WO2014141897A1 - デュプレクサ - Google Patents

デュプレクサ Download PDF

Info

Publication number
WO2014141897A1
WO2014141897A1 PCT/JP2014/055003 JP2014055003W WO2014141897A1 WO 2014141897 A1 WO2014141897 A1 WO 2014141897A1 JP 2014055003 W JP2014055003 W JP 2014055003W WO 2014141897 A1 WO2014141897 A1 WO 2014141897A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
terminal
reception
filter
band
Prior art date
Application number
PCT/JP2014/055003
Other languages
English (en)
French (fr)
Inventor
洋二 村尾
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to EP14763862.1A priority Critical patent/EP2975687B1/en
Priority to JP2015505388A priority patent/JP6065101B2/ja
Priority to US14/776,054 priority patent/US10096882B2/en
Publication of WO2014141897A1 publication Critical patent/WO2014141897A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • H01P1/36Isolators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • H01P1/38Circulators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication

Definitions

  • the present invention relates to a duplexer, and in particular, can be suitably used for a duplexer including a filter.
  • FIG. 1 is a circuit diagram showing a configuration of a duplexer according to related technology.
  • a duplexer having the configuration shown in FIG. 1 is provided in a wireless front end unit of a mobile phone base station.
  • the configuration of the duplexer according to the related technique shown in FIG. 1 will be described.
  • the duplexer shown in FIG. 1 includes a transmission signal input terminal 110, an antenna terminal 120, a reception signal output terminal 130, a transmission band filter 140, and a reception band filter 160.
  • the transmission signal input terminal 110 is connected to one terminal of the transmission band filter 140.
  • the antenna terminal 120 is connected to the other terminal of the transmission band filter 140 and one terminal of the reception band filter 160.
  • the other terminal of the reception band filter 160 is connected to the reception signal output terminal 130.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-1247066 discloses a description relating to a band-pass filter.
  • This bandpass filter is a two-port circuit that is at least logically symmetrical with respect to a symmetry plane that separates left and right, and has one input / output port on each of the left and right sides.
  • This band pass filter includes an upper left circuit A1, an upper right circuit A2, and a lower circuit B0.
  • the upper left circuit A1 includes a port 1 located on the left side, a capacitance Ca grounded on one side, and a line A connecting the capacitance Ca and the port 1.
  • the upper right circuit A2 has a port 1 'located on the right side, a capacitance Ca grounded on one side, and a line A' connecting the capacitance Ca and the port 1 '.
  • the lower circuit B0 includes a ground circuit B1 located on the left side, a ground circuit B2 located on the right side, a ground circuit B3 located in the center, a line B connecting the ground circuit B1 and the ground circuit B3, and a ground circuit B2. And a line B ′ connecting the ground circuit B3.
  • the line A and the line B constitute a coupled line by at least a part of each being wired substantially parallel to each other.
  • the band-pass filter described in Patent Document 1 includes a multistage filter, and amplifiers are arranged between the stages.
  • the duplexer includes a transmission side terminal, a reception side terminal, a common terminal, a transmission side circuit unit, and a reception side circuit unit.
  • the transmission side terminal inputs a transmission signal.
  • the reception side terminal outputs a reception signal.
  • the common terminal inputs a transmission signal from the transmission side terminal and outputs the reception signal to the reception side terminal.
  • the transmission side circuit unit is connected between the transmission side terminal and the common terminal.
  • the receiving side circuit unit is connected between the common terminal and the receiving terminal.
  • the transmission side circuit unit includes a first transmission side filter, a second transmission side filter, and a transmission side directional propagation circuit.
  • the 1st transmission side filter is provided in the back
  • the second transmission-side filter is provided after the first transmission-side filter, and a transmission band component of the transmission signal passes therethrough.
  • the transmission side directional propagation circuit is connected between the first transmission side filter and the second transmission side filter, propagates a signal input from one terminal in a specific direction, and outputs it from the other terminal.
  • the reception side circuit unit includes a first reception side filter, a second reception side filter, and a reception side directional propagation circuit.
  • the first reception-side filter is provided at the subsequent stage of the common terminal, and a component of a predetermined reception band of the reception signal passes therethrough.
  • the second reception filter is provided after the first reception filter, and a reception band component of the reception signal passes therethrough.
  • the reception-side directional propagation circuit is connected between the first reception-side filter and the second reception-side filter, propagates a signal input from one terminal in a specific direction, and outputs it from the other terminal.
  • the transmission side is required to attenuate outside the transmission band
  • the reception side is required to attenuate outside the reception band.
  • the spatial distance can be obtained by separating the filter into a plurality of parts, it is possible to suppress the deterioration of attenuation due to spatial interference.
  • a directional propagation circuit such as an isolator or a circulator between filter stages, an effect of suppressing ripples between stages can be obtained as compared with a case where filters are directly connected.
  • FIG. 1 is a circuit diagram showing a configuration of a duplexer according to a related art.
  • FIG. 2 is a circuit diagram showing a configuration example of the duplexer according to the first embodiment of the present invention.
  • FIG. 3 is a circuit diagram showing a configuration example of a duplexer according to the second embodiment of the present invention.
  • FIG. 4 is a circuit diagram showing a configuration example of a duplexer according to the third embodiment of the present invention.
  • FIG. 5 is a circuit diagram showing a configuration example of a duplexer according to the fourth embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing a configuration example of the duplexer according to the first embodiment of the present invention. The components of the duplexer shown in FIG. 2 will be described.
  • the duplexer illustrated in FIG. 2 includes a transmission signal input terminal 10, a transmission band first filter 41 as a first transmission filter, a transmission band isolator 51, and a transmission band as a second transmission filter.
  • the second filter 62 for the reception band and the reception signal output terminal 30 are provided.
  • each of the first filter 41 for the transmission band, the second filter 42 for the transmission band, the first filter 61 for the reception band, and the second filter 62 for the reception band For example, a small dielectric filter or the like may be used.
  • each of the transmission band isolator 51 and the reception band isolator 71 may be configured using, for example, a circulator in which one of the three terminals is terminated.
  • the isolator 71 and the second filter 62 for the reception band each have a first terminal and a second terminal.
  • a transmission signal input terminal 10 a transmission band first filter 41 as a first transmission filter, a transmission band isolator 51, and a transmission band second filter 42 as a second transmission filter.
  • the antenna terminal 20 as a common terminal, the first filter 61 for the reception band as the first reception filter, the isolator 71 for the reception band, and the second for the reception band as the second reception filter.
  • the filter 62 and the reception signal output terminal 30 are connected in series in this order.
  • the transmission signal input terminal 10 is connected to the first terminal of the first filter 41 for transmission band.
  • the second terminal of the transmission band first filter 41 is connected to the first terminal of the transmission band isolator 51.
  • the second terminal of the transmission band isolator 51 is connected to the first terminal of the transmission band second filter 42.
  • the second terminal of the transmission band second filter 42 is commonly connected to the antenna terminal 20 and the first terminal of the reception band first filter 61.
  • the second terminal of the reception band first filter 61 is connected to the first terminal of the reception band isolator 71.
  • the second terminal of the reception band isolator 71 is connected to the first terminal of the reception band second filter 62.
  • a second terminal of the reception band second filter 62 is connected to the reception signal output terminal 30.
  • the transmission band first filter 41 is connected to the subsequent stage of the transmission signal input terminal 10 and the preceding stage of the transmission band isolator 51.
  • a transmission band isolator 51 is connected downstream of the transmission band first filter 41 and upstream of the transmission band second filter 42.
  • a transmission band second filter 42 is connected to a stage subsequent to the transmission band isolator 51 and a stage preceding the reception band first filter 61.
  • the antenna terminal 20 is connected to the subsequent stage of the second filter 42 for the transmission band and the previous stage of the first filter 61 for the reception band.
  • the first filter 61 for the reception band is connected to the subsequent stage of the second filter 42 for the transmission band and the previous stage of the isolator 71 for the reception band.
  • a reception band isolator 71 is connected to the subsequent stage of the reception band first filter 61 and the previous stage of the reception band second filter 62.
  • a second filter 62 for the reception band is connected to the subsequent stage of the isolator 71 for the reception band and the previous stage of the reception signal output terminal 30.
  • the reception signal output terminal 30 is connected to the subsequent stage of the second filter 62 for reception band.
  • the filter has a two-stage configuration, and one isolator is provided between the stages.
  • these numbers are merely examples, The present invention is not limited. That is, for example, the number of filter stages may be three or more, and an isolator may be provided between each stage.
  • the transmission band isolator 51 outputs a signal input from the first terminal on the transmission signal input terminal 10 side from the second terminal on the antenna terminal 20 side, while transmitting a signal directed from the second terminal to the first terminal. Cut off.
  • the reception band isolator 71 outputs a signal input from the first terminal on the antenna terminal 20 side from the second terminal on the reception signal output terminal 30 side, while the signal is directed from the second terminal to the first terminal. Shut off.
  • the first filter 41 for the transmission band and the second filter 42 for the transmission band each have a predetermined transmission band among signals input from the first terminal on the transmission signal input terminal 10 side.
  • the included frequency components are output from the second terminal on the antenna terminal 20 side, and the other frequency components are attenuated, suppressed, or blocked.
  • the first filter 61 for the reception band and the second filter 62 for the reception band are each included in a predetermined reception band among signals input from the first terminal on the antenna terminal 20 side.
  • the frequency component is output from the second terminal on the reception signal output terminal 30 side, and the other frequency components are attenuated, suppressed, or blocked.
  • a transmission band first filter 41, a transmission band isolator 51, and a transmission band second filter 42 provided between the transmission signal input terminal 10 and the antenna terminal 20 are provided.
  • the aggregate is called a transmission side circuit unit.
  • the transmission side circuit unit outputs from the antenna terminal 20 only the frequency component included in the predetermined transmission band in the transmission signal input from the transmission signal input terminal 10. At this time, the signal input from the antenna terminal 20 does not flow backward through the transmission side circuit unit and is not output from the transmission signal input terminal 10.
  • the transmission signal input from the transmission signal input terminal 10 passes through the first filter 41 for the transmission band, passes through the isolator 51 for the transmission band, and passes through the second filter 42 for the transmission band. And output from the antenna terminal 20. At this time, since the signal input from the antenna terminal 20 is blocked by the transmission band isolator 51, it is not output from the transmission signal input terminal 10.
  • reception band first filter 61 a reception band isolator 71, and a reception band second filter 62 provided between the antenna terminal 20 and the reception signal output terminal 30.
  • the aggregate is referred to as a receiving circuit unit.
  • the reception-side circuit unit outputs, from the reception signal output terminal 30, only the frequency component included in the predetermined reception band among the reception signals input from the antenna terminal 20. At this time, the signal input from the reception signal output terminal 30 does not flow backward through the reception side circuit unit and is not output from the antenna terminal 20.
  • the transmission signal input from the antenna terminal 20 passes through the first filter 61 for the reception band, passes through the isolator 71 for the reception band, and passes through the second filter 62 for the reception band.
  • the signal is output from the signal output terminal 30.
  • the signal input from the reception signal output terminal 30 is blocked by the isolator 71 for reception band, it is not output from the antenna terminal 20.
  • the function as a filter in the transmission circuit unit is required to attenuate components outside the transmission band.
  • the amount of attenuation required for the filter per stage is reduced by providing a plurality of filters in a multi-stage configuration. The same applies to the receiving circuit unit.
  • FIG. 3 is a circuit diagram showing a configuration example of a duplexer according to the second embodiment of the present invention. The configuration of the duplexer shown in FIG. 3 will be described.
  • the duplexer according to the second embodiment of the present invention shown in FIG. 3 is equivalent to the duplexer according to the first embodiment of the present invention shown in FIG. That is, the duplexer shown in FIG. 3 is equivalent to the duplexer shown in FIG. 2 with a printed board 90, a high-frequency amplifier 91, and a transmission line 92 added thereto.
  • the high frequency amplifier 91 has an input terminal and an output terminal.
  • the transmission line 92 has two terminals.
  • the high frequency amplifier 91 is generally composed of a group of electronic components mounted on the printed circuit board 90. Furthermore, it is preferable that the transmission side circuit unit and the reception side circuit unit of the duplexer are also mounted on the printed circuit board 90.
  • the transmission line 92 is preferably configured as a microstrip line formed as a part of the printed circuit board 90, for example.
  • the transmission signal input terminal 10 is connected to the input terminal of the high frequency amplifier 91.
  • the output terminal of the high frequency amplifier 91 is connected to one terminal of the transmission line 92.
  • the other terminal of the transmission line 92 is connected to the first terminal of the first filter 41 for transmission band.
  • the duplexer is arranged at the output stage of the transmission amplifier. Therefore, in the present embodiment, a configuration is proposed in which a high-frequency amplifier 91 as a transmission amplifier and a duplexer are mounted on the same printed circuit board 90.
  • another transmission line (not shown) and a receiving low noise amplifier (not shown) may be mounted on the printed circuit board 90 at the output stage of the duplexer.
  • FIG. 4 is a circuit diagram showing a configuration example of a duplexer according to the third embodiment of the present invention. The configuration of the duplexer shown in FIG. 4 will be described.
  • a transmission band isolator 51 includes a transmission band circulator 52 as a transmission side directional propagation circuit, a transmission band outside filter 43, and a first high-frequency terminator 44. Replace with a collection of.
  • the reception band isolator 71 includes a reception band circulator 72 as a reception side directional propagation circuit, a reception band outside filter 63, and a second high-frequency terminator 64. Replace with a collection of.
  • each of the transmission band circulator 52 and the reception band circulator 72 has a first terminal, a second terminal, and a third terminal.
  • Each of the transmission band outside filter 43 and the reception band outside filter 63 has a first terminal and a second terminal.
  • Each of the first high-frequency terminator 44 and the second high-frequency terminator 64 has an input terminal.
  • the connection relationship of the components of the duplexer shown in FIG. 4 will be described.
  • the first terminal of the transmission band circulator 52 is connected to the second terminal of the transmission band first filter 41.
  • the second terminal of the transmission band circulator 52 is connected to the first terminal of the transmission band second filter 42.
  • the third terminal of the transmission band circulator 52 is connected to the first terminal of the transmission band outside filter 43.
  • the second terminal of the filter 43 for the outside transmission band is connected to the input terminal of the first high-frequency terminator 44.
  • the first terminal of the reception band circulator 72 is connected to the second terminal of the reception band first filter 61.
  • the second terminal of the reception band circulator 72 is connected to the first terminal of the reception band second filter 62.
  • the third terminal of the reception band circulator 72 is connected to the first terminal of the reception band outside filter 63.
  • the second terminal of the filter 63 for outside the reception band is connected to the input terminal of the second high-frequency terminator 64.
  • each of the transmission band circulator 52 and the reception band circulator 72 internally propagates and outputs signals input from three terminals in a specific direction.
  • a signal input from the first terminal is output from the third terminal
  • a signal input from the second terminal is output from the first terminal
  • a signal input from the third terminal is output from the second terminal. Is output.
  • the signal input from the first terminal on the transmission signal input terminal 10 side is propagated toward the third terminal on the first high-frequency terminator 44 side.
  • only the component outside the transmission band of the signal input from the first terminal can pass through the filter 43 for outside the transmission band, and is then terminated by the first high-frequency terminator 44.
  • the other components that is, the components of the transmission band cannot propagate through the filter 43 for the outside of the transmission band connected to the third terminal, and propagate inside the circulator 52 for the transmission band.
  • the signal is output from the second terminal on the antenna terminal 20 side.
  • the aggregate of the filter 43 for the transmission band outside and the first high-frequency terminator 44 connected to the third terminal of the circulator 52 for transmission signals operates as a rejection filter.
  • the signal input from the first terminal on the antenna terminal 20 side is propagated toward the third terminal on the second high-frequency terminator 64 side.
  • the filter 63 for outside the reception band can pass through the filter 63 for outside the reception band, and is then terminated by the second high-frequency terminator 64.
  • other components that is, the components of the reception band cannot pass through the filter 63 for the outside of the reception global band connected to the third terminal, and inside the circulator 72 for the reception band.
  • the signal continues to propagate and is output from the second terminal on the reception signal output terminal 30 side in the same manner as when input from the third terminal.
  • the aggregate of the reception band outside filter 63 and the second high-frequency terminator 64 connected to the third terminal of the reception signal circulator 72 also operates as a rejection filter.
  • FIG. 5 is a circuit diagram showing a configuration example of a duplexer according to the fourth embodiment of the present invention. The configuration of the duplexer shown in FIG. 5 will be described.
  • the duplexer according to the fourth embodiment of the present invention shown in FIG. 5 is equivalent to the duplexer according to the third embodiment of the present invention shown in FIG. 4 with the following modifications. That is, the duplexer shown in FIG. 5 replaces the first high-frequency terminator 44 and the second high-frequency terminator 64 with the high-frequency attenuator 80 in the duplexer shown in FIG.
  • the high-frequency attenuator 80 has a first terminal and a second terminal.
  • the connection relationship of the components of the duplexer shown in FIG. 5 will be described.
  • the first terminal of the high-frequency attenuator 80 is connected to the second terminal of the filter 43 for the outside of the transmission band.
  • the second terminal of the high frequency attenuator 80 is connected to the second terminal of the filter 63 for outside the reception band.
  • the high frequency attenuator 80 attenuates the signal input from the first terminal and outputs it from the second terminal, and attenuates the signal input from the second terminal and outputs it from the first terminal. More specifically, the high-frequency attenuator 80 sufficiently attenuates the signal output from the second terminal of the transmission band filter 43 and outputs it to the second terminal of the reception band filter 63. To do. Further, the high frequency attenuator 80 sufficiently attenuates the signal output from the second terminal of the filter 63 for outside the reception band and outputs it to the second terminal of the filter 43 for outside the transmission band.
  • the attenuation amount of the high-frequency attenuator 80 according to the fourth embodiment of the present invention is sufficient if it is about 10 dB (decibel) or more, for example.
  • this numerical value is only an example and does not limit the present invention.
  • the attenuation may be about 30 dB or more.
  • the first high-frequency terminator 44 and the second high-frequency terminator 64 are combined into one high-frequency attenuator as compared with the third embodiment shown in FIG. It is replaced with 80. This contributes to a reduction in the number of parts and miniaturization in the duplexer.
  • a high-frequency amplifier, a transmission-side circuit unit, a first high-frequency terminator, a reception-side circuit unit, and a second high-frequency terminator are mounted on a printed wiring board. You may do it.
  • the high frequency amplifier, the transmission side circuit unit, the reception side circuit unit, and the high frequency attenuator may be mounted on the printed circuit board by combining the second and fourth embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transceivers (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

 本発明によるデュプレクサは、送信側端子と、受信側端子と、共通端子と、送信側回路部と、受信側回路部とを具備している。ここで、送信側回路部は、送信側端子および共通端子の間に接続されている。受信側回路部は、共通端子および受信側端子の間に接続されている。送信側回路部は、第1送信側フィルタと、第2送信側フィルタと、送信側方向性伝搬回路とを具備している。ここで、第1送信側フィルタは、送信側端子の後段に設けられている。第2送信側フィルタは、第1送信側フィルタの後段に設けられている。送信側方向性伝搬回路は、第1送信側フィルタおよび第2送信側フィルタの間に接続されている。受信側回路部は、第1受信側フィルタと、第2受信側フィルタと、受信側方向性伝搬回路とを具備している。ここで、第1受信側フィルタは、共通端子の後段に設けられている。第2受信側フィルタは、第1受信側フィルタの後段に設けられている。受信側方向性伝搬回路は、第1受信側フィルタおよび第2受信側フィルタの間に接続されている。

Description

デュプレクサ
 本発明はデュプレクサに係り、特に、フィルタを含むデュプレクサに好適に利用できるものである。
 図1は、関連技術によるデュプレクサの構成を示す回路図である。携帯電話基地局の無線フロントエンド部には、図1に示した構成によるデュプレクサを設けることが一般的である。図1に示した関連技術によるデュプレクサの構成について説明する。
 図1に示したデュプレクサの構成要素について説明する。図1に示したデュプレクサは、送信信号入力端子110と、アンテナ端子120と、受信信号出力端子130と、送信帯域用フィルタ140と、受信帯域用フィルタ160とを含んでいる。
 図1に示したデュプレクサの構成要素の接続関係について説明する。送信信号入力端子110は、送信帯域用フィルタ140の一方の端子に接続されている。アンテナ端子120は、送信帯域用フィルタ140の他方の端子と、受信帯域用フィルタ160の一方の端子とに接続されている。受信帯域用フィルタ160の他方の端子は、受信信号出力端子130に接続されている。
 図1に示した構成を有する関連技術によるデュプレクサには、小型化しにくいという課題が知られている。言い換えれば、関連技術によるデュプレクサを小型化した場合には、送信信号入力端子110と、アンテナ端子120と、受信信号出力端子130との距離が短くなり、空間干渉が強まり、結果として送信帯域用フィルタ140および受信帯域用フィルタ160のそれぞれにおける帯域外減衰量が不足してしまうという課題が知られている。
 上記に関連して、特許文献1(特開2003-124706号公報)には、バンドパスフィルタに係る記載が開示されている。このバンドパスフィルタは、左右を分ける対称面に対して少なくとも論理的には左右対称で、左右にそれぞれ1つずつ入出力用のポートを有する2ポート回路である。このバンドパスフィルタは、左上回路A1と、右上回路A2と、下段回路B0とを有する。左上回路A1は、左側に位置するポート1と、片側が接地されたキャパシタンスCaと、このキャパシタンスCaとポート1とを接続する線路Aとを有する。右上回路A2は、右側に位置するポート1′と、片側が接地されたキャパシタンスCaと、このキャパシタンスCaとポート1′とを接続する線路A′とを有する。下段回路B0は、左側に位置する接地回路B1と、右側に位置する接地回路B2と、中央に位置する接地回路B3と、接地回路B1と接地回路B3とを接続する線路Bと、接地回路B2と接地回路B3とを接続する線路B′とを有する。線路Aと線路Bは、少なくとも各一部が互いに略平行に配線されることにより、結合線路を構成している。
 言い換えれば、特許文献1に記載のバンドパスフィルタは、フィルタを多段で構成し、段間にはアンプを配置している。
特開2003-124706号公報
 本発明の目的は、小型化しても帯域外減衰量が十分に確保できるデュプレクサを提供することである。
 本発明によるデュプレクサは、送信側端子と、受信側端子と、共通端子と、送信側回路部と、受信側回路部とを具備する。ここで、送信側端子は、送信信号を入力する。受信側端子は、受信信号を出力する。共通端子は、送信側端子から送信信号を入力し、受信側端子へ受信信号を出力する。送信側回路部は、送信側端子および共通端子の間に接続されている。受信側回路部は、共通端子および受信端子の間に接続されている。送信側回路部は、第1送信側フィルタと、第2送信側フィルタと、送信側方向性伝搬回路とを具備する。ここで、第1送信側フィルタは、送信側端子の後段に設けられており、送信信号のうち所定の送信帯域の成分が通過する。第2送信側フィルタは、第1送信側フィルタの後段に設けられており、送信信号のうち送信帯域の成分が通過する。送信側方向性伝搬回路は、第1送信側フィルタおよび第2送信側フィルタの間に接続されて、一の端子から入力した信号を特定の方向に伝搬して他の端子から出力する。受信側回路部は、第1受信側フィルタと、第2受信側フィルタと、受信側方向性伝搬回路とを具備する。ここで、第1受信側フィルタは、共通端子の後段に設けられており、受信信号のうち所定の受信帯域の成分が通過する。第2受信側フィルタは、第1受信側フィルタの後段に設けられており、受信信号のうち受信帯域の成分が通過する。受信側方向性伝搬回路は、第1受信側フィルタおよび第2受信側フィルタ間に接続されて、一の端子から入力した信号を特定の方向に伝搬して他の端子から出力する。
 デュプレクサにおいて、送信側には送信帯域外の減衰が要求され、受信側には受信帯域外の減衰が要求される。本発明のように、送信側および受信側のそれぞれにおいて、フィルタを多段構成とすることで、一段あたりのフィルタに要求される減衰量を緩和することが可能となる。また、フィルタを複数の部品に分離することで、空間的な距離が取れるので、空間干渉による減衰量の劣化を抑圧することが出来る。さらに、フィルタの段間にアイソレータやサーキュレータなどの方向性伝搬回路を設けることによって、フィルタを直接接続した場合に比べて、段間のリップルを抑制する効果も得られる。
図1は、関連技術によるデュプレクサの構成を示す回路図である。 図2は、本発明の第1の実施形態によるデュプレクサの構成例を示す回路図である。 図3は、本発明の第2の実施形態によるデュプレクサの構成例を示す回路図である。 図4は、本発明の第3の実施形態によるデュプレクサの構成例を示す回路図である。 図5は、本発明の第4の実施形態によるデュプレクサの構成例を示す回路図である。
 添付図面を参照して、本発明によるデュプレクサを実施するための形態を以下に説明する。
 (第1の実施形態)
 図2は、本発明の第1の実施形態によるデュプレクサの構成例を示す回路図である。図2に示したデュプレクサの構成要素について説明する。
 図2に示したデュプレクサは、送信信号入力端子10と、第1送信側フィルタとしての送信帯域用の第1のフィルタ41と、送信帯域用のアイソレータ51と、第2送信側フィルタとしての送信帯域用の第2のフィルタ42と、共通端子としてのアンテナ端子20と、第1受信側フィルタとしての受信帯域用の第1のフィルタ61と、受信帯域用のアイソレータ71と、第2受信側フィルタとしての受信帯域用の第2のフィルタ62と、受信信号出力端子30とを有している。
 ここで、送信帯域用の第1のフィルタ41と、送信帯域用の第2のフィルタ42と、受信帯域用の第1のフィルタ61と、受信帯域用の第2のフィルタ62とのそれぞれについては、例えば、小型の誘電体フィルタなどを用いても構成しても良い。
 また、送信帯域用のアイソレータ51と、受信帯域用のアイソレータ71とのそれぞれについては、例えば、3つの端子のうち1つが終端されたサーキュレータなどを用いて構成しても良い。
 図2に示した送信帯域用の第1のフィルタ41と、送信帯域用のアイソレータ51と、送信帯域用の第2のフィルタ42と、受信帯域用の第1のフィルタ61と、受信帯域用のアイソレータ71と、受信帯域用の第2のフィルタ62とは、それぞれ、第1端子と、第2端子とを有している。
 図2に示したデュプレクサの構成要素の接続関係について説明する。送信信号入力端子10と、第1送信側フィルタとしての送信帯域用の第1のフィルタ41と、送信帯域用のアイソレータ51と、第2送信側フィルタとしての送信帯域用の第2のフィルタ42と、共通端子としてのアンテナ端子20と、第1受信側フィルタとしての受信帯域用の第1のフィルタ61と、受信帯域用のアイソレータ71と、第2受信側フィルタとしての受信帯域用の第2のフィルタ62と、受信信号出力端子30とは、この順番に直列に接続されている。
 言い換えれば、送信信号入力端子10は、送信帯域用の第1のフィルタ41の第1端子に接続されている。送信帯域用の第1のフィルタ41の第2端子は、送信帯域用のアイソレータ51の第1端子に接続されている。送信帯域用のアイソレータ51の第2端子は、送信帯域用の第2のフィルタ42の第1端子に接続されている。送信帯域用の第2のフィルタ42の第2端子は、アンテナ端子20と、受信帯域用の第1のフィルタ61の第1端子とに共通接続されている。受信帯域用の第1のフィルタ61の第2端子は、受信帯域用のアイソレータ71の第1端子に接続されている。受信帯域用のアイソレータ71の第2端子は、受信帯域用の第2のフィルタ62の第1端子に接続されている。受信帯域用の第2のフィルタ62の第2端子は、受信信号出力端子30に接続されている。
 さらに言い換えれば、送信信号入力端子10の後段、かつ、送信帯域用のアイソレータ51の前段には、送信帯域用の第1のフィルタ41が接続されている。送信帯域用の第1のフィルタ41の後段、かつ、送信帯域用の第2のフィルタ42の前段には、送信帯域用のアイソレータ51が接続されている。送信帯域用のアイソレータ51の後段、かつ、受信帯域用の第1のフィルタ61の前段には、送信帯域用の第2のフィルタ42が接続されている。送信帯域用の第2のフィルタ42の後段、かつ、受信帯域用の第1のフィルタ61の前段には、アンテナ端子20が接続されている。送信帯域用の第2のフィルタ42の後段、かつ、受信帯域用のアイソレータ71の前段には、受信帯域用の第1のフィルタ61が接続されている。受信帯域用の第1のフィルタ61の後段、かつ、受信帯域用の第2のフィルタ62の前段には、受信帯域用のアイソレータ71が接続されている。受信帯域用のアイソレータ71の後段、かつ、受信信号出力端子30の前段には、受信帯域用の第2のフィルタ62が接続されている。受信帯域用の第2のフィルタ62の後段には、受信信号出力端子30が接続されている。
 図2に示した本発明の第1の実施形態によるデュプレクサの構成例では、フィルタを2段構成として、その段間に1つのアイソレータを設けているが、これらの数はあくまでも一例にすぎず、本発明を限定しない。すなわち、例えば、フィルタの段数は3以上であっても良いし、そのそれぞれの段間にアイソレータを設けても良い。
 図2に示したデュプレクサの動作について説明する。まず、送信帯域用のアイソレータ51は、送信信号入力端子10側の第1端子から入力した信号をアンテナ端子20側の第2端子から出力する一方で、第2端子から第1端子へ向かう信号を遮断する。同様に、受信帯域用のアイソレータ71は、アンテナ端子20側の第1端子から入力した信号を受信信号出力端子30側の第2端子から出力する一方で、第2端子から第1端子へ向かう信号を遮断する。
 次に、送信帯域用の第1のフィルタ41と、送信帯域用の第2のフィルタ42とは、それぞれ、送信信号入力端子10側の第1端子から入力する信号のうち、所定の送信帯域に含まれる周波数成分についてはアンテナ端子20側の第2端子から出力し、その他の周波数成分については減衰、抑制または遮断する。同様に、受信帯域用の第1のフィルタ61と、受信帯域用の第2のフィルタ62とは、それぞれ、アンテナ端子20側の第1端子から入力する信号のうち、所定の受信帯域に含まれる周波数成分については受信信号出力端子30側の第2端子から出力し、その他の周波数成分については減衰、抑制または遮断する。
 ここで、送信信号入力端子10と、アンテナ端子20との間に設けられた送信帯域用の第1のフィルタ41と、送信帯域用のアイソレータ51と、送信帯域用の第2のフィルタ42との集合体を、送信側回路部と呼ぶ。送信側回路部は、送信信号入力端子10から入力する送信信号のうち、所定の送信帯域に含まれる周波数成分だけをアンテナ端子20から出力する。このとき、アンテナ端子20から入力した信号が送信側回路部を逆流して送信信号入力端子10から出力されることはない。
 言い換えれば、送信信号入力端子10から入力した送信信号は、送信帯域用の第1のフィルタ41を通過し、送信帯域用のアイソレータ51を通過し、送信帯域用の第2のフィルタ42を通過してアンテナ端子20から出力される。このとき、アンテナ端子20から入力した信号は送信帯域用のアイソレータ51で遮断されるので、送信信号入力端子10から出力されることはない。
 同様に、アンテナ端子20と、受信信号出力端子30との間に設けられた受信帯域用の第1のフィルタ61と、受信帯域用のアイソレータ71と、受信帯域用の第2のフィルタ62との集合体を、受信側回路部と呼ぶ。受信側回路部は、アンテナ端子20から入力する受信信号のうち、所定の受信帯域に含まれる周波数成分だけを受信信号出力端子30から出力する。このとき、受信信号出力端子30から入力した信号が受信側回路部を逆流してアンテナ端子20から出力されることはない。
 言い換えれば、アンテナ端子20から入力した送信信号は、受信帯域用の第1のフィルタ61を通過し、受信帯域用のアイソレータ71を通過し、受信帯域用の第2のフィルタ62を通過して受信信号出力端子30から出力される。このとき、受信信号出力端子30から入力した信号は受信帯域用のアイソレータ71で遮断されるので、アンテナ端子20から出力されることはない。
 図2に示したデュプレクサによって得られる作用効果について説明する。まず、送信回路部におけるフィルタとしての機能は、送信帯域外成分を減衰させることが要求されている。ここで、図2に示した構成例では複数のフィルタを多段構成とすることで、一段あたりのフィルタに要求される減衰量が緩和される。このことは、受信回路部についても同様である。
 さらに、フィルタの段間にアイソレータを配置したことで、フィルタを直接直列に接続した場合に比べて、段間のリップルを抑制する効果が期待される。
 (第2の実施形態)
 図3は、本発明の第2の実施形態によるデュプレクサの構成例を示す回路図である。図3に示したデュプレクサの構成について説明する。
 図3に示した本発明の第2の実施形態によるデュプレクサは、図2に示した本発明の第1の実施形態によるデュプレクサに、以下の変更を加えたものに等しい。すなわち、図3に示したデュプレクサは、図2に示したデュプレクサに、プリント基板90と、高周波増幅器91と、伝送線路92とを追加したものに等しい。ここで、高周波増幅器91は、入力端子と、出力端子とを有する。また、伝送線路92は、2つの端子を有する。
 図3に示したデュプレクサのその他の構成要素については、図2に示した第1の実施形態の場合と同様であるので、さらなる詳細な説明を省略する。
 ここで、高周波増幅器91は、プリント基板90上に実装された電子部品群で構成されることが一般的である。さらに、デュプレクサの送信側回路部と、受信側回路部とについても、プリント基板90上に実装されていることが好ましい。また、伝送線路92は、プリント基板90の一部として形成された、例えばマイクロストリップラインなどとして構成されていることが好ましい。
 図3に示したデュプレクサの構成要素の接続関係について説明する。送信信号入力端子10は、高周波増幅器91の入力端子に接続されている。高周波増幅器91の出力端子は、伝送線路92の一方の端子に接続されている。伝送線路92の他方の端子は、送信帯域用の第1のフィルタ41の第1端子に接続されている。
 図3に示したデュプレクサの構成要素のその他の接続関係については、図2に示した第1の実施形態の場合と同様であるので、さらなる詳細な説明を省略する。
 一般的に、デュプレクサは送信増幅器の出力段に配置される。そこで、本実施形態では、送信増幅器としての高周波増幅器91と、デュプレクサとを同じプリント基板90上に実装する構成を提案する。
 さらに、デュプレクサの出力段に、図示しない他の伝送線路と、図示しない受信用の低雑音増幅器とを、やはりプリント基板90上に実装しても良い。
 (第3の実施形態)
 図4は、本発明の第3の実施形態によるデュプレクサの構成例を示す回路図である。図4に示したデュプレクサの構成について説明する。
 図4に示した本発明の第3の実施形態によるデュプレクサは、図2に示した本発明の第1の実施形態によるデュプレクサに、以下の変更を加えたものに等しい。まず、図2に示したデュプレクサにおいて、送信帯域用のアイソレータ51を、送信側方向性伝搬回路としての送信帯域用のサーキュレータ52と、送信帯域外用のフィルタ43と、第1の高周波終端器44との集合体に置き換える。さらに、図2に示したデュプレクサにおいて、受信帯域用のアイソレータ71を、受信側方向性伝搬回路としての受信帯域用のサーキュレータ72と、受信帯域外用のフィルタ63と、第2の高周波終端器64との集合体に置き換える。
 ここで、送信帯域用のサーキュレータ52および受信帯域用のサーキュレータ72のそれぞれは、第1端子、第2端子および第3端子を有している。送信帯域外用のフィルタ43および受信帯域外用のフィルタ63のそれぞれは、第1端子と、第2端子とを有している。第1の高周波終端器44および第2の高周波終端器64のそれぞれは、入力端子を有している。
 図4に示したデュプレクサのその他の構成要素については、図2に示した第1の実施形態の場合と同様であるので、さらなる詳細な説明を省略する。
 図4に示したデュプレクサの構成要素の接続関係について説明する。送信帯域用のサーキュレータ52の第1端子は、送信帯域用の第1のフィルタ41の第2端子に接続されている。送信帯域用のサーキュレータ52の第2端子は、送信帯域用の第2のフィルタ42の第1端子に接続されている。送信帯域用のサーキュレータ52の第3端子は、送信帯域外用のフィルタ43の第1端子に接続されている。送信帯域外用のフィルタ43の第2端子は、第1の高周波終端器44の入力端子に接続されている。受信帯域用のサーキュレータ72の第1端子は、受信帯域用の第1のフィルタ61の第2端子に接続されている。受信帯域用のサーキュレータ72の第2端子は、受信帯域用の第2のフィルタ62の第1端子に接続されている。受信帯域用のサーキュレータ72の第3端子は、受信帯域外用のフィルタ63の第1端子に接続されている。受信帯域外用のフィルタ63の第2端子は、第2の高周波終端器64の入力端子に接続されている。
 図4に示したデュプレクサの構成要素のその他の接続関係については、図2に示した第1の実施形態の場合と同様であるので、さらなる詳細な説明を省略する。
 図4に示したデュプレクサの動作について説明する。
まず、送信帯域用のサーキュレータ52および受信帯域用のサーキュレータ72のそれぞれは、3つの端子から入力した信号を、内部で特定の方向に伝搬して出力する。図4に示した例では、第1端子から入力した信号は第3端子から出力され、第2端子から入力した信号は第1端子から出力され、第3端子から入力した信号は第2端子から出力される。
 より具体的には、送信帯域用のサーキュレータ52の場合、送信信号入力端子10側の第1端子から入力した信号は、第1の高周波終端器44側の第3端子に向けて伝搬される。ここで、第1端子から入力した信号のうち、送信帯域外の成分だけが、送信帯域外用のフィルタ43を通過することが出来て、その後第1の高周波終端器44で終端される。第1端子から入力した信号のうち、その他の成分、すなわち送信帯域の成分は、第3端子に接続された送信帯域外用のフィルタ43を通過出来ずに、送信帯域用のサーキュレータ52の内部で伝搬し続け、第3端子から入力された場合と同様に、アンテナ端子20側の第2端子から出力される。
 言い換えれば、図4において、送信信号用のサーキュレータ52の第3端子に接続された、送信帯域外用のフィルタ43および第1の高周波終端器44の集合体は、リジェクションフィルタとして動作する。
 同様に、受信帯域用のサーキュレータ72の場合、アンテナ端子20側の第1端子から入力した信号は、第2の高周波終端器64側の第3端子に向けて伝搬される。ここで、第1端子から入力した信号のうち、受信帯域外の成分だけが、受信帯域外用のフィルタ63を通過することが出来て、その後第2の高周波終端器64で終端される。第1端子から入力した信号のうち、その他の成分、すなわち受信帯域の成分は、第3端子に接続された受信大域外用のフィルタ63を通過出来ずに、受信帯域用のサーキュレータ72の内部で伝搬し続け、第3端子から入力された場合と同様に、受信信号出力端子30側の第2端子から出力される。
 言い換えれば、図4において、受信信号用のサーキュレータ72の第3端子に接続された、受信帯域外用のフィルタ63および第2の高周波終端器64の集合体も、リジェクションフィルタとして動作する。
 図4に示した本発明の第3の実施形態によるデュプレクサのその他の動作は、図2に示した本発明の第1の実施形態の場合と同様であるので、さらなる詳細な説明を省略する。
 (第4の実施形態)
 図5は、本発明の第4の実施形態によるデュプレクサの構成例を示す回路図である。図5に示したデュプレクサの構成について説明する。
 図5に示した本発明の第4の実施形態によるデュプレクサは、図4に示した本発明の第3の実施形態によるデュプレクサに、以下の変更を加えたものに等しい。すなわち、図5に示したデュプレクサは、図4に示したデュプレクサにおいて、第1の高周波終端器44および第2の高周波終端器64を、高周波減衰器80に置き換える。
 ここで、高周波減衰器80は、第1端子と、第2端子とを有している。
 図5に示したデュプレクサのその他の構成要素については、図4に示した第3の実施形態の場合と同様であるので、さらなる詳細な説明を省略する。
 図5に示したデュプレクサの構成要素の接続関係について説明する。高周波減衰器80の第1端子は、送信帯域外用のフィルタ43の第2端子に接続されている。高周波減衰器80の第2端子は、受信帯域外用のフィルタ63の第2端子に接続されている。
 図5に示したデュプレクサの構成要素のその他の接続関係については、図4に示した本発明の第3の実施形態の場合と同様であるので、さらなる詳細な説明を省略する。
 高周波減衰器80は、第1端子から入力した信号を減衰して第2端子から出力し、また、第2端子から入力した信号を減衰して第1端子から出力する。より具体的には、高周波減衰器80は、送信帯域外用のフィルタ43の第2端子から出力される信号を、十分に減衰した上で、受信帯域外用のフィルタ63の第2端子に向けて出力する。また、高周波減衰器80は、受信帯域外用のフィルタ63の第2端子から出力される信号を、十分に減衰した上で、送信帯域外用のフィルタ43の第2端子に向けて出力する。
 本発明の第4の実施形態による高周波減衰器80の減衰量は、例えば10dB(デシベル)程度、またはそれ以上もあれば十分である。ただし、この数値はあくまでも一例にすぎず、本発明を限定するものではない。他の例として、デュプレクサの送信回路部および受信回路部の間でアイソレーションを必要とする場合には、減衰量を30dB程度、またはそれ以上にしても良い。
 図5に示した本発明の第4の実施形態では、図4に示した第3の実施形態と比べて、第1の高周波終端器44および第2の高周波終端器64を1つの高周波減衰器80に置き換えている。このことは、デュプレクサにおける部品数の削減や小型化に寄与している。
 以上、発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。また、実施の形態に説明したそれぞれの特徴は、技術的に矛盾しない範囲で自由に組み合わせることが可能である。例えば、第2および第3の実施形態を組み合わせて、高周波増幅器と、送信側回路部と、第1高周波終端器と、受信側回路部と、第2高周波終端器とをプリント配線基板上に実装しても良い。同様に、第2および第4の実施形態を組み合わせて、高周波増幅器と、送信側回路部と、受信側回路部と、高周波減衰器とをプリント配線基板上に実装しても良い。
 以上、実施の形態を参照して本願発明を発明したが、本願発明は上記実施の形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 なお、本願の基礎日本出願である特願2013-053206号の内容は、この出願番号の開示により本願に組み込まれるものとする。

Claims (9)

  1.  送信信号を入力する送信側端子と、
     受信信号を出力する受信側端子と、
     前記送信側端子から前記送信信号を入力し、前記受信側端子へ前記受信信号を出力する共通端子と、
     前記送信側端子および前記共通端子の間に接続された送信側回路部と、
     前記共通端子および前記受信側端子の間に接続された受信側回路部と
    を具備し、
     前記送信側回路部は、
     前記送信側端子の後段に設けられて、前記送信信号のうち所定の送信帯域の成分が通過する第1送信側フィルタと、
     前記第1送信側フィルタの後段に設けられて、前記送信信号のうち前記送信帯域の成分が通過する第2送信側フィルタと、
     前記第1送信側フィルタおよび前記第2送信側フィルタの間に接続されて、一の送信側端子から入力した信号を特定の方向に伝搬して他の送信側端子から出力する送信側方向性伝搬回路と
    を具備し、
     前記受信側回路部は、
     前記共通端子の後段に設けられて、前記受信信号のうち所定の受信帯域の成分が通過する第1受信側フィルタと、
     前記第1受信側フィルタの後段に設けられて、前記受信信号のうち前記受信帯域の成分が通過する第2受信側フィルタと、
     前記第1受信側フィルタおよび前記第2受信側フィルタの間に接続されて、一の受信側端子から入力した信号を特定の方向に伝搬して他の受信側端子から出力する受信側方向性伝搬回路と
    を具備する
     デュプレクサ。
  2.  請求項1に記載のデュプレクサにおいて、
     前記送信側方向性伝搬回路は、
     送信帯域用アイソレータ
    を具備し、
     前記送信帯域用アイソレータは、
     前記第1送信側フィルタから前記送信信号を入力する送信側第1端子と、
     前記送信信号を前記第2送信側フィルタへ出力する送信側第2端子と
    を具備し、
     前記受信側方向性伝搬回路は、
     受信帯域用アイソレータ
    を具備し、
     前記受信帯域用アイソレータは、
     前記第1受信側フィルタから前記受信信号を入力する受信側第1端子と、
     前記受信信号を前記第2受信側フィルタへ出力する受信側第2端子と
    を具備する
     デュプレクサ。
  3.  請求項2に記載のデュプレクサにおいて、
     前記送信帯域用アイソレータは、
     前記送信側第1端子と、前記送信側第2端子と、終端された送信側第3端子とを有する送信帯域用サーキュレータ
    を具備し、
     前記受信帯域用アイソレータは、
     前記受信側第1端子と、前記受信側第2端子と、終端された受信側第3端子とを有する受信帯域用サーキュレータ
    を具備する
     デュプレクサ。
  4.  請求項1に記載のデュプレクサにおいて、
     前記送信側方向性伝搬回路は、
     送信帯域用サーキュレータと、
     前記送信信号のうち前記送信帯域の成分を遮断する送信帯域外フィルタと
    を具備し、
     前記送信側サーキュレータは、
     前記第1送信側フィルタから前記送信信号を入力して送信側第3端子へ伝搬する送信側第1端子と、
     前記送信信号のうち前記送信帯域の成分を前記第2送信側フィルタへ出力する送信側第2端子と、
     前記送信信号のうち、前記送信帯域以外の成分は前記送信帯域外フィルタの一方の端子へ出力し、かつ、前記送信帯域の成分は前記送信側第2端子へ伝播する前記送信側第3端子と
    を具備し、
     前記受信側方向性伝搬回路は、
     受信帯域用サーキュレータと、
     前記受信信号のうち前記受信帯域の成分を遮断する受信帯域外フィルタと
    を具備し、
     前記受信側サーキュレータは、
     前記第1受信側フィルタから前記受信信号を入力して受信側第3端子へ伝搬する受信側第1端子と、
     前記受信信号のうち前記受信帯域の成分を前記第2受信側フィルタへ出力する受信側第2端子
    と、
     前記受信信号のうち、前記受信帯域以外の成分は前記受信帯域外フィルタの一方の端子へ出力し、かつ、前記受信帯域の成分は前記受信側第2端子へ伝播する前記受信側第3端子と
    を具備する
     デュプレクサ。
  5.  請求項4に記載のデュプレクサにおいて、
     前記送信帯域外フィルタの他方の端子に接続されて終端する第1高周波終端器と、
     前記受信帯域外フィルタの他方の端子に接続されて終端する第2高周波終端器と
    をさらに具備する
     デュプレクサ。
  6.  請求項4に記載のデュプレクサにおいて、
     前記送信帯域外フィルタの他方の端子および前記受信帯域外フィルタの他方の端子の間に接続された高周波減衰器
    をさらに具備する
     デュプレクサ。
  7.  請求項2または3に記載のデュプレクサにおいて、
     前記送信側端子および前記第1送信側フィルタの間に接続された高周波増幅器と、
     前記高周波増幅器および前記第1送信側フィルタの間に接続された伝送線路と、
     前記伝送線路が形成されたプリント配線基板と
    をさらに具備し、
     前記高周波増幅器と、前記送信側回路部と、前記受信側回路部とは、前記プリント配線基板上に実装されている
     デュプレクサ。
  8.  請求項5に記載のデュプレクサにおいて、
     前記送信側端子および前記第1送信側フィルタの間に接続された高周波増幅器と、
     前記高周波増幅器および前記第1送信側フィルタの間に接続された伝送線路と、
     前記伝送線路が形成されたプリント配線基板と
    をさらに具備し、
     前記高周波増幅器と、前記送信側回路部と、前記第1高周波終端器と、前記受信側回路部と、前記第2高周波終端器とは、前記プリント配線基板上に実装されている
     デュプレクサ。
  9.  請求項6に記載のデュプレクサにおいて、
     前記送信側端子および前記第1送信側フィルタの間に接続された高周波増幅器と、
     前記高周波増幅器および前記第1送信側フィルタの間に接続された伝送線路と、
     前記伝送線路が形成されたプリント配線基板と
    をさらに具備し、
     前記高周波増幅器と、前記送信側回路部と、前記受信側回路部と、前記高周波減衰器とは、前記プリント配線基板上に実装されている
     デュプレクサ。
     
PCT/JP2014/055003 2013-03-15 2014-02-28 デュプレクサ WO2014141897A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14763862.1A EP2975687B1 (en) 2013-03-15 2014-02-28 Duplexer having in-band filters and out-of-band filters connected to circulators
JP2015505388A JP6065101B2 (ja) 2013-03-15 2014-02-28 デュプレクサ
US14/776,054 US10096882B2 (en) 2013-03-15 2014-02-28 Duplexer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-053206 2013-03-15
JP2013053206 2013-03-15

Publications (1)

Publication Number Publication Date
WO2014141897A1 true WO2014141897A1 (ja) 2014-09-18

Family

ID=51536570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055003 WO2014141897A1 (ja) 2013-03-15 2014-02-28 デュプレクサ

Country Status (4)

Country Link
US (1) US10096882B2 (ja)
EP (1) EP2975687B1 (ja)
JP (1) JP6065101B2 (ja)
WO (1) WO2014141897A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180036395A (ko) * 2016-09-30 2018-04-09 엘에스전선 주식회사 복합 결합기 및 그를 이용한 누설동축케이블 무선통신시스템

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60158711A (ja) * 1984-01-27 1985-08-20 Mitsubishi Electric Corp 帯域フイルタ装置
JPH0730304A (ja) * 1993-07-08 1995-01-31 Kokusai Electric Co Ltd 高次数高周波フィルタ
JPH0861047A (ja) * 1994-07-22 1996-03-05 Robert Bosch Gmbh 内燃機関の排気ガス路における触媒器の機能の正常性の監視法および監視装置
JP2003124706A (ja) 2001-10-12 2003-04-25 Toyota Central Res & Dev Lab Inc バンドパスフィルタ、モジュールカード、及び無線機
JP2003258675A (ja) * 2002-02-27 2003-09-12 Kyocera Corp 通信制御方法
US7719384B1 (en) * 2008-09-25 2010-05-18 The United States Of America As Represented By The Secretary Of The Navy Broadband channelized circulator
JP2013053206A (ja) 2011-09-02 2013-03-21 Dainichiseika Color & Chem Mfg Co Ltd 耐光性コーティング剤およびその使用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4861047A (ja) * 1971-12-03 1973-08-27
JPH0681103B2 (ja) 1986-08-28 1994-10-12 富士通株式会社 コヒーレント光通信用送受信器
JPH0222931A (ja) * 1988-07-12 1990-01-25 Fujitsu Ltd 無線装置の共用器回路
JP3149831B2 (ja) * 1997-11-07 2001-03-26 日本電気株式会社 高周波集積回路およびその製造方法
JP4237527B2 (ja) 2003-04-09 2009-03-11 日本電信電話株式会社 波長多重光伝送システム
US7269356B2 (en) 2003-07-09 2007-09-11 Lucent Technologies Inc. Optical device with tunable coherent receiver
JP2006295876A (ja) * 2005-03-15 2006-10-26 Matsushita Electric Ind Co Ltd アンテナ装置およびそれを用いた無線通信機
JP5874896B2 (ja) 2011-08-23 2016-03-02 日本電気株式会社 コヒーレント光受信装置およびコヒーレント光受信方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60158711A (ja) * 1984-01-27 1985-08-20 Mitsubishi Electric Corp 帯域フイルタ装置
JPH0730304A (ja) * 1993-07-08 1995-01-31 Kokusai Electric Co Ltd 高次数高周波フィルタ
JPH0861047A (ja) * 1994-07-22 1996-03-05 Robert Bosch Gmbh 内燃機関の排気ガス路における触媒器の機能の正常性の監視法および監視装置
JP2003124706A (ja) 2001-10-12 2003-04-25 Toyota Central Res & Dev Lab Inc バンドパスフィルタ、モジュールカード、及び無線機
JP2003258675A (ja) * 2002-02-27 2003-09-12 Kyocera Corp 通信制御方法
US7719384B1 (en) * 2008-09-25 2010-05-18 The United States Of America As Represented By The Secretary Of The Navy Broadband channelized circulator
JP2013053206A (ja) 2011-09-02 2013-03-21 Dainichiseika Color & Chem Mfg Co Ltd 耐光性コーティング剤およびその使用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2975687A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180036395A (ko) * 2016-09-30 2018-04-09 엘에스전선 주식회사 복합 결합기 및 그를 이용한 누설동축케이블 무선통신시스템
JP2019533366A (ja) * 2016-09-30 2019-11-14 エルエス ケーブル アンド システム リミテッド. 複合結合器及びそれを用いた漏洩同軸ケーブル無線通信システム
KR102505590B1 (ko) * 2016-09-30 2023-03-03 엘에스전선 주식회사 복합 결합기 및 그를 이용한 누설동축케이블 무선통신시스템

Also Published As

Publication number Publication date
EP2975687A1 (en) 2016-01-20
JP6065101B2 (ja) 2017-01-25
JPWO2014141897A1 (ja) 2017-02-16
EP2975687B1 (en) 2022-10-05
US20160028143A1 (en) 2016-01-28
EP2975687A4 (en) 2016-11-23
US10096882B2 (en) 2018-10-09

Similar Documents

Publication Publication Date Title
JP6553665B2 (ja) 高周波フィルタ
JP5950016B2 (ja) 高周波モジュールおよび通信装置
WO2015001828A1 (ja) フロントエンド回路
US9287847B2 (en) Module
WO2017013910A1 (ja) フロントエンドモジュール
US10148297B2 (en) Splitter
US9680444B2 (en) Multiplexer with filters and resonant circuit
US10484039B2 (en) Multiplexer, radio frequency front-end circuit, and communication device
US10057044B2 (en) Front-end circuit
JP2015061198A (ja) 電子回路
CN104348434A (zh) 放大电路
US9294068B2 (en) Filter circuit and module
JP6213574B2 (ja) 高周波フロントエンド回路
CN108631813B (zh) 前端模块
WO2018123913A1 (ja) 高周波モジュール、送受信モジュールおよび通信装置
JP6065101B2 (ja) デュプレクサ
US9923531B2 (en) Power processing circuit, two-path power processing circuit and multiplex power processing circuit
JP5360163B2 (ja) 高周波フロントエンドモジュール
TW201537822A (zh) 功率處理電路及多路放大電路
JP2008154201A (ja) 送信装置
CN109361409B (zh) 一种有效优化噪声系数的射频系统
JPWO2017221548A1 (ja) 弾性波フィルタ装置
JP2009253518A (ja) 広帯域増幅モジュール
JP3984234B2 (ja) バンドパスフィルタ回路
WO2020202891A1 (ja) 高周波モジュール及び通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14763862

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015505388

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14776054

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014763862

Country of ref document: EP