WO2015001764A1 - 樹脂組成物、プリプレグ及び積層板 - Google Patents
樹脂組成物、プリプレグ及び積層板 Download PDFInfo
- Publication number
- WO2015001764A1 WO2015001764A1 PCT/JP2014/003373 JP2014003373W WO2015001764A1 WO 2015001764 A1 WO2015001764 A1 WO 2015001764A1 JP 2014003373 W JP2014003373 W JP 2014003373W WO 2015001764 A1 WO2015001764 A1 WO 2015001764A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acid anhydride
- resin composition
- curing agent
- monofunctional acid
- epoxy resin
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/42—Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
- C08G59/4284—Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof together with other curing agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/14—Layered products comprising a layer of metal next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/20—Layered products comprising a layer of metal comprising aluminium or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/38—Layered products comprising a layer of synthetic resin comprising epoxy resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/42—Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/10—Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/241—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
- C08J5/244—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
- C08J5/249—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
- C08K9/06—Ingredients treated with organic substances with silicon-containing compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/021—Fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/02—Composition of the impregnated, bonded or embedded layer
- B32B2260/021—Fibrous or filamentary layer
- B32B2260/023—Two or more layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2260/00—Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
- B32B2260/04—Impregnation, embedding, or binder material
- B32B2260/046—Synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/101—Glass fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2264/00—Composition or properties of particles which form a particulate layer or are present as additives
- B32B2264/10—Inorganic particles
- B32B2264/102—Oxide or hydroxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/20—Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
- B32B2307/202—Conductive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/306—Resistant to heat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/714—Inert, i.e. inert to chemical degradation, corrosion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/08—PCBs, i.e. printed circuit boards
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2363/00—Characterised by the use of epoxy resins; Derivatives of epoxy resins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0066—Flame-proofing or flame-retarding additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/5399—Phosphorus bound to nitrogen
Definitions
- the present invention relates to a resin composition, a prepreg, and a laminate used as a material for a printed wiring board.
- an epoxy resin composition is used as an insulating material for a printed wiring board.
- a phenolic curing agent, a diamine curing agent, a cyanate curing agent, an acid anhydride is used as a curing agent for the epoxy resin.
- a physical curing agent or the like is used.
- acid anhydride curing agents are known to be effective in reducing the dielectric constant.
- Conventionally used acid anhydride curing agents include polyfunctional acid anhydride compounds having a plurality of acid anhydride rings in one molecule, styrene / maleic acid copolymer (SMA), and the like.
- SMA styrene / maleic acid copolymer
- Patent Document 1 describes the use of a copolymer (SMA) containing styrene and maleic anhydride as essential components as an acid anhydride curing agent.
- This invention is made
- the inventors of the present application as a result of intensive studies to solve the above problems, first focused on monofunctional acid anhydrides as curing agents capable of reducing the dielectric constant.
- a monofunctional acid anhydride when used as a curing agent for an epoxy resin, a high glass transition temperature can be achieved, a low dielectric constant can be achieved, and a peel strength can be improved.
- monofunctional acid anhydrides have volatility due to their relatively low molecular weight. Therefore, in the process of manufacturing a prepreg by impregnating a resin composition into a substrate and drying it, It was also found that part of the anhydride volatilized and disappeared.
- the component ratio of the resin composition may change greatly between before and after manufacturing the prepreg. There was concern that the properties would be adversely affected. Accordingly, the inventors of the present application have further studied, and as a result, the present invention has been completed as follows.
- the resin composition according to the present invention is: The epoxy resin and the monofunctional acid anhydride as the first curing agent are blended so that the equivalent ratio of the epoxy resin and the monofunctional acid anhydride is 1: 0.1 to 0.6, and the monofunctional acid anhydride is blended. A pre-reaction product obtained by previously reacting the epoxy resin and the monofunctional acid anhydride so that the ring opening rate of the acid anhydride is 80% or more; And a second curing agent comprising a compound other than the monofunctional acid anhydride.
- the second curing agent is selected from the group consisting of a polyfunctional acid anhydride, a styrene maleic anhydride resin, an amine curing agent, a thiol curing agent, a cyanate curing agent, an active ester curing agent, and a phenol curing agent.
- a polyfunctional acid anhydride a polyfunctional acid anhydride
- a styrene maleic anhydride resin an amine curing agent
- a thiol curing agent a cyanate curing agent
- an active ester curing agent e.g., a phenol curing agent
- the resin composition It also contains a phosphorus-containing flame retardant,
- the phosphorus content in the total amount of the organic component of the resin composition and the phosphorus-containing flame retardant is 1.0% by mass or more, It is preferable that at least a part of the phosphorus-containing flame retardant has a functional group that reacts with an acid anhydride group or a carboxy group.
- the resin composition In addition, it contains an inorganic filler, It is preferable that the content of the inorganic filler is 5 to 50 parts by mass with respect to the remaining 100 parts by mass of the resin composition excluding the inorganic filler.
- the inorganic filler is preferably subjected to a surface treatment.
- the resin composition may further contain a silane coupling agent, and the inorganic filler may be surface-treated with the silane coupling agent in the resin composition.
- the silane coupling agent is contained in the resin composition, the content of the silane coupling agent is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the inorganic filler.
- the prepreg according to the present invention is characterized in that the resin composition is formed by impregnating a base material and semi-curing it.
- the laminate according to the present invention is characterized by being formed by laminating the prepreg with a metal foil and heating and pressing.
- the monofunctional acid anhydride and the epoxy resin since the majority of the monofunctional acid anhydride and the epoxy resin are pre-reacted, volatilization of the monofunctional acid anhydride is suppressed, and the monofunctional acid anhydride is converted into the epoxy resin. It can be incorporated into a resin curing reaction system. And as a component of the curing agent, the monofunctional acid anhydride that is the first curing agent and the second curing agent are used in combination, so that a high glass transition temperature is achieved and a low dielectric constant is achieved. The peel strength can be improved.
- the resin composition according to the embodiment of the present invention contains an epoxy resin and a curing agent.
- the epoxy resin is not particularly limited as long as it is bifunctional or higher.
- Type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolak type epoxy resin, biphenyl type epoxy resin, alicyclic epoxy resin, polyfunctional phenol diglycidyl ether compound, polyfunctional alcohol diglycidyl ether compound, etc. it can.
- the said epoxy resin can use only 1 type, or can use 2 or more types together.
- the phosphorus content in the resin composition can be increased, thereby improving the flame retardancy.
- the resin composition according to the present embodiment includes a first curing agent and a second curing agent as the curing agent. First, the first curing agent will be described, and then the second curing agent will be described.
- the monofunctional acid anhydride is an acid anhydride having one cyclic acid anhydride group (—COOCO—) in one molecule.
- Examples of the monofunctional acid anhydride include acid anhydrides such as dicarboxylic acid compounds, and more specifically, for example, maleic anhydride, phthalic anhydride, 4-methylhexahydrophthalic anhydride, hexahydroanhydride.
- Phthalic acid methylbicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride, bicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride, 1,2,3,6- And tetrahydrophthalic anhydride.
- acid anhydrides such as a tricarboxylic acid compound
- trimellitic acid anhydride etc. can be mentioned, for example.
- the monofunctional acid anhydride as the curing agent has a relatively small molecular weight compared to SMA and the like, and thus is effective in suppressing an increase in varnish viscosity.
- a monofunctional acid having a weight average molecular weight of 400 or less. It is preferable to use an acid anhydride.
- the dielectric constant (specific dielectric constant (Dk)) of the cured product can be lowered and the peel strength can be increased as compared with the case where a polyfunctional acid anhydride is used. be able to.
- the monofunctional acid anhydride may be used alone or in combination of two or more.
- the epoxy resin and the monofunctional acid anhydride are used as a preliminary reaction product obtained by reacting them in advance.
- the epoxy resin and the monofunctional acid anhydride are blended so that an equivalent ratio of the epoxy resin and the monofunctional acid anhydride is 1: 0.1 to 0.6. .
- the monofunctional acid anhydride is less than 0.1 equivalent with respect to 1 equivalent of the epoxy resin, a high glass transition temperature may not be realized, or the peel strength may not be increased. There is. Moreover, there is a risk that a sufficiently low dielectric constant cannot be achieved.
- the reaction rate of the monofunctional acid anhydride in the preliminary reaction is high as described later. And it is difficult to impregnate the base material, which may make it difficult to produce the prepreg.
- the epoxy resin and the monofunctional acid anhydride are reacted so that the ring opening rate of the monofunctional acid anhydride is 80% or more (the upper limit is 100%).
- the ring-opening rate of the monofunctional acid anhydride can be calculated as follows, for example.
- a varnish primary varnish described later
- a curing accelerator may be blended in the varnish, but other organic components reactive with the epoxy resin (such as a second curing agent and a reactive flame retardant) are not blended.
- infrared absorption spectra before and after heating of the varnish are measured.
- the area before heating (A 1 ) and the area after heating (A 2 ) due to the cyclic acid anhydride group in the vicinity of 1800 to 1900 cm ⁇ 1 were determined, and the internal standard peak of 1500 to 1530 cm
- the area before heating (B 1 ) and the area after heating (B 2 ) of the peak due to the benzene ring near ⁇ 1 are determined.
- the ring opening rate of the monofunctional acid anhydride can be calculated by substituting the area of each peak thus determined into the following equation.
- Ring-opening rate (%) of the monofunctional acid anhydride ⁇ 1- (A 2 / B 2 ) / (A 1 / B 1 ) ⁇ ⁇ 100
- the ring opening rate of the monofunctional acid anhydride is less than 80%, a large amount of the unreacted monofunctional acid anhydride remains, and the monofunctional acid anhydride volatilizes and disappears easily during the production of the prepreg. .
- the curing agent is insufficient and the crosslinking density of the cured product of the resin composition is lowered, the glass transition temperature (Tg) of the cured product is lowered and the heat resistance is deteriorated, or the peel is peeled off. The strength may decrease.
- the heating conditions are appropriately adjusted so as to be 80% or more.
- the conditions for this preliminary reaction can be appropriately set by sampling the reaction product over time while performing the preliminary reaction and confirming the ring-opening rate.
- the second curing agent one made of a compound having reactivity with the epoxy resin other than the monofunctional acid anhydride is used.
- the second curing agent includes a polyfunctional acid anhydride, a styrene maleic anhydride resin (SMA), an amine curing agent, a thiol curing agent, a cyanate curing agent, an active ester curing agent, and a phenol. It is preferable to use at least one selected from the group of hardeners.
- the polyfunctional acid anhydride is an acid anhydride having a plurality of acid anhydride groups as functional groups, and specific examples thereof include ethylene glycol bisaanhydro trimellitate.
- Styrene maleic anhydride resin is a copolymer of styrene and maleic anhydride, and the ratio of styrene and maleic anhydride is not particularly limited.
- Specific examples of the amine curing agent include dicyandiamide.
- Specific examples of the thiol-based curing agent include pentaerythritol tetrakis (3-mercaptobutyrate).
- Specific examples of the cyanate curing agent include bisphenol A type cyanate resin. In the reaction between the epoxy resin and the monofunctional acid anhydride, the monofunctional acid anhydride as the first curing agent is insufficient due to the equivalent ratio, and the epoxy resin is likely to remain. By supplementing the insufficient equivalent with the second curing agent, insufficient curing as the resin composition can be prevented.
- curing agent can use only 1 type, or can use 2 or more types together.
- the resin composition contains the preliminary reaction product obtained by reacting the epoxy resin with the monofunctional acid anhydride in advance, and the second curing agent. Since the equivalent ratio of the epoxy resin to the monofunctional acid anhydride is 1: 0.1 to 0.6, the pre-reaction product contains the unreacted epoxy resin. Further, since the ring opening rate of the monofunctional acid anhydride is 80% or more, all of the monofunctional acid anhydride may be reacted, or the monofunctional acid anhydride unreacted with the preliminary reaction product. May be included slightly.
- the resin composition may contain a flame retardant, a curing accelerator and the like.
- a halogen flame retardant or a non-halogen flame retardant can be used.
- a non-halogen flame retardant for example, a phosphorus-containing flame retardant can be used.
- the phosphorus-containing flame retardant it is preferable that the phosphorus content in the total amount of the organic component of the resin composition and the phosphorus-containing flame retardant is 1.0% by mass or more in order to obtain good flame retardancy. .
- the upper limit of the phosphorus content is not particularly limited, but using the phosphorus-containing flame retardant exceeding the necessary and sufficient content for imparting flame retardancy, there is a risk of reducing electrical characteristics, heat resistance, etc.
- the phosphorus content in the total amount of the organic component and the phosphorus-containing flame retardant is preferably 5.0% by mass or less. Furthermore, it is preferable that at least a part of the phosphorus-containing flame retardant has a functional group that reacts with an acid anhydride group or a carboxy group (—COOH). Specifically, the phosphorus-containing flame retardant is preferably a reactive phosphorus-containing flame retardant having a functional group that reacts with an acid anhydride group or a carboxy group (—COOH).
- the acid anhydride group is, for example, an acid anhydride group of the unreacted monofunctional acid anhydride
- the carboxy group is, for example, when the epoxy resin and the monofunctional acid anhydride are reacted. It is a carboxy group formed by ring opening of the acid anhydride group of the monofunctional acid anhydride. Therefore, specific examples of the functional group possessed by the reactive phosphorus-containing flame retardant include a hydroxy group and an amino group.
- the monofunctional acid anhydride contains a lot of oxygen atoms, it tends to reduce the flame retardancy of the cured product, but when the reactive phosphorus-containing flame retardant as described above is reacted with the monofunctional acid anhydride, Since the phosphorus atom can be present near the oxygen atom, flame retardancy can be improved.
- the said flame retardant can use only 1 type, or can use 2 or more types together. If the effects of the present invention are not impaired, a molten phosphorus-containing flame retardant that does not react with the monofunctional acid anhydride and a dispersed phosphorus-containing flame retardant, or a flame retardant that does not contain phosphorus may be used.
- the molten phosphorus-containing flame retardant dissolves in the resin composition and becomes a homogeneous system.
- Specific examples thereof include phosphazene.
- the dispersed phosphorus-containing flame retardant is dispersed without being dissolved in the resin composition to become a heterogeneous system.
- Specific examples thereof include aluminum phosphinate that is a metal phosphate.
- the curing accelerator is not particularly limited as long as it can accelerate the reaction between the epoxy resin and the curing agent.
- an imidazole compound such as 2-ethyl-4-methylimidazole (2E4MZ) is used. Can be used.
- the content of the curing accelerator is not particularly limited as long as the effects of the present invention are not impaired.
- the resin composition may contain an inorganic filler or the like.
- the inorganic filler include silica such as spherical silica and crushed silica, metal hydroxide such as aluminum hydroxide and magnesium hydroxide, and the like.
- the content of the inorganic filler can be appropriately determined in consideration of the balance of low dielectric constant and low CTE, and is not particularly limited.
- the content of the inorganic filler is 5 to 50 parts by mass with respect to the remaining 100 parts by mass of the resin composition excluding the inorganic filler.
- High CTE can be suppressed when the content of the inorganic filler is 5 parts by mass or more.
- content of the said inorganic filler is 50 mass parts or less, the fall of the fluidity
- the inorganic filler is preferably subjected to a surface treatment with a silane coupling agent in advance.
- the silane coupling agent include epoxy silane, isocyanate silane, amino silane, vinyl silane, methacryl silane, acrylic silane, ureido silane, mercapto silane, sulfide silane, and styryl silane.
- the said silane coupling agent can use only 1 type, or can use 2 or more types together.
- the amount of polar groups generated by the reaction between the epoxy resin and the acid anhydride curing agent is small, but even if the amount of polar groups generated is small, the inorganic filler is surface-treated as described above. In this case, the inorganic filler and the organic component can be firmly bound by the silane coupling agent, and the alkali resistance of the cured product of the resin composition can be improved.
- Examples of the surface treatment method include a direct treatment method and an integral blend method.
- the direct treatment method is a method in which the inorganic filler is directly treated with the silane coupling agent in advance, and the inorganic filler after the surface treatment is added to a base varnish described later.
- the integral blend method is a method in which the silane coupling agent is added to a base varnish containing the inorganic filler. Compared to the integral blend method, the direct treatment method can efficiently bind the inorganic filler and the organic component, and can further improve the alkali resistance of the cured product of the resin composition. preferable.
- the resin composition preferably contains 1 to 10 parts by mass of the silane coupling agent with respect to 100 parts by mass of the inorganic filler.
- the content of the silane coupling agent is 1 part by mass or more, the alkali resistance of the cured product of the resin composition can be further improved.
- content of the said silane coupling agent is 10 mass parts or less, a heat resistant fall can be suppressed.
- the resin composition can be prepared as a resin varnish as follows.
- a varnish in which at least the epoxy resin to be pre-reacted and the monofunctional acid anhydride are blended and dissolved in a solvent is prepared.
- the primary varnish can be blended with an organic component that does not directly react with the epoxy resin or the monofunctional acid anhydride, such as the curing accelerator or a non-reactive flame retardant.
- other organic components reactive with the monofunctional acid anhydride for example, the second curing agent and the reactive flame retardant
- blended after a preliminary reaction is called a post-mixing component below.
- the primary varnish has a solid content (non-solvent component) concentration of 60 to 80% by mass and is heated at 60 to 80 ° C. for 1 to 5 hours while stirring with a stirrer such as a disper. Allow the reaction to proceed.
- the said preliminary reaction product which the said epoxy resin and the said monofunctional acid anhydride reacted produced
- the correlation between the heating temperature and the reaction time, which are preliminary reaction conditions, and the ring-opening rate of the monofunctional acid anhydride should be experimentally grasped in advance by performing sampling as described above. Thereby, the ring-opening rate of the said monofunctional acid anhydride in a reaction product can be 80% or more by adjusting said preliminary reaction conditions.
- said heating temperature and heating time are examples.
- the solvent used for the preparation of the varnish include the above epoxy resins such as ethers such as ethylene glycol monomethyl ether, ketones such as acetone and methyl ethyl ketone (MEK), and aromatic hydrocarbons such as benzene and toluene.
- a solvent having no reactivity with the monofunctional acid anhydride can be used.
- a base varnish can be prepared by adding the said post-blending component to the said primary varnish, adding the said solvent as needed, and mixing.
- the said base varnish is a varnish which mix
- the base varnish can be used as it is as a resin varnish for producing a prepreg.
- the resin varnish can be prepared by blending the inorganic component with the base varnish and further stirring and mixing at 20 to 40 ° C. for 1 to 3 hours to make uniform. it can.
- the inorganic component is, for example, the inorganic filler.
- the inorganic filler after surface treatment may be blended into the base varnish using a direct treatment method, or the inorganic filler and the silane coupling agent may be blended using an integral blend method. May be blended directly into the base varnish.
- the resin varnish of the resin composition obtained as described above is impregnated into a base material such as glass cloth, and this is heated and dried at 110 to 140 ° C. to remove the solvent in the resin varnish.
- a prepreg can be produced by removing and semi-curing the resin composition. At this time, most of the monofunctional acid anhydride is preliminarily reacted with the epoxy resin in advance to become the prereaction product, so that the monofunctional acid anhydride is not easily volatilized even during the heat drying. Most of the prepreg remains in the semi-cured resin composition.
- the heat drying is preferably performed so that the gel time of the prepreg is 60 to 120 seconds.
- the gel time of the prepreg is the time from immediately after placing the semi-cured resin composition collected from the prepreg on a plate heated to 170 ° C. until the resin composition gels.
- the resin content of the prepreg (content of the resin composition) is preferably 30 to 80% by mass with respect to the total amount of the prepreg.
- a laminate can be produced by laminating the prepreg formed as described above with a metal foil and molding it by heating and pressing. For example, by laminating a plurality of the prepregs and laminating the metal foil such as a copper foil on the outside, and laminating the laminate by heating and pressing the metal foil, the laminate as a metal-clad laminate such as a copper-clad laminate Can be manufactured.
- the cured product of the prepreg forms an insulating layer. Since the cured resin layer of the insulating layer is formed of a cured product of the resin composition, the glass transition temperature can be increased and the heat resistance can be improved.
- the dielectric constant of the insulating layer can be reduced as compared with the case where a polyfunctional acid anhydride is used, and the adhesion between the insulating layer and the metal foil can be reduced. And the peel strength can be increased.
- the heating and pressing conditions are, for example, 140 to 200 ° C., 0.5 to 5.0 MPa, and 40 to 240 minutes.
- a printed wiring board can be manufactured by forming a conductor pattern on the laminated board obtained as described above.
- the printed wiring board can be manufactured by forming the conductor pattern on the surface of the metal-clad laminate using a subtractive method.
- a multilayer printed wiring board can be manufactured. That is, after the conductor pattern (inner layer pattern) of the core material is roughened by black oxidation or the like, the metal foil is stacked on the surface of the core material via the prepreg, and this is heated and pressed to be laminated. Mold.
- the heating and pressing conditions at this time are, for example, 140 to 200 ° C., 0.5 to 5.0 MPa, and 40 to 240 minutes.
- the multilayer printed wiring board can be manufactured.
- the number of layers of the printed wiring board is not particularly limited.
- the dielectric constant of the insulating layer is lowered, when transmitting a signal by the conductor pattern, the signal speed can be increased and a large amount of information can be processed at high speed.
- epoxy resin (Epoxy resin) The following were used as an epoxy resin.
- SPB-100 manufactured by Otsuka Chemical Co., Ltd., a molten phosphorus-containing flame retardant (phosphazene, phosphorus content: 13 wt%)
- OP-935 manufactured by Clariant Japan Co., Ltd., a dispersed phosphorus-containing flame retardant (aluminum phosphinate, phosphorus content: 23 wt%)
- HPC-9100 manufactured by DIC Corporation, a reactive phosphorus-containing flame retardant (phosphorus content: 10 to 11 wt%, softening point: 133 to 147 ° C.)
- Emerald 2000 (phosphorus content: 9.8 wt%) manufactured by Chemtura Japan, which is a reactive phosphorus-containing flame retardant (Curing accelerator) The following were used as the curing accelerator.
- silane coupling agent (spherical silica surface-treated with epoxysilane in advance) “2500-GNO” manufactured by Admatechs Co., Ltd., spherical silica treated with isocyanate silane (spherical silica pre-treated with isocyanate silane) (Silane coupling agent) The following were used as silane coupling agents.
- KBM-903 (3-aminopropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd., which is an aminosilane “KBE-585” (3-ureidopropyltriethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd., which is a ureidosilane Mercaptosilane "KBM-802” (3-mercaptopropylmethyldimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd.
- KBE-846 bis (triethoxysilylpropyl) tetrasulfide
- Shin-Etsu Chemical Co., Ltd. which is a sulfide silane “KBM-1003” (vinyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd.
- a vinylsilane Epoxy silane "KBM-402” (3-glycidoxypropylmethyldimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd.
- the epoxy resin is diluted with a solvent (MEK) so that the solid content (non-solvent component) concentration is 60 to 80% by mass and heated at 60 to 80 ° C. for 1 to 5 hours while stirring with a disper.
- MEK solvent
- a primary varnish containing a pre-reaction product in which the resin and a part of the monofunctional anhydride were reacted was prepared.
- the infrared absorption spectrum before and after heating of this primary varnish was measured, and the ring opening rate of the acid anhydride was calculated.
- Tables 1 to 3 Further, a base varnish was prepared by blending the above-mentioned primary varnish with a second curing agent and a flame retardant in the blending amounts (parts by mass) shown in Tables 1 to 3, and stirring and mixing to make uniform.
- Comparative Examples 3 and 4 the epoxy resin, the second curing agent, the flame retardant, and the curing accelerator are blended in the blending amounts (parts by mass) shown in Table 2, and the solid content (non-solvent component) in the solvent (MEK)
- a base varnish was prepared by diluting to a concentration of 60 to 80% by mass, and stirring and mixing at 20 to 40 ° C. for 1 to 3 hours while stirring with a disper to homogenize.
- an inorganic filler was blended in the base varnish in the blending amounts (parts by mass) shown in Tables 1 and 2, and the mixture was further stirred and mixed at 20 to 40 ° C. for 1 to 3 hours to homogenize.
- Resin varnishes of ⁇ 20 and Comparative Examples 1 ⁇ 4 were prepared.
- the base varnish was blended with the inorganic filler and the silane coupling agent in the blending amounts (parts by mass) shown in Table 3, and further stirred and mixed at 20 to 40 ° C. for 1 to 3 hours. And then homogenized.
- the inorganic filler after the surface treatment was blended with the base varnish in the blending amount (part by mass) shown in Table 3, and further stirred and mixed at 20 to 40 ° C. for 1 to 3 hours. Prepared by homogenization.
- the resin varnish of the comparative example 2 was gelatinized and the prepreg could not be manufactured.
- the prepreg is impregnated with a glass cloth (“7628 type cloth” manufactured by Nitto Boseki Co., Ltd.) as a base material, and heated at 110 to 140 ° C. by a non-contact type heating unit. It dried and removed the solvent in a resin varnish, and manufactured by semicuring the resin composition.
- the resin content (resin composition content) of the prepreg is 65 to 75% by mass with respect to the total amount of the prepreg.
- the laminated plate is made of 8 sheets of prepreg (340mm x 510mm) and copper foil (Mitsui Metal Mining Co., Ltd., thickness 18 ⁇ m, ST foil) with a roughened surface on both sides. Then, it was manufactured as a copper-clad laminate by lamination molding. The heating and pressing conditions are 180 ° C., 2.94 MPa, and 60 minutes.
- the glass transition temperature of the prepreg was measured using a viscoelastic spectrometer “DMS6100” manufactured by Seiko Instruments Inc. Specifically, the measurement was performed with a bending module at a frequency of 10 Hz, and the glass transition temperature was defined as the temperature at which tan ⁇ was maximized when the temperature was raised from room temperature to 280 ° C. under a temperature rising rate of 5 ° C./min.
- DMS6100 viscoelastic spectrometer
- the peel strength of the copper foil on the surface of the copper clad laminate was measured in accordance with JIS C 6481. That is, the copper foil was peeled off at a speed of about 50 mm per minute, and the peel strength at that time (kN / m) was measured as the peel strength.
- A Weight reduction rate of 0% by mass or more and less than 0.2% by mass
- B Weight reduction rate of 0.2% by mass or more and less than 0.3% by mass
- C Weight reduction rate of 0.3% by mass %
- D the weight reduction rate is 0.4% by mass or more.
- each example has a higher glass transition temperature, a lower dielectric constant, a higher peel strength, and a higher flame retardancy as a whole, compared to the comparative examples. It was confirmed that each characteristic was obtained with a good level and a good balance.
- Examples 21 to 34 using the surface-treated inorganic filler are superior in alkali resistance compared to Example 1 using the surface-treated inorganic filler. It was confirmed that In addition, it was confirmed that Examples 31 to 34 using the direct treatment method were more excellent in alkali resistance than Examples 21 to 30 using the integral blend method.
- Comparative Example 1 where the ring opening rate of the monofunctional acid anhydride in the preliminary reaction is as low as 50%, about half of the blended monofunctional acid anhydride remains unreacted, and the monofunctional acid anhydride remains. It is presumed that the curing was insufficient due to the volatilization of the glass. Therefore, it is considered that the glass transition temperature was low and the flame retardancy was also lowered.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Reinforced Plastic Materials (AREA)
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
Abstract
Description
エポキシ樹脂及び第一硬化剤としての単官能酸無水物を、前記エポキシ樹脂と前記単官能酸無水物の当量比が1:0.1~0.6となるように配合すると共に、前記単官能酸無水物の開環率が80%以上となるように前記エポキシ樹脂と前記単官能酸無水物とを予め反応させた予備反応生成物と、
前記単官能酸無水物以外の化合物からなる第二硬化剤と
を含有することを特徴とする。
前記第二硬化剤が、多官能酸無水物、スチレン無水マレイン酸樹脂、アミン系硬化剤、チオール系硬化剤、シアネート系硬化剤、活性エステル系硬化剤、フェノール系硬化剤の群の中から選ばれた少なくとも1種であることが好ましい。
さらにリン含有難燃剤を含有し、
前記樹脂組成物の有機成分及び前記リン含有難燃剤の全量中のリン含有量が1.0質量%以上であり、
前記リン含有難燃剤の少なくとも一部が、酸無水物基又はカルボキシ基と反応する官能基を有していることが好ましい。
さらに無機充填材を含有し、
前記樹脂組成物から前記無機充填材を除いた残り100質量部に対して前記無機充填材の含有量が5~50質量部であることが好ましい。
前記単官能酸無水物の開環率が80%未満であると、未反応の前記単官能酸無水物が多く残存し、プリプレグの製造中に前記単官能酸無水物が揮発して消失しやすい。その結果、前記硬化剤が不足して前記樹脂組成物の硬化物の架橋密度が低下することが考えられ、硬化物のガラス転移温度(Tg)が低下して耐熱性が悪化したり、またピール強度が低下したりするおそれがある。前記単官能酸無水物の開環率は、ワニスの調製時の加熱温度及び加熱時間により変化するので、80%以上となるように適宜に加熱条件を調整する。この予備反応の条件は、予備反応を行いながら反応物を経時的にサンプリングし、開環率を確認することで適切に設定することができる。
エポキシ樹脂として以下のものを用いた。
リン含有エポキシ樹脂である新日鉄住金化学株式会社製「FX-289-P」(エポキシ当量:390g/eq、リン含有率:3.5wt%)
(硬化剤)
第一硬化剤として以下のものを用いた。
第二硬化剤として以下のものを用いた。
脂環式多官能酸無水物であるDIC株式会社製「B-4500」(粉末状酸無水物、酸無水物当量:132g/eq)
多官能酸無水物であり、スチレン無水マレイン酸樹脂であるCRAY VALLEY社製「SMA EF-30」(スチレン:無水マレイン酸=3:1であるスチレン/無水マレイン酸共重合体、スチレン無水マレイン酸レジン、中和価:280KOHmg/g、重量平均分子量:9500)
アミン系硬化剤である日本カーバイド工業株式会社製「DICY」(ジシアンジアミド)
チオール系硬化剤である昭和電工株式会社製「カレンズMT PE1」(4官能チオール、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、分子量:544.8)
シアネート系硬化剤であるLONZA社製「BADCy」(ビスフェノールA型シアネートエステル)
活性エステル系硬化剤であるDIC株式会社製「EXB-9485」
フェノール系硬化剤であるDIC株式会社製「TD-2090」
(難燃剤)
難燃剤として以下のものを用いた。
分散型リン含有難燃剤であるクラリアントジャパン株式会社製「OP-935」(ホスフィン酸アルミニウム、リン含有量:23wt%)
反応型リン含有難燃剤であるDIC株式会社製「HPC-9100」(リン含有量:10~11wt%、軟化点:133~147℃)
反応型リン含有難燃剤であるケムチュラ・ジャパン株式会社製「Emerald 2000」(リン含有量:9.8wt%)
(硬化促進剤)
硬化促進剤として以下のものを用いた。
(無機充填材)
無機充填材として以下のものを用いた。
水酸化アルミニウムである住友化学株式会社製「CL-303M」
エポキシシラン処理破砕シリカであるシベルコ・ジャパン株式会社製「Megasil 525 RCS」(あらかじめエポキシシランで表面処理された破砕シリカ、D100:<11μm)
エポキシシラン処理破砕シリカであるシベルコ・ジャパン株式会社製「Megasil 550 RCS」(あらかじめエポキシシランで表面処理された破砕シリカ、D100:<6μm)
エポキシシラン処理球状シリカである株式会社アドマテックス製「2500-SEJ」(あらかじめエポキシシランで表面処理された球状シリカ)
イソシアネートシラン処理球状シリカである株式会社アドマテックス製「2500-GNO」(あらかじめイソシアネートシランで表面処理された球状シリカ)
(シランカップリング剤)
シランカップリング剤として以下のものを用いた。
アクリルシランである信越化学工業株式会社製「KBM-5103」(3-アクリロキシプロピルトリメトキシシラン)
アミノシランである信越化学工業株式会社製「KBM-903」(3-アミノプロピルトリメトキシシラン)
ウレイドシランである信越化学工業株式会社製「KBE-585」(3-ウレイドプロピルトリエトキシシラン)
メルカプトシランである信越化学工業株式会社製「KBM-802」(3-メルカプトプロピルメチルジメトキシシラン)
スルフィドシランである信越化学工業株式会社製「KBE-846」(ビス(トリエトキシシリルプロピル)テトラスルフィド)
ビニルシランである信越化学工業株式会社製「KBM-1003」(ビニルトリメトキシシラン)
エポキシシランである信越化学工業株式会社製「KBM-402」(3-グリシドキシプロピルメチルジメトキシシラン)
スチリルシランである信越化学工業株式会社製「KBM-1403」(p-スチリルトリメトキシシラン)
イソシアネートシランである信越化学工業株式会社製「KBE-9007」(3-イソシアネートプロピルトリエトキシシラン)
(樹脂組成物)
実施例1~34、比較例1、2では、上記のエポキシ樹脂、第一硬化剤(単官能酸無水物)及び硬化促進剤を表1~表3に示す配合量(質量部)で配合し、溶媒(MEK)で固形分(非溶媒成分)濃度が60~80質量%となるように希釈して、これをディスパーで攪拌しながら60~80℃で1~5時間加熱することによって、エポキシ樹脂と単官能酸無水物の一部とが反応した予備反応生成物を含む1次ワニスを調製した。この1次ワニスの加熱前後の赤外線吸収スペクトルを測定して、酸無水物の開環率を算出した。その結果を表1~表3に示す。さらに上記の1次ワニスに第二硬化剤及び難燃剤を表1~表3に示す配合量(質量部)で配合し、攪拌・混合して均一化することによって、ベースワニスを調製した。
プリプレグは、上記の樹脂組成物の樹脂ワニスを基材であるガラスクロス(日東紡績(株)製「7628タイプクロス」)に含浸させ、これを非接触タイプの加熱ユニットにより110~140℃で加熱乾燥し、樹脂ワニス中の溶媒を除去して、樹脂組成物を半硬化させることによって製造した。プリプレグのレジンコンテント(樹脂組成物の含有量)は、プリプレグ全量に対して65~75質量%である。
積層板は、8枚のプリプレグ(340mm×510mm)を重ねると共にこの両側に粗化面を内側にして銅箔(三井金属鉱業株式会社製、厚み18μm、ST箔)を重ね、これを加熱加圧して積層成形することによって、銅張積層板として製造した。加熱加圧の条件は、180℃、2.94MPa、60分間である。
セイコーインスツル株式会社製粘弾性スペクトロメータ「DMS6100」を用いて、プリプレグのガラス転移温度を測定した。具体的には、曲げモジュールで周波数を10Hzとして測定を行い、昇温速度5℃/分の条件で室温から280℃まで昇温した際のtanαが極大を示す温度をガラス転移温度とした。
Hewlett-Packard社製「インピーダンス/マテリアルアナライザー4291A」を用いて、1GHzにおける銅張積層板の比誘電率をIPC-TM-650 2.5.5.9に準じて測定した。
銅張積層板の表面の銅箔の引きはがし強さをJIS C 6481に準拠して測定した。すなわち、銅箔を毎分約50mmの速さではがし、そのときの引きはがし強さ(kN/m)をピール強度として測定した。
板厚が0.8mm、1.2mm、1.6mmの銅張積層板をプリプレグの枚数を調整して上記と同様に製造した。各銅張積層板の表面の銅箔をエッチングにより除去した後、Underwriters Laboratoriesの”Test for Flammability of Plastic Materials-UL 94”に準じて難燃性試験を行って、難燃性を評価した。V-0を満たすものが「OK」、満たさないものが「NG」である。表1及び表2では、板厚とその板厚でV-0を満たすか否かを示す。
実施例1、21~34について、板厚が0.8mmの銅張積層板を上記と同様に製造した。この銅張積層板の表面の銅箔をエッチングにより除去した後、70℃の水酸化ナトリウム水溶液(10質量%)に30分間浸漬させた。そして、浸漬前後の重量から重量減少率を算出した。その結果を以下のように分けて表3に示す。
「B」:重量減少率が0.2質量%以上0.3質量%未満
「C」:重量減少率が0.3質量%以上0.4質量%未満
「D」:重量減少率が0.4質量%以上
Claims (8)
- エポキシ樹脂及び第一硬化剤としての単官能酸無水物を、前記エポキシ樹脂と前記単官能酸無水物の当量比が1:0.1~0.6となるように配合すると共に、前記単官能酸無水物の開環率が80%以上となるように前記エポキシ樹脂と前記単官能酸無水物とを予め反応させた予備反応生成物と、
前記単官能酸無水物以外の化合物からなる第二硬化剤と
を含有することを特徴とする
樹脂組成物。 - 前記第二硬化剤が、多官能酸無水物、スチレン無水マレイン酸樹脂、アミン系硬化剤、チオール系硬化剤、シアネート系硬化剤、活性エステル系硬化剤、フェノール系硬化剤の群の中から選ばれた少なくとも1種であることを特徴とする
請求項1に記載の樹脂組成物。 - さらにリン含有難燃剤を含有し、
前記樹脂組成物の有機成分及び前記リン含有難燃剤の全量中のリン含有量が1.0質量%以上であり、
前記リン含有難燃剤の少なくとも一部が、酸無水物基又はカルボキシ基と反応する官能基を有していることを特徴とする
請求項1又は2に記載の樹脂組成物。 - さらに無機充填材を含有し、
前記樹脂組成物から前記無機充填材を除いた残り100質量部に対して前記無機充填材の含有量が5~50質量部であることを特徴とする
請求項1乃至3のいずれか一項に記載の樹脂組成物。 - 前記無機充填材は、あらかじめシランカップリング剤により表面処理が施されていることを特徴とする
請求項4に記載の樹脂組成物。 - 前記無機充填材100質量部に対してさらにシランカップリング剤を1~10質量部含有することを特徴とする
請求項4に記載の樹脂組成物。 - 請求項1乃至6のいずれか一項に記載の樹脂組成物が基材に含浸され半硬化させて形成されたものであることを特徴とする
プリプレグ。 - 請求項7に記載のプリプレグを金属箔と積層し加熱加圧成形して形成されたものであることを特徴とする
積層板。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/901,996 US10017601B2 (en) | 2013-07-04 | 2014-06-24 | Resin composition, prepreg and laminate board |
CN201480038019.3A CN105358624B (zh) | 2013-07-04 | 2014-06-24 | 树脂组合物、预浸料和层压板 |
JP2015525041A JP5967558B2 (ja) | 2013-07-04 | 2014-06-24 | 樹脂組成物、プリプレグ及び積層板 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013141117 | 2013-07-04 | ||
JP2013-141117 | 2013-07-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015001764A1 true WO2015001764A1 (ja) | 2015-01-08 |
Family
ID=52143367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/003373 WO2015001764A1 (ja) | 2013-07-04 | 2014-06-24 | 樹脂組成物、プリプレグ及び積層板 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10017601B2 (ja) |
JP (1) | JP5967558B2 (ja) |
CN (1) | CN105358624B (ja) |
TW (1) | TWI616468B (ja) |
WO (1) | WO2015001764A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104761870A (zh) * | 2015-04-03 | 2015-07-08 | 广东汕头超声电子股份有限公司覆铜板厂 | 一种无卤低介质损耗型环氧树脂组合物及用其制作的半固化片与层压板 |
WO2016031228A1 (ja) * | 2014-08-29 | 2016-03-03 | パナソニックIpマネジメント株式会社 | 樹脂組成物、プリプレグ、樹脂付き金属箔、金属張積層板、プリント配線板 |
WO2016063506A1 (ja) * | 2014-10-22 | 2016-04-28 | パナソニックIpマネジメント株式会社 | 樹脂組成物、プリプレグ、樹脂付き金属箔、金属張及び積層板及びプリント配線板 |
JP2016190928A (ja) * | 2015-03-31 | 2016-11-10 | パナソニックIpマネジメント株式会社 | 熱硬化性樹脂組成物、金属張積層板、絶縁シート、プリント配線板、プリント配線板の製造方法及びパッケージ基板 |
JP2017179035A (ja) * | 2016-03-29 | 2017-10-05 | パナソニックIpマネジメント株式会社 | 樹脂組成物、プリプレグ、金属張積層板、プリント配線板、及び樹脂付き金属箔 |
WO2018190329A1 (ja) * | 2017-04-12 | 2018-10-18 | 三菱ケミカル株式会社 | シートモールディングコンパウンド、および繊維強化複合材料 |
WO2020050200A1 (ja) * | 2018-09-05 | 2020-03-12 | 三菱ケミカル株式会社 | シートモールディングコンパウンド、および繊維強化複合材料 |
JP2020100699A (ja) * | 2018-12-20 | 2020-07-02 | 味の素株式会社 | 樹脂組成物 |
US10940674B2 (en) * | 2016-12-07 | 2021-03-09 | Showa Denko Materials Co., Ltd. | Resin varnish, prepreg, laminate, and printed wiring board |
JP2022029527A (ja) * | 2020-08-05 | 2022-02-18 | 信越化学工業株式会社 | 熱硬化性樹脂組成物及び半導体装置 |
WO2023199738A1 (ja) * | 2022-04-11 | 2023-10-19 | 株式会社Adeka | 組成物及び硬化物 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018074278A1 (ja) | 2016-10-17 | 2018-04-26 | パナソニックIpマネジメント株式会社 | 樹脂組成物、樹脂組成物の製造方法、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板 |
CN111212877A (zh) * | 2017-10-25 | 2020-05-29 | 松下知识产权经营株式会社 | 热固性树脂组合物、预浸料、覆金属层压体、印刷线路板、具有树脂的膜以及具有树脂的金属箔 |
TWI719419B (zh) * | 2019-03-11 | 2021-02-21 | 台光電子材料股份有限公司 | 環氧樹脂組成物及由其製成的物品 |
CN111748174A (zh) * | 2019-03-29 | 2020-10-09 | 松下知识产权经营株式会社 | 树脂组合物、预浸料、带树脂的膜、带树脂的金属箔、覆金属层叠板和印刷电路板 |
WO2021044946A1 (ja) * | 2019-09-06 | 2021-03-11 | パナソニックIpマネジメント株式会社 | 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及びプリント配線板 |
TW202204373A (zh) * | 2020-07-17 | 2022-02-01 | 美商藍立方知識產權有限責任公司 | 用於高速低耗散電工用層壓板的可固化的熱固性材料 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07261387A (ja) * | 1994-03-22 | 1995-10-13 | Shinnakamura Kagaku Kogyo Kk | 感光性樹脂組成物 |
JPH10120875A (ja) * | 1996-10-14 | 1998-05-12 | Toto Kasei Co Ltd | エポキシ樹脂組成物 |
JP2001151837A (ja) * | 1999-11-30 | 2001-06-05 | Hitachi Chem Co Ltd | 絶縁樹脂組成物及びそれを用いた多層配線板の製造方法 |
JP2009280734A (ja) * | 2008-05-23 | 2009-12-03 | Toto Kasei Co Ltd | 新規エポキシ樹脂及びその製造方法、該エポキシ樹脂を必須成分とするエポキシ樹脂組成物及び該エポキシ樹脂を必須成分とする硬化物 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3553283A (en) * | 1967-06-29 | 1971-01-05 | Phillips Petroleum Co | Epoxy resin cured with polymercaptan ester as olefin polymer coating |
DE3171326D1 (en) * | 1980-10-27 | 1985-08-14 | Ici Plc | Coating lacquers based on epoxy resins |
JPH09194610A (ja) | 1996-01-24 | 1997-07-29 | Mitsubishi Gas Chem Co Inc | 低誘電率及び低誘電正接樹脂組成物を用いたプリプレグ及び積層板 |
US6521354B1 (en) * | 1999-08-06 | 2003-02-18 | Toray Industries, Inc. | Epoxy resin composition and semiconductor device |
JP5485487B2 (ja) * | 1999-12-13 | 2014-05-07 | ダウ グローバル テクノロジーズ エルエルシー | 難燃性リン元素含有エポキシ樹脂組成物 |
JP4588834B2 (ja) * | 2000-04-06 | 2010-12-01 | パナソニック電工株式会社 | リン含有エポキシ樹脂組成物及び、該リン含有エポキシ樹脂を用いる難燃性の樹脂シート、樹脂付き金属箔、プリプレグ及び積層板、多層板 |
US6376081B1 (en) * | 2000-10-02 | 2002-04-23 | Valspar Corporation | Self-crosslinking resin and coating compositions made therefrom |
US20040002559A1 (en) * | 2002-04-10 | 2004-01-01 | Malisa Troutman | Flame retardant coatings |
KR101250033B1 (ko) * | 2005-01-20 | 2013-04-02 | 스미토모 베이클리트 컴퍼니 리미티드 | 에폭시 수지 조성물, 그 잠복화 방법 및 반도체 장치 |
KR101004165B1 (ko) * | 2006-03-09 | 2010-12-24 | 쇼와 덴코 가부시키가이샤 | 열경화성 수지 조성물 및 그의 용도 |
US7820740B2 (en) * | 2006-10-02 | 2010-10-26 | Shin-Etsu Chemical Co., Ltd. | Flame retardant adhesive composition, and adhesive sheet, coverlay film and flexible copper-clad laminate using same |
JP2008266594A (ja) * | 2007-03-26 | 2008-11-06 | Sumitomo Chemical Co Ltd | エポキシ樹脂組成物 |
JP2012107096A (ja) * | 2010-11-16 | 2012-06-07 | Kaneka Corp | 熱伝導性硬化性樹脂組成物及び硬化性樹脂成形体 |
JP5650097B2 (ja) | 2011-11-09 | 2015-01-07 | 信越化学工業株式会社 | 熱硬化性エポキシ樹脂組成物及び光半導体装置 |
-
2014
- 2014-06-24 JP JP2015525041A patent/JP5967558B2/ja active Active
- 2014-06-24 US US14/901,996 patent/US10017601B2/en active Active
- 2014-06-24 CN CN201480038019.3A patent/CN105358624B/zh active Active
- 2014-06-24 WO PCT/JP2014/003373 patent/WO2015001764A1/ja active Application Filing
- 2014-06-27 TW TW103122270A patent/TWI616468B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07261387A (ja) * | 1994-03-22 | 1995-10-13 | Shinnakamura Kagaku Kogyo Kk | 感光性樹脂組成物 |
JPH10120875A (ja) * | 1996-10-14 | 1998-05-12 | Toto Kasei Co Ltd | エポキシ樹脂組成物 |
JP2001151837A (ja) * | 1999-11-30 | 2001-06-05 | Hitachi Chem Co Ltd | 絶縁樹脂組成物及びそれを用いた多層配線板の製造方法 |
JP2009280734A (ja) * | 2008-05-23 | 2009-12-03 | Toto Kasei Co Ltd | 新規エポキシ樹脂及びその製造方法、該エポキシ樹脂を必須成分とするエポキシ樹脂組成物及び該エポキシ樹脂を必須成分とする硬化物 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016031228A1 (ja) * | 2014-08-29 | 2016-03-03 | パナソニックIpマネジメント株式会社 | 樹脂組成物、プリプレグ、樹脂付き金属箔、金属張積層板、プリント配線板 |
WO2016063506A1 (ja) * | 2014-10-22 | 2016-04-28 | パナソニックIpマネジメント株式会社 | 樹脂組成物、プリプレグ、樹脂付き金属箔、金属張及び積層板及びプリント配線板 |
US9681541B2 (en) | 2014-10-22 | 2017-06-13 | Panasonic Intellectual Property Management Co., Ltd. | Resin composition, prepreg, metal foil with resin, metal-clad laminated plate, and printed wiring board |
JPWO2016063506A1 (ja) * | 2014-10-22 | 2017-08-10 | パナソニックIpマネジメント株式会社 | 樹脂組成物、プリプレグ、樹脂付き金属箔、金属張積層板及びプリント配線板 |
JP2016190928A (ja) * | 2015-03-31 | 2016-11-10 | パナソニックIpマネジメント株式会社 | 熱硬化性樹脂組成物、金属張積層板、絶縁シート、プリント配線板、プリント配線板の製造方法及びパッケージ基板 |
CN104761870A (zh) * | 2015-04-03 | 2015-07-08 | 广东汕头超声电子股份有限公司覆铜板厂 | 一种无卤低介质损耗型环氧树脂组合物及用其制作的半固化片与层压板 |
JP2017179035A (ja) * | 2016-03-29 | 2017-10-05 | パナソニックIpマネジメント株式会社 | 樹脂組成物、プリプレグ、金属張積層板、プリント配線板、及び樹脂付き金属箔 |
US10940674B2 (en) * | 2016-12-07 | 2021-03-09 | Showa Denko Materials Co., Ltd. | Resin varnish, prepreg, laminate, and printed wiring board |
WO2018190329A1 (ja) * | 2017-04-12 | 2018-10-18 | 三菱ケミカル株式会社 | シートモールディングコンパウンド、および繊維強化複合材料 |
WO2020050200A1 (ja) * | 2018-09-05 | 2020-03-12 | 三菱ケミカル株式会社 | シートモールディングコンパウンド、および繊維強化複合材料 |
JPWO2020050200A1 (ja) * | 2018-09-05 | 2020-09-10 | 三菱ケミカル株式会社 | シートモールディングコンパウンド、および繊維強化複合材料 |
JP7036122B2 (ja) | 2018-09-05 | 2022-03-15 | 三菱ケミカル株式会社 | シートモールディングコンパウンドの製造方法 |
JP2020100699A (ja) * | 2018-12-20 | 2020-07-02 | 味の素株式会社 | 樹脂組成物 |
JP2022029527A (ja) * | 2020-08-05 | 2022-02-18 | 信越化学工業株式会社 | 熱硬化性樹脂組成物及び半導体装置 |
WO2023199738A1 (ja) * | 2022-04-11 | 2023-10-19 | 株式会社Adeka | 組成物及び硬化物 |
Also Published As
Publication number | Publication date |
---|---|
CN105358624A (zh) | 2016-02-24 |
JPWO2015001764A1 (ja) | 2017-02-23 |
US10017601B2 (en) | 2018-07-10 |
CN105358624B (zh) | 2017-06-06 |
US20160369042A1 (en) | 2016-12-22 |
JP5967558B2 (ja) | 2016-08-10 |
TWI616468B (zh) | 2018-03-01 |
TW201514215A (zh) | 2015-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5967558B2 (ja) | 樹脂組成物、プリプレグ及び積層板 | |
JP6839811B2 (ja) | 樹脂組成物、プリプレグ、金属張積層板、プリント配線板、及び樹脂付き金属箔 | |
JP6600821B2 (ja) | 樹脂組成物、プリプレグ、樹脂付き金属箔、金属張積層板及びプリント配線板 | |
WO2014125763A1 (ja) | 樹脂組成物、樹脂ワニス、プリプレグ、金属張積層板、及びプリント配線板 | |
JP2010212689A (ja) | 印刷配線板用樹脂組成物並びにこれを用いたワニス、プリプレグ及び金属張積層板 | |
JP6604565B2 (ja) | プリント配線板用樹脂組成物、プリプレグ、金属張積層板およびプリント配線板 | |
KR20100134313A (ko) | 인쇄회로기판용 수지 조성물 및 이를 이용한 인쇄회로기판 | |
JP6664088B2 (ja) | 樹脂組成物、プリプレグ、樹脂付き金属箔、金属張積層板、プリント配線板 | |
WO2017134716A1 (ja) | 金属張積層板、金属張積層板の製造方法、樹脂付き金属部材、樹脂付き金属部材の製造方法、配線板、及び配線板の製造方法 | |
JP5771777B2 (ja) | エポキシ樹脂組成物、プリプレグ、積層板、および多層板 | |
JP2004027000A (ja) | エポキシ樹脂組成物、プリプレグ及び積層板 | |
JP6252929B2 (ja) | 樹脂組成物の製造方法 | |
JP2019194345A (ja) | プリント配線板用樹脂組成物、プリプレグ、金属張積層板およびプリント配線板 | |
JP2004059704A (ja) | プリント配線板用エポキシ樹脂組成物、プリプレグ及び積層板 | |
JP2009051969A (ja) | プリプレグ用エポキシ樹脂組成物、それを用いたプリプレグ、積層板、プリント配線板 | |
JP2005244151A (ja) | 電気用積層板とプリント配線板 | |
JP2004059703A (ja) | エポキシ樹脂組成物、プリプレグ及び積層板 | |
WO2015155982A1 (ja) | プリント配線板用樹脂組成物、プリプレグ、金属張積層板、プリント配線板 | |
JP2015063585A (ja) | 熱硬化性樹脂組成物並びにそれを用いたプリプレグ、積層板、プリント配線板、及び実装基板 | |
JP2010229171A (ja) | プリント配線板用エポキシ樹脂組成物とプリント配線板用プリプレグ、プリント配線板用金属張り積層板並びにプリント配線板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480038019.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14820630 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015525041 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14901996 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14820630 Country of ref document: EP Kind code of ref document: A1 |