WO2015001590A1 - 精製ポリアニリン含有液の製造方法 - Google Patents

精製ポリアニリン含有液の製造方法 Download PDF

Info

Publication number
WO2015001590A1
WO2015001590A1 PCT/JP2013/007568 JP2013007568W WO2015001590A1 WO 2015001590 A1 WO2015001590 A1 WO 2015001590A1 JP 2013007568 W JP2013007568 W JP 2013007568W WO 2015001590 A1 WO2015001590 A1 WO 2015001590A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyaniline
containing liquid
group
purified
benzidine
Prior art date
Application number
PCT/JP2013/007568
Other languages
English (en)
French (fr)
Inventor
真吾 小野寺
西村 剛
田代 裕統
翔太 戸塚
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2015001590A1 publication Critical patent/WO2015001590A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof

Definitions

  • the present invention relates to a method for producing a purified polyaniline-containing liquid.
  • Conductive polymers are used for electrolytic capacitors, backup batteries for electronic devices, electrodes for lithium ion batteries used in mobile phones and notebook computers, and the like.
  • polyaniline a kind of conductive polymer, can be synthesized relatively easily from inexpensive aniline and has the advantage of having excellent stability against oxygen and the like in a state of conductivity. And having characteristics.
  • a highly conductive polyaniline can be easily obtained by the method of Patent Document 1.
  • Patent Document 1 The conductive polyaniline composition described in Patent Document 1 has a polyaniline component dissolved therein and can be developed for various uses. However, in the same manner as a liquid containing general polyaniline and / or a complex thereof, a trace amount of benzidine which is a carcinogenic substance may be included. Inclusion of benzidine is not environmentally preferable.
  • Patent Document 2 describes a method of removing impurities by washing polyaniline with a solvent that does not dissolve polyaniline (Patent Document 2, page 2, upper left).
  • Patent Document 2 a method for reducing the amount of solvent used by circulating a solvent through an adsorbent is described in order to solve the problem of requiring a large amount of solvent to remove impurities to a high degree.
  • Patent Document 2 Top right of page 2).
  • the above method requires a solvent circulation mechanism, there is a problem that the manufacturing process becomes complicated. Further, benzidine could not be sufficiently removed by washing using a certain amount of solvent by this method.
  • An object of the present invention is to provide a simple method and a method for obtaining a purified polyaniline-containing liquid from which benzidine has been highly removed.
  • a polyaniline-containing liquid containing the following (a) and at least one of the following (b) and the following (c) is selected from silica gel, activated carbon, acidic clay, activated clay, and molecular sieve having a larger pore size than benzidine.
  • a method for producing a purified polyaniline-containing liquid comprising a step of contacting an adsorbent containing at least one of the purified polyaniline.
  • (A) Solvent (b) Polyaniline dissolved or dispersed in the solvent
  • the adsorbent is added to the polyaniline-containing liquid in an amount of 1% by weight to 20% by weight with respect to 100% by weight of the polyaniline-containing liquid and stirred to bring the polyaniline-containing liquid into contact with the adsorbent.
  • the polyaniline-containing liquid contains a polyaniline complex dissolved in a solvent as (c).
  • the polyaniline complex is doped with an acid ion generated from the following formula (III).
  • M is a hydrogen atom, an organic free radical or an inorganic free radical
  • m ′ is the valence of M.
  • R 13 and R 14 are each independently a hydrocarbon group or a group represented by — (R 15 O) r—R 16 .
  • R 15 is independently a hydrocarbon group or a silylene group
  • R 16 is a hydrogen atom, a hydrocarbon group or a group represented by R 17 3 Si—
  • r is an integer of 1 or more.
  • R 17 is each independently a hydrocarbon group.
  • the polyaniline complex includes a proton donor, phosphoric acid, and an emulsifier different from the proton donor, and is produced by chemical oxidative polymerization of a substituted or unsubstituted aniline in a solution having two liquid phases.
  • 10. The production method according to 10. 12 The production method according to any one of 1 to 11, wherein the purified polyaniline-containing liquid has a polyaniline complex content of 4% by weight or more and a benzidine content of 1 ppb or less. 13.
  • (D) content of polyaniline complex [wt%], (E) Content of benzidine [ppb] is The production method according to any one of 1 to 11, which satisfies the following formulas (IV) and (V): (E) ⁇ ⁇ 4 / (d) ⁇ ⁇ 1.0 (provided that (d) ⁇ 4) (IV) (E) ⁇ 1.0 (provided that (d)> 4) (V) 14.
  • a purified polyaniline-containing liquid The content of benzidine contained in the purified polyaniline-containing liquid is 1 ppb or less, A purified polyaniline-containing liquid, wherein the coating film obtained from the purified polyaniline-containing liquid has an electric conductivity of 50 S / cm or more. 16.
  • a coating obtained from a purified polyaniline-containing liquid, The content of benzidine contained is 1 ppb or less, A polyaniline-containing coating film having an electrical conductivity of 50 S / cm or more.
  • a polyaniline-containing liquid from which benzidine is highly removed can be produced by a simple method.
  • ITO indium tin oxide
  • the method for producing a purified polyaniline-containing liquid of the present invention comprises a polyaniline-containing liquid (composition) containing a solvent and at least one of polyaniline and a polyaniline complex dissolved or dispersed in the solvent, silica gel, activated carbon, acidic clay. And an activated clay, and a step of contacting with an adsorbent comprising at least one selected from a molecular sieve having a pore size larger than that of benzidine.
  • the polyaniline-containing liquid to be purified of the present invention contains (a) a solvent, and (b) polyaniline and (c) a polyaniline complex, and these are dissolved or dispersed in the solvent.
  • “dissolved” means that the polyaniline and / or polyaniline complex is uniformly dissolved in a molecular unit in a solvent. For example, even if the polyaniline complex is dissolved in a solvent and a centrifugal force (1000 G, 30 minutes) is applied with a centrifuge, the concentration gradient of the polyaniline complex does not occur in the solution.
  • the liquid containing the dissolved polyaniline and / or polyaniline complex is preferable because a uniform film without grain boundaries can be obtained when the film is formed.
  • the solvent may be an organic solvent or an inorganic solvent such as water, or may be a single type or a mixed solvent of two or more types.
  • An organic solvent is preferable.
  • the organic solvent may be a water-soluble organic solvent or an organic solvent that is substantially immiscible with water (water-immiscible organic solvent).
  • the water-soluble organic solvent may be a protic polar solvent or an aprotic polar solvent.
  • a protic polar solvent for example, alcohols such as isopropanol, 1-butanol, 2-butanol, 2-pentanol, and benzyl alcohol; ketones such as acetone; Ethers such as tetrahydrofuran and dioxane; aprotic polar solvents such as N-methylpyrrolidone and the like.
  • water-immiscible organic solvent examples include hydrocarbon solvents such as benzene, toluene, xylene, ethylbenzene, and tetralin; halogen-containing solvents such as methylene chloride, chloroform, carbon tetrachloride, dichloroethane, and tetrachloroethane; ethyl acetate, Examples thereof include ester solvents such as isobutyl acetate and n-butyl acetate; ketone solvents such as methyl isobutyl ketone, methyl ethyl ketone, cyclopentanone and cyclohexanone, and ether solvents such as cyclopentyl methyl ether. Of these, toluene, xylene, methyl isobutyl ketone (MIBK), chloroform, trichloroethane, and ethyl acetate are preferred because of their excellent so
  • a combination of two or more water-soluble organic solvents and water-immiscible organic solvents may be used.
  • isopropanol may be added to toluene to lower the viscosity.
  • the viscosity suitable for the present invention is 1.0 to 3.0 mPa ⁇ s.
  • the ratio of toluene and isopropanol is changed. 90 [g]: 10 [g] to 99 [g]: 1 [g].
  • the polyaniline (b) is a substituted or unsubstituted polyaniline molecule that is not doped with a dopant.
  • the polyaniline complex (c) is one in which a substituted or unsubstituted polyaniline molecule is doped with a dopant.
  • the description regarding the following polyaniline molecule is a description applicable to both the polyaniline molecule of (b) and the polyaniline molecule contained in the polyaniline complex of (c), unless otherwise specified.
  • the weight average molecular weight (hereinafter referred to as molecular weight) of the polyaniline molecule is preferably 20,000 or more. If the molecular weight is less than 20,000, the strength and stretchability of the conductive article obtained from the contained liquid may be reduced.
  • the molecular weight is preferably 20,000 to 500,000, more preferably 20,000 to 300,000, and still more preferably 20,000 to 200,000.
  • the molecular weight is, for example, 50,000 to 200,000, 53,000 to 200,000.
  • the weight average molecular weight is not the molecular weight of the polyaniline complex but the molecular weight of the polyaniline molecule.
  • the molecular weight distribution of the polyaniline molecule is preferably 1.5 or more and 20.0 or less, more preferably 1.5 or more and 5.0 or less, still more preferably 1.5 or more and 4.5 or less, and particularly preferably. Is 1.5 or more and 4.0 or less, and most preferably 1.5 or more and 3.6 or less.
  • the molecular weight distribution is not the molecular weight distribution of the polyaniline complex, but the molecular weight distribution of the polyaniline molecules, as described above.
  • the molecular weight distribution is a value represented by weight average molecular weight / number average molecular weight, and the molecular weight distribution is preferably smaller from the viewpoint of electrical conductivity.
  • the said weight average molecular weight and molecular weight distribution are obtained as a polystyrene conversion value which can be measured with a gel permeation chromatograph (GPC).
  • Examples of the substituent of the substituted polyaniline include linear or branched hydrocarbon groups such as methyl group, ethyl group, hexyl group and octyl group; alkoxy groups such as methoxy group and ethoxy group; aryloxy groups such as phenoxy group; Halogenated hydrocarbons such as a fluoromethyl group (—CF 3 group) are exemplified.
  • the polyaniline molecule is preferably an unsubstituted polyaniline molecule from the viewpoint of versatility and economy.
  • Examples of the dopant of the polyaniline complex include Bronsted acid ions generated from Bronsted acid or Bronsted acid salts, preferably organic acid ions generated from organic acids or salts of organic acids, and more preferably the following formula: It is an organic acid ion generated from the compound (proton donor) represented by (I).
  • the dopant when the dopant is expressed as a specific acid, and when the dopant is expressed as a specific salt, the specific acid ion generated from the specific acid or the specific salt may be used.
  • the polyaniline molecule mentioned above is doped.
  • M in the formula (I) is a hydrogen atom, an organic radical or an inorganic radical.
  • the organic free radical include a pyridinium group, an imidazolium group, and an anilinium group.
  • examples of the inorganic free radical include lithium, sodium, potassium, cesium, ammonium, calcium, magnesium, and iron.
  • X in the formula (I) is an anion group, for example, —SO 3 — group, —PO 3 2- group, —PO 4 (OH) 2 — group, —OPO 3 2- group, —OPO 2 (OH) — Group, —COO 2 — group, and —SO 3 — group is preferable.
  • a in formula (I) is a substituted or unsubstituted hydrocarbon group.
  • the hydrocarbon group is a chain or cyclic saturated aliphatic hydrocarbon group, a chain or cyclic unsaturated aliphatic hydrocarbon group, or an aromatic hydrocarbon group.
  • Examples of the chain saturated aliphatic hydrocarbon group include a linear or branched saturated aliphatic hydrocarbon group. Carbon number is 1 or more and 24 or less, for example, and 2 or more and 8 or less.
  • Examples of the cyclic saturated aliphatic hydrocarbon group include cycloalkyl groups such as a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • the cyclic saturated aliphatic hydrocarbon group may be a condensation of a plurality of cyclic saturated aliphatic hydrocarbon groups. Examples thereof include a norbornyl group, an adamantyl group, and a condensed adamantyl group.
  • Examples of the aromatic hydrocarbon group include a phenyl group, a naphthyl group, and an anthracenyl group.
  • Examples of the chain unsaturated aliphatic hydrocarbon include a linear or branched alkenyl group.
  • A is a substituted hydrocarbon group
  • the substituent is alkyl group, cycloalkyl group, vinyl group, allyl group, aryl group, alkoxy group, halogen group, hydroxy group, amino group, imino group, nitro group.
  • R in formula (I) is bonded to A, and each independently represents —H, —R 1 , —OR 1 , —COR 1 , —COOR 1 , — (C ⁇ O) — (COR 1 ).
  • hydrocarbon group for R 1 examples include a chain or cyclic saturated aliphatic hydrocarbon group, a chain or cyclic unsaturated aliphatic hydrocarbon group, and an aromatic hydrocarbon group. Specific examples include methyl group, ethyl group, linear or branched butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, pentadecyl group and eicosanyl group.
  • the substituent of the hydrocarbon group is an alkyl group, a cycloalkyl group, a vinyl group, an allyl group, an aryl group, an alkoxy group, a halogen group, a hydroxy group, an amino group, an imino group, a nitro group, or an ester group.
  • the hydrocarbon group for R 3 is the same as R 1 .
  • Examples of the alkylene group for R 2 include a methylene group, an ethylene group, and a propylene group.
  • N in the formula (I) is an integer of 1 or more, and m in the formula (I) is a valence of M / a valence of X.
  • dialkylbenzenesulfonic acid dialkylnaphthalenesulfonic acid, or a compound containing two or more ester bonds is preferable.
  • the compound containing two or more ester bonds is more preferably a sulfophthalic acid ester or a compound represented by the following formula (II).
  • M and X are the same as those in formula (I).
  • X is preferably a —SO 3 — group.
  • R 4 , R 5 and R 6 in the formula (II) are each independently a hydrogen atom, a hydrocarbon group or an R 9 3 Si— group (where R 9 is a hydrocarbon group, and three R 9 are They may be the same or different).
  • Examples of the hydrocarbon group when R 4 , R 5 and R 6 are hydrocarbon groups include linear or branched alkyl groups having 1 to 24 carbon atoms, aryl groups containing aromatic rings, and alkylaryl groups. It is done.
  • the hydrocarbon group for R 9 is the same as in the case of R 4 , R 5 and R 6 .
  • R 7 and R 8 in the formula (II) are each independently a hydrocarbon group or — (R 10 O) q —R 11 group [wherein R 10 is a hydrocarbon group or a silylene group, and R 11 is A hydrogen atom, a hydrocarbon group or R 12 3 Si— (wherein R 12 is a hydrocarbon group, and three R 12 may be the same or different), and q is an integer of 1 or more] .
  • Examples of the hydrocarbon group when R 7 and R 8 are hydrocarbon groups include a chain or cyclic saturated aliphatic hydrocarbon group, a chain or cyclic unsaturated aliphatic hydrocarbon group, or an aromatic hydrocarbon group Etc. Examples thereof include a linear or branched alkyl group having 1 to 24 carbon atoms, preferably 4 to 24 carbon atoms, an aryl group containing an aromatic ring, and an alkylaryl group.
  • Specific examples of the hydrocarbon group when R 7 and R 8 are hydrocarbon groups include, for example, a linear or branched butyl group, pentyl group, hexyl group, octyl group, and decyl group. Preferably, it is a linear or branched octyl group. More preferred is a 2-ethylhexyl group.
  • Examples of the hydrocarbon group when R 10 in R 7 and R 8 is a hydrocarbon group include a linear or branched alkylene group having 1 to 24 carbon atoms, an arylene group containing an aromatic ring, an alkylarylene group, An arylalkylene group.
  • R 7 and R 8 when R 11 and R 12 are hydrocarbon groups, the hydrocarbon group is the same as in R 4 , R 5 and R 6 , and q is 1 to 10 Preferably there is.
  • the compound represented by the above formula (II) is more preferably a sulfosuccinic acid derivative represented by the following formula (III).
  • M is the same as in formula (I).
  • M ′ is the valence of M.
  • R 13 and R 14 in the formula (III) are each independently a hydrocarbon group or — (R 15 O) r —R 16 group [wherein R 15 is independently a hydrocarbon group or a silylene group, R 16 is a hydrogen atom, a hydrocarbon group or an R 17 3 Si— group (wherein R 17 is independently a hydrocarbon group, and r is an integer of 1 or more).
  • the hydrocarbon group when R 13 and R 14 are hydrocarbon groups is the same as R 7 and R 8 .
  • a linear saturated aliphatic hydrocarbon group or a linear or branched alkyl group having 4 to 24 carbon atoms include a linear or branched butyl group, pentyl group, hexyl group, octyl group, and decyl group.
  • it is a linear or branched octyl group. More preferred is a 2-ethylhexyl group.
  • the hydrocarbon group when R 15 is a hydrocarbon group is the same as R 10 described above.
  • the hydrocarbon group in the case where R 16 and R 17 are hydrocarbon groups is the same as R 4 , R 5 and R 6 described above.
  • r is preferably from 1 to 10.
  • R 13 and R 14 are a — (R 15 O) r —R 16 group are the same as those for — (R 10 O) q —R 11 in R 7 and R 8 .
  • the hydrocarbon group for R 13 and R 14 is the same as R 7 and R 8 and is preferably a butyl group, a hexyl group, a 2-ethylhexyl group, or a decyl group.
  • the conductivity of the polyaniline complex and the solubility in a solvent can be controlled by changing the structure of the above dopant (Japanese Patent No. 338466).
  • an optimum dopant can be selected according to required characteristics for each application.
  • di-2-ethylhexylsulfosuccinate and sodium di-2-ethylhexylsulfosuccinate are preferable.
  • the dopant of the present invention is preferably di-2-ethylhexyl sulfosuccinate ion.
  • the dopant of the polyaniline complex is doped to the substituted or unsubstituted polyaniline by ultraviolet / visible / near-infrared spectroscopy or X-ray photoelectron spectroscopy. As long as it has sufficient acidity to generate odor, it can be used without any restriction on the chemical structure.
  • the polyaniline complex can be produced by a well-known production method.
  • the polyaniline complex contains a proton donor, phosphoric acid, and an emulsifier different from the proton donor. It can be produced by chemical oxidative polymerization of substituted anilines. Moreover, it can manufacture by adding an oxidation polymerization agent in the solution which contains the emulsifier different from a substituted or unsubstituted aniline, a proton donor, phosphoric acid, and a proton donor, and has two liquid phases. In addition, it is thought that the emulsifier plays the role which prevents the phase inversion mentioned later.
  • phase inversion is a phenomenon in which the liquid phase that was a continuous phase changes to a dispersed phase, and the other liquid phase that was a dispersed phase changes to a continuous phase.
  • the “solution having two liquid phases” means a state in which two liquid phases that are incompatible with each other exist in the solution. For example, it means a state in which a “high polarity solvent phase” and a “low polarity solvent phase” exist in the solution.
  • a solution having two liquid phases includes a state in which one liquid phase is a continuous phase and the other liquid phase is a dispersed phase. For example, a state where the “high polarity solvent phase” is a continuous phase and the “low polarity solvent phase” is a dispersed phase, and the “low polarity solvent phase” is a continuous phase and the “high polarity solvent phase” is a dispersed phase. Is included.
  • the high polarity solvent used in the method for producing the polyaniline complex water is preferable, and as the low polarity solvent, aromatic hydrocarbons such as toluene and xylene are preferable.
  • the proton donor is preferably a compound represented by the above formula (I), more preferably a compound represented by the above formula (II), and further preferably a compound represented by the above formula (III).
  • the emulsifier can be either an ionic emulsifier whose hydrophilic part is ionic or a nonionic emulsifier whose non-ionic hydrophilic part is used, or a mixture of one or more emulsifiers. May be used.
  • the ionic emulsifier examples include a cationic emulsifier, an anionic emulsifier, and a zwitter emulsifier.
  • Specific examples of the anionic emulsifier include fatty acids, disproportionated rosin soaps, higher alcohol esters, polyoxyethylene alkyl ether phosphates, alkenyl succinic acids, sarcosinates, and salts thereof.
  • Specific examples of the cationic emulsifier (cationic emulsifier) include alkyl dimethyl benzyl ammonium salt and alkyl trimethyl ammonium salt.
  • zwitterionic emulsifier both ion emulsifier
  • alkyl betaine type alkyl betaine type
  • alkyl amide betaine type amino acid type
  • amine oxide type alkyl betaine type
  • nonionic emulsifier include polyoxyethylene alkyl ether, polypropylene glycol polyethylene glycol ether, polyoxyethylene glycerol borate fatty acid ester, and polyoxyethylene sorbitan fatty acid ester.
  • anionic emulsifiers and nonionic emulsifiers are preferred.
  • anionic emulsifier an anionic emulsifier having a phosphate ester structure is more preferable.
  • nonionic emulsifier a nonionic emulsifier having a polyoxyethylene sorbitan fatty acid ester structure is more preferable.
  • the amount of proton donor to be used is preferably 0.1 to 0.5 mol, more preferably 0.3 to 0.45 mol, still more preferably 0.35 to 0, per 1 mol of aniline monomer. .4 mol.
  • the amount of the proton donor used is larger than the above range, for example, there is a possibility that the “high-polar solvent phase” and the “low-polar solvent phase” cannot be separated after completion of the polymerization.
  • the concentration of phosphoric acid used is 0.3 to 6 mol / L, more preferably 1 to 4 mol / L, still more preferably 1 to 2 mol / L with respect to the highly polar solvent.
  • the amount of the emulsifier used is preferably 0.001 to 0.1 mol, more preferably 0.002 to 0.02 mol, and still more preferably 0.003 to 0.01 mol with respect to 1 mol of the aniline monomer. is there.
  • the “high polar solvent phase” and the “low polar solvent phase” may not be separated after the completion of the polymerization.
  • the oxidizing agent used for chemical oxidative polymerization includes peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, and hydrogen peroxide; ammonium dichromate, perchloric acid.
  • peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, and hydrogen peroxide; ammonium dichromate, perchloric acid.
  • Ammonium, potassium iron sulfate (III), iron trichloride (III), manganese dioxide, iodic acid, potassium permanganate, iron paratoluenesulfonate, etc. can be used, and persulfates such as ammonium persulfate are preferred.
  • These oxidizing agents may be used alone or in combination of two or more.
  • the amount of the oxidizing agent used is preferably 0.05 to 1.8 mol, more preferably 0.8 to 1.6 mol, and still more preferably 1.2 to 1.4 mol with respect to 1 mol of the aniline monomer. It is. A sufficient degree of polymerization can be obtained by setting the amount of the oxidizing agent used within the above range. Further, since aniline is sufficiently polymerized, it is easy to recover the liquid separation, and there is no possibility that the solubility of the polymer is lowered.
  • the polymerization temperature is usually ⁇ 5 to 60 ° C., preferably ⁇ 5 to 40 ° C. The polymerization temperature may be changed during the polymerization reaction. Side reactions can be avoided when the polymerization temperature is within this range.
  • the polyaniline complex can be produced by the following method.
  • a solution in which a proton donor and an emulsifier are dissolved in toluene is placed in a separable flask placed in a stream of inert atmosphere such as nitrogen, and a substituted or unsubstituted aniline is added to the solution.
  • phosphoric acid containing no chlorine is added to the solution, and the solution temperature is cooled. Stirring is performed after cooling the internal temperature of the solution.
  • a solution in which ammonium persulfate is dissolved in phosphoric acid is dropped using a dropping funnel and reacted. Thereafter, the solution temperature is raised and the reaction is continued. After completion of the reaction, the aqueous phase separated into two phases by standing is separated.
  • Toluene is added to the organic phase side and washed with phosphoric acid and ion-exchanged water to obtain a polyaniline complex (protonated polyaniline) toluene solution. Some insolubles contained in the obtained complex solution are removed, and a toluene solution of the polyaniline complex is recovered. The solution is transferred to an evaporator, heated and decompressed to evaporate and remove volatile components, whereby a polyaniline complex is obtained.
  • Polyaniline molecules that are not polyaniline complexes can be produced by well-known methods.
  • a specific example is the production method described in JP-A-3-28229. While maintaining the temperature of aniline in a solvent at a temperature of, for example, 5 ° C. or lower in the presence of a protonic acid, one mole of oxidant and one molecule of oxidant are reduced per mole of aniline.
  • the aniline oxidation polymer doped with the protonic acid is formed by gradually adding, for example, 2 equivalents or more, in an equivalent amount defined as the number of electrons divided by the number of electrons required for the formation of the polymer. It can be produced by undoping with a basic substance.
  • a polyaniline molecule solution can be produced by mixing the polyaniline complex described above with a 1M aqueous sodium hydroxide solution to produce a dedoped polyaniline powder and dissolving it in NMP (N-methylpyrrolidone). .
  • the polyaniline-containing liquid is a liquid containing the above-described solvent and polyaniline and / or a polyaniline complex.
  • the containing liquid may be, for example, a solution of a low polarity solvent (toluene, xylene, etc.) recovered by the above-described method for producing a polyaniline complex, and the polyaniline and / or polyaniline complex may be dispersed and / or dispersed in a solvent. Or it may be dissolved.
  • the ratio of the polyaniline complex in the solvent is not particularly limited, but is usually 900 g / kg or less, preferably 0.01 g / kg or more and 300 g / kg or less, more preferably 10 g / kg or more and 300 g / kg. It is below, More preferably, it is the range of 30 g / kg or more and 300 g / kg or less.
  • additives such as phenolic compounds (such as 4-methoxyphenol) and heat stabilizers (such as naphthalene sulfonic acid) are added to the polyaniline-containing liquid as a second dopant. May be.
  • phenolic compounds such as 4-methoxyphenol
  • heat stabilizers such as naphthalene sulfonic acid
  • the above-mentioned polyaniline-containing liquid is brought into contact with an adsorbent containing at least one selected from silica gel, acidic clay, activated clay, specific molecular sieve, and activated carbon.
  • an adsorbent containing at least one selected from silica gel, acidic clay, activated clay, specific molecular sieve, and activated carbon containing at least one selected from silica gel, acidic clay, activated clay, specific molecular sieve, and activated carbon.
  • benzidine can be removed to a high degree.
  • benzidine in a polyaniline-containing liquid having a polyaniline and / or polyaniline complex concentration of 4% by weight or more can be removed to 1 ppb (weight) or less.
  • the purified polyaniline containing liquid obtained by this invention satisfy
  • Silica gel is a general name for high-density three-dimensional aggregates of colloidal silica fine particles, and is an amorphous porous body of silicon dioxide. Commercially available products include crushed and spherical particles having a particle diameter of several mm to several ⁇ m and a pore diameter of approximately 2 to 50 nm. The surface of the silica gel is covered with a siloxane structure part or silanol group, and polar molecules can be adsorbed by hydrogen bonds or polarity. In addition, since the silanol group is a weak acid, silica gel becomes a weak solid acid. Silica gel has a weakly acidic OH group on the surface, and is considered to react with and adsorb the amino group of benzidine. The silica gel preferably has a pore size of 20 mm or more, more preferably 50 mm or more. The pore diameter is a value measured by a nitrogen adsorption method, and is a catalog value of commercially available silica gel.
  • the amount of silica gel used is preferably 1 to 20% by weight, more preferably 5 to 15% by weight, based on the polyaniline-containing liquid.
  • Activated carbon is mainly made of porous carbon that has been subjected to chemical or physical treatment (activation, activation) in order to increase adsorption efficiency for the purpose of selectively separating, removing, and purifying specific substances. It is a substance used as a component. Activated carbon includes powdery, granular and fibrous materials. Since activated carbon is mostly composed of carbon, the chemical nature of the surface is hydrophobic. However, there are a carboxyl group, a phenolic hydroxyl group, a quinone-type carbonyl group, etc. on the surface, and it has some hydrophilicity.
  • Activated carbon has the property of easily adsorbing molecules having strong hydrophobicity and aromatic rings, and benzidine is considered to be easily adsorbed because it has aromatic rings.
  • the amount of activated carbon used is preferably 1 to 15% by weight, particularly 3 to 8% by weight, based on the polyaniline-containing liquid.
  • the molecular sieve is a kind of zeolite, and the raw material is mainly composed of silica, alumina, alkali and alkaline earth metal hydroxide. It is a porous body and adsorbs molecules inside the pores. Depending on the type, the pore size varies, the surface is polar, and hydrogen molecules with dipolar molecules, dipolarity, etc. can selectively separate desired molecules from mixed gases or liquids with different molecular sizes and polarities. it can.
  • a molecular sieve having a pore size larger than that of benzidine is used. Since the size of the benzidine molecule is about 4.4 mm in length and about 10.8 mm in width, a molecular sieve having a pore size larger than this, specifically, one having a pore size greater than that of molecular sieve 13X is used. To do. Molecular sieves can trap and remove benzidine in the pores. However, when the pore size is smaller than that of benzidine in the molecular sieve, benzidine cannot be taken into the pores, so that the removal performance is lowered.
  • the use amount of the molecular sieve is preferably 1 to 20% by weight, particularly preferably 5 to 15% by weight, based on the polyaniline-containing liquid.
  • Acid clay is a clay mainly composed of montmorillonite. Acid clay has adsorption ability and can adsorb polar molecules. It may be produced by sulfuric acid treatment of bentonite.
  • the amount of the acid clay used is preferably 1 to 20% by weight, more preferably 1 to 10% by weight, and particularly preferably 1.5 to 5% by weight with respect to 100% by weight of the polyaniline-containing solution.
  • Activated clay is a kind of clay and can be obtained by heat-treating acidic clay with sulfuric acid or hydrochloric acid. Activated clay has adsorption ability and can adsorb polar molecules.
  • the amount of the activated clay used is preferably 1 to 20% by weight, more preferably 1 to 10% by weight, and particularly preferably 5 to 10% by weight with respect to 100% by weight of the polyaniline-containing solution.
  • the adsorbent is preferably acidic clay or activated clay.
  • acidic clay or activated clay By using acidic clay or activated clay, benzidine contained in the contained liquid is removed to 1 ppb or less, and the conductivity of the coating film obtained from the contained liquid is maintained at a higher level. Since molecular sieve is basic, it may cause undoping. Since activated carbon has a strong adsorptive power, it may adsorb a dopant and cause de-doping or de-doping due to a basic site such as a basic quinone carbonyl group.
  • Examples of the method of bringing the polyaniline-containing liquid into contact with the adsorbent include, for example, a method of filling the adsorbent in a container such as a column and circulating the containing liquid, a method of adding the adsorbent to the polyaniline-containing liquid, and stirring. Is mentioned.
  • a method of adding an adsorbent and stirring is preferable.
  • the contact time is not particularly limited and can be appropriately set according to the required benzidine concentration. Usually, it is 10 minutes or more, for example, about 1 to 48 hours, and in order to make the benzidine concentration 1 ppb or less, 6 hours or more and 32 hours or less are preferable.
  • the contact temperature is not particularly limited, but is usually preferably about 10 ° C to 30 ° C.
  • the concentration of polyaniline and / or polyaniline complex is preferably 4% by weight (wt%) or more, and the benzidine concentration is 1 ppb (weight) or less. It is preferable.
  • the benzidine concentration can be measured with a liquid chromatograph / tandem mass spectrometer (LC / MS / MS).
  • the content of benzidine contained in the purified polyaniline-containing liquid is 1.0 ppb or less, and the electrical conductivity of the coating film obtained from the purified polyaniline-containing liquid Is preferably 50 S / cm or more.
  • the coating film obtained from the purified polyaniline-containing liquid obtained in another aspect of the invention is referred to as a polyaniline-containing coating film, and the polyaniline-containing coating film of the present invention has a benzidine content of 1.0 ppb or less, And it is preferable that the electrical conductivity is 50 S / cm or more.
  • the content of benzidine contained in the purified polyaniline-containing liquid obtained in another aspect of the present invention is preferably less than 1.0 ppb, more preferably 0.7 ppb or less, and 0.55 ppb or less. More preferably.
  • the content of benzidine contained in the polyaniline-containing coating film is preferably less than 1.0 ppb, more preferably 0.7 ppb or less, and even more preferably 0.55 ppb or less.
  • the electric conductivity of the polyaniline-containing coating film is preferably 60 S / cm or more, preferably 80 S / cm or more, and preferably 90 S / cm or more.
  • the upper limit of the electrical conductivity is not limited, it is usually 700 S / cm or less.
  • preliminary cleaning may be performed before the contact step.
  • the benzidine concentration can be lowered in advance, and the amount of benzidine adsorbed on the adsorbent in the contacting step can be reduced.
  • Additives such as phenolic compounds and heat stabilizers can be appropriately added to the purified polyaniline-containing liquid of the present invention.
  • a heat-resistant stabilizer is an acidic substance or a salt of an acidic substance, and the acidic substance may be either an organic acid (an organic compound acid) or an inorganic acid (an inorganic compound acid). May be included. Specific examples include naphthalene sulfonic acid.
  • a phenolic compound is a compound having a phenolic hydroxyl group. Specific examples include 4-methoxyphenol, 4-isopropylphenol, and t-amylphenol.
  • benzidine can be efficiently removed by using the predetermined adsorbent described above. Therefore, a large amount of solvent is not required, and a solvent circulation mechanism is not required. In addition, benzidine can be highly removed from the liquid containing the polyaniline complex dissolved in the solvent. Furthermore, especially when silica gel is used, even if benzidine is removed to a high degree, the conductivity of the film obtained from the contained liquid does not decrease.
  • Production Example 1 [Production of polyaniline complex] Dissolve 37.8 g of aerosol OT (sodium di-2-ethylhexylsulfosuccinate) and 1.47 g of sorbon T-20 (manufactured by Toho Chemical Co., Ltd.), a nonionic emulsifier having a polyoxyethylene sorbitan fatty acid ester structure, in 600 mL of toluene. The solution was placed in a 6 L separable flask placed under a nitrogen stream, and 22.2 g of aniline was added to the solution.
  • aerosol OT sodium di-2-ethylhexylsulfosuccinate
  • sorbon T-20 manufactured by Toho Chemical Co., Ltd.
  • Production Example 2 1500 ml of toluene was added to the toluene phase obtained in Production Example 1, washed once with 500 mL of 1M phosphoric acid and three times with 500 mL of ion-exchanged water, the toluene phase was allowed to stand and concentrated for concentration adjustment. As a result, 900 g of a polyaniline complex toluene solution was obtained. This polyaniline complex toluene solution had a polyaniline complex concentration of 5.7% by weight and a benzidine concentration of 8.5 ppb.
  • the polyaniline complex obtained in Production Example 2 had a weight average molecular weight of 68700 and a molecular weight distribution of 2.9. The doping rate was 0.47. The weight average molecular weight and molecular weight distribution were measured by GPC (gel permeation chromatography).
  • the measurement was carried out using a GPC column (two Shodex KF-806M and one Shodex KF-803) manufactured by Showa Denko KK, and the measurement conditions were NMP containing 0.01M LiBr and a flow rate of 0.40 ml / min, the column temperature was 60 ° C., the injection amount was 100 ⁇ L, and the UV detection wavelength was 270 nm. Moreover, molecular weight distribution was performed in polystyrene conversion.
  • Example 1 To 900 g of the polyaniline complex toluene solution obtained in Production Example 2, 45 g of isopropyl alcohol (IPA) was added. 90 g of silica gel (manufactured by Aldrich, high purity grade, poresize 60 mm, 70 to 230 mesh for column chromatography) was added and stirred for 24 hours. Then, no. Filtration was performed using 5A filter paper to obtain a toluene solution of purified polyaniline (purified polyaniline coating solution).
  • IPA isopropyl alcohol
  • Example 2 A toluene solution of purified polyaniline was obtained in the same manner as in Example 1 except that 45 g of activated carbon (manufactured by Aldrich, undulated powder, 100-400 mesh) was added instead of silica gel.
  • activated carbon manufactured by Aldrich, undulated powder, 100-400 mesh
  • Example 3 A toluene solution of purified polyaniline was obtained in the same manner as in Example 1 except that 90 g of molecular sieve 13X (manufactured by Aldrich, beads, 8-12 mesh) was added instead of silica gel.
  • molecular sieve 13X manufactured by Aldrich, beads, 8-12 mesh
  • Example 4 A toluene solution of purified polyaniline was obtained in the same manner as in Example 1 except that 90 g of acidic clay # 20 (manufactured by Mizusawa Chemical Co., Ltd.) was added instead of silica gel.
  • Example 5 A toluene solution of purified polyaniline was obtained in the same manner as in Example 1 except that 45 g of acid clay # 20 (manufactured by Mizusawa Chemical Co., Ltd.) was added instead of silica gel.
  • Example 6 A toluene solution of purified polyaniline was obtained in the same manner as in Example 1 except that 18 g of acid clay # 20 (Mizusawa Chemical Co., Ltd.) was added instead of silica gel.
  • Example 7 A toluene solution of purified polyaniline was obtained in the same manner as in Example 1 except that 90 g of activated clay V2 (manufactured by Mizusawa Chemical Co., Ltd.) was added instead of silica gel.
  • Comparative Example 1 A toluene solution of purified polyaniline was obtained in the same manner as in Example 1 except that silica gel and IPA were not added.
  • Comparative Example 2 A toluene solution of purified polyaniline was obtained in the same manner as in Example 1 except that 90 g of ion exchange resin (Amberlyst 15H, manufactured by Aldrich) was added instead of silica gel.
  • ion exchange resin Amberlyst 15H, manufactured by Aldrich
  • Comparative Example 4 A toluene solution of purified polyaniline was obtained in the same manner as in Example 1 except that 90 g of molecular sieve 3A (Aldrich, beads, 8-12 mesh) was added instead of silica gel.
  • the molecular sieve 3A is a molecular sieve having a pore size smaller than that of benzidine.
  • Comparative Example 5 A toluene solution of purified polyaniline was obtained in the same manner as in Example 1 except that 90 g of alumina (manufactured by Aldrich, activated, acidic, Blockmann 1) was added instead of silica gel.
  • Benzidine standard stock solution (5000 ⁇ g / ml, Aldrich) 0.2 ml was collected, and 100 ml with methanol was used as a benzidine standard solution. (10000 ng / mL). Then, it diluted with methanol sequentially and the benzidine standard solution (1.0, 5.0, 10, 50 ng / mL) was prepared, and the analytical curve was created by LC / MS / MS. 4 ml of the obtained toluene solution of purified polyaniline was collected and concentrated to dryness under a nitrogen stream. 10 ml of acetone was added to the obtained concentrate, and ultrasonic extraction was performed for 30 minutes.
  • the glass substrate rotation time after dropping the conductivity measuring solution on the glass substrate was 15 seconds, and the glass substrate rotation speed was 2000 rpm. Thereafter, the glass substrate was dried under a nitrogen atmosphere (drying time: 5 minutes, drying temperature: 80 ° C.) to form a polyaniline composite thin film.
  • the polyaniline composite thin film obtained by drying was scraped off under a nitrogen atmosphere to form a strip (polyaniline composite thin film 3) perpendicular to the ITO electrode 2 as shown in FIG.
  • the conductivity was measured by a four-terminal method using a Lorester GP (manufactured by Mitsubishi Chemical Corporation; resistivity meter by a four-terminal method).
  • alumina, celite and ion exchange resin were used, the benzidine concentration could not be removed to 1 ppb or less.
  • alumina has a weakly basic OH group on its surface, so it is considered that alumina has a weak adsorption capacity for benzidine.
  • Celite does not have an OH group that reacts with benzidine, but only adsorbs only with a weak force such as an intermolecular force, and thus is considered to have low removability. It is considered that the effect of the ion exchange resin was weak because the resin did not swell and the capture molecules could not be taken into the pores.
  • benzidine can also be removed from a dissolved polyaniline-containing liquid.
  • benzidine When acid clay or activated clay was used, benzidine was stably removed while maintaining high conductivity, and the benzidine concentration could be reduced to less than 0.51 ppb. In the present invention, benzidine can be highly removed while maintaining high conductivity.
  • the method for producing a purified polyaniline-containing liquid of the present invention is suitable for purifying a polyaniline-containing liquid.
  • the conductive film obtained from the polyaniline-containing liquid of the present invention is used in the fields of power electronics and optoelectronics, for electrostatic and antistatic purposes, transparent electrodes and conductive films, electroluminescent elements, circuits, electromagnetic wave shielding, electromagnetic wave absorption, noise suppression, capacitors It can be used for dielectric materials and electrolytes of the above, electrodes for solar cells and secondary batteries, fuel cell separators, etc., plating bases, rust prevention and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Paints Or Removers (AREA)

Abstract

下記(a)と、下記(b)及び下記(c)のうち少なくとも一方と、を含むポリアニリン含有液を、シリカゲル、活性炭、及び細孔径がベンジジンよりも大きいモレキュラーシーブから選択される少なくとも1つを含む吸着剤に接触させる工程を含む、精製ポリアニリン含有液の製造方法。 (a)溶媒 (b)前記溶媒に溶解又は分散しているポリアニリン (c)前記溶媒に溶解又は分散しているポリアニリン複合体

Description

精製ポリアニリン含有液の製造方法
 本発明は、精製ポリアニリン含有液の製造方法に関する。
 導電性高分子は、電解コンデンサや電子機器のバックアップ用電池、携帯電話やノート型パソコンに使用されているリチウムイオン電池の電極等に使用されている。
 導電性高分子の一種であるポリアニリンは、その電気的な特性に加え、安価なアニリンから比較的簡便に合成でき、かつ導電性を示す状態で酸素等に対して優れた安定性を示すという利点及び特性を有する。
 例えば、特許文献1の方法によって、簡便に、かつ高導電のポリアニリンを得ることができる。
 特許文献1に記載の導電性ポリアニリン組成物は、ポリアニリン成分が溶解しており、様々な用途に展開が可能である。しかしながら、一般的なポリアニリン及び/又はその複合体を含む液と同様、発がん性物質であるベンジジンを微量に含むことがある。ベンジジンを含むことは環境上好ましいことではない。
 従来技術として、特許文献2にはポリアニリンを、ポリアニリンを溶解しない溶媒で洗浄することによって不純物を除去する方法が記載されている(特許文献2 2頁左上)。また、不純物を高度に除去するために多量の溶媒を要するという課題に対し、溶媒を吸着剤に流通させて循環させることにより、溶媒の使用量を低減する方法が記載されている(特許文献2 2頁右上)。
 しかしながら、上記の方法では溶媒の循環機構を要するため、製造工程が複雑になるという課題がある。また、本方法による一定量の溶媒を使用した洗浄では、ベンジジンを十分に除去することはできなかった。
国際公開第WO2005/052058号 特開昭62-10108号公報
 本発明の目的は、簡易な方法であって、ベンジジンを高度に除去した精製ポリアニリン含有液が得らえる方法を提供することである。
 本発明によれば、以下の精製ポリアニリン含有液の製造方法等が提供される。
1.下記(a)と、下記(b)及び下記(c)のうち少なくとも一方と、を含むポリアニリン含有液を、シリカゲル、活性炭、酸性白土、活性白土、及び細孔径がベンジジンよりも大きいモレキュラーシーブから選択される少なくとも1つを含む吸着剤に接触させる工程を含む、精製ポリアニリン含有液の製造方法。
 (a)溶媒
 (b)前記溶媒に溶解又は分散しているポリアニリン
 (c)前記溶媒に溶解又は分散しているポリアニリン複合体
2.前記吸着剤が、シリカゲルを含む1に記載の製造方法。
3.前記吸着剤が、シリカゲルのみからなる1又は2に記載の製造方法。
4.前記シリカゲルの細孔径(poresize)が50Å以上である1~3いずれかに記載の製造方法。
5.前記ポリアニリン含有液に、前記吸着剤を、前記ポリアニリン含有液100重量%に対し、1重量%以上20重量%以下投入し撹拌することにより、吸着剤にポリアニリン含有液を接触させる、1~4いずれかに記載の製造方法。
6.前記吸着剤が酸性白土又は活性白土である1に記載の精製ポリアニリン含有液の製造方法。
7.前記酸性白土又は活性白土の配合量が、前記ポリアニリン含有液100重量%に対し、1~10重量%である6に記載の精製ポリアニリン含有液の製造方法。
8.前記ポリアニリン含有液が、前記(c)として溶媒に溶解しているポリアニリン複合体を含む、1~7いずれかに記載の製造方法。
9.前記ポリアニリン複合体が、下記式(III)から生じる酸イオンによってドープされている1~8いずれかに記載の製造方法。
Figure JPOXMLDOC01-appb-C000001
(式中、Mは、水素原子、有機遊離基又は無機遊離基であり、m’はMの価数である。
 R13及びR14は、それぞれ独立に、炭化水素基又は-(R15O)r-R16で表わされる基である。
 R15はそれぞれ独立に炭化水素基又はシリレン基であり、R16は水素原子、炭化水素基又はR17 Si-で表わされる基であり、rは1以上の整数である。
 R17はそれぞれ独立に炭化水素基である。)
10.前記ポリアニリン複合体が、2つの液相を有する溶液中で、置換又は無置換のアニリンを化学酸化重合することによって製造されたものである、1~9いずれかに記載の製造方法。
11.前記ポリアニリン複合体が、プロトン供与体、リン酸、及び前記プロトン供与体とは異なる乳化剤を含み、2つの液相を有する溶液中で、置換又は無置換のアニリンを化学酸化重合することによって製造された10に記載の製造方法。
12.前記精製ポリアニリン含有液のポリアニリン複合体の含有量が4重量%以上であり、ベンジジンの含有量が1ppb以下である、1~11いずれかに記載の製造方法。
13.前記精製ポリアニリン含有液の、
(d)ポリアニリン複合体の含有量[重量%]と、
(e)ベンジジンの含有量[ppb]が、
下記式(IV)及び(V)を満たす1~11いずれかに記載の製造方法。
 (e)×{4/(d)}≦1.0(但し、(d)≦4) (IV)
 (e)≦1.0(但し、(d)>4)        (V)
14.1~13のいずれかに記載の製造方法によって製造された、精製ポリアニリン含有液。
15.精製ポリアニリン含有液であって、
 精製ポリアニリン含有液中に含まれるベンジジンの含有量が1ppb以下であり、
 前記精製ポリアニリン含有液から得られる塗膜の電導度が50S/cm以上である精製ポリアニリン含有液。
16.精製ポリアニリン含有液から得られる塗膜であって、
 含まれるベンジジンの含有量が1ppb以下であり、
 その電導度が50S/cm以上であるポリアニリン含有塗膜。
 本発明によれば、簡易な方法により、ベンジジンを高度に除去したポリアニリン含有液を製造できる。
インジウム錫酸化物(ITO)電極が表面に形成されたガラス基板の上面を示す図である。 ポリアニリン複合体薄膜を削り、ITO電極を表面に露出させたガラス基板の上面を示す図である。
 本発明の精製ポリアニリン含有液の製造方法は、溶媒と、この溶媒に溶解又は分散する、ポリアニリン及びポリアニリン複合体の少なくとも一方と、を含むポリアニリン含有液(組成物)を、シリカゲル、活性炭、酸性白土、活性白土、及び細孔径がベンジジンよりも大きいモレキュラーシーブから選択される少なくとも1つを含む吸着剤に接触させる工程を含むことを特徴とする。
 本発明の精製対象であるポリアニリン含有液は、(a)溶媒と、(b)ポリアニリン及び(c)ポリアニリン複合体のうち少なくとも一方を含み、これらは溶媒に溶解又は分散している。
 尚、本願において「溶解している」とは、ポリアニリン及び/又はポリアニリン複合体が、溶媒中に分子単位で均一に溶けることを意味する。例えば、ポリアニリン複合体を溶媒に溶解し、遠心分離機にて遠心力(1000G、30分)をかけても、溶液中にポリアニリン複合体の濃度勾配が生じないことから確認できる。
 溶解しているポリアニリン及び/又はポリアニリン複合体を含む含有液は、成膜した際に、粒界がない均一な膜を得ることができるので好ましい。
 (a)溶媒としては、有機溶剤でも水等の無機溶剤でもよく、また1種単独でも2種以上の混合溶媒でもよい。好ましくは有機溶剤である。
 また、有機溶剤は、水溶性有機溶剤でも、実質的に水に混和しない有機溶剤(水不混和性有機溶剤)でもよい。
 上記水溶性有機溶剤は、プロトン性極性溶媒でも非プロトン性極性溶媒でもよく、例えば、イソプロパノール、1-ブタノール、2-ブタノール、2-ペンタノール、ベンジルアルコール等のアルコール類;アセトン等のケトン類、;テトラヒドロフラン、ジオキサン等のエーテル類;Nメチルピロリドン等の非プロトン性極性溶剤等が挙げられる。
 上記水不混和性有機溶剤としては、例えばベンゼン、トルエン、キシレン、エチルベンゼン、テトラリン等の炭化水素系溶剤;塩化メチレン、クロロホルム、四塩化炭素、ジクロロエタン、テトラクロロエタン等の含ハロゲン系溶剤;酢酸エチル、酢酸イソブチル、酢酸n-ブチル等のエステル系溶剤;メチルイソブチルケトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン等のケトン類溶剤、シクロペンチルメチルエーテル等のエーテル類溶剤等が挙げられる。これらの中では溶解性に優れる点でトルエン、キシレン、メチルイソブチルケトン(MIBK)、クロロホルム、トリクロロエタン及び酢酸エチルが好ましい。
 水溶性有機溶剤と水不混和性有機溶剤を組み合わせて、2種以上の混合溶媒としてもよい。例えば、粘度を下げるためトルエンにイソプロパノールを加えてもよい。本発明に適した粘度は1.0~3.0mPa・sであり、例えば、ポリアニリン複合体の濃度が6.6重量%であるときにこの粘度を得るためには、トルエンとイソプロパノールの割合を90[g]:10[g]~99[g]:1[g]とする。
 上記(b)のポリアニリンは、ドーパントによってドープされていない置換又は無置換のポリアニリン分子である。
 また、上記(c)のポリアニリン複合体は、置換又は無置換のポリアニリン分子がドーパントによってドープされているものである。
 尚、以下のポリアニリン分子に関する記載は、特に指定しない場合には、(b)のポリアニリン分子及び(c)のポリアニリン複合体に含まれるポリアニリン分子のいずれにも該当する記載である。
 ポリアニリン分子の重量平均分子量(以下、分子量という)は好ましくは20,000以上である。分子量が20,000未満であると、含有液から得られる導電性物品の強度や延伸性が低下するおそれがある。分子量は、好ましくは20,000~500,000であり、より好ましくは20,000~300,000であり、さらに好ましくは20,000~200,000である。分子量は、例えば50,000~200,000、53,000~200,000である。ここで、上記の重量平均分子量はポリアニリン複合体の分子量ではなく、ポリアニリン分子の分子量である。
 ポリアニリン分子の分子量分布は、好ましくは1.5以上20.0以下であり、より好ましくは1.5以上5.0以下であり、さらに好ましくは1.5以上4.5以下であり、特に好ましくは1.5以上4.0以下であり、最も好ましくは1.5以上3.6以下である。ここで、上記の分子量分布は、上記と同様に、ポリアニリン複合体の分子量分布ではなく、ポリアニリン分子の分子量分布である。
 分子量分布は重量平均分子量/数平均分子量で表わされる値であり、導電率の観点から、分子量分布は小さい方が好ましい。また、上記重量平均分子量及び分子量分布は、ゲルパーミエーションクロマトグラフ(GPC)により測定できるポリスチレン換算値として得られる。
 置換ポリアニリンの置換基としては、例えばメチル基、エチル基、ヘキシル基、オクチル基等の直鎖又は分岐の炭化水素基;メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基等のアリールオキシ基;トリフルオロメチル基(-CF基)等のハロゲン化炭化水素が挙げられる。
 ポリアニリン分子は、汎用性及び経済性の観点から無置換のポリアニリン分子が好ましい。
 ポリアニリン複合体のドーパントとしては、例えばブレンステッド酸又はブレンステッド酸の塩から生じるブレンステッド酸イオンが挙げられ、好ましくは有機酸又は有機酸の塩から生じる有機酸イオンであり、さらに好ましくは下記式(I)で示される化合物(プロトン供与体)から生じる有機酸イオンである。
 尚、本発明において、ドーパントが特定の酸であると表現する場合、及びドーパントが特定の塩であると表現する場合も有るが、いずれも特定の酸又は特定の塩から生じる特定の酸イオンが、上述したポリアニリン分子にドープするものとする。
M(XARn)m   (I)
 式(I)のMは、水素原子、有機遊離基又は無機遊離基である。
 上記有機遊離基としては、例えば、ピリジニウム基、イミダゾリウム基、アニリニウム基が挙げられる。また、上記無機遊離基としては、例えば、リチウム、ナトリウム、カリウム、セシウム、アンモニウム、カルシウム、マグネシウム、鉄が挙げられる。
 式(I)のXは、アニオン基であり、例えば-SO 基、-PO 2-基、-PO(OH)基、-OPO 2-基、-OPO(OH)基、-COO基が挙げられ、好ましくは-SO 基である。
 式(I)のAは、置換又は無置換の炭化水素基である。
 上記炭化水素基は、鎖状若しくは環状の飽和脂肪族炭化水素基、鎖状若しくは環状の不飽和脂肪族炭化水素基、又は芳香族炭化水素基である。
 鎖状の飽和脂肪族炭化水素基としては、直鎖若しくは分岐状の飽和脂肪族炭化水素基が挙げられる。炭素数は、例えば1以上24以下、2以上8以下である。
 環状の飽和脂肪族炭化水素基としては、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等のシクロアルキル基が挙げられる。環状の飽和脂肪族炭化水素基は、複数の環状の飽和脂肪族炭化水素基が縮合していてもよい。例えば、ノルボルニル基、アダマンチル基、縮合したアダマンチル基が挙げられる。
 芳香族炭化水素基としては、フェニル基、ナフチル基、アントラセニル基が挙げられる。鎖状の不飽和脂肪族炭化水素としては、直鎖若しくは分岐状のアルケニル基が挙げられる。
 ここで、Aが置換の炭化水素基である場合の置換基は、アルキル基、シクロアルキル基、ビニル基、アリル基、アリール基、アルコキシ基、ハロゲン基、ヒドロキシ基、アミノ基、イミノ基、ニトロ基、シリル基又はエステル基である。
 式(I)のRは、Aと結合しており、それぞれ独立して、-H、-R、-OR、-COR、-COOR、-(C=O)-(COR)、又は-(C=O)-(COOR)で表わされる置換基あり、Rは、置換基を含んでもよい炭化水素基、シリル基、アルキルシリル基、-(RO)x-R基、又は-(OSiR )x-OR(Rはそれぞれ独立にアルキレン基、Rはそれぞれ独立に炭化水素基であり、xは1以上の整数である)である。
 Rの炭化水素基としては、例えば鎖状若しくは環状の飽和脂肪族炭化水素基、鎖状若しくは環状の不飽和脂肪族炭化水素基、又は芳香族炭化水素基が挙げられる。具体例として、メチル基、エチル基、直鎖若しくは分岐のブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、ペンタデシル基、エイコサニル基が挙げられる。また、上記炭化水素基の置換基は、アルキル基、シクロアルキル基、ビニル基、アリル基、アリール基、アルコキシ基、ハロゲン基、ヒドロキシ基、アミノ基、イミノ基、ニトロ基又はエステル基である。Rの炭化水素基もRと同様である。
 Rのアルキレン基としては、例えばメチレン基、エチレン基、プロピレン基等が挙げられる。
 式(I)のnは1以上の整数であり、式(I)のmは、Mの価数/Xの価数である。
 式(I)で示される化合物としては、ジアルキルベンゼンスルフォン酸、ジアルキルナフタレンスルフォン酸、又はエステル結合を2以上含有する化合物が好ましい。
 上記エステル結合を2以上含有する化合物は、スルホフタール酸エステル、又は下記式(II)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000002
(式中、M及びXは、式(I)と同様である。Xは、-SO 基が好ましい。)
 式(II)のR、R及びRは、それぞれ独立して水素原子、炭化水素基又はR Si-基(ここで、Rは炭化水素基であり、3つのRは同一又は異なっていてもよい)である。
 R、R及びRが炭化水素基である場合の炭化水素基としては、炭素数1~24の直鎖若しくは分岐状のアルキル基、芳香環を含むアリール基、アルキルアリール基等が挙げられる。
 Rの炭化水素基としては、R、R及びRの場合と同様である。
 式(II)のR及びRは、それぞれ独立に、炭化水素基又は-(R10O)-R11基[ここで、R10は炭化水素基又はシリレン基であり、R11は水素原子、炭化水素基又はR12 Si-(R12は、炭化水素基であり、3つのR12は同一又は異なっていてもよい)であり、qは1以上の整数である]である。
 R及びRが炭化水素基である場合の炭化水素基としては、鎖状若しくは環状の飽和脂肪族炭化水素基、鎖状若しくは環状の不飽和脂肪族炭化水素基、又は芳香族炭化水素基等が挙げられる。例えば、炭素数1~24、好ましくは炭素数4以上24以下の直鎖若しくは分岐状のアルキル基、芳香環を含むアリール基、アルキルアリール基が挙げられる。R及びRが炭化水素基である場合の炭化水素基の具体例としては、例えば、直鎖又は分岐状のブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基が挙げられる。好ましくは、直鎖又は分岐状のオクチル基である。さらに好ましくは、2-エチルヘキシル基である。
 R及びRにおける、R10が炭化水素基である場合の炭化水素基としては、例えば炭素数1~24の直鎖若しくは分岐状のアルキレン基、芳香環を含むアリーレン基、アルキルアリーレン基、アリールアルキレン基である。また、R及びRにおける、R11及びR12が炭化水素基である場合の炭化水素基としては、R、R及びRの場合と同様であり、qは、1~10であることが好ましい。
 R及びRが-(R10O)-R11基である場合の式(II)で表わされる化合物の具体例としては、下記式で表わされる2つの化合物である。
Figure JPOXMLDOC01-appb-C000003
(式中、Xは式(I)と同様である。)
 上記式(II)で表わされる化合物は、下記式(III)で示されるスルホコハク酸誘導体であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000004
(式中、Mは、式(I)と同様である。m’は、Mの価数である。)
 式(III)のR13及びR14は、それぞれ独立に、炭化水素基又は-(R15O)-R16基[ここで、R15はそれぞれ独立に炭化水素基又はシリレン基であり、R16は水素原子、炭化水素基又はR17 Si-基(ここで、R17はそれぞれ独立に炭化水素基である)であり、rは1以上の整数である]である。
 R13及びR14が炭化水素基である場合の炭化水素基としては、R及びRと同様である。例えば、鎖状の飽和脂肪族炭化水素基、炭素数4以上24以下の直鎖若しくは分岐状のアルキル基である。具体的には、直鎖若しくは分岐状のブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基が挙げられる。好ましくは、直鎖又は分岐状のオクチル基である。さらに好ましくは、2-エチルヘキシル基である。
 R13及びR14において、R15が炭化水素基である場合の炭化水素基としては、上記R10と同様である。また、R13及びR14において、R16及びR17が炭化水素基である場合の炭化水素基としては、上記R、R及びRと同様である。
 rは、1~10であることが好ましい。
 R13及びR14が-(R15O)-R16基である場合の具体例としては、R及びRにおける-(R10O)-R11と同様である。
 R13及びR14の炭化水素基としては、R及びRと同様であり、ブチル基、ヘキシル基、2-エチルヘキシル基、デシル基が好ましい。
 上記ドーパントはその構造を変えることにより、ポリアニリン複合体の導電性や、溶剤への溶解性をコントロールできることが知られている(特許第3384566号)。本発明においては、用途毎の要求特性によって最適なドーパントを選択できる。
 式(I)で示される化合物としては、ジ-2-エチルヘキシルスルホコハク酸、ジ-2-エチルヘキシルスルホコハク酸ナトリウムが好ましい。本発明のドーパントとしては、ジ-2-エチルヘキシルスルホコハク酸イオンが好ましい。
 ポリアニリン複合体のドーパントが、置換又は無置換のポリアニリンにドープしていることは、紫外・可視・近赤外分光法やX線光電子分光法によって確認することができ、当該ドーパントは、ポリアニリンにキャリアを発生させるに十分な酸性を有していれば、特に化学構造上の制限なく使用できる。
 ポリアニリン複合体は、周知の製造方法で製造することができるが、例えば、プロトン供与体、リン酸、及びプロトン供与体とは異なる乳化剤を含み、2つの液相を有する溶液中で、置換又は無置換のアニリンを化学酸化重合することにより製造できる。また、置換又は無置換のアニリン、プロトン供与体、リン酸、及びプロトン供与体とは異なる乳化剤を含み、2つの液相を有する溶液中に、酸化重合剤を加えることにより製造できる。
 尚、乳化剤は、後述する転相を防ぐ役割を担っていると考えられる。プロトン供与体及びリン酸を含み2つの液相を有する溶液中で、置換又は無置換のアニリンを化学酸化重合してポリアニリン複合体を製造すると、リン酸ではなく塩酸を用いていた場合に比べて、低分子量成分が増えてしまう。ここでリン酸を用いた際の重合中の様子から、上記2つの液相は重合中に転相を起こしていると考えられる。そして、この転相が低分子量成分を増やす理由と考えられる。この転相という現象は、連続相であった液相が分散相へ、分散相であった他方の液相が連続相へ変化する現象である。
 ここで「2つの液相を有する溶液」とは、溶液中に相溶しない2つの液相が存在する状態を意味する。例えば、溶液中に「高極性溶媒の相」と「低極性溶媒の相」が存在する状態、を意味する。
 また、「2つの液相を有する溶液」は、片方の液相が連続相であり、他方の液相が分散相である状態も含む。例えば「高極性溶媒の相」が連続相であり「低極性溶媒の相」が分散相である状態、及び「低極性溶媒の相」が連続相であり「高極性溶媒の相」が分散相である状態が含まれる。
 ポリアニリン複合体の製造方法に用いる高極性溶媒としては、水が好ましく、低極性溶媒としては、例えばトルエン、キシレン等の芳香族炭化水素が好ましい。
 上記プロトン供与体は、好ましくは上記式(I)で表わされる化合物であり、より好ましくは上記式(II)で表わされる化合物であり、さらに好ましくは上記式(III)で表わされる化合物である。
 上記乳化剤は、親水性部分がイオン性であるイオン性乳化剤、及び親水性部分が非イオン性である非イオン性乳化剤のどちらでも使用でき、また、1種又は2種以上の乳化剤を混合して使用してもよい。
 イオン性乳化剤としては、カチオン性乳化剤、アニオン性乳化剤及び双性乳化剤が挙げられる。
 アニオン性乳化剤(陰イオン乳化剤)の具体例としては、脂肪酸、不均化ロジン石けん、高級アルコールエステル、ポリオキシエチレンアルキルエーテルリン酸、アルケニルコハク酸、ザルコシネート、及びそれらの塩が挙げられる。
 カチオン性乳化剤(陽イオン乳化剤)の具体例としては、アルキルジメチルベンジルアンモニウム塩、アルキルトリメチルアンモニウム塩が挙げられる。
 双性乳化剤(両イオン乳化剤)の具体例としては、アルキルベタイン型、アルキルアミドベタイン型、アミノ酸型、アミンオキサイド型が挙げられる。
 非イオン乳化剤の具体例としては、ポリオキシエチレンアルキルエーテル、ポリプロピレングリコールポリエチレングリコールエーテル、ポリオキシエチレングリセロールボレート脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステルが挙げられる。
 上記乳化剤のうち、アニオン性乳化剤及び非イオン乳化剤が好ましい。
 アニオン性乳化剤としては、リン酸エステル構造を有するアニオン性乳化剤がさらに好ましい。また、非イオン乳化剤としては、ポリオキシエチレンソルビタン脂肪酸エステル構造を有する非イオン乳化剤がさらに好ましい。
 プロトン供与体の使用量は、アニリン単量体1molに対して、好ましくは0.1~0.5molであり、より好ましくは0.3~0.45molであり、さらに好ましくは0.35~0.4molである。
 プロトン供与体の使用量が当該範囲より多い場合、重合終了後に例えば「高極性溶剤の相」と「低極性溶剤の相」を分離することができないおそれがある。
 リン酸の使用濃度は、高極性溶媒に対して0.3~6mol/Lであり、より好ましくは1~4mol/Lであり、さらに好ましくは1~2mol/Lである。
 乳化剤の使用量は、アニリン単量体1molに対して好ましくは0.001~0.1molであり、より好ましくは0.002~0.02molであり、さらに好ましくは0.003~0.01molである。
 乳化剤の使用量が当該範囲より多い場合、重合終了後に「高極性溶剤の相」と「低極性溶剤の相」を分離することができないおそれがある。
 化学酸化重合に用いる酸化剤(以下、酸化重合剤という場合がある)としては、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、過酸化水素のような過酸化物;二クロム酸アンモニウム、過塩素酸アンモニウム、硫酸カリウム鉄(III)、三塩化鉄(III)、二酸化マンガン、ヨウ素酸、過マンガン酸カリウム、あるいはパラトルエンスルホン酸鉄等が使用でき、好ましくは過硫酸アンモニウム等の過硫酸塩である。
 これら酸化剤は単独で使用しても、2種以上を併用してもよい。
 酸化剤の使用量は、アニリン単量体1molに対して好ましくは0.05~1.8molであり、より好ましくは0.8~1.6molであり、さらに好ましくは1.2~1.4molである。酸化剤の使用量を当該範囲とすることで、十分な重合度が得られる。また、アニリンが十分に重合しているので、分液回収が容易であり、また重合体の溶解性が低下するおそれもない。
 重合温度は通常-5~60℃で、好ましくは-5~40℃である。また、重合温度は重合反応の途中に変えてもよい。重合温度が当該範囲であることで、副反応を回避することができる。
 ポリアニリン複合体は、具体的には以下の方法で製造することができる。
 プロトン供与体及び乳化剤をトルエンに溶解した溶液を、窒素等の不活性雰囲気の気流下においたセパラブルフラスコに入れ、さらにこの溶液に、置換又は無置換のアニリンを加える。その後、塩素を含まないリン酸を溶液に添加し、溶液温度を冷却する。
 溶液内温を冷却した後、攪拌を行う。過硫酸アンモニウムをリン酸に溶解した溶液を、滴下ロートを用いて滴下し、反応させる。その後、溶液温度を上昇させ、反応を継続する。反応終了後、静置することで二相に分離した水相側を分液する。有機相側にトルエンを追加し、リン酸及びイオン交換水で洗浄を行うことでポリアニリン複合体(プロトネーションされたポリアニリン)トルエン溶液が得られる。
 得られた複合体溶液に含まれる若干の不溶物を除去し、ポリアニリン複合体のトルエン溶液を回収する。この溶液をエバポレーターに移し、加温及び減圧することにより、揮発分を蒸発留去し、ポリアニリン複合体が得られる。
 ポリアニリン複合体ではないポリアニリン分子は、周知の方法で製造することができる。具体例として、特開平3-28229に記載の製造方法が挙げられる。プロトン酸の存在下、溶剤中にてアニリンに温度を例えば5℃以下の温度に保持しつつ、酸化剤の水溶液をアニリン1モル当りに、酸化剤の1モルを、酸化剤1分子を還元するのに必要な電子数で割った量として定義される当量で、例えば2当量以上、徐々に加えて、上記プロトン酸にてドーピングされたアニリンの酸化重合体を生成させ、次いで、この重合体を塩基性物質によって脱ドーピングすることによって製造することができる。
 また、先に述べたポリアニリン複合体を1M水酸化ナトリウム水溶液と混合して脱ドープしたポリアニリン粉末を作り、NMP(N-メチルピロリドン)に溶解させることにより、ポリアニリン分子の溶液を製造することができる。
 ポリアニリン含有液は、上述した溶媒と、ポリアニリン及び/又はポリアニリン複合体を含む液である。含有液は、例えば、上述したポリアニリン複合体の製造方法で回収する低極性溶媒(トルエン、キシレン等)の溶液であってもよく、また、ポリアニリン及び/又はポリアニリン複合体を、溶媒に分散及び/又は溶解させたものでもよい。
 溶媒中のポリアニリン複合体の割合は、特に限定はないが、通常、900g/kg以下であり、好ましくは0.01g/kg以上300g/kg以下であり、より好ましくは10g/kg以上300g/kg以下であり、さらに好ましくは30g/kg以上300g/kg以下の範囲である。
 ポリアニリン含有液には、溶媒、ポリアニリン及び/又はポリアニリン複合体の他に、第2ドーパントとしてフェノール性化合物(4-メトキシフェノール等)や耐熱安定化剤(ナフタレンスルホン酸等)等の添加剤が添加されていてもよい。但し、本発明ではベンジジン除去工程後、即ち、含有液を吸着剤に接触させた後に、上記の添加剤を添加することが好ましい。
 本発明では、上述したポリアニリン含有液を、シリカゲル、酸性白土、活性白土、特定のモレキュラーシーブ及び活性炭から選択される少なくとも1つを含む吸着剤に接触させる。これにより、ベンジジンを高度に除去できる。特に、ポリアニリン及び/又はポリアニリン複合体の濃度が4重量%以上であるポリアニリン含有液中のベンジジンを1ppb(重量)以下まで除去できる。
 また、本発明により得られる精製ポリアニリン含有液は、下記式(IV)及び(V)を満たすことが好ましい。
(e)×{4/(d)}≦1.0(ただし、(d)≦4) (IV)
(e)≦1.0(ただし、(d)>4)        (V)
 ここで、(d)は精製ポリアニリン含有液のポリアニリン複合体の含有量[重量%]であり、(e)は精製ポリアニリン含有液のベンジジンの含有量[ppb]である。
 シリカゲルは、コロイド状シリカ微粒子の高い密度の三次元凝集体の一般的な名称であり、二酸化ケイ素の無定形の多孔体である。市販品としては粒子径数mm~数μm、細孔径およそ2~50nmの破砕状や球状のものがある。
 シリカゲル表面は、シロキサン構造部分やシラノール基で覆われており、水素結合や極性により極性分子を吸着することができる。また、シラノール基は弱い酸であるため、シリカゲルは弱い固体酸となる。
 シリカゲルは表面に弱酸性のOH基を所有し、ベンジジンのアミノ基と反応し、吸着するためと考えられる。
 シリカゲルは、細孔径(poresize)が20Å以上であることが好ましく、50Å以上であるものがより好ましい。
 また、細孔径は窒素吸着法で測定した値であり、市販されているシリカゲルのカタログ値である。
 シリカゲルの使用量は、ポリアニリン含有液に対して1~20重量%が好ましい、5~15重量%がさらに好ましい。
 活性炭は、特定の物質を選択的に分離、除去、精製するなどの目的で吸着効率を高めるために、化学的又は物理的な処理(活性化、賦活)を施した多孔質の炭素を主な成分とする物質である。活性炭には、粉末状、粒状、繊維状のもの等がある。
 活性炭は大部分が炭素で構成されているため、表面の化学的な性質は疎水性である。しかし、表面にカルボキシル基、フェノール性ヒドロキシル基、キノン形カルボニル基等が存在し、若干の親水性を兼ね備えている。カルボキシル基やフェノール性ヒドロキシル基は水溶液中で弱酸性を、キノン形カルボニル基は弱塩基性を示すため、これらのサイトは酸性、塩基性化合物を吸着する。
 活性炭は、疎水性の強いものや芳香環を有した分子を吸着しやすい性質があり、ベンジジンは芳香環を有するため吸着しやすいと考えられる。
 活性炭の使用量は、ポリアニリン含有液に対して1~15重量%が好ましく、特に3~8重量%が好ましい。
 モレキュラーシーブはゼオライトの一種であり、原料としてはシリカ、アルミナ及びアルカリ、アルカリ土類金属の水酸化物が主成分である。
 多孔質体であり、空孔内部に分子を吸着する。種類により細孔径が異なり、表面は極性であり極性分子との水素結合性、双極子性等により、分子の大きさと極性の違うもの混合気体又は液体から希望の分子を選択的に分離することができる。
 本発明では、細孔径がベンジジンよりも大きいモレキュラーシーブを使用する。ベンジジン分子の大きさは、縦約4.4Å、横約10.8Å程度であるため、これよりも大きい細孔径のモレキュラーシーブ、具体的には、モレキュラーシーブ13X以上の細孔径を有するものを使用する。
 モレキュラーシーブは細孔の中にベンジジンを捕捉し、除去することができる。しかし、モレキュラーシーブの中でも細孔径がベンジジンよりも小さい場合、ベンジジンを細孔の中に取り込むことができないため、除去性能が低下する。
 モレキュラーシーブの使用量は、ポリアニリン含有液に対して1~20重量%が好ましく、特に5~15重量%が好ましい。
 酸性白土は、モンモリロナイトを主とする粘土類である。酸性白土は吸着能をもち、極性分子を吸着することができる。ベントナイトの硫酸処理等により製造される場合もある。
 酸性白土の使用量は、ポリアニリン含有液100重量%に対し、1~20重量%が好ましく、1~10重量%がより好ましく、特に1.5~5重量%が好ましい。
 活性白土は、粘土の一種であり、酸性白土を硫酸や塩酸で熱処理して得ることができる。活性白土は吸着能をもち、極性分子を吸着することができる。
 活性白土の使用量は、ポリアニリン含有液100重量%に対し、1~20重量%が好ましく、1~10重量%がより好ましく、特に5~10重量%が好ましい。
 本発明の一態様では、吸着剤としてシリカゲルを含むもの、又はシリカゲルのみからなるものを使用することが好ましい。シリカゲルを用いることにより、含有液から得られる塗膜の導電性が維持される。これは、シリカゲルは弱酸性であるため、ポリアニリンの脱ドープを引き起こさないためと考えられる。
 本発明の別の態様では、吸着剤が酸性白土又は活性白土であることが好ましい。酸性白土又は活性白土を用いることにより、含有液に含まれるベンジジンを1ppb以下まで除去した上で、含有液から得られる塗膜の導電性が、より高度に維持される。
 尚、モレキュラーシーブは塩基性のため、脱ドープを引き起こす可能性がある。活性炭は吸着力が強いため、ドーパントを吸着してしまい、脱ドープを引き起こしたり、塩基性キノン形カルボニル基等の塩基性サイトによる脱ドープが起こる可能性がある。
 ポリアニリン含有液を吸着剤に接触させる方法としては、例えば、吸着剤をカラム等の容器に充填し、これに含有液を流通させる方法や、ポリアニリン含有液に吸着剤を投入して撹拌する方法等が挙げられる。
 ポリアニリン含有液に分散状態のポリアニリン及び/又はポリアニリン複合体がある場合は、吸着剤を添加して撹拌する方法が好ましい。
 接触時間は特に限定はなく、要求されるベンジジン濃度に合わせて適宜設定することができる。通常、10分以上、例えば1~48時間程度であり、ベンジジン濃度を1ppb以下にするためには、6時間以上32時間以下が好ましい。
 接触温度も特に限定はないが、通常、10℃~30℃程度が好ましい。
 本発明の一態様で得られる精製ポリアニリン含有液では、ポリアニリン及び/又はポリアニリン複合体の濃度が4重量%(wt%)以上であることが好ましく、また、ベンジジン濃度が1ppb(重量)以下であることが好ましい。ベンジジン濃度は、液体クロマトグラフ/タンデム質量分析装置(LC/MS/MS)で測定できる。
 本発明の別の態様で得られる精製ポリアニリン含有液では、精製ポリアニリン含有液中に含まれるベンジジンの含有量が1.0ppb以下であり、かつ、前記精製ポリアニリン含有液から得られる塗膜の電導度が50S/cm以上であることが好ましい。
 上記発明の別の態様で得られる精製ポリアニリン含有液から得られる塗膜を、ポリアニリン含有塗膜といい、本発明のポリアニリン含有塗膜は、含まれるベンジジンの含有量が1.0ppb以下であり、かつ、その電導度が50S/cm以上であることが好ましい。
 前記本発明の別の態様で得られる精製ポリアニリン含有液中に含まれるベンジジンの含有量は、1.0ppb未満であることが好ましく、0.7ppb以下であることがより好ましく、0.55ppb以下であることがより好ましい。
 前記ポリアニリン含有塗膜に含まれるベンジジンの含有量は、1.0ppb未満であることが好ましく、0.7ppb以下であることがより好ましく、0.55ppb以下であることがより好ましい。
 前記ポリアニリン含有塗膜の電導度は、60S/cm以上であることが好ましく、80S/cm以上であることが好ましく、90S/cm以上であることが好ましい。また、その電導度の上限は限定されないが、通常、700S/cm以下である。
 本発明では、上記の接触工程の前に、予備洗浄してもよい。例えば、ポリアニリン含有液にリン酸やイオン交換水を投入し、有機相と水相を分離することにより洗浄することが好ましい。これにより、ベンジジン濃度を予め低下することができ、接触工程で吸着剤に吸着されるベンジジン量を減らすことができる。
 本発明の精製ポリアニリン含有液には、適宜、フェノール性化合物や耐熱安定化剤等の添加剤を添加できる。
 例えば、耐熱安定化剤とは、酸性物質又は酸性物質の塩であり、酸性物質は有機酸(有機化合物の酸)、無機酸(無機化合物の酸)のいずれでもよく、複数の耐熱安定化剤を含んでいてもよい。具体例として、ナフタレンスルホン酸が挙げられる。
 また、フェノール性化合物は、フェノール性水酸基を有する化合物である。具体例として、4-メトキシフェノール、4-イソプロピルフェノール、t-アミルフェノールが挙げられる。
 本発明の精製ポリアニリン含有液の製造方法では、上述した所定の吸着剤を使用することにより、効率よくベンジジンを除去できる。従って、多量の溶媒を必要とせず、かつ溶媒の循環機構も必要としない。
 また、溶媒に溶解するポリアニリン複合体を含む含有液から、ベンジジンを高度に除去できる。
 さらに、特にシリカゲルを使用した場合、ベンジジンを高度に除去しても含有液から得られる膜の導電性が低下しない。
製造例1[ポリアニリン複合体の製造]
 エーロゾルOT(ジ-2-エチルヘキシルスルホコハク酸ナトリウム)37.8g及びポリオキシエチレンソルビタン脂肪酸エステル構造を有する非イオン乳化剤であるソルボンT-20(東邦化学工業株式会社製)1.47gをトルエン600mLに溶解した溶液を、窒素気流下においた6Lのセパラブルフラスコに入れ、さらにこの溶液に、22.2gのアニリンを加えた。その後、1Mリン酸1800mLを溶液に添加し、トルエンと水の2つの液相を有する溶液の温度を5℃に冷却した。
 溶液内温が5℃に到達した時点で、毎分390回転で攪拌を行った。65.7gの過硫酸アンモニウムを1Mリン酸600mLに溶解した溶液を、滴下ロートを用いて2時間かけて滴下した。滴下開始から18時間、溶液内温を5℃に保ったまま反応を実施した。その後、反応温度を40℃まで上昇させ、1時間反応を継続した。その後、静置し、トルエン相を分離した。トルエン相におけるポリアニリン複合体の濃度は9.4重量%、ベンジジン濃度は600ppb(重量)であった。
製造例2
 製造例1で得られたトルエン相にトルエンを1500ml添加し、1Mリン酸500mLで1回、イオン交換水500mLで3回洗浄し、トルエン相を静置分離し、濃度調整のための濃縮を行い、ポリアニリン複合体トルエン溶液900gを得た。このポリアニリン複合体トルエン溶液のポリアニリン複合体濃度は5.7重量%、ベンジジン濃度は8.5ppbであった。
 このことから、洗浄だけでは、ポリアニリン複合体濃度が一定量以上のポリアニリン組成物のベンジジン濃度を1ppb以下にすることはできず、高度の除去ができていないことがわかった。
 尚、製造例2で得たポリアニリン複合体の重量平均分子量は68700、分子量分布は2.9であった。また、ドープ率は0.47であった。
 重量平均分子量及び分子量分布はGPC(ゲルパーミエーションクロマトグラフィー)で測定した。測定は、昭和電工株式会社製GPCカラム(Shodex KF-806Mを2本、Shodex KF-803を1本)を用いて行い、測定条件は溶媒を0.01M LiBr含有NMP、流量を0.40ml/min、カラム温度を60℃、注入量を100μL、UV検出波長を270nmとした。また、分子量分布はポリスチレン換算で行った。
[精製ポリアニリン塗液]
実施例1
 製造例2で得られたポリアニリン複合体トルエン溶液900gにイソプロピルアルコール(IPA)45gを添加した。シリカゲル(Aldrich製、high purity grade, poresize 60Å, 70~230mesh for column chromatography)を90g添加し、24時間撹拌した。
 その後、No.5Aのろ紙を用いてろ過し、精製ポリアニリンのトルエン溶液(精製ポリアニリン塗液)を得た。
実施例2
 シリカゲルの代わりに活性炭(Aldrich製、untreated powder,100-400mesh)を45g添加した以外は、実施例1と同様にて、精製ポリアニリンのトルエン溶液を得た。
実施例3
 シリカゲルの代わりにモレキュラーシーブ13X(Aldrich製、beads,8-12mesh)を90g添加した以外は、実施例1と同様にして、精製ポリアニリンのトルエン溶液を得た。
実施例4
 シリカゲルの代わりに酸性白土♯20(水澤化学社製)を90g添加した以外は、実施例1と同様にして、精製ポリアニリンのトルエン溶液を得た。
実施例5
 シリカゲルの代わりに酸性白土♯20(水澤化学社製)を45g添加した以外は、実施例1と同様にして、精製ポリアニリンのトルエン溶液を得た。
実施例6
 シリカゲルの代わりに酸性白土♯20(水澤化学社製)を18g添加した以外は、実施例1と同様にして、精製ポリアニリンのトルエン溶液を得た。
実施例7
 シリカゲルの代わりに活性白土V2(水澤化学社製)を90g添加した以外は、実施例1と同様にして、精製ポリアニリンのトルエン溶液を得た。
比較例1
 シリカゲルとIPAを添加しなかった以外は、実施例1と同様にして、精製ポリアニリンのトルエン溶液を得た。
比較例2
 シリカゲルの代わりにイオン交換樹脂(Amberlyst 15H、Aldrich製)を90g添加した以外は、実施例1と同様にして精製ポリアニリンのトルエン溶液を得た。
比較例3
 シリカゲルの代わりにセライトNo.545(和光純薬工業株式会社製)を45g添加した以外は、実施例1と同様にして精製ポリアニリンのトルエン溶液を得た。
比較例4
 シリカゲルの代わりにモレキュラーシーブ3A(Aldrich製、beads,8-12mesh)を90g添加した以外は、実施例1と同様にして精製ポリアニリンのトルエン溶液を得た。
 尚、モレキュラーシーブ3Aは、細孔径がベンジジンより小さいモレキュラーシーブである。
比較例5
 シリカゲルの代わりにアルミナ(Aldrich製、activated、acidic、Brockmann1)を90g添加した以外は、実施例1と同様にして精製ポリアニリンのトルエン溶液を得た。
 実施例1~7、比較例1~5で得られたポリアニリンのトルエン溶液について、以下の評価を行った。結果を表1に示す。
[ベンジジンの定量]
 ベンジジン標準原液(5000μg/ml、Aldrich製)0.2mlを採取し、メタノールで100mlとしたものをベンジジン標準溶液とした。(10000ng/mL)。その後、順次メタノールで希釈し、ベンジジン標準溶液(1.0、5.0、10、50ng/mL)を調製し、LC/MS/MSにより検量線を作成した。
 得られた精製されたポリアニリンのトルエン溶液を4ml採取し、窒素気流下で濃縮乾固した。得られた濃縮物にアセトンを10ml添加し、30分超音波抽出を行った。その後、遠心分離(3000rpm、15min)し、上澄液を採取し、窒素気流下で濃縮乾固を行った。濃縮残渣にアセトン1mlを添加後、5分間超音波処理を行った。調製した溶液を遠心分離(3000rpm、15min)を行い、得られた上澄み液をPTFEディスクフィルター(0.45μm)でろ過した。得られたろ液を試料溶液としてLC/MS/MS分析を行い、検量線からベンジジンの定量結果を得た。
[電導度の測定]
 精製されたポリアニリンのトルエン溶液1g採取し、0.2gの4-メトキシフェノール(和光純薬工業株式会社製)と2-ナフタレンスルホン酸水和物(東京化成工業株式会社製)を0.0047g添加し、30℃で30min撹拌して、電導度測定用溶液とした。
 図1に示すように、並列する4本の帯状にパターニングされたITO電極2を表面に有するガラス基板1の上面に、電導度測定用溶液1mlを、スピンコート法により窒素雰囲気下で塗布した。この際、ガラス基板に電導度測定用溶液を滴下した後のガラス基板回転時間は15秒間とし、ガラス基板回転速度は、2000rpmとした。その後、ガラス基板を窒素雰囲気下で乾燥して(乾燥時間:5分間、乾燥温度:80℃)、ポリアニリン複合体薄膜を形成した。
 乾燥して得られたポリアニリン複合体薄膜について、窒素雰囲気下で削り取り、図2に示すようにITO電極2に直交する帯状(ポリアニリン複合体薄膜3)とした。表面に露出したITO電極の端子を用いて、ロレスターGP(三菱化学社製;四端子法による抵抗率計)を用いて4端子法で電導度を測定した。
Figure JPOXMLDOC01-appb-T000001
 上記結果から、アルミナ、セライト及びイオン交換樹脂を使用した場合は、ベンジジン濃度を1ppb以下まで除去することはできなかった。アルミナは、シリカゲルとは異なり、表面に弱塩基性のOH基を有するためベンジジンに対する吸着能が弱いと考えられる。セライトはベンジジンと反応するようなOH基等を有しておらず分子間力等の弱い力のみで吸着するだけであるため、除去性が低いと考えられる。イオン交換樹脂は樹脂が膨潤せず、細孔内部まで捕捉分子を取り込むことができず、効果が薄かったと考えられる。
 ポリアニリン複合体が溶解しているポリアニリン含有液から不純物を除去することは、複合体が分散している状態のポリアニリン含有液から不純物を除去するよりも難しいとも予想される。本発明では、溶解型のポリアニリン含有液からもベンジジンを除去できる。
 また、酸性白土又は活性白土を使用した場合、高い導電性を維持したまま、ベンジジンが安定的に除去され、ベンジジン濃度を0.51ppb未満にすることができた。
 本発明では、高い導電性を維持したまま、ベンジジンを高度に除去することができる。
 本発明の精製ポリアニリン含有液の製造方法は、ポリアニリン含有液の精製に好適である。本発明のポリアニリン含有液から得られる導電膜は、パワーエレクトロニクス、オプトエレクトロニクス分野において、静電及び帯電防止、透明電極及び導電性フィルム、エレクトロルミネッセンス素子、回路、電磁波遮蔽、電磁波吸収、ノイズ抑制、コンデンサの誘電体及び電解質、太陽電池及び二次電池の極材、燃料電池セパレータ等に、又はメッキ下地、防錆等に利用できる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。
 

Claims (16)

  1.  下記(a)と、下記(b)及び下記(c)のうち少なくとも一方と、を含むポリアニリン含有液を、シリカゲル、活性炭、酸性白土、活性白土、及び細孔径がベンジジンよりも大きいモレキュラーシーブから選択される少なくとも1つを含む吸着剤に接触させる工程を含む、精製ポリアニリン含有液の製造方法。
     (a)溶媒
     (b)前記溶媒に溶解又は分散しているポリアニリン
     (c)前記溶媒に溶解又は分散しているポリアニリン複合体
  2.  前記吸着剤が、シリカゲルを含む請求項1に記載の製造方法。
  3.  前記吸着剤が、シリカゲルのみからなる請求項1又は2に記載の製造方法。
  4.  前記シリカゲルの細孔径(poresize)が50Å以上である請求項1~3いずれかに記載の製造方法。
  5.  前記ポリアニリン含有液に、前記吸着剤を、前記ポリアニリン含有液100重量%に対し、1重量%以上20重量%以下投入し撹拌することにより、吸着剤にポリアニリン含有液を接触させる、請求項1~4いずれかに記載の製造方法。
  6.  前記吸着剤が酸性白土又は活性白土である請求項1に記載の精製ポリアニリン含有液の製造方法。
  7.  前記酸性白土又は活性白土の配合量が、前記ポリアニリン含有液100重量%に対し、1~10重量%である請求項6に記載の精製ポリアニリン含有液の製造方法。
  8.  前記ポリアニリン含有液が、前記(c)として溶媒に溶解しているポリアニリン複合体を含む、請求項1~7いずれかに記載の製造方法。
  9.  前記ポリアニリン複合体が、下記式(III)から生じる酸イオンによってドープされている請求項1~8いずれかに記載の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    (式中、Mは、水素原子、有機遊離基又は無機遊離基であり、m’はMの価数である。
     R13及びR14は、それぞれ独立に、炭化水素基又は-(R15O)r-R16で表わされる基である。
     R15はそれぞれ独立に炭化水素基又はシリレン基であり、R16は水素原子、炭化水素基又はR17 Si-で表わされる基であり、rは1以上の整数である。
     R17はそれぞれ独立に炭化水素基である。)
  10.  前記ポリアニリン複合体が、2つの液相を有する溶液中で、置換又は無置換のアニリンを化学酸化重合することによって製造されたものである、請求項1~9いずれかに記載の製造方法。
  11.  前記ポリアニリン複合体が、プロトン供与体、リン酸、及び前記プロトン供与体とは異なる乳化剤を含み、2つの液相を有する溶液中で、置換又は無置換のアニリンを化学酸化重合することによって製造された請求項10に記載の製造方法。
  12.  前記精製ポリアニリン含有液のポリアニリン複合体の含有量が4重量%以上であり、ベンジジンの含有量が1ppb以下である、請求項1~11いずれかに記載の製造方法。
  13.  前記精製ポリアニリン含有液の、
    (d)ポリアニリン複合体の含有量[重量%]と、
    (e)ベンジジンの含有量[ppb]が、
    下記式(IV)及び(V)を満たす請求項1~11いずれかに記載の製造方法。
     (e)×{4/(d)}≦1.0(但し、(d)≦4) (IV)
     (e)≦1.0(但し、(d)>4)        (V)
  14.  請求項1~13のいずれかに記載の製造方法によって製造された、精製ポリアニリン含有液。
  15.  精製ポリアニリン含有液であって、
     精製ポリアニリン含有液中に含まれるベンジジンの含有量が1ppb以下であり、
     前記精製ポリアニリン含有液から得られる塗膜の電導度が50S/cm以上である精製ポリアニリン含有液。
  16.  精製ポリアニリン含有液から得られる塗膜であって、
     含まれるベンジジンの含有量が1ppb以下であり、
     その電導度が50S/cm以上であるポリアニリン含有塗膜。
     
PCT/JP2013/007568 2013-07-02 2013-12-25 精製ポリアニリン含有液の製造方法 WO2015001590A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-139137 2013-07-02
JP2013139137A JP2014028949A (ja) 2012-07-04 2013-07-02 精製ポリアニリン含有液の製造方法

Publications (1)

Publication Number Publication Date
WO2015001590A1 true WO2015001590A1 (ja) 2015-01-08

Family

ID=52144950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007568 WO2015001590A1 (ja) 2013-07-02 2013-12-25 精製ポリアニリン含有液の製造方法

Country Status (3)

Country Link
JP (1) JP2014028949A (ja)
TW (1) TW201502204A (ja)
WO (1) WO2015001590A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112771097A (zh) * 2018-09-28 2021-05-07 住友化学株式会社 高分子化合物的制造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016020826A (ja) * 2014-07-14 2016-02-04 山善株式会社 分取液体クロマトフラフィ用インジェクタ
JP7120887B2 (ja) * 2018-11-09 2022-08-17 出光興産株式会社 導電性高分子含有多孔質体の製造方法
CN112778969A (zh) * 2020-12-21 2021-05-11 安徽理工大学 一种凹凸棒/聚苯胺复合材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002278A (ja) * 2003-06-13 2005-01-06 Kanagawa Acad Of Sci & Technol 高エネルギー密度新規ポリアニリン誘導体
WO2006006459A1 (ja) * 2004-07-09 2006-01-19 Nissan Chemical Industries, Ltd. オリゴアニリン化合物の精製方法およびオリゴアニリン化合物
WO2012102017A1 (ja) * 2011-01-27 2012-08-02 出光興産株式会社 ポリアニリン複合体、その製造方法及び組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002278A (ja) * 2003-06-13 2005-01-06 Kanagawa Acad Of Sci & Technol 高エネルギー密度新規ポリアニリン誘導体
WO2006006459A1 (ja) * 2004-07-09 2006-01-19 Nissan Chemical Industries, Ltd. オリゴアニリン化合物の精製方法およびオリゴアニリン化合物
WO2012102017A1 (ja) * 2011-01-27 2012-08-02 出光興産株式会社 ポリアニリン複合体、その製造方法及び組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112771097A (zh) * 2018-09-28 2021-05-07 住友化学株式会社 高分子化合物的制造方法
CN112771097B (zh) * 2018-09-28 2023-05-26 住友化学株式会社 高分子化合物的制造方法

Also Published As

Publication number Publication date
JP2014028949A (ja) 2014-02-13
TW201502204A (zh) 2015-01-16

Similar Documents

Publication Publication Date Title
JP6129371B2 (ja) ポリアニリン複合体、その製造方法及び組成物
EP2942372B1 (en) Conductive polymer composition
WO2015001590A1 (ja) 精製ポリアニリン含有液の製造方法
US10872709B2 (en) Method for producing polyaniline complex composition and polyaniline complex composition
CN107924770A (zh) 凝胶电解质用组合物
Prabunathan et al. Achieving low dielectric, surface free energy and UV shielding green nanocomposites via reinforcing bio-silica aerogel with polybenzoxazine
KR20150041053A (ko) 커패시터
Tokuda et al. Synthesis of polymeric nanoparticles containing reduced graphene oxide nanosheets stabilized by poly (ionic liquid) using miniemulsion polymerization
RU2560875C2 (ru) Новая поливинилсульфоновая кислота, ее применение и способ ее получения
AU2018205516B2 (en) Materials derived from coal using environmentally friendly solvents
JP7020902B2 (ja) 組成物、導電性膜、導電性膜の製造方法、及びコンデンサ
KR102117549B1 (ko) 절연 피복 탄소섬유, 절연 피복 탄소섬유의 제조 방법, 탄소섬유 함유 조성물 및 열전도성 시트
O'Reilly et al. Silica nanoparticles densely grafted with PEO for ionomer plasticization
JPH11241021A (ja) 導電性高分子複合微粒子およびその製造方法
CN105594048B (zh) 离子传输材料、包含该离子传输材料的电解质膜及其制备方法
JP7279031B2 (ja) 組成物、導電性膜の製造方法、導電性膜及びコンデンサ
EP4059886A1 (en) Method for producing semiconductor-type single-walled carbon nanotube dispersion liquid
WO2022149528A1 (ja) 導電性高分子組成物
JP5198157B2 (ja) 導電性加熱硬化ペースト用鱗片状銀粉
FR2982864A1 (fr) Dispersion organique de poly (3,4-ethylenedioxythiophene)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13888543

Country of ref document: EP

Kind code of ref document: A1