルタ33の入力インピーダンスよりも低い。
これによれば、第1パワークラス及び第2パワークラスに応じて、電力増幅器12の接続を入力インピーダンスが異なるフィルタ32及び33の間で切り替えられるので、電力増幅器11からみた負荷インピーダンスを切り替えることができる。したがって、第1パワークラス及び第2パワークラスに応じて、電源電圧及び負荷インピーダンスの両方が調整されるので、電力増幅器11で第1パワークラス及び第2パワークラスの両方に対応することができる。特に、第1パワークラスの最大出力電力と第2パワークラスの最大出力電力との差が大きい場合に電源電圧が固定されれば、負荷インピーダンスの調整範囲が広がり、低負荷インピーダンス時にスイッチ損失が増大する。したがって、電源電圧及び負荷インピーダンスの両方を調整することで、負荷インピーダンスの調整範囲が広がることを抑制し、スイッチ損失を抑制することができる。また、第1パワークラスの最大出力電力と第2パワークラスの最大出力電力との差が大きい場合に負荷インピーダンスが固定されれば、より高い電源電圧が必要となり、電力増幅器11により高い耐電圧性が要求される。したがって、電源電圧及び負荷インピーダンスの両方を調整することで、電力増幅器11の耐電圧性に対する要求を抑制することができる。
また例えば、本実施の形態に係る高周波回路1Gにおいて、電力増幅器11は、さらに、第1パワークラスよりも最大出力電力が低く、かつ、第2パワークラスよりも最大出力電力が高い第3パワークラスに対応するよう構成されてもよく、第3パワークラスが適用される状況において、電源電圧Vcc2が電力増幅器11に供給され、かつ、スイッチ回路51によってフィルタ32が電力増幅器11に接続されてもよい。
これによれば、第1パワークラスと第2パワークラスとの間の第3パワークラスでは、第2パワークラスと同じ電源電圧が供給され、第1パワークラスと同じフィルタ32が電力増幅器11に接続される。したがって、第3パワークラスにおける電源電圧の増加を抑制して、電力効率を向上させることができる。
また例えば、本実施の形態に係る高周波回路1Gは、さらに、電力増幅器12と、電力増幅器11の出力端及び電力増幅器12の出力端に両端がそれぞれ接続される一次コイルL421とスイッチ回路51の端子511に一端が接続される二次コイルL422とを含むトランスフォーマ42と、を備えてもよく、第1パワークラスが適用される状況において、電源電圧Vcc1が電力増幅器11及び12に供給され、かつ、スイッチ回路51によってフィルタ32がトランスフォーマ42に接続されてもよく、第2パワークラスが適用される状況において、電源電圧Vcc2が電力増幅器11に供給され、かつ、スイッチ回路51によってフィルタ33がトランスフォーマ42に接続され、かつ、電力増幅器12の動作が停止されてもよい。
これによれば、2つの電力増幅器11及び12を用いて高周波信号を増幅することができるので、第1パワークラスにおける電力増幅器11及び12の個々の最大出力電力に対する要求を低下させることができる。さらに、最大出力電力が低い第2パワークラスでは、電力増幅器12の動作を停止させることができるので、第2パワークラスにおける電力効率の低下を抑制することができる。
(実施の形態9)
次に、実施の形態9について説明する。本実施の形態では、電力増幅回路としてウィルキンソン型の増幅回路が用いられる点が上記実施の形態6と主として異なる。以下に、上記実施の形態6と異なる点を中心に本実施の形態について図面を参照しながら説明する。
次に、実施の形態9について説明する。本実施の形態では、電力増幅回路としてウィルキンソン型の増幅回路が用いられる点が上記実施の形態6と主として異なる。以下に、上記実施の形態6と異なる点を中心に本実施の形態について図面を参照しながら説明する。
本実施の形態に係る通信装置6H及び高周波回路1Hの回路構成について、図14を参照しながら説明する。図14は、本実施の形態に係る通信装置6Hの回路構成図である。
なお、図14は、例示的な回路構成であり、通信装置6H及び高周波回路1Hは、多種多様な回路実装及び回路技術のいずれかを使用して実装され得る。したがって、以下に提供される通信装置6H及び高周波回路1Hの説明は、限定的に解釈されるべきではない。
また、通信装置6Hは、高周波回路1Eの代わりに高周波回路1Hを備える点を除いて、通信装置6Eと同様であるので説明を省略する。
高周波回路1Hは、電力増幅器11及び12と、フィルタ32及び33と、ウィルキンソンデバイダ43と、ウィルキンソンカプラ44と、スイッチ回路51及び52と、アンテナ接続端子100a及び100bと、入力端子111と、電源電圧端子121と、を備える。なお、高周波回路1Hは、上記実施の形態4及び6の組み合わせに相当するので詳細な説明は省略する。
以上のように、本実施の形態に係る高周波回路1Hは、第1パワークラス及び第1パワークラスよりも最大出力電力が低い第2パワークラスに対応するよう構成された高周波回路1Hであって、電力増幅器11と、フィルタ32と、フィルタ33と、電力増幅器11の出力端に接続される端子511、フィルタ32に接続される端子512及びフィルタ33に接続される端子513を含むスイッチ回路51と、を備え、第1パワークラスが適用される状況において、電源電圧Vcc1が電力増幅器11に供給され、かつ、スイッチ回路51によってフィルタ32が電力増幅器11に接続され、第2パワークラスが適用される状況において、電源電圧Vcc2が電力増幅器11に供給され、かつ、スイッチ回路51によってフィルタ33が電力増幅器11に接続され、電源電圧Vcc1は、電源電圧Vcc2よりも高く、フィルタ32の入力インピーダンスは、フィルタ33の入力インピーダンスよりも低い。
これによれば、第1パワークラス及び第2パワークラスに応じて、電力増幅器12の接続を入力インピーダンスが異なるフィルタ32及び33の間で切り替えられるので、電力増幅器11からみた負荷インピーダンスを切り替えることができる。したがって、第1パワークラス及び第2パワークラスに応じて、電源電圧及び負荷インピーダンスの両方が調整されるので、電力増幅器11で第1パワークラス及び第2パワークラスの両方に対応することができる。特に、第1パワークラスの最大出力電力と第2パワークラスの最大出力電力との差が大きい場合に電源電圧が固定されれば、負荷インピーダンスの調整範囲が広がり、低負荷インピーダンス時にスイッチ損失が増大する。したがって、電源電圧及び負荷インピーダンスの両方を調整することで、負荷インピーダンスの調整範囲が広がることを抑制し、スイッチ損失を抑制することができる。また、第1パワークラスの最大出力電力と第2パワークラスの最大出力電力との差が大きい場合に負荷インピーダンスが固定されれば、より高い電源電圧が必要となり、電力増幅器11により高い耐電圧性が要求される。したがって、電源電圧及び負荷インピーダンスの両方を調整することで、電力増幅器11の耐電圧性に対する要求を抑制することができる。
また例えば、本実施の形態に係る高周波回路1Hにおいて、電力増幅器11は、さらに、第1パワークラスよりも最大出力電力が低く、かつ、第2パワークラスよりも最大出力電力が高い第3パワークラスに対応するよう構成されてもよく、第3パワークラスが適用される状況において、電源電圧Vcc2が電力増幅器11に供給され、かつ、スイッチ回路51によってフィルタ32が電力増幅器11に接続されてもよい。
これによれば、第1パワークラスと第2パワークラスとの間の第3パワークラスでは、第2パワークラスと同じ電源電圧が供給され、第1パワークラスと同じフィルタ32が電力増幅器11に接続される。したがって、第3パワークラスにおける電源電圧の増加を抑制して、電力効率を向上させることができる。
また例えば、本実施の形態に係る高周波回路1Hは、さらに、電力増幅器12と、電力増幅器11の出力端及びスイッチ回路51の端子511の間に接続される伝送線路TL441と、電力増幅器12の出力端及びスイッチ回路51の端子511の間に接続される伝送線路TL442と、電力増幅器11の出力端及び電力増幅器12の出力端との間に伝送線路TL441及びTL442と並列に接続される抵抗R441と、を備えてもよく、第1パワークラスが適用される状況において、電力増幅器11及び12に電源電圧Vcc1が供給され、かつ、スイッチ回路51によってフィルタ32が電力増幅器11及び12に接続されてもよく、第2パワークラスが適用される状況において、電力増幅器11及び12に電源電圧Vcc2が供給され、かつ、スイッチ回路51によってフィルタ33が電力増幅器11及び12に接続されてもよい。
これによれば、2つの電力増幅器11及び12を用いて高周波信号を増幅することができるので、第1パワークラスにおける電力増幅器11及び12の個々の最大出力電力に対する要求を低下させることができる。
(実施の形態10)
次に、実施の形態10について説明する。本実施の形態では、電力増幅回路としてウィルキンソン型の増幅回路が用いられ、第2パワークラスにおいて2つの電力増幅器の一方の動作が停止される点が上記実施の形態6及び9と主として異なる。以下に、上記実施の形態6及び9と異なる点を中心に本実施の形態について図面を参照しながら説明する。
次に、実施の形態10について説明する。本実施の形態では、電力増幅回路としてウィルキンソン型の増幅回路が用いられ、第2パワークラスにおいて2つの電力増幅器の一方の動作が停止される点が上記実施の形態6及び9と主として異なる。以下に、上記実施の形態6及び9と異なる点を中心に本実施の形態について図面を参照しながら説明する。
本実施の形態に係る通信装置6I及び高周波回路1Iの回路構成について、図15を参照しながら説明する。図15は、本実施の形態に係る通信装置6Iの回路構成図である。
なお、図15は、例示的な回路構成であり、通信装置6I及び高周波回路1Iは、多種多様な回路実装及び回路技術のいずれかを使用して実装され得る。したがって、以下に提供される通信装置6I及び高周波回路1Iの説明は、限定的に解釈されるべきではない。
通信装置6Iは、高周波回路1Eの代わりに高周波回路1Iを備える点を除いて、通信装置6Eと同様であるので説明を省略する。
高周波回路1Iは、電力増幅器11及び12と、フィルタ32及び33と、ウィルキンソンデバイダ43と、ウィルキンソンカプラ44Dと、スイッチ回路51及び52と、キャパシタC12と、スイッチSW11と、アンテナ接続端子100a及び100bと、入力端子111と、電源電圧端子121と、を備える。なお、高周波回路1Iは、上記実施の形態5及び6の組み合わせに相当するので詳細な説明は省略する。
以上のように、本実施の形態に係る高周波回路1Iは、第1パワークラス及び第1パワークラスよりも最大出力電力が低い第2パワークラスに対応するよう構成された高周波回路1Iであって、電力増幅器11と、フィルタ32と、フィルタ33と、電力増幅器11の出力端に接続される端子511、フィルタ32に接続される端子512及びフィルタ33に接続される端子513を含むスイッチ回路51と、を備え、第1パワークラスが適用される状況において、電源電圧Vcc1が電力増幅器11に供給され、かつ、スイッチ回路51によってフィルタ32が電力増幅器11に接続され、第2パワークラスが適用される状況において、電源電圧Vcc2が電力増幅器11に供給され、かつ、スイッチ回路51によってフィルタ33が電力増幅器11に接続され、電源電圧Vcc1は、電源電圧Vcc2よりも高く、フィルタ32の入力インピーダンスは、フィルタ33の入力インピーダンスよりも低い。
これによれば、第1パワークラス及び第2パワークラスに応じて、電力増幅器12の接続を入力インピーダンスが異なるフィルタ32及び33の間で切り替えられるので、電力増幅器11からみた負荷インピーダンスを切り替えることができる。したがって、第1パワークラス及び第2パワークラスに応じて、電源電圧及び負荷インピーダンスの両方が調整されるので、電力増幅器11で第1パワークラス及び第2パワークラスの両方に対応することができる。特に、第1パワークラスの最大出力電力と第2パワークラスの最大出力電力との差が大きい場合に電源電圧が固定されれば、負荷インピーダンスの調整範囲が広がり、低負荷インピーダンス時にスイッチ損失が増大する。したがって、電源電圧及び負荷インピーダンスの両方を調整することで、負荷インピーダンスの調整範囲が広がることを抑制し、スイッチ損失を抑制することができる。また、第1パワークラスの最大出力電力と第2パワークラスの最大出力電力との差が大きい場合に負荷インピーダンスが固定されれば、より高い電源電圧が必要となり、電力増幅器11により高い耐電圧性が要求される。したがって、電源電圧及び負荷インピーダンスの両方を調整することで、電力増幅器11の耐電圧性に対する要求を抑制することができる。
また例えば、本実施の形態に係る高周波回路1Iにおいて、電力増幅器11は、さらに、第1パワークラスよりも最大出力電力が低く、かつ、第2パワークラスよりも最大出力電力が高い第3パワークラスに対応するよう構成されてもよく、第3パワークラスが適用される状況において、電源電圧Vcc2が電力増幅器11に供給され、かつ、スイッチ回路51によってフィルタ32が電力増幅器11に接続されてもよい。
これによれば、第1パワークラスと第2パワークラスとの間の第3パワークラスでは、第2パワークラスと同じ電源電圧が供給され、第1パワークラスと同じフィルタ32が電力増幅器11に接続される。したがって、第3パワークラスにおける電源電圧の増加を抑制して、電力効率を向上させることができる。
また例えば、本実施の形態に係る高周波回路1Iは、さらに、電力増幅器12と、電力増幅器11の出力端及びスイッチ回路51の端子511の間に接続される伝送線路TL441と、電力増幅器12の出力端及びスイッチ回路51の端子511の間に接続される伝送線路TL442と、電力増幅器11の出力端及び電力増幅器12の出力端との間に伝送線路TL441及びTL442と並列に接続される抵抗R441と、を備えてもよく、第1パワークラスが適用される状況において、電力増幅器11及び12に電源電圧Vcc1が供給され、かつ、スイッチ回路51によってフィルタ32が電力増幅器11及び12に接続されてもよく、第2パワークラスが適用される状況において、電力増幅器11に電源電圧Vcc2が供給され、かつ、スイッチ回路51によってフィルタ33が電力増幅器11に接続され、かつ、電力増幅器12の動作が停止されてもよい。
これによれば、2つの電力増幅器11及び12を用いて高周波信号を増幅することができるので、第1パワークラスにおける電力増幅器11及び12の個々の最大出力電力に対する要求を低下させることができる。さらに、最大出力電力が低い第2パワークラスでは、電力増幅器12の動作を停止させることができるので、第2パワークラスにおける電力効率の低下を抑制することができる。
以上の実施の形態7~10において利用可能なフィルタ32及び33の通過帯域又は対応バンドとパワークラスとの組み合わせの具体例を以下の表2に示す。
(他の実施の形態)
以上、本発明に係る高周波回路について、実施の形態に基づいて説明したが、本発明に係る高周波回路は、上記実施の形態に限定されるものではない。上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、上記高周波回路を内蔵した各種機器も本発明に含まれる。
以上、本発明に係る高周波回路について、実施の形態に基づいて説明したが、本発明に係る高周波回路は、上記実施の形態に限定されるものではない。上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、上記高周波回路を内蔵した各種機器も本発明に含まれる。
例えば、上記各実施の形態に係る高周波回路の回路構成において、図面に開示された各回路素子及び信号経路を接続する経路の間に、別の回路素子及び配線などが挿入されてもよい。例えば、電源電圧端子と電力増幅器との間に、インダクタ及び/又はキャパシタが挿入されてもよい。
また、上記各実施の形態に係る通信装置は、複数の高周波回路を備えてもよい。その場合、複数の高周波回路は、1つの高周波回路にまとめられてもよい。このような高周波回路の一例について図16を参照しながら説明する。図16は、他の実施の形態に係る通信装置6Jの回路構成図である。通信装置6Jは、高周波回路1Jと、2つのアンテナ2と、RFIC3と、BBIC4と、電源回路5と、を備える。高周波回路1Jは、2つの電力増幅器11と、2つの可変負荷整合回路21又は22と、2つのフィルタ31と、2つのアンテナ接続端子100と、2つの入力端子111と、電源電圧端子121と、を備える。
以下に、上記各実施の形態に基づいて説明した高周波回路の特徴を示す。
<1>第1パワークラス及び前記第1パワークラスよりも最大出力電力が低い第2パワークラスに対応するよう構成された高周波回路であって、
第1電力増幅器と、
前記第1電力増幅器の出力端に接続される可変負荷整合回路と、を備え、
前記第1パワークラスが適用される状況において、第1電源電圧が前記第1電力増幅器に供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器からみた負荷インピーダンスが第1インピーダンスに調整され、
前記第2パワークラスが適用される状況において、第2電源電圧が前記第1電力増幅器に供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器からみた負荷インピーダンスが第2インピーダンスに調整され、
前記第1電源電圧は、前記第2電源電圧よりも高く、
前記第1インピーダンスは、前記第2インピーダンスよりも低い、
高周波回路。
第1電力増幅器と、
前記第1電力増幅器の出力端に接続される可変負荷整合回路と、を備え、
前記第1パワークラスが適用される状況において、第1電源電圧が前記第1電力増幅器に供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器からみた負荷インピーダンスが第1インピーダンスに調整され、
前記第2パワークラスが適用される状況において、第2電源電圧が前記第1電力増幅器に供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器からみた負荷インピーダンスが第2インピーダンスに調整され、
前記第1電源電圧は、前記第2電源電圧よりも高く、
前記第1インピーダンスは、前記第2インピーダンスよりも低い、
高周波回路。
<2>前記第1電力増幅器は、さらに、前記第1パワークラスよりも最大出力電力が低く、かつ、前記第2パワークラスよりも最大出力電力が高い第3パワークラスに対応するよう構成され、
前記第3パワークラスが適用される状況において、前記第2電源電圧が前記第1電力増幅器に供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器からみた負荷インピーダンスが前記第1インピーダンスに調整される、
<1>に記載の高周波回路。
前記第3パワークラスが適用される状況において、前記第2電源電圧が前記第1電力増幅器に供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器からみた負荷インピーダンスが前記第1インピーダンスに調整される、
<1>に記載の高周波回路。
<3>前記可変負荷整合回路は、
前記第1電力増幅器とアンテナ接続端子との間に直列に接続される第1キャパシタ及び第1スイッチと、
前記第1電力増幅器と前記アンテナ接続端子との間に、前記第1キャパシタ及び前記第1スイッチと並列に接続され、かつ、互いに直列に接続される第2キャパシタ及び第2スイッチと、を含み、
前記第1キャパシタの静電容量は、前記第2キャパシタの静電容量よりも大きく、
前記第1パワークラスが適用される状況において、前記第1スイッチは閉じられ、かつ、第2スイッチは開かれ、
前記第2パワークラスが適用される状況において、前記第1スイッチは開かれ、かつ、第2スイッチは閉じられる、
<1>又は<2>に記載の高周波回路。
前記第1電力増幅器とアンテナ接続端子との間に直列に接続される第1キャパシタ及び第1スイッチと、
前記第1電力増幅器と前記アンテナ接続端子との間に、前記第1キャパシタ及び前記第1スイッチと並列に接続され、かつ、互いに直列に接続される第2キャパシタ及び第2スイッチと、を含み、
前記第1キャパシタの静電容量は、前記第2キャパシタの静電容量よりも大きく、
前記第1パワークラスが適用される状況において、前記第1スイッチは閉じられ、かつ、第2スイッチは開かれ、
前記第2パワークラスが適用される状況において、前記第1スイッチは開かれ、かつ、第2スイッチは閉じられる、
<1>又は<2>に記載の高周波回路。
<4>前記可変負荷整合回路は、
前記第1電力増幅器とアンテナ接続端子との間に接続される第1インダクタと、
前記第1電力増幅器と前記アンテナ接続端子との間に、前記第1インダクタと並列に接続され、かつ、互いに直列に接続される第2インダクタ及び第1スイッチと、
前記第1電力増幅器及び前記アンテナ接続端子の間の経路とグランドとの間に接続される第1キャパシタと、
前記第1電力増幅器及び前記アンテナ接続端子の間の前記経路とグランドとの間に、前記第1キャパシタと並列に接続され、かつ、互いに直列に接続される第2キャパシタ及び第2スイッチと、を含み、
前記第1パワークラスが適用される状況において、前記第1スイッチは開かれ、前記第2スイッチは閉じられ、
前記第2パワークラスが適用される状況において、前記第1スイッチは閉じられ、前記第2スイッチは開かれる、
<1>又は<2>に記載の高周波回路。
前記第1電力増幅器とアンテナ接続端子との間に接続される第1インダクタと、
前記第1電力増幅器と前記アンテナ接続端子との間に、前記第1インダクタと並列に接続され、かつ、互いに直列に接続される第2インダクタ及び第1スイッチと、
前記第1電力増幅器及び前記アンテナ接続端子の間の経路とグランドとの間に接続される第1キャパシタと、
前記第1電力増幅器及び前記アンテナ接続端子の間の前記経路とグランドとの間に、前記第1キャパシタと並列に接続され、かつ、互いに直列に接続される第2キャパシタ及び第2スイッチと、を含み、
前記第1パワークラスが適用される状況において、前記第1スイッチは開かれ、前記第2スイッチは閉じられ、
前記第2パワークラスが適用される状況において、前記第1スイッチは閉じられ、前記第2スイッチは開かれる、
<1>又は<2>に記載の高周波回路。
<5>前記高周波回路は、さらに、
第2電力増幅器と、
前記第1電力増幅器の出力端及び前記第2電力増幅器の出力端に両端がそれぞれ接続される一次コイルと前記可変負荷整合回路に一端が接続される二次コイルとを含むトランスフォーマと、を備え、
前記第1パワークラスが適用される状況において、前記第1電源電圧が前記第1電力増幅器及び前記第2電力増幅器に供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器及び前記第2電力増幅器からみた負荷インピーダンスが前記第1インピーダンスに調整され、
前記第2パワークラスが適用される状況において、前記第2電源電圧が前記第1電力増幅器及び前記第2電力増幅器に供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器及び前記第2電力増幅器からみた負荷インピーダンスが前記第2インピーダンスに調整される、
<1>~<4>のいずれかに記載の高周波回路。
第2電力増幅器と、
前記第1電力増幅器の出力端及び前記第2電力増幅器の出力端に両端がそれぞれ接続される一次コイルと前記可変負荷整合回路に一端が接続される二次コイルとを含むトランスフォーマと、を備え、
前記第1パワークラスが適用される状況において、前記第1電源電圧が前記第1電力増幅器及び前記第2電力増幅器に供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器及び前記第2電力増幅器からみた負荷インピーダンスが前記第1インピーダンスに調整され、
前記第2パワークラスが適用される状況において、前記第2電源電圧が前記第1電力増幅器及び前記第2電力増幅器に供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器及び前記第2電力増幅器からみた負荷インピーダンスが前記第2インピーダンスに調整される、
<1>~<4>のいずれかに記載の高周波回路。
<6>前記高周波回路は、さらに、
第2電力増幅器と、
前記第1電力増幅器の出力端及び前記第2電力増幅器の出力端に両端がそれぞれ接続される一次コイルと前記可変負荷整合回路に一端が接続される二次コイルとを含むトランスフォーマと、を備え、
前記第1パワークラスが適用される状況において、前記第1電源電圧が前記第1電力増幅器及び前記第2電力増幅器に供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器及び前記第2電力増幅器からみた負荷インピーダンスが前記第1インピーダンスに調整され、
前記第2パワークラスが適用される状況において、前記第2電源電圧が前記第1電力増幅器に供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器からみた負荷インピーダンスが前記第2インピーダンスに調整され、かつ、前記第2電力増幅器の動作が停止される、
<1>又は<2>に記載の高周波回路。
第2電力増幅器と、
前記第1電力増幅器の出力端及び前記第2電力増幅器の出力端に両端がそれぞれ接続される一次コイルと前記可変負荷整合回路に一端が接続される二次コイルとを含むトランスフォーマと、を備え、
前記第1パワークラスが適用される状況において、前記第1電源電圧が前記第1電力増幅器及び前記第2電力増幅器に供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器及び前記第2電力増幅器からみた負荷インピーダンスが前記第1インピーダンスに調整され、
前記第2パワークラスが適用される状況において、前記第2電源電圧が前記第1電力増幅器に供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器からみた負荷インピーダンスが前記第2インピーダンスに調整され、かつ、前記第2電力増幅器の動作が停止される、
<1>又は<2>に記載の高周波回路。
<7>前記可変負荷整合回路は、
前記二次コイルとアンテナ接続端子との間に接続される第1インダクタと、
前記二次コイルと前記アンテナ接続端子との間に、前記第1インダクタと並列に接続され、かつ、互いに直列に接続される第2インダクタ及び第1スイッチと、
前記第1電力増幅器及び前記アンテナ接続端子の間の経路とグランドとの間に直列に接続される第1キャパシタ及び第2キャパシタと、
前記第1キャパシタ及び前記第2キャパシタの間の経路とグランドとの間に接続される第2スイッチと、を含み、
前記高周波回路は、さらに、前記第2電力増幅器及び前記一次コイルの間の経路とグランドとの間に直列に接続される第3キャパシタ及び第3スイッチを備え、
前記第1パワークラスが適用される状況において、前記第1スイッチ及び前記第3スイッチの各々は開かれ、前記第2スイッチは閉じられ、
前記第2パワークラスが適用される状況において、前記第1スイッチ及び前記第3スイッチの各々は閉じられ、前記第2スイッチは開かれる、
<6>に記載の高周波回路。
前記二次コイルとアンテナ接続端子との間に接続される第1インダクタと、
前記二次コイルと前記アンテナ接続端子との間に、前記第1インダクタと並列に接続され、かつ、互いに直列に接続される第2インダクタ及び第1スイッチと、
前記第1電力増幅器及び前記アンテナ接続端子の間の経路とグランドとの間に直列に接続される第1キャパシタ及び第2キャパシタと、
前記第1キャパシタ及び前記第2キャパシタの間の経路とグランドとの間に接続される第2スイッチと、を含み、
前記高周波回路は、さらに、前記第2電力増幅器及び前記一次コイルの間の経路とグランドとの間に直列に接続される第3キャパシタ及び第3スイッチを備え、
前記第1パワークラスが適用される状況において、前記第1スイッチ及び前記第3スイッチの各々は開かれ、前記第2スイッチは閉じられ、
前記第2パワークラスが適用される状況において、前記第1スイッチ及び前記第3スイッチの各々は閉じられ、前記第2スイッチは開かれる、
<6>に記載の高周波回路。
<8>前記高周波回路は、さらに、
第2電力増幅器と、
前記第1電力増幅器の出力端及び前記可変負荷整合回路の間に接続される第1伝送線路と、
前記第2電力増幅器の出力端及び前記可変負荷整合回路の間に接続される第2伝送線路と、
前記第1電力増幅器の出力端及び前記第2電力増幅器の出力端の間に前記第1伝送線路及び前記第2伝送線路と並列に接続される抵抗と、を備え、
前記第1パワークラスが適用される状況において、前記第1電力増幅器及び前記第2電力増幅器に前記第1電源電圧が供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器及び前記第2電力増幅器からみた負荷インピーダンスが前記第1インピーダンスに調整され、
前記第2パワークラスが適用される状況において、前記第1電力増幅器及び前記第2電力増幅器に前記第2電源電圧が供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器及び前記第2電力増幅器からみた負荷インピーダンスが前記第2インピーダンスに調整される、
<1>~<4>のいずれかに記載の高周波回路。
第2電力増幅器と、
前記第1電力増幅器の出力端及び前記可変負荷整合回路の間に接続される第1伝送線路と、
前記第2電力増幅器の出力端及び前記可変負荷整合回路の間に接続される第2伝送線路と、
前記第1電力増幅器の出力端及び前記第2電力増幅器の出力端の間に前記第1伝送線路及び前記第2伝送線路と並列に接続される抵抗と、を備え、
前記第1パワークラスが適用される状況において、前記第1電力増幅器及び前記第2電力増幅器に前記第1電源電圧が供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器及び前記第2電力増幅器からみた負荷インピーダンスが前記第1インピーダンスに調整され、
前記第2パワークラスが適用される状況において、前記第1電力増幅器及び前記第2電力増幅器に前記第2電源電圧が供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器及び前記第2電力増幅器からみた負荷インピーダンスが前記第2インピーダンスに調整される、
<1>~<4>のいずれかに記載の高周波回路。
<9>前記高周波回路は、さらに、
第2電力増幅器と、
前記第1電力増幅器の出力端及び前記可変負荷整合回路の間に接続される第1伝送線路と、
前記第2電力増幅器の出力端及び前記可変負荷整合回路の間に接続される第2伝送線路と、
前記第1電力増幅器の出力端及び前記第2電力増幅器の出力端の間に前記第1伝送線路及び前記第2伝送線路と並列に接続される抵抗と、を備え、
前記第1パワークラスが適用される状況において、前記第1電力増幅器及び前記第2電力増幅器に前記第1電源電圧が供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器及び前記第2電力増幅器からみた負荷インピーダンスが前記第1インピーダンスに調整され、
前記第2パワークラスが適用される状況において、前記第1電力増幅器に前記第2電源電圧が供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器からみた負荷インピーダンスが前記第2インピーダンスに調整され、かつ、前記第2電力増幅器の動作が停止される、
<1>~<4>のいずれかに記載の高周波回路。
第2電力増幅器と、
前記第1電力増幅器の出力端及び前記可変負荷整合回路の間に接続される第1伝送線路と、
前記第2電力増幅器の出力端及び前記可変負荷整合回路の間に接続される第2伝送線路と、
前記第1電力増幅器の出力端及び前記第2電力増幅器の出力端の間に前記第1伝送線路及び前記第2伝送線路と並列に接続される抵抗と、を備え、
前記第1パワークラスが適用される状況において、前記第1電力増幅器及び前記第2電力増幅器に前記第1電源電圧が供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器及び前記第2電力増幅器からみた負荷インピーダンスが前記第1インピーダンスに調整され、
前記第2パワークラスが適用される状況において、前記第1電力増幅器に前記第2電源電圧が供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器からみた負荷インピーダンスが前記第2インピーダンスに調整され、かつ、前記第2電力増幅器の動作が停止される、
<1>~<4>のいずれかに記載の高周波回路。
<10>前記高周波回路は、さらに、
前記第2電力増幅器及び前記第2伝送線路の間の経路とグランドとの間に直列に接続される第3キャパシタ及び第3スイッチと、
前記第1電力増幅器の出力端及び前記第2電力増幅器の出力端の間に前記抵抗と直列に接続される第4スイッチと、を備え、
前記第1パワークラスが適用される状況において、前記第3スイッチは開かれ、かつ、前記第4スイッチは閉じられ、
前記第2パワークラスが適用される状況において、前記第3スイッチは閉じられ、かつ、前記第4スイッチは開かれる、
<9>に記載の高周波回路。
前記第2電力増幅器及び前記第2伝送線路の間の経路とグランドとの間に直列に接続される第3キャパシタ及び第3スイッチと、
前記第1電力増幅器の出力端及び前記第2電力増幅器の出力端の間に前記抵抗と直列に接続される第4スイッチと、を備え、
前記第1パワークラスが適用される状況において、前記第3スイッチは開かれ、かつ、前記第4スイッチは閉じられ、
前記第2パワークラスが適用される状況において、前記第3スイッチは閉じられ、かつ、前記第4スイッチは開かれる、
<9>に記載の高周波回路。
<11>第1パワークラス及び前記第1パワークラスよりも最大出力電力が低い第2パワークラスに対応するよう構成された高周波回路であって、
第1電力増幅器と、
第1フィルタと、
第2フィルタと、
前記第1電力増幅器の出力端に接続される第1端子、前記第1フィルタに接続される第2端子及び前記第2フィルタに接続される第3端子を含むスイッチ回路と、を備え、
前記第1パワークラスが適用される状況において、第1電源電圧が前記第1電力増幅器に供給され、かつ、前記スイッチ回路によって前記第1フィルタが前記第1電力増幅器に接続され、
前記第2パワークラスが適用される状況において、第2電源電圧が前記第1電力増幅器に供給され、かつ、前記スイッチ回路によって前記第2フィルタが前記第1電力増幅器に接続され、
前記第1電源電圧は、前記第2電源電圧よりも高く、
前記第1フィルタの入力インピーダンスは、前記第2フィルタの入力インピーダンスよりも低い、
高周波回路。
第1電力増幅器と、
第1フィルタと、
第2フィルタと、
前記第1電力増幅器の出力端に接続される第1端子、前記第1フィルタに接続される第2端子及び前記第2フィルタに接続される第3端子を含むスイッチ回路と、を備え、
前記第1パワークラスが適用される状況において、第1電源電圧が前記第1電力増幅器に供給され、かつ、前記スイッチ回路によって前記第1フィルタが前記第1電力増幅器に接続され、
前記第2パワークラスが適用される状況において、第2電源電圧が前記第1電力増幅器に供給され、かつ、前記スイッチ回路によって前記第2フィルタが前記第1電力増幅器に接続され、
前記第1電源電圧は、前記第2電源電圧よりも高く、
前記第1フィルタの入力インピーダンスは、前記第2フィルタの入力インピーダンスよりも低い、
高周波回路。
<12>前記第1電力増幅器は、さらに、前記第1パワークラスよりも最大出力電力が低く、かつ、前記第2パワークラスよりも最大出力電力が高い第3パワークラスに対応するよう構成され、
前記第3パワークラスが適用される状況において、前記第2電源電圧が前記第1電力増幅器に供給され、かつ、前記スイッチ回路によって前記第1フィルタが前記第1電力増幅器に接続される、
<11>に記載の高周波回路。
前記第3パワークラスが適用される状況において、前記第2電源電圧が前記第1電力増幅器に供給され、かつ、前記スイッチ回路によって前記第1フィルタが前記第1電力増幅器に接続される、
<11>に記載の高周波回路。
<13>前記高周波回路は、さらに、
第2電力増幅器と、
前記第1電力増幅器の出力端及び前記第2電力増幅器の出力端に両端がそれぞれ接続される一次コイルと前記スイッチ回路の前記第1端子に一端が接続される二次コイルとを含むトランスフォーマと、を備え、
前記第1パワークラスが適用される状況において、前記第1電源電圧が前記第1電力増幅器及び前記第2電力増幅器に供給され、かつ、前記スイッチ回路によって前記第1フィルタが前記トランスフォーマに接続され、
前記第2パワークラスが適用される状況において、前記第2電源電圧が前記第1電力増幅器及び前記第2電力増幅器に供給され、かつ、前記スイッチ回路によって前記第2フィルタが前記トランスフォーマに接続される、
<11>又は<12>に記載の高周波回路。
第2電力増幅器と、
前記第1電力増幅器の出力端及び前記第2電力増幅器の出力端に両端がそれぞれ接続される一次コイルと前記スイッチ回路の前記第1端子に一端が接続される二次コイルとを含むトランスフォーマと、を備え、
前記第1パワークラスが適用される状況において、前記第1電源電圧が前記第1電力増幅器及び前記第2電力増幅器に供給され、かつ、前記スイッチ回路によって前記第1フィルタが前記トランスフォーマに接続され、
前記第2パワークラスが適用される状況において、前記第2電源電圧が前記第1電力増幅器及び前記第2電力増幅器に供給され、かつ、前記スイッチ回路によって前記第2フィルタが前記トランスフォーマに接続される、
<11>又は<12>に記載の高周波回路。
<14>前記高周波回路は、さらに、
第2電力増幅器と、
前記第1電力増幅器の出力端及び前記第2電力増幅器の出力端に両端がそれぞれ接続される一次コイルと前記スイッチ回路の前記第1端子に一端が接続される二次コイルとを含むトランスフォーマと、を備え、
前記第1パワークラスが適用される状況において、前記第1電源電圧が前記第1電力増幅器及び前記第2電力増幅器に供給され、かつ、前記スイッチ回路によって前記第1フィルタが前記トランスフォーマに接続され、
前記第2パワークラスが適用される状況において、前記第2電源電圧が前記第1電力増幅器に供給され、かつ、前記スイッチ回路によって前記第2フィルタが前記トランスフォーマに接続され、かつ、前記第2電力増幅器の動作が停止される、
<11>又は<12>に記載の高周波回路。
第2電力増幅器と、
前記第1電力増幅器の出力端及び前記第2電力増幅器の出力端に両端がそれぞれ接続される一次コイルと前記スイッチ回路の前記第1端子に一端が接続される二次コイルとを含むトランスフォーマと、を備え、
前記第1パワークラスが適用される状況において、前記第1電源電圧が前記第1電力増幅器及び前記第2電力増幅器に供給され、かつ、前記スイッチ回路によって前記第1フィルタが前記トランスフォーマに接続され、
前記第2パワークラスが適用される状況において、前記第2電源電圧が前記第1電力増幅器に供給され、かつ、前記スイッチ回路によって前記第2フィルタが前記トランスフォーマに接続され、かつ、前記第2電力増幅器の動作が停止される、
<11>又は<12>に記載の高周波回路。
<15>前記高周波回路は、さらに、
第2電力増幅器と、
前記第1電力増幅器の出力端及び前記スイッチ回路の前記第1端子の間に接続される第1伝送線路と、
前記第2電力増幅器の出力端及び前記スイッチ回路の前記第1端子の間に接続される第2伝送線路と、
前記第1電力増幅器の出力端及び前記第2電力増幅器の出力端との間に前記第1伝送線路及び前記第2伝送線路と並列に接続される抵抗と、を備え、
前記第1パワークラスが適用される状況において、前記第1電力増幅器及び前記第2電力増幅器に前記第1電源電圧が供給され、かつ、前記スイッチ回路によって前記第1フィルタが前記第1電力増幅器及び前記第2電力増幅器に接続され、
前記第2パワークラスが適用される状況において、前記第1電力増幅器及び前記第2電力増幅器に前記第2電源電圧が供給され、かつ、前記スイッチ回路によって前記第2フィルタが前記第1電力増幅器及び前記第2電力増幅器に接続される、
<11>又は<12>に記載の高周波回路。
第2電力増幅器と、
前記第1電力増幅器の出力端及び前記スイッチ回路の前記第1端子の間に接続される第1伝送線路と、
前記第2電力増幅器の出力端及び前記スイッチ回路の前記第1端子の間に接続される第2伝送線路と、
前記第1電力増幅器の出力端及び前記第2電力増幅器の出力端との間に前記第1伝送線路及び前記第2伝送線路と並列に接続される抵抗と、を備え、
前記第1パワークラスが適用される状況において、前記第1電力増幅器及び前記第2電力増幅器に前記第1電源電圧が供給され、かつ、前記スイッチ回路によって前記第1フィルタが前記第1電力増幅器及び前記第2電力増幅器に接続され、
前記第2パワークラスが適用される状況において、前記第1電力増幅器及び前記第2電力増幅器に前記第2電源電圧が供給され、かつ、前記スイッチ回路によって前記第2フィルタが前記第1電力増幅器及び前記第2電力増幅器に接続される、
<11>又は<12>に記載の高周波回路。
<16>前記高周波回路は、さらに、
第2電力増幅器と、
前記第1電力増幅器の出力端及び前記スイッチ回路の前記第1端子の間に接続される第1伝送線路と、
前記第2電力増幅器の出力端及び前記スイッチ回路の前記第1端子の間に接続される第2伝送線路と、
前記第1電力増幅器の出力端及び前記第2電力増幅器の出力端との間に前記第1伝送線路及び前記第2伝送線路と並列に接続される抵抗と、を備え、
前記第1パワークラスが適用される状況において、前記第1電力増幅器及び前記第2電力増幅器に前記第1電源電圧が供給され、かつ、前記スイッチ回路によって前記第1フィルタが前記第1電力増幅器及び前記第2電力増幅器に接続され、
前記第2パワークラスが適用される状況において、前記第1電力増幅器に前記第2電源電圧が供給され、かつ、前記スイッチ回路によって前記第2フィルタが前記第1電力増幅器に接続され、かつ、前記第2電力増幅器の動作が停止される、
<11>又は<12>に記載の高周波回路。
第2電力増幅器と、
前記第1電力増幅器の出力端及び前記スイッチ回路の前記第1端子の間に接続される第1伝送線路と、
前記第2電力増幅器の出力端及び前記スイッチ回路の前記第1端子の間に接続される第2伝送線路と、
前記第1電力増幅器の出力端及び前記第2電力増幅器の出力端との間に前記第1伝送線路及び前記第2伝送線路と並列に接続される抵抗と、を備え、
前記第1パワークラスが適用される状況において、前記第1電力増幅器及び前記第2電力増幅器に前記第1電源電圧が供給され、かつ、前記スイッチ回路によって前記第1フィルタが前記第1電力増幅器及び前記第2電力増幅器に接続され、
前記第2パワークラスが適用される状況において、前記第1電力増幅器に前記第2電源電圧が供給され、かつ、前記スイッチ回路によって前記第2フィルタが前記第1電力増幅器に接続され、かつ、前記第2電力増幅器の動作が停止される、
<11>又は<12>に記載の高周波回路。
本発明は、フロントエンド部に配置される高周波回路として、携帯電話などの通信機器に広く利用できる。
1、1A、1B、1C、1D、1E、1F、1G、1H、1I、1J 高周波回路
2、2a、2b アンテナ
3 RFIC
4 BBIC
5 電源回路
6、6A、6B、6C、6D、6E、6F、6G、6H、6I、6J 通信装置
11、12 電力増幅器
21、22、23、24、25 可変負荷整合回路
31、32、33 フィルタ
41、42 トランスフォーマ
43 ウィルキンソンデバイダ
44、44D ウィルキンソンカプラ
51、52 スイッチ回路
100、100a、100b アンテナ接続端子
111、T211、T221、T231、T241、T251 入力端子
121 電源電圧端子
511、512、513、521、522、523、524 端子
C11、C12、C211、C212、C213、C214、C220、C221、C222、C223、C251、C252 キャパシタ
L211、L212、L221、L222、L223 インダクタ
L411、L421 一次コイル
L412、L422 二次コイル
R431、R441 抵抗
SW11、SW211、SW212、SW213、SW214、SW221、SW222、SW251、SW441 スイッチ
T212、T222、T232、T242、T252 出力端子
TL431、TL432、TL441、TL442 伝送線路
Vcc1、Vcc2 電源電圧
2、2a、2b アンテナ
3 RFIC
4 BBIC
5 電源回路
6、6A、6B、6C、6D、6E、6F、6G、6H、6I、6J 通信装置
11、12 電力増幅器
21、22、23、24、25 可変負荷整合回路
31、32、33 フィルタ
41、42 トランスフォーマ
43 ウィルキンソンデバイダ
44、44D ウィルキンソンカプラ
51、52 スイッチ回路
100、100a、100b アンテナ接続端子
111、T211、T221、T231、T241、T251 入力端子
121 電源電圧端子
511、512、513、521、522、523、524 端子
C11、C12、C211、C212、C213、C214、C220、C221、C222、C223、C251、C252 キャパシタ
L211、L212、L221、L222、L223 インダクタ
L411、L421 一次コイル
L412、L422 二次コイル
R431、R441 抵抗
SW11、SW211、SW212、SW213、SW214、SW221、SW222、SW251、SW441 スイッチ
T212、T222、T232、T242、T252 出力端子
TL431、TL432、TL441、TL442 伝送線路
Vcc1、Vcc2 電源電圧
Claims (16)
- 第1パワークラス及び前記第1パワークラスよりも最大出力電力が低い第2パワークラスに対応するよう構成された高周波回路であって、
第1電力増幅器と、
前記第1電力増幅器の出力端に接続される可変負荷整合回路と、を備え、
前記第1パワークラスが適用される状況において、第1電源電圧が前記第1電力増幅器に供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器からみた負荷インピーダンスが第1インピーダンスに調整され、
前記第2パワークラスが適用される状況において、第2電源電圧が前記第1電力増幅器に供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器からみた負荷インピーダンスが第2インピーダンスに調整され、
前記第1電源電圧は、前記第2電源電圧よりも高く、
前記第1インピーダンスは、前記第2インピーダンスよりも低い、
高周波回路。 - 前記第1電力増幅器は、さらに、前記第1パワークラスよりも最大出力電力が低く、かつ、前記第2パワークラスよりも最大出力電力が高い第3パワークラスに対応するよう構成され、
前記第3パワークラスが適用される状況において、前記第2電源電圧が前記第1電力増幅器に供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器からみた負荷インピーダンスが前記第1インピーダンスに調整される、
請求項1に記載の高周波回路。 - 前記可変負荷整合回路は、
前記第1電力増幅器とアンテナ接続端子との間に直列に接続される第1キャパシタ及び第1スイッチと、
前記第1電力増幅器と前記アンテナ接続端子との間に、前記第1キャパシタ及び前記第1スイッチと並列に接続され、かつ、互いに直列に接続される第2キャパシタ及び第2スイッチと、を含み、
前記第1キャパシタの静電容量は、前記第2キャパシタの静電容量よりも大きく、
前記第1パワークラスが適用される状況において、前記第1スイッチは閉じられ、かつ、第2スイッチは開かれ、
前記第2パワークラスが適用される状況において、前記第1スイッチは開かれ、かつ、第2スイッチは閉じられる、
請求項1又は2に記載の高周波回路。 - 前記可変負荷整合回路は、
前記第1電力増幅器とアンテナ接続端子との間に接続される第1インダクタと、
前記第1電力増幅器と前記アンテナ接続端子との間に、前記第1インダクタと並列に接続され、かつ、互いに直列に接続される第2インダクタ及び第1スイッチと、
前記第1電力増幅器及び前記アンテナ接続端子の間の経路とグランドとの間に接続される第1キャパシタと、
前記第1電力増幅器及び前記アンテナ接続端子の間の前記経路とグランドとの間に、前記第1キャパシタと並列に接続され、かつ、互いに直列に接続される第2キャパシタ及び第2スイッチと、を含み、
前記第1パワークラスが適用される状況において、前記第1スイッチは開かれ、前記第2スイッチは閉じられ、
前記第2パワークラスが適用される状況において、前記第1スイッチは閉じられ、前記第2スイッチは開かれる、
請求項1又は2に記載の高周波回路。 - 前記高周波回路は、さらに、
第2電力増幅器と、
前記第1電力増幅器の出力端及び前記第2電力増幅器の出力端に両端がそれぞれ接続される一次コイルと前記可変負荷整合回路に一端が接続される二次コイルとを含むトランスフォーマと、を備え、
前記第1パワークラスが適用される状況において、前記第1電源電圧が前記第1電力増幅器及び前記第2電力増幅器に供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器及び前記第2電力増幅器からみた負荷インピーダンスが前記第1インピーダンスに調整され、
前記第2パワークラスが適用される状況において、前記第2電源電圧が前記第1電力増幅器及び前記第2電力増幅器に供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器及び前記第2電力増幅器からみた負荷インピーダンスが前記第2インピーダンスに調整される、
請求項1~4のいずれか1項に記載の高周波回路。 - 前記高周波回路は、さらに、
第2電力増幅器と、
前記第1電力増幅器の出力端及び前記第2電力増幅器の出力端に両端がそれぞれ接続される一次コイルと前記可変負荷整合回路に一端が接続される二次コイルとを含むトランスフォーマと、を備え、
前記第1パワークラスが適用される状況において、前記第1電源電圧が前記第1電力増幅器及び前記第2電力増幅器に供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器及び前記第2電力増幅器からみた負荷インピーダンスが前記第1インピーダンスに調整され、
前記第2パワークラスが適用される状況において、前記第2電源電圧が前記第1電力増幅器に供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器からみた負荷インピーダンスが前記第2インピーダンスに調整され、かつ、前記第2電力増幅器の動作が停止される、
請求項1又は2に記載の高周波回路。 - 前記可変負荷整合回路は、
前記二次コイルとアンテナ接続端子との間に接続される第1インダクタと、
前記二次コイルと前記アンテナ接続端子との間に、前記第1インダクタと並列に接続され、かつ、互いに直列に接続される第2インダクタ及び第1スイッチと、
前記第1電力増幅器及び前記アンテナ接続端子の間の経路とグランドとの間に直列に接続される第1キャパシタ及び第2キャパシタと、
前記第1キャパシタ及び前記第2キャパシタの間の経路とグランドとの間に接続される第2スイッチと、を含み、
前記高周波回路は、さらに、前記第2電力増幅器及び前記一次コイルの間の経路とグランドとの間に直列に接続される第3キャパシタ及び第3スイッチを備え、
前記第1パワークラスが適用される状況において、前記第1スイッチ及び前記第3スイッチの各々は開かれ、前記第2スイッチは閉じられ
前記第2パワークラスが適用される状況において、前記第1スイッチ及び前記第3スイッチの各々は閉じられ、前記第2スイッチは開かれる、
請求項6に記載の高周波回路。 - 前記高周波回路は、さらに、
第2電力増幅器と、
前記第1電力増幅器の出力端及び前記可変負荷整合回路の間に接続される第1伝送線路と、
前記第2電力増幅器の出力端及び前記可変負荷整合回路の間に接続される第2伝送線路と、
前記第1電力増幅器の出力端及び前記第2電力増幅器の出力端の間に前記第1伝送線路及び前記第2伝送線路と並列に接続される抵抗と、を備え、
前記第1パワークラスが適用される状況において、前記第1電力増幅器及び前記第2電力増幅器に前記第1電源電圧が供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器及び前記第2電力増幅器からみた負荷インピーダンスが前記第1インピーダンスに調整され、
前記第2パワークラスが適用される状況において、前記第1電力増幅器及び前記第2電力増幅器に前記第2電源電圧が供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器及び前記第2電力増幅器からみた負荷インピーダンスが前記第2インピーダンスに調整される、
請求項1~4のいずれか1項に記載の高周波回路。 - 前記高周波回路は、さらに、
第2電力増幅器と、
前記第1電力増幅器の出力端及び前記可変負荷整合回路の間に接続される第1伝送線路と、
前記第2電力増幅器の出力端及び前記可変負荷整合回路の間に接続される第2伝送線路と、
前記第1電力増幅器の出力端及び前記第2電力増幅器の出力端の間に前記第1伝送線路及び前記第2伝送線路と並列に接続される抵抗と、を備え、
前記第1パワークラスが適用される状況において、前記第1電力増幅器及び前記第2電力増幅器に前記第1電源電圧が供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器及び前記第2電力増幅器からみた負荷インピーダンスが前記第1インピーダンスに調整され、
前記第2パワークラスが適用される状況において、前記第1電力増幅器に前記第2電源電圧が供給され、かつ、前記可変負荷整合回路によって前記第1電力増幅器からみた負荷インピーダンスが前記第2インピーダンスに調整され、かつ、前記第2電力増幅器の動作が停止される、
請求項1~4のいずれか1項に記載の高周波回路。 - 前記高周波回路は、さらに、
前記第2電力増幅器及び前記第2伝送線路の間の経路とグランドとの間に直列に接続される第3キャパシタ及び第3スイッチと、
前記第1電力増幅器の出力端及び前記第2電力増幅器の出力端の間に前記抵抗と直列に接続される第4スイッチと、を備え、
前記第1パワークラスが適用される状況において、前記第3スイッチは開かれ、かつ、前記第4スイッチは閉じられ、
前記第2パワークラスが適用される状況において、前記第3スイッチは閉じられ、かつ、前記第4スイッチは開かれる、
請求項9に記載の高周波回路。 - 第1パワークラス及び前記第1パワークラスよりも最大出力電力が低い第2パワークラスに対応するよう構成された高周波回路であって、
第1電力増幅器と、
第1フィルタと、
第2フィルタと、
前記第1電力増幅器の出力端に接続される第1端子、前記第1フィルタに接続される第2端子及び前記第2フィルタに接続される第3端子を含むスイッチ回路と、を備え、
前記第1パワークラスが適用される状況において、第1電源電圧が前記第1電力増幅器に供給され、かつ、前記スイッチ回路によって前記第1フィルタが前記第1電力増幅器に接続され、
前記第2パワークラスが適用される状況において、第2電源電圧が前記第1電力増幅器に供給され、かつ、前記スイッチ回路によって前記第2フィルタが前記第1電力増幅器に接続され、
前記第1電源電圧は、前記第2電源電圧よりも高く、
前記第1フィルタの入力インピーダンスは、前記第2フィルタの入力インピーダンスよりも低い、
高周波回路。 - 前記第1電力増幅器は、さらに、前記第1パワークラスよりも最大出力電力が低く、かつ、前記第2パワークラスよりも最大出力電力が高い第3パワークラスに対応するよう構成され、
前記第3パワークラスが適用される状況において、前記第2電源電圧が前記第1電力増幅器に供給され、かつ、前記スイッチ回路によって前記第1フィルタが前記第1電力増幅器に接続される、
請求項11に記載の高周波回路。 - 前記高周波回路は、さらに、
第2電力増幅器と、
前記第1電力増幅器の出力端及び前記第2電力増幅器の出力端に両端がそれぞれ接続される一次コイルと前記スイッチ回路の前記第1端子に一端が接続される二次コイルとを含むトランスフォーマと、を備え、
前記第1パワークラスが適用される状況において、前記第1電源電圧が前記第1電力増幅器及び前記第2電力増幅器に供給され、かつ、前記スイッチ回路によって前記第1フィルタが前記トランスフォーマに接続され、
前記第2パワークラスが適用される状況において、前記第2電源電圧が前記第1電力増幅器及び前記第2電力増幅器に供給され、かつ、前記スイッチ回路によって前記第2フィルタが前記トランスフォーマに接続される、
請求項11又は12に記載の高周波回路。 - 前記高周波回路は、さらに、
第2電力増幅器と、
前記第1電力増幅器の出力端及び前記第2電力増幅器の出力端に両端がそれぞれ接続される一次コイルと前記スイッチ回路の前記第1端子に一端が接続される二次コイルとを含むトランスフォーマと、を備え、
前記第1パワークラスが適用される状況において、前記第1電源電圧が前記第1電力増幅器及び前記第2電力増幅器に供給され、かつ、前記スイッチ回路によって前記第1フィルタが前記トランスフォーマに接続され、
前記第2パワークラスが適用される状況において、前記第2電源電圧が前記第1電力増幅器に供給され、かつ、前記スイッチ回路によって前記第2フィルタが前記トランスフォーマに接続され、かつ、前記第2電力増幅器の動作が停止される、
請求項11又は12に記載の高周波回路。 - 前記高周波回路は、さらに、
第2電力増幅器と、
前記第1電力増幅器の出力端及び前記スイッチ回路の前記第1端子の間に接続される第1伝送線路と、
前記第2電力増幅器の出力端及び前記スイッチ回路の前記第1端子の間に接続される第2伝送線路と、
前記第1電力増幅器の出力端及び前記第2電力増幅器の出力端との間に前記第1伝送線路及び前記第2伝送線路と並列に接続される抵抗と、を備え、
前記第1パワークラスが適用される状況において、前記第1電力増幅器及び前記第2電力増幅器に前記第1電源電圧が供給され、かつ、前記スイッチ回路によって前記第1フィルタが前記第1電力増幅器及び前記第2電力増幅器に接続され、
前記第2パワークラスが適用される状況において、前記第1電力増幅器及び前記第2電力増幅器に前記第2電源電圧が供給され、かつ、前記スイッチ回路によって前記第2フィルタが前記第1電力増幅器及び前記第2電力増幅器に接続される、
請求項11又は12に記載の高周波回路。 - 前記高周波回路は、さらに、
第2電力増幅器と、
前記第1電力増幅器の出力端及び前記スイッチ回路の前記第1端子の間に接続される第1伝送線路と、
前記第2電力増幅器の出力端及び前記スイッチ回路の前記第1端子の間に接続される第2伝送線路と、
前記第1電力増幅器の出力端及び前記第2電力増幅器の出力端との間に前記第1伝送線路及び前記第2伝送線路と並列に接続される抵抗と、を備え、
前記第1パワークラスが適用される状況において、前記第1電力増幅器及び前記第2電力増幅器に前記第1電源電圧が供給され、かつ、前記スイッチ回路によって前記第1フィルタが前記第1電力増幅器及び前記第2電力増幅器に接続され、
前記第2パワークラスが適用される状況において、前記第1電力増幅器に前記第2電源電圧が供給され、かつ、前記スイッチ回路によって前記第2フィルタが前記第1電力増幅器に接続され、かつ、前記第2電力増幅器の動作が停止される、
請求項11又は12に記載の高周波回路。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022099745 | 2022-06-21 | ||
JP2022-099745 | 2022-06-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023248631A1 true WO2023248631A1 (ja) | 2023-12-28 |
Family
ID=89379556
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/017295 WO2023248631A1 (ja) | 2022-06-21 | 2023-05-08 | 高周波回路 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023248631A1 (ja) |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000295055A (ja) * | 1999-04-01 | 2000-10-20 | Matsushita Electric Ind Co Ltd | 送信機および受信機 |
US20050239423A1 (en) * | 2002-10-10 | 2005-10-27 | Anders Thornell-Pers | Power amplifier efficiency |
JP2009540635A (ja) * | 2006-06-02 | 2009-11-19 | スカイクロス、インコーポレイテッド | 効率をさらに良くし、コンパクトな大きさのアンテナを維持するためにアンテナのパラメータを順応良く制御するための方法及び装置。 |
WO2015002127A1 (ja) * | 2013-07-01 | 2015-01-08 | 株式会社村田製作所 | 電力増幅モジュールおよびフロントエンド回路 |
US20170294951A1 (en) * | 2016-04-06 | 2017-10-12 | Qualcomm Incorporated | High power user equipment (hpue) using coherently combined power amplifiers |
US20190074769A1 (en) * | 2017-09-07 | 2019-03-07 | Samsung Electronics Co., Ltd. | Supply modulator for power amplifier |
WO2019176538A1 (ja) * | 2018-03-15 | 2019-09-19 | 株式会社村田製作所 | フロントエンド回路、フロントエンドモジュール、通信装置及びマルチプレクサ |
WO2020003676A1 (ja) * | 2018-06-26 | 2020-01-02 | 株式会社村田製作所 | 高周波モジュールおよび通信装置 |
US10700717B1 (en) * | 2019-03-19 | 2020-06-30 | Samsung Electro-Mechanics Co., Ltd. | Band selection switch circuit and amplifier |
WO2021181756A1 (ja) * | 2020-03-12 | 2021-09-16 | 株式会社村田製作所 | 高周波回路及び通信装置 |
JP2022013725A (ja) * | 2020-06-29 | 2022-01-18 | スカイワークス ソリューションズ,インコーポレイテッド | 二重接続電力増幅器システム |
WO2022065012A1 (ja) * | 2020-09-25 | 2022-03-31 | 株式会社村田製作所 | 高周波回路及び通信装置 |
US20220190793A1 (en) * | 2018-03-22 | 2022-06-16 | Shanghai Vanchip Technologies Co., Ltd. | Balanced radio frequency power amplifier, chip and communication terminal |
-
2023
- 2023-05-08 WO PCT/JP2023/017295 patent/WO2023248631A1/ja unknown
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000295055A (ja) * | 1999-04-01 | 2000-10-20 | Matsushita Electric Ind Co Ltd | 送信機および受信機 |
US20050239423A1 (en) * | 2002-10-10 | 2005-10-27 | Anders Thornell-Pers | Power amplifier efficiency |
JP2009540635A (ja) * | 2006-06-02 | 2009-11-19 | スカイクロス、インコーポレイテッド | 効率をさらに良くし、コンパクトな大きさのアンテナを維持するためにアンテナのパラメータを順応良く制御するための方法及び装置。 |
WO2015002127A1 (ja) * | 2013-07-01 | 2015-01-08 | 株式会社村田製作所 | 電力増幅モジュールおよびフロントエンド回路 |
US20170294951A1 (en) * | 2016-04-06 | 2017-10-12 | Qualcomm Incorporated | High power user equipment (hpue) using coherently combined power amplifiers |
US20190074769A1 (en) * | 2017-09-07 | 2019-03-07 | Samsung Electronics Co., Ltd. | Supply modulator for power amplifier |
WO2019176538A1 (ja) * | 2018-03-15 | 2019-09-19 | 株式会社村田製作所 | フロントエンド回路、フロントエンドモジュール、通信装置及びマルチプレクサ |
US20220190793A1 (en) * | 2018-03-22 | 2022-06-16 | Shanghai Vanchip Technologies Co., Ltd. | Balanced radio frequency power amplifier, chip and communication terminal |
WO2020003676A1 (ja) * | 2018-06-26 | 2020-01-02 | 株式会社村田製作所 | 高周波モジュールおよび通信装置 |
US10700717B1 (en) * | 2019-03-19 | 2020-06-30 | Samsung Electro-Mechanics Co., Ltd. | Band selection switch circuit and amplifier |
WO2021181756A1 (ja) * | 2020-03-12 | 2021-09-16 | 株式会社村田製作所 | 高周波回路及び通信装置 |
JP2022013725A (ja) * | 2020-06-29 | 2022-01-18 | スカイワークス ソリューションズ,インコーポレイテッド | 二重接続電力増幅器システム |
WO2022065012A1 (ja) * | 2020-09-25 | 2022-03-31 | 株式会社村田製作所 | 高周波回路及び通信装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101594192B1 (ko) | 멀티 밴드 전력 증폭기를 위하여 효율적으로 경로를 아이솔레이팅 시킬 수 있는 임피던스 정합 회로 | |
US7170350B2 (en) | Gain adjusting and circuit arrangement | |
US20170149393A1 (en) | Semiconductor device | |
US11005432B2 (en) | RF switch with split tunable matching network | |
CN111756386B (zh) | 前端电路以及通信装置 | |
US11316486B2 (en) | High frequency circuit and communication device | |
US20210058044A1 (en) | RFFE LNA Topology Supporting Both Noncontiguous Intraband Carrier Aggregation and Interband Carrier Aggregation | |
CN109075747B (zh) | 放大器 | |
US20210099140A1 (en) | Wide bandwidth radio frequency (rf) amplifier | |
US20230336204A1 (en) | Radio frequency circuit and radio frequency module | |
US20220360235A1 (en) | Two-Stage LNA with Mutual Coupling | |
US10998901B2 (en) | RF switch with bypass topology | |
WO2014050721A2 (ja) | 増幅装置および増幅装置を搭載した無線通信装置 | |
US10236836B1 (en) | Tuned amplifier matching based on band switch setting | |
US20240022280A1 (en) | Radio frequency circuit, radio frequency module, and communication device | |
US12095489B2 (en) | High-frequency circuit and communication device | |
CN115088191A (zh) | 功率放大电路、高频电路以及通信装置 | |
WO2023248631A1 (ja) | 高周波回路 | |
WO2023281944A1 (ja) | 電力増幅回路及び電力増幅方法 | |
US9166542B2 (en) | High frequency module and portable terminal using same | |
WO2024042807A1 (ja) | 高周波回路 | |
US20240014845A1 (en) | Radio-frequency circuit | |
WO2024057738A1 (ja) | 高周波回路 | |
WO2024079964A1 (ja) | 高周波回路 | |
US20240178868A1 (en) | Radio frequency circuit, communication device, and power amplification method for radio frequency circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23826820 Country of ref document: EP Kind code of ref document: A1 |