WO2014208468A1 - Method for producing and device for producing photocurable resin film - Google Patents

Method for producing and device for producing photocurable resin film Download PDF

Info

Publication number
WO2014208468A1
WO2014208468A1 PCT/JP2014/066433 JP2014066433W WO2014208468A1 WO 2014208468 A1 WO2014208468 A1 WO 2014208468A1 JP 2014066433 W JP2014066433 W JP 2014066433W WO 2014208468 A1 WO2014208468 A1 WO 2014208468A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocurable resin
resin film
far
film
infrared
Prior art date
Application number
PCT/JP2014/066433
Other languages
French (fr)
Japanese (ja)
Inventor
良二 樋田
島村 顕治
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2015524027A priority Critical patent/JP6270840B2/en
Priority to KR1020157032883A priority patent/KR101990181B1/en
Priority to CN201480032485.0A priority patent/CN105263687B/en
Publication of WO2014208468A1 publication Critical patent/WO2014208468A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • B29C41/30Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length incorporating preformed parts or layers, e.g. moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • B29C41/28Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length by depositing flowable material on an endless belt

Definitions

  • the present invention relates to a photocurable resin film production apparatus and production method.
  • This application claims priority based on Japanese Patent Application No. 2013-132686 for which it applied to Japan on June 25, 2013, and uses the content here.
  • the photocurable resin film has a laminated film constituted by sandwiching a liquid photocurable resin composition between a pair of base film, and the photocurable resin composition is cured by ultraviolet irradiation.
  • the photocurable resin composition is cured by ultraviolet irradiation.
  • an apparatus for producing a film made of a curable resin there is an apparatus using a hot-air heating furnace, an oven, or the like that heats the film to cure the resin (see, for example, Patent Document 2).
  • a manufacturing apparatus using a hot air heating furnace or the like can be used.
  • the manufacturing apparatus has a problem in terms of production efficiency because it takes a long time to cure the resin composition. If the heating temperature is raised, the problem of production efficiency can be improved, but in that case, there is a concern about deformation and thermal decomposition of the film.
  • the present invention has been made in view of the above-described circumstances, and when heating the photocurable resin composition of the photocurable resin film to further advance the curing, the production efficiency is not lowered and the film It aims at providing the manufacturing apparatus and manufacturing method of a photocurable resin film which can prevent a deformation
  • One embodiment of the present invention relates to the following [1] to [7].
  • the manufacturing apparatus of the photocurable resin film which has a 1 or several far-infrared irradiation means which heats.
  • a heating furnace having a far-infrared irradiation means is used, it is intended for a photocurable resin film having a laminated structure in which a photocurable resin layer is sandwiched between substrate films.
  • the heating efficiency with respect to the photocurable resin layer can be improved, and the hardness of the photocurable resin layer can be increased. Since there is no need to increase the heating temperature, film deformation and thermal decomposition can be suppressed.
  • FIG. 6 shows an example of a photocurable resin film.
  • the photocurable resin film 1 shown here is a film-like photocurable resin layer 2 made of a liquid photocurable resin composition. It is a belt-like body sandwiched between the material films 3 and 4.
  • the width dimension of the pair of substrate films 3 and 4 is set to be larger than the width dimension of the photocurable resin layer 2, and between the side edges of the substrate films 3 and 4.
  • the photocurable resin layer 2 is not formed. That is, both side edge portions of the photocurable resin film 1 are ear portions 5 in which only a pair of base films 3 and 4 are laminated together.
  • the photocurable resin film 1 may be configured by laminating only a pair of base films 3 and 4 only on one side edge.
  • the photocurable resin composition in the present embodiment is not particularly limited as long as a curing reaction (polymerization reaction) proceeds by active energy rays such as light (ultraviolet light and visible light) and an electron beam.
  • the photocurable resin composition is preferably prepared by blending a polymerizable resin component with a photopolymerizable initiator.
  • the photocurable resin composition in the present embodiment is preferably a compound having a plurality of photopolymerizable carbon-carbon double bonds.
  • Examples of the photocurable resin composition include (1) polyvalent allyl ester resin, (2) polyvalent vinyl ester resin, (3) polyfunctional urethane (meth) acrylate resin, and (4) cage-type siloxane- (meta ) Acrylate resin composition.
  • the polyvalent allyl ester resin is a composition containing a polyvalent allyl ester compound and a photopolymerization initiator.
  • the polyvalent allyl ester compound is produced by an ester exchange reaction between an allyl ester monomer of a polyvalent carboxylic acid and a polyhydric alcohol having 2 to 6 hydroxyl groups and having 2 to 20 carbon atoms.
  • Specific examples of polyvalent carboxylic acid allyl ester monomers include diallyl phthalate, diallyl isophthalate, diallyl terephthalate, diallyl 2,6-naphthalenedicarboxylate, diallyl 1,2-cyclohexanedicarboxylate, and 1,3-cyclohexanedicarboxylic acid.
  • Examples include diallyl acid, diallyl 1,4-cyclohexanedicarboxylate, diallyl endomethylenetetrahydrophthalate, diallyl methyltetrahydrophthalate, diallyl adipate, diallyl succinate, diallyl maleate, and the like.
  • These allyl ester monomers can be used in combination of two or more as required, and are not limited to the specific examples described above.
  • the divalent alcohol includes ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, neo Pentyl glycol, hexamethylene glycol, 1,4-cyclohexanedimethanol, 2-methyl-1,3-propanediol, 3-methyl-1,5-pentanediol, diethylene glycol, dipropylene glycol, triethylene glycol, polyethylene glycol, Examples include bisphenol-A ethylene oxide adduct, bisphenol-A propylene oxide adduct, 2,2- [4- (2-hydroxyethoxy) -3,5-dibromophenyl] propane, and the like.
  • trihydric or higher polyhydric alcohol examples include glycerin, trimethylolpropane, trimethylolethane, pentaerythritol, dipentalysitol and the like. A mixture of two or more of these polyhydric alcohols may be used. Moreover, it is not limited to the above-mentioned specific example.
  • the polyvalent allyl ester compound is radically polymerizable and can be polymerized by heat, ultraviolet rays, electron beams or the like. It can also be copolymerized with other radically polymerizable compounds.
  • the radical polymerizable compound to be copolymerized with the polyvalent allyl ester compound is not particularly limited as long as it is a compound copolymerizable with the polyvalent allyl ester compound.
  • diallyl phthalate diallyl isophthalate, diallyl terephthalate, allyl benzoate, allyl ⁇ -naphthoate, allyl ⁇ -naphthoate, allyl 2-phenylbenzoate, allyl 3-phenylbenzoate, 4-phenylbenzoic acid.
  • these radically polymerizable compounds are merely examples and are not limited to the above. These radically polymerizable compounds may be used in combination of two or more in order to obtain the desired physical properties.
  • Examples of the polyvalent vinyl ester resin include those in which the allyl group of the polyvalent allyl ester is substituted with a vinyl group.
  • the polyfunctional urethane (meth) acrylate resin is obtained by reacting a polyisocyanate compound and a hydroxyl group-containing (meth) acrylate compound using a catalyst such as dibutyltin dilaurate as necessary.
  • a catalyst such as dibutyltin dilaurate as necessary.
  • polyisocyanate compounds include isophorone diisocyanate, tricyclodecane diisocyanate, norbornene diisocyanate, 1,3-diisocyanatocyclohexane, 1,4-diisocyanatocyclohexane, hydrogenated xylylene diisocyanate, and hydrogenated diphenylmethane diisocyanate. Examples include isocyanate compounds.
  • hydroxyl group-containing (meth) acrylate compound examples include, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3- ( Examples include meth) acryloyloxypropyl (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol tetra (meth) acrylate, and dipentaerythritol tri (meth) acrylate.
  • cage-type siloxane- (meth) acrylate resin composition examples include resin compositions described in JP-A No. 2010-195986.
  • each of the substrate films 3 and 4 is a film made of a light transmissive resin capable of transmitting ultraviolet rays.
  • the material for the base films 3 and 4 include polyethylene terephthalate (PET), polypropylene, and polyethylene.
  • PET polyethylene terephthalate
  • polypropylene polypropylene
  • polyethylene polyethylene terephthalate
  • the photocurable resin film manufacturing apparatus 10 sandwiches a photocurable resin layer 2 made of a liquid photocurable resin composition between a pair of substrate films 3 and 4.
  • the first processing part 6 to be a strip-like photocurable resin film 1
  • the second processing part 7 heating part for heating the photocurable resin film 1 to increase the hardness of the photocurable resin layer 2 are provided. ing.
  • the first processing unit 6 irradiates the laminated film 1 with ultraviolet rays while transferring the laminated film 1 in the longitudinal direction thereof, and includes two base rolls 11 and 12, a coating unit 13, a laminating unit 14, An ultraviolet irradiation unit 15 and a winding roll 16 are provided.
  • the base roll 11 supplies the base film 3
  • the base roll 12 supplies the base film 4.
  • the coating unit 13 coats a liquid photocurable resin composition on the base film 3 (one base film 3) fed out from the one base roll 11, and the photocurable resin composition A film-like photocurable resin layer 2 (see FIG. 6) is formed.
  • the coating unit 13 is driven and rotated by a motor (not shown) to transfer one base film 3 in the longitudinal direction, and one base film 3 wound around the outer peripheral surface of the backup roll 21.
  • the slit die 22 for coating the photocurable resin composition is provided on the top.
  • the laminating unit 14 includes a photocurable resin layer formed by one base film 3 that has passed through the coating unit 13 and a base film 4 (the other base film 4) that is fed out from the other base roll 12. 2 is sandwiched to obtain a laminated film 1 (see FIG. 6).
  • the laminate part 14 is constituted by a pair of rolls 14 a and 14 b that sandwich the base films 3 and 4 and the photocurable resin layer 2.
  • the ultraviolet irradiation unit 15 irradiates the transferred laminated film 1 with ultraviolet R1 to cure the photocurable resin layer 2 to obtain the photocurable resin film 1.
  • the ultraviolet irradiation unit 15 is arranged on the downstream side of the laminating unit 14 in the transfer direction of the laminated film 1.
  • Specific examples of the ultraviolet irradiation unit 15 include lamps using arc discharge (metal halide lamp, xenon lamp, mercury lamp, etc.), lamps using glow discharge (neon lamp, etc.), and the like.
  • the winding roll 16 is driven and rotated by a motor or the like (not shown) to wind the photocurable resin film 1 after passing through the ultraviolet irradiation unit 15.
  • the second processing unit 7 irradiates the photocurable resin film 1 with far infrared rays while transferring the photocurable resin film 1 in the longitudinal direction thereof.
  • the photocurable resin layer 2 is further cured by heating 1.
  • the 2nd process part 7 is the supply roll 31 which supplies the photocurable resin film 1, the heating furnace 32 which heats the photocurable resin film 1, and the winding roll 33 which winds up the photocurable resin film 1 (refer FIG. 3). ).
  • the heating furnace 32 is a continuous heating furnace, and includes a furnace main body 34 into which the photocurable resin film 1 is introduced, one or a plurality of transfer rollers 35 that transfer the photocurable resin film 1 in the furnace main body 34, and And one or a plurality of far infrared heaters 36 (far infrared irradiation means) for heating the photocurable resin film 1 in the furnace body 34.
  • FIG. 4A and 4B are diagrams showing the far-infrared heater 36, in which FIG. 4A is a plan view of the far-infrared heater, and FIG. 4B is a side view of the far-infrared heater.
  • the far-infrared heater 36 is formed in a flat plate shape, for example.
  • the far-infrared heater 36 includes a rectangular thin metal plate 37 made of aluminum alloy, stainless steel, or the like, and a heating element 39 that is inserted into a through hole 38 that penetrates between both end surfaces 37a and 37a in the longitudinal direction of the thin metal plate 37. .
  • a far-infrared radiation layer 40 is formed on the outer surface of the metal thin plate 37.
  • a far-infrared radiation material such as silica (SiO 2 ), zirconium oxide (ZrO 2 ), tin oxide (SnO 2 ), titanium oxide (TiO 2 ), alumina (Al 2 O 3 ) II to IV metal oxide ceramics such as beryllia (BeO 2 ), cordierite (2MgO ⁇ 2Al 2 O 3 ⁇ 5SiO 2 ), iron oxide (Fe 2 O 3 ), chromium oxide (Cr 2 O 3 ), II-VIII group metal oxide ceramics such as nickel oxide (NiO) and cobalt oxide (CoO), non-oxide ceramics such as silicon carbide (SiC), and mixtures thereof are preferably used.
  • the far-infrared radiation layer 40 it is preferable to use a material in which a powder mainly composed of a far-infrared radiation material is bound by a binder such as synthetic resin or glass.
  • the thickness of the far-infrared radiation layer 40 is, for example, 10 to 100 ⁇ m.
  • the far-infrared radiation layer 40 can be formed by a dipping method or the like.
  • the heating element 39 has a structure in which a spiral resistance heating element 42 having an outer diameter smaller than the inner diameter dimension is accommodated in a bottomed cylindrical metal cartridge 41. Ends 42a and 42b of the resistance heating element 42 are connected to a power source (external energy source) (not shown).
  • a power source external energy source
  • Far-infrared rays are electromagnetic waves having a wavelength of, for example, 4 to 1000 ⁇ m.
  • the heating element 39 is inserted into the through holes 38a and 38c near the side edges 37b and 37b among the three through holes 38 (38a, 38b and 38c). Air for temperature adjustment can be introduced into the central through hole 38b.
  • the far-infrared heater 36 is provided at a position facing the photocurable resin film 1 transferred in the furnace body 34. Specifically, in the furnace body 34, an upper surface side heater 43 composed of one or more far infrared heaters 36 arranged horizontally and a lower surface side heater 44 composed of one or more far infrared heaters 36 arranged horizontally. And a transfer space 45 in which the photocurable resin film 1 is transferred is secured between them.
  • the upper surface side heater 43 includes one or a plurality of heater blocks.
  • the upper heater 43 in the illustrated example has four heater blocks 43A to 43D.
  • the heater blocks 43A to 43D are arranged in this order from the inlet 34a to the outlet 34b.
  • the heater blocks 43A to 43D have, for example, the same length dimension and area. For this reason, the heater block 43A constitutes about a quarter of the length of the upper surface side heater 43, and the other heater blocks 43B to 43D also have a length direction of the upper surface side heater 43, respectively. It constitutes a quarter part.
  • Each of the heater blocks 43A to 43D includes one or a plurality of far infrared heaters 36.
  • each of the heater blocks 43A to 43D includes a plurality of heater units 46.
  • the heater unit 46 includes one or more far infrared heaters 36.
  • the lower surface side heater 44 includes one or a plurality of heater blocks.
  • the lower surface side heater 44 includes four heater blocks 44A to 44D.
  • the heater blocks 44A to 44D are arranged in this order from the inlet 34a to the outlet 34b.
  • the heater blocks 44A to 44D have the same length dimension and area. For this reason, the heater block 44A constitutes about a quarter of the length of the lower surface side heater 44, and the heater blocks 44B to 44D also respectively correspond to about 4 minutes of the length direction of the lower surface side heater 44. 1 part.
  • Each of the heater blocks 44A to 44D includes one or a plurality of far infrared heaters 36.
  • each of the heater blocks 44A to 44D includes a plurality of heater units 47.
  • the heater unit 47 includes one or a plurality of far infrared heaters 36.
  • the heater blocks 43A to 43D and the heater blocks 44A to 44D are preferably capable of independently setting the far-infrared irradiation amount by adjusting the power supplied to the heating element 39 of the far-infrared heater 36.
  • the far-infrared heater 36 which comprises each heater block can set the irradiation amount of a far-infrared radiation each independently.
  • the heating temperature of the upper surface side heater 43 and the lower surface side heater 44 can be set independently for each region in the transfer direction D1.
  • the heating temperature can be set independently for each of the heater blocks 43A to 44D or for each of the heater units 46 and 47.
  • the heater units 46 and 47 are composed of a plurality of far infrared heaters 36, the heating temperature can be set independently for each far infrared heater 36.
  • the far-infrared heater 36 can be installed so that the through hole 38 is perpendicular to the transfer direction D1 of the photocurable resin film 1 (vertical direction in FIG. 4).
  • the transfer roller 35 has a function of feeding and moving the photocurable resin film 1.
  • the transfer roller 35 has a shaft portion 35a and a transfer portion 35b having an outer diameter larger than that of the shaft portion 35a, and rotates around the shaft portion 35a so that the photocurable resin film placed on the transfer portion 35b. 1 can be transferred.
  • the transfer roller 35 is installed horizontally with the shaft portion 35a oriented vertically to the transfer direction of the photocurable resin film 1 (direction perpendicular to the paper surface of FIG. 2).
  • the plurality of transfer rollers 35 can be provided at intervals in the transfer direction of the photocurable resin film 1 (right direction in FIG. 1).
  • the take-up roll 33 is driven and rotated by a motor or the like (not shown) to take up the photocurable resin film 1.
  • the winding roll 33 constitutes a transfer means for transferring the photocurable resin film 1 in the longitudinal direction.
  • a liquid photocurable resin composition is applied to one surface of one base film 3 in the coating portion 13 of the first processing portion 6 (coating step).
  • the photocurable resin layer 2 is sandwiched between the one base film 3 that has passed through the coating section 13 and the other base film 4 that has been fed out from the other base roll 12. It is set as the film 1 (lamination process).
  • the laminated film 1 transferred by the ultraviolet irradiation unit 15 is irradiated with ultraviolet R1 to advance the polymerization reaction of the photocurable resin layer 2 to cure the photocurable resin layer 2, and the photocurable resin film. 1 is obtained (ultraviolet irradiation process).
  • the photocurable resin layer 2 may be in a semi-cured state in which the polymerization reaction does not proceed completely and an unreacted product remains.
  • the photocurable resin layer 2 is preferably in any form of gel or solid (for example, gel or semisolid).
  • the photocurable resin film 1 that has undergone the ultraviolet irradiation process is wound up on a winding roll 16.
  • the winding roll 16 is used as the supply roll 31 as it is.
  • the photocurable resin film 1 is introduced from the supply roll 31 to the furnace body 34.
  • the photocurable resin film 1 is transferred by the transfer roller 35 through the transfer space 45 between the upper surface side heater 43 and the lower surface side heater 44 from the inlet 34a toward the outlet 34b along the horizontal plane.
  • the heating element 39 is heated by energizing the resistance heating element 42 of the far infrared heater 36 that constitutes the upper surface heater 43 and the lower surface heater 44, the metal thin plate 37 is heated to a high temperature, and the far infrared radiation layer 40 is heated. . Thereby, the far-infrared radiation layer 40 emits far-infrared rays (see FIG. 4).
  • Far-infrared rays from the far-infrared heater 36 are radiated to the facing photocurable resin film 1.
  • the polymerization reaction of the photocurable resin layer 2 further proceeds and the hardness of the photocurable resin layer 2 is increased (thermosetting step).
  • the photocurable resin film 1 in which the hardness of the photocurable resin layer 2 is increased is obtained.
  • the inside of the heating furnace 32 may be an air atmosphere or a nitrogen gas atmosphere.
  • a situation in which the polymerization reaction of the photocurable resin layer 2 becomes insufficient due to consumption of the polymerization initiator in the photocurable resin layer 2 by contact with air can be avoided.
  • FIG. 7 is a graph showing the measurement results of the temperature in the heating furnace 32 in the thermosetting process.
  • the horizontal axis represents the temperature change during the transfer process of the photocurable resin film 1 and represents the position in the transfer direction in the heating furnace 32.
  • the vertical axis represents temperature.
  • a solid line shows the temperature change of the photocurable resin film 1 (Test 1).
  • a broken line shows the temperature change of the base film 3 when only the base film 3 is introduced into the heating furnace 32 in place of the photocurable resin film 1 (Test 2).
  • a two-dot chain line indicates a set temperature of the upper surface heater 43 and the lower surface heater 44.
  • the temperature of the photocurable resin film 1 in the transfer direction in the heating furnace 32 is set by setting the temperature for each of the heater blocks 43A to 44D (specifically, for each heater unit 47).
  • the distribution can be adjusted.
  • the temperature distribution has a peak at a substantially central position in the length direction of the heating furnace 32 (Test 1).
  • Test 1 it can be seen from comparison between Test 1 and Test 2 that the temperature of the photocurable resin film 1 is higher due to the reaction heat of the polymerization reaction of the photocurable resin layer 2.
  • the far-infrared irradiation amount of the far-infrared heater 36 is preferably determined in consideration of the reaction heat of the polymerization reaction of the photocurable resin layer 2.
  • the maximum temperature of the photocurable resin film 1 is preferably 165 to 180 ° C. (preferably 170 to 175 ° C.). Thereby, the thermal deformation and thermal decomposition of the base films 3 and 4 can be avoided, and the polymerization reaction in the photocurable resin layer 2 can be sufficiently advanced.
  • the photocurable resin film 1 can be heated by far-infrared rays.
  • the photocurable resin film 1 has a laminated structure in which the photocurable resin layer 2 is sandwiched between a pair of base films 3 and 4, so that the heating efficiency to the photocurable resin layer 2 tends to be low. Since it reaches the deep part of the photocurable resin film 1 and heats it, the heating efficiency can be increased. For this reason, the production efficiency of the photocurable resin film 1 can be increased. Moreover, heat loss can be reduced and energy consumption can be suppressed.
  • the photocurable resin film 1 can be reliably heated to the inside by far-infrared rays, overheating is less likely to occur compared to a method of heating by heat conduction using air as a medium (such as a hot air heating method), and the substrate film 3, 4 deformation and thermal decomposition can be prevented.
  • the base films 3 and 4 are peeled off from the photocurable resin layer 2 due to deformation of the base films 3 and 4 due to excessive heating, the polymerization initiator in the photocurable resin layer 2 is consumed by contact with air.
  • the polymerization reaction of the photocurable resin layer 2 may be insufficient, but the manufacturing apparatus 10 can prevent such a situation, so that the polymerization reaction of the photocurable resin layer 2 can be sufficiently advanced. it can.
  • heating efficiency can be improved, a required heating time can be shortened. Further, the length of the heating furnace 32 in the transfer direction D1 can be shortened.
  • the manufacturing apparatus 10 that employs heating by far infrared rays does not need to consider the adverse effect on the transfer of the photocurable resin film 1 due to the airflow in the heating furnace 32, and can be transferred normally, compared to the hot air heating type and the like. It is.
  • the manufacturing apparatus 10 can be downsized, which is advantageous in reducing the installation space of the apparatus.
  • the manufacturing apparatus 10 employs the far-infrared heater 36, it is easier to set the temperature in the heating furnace 32 than a hot air heating type or the like.
  • the temperature can be set for each region in the transfer direction D1 in the heating furnace 32, heating according to the characteristics of the photocurable resin film 1 is possible.
  • the polymerization reaction in the photocurable resin layer 2 can be surely advanced by setting the temperature rise and drop gently. In particular, if the temperature drop is abrupt, the progress of the polymerization reaction tends to be insufficient. However, by slowing the gradient of the temperature drop, the polymerization reaction is reliably advanced and the hardness of the photocurable resin layer 2 is increased. Can do.
  • the far-infrared heater 36 is employed, unlike the hot air heating type or the like, dust generation does not occur and adverse effects of dust can be prevented. Furthermore, the temperature in the width direction of the photocurable resin film 1 in the heating furnace 32 can be made uniform, and the characteristics of the photocurable resin film 1 can be made uniform in the width direction.
  • Both side edge portions of the photocurable resin film 1 in FIG. 6 are configured by laminating only a pair of base films 3 and 4, but the photocurable resin layer 2 is paired with a pair of bases as in the other portions. It may be configured to be sandwiched between the material films 3 and 4.
  • the hardness index includes JIS K6253 and JIS K7215.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

Provided is a device for producing a photocurable resin film and that has a heating furnace that raises the hardness of a photocurable resin layer by heating a photocurable resin film. The heating furnace has a far infrared ray heater that heats the photocurable resin film by radiating far infrared rays at the photocurable resin film.

Description

光硬化性樹脂フィルムの製造装置および製造方法Photocurable resin film manufacturing apparatus and manufacturing method
 この発明は、光硬化性樹脂フィルムの製造装置および製造方法に関する。
 本願は、2013年6月25日に日本に出願された特願2013-132686号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a photocurable resin film production apparatus and production method.
This application claims priority based on Japanese Patent Application No. 2013-132686 for which it applied to Japan on June 25, 2013, and uses the content here.
 従来、光硬化性樹脂フィルムとしては、液状の光硬化性樹脂組成物を一対の基材フィルムにより挟み込んで構成された積層フィルムを有し、光硬化性樹脂組成物を紫外線照射により硬化させた構造のものがある(例えば特許文献1を参照)。 Conventionally, the photocurable resin film has a laminated film constituted by sandwiching a liquid photocurable resin composition between a pair of base film, and the photocurable resin composition is cured by ultraviolet irradiation. (For example, refer to Patent Document 1).
 硬化性樹脂からなるフィルムの製造装置としては、フィルムを加熱して樹脂を硬化させる熱風式加熱炉、オーブン等を用いた装置がある(例えば特許文献2を参照)。 As an apparatus for producing a film made of a curable resin, there is an apparatus using a hot-air heating furnace, an oven, or the like that heats the film to cure the resin (see, for example, Patent Document 2).
特開2006-306081号公報JP 2006-306081 A 特開2009-197102号公報JP 2009-197102 A
 前述の光硬化性樹脂組成物を光硬化させたのち、硬化をさらに進めるために当該光硬化性樹脂フィルムを加熱する場合には、熱風式加熱炉等を用いた製造装置が使用できるが、この製造装置は、樹脂組成物を硬化させるのに長時間を要するため生産効率の点で問題がある。
 加熱温度を高めれば生産効率の問題は改善し得るが、その場合にはフィルムの変形や熱分解が懸念される。
After photocuring the above-mentioned photocurable resin composition, when heating the photocurable resin film for further curing, a manufacturing apparatus using a hot air heating furnace or the like can be used. The manufacturing apparatus has a problem in terms of production efficiency because it takes a long time to cure the resin composition.
If the heating temperature is raised, the problem of production efficiency can be improved, but in that case, there is a concern about deformation and thermal decomposition of the film.
 本発明は、上述した事情に鑑みたものであって、光硬化性樹脂フィルムの光硬化性樹脂組成物の硬化をさらに進めるためにこれを加熱する場合に、生産効率を低下させず、かつフィルムの変形や熱分解を防ぐことができる光硬化性樹脂フィルムの製造装置および製造方法を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and when heating the photocurable resin composition of the photocurable resin film to further advance the curing, the production efficiency is not lowered and the film It aims at providing the manufacturing apparatus and manufacturing method of a photocurable resin film which can prevent a deformation | transformation and thermal decomposition of this.
 本発明の一態様は、以下の[1]~[7]に関する。
[1]液状の光硬化性樹脂組成物からなる光硬化性樹脂層を一対の基材フィルムにより挟み込んでなる帯状の積層フィルムに光を照射して前記光硬化性樹脂層を硬化させて得た光硬化性樹脂フィルムを加熱して前記光硬化性樹脂層の硬度を高める加熱炉を有し、前記加熱炉は、前記光硬化性樹脂フィルムに遠赤外線を照射することによって前記光硬化性樹脂フィルムを加熱する1または複数の遠赤外線照射手段を有する光硬化性樹脂フィルムの製造装置。
[2]前記遠赤外線照射手段は、前記加熱炉内に導入された前記光硬化性樹脂フィルムに対面するように設置された平板状の遠赤外線ヒータを有する前記[1]に記載の光硬化性樹脂フィルムの製造装置。
[3]前記光硬化性樹脂フィルムをその長手方向に移送する移送手段をさらに有し、前記遠赤外線照射手段は、前記移送手段により移送される前記光硬化性樹脂フィルムに前記遠赤外線を照射する前記[1]または[2]に記載の光硬化性樹脂フィルムの製造装置。
[4]前記複数の遠赤外線照射手段は、前記光硬化性樹脂フィルムの移送方向に沿って並べて設置され、かつ互いに独立に遠赤外線の照射量を設定できる前記 [1]から[3]のいずれか一項に記載の光硬化性樹脂フィルムの製造装置。
[5]前記光硬化性樹脂フィルムの少なくとも一方の側縁部は、前記一対の基材フィルムのみを積層して構成されている前記[1]から[4]のいずれか一項に記載の光硬化性樹脂フィルムの製造装置。
[6]前記光硬化性樹脂組成物は、多価アリルエステル樹脂である前記[1]から[5]のいずれか一項に記載の光硬化性樹脂フィルムの製造装置。
One embodiment of the present invention relates to the following [1] to [7].
[1] Obtained by irradiating a belt-shaped laminated film formed by sandwiching a photocurable resin layer made of a liquid photocurable resin composition with a pair of base films to cure the photocurable resin layer It has a heating furnace that heats a photocurable resin film to increase the hardness of the photocurable resin layer, and the heating furnace irradiates far-infrared rays on the photocurable resin film. The manufacturing apparatus of the photocurable resin film which has a 1 or several far-infrared irradiation means which heats.
[2] The photocurable property according to [1], wherein the far-infrared irradiation unit includes a flat-plate far-infrared heater installed so as to face the photocurable resin film introduced into the heating furnace. Resin film production equipment.
[3] It further has a transfer means for transferring the photocurable resin film in its longitudinal direction, and the far-infrared irradiation means irradiates the far-infrared ray on the photocurable resin film transferred by the transfer means. The apparatus for producing a photocurable resin film according to [1] or [2].
[4] Any of the above [1] to [3], wherein the plurality of far-infrared irradiation means can be arranged side by side along the transfer direction of the photocurable resin film and can set the irradiation amount of the far-infrared rays independently of each other. The manufacturing apparatus of the photocurable resin film as described in any one.
[5] The light according to any one of [1] to [4], wherein at least one side edge of the photocurable resin film is configured by laminating only the pair of substrate films. Production equipment for curable resin film.
[6] The apparatus for producing a photocurable resin film according to any one of [1] to [5], wherein the photocurable resin composition is a polyvalent allyl ester resin.
[7]液状の光硬化性樹脂組成物からなる光硬化性樹脂層を一対の基材フィルムにより挟み込んでなる帯状の積層フィルムに光を照射して前記光硬化性樹脂層を硬化させて得た光硬化性樹脂フィルムを、遠赤外線照射手段を有する加熱炉に導入し、前記遠赤外線照射手段によって前記光硬化性樹脂フィルムに遠赤外線を照射して前記光硬化性樹脂フィルムを加熱する光硬化性樹脂フィルムの製造方法。
 光は、例えば紫外線である。
[7] Obtained by irradiating a belt-shaped laminated film formed by sandwiching a photocurable resin layer made of a liquid photocurable resin composition with a pair of base films to cure the photocurable resin layer A photocurable resin film is introduced into a heating furnace having far-infrared irradiation means, and the photocurable resin film is heated by irradiating the photocurable resin film with far-infrared rays by the far-infrared irradiation means. A method for producing a resin film.
The light is, for example, ultraviolet rays.
 本発明の態様によれば、遠赤外線照射手段を有する加熱炉を使用するので、光硬化性樹脂層を基材フィルム間に挟み込んだ積層構造の光硬化性樹脂フィルムを対象とするにもかかわらず、光硬化性樹脂層に対する加熱効率を向上させ、光硬化性樹脂層の硬度を高めることができる。
 加熱温度を高くする必要がないため、フィルムの変形や熱分解を抑制できる。
According to the aspect of the present invention, since a heating furnace having a far-infrared irradiation means is used, it is intended for a photocurable resin film having a laminated structure in which a photocurable resin layer is sandwiched between substrate films. The heating efficiency with respect to the photocurable resin layer can be improved, and the hardness of the photocurable resin layer can be increased.
Since there is no need to increase the heating temperature, film deformation and thermal decomposition can be suppressed.
本発明の一実施形態に係る光硬化性樹脂フィルムの製造装置の加熱炉を示す概略図である。It is the schematic which shows the heating furnace of the manufacturing apparatus of the photocurable resin film which concerns on one Embodiment of this invention. 加熱炉を光硬化性樹脂フィルムの移送方向から見た断面概略図である。It is the cross-sectional schematic which looked at the heating furnace from the transfer direction of the photocurable resin film. 光硬化性樹脂フィルムの製造装置の全体を示す概略図である。It is the schematic which shows the whole manufacturing apparatus of a photocurable resin film. 加熱炉に用いられる遠赤外線ヒータの平面図、および遠赤外線ヒータの側面図である。It is a top view of the far-infrared heater used for a heating furnace, and a side view of a far-infrared heater. 発熱体を示す斜視図である。It is a perspective view which shows a heat generating body. 光硬化性樹脂フィルムの一例を示す概略斜視図である。It is a schematic perspective view which shows an example of a photocurable resin film. 加熱炉内の光硬化性樹脂フィルムの温度についての試験結果を示すグラフである。It is a graph which shows the test result about the temperature of the photocurable resin film in a heating furnace.
 以下、図1~図7を参照して本発明の一実施形態について説明する。
 図6は、光硬化性樹脂フィルムの一例を示すもので、ここに示す光硬化性樹脂フィルム1は、液状の光硬化性樹脂組成物からなるフィルム状の光硬化性樹脂層2を一対の基材フィルム3,4により挟み込んでなる帯状体である。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
FIG. 6 shows an example of a photocurable resin film. The photocurable resin film 1 shown here is a film-like photocurable resin layer 2 made of a liquid photocurable resin composition. It is a belt-like body sandwiched between the material films 3 and 4.
 光硬化性樹脂フィルム1は、一対の基材フィルム3,4の幅寸法が、光硬化性樹脂層2の幅寸法よりも大きく設定されており、基材フィルム3,4の側縁部の間には、光硬化性樹脂層2は形成されていない。すなわち、光硬化性樹脂フィルム1の両側縁部は、一対の基材フィルム3,4のみを互いに積層した耳部5となっている。
 なお、光硬化性樹脂フィルム1は、一方の側縁部のみが一対の基材フィルム3,4のみを積層して構成されていてもよい。
In the photocurable resin film 1, the width dimension of the pair of substrate films 3 and 4 is set to be larger than the width dimension of the photocurable resin layer 2, and between the side edges of the substrate films 3 and 4. The photocurable resin layer 2 is not formed. That is, both side edge portions of the photocurable resin film 1 are ear portions 5 in which only a pair of base films 3 and 4 are laminated together.
In addition, the photocurable resin film 1 may be configured by laminating only a pair of base films 3 and 4 only on one side edge.
 本実施形態における光硬化性樹脂組成物としては、光(紫外線、可視光)および電子線などの活性エネルギー線により硬化反応(重合反応)が進行するものであれば特に限定されない。光硬化性樹脂組成物は重合性樹脂成分に光重合性開始剤を配合したものが好ましい。なお、本実施形態における光硬化性樹脂組成物としては、光重合性の炭素-炭素二重結合を複数個有する化合物が好ましい。光硬化性樹脂組成物の例としては、(1)多価アリルエステル樹脂、(2)多価ビニルエステル樹脂、(3)多官能ウレタン(メタ)アクリレート樹脂、(4)籠型シロキサン-(メタ)アクリレート樹脂組成物、などが挙げられる。 The photocurable resin composition in the present embodiment is not particularly limited as long as a curing reaction (polymerization reaction) proceeds by active energy rays such as light (ultraviolet light and visible light) and an electron beam. The photocurable resin composition is preferably prepared by blending a polymerizable resin component with a photopolymerizable initiator. The photocurable resin composition in the present embodiment is preferably a compound having a plurality of photopolymerizable carbon-carbon double bonds. Examples of the photocurable resin composition include (1) polyvalent allyl ester resin, (2) polyvalent vinyl ester resin, (3) polyfunctional urethane (meth) acrylate resin, and (4) cage-type siloxane- (meta ) Acrylate resin composition.
 (1)多価アリルエステル樹脂は、多価アリルエステル化合物と光重合開始剤を含む組成物である。多価アリルエステル化合物は、多価カルボン酸のアリルエステルモノマーと2~6個の水酸基を有する炭素数2~20の多価アルコールとのエステル交換反応により製造される。
 多価カルボン酸のアリルエステルモノマーの具体例としては、フタル酸ジアリル、イソフタル酸ジアリル、テレフタル酸ジアリル、2,6-ナフタレンジカルボン酸ジアリル、1,2-シクロヘキサンジカルボン酸ジアリル、1,3-シクロヘキサンジカルボン酸ジアリル、1,4-シクロヘキサンジカルボン酸ジアリル、エンドメチレンテトラヒドロフタル酸ジアリル、メチルテトラヒドロフタル酸ジアリル、アジピン酸ジアリル、コハク酸ジアリル、マレイン酸ジアリル等が挙げられる。これらアリルエステルモノマーは、必要に応じて2種以上使用することもでき、また、上述の具体例に限定されるものではない。
(1) The polyvalent allyl ester resin is a composition containing a polyvalent allyl ester compound and a photopolymerization initiator. The polyvalent allyl ester compound is produced by an ester exchange reaction between an allyl ester monomer of a polyvalent carboxylic acid and a polyhydric alcohol having 2 to 6 hydroxyl groups and having 2 to 20 carbon atoms.
Specific examples of polyvalent carboxylic acid allyl ester monomers include diallyl phthalate, diallyl isophthalate, diallyl terephthalate, diallyl 2,6-naphthalenedicarboxylate, diallyl 1,2-cyclohexanedicarboxylate, and 1,3-cyclohexanedicarboxylic acid. Examples include diallyl acid, diallyl 1,4-cyclohexanedicarboxylate, diallyl endomethylenetetrahydrophthalate, diallyl methyltetrahydrophthalate, diallyl adipate, diallyl succinate, diallyl maleate, and the like. These allyl ester monomers can be used in combination of two or more as required, and are not limited to the specific examples described above.
 炭素数2~20の多価アルコールの具体例のうち、2価のアルコールとしては、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、ヘキサメチレングリコール、1,4-シクロヘキサンジメタノール、2-メチル-1,3-プロパンジオール、3-メチル-1,5-ペンタンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ポリエチレングリコール、ビスフェノール-Aのエチレンオキサイド付加物、ビスフェノール-Aのプロピレンオキサイド付加物、2,2-[4-(2-ヒドロキシエトキシ)-3,5-ジブロモフェニル]プロパン等が挙げられる。
 また、3価以上の多価アルコールの具体例としては、グリセリン、トリメチロールプロパン、トリメチロールエタン、ペンタエリスリトール、ジペンタリスリトール等が挙げられる。これらの多価アルコールの2種以上の混合物であってもよい。また、上述の具体例に限定されるものではない。
Among specific examples of the polyhydric alcohol having 2 to 20 carbon atoms, the divalent alcohol includes ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, neo Pentyl glycol, hexamethylene glycol, 1,4-cyclohexanedimethanol, 2-methyl-1,3-propanediol, 3-methyl-1,5-pentanediol, diethylene glycol, dipropylene glycol, triethylene glycol, polyethylene glycol, Examples include bisphenol-A ethylene oxide adduct, bisphenol-A propylene oxide adduct, 2,2- [4- (2-hydroxyethoxy) -3,5-dibromophenyl] propane, and the like.
Specific examples of the trihydric or higher polyhydric alcohol include glycerin, trimethylolpropane, trimethylolethane, pentaerythritol, dipentalysitol and the like. A mixture of two or more of these polyhydric alcohols may be used. Moreover, it is not limited to the above-mentioned specific example.
 さらに、多価アリルエステル化合物はラジカル重合性であり、熱や紫外線、電子線等により重合させることができる。また、他のラジカル重合性化合物と共重合することもできる。
 多価アリルエステル化合物と共重合させるラジカル重合性化合物は、多価アリルエステル化合物と共重合する化合物であれば特に制限はない。その具体例としては、ジアリルフタレート、ジアリルイソフタレート、ジアリルテレフタレート、アリルベンゾエート、α-ナフトエ酸アリル、β-ナフトエ酸アリル、2-フェニル安息香酸アリル、3-フェニル安息香酸アリル、4-フェニル安息香酸アリル、o-クロロ安息香酸アリル、m-クロロ安息香酸アリル、p-クロロ安息香酸アリル、o-ブロモ安息香酸アリル、m-ブロモ安息香酸アリル、p-ブロモ安息香酸アリル、2,6-ジクロロ安息香酸アリル、2,4-ジクロロ安息香酸アリル、2,4,6-トリブロモ安息香酸アリル、1,4-シクロヘキサンジカルボン酸ジアリル、1,3-シクロヘキサンジカルボン酸ジアリル、1,2-シクロヘキサンジカルボン酸ジアリル、1-シクロヘキセン-1,2-ジカルボン酸ジアリル、3-メチル-1,2-シクロヘキサンジカルボン酸ジアリル、4-メチル-1,2-シクロヘキサンジカルボン酸ジアリル、エンディック酸ジアリル、クロレンド酸ジアリル、3,6-メチレン-1,2-シクロヘキサンジカルボン酸ジアリル、トリメリット酸トリアリル、ピロメリット酸テトラアリル、ジフェン酸ジアリル等、コハク酸ジアリル、アジピン酸ジアリル等のアリルエステル類、ジベンジルマレート、ジベンジルフマレート、ジフェニルマレート、ジフェニルフマレート、ジブチルマレート、ジブチルフマレート、ジメトキエチルマレート、ジメトキシエチルフマレート等のマレイン酸ジエステル/フマル酸ジエステル類、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、フェニル(メタ)アクリレート、ステアリル(メタ)アクリレート、ラウリル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレンジリコールジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、エトキシ化シクロヘキサンジメタノールジメタクリレート、アダマンチル(メタ)アクリレート等の(メタ)アクリル酸エステル類;スチレン、α-メチルスチレン、メトキシスチレン、ジビニルベンゼン等の芳香族ビニル化合物;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル、ステアリン酸ビニル、カプロン酸ビニル等の脂肪族カルボン酸のビニルエステル;シクロヘキサンカルボン酸ビニルエステル等の脂環式ビニルエステル;安息香酸ビニルエステル、t-ブチル安息香酸ビニルエステル等の芳香族ビニルエステル、ジアリルカーボネート、ジエチレングリコールビスアリルカーボネート、PPG社製商品名CR-39に代表されるポリエチレングリコールビス(アリル)カーボネート樹脂等のアリルカーボネート化合物、分子内に反応性の異なる重合性二重結合を有する(メタ)アクリル酸アリル、(メタ)アクリル酸ビニルやマレイン酸ジアリル等の化合物、イソシアヌル酸トリアリルやシアヌル酸トリアリル等の窒素含有多官能アリル化合物、不飽和ポリエステル樹脂、ビニルエステル樹脂、ウレタンアクリレート、エポキシアクリレート等オリゴアクリレート類等が挙げられる。
Furthermore, the polyvalent allyl ester compound is radically polymerizable and can be polymerized by heat, ultraviolet rays, electron beams or the like. It can also be copolymerized with other radically polymerizable compounds.
The radical polymerizable compound to be copolymerized with the polyvalent allyl ester compound is not particularly limited as long as it is a compound copolymerizable with the polyvalent allyl ester compound. Specific examples thereof include diallyl phthalate, diallyl isophthalate, diallyl terephthalate, allyl benzoate, allyl α-naphthoate, allyl β-naphthoate, allyl 2-phenylbenzoate, allyl 3-phenylbenzoate, 4-phenylbenzoic acid. Allyl, allyl o-chlorobenzoate, allyl m-chlorobenzoate, allyl p-chlorobenzoate, allyl o-bromobenzoate, allyl m-bromobenzoate, allyl p-bromobenzoate, 2,6-dichlorobenzoate Allyl acid, allyl 2,4-dichlorobenzoate, allyl 2,4,6-tribromobenzoate, diallyl 1,4-cyclohexanedicarboxylate, diallyl 1,3-cyclohexanedicarboxylate, diallyl 1,2-cyclohexanedicarboxylate, 1-cyclohexene-1,2-dicarboxylic acid di Allyl, diallyl 3-methyl-1,2-cyclohexanedicarboxylate, diallyl 4-methyl-1,2-cyclohexanedicarboxylate, diallyl endic acid, diallyl chlorendate, 3,6-methylene-1,2-cyclohexanedicarboxylic acid Allyl esters such as diallyl, triallyl trimelliate, tetraallyl pyromellitic acid, diallyl diphenate, diallyl succinate, diallyl adipate, dibenzyl malate, dibenzyl fumarate, diphenyl malate, diphenyl fumarate, dibutyl maleate Maleic acid diesters / fumaric acid diesters, such as rate, dibutyl fumarate, dimethoxyethyl fumarate, dimethoxyethyl fumarate, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate , I-butyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, phenyl (meth) acrylate, stearyl (meth) acrylate, lauryl (meth) acrylate, benzyl (meth) acrylate, isobornyl (Meth) acrylate, trimethylolpropane tri (meth) acrylate, ethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9- Nonanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, polyethylene diglycol di (meth) acrylate, pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra ( ) Acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, tri (Meth) acrylic esters such as cyclodecanedimethanol di (meth) acrylate, dicyclopentenyl (meth) acrylate, ethoxylated cyclohexanedimethanol dimethacrylate, adamantyl (meth) acrylate; styrene, α-methylstyrene, methoxystyrene , Aromatic vinyl compounds such as divinylbenzene; aliphatic carboxyl such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl pivalate, vinyl stearate, vinyl caproate Vinyl ester; cycloaliphatic carboxylic acid vinyl ester and other alicyclic vinyl esters; benzoic acid vinyl ester and t-butyl benzoic acid vinyl ester and other aromatic vinyl esters, diallyl carbonate, diethylene glycol bisallyl carbonate, trade name CR manufactured by PPG -39 Allyl carbonate compounds such as polyethylene glycol bis (allyl) carbonate resin represented by 39, allyl (meth) acrylate, vinyl (meth) acrylate and maleic acid having polymerizable double bonds with different reactivity in the molecule Compounds such as diallyl, nitrogen-containing polyfunctional allyl compounds such as triallyl isocyanurate and triallyl cyanurate, unsaturated polyester resin, vinyl ester resin, urethane acrylate, epoxy acrylate and other oligoacrylates, etc. And the like.
 ただし、これらのラジカル重合性化合物はあくまで例示であり、上記に限定されるわけではない。また、これらのラジカル重合性化合物は、目的の物性を得るために2種以上併用してもよい。 However, these radically polymerizable compounds are merely examples and are not limited to the above. These radically polymerizable compounds may be used in combination of two or more in order to obtain the desired physical properties.
 (2)多価ビニルエステル樹脂としては、前記多価アリルエステルのアリル基をビニル基に置換したものが挙げられる。 (2) Examples of the polyvalent vinyl ester resin include those in which the allyl group of the polyvalent allyl ester is substituted with a vinyl group.
 (3)多官能ウレタン(メタ)アクリレート樹脂としては、ポリイソシアネート系化合物と水酸基含有(メタ)アクリレート系化合物を、必要に応じてジブチルチンジラウレートなどの触媒を用いて反応させて得られた物が挙げられる。ポリイソシアネート系化合物としてはイソホロンジイソシアネート、トリシクロデカンジイソシアネート、ノルボルネンジイソシアネート、1,3-ジイソシアナトシクロヘキサン、1,4-ジイソシアナトシクロヘキサン、水添化キシリレンジイソシアネート、水添化ジフェニルメタンジイソシアネートなどのポリイソシアネート系化合物などが例示される。水酸基含有(メタ)アクリレート系化合物の具体例としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレートなどが挙げられる。 (3) The polyfunctional urethane (meth) acrylate resin is obtained by reacting a polyisocyanate compound and a hydroxyl group-containing (meth) acrylate compound using a catalyst such as dibutyltin dilaurate as necessary. Can be mentioned. Examples of polyisocyanate compounds include isophorone diisocyanate, tricyclodecane diisocyanate, norbornene diisocyanate, 1,3-diisocyanatocyclohexane, 1,4-diisocyanatocyclohexane, hydrogenated xylylene diisocyanate, and hydrogenated diphenylmethane diisocyanate. Examples include isocyanate compounds. Specific examples of the hydroxyl group-containing (meth) acrylate compound include, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3- ( Examples include meth) acryloyloxypropyl (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol tetra (meth) acrylate, and dipentaerythritol tri (meth) acrylate.
 (4)籠型シロキサン-(メタ)アクリレート樹脂組成物としては、特開2010-195986号公報に記載の樹脂組成物が挙げられる。 (4) Examples of the cage-type siloxane- (meth) acrylate resin composition include resin compositions described in JP-A No. 2010-195986.
 一方、各基材フィルム3,4は、紫外線を透過可能な光透過性樹脂からなるフィルムである。具体的な基材フィルム3,4の材料としては、例えばポリエチレンテレフタレート(PET)、ポリプロピレン、ポリエチレンなどが挙げられる。なお、基材フィルム3と基材フィルム4の材質は同じであっても異なっていてもよい。更にハードコート層や反射防止層を本発明の光硬化性樹脂の硬化物フィルムに転写する機能を有していてもよい。 On the other hand, each of the substrate films 3 and 4 is a film made of a light transmissive resin capable of transmitting ultraviolet rays. Specific examples of the material for the base films 3 and 4 include polyethylene terephthalate (PET), polypropylene, and polyethylene. In addition, the material of the base film 3 and the base film 4 may be the same or different. Furthermore, you may have a function which transfers a hard-coat layer and an antireflection layer to the hardened | cured material film of the photocurable resin of this invention.
 図3に示すように、この実施形態にかかる光硬化性樹脂フィルムの製造装置10は、液状の光硬化性樹脂組成物からなる光硬化性樹脂層2を一対の基材フィルム3,4により挟み込んで帯状の光硬化性樹脂フィルム1とする第1加工部6と、光硬化性樹脂フィルム1を加熱して光硬化性樹脂層2の硬度を高める第2加工部7(加熱部)とを備えている。 As shown in FIG. 3, the photocurable resin film manufacturing apparatus 10 according to this embodiment sandwiches a photocurable resin layer 2 made of a liquid photocurable resin composition between a pair of substrate films 3 and 4. The first processing part 6 to be a strip-like photocurable resin film 1 and the second processing part 7 (heating part) for heating the photocurable resin film 1 to increase the hardness of the photocurable resin layer 2 are provided. ing.
 第1加工部6は、積層フィルム1をその長手方向に移送しながら、積層フィルム1に紫外線を照射するものであって、二つの基材ロール11,12、塗工部13、ラミネート部14、紫外線照射部15、巻取ロール16を備えている。
 基材ロール11は基材フィルム3を供給し、基材ロール12は基材フィルム4を供給する。
The first processing unit 6 irradiates the laminated film 1 with ultraviolet rays while transferring the laminated film 1 in the longitudinal direction thereof, and includes two base rolls 11 and 12, a coating unit 13, a laminating unit 14, An ultraviolet irradiation unit 15 and a winding roll 16 are provided.
The base roll 11 supplies the base film 3, and the base roll 12 supplies the base film 4.
 塗工部13は、一方の基材ロール11から繰り出された基材フィルム3(一方の基材フィルム3)上に液状の光硬化性樹脂組成物を塗工して、光硬化性樹脂組成物からなるフィルム状の光硬化性樹脂層2(図6参照)を形成する。
 塗工部13は、不図示のモータにより駆動回転して一方の基材フィルム3をその長手方向に移送するバックアップロール21と、バックアップロール21の外周面に掛け回された一方の基材フィルム3上に、光硬化性樹脂組成物を塗工するスリットダイ22と、を備えている。
The coating unit 13 coats a liquid photocurable resin composition on the base film 3 (one base film 3) fed out from the one base roll 11, and the photocurable resin composition A film-like photocurable resin layer 2 (see FIG. 6) is formed.
The coating unit 13 is driven and rotated by a motor (not shown) to transfer one base film 3 in the longitudinal direction, and one base film 3 wound around the outer peripheral surface of the backup roll 21. The slit die 22 for coating the photocurable resin composition is provided on the top.
 ラミネート部14は、塗工部13を通過した一方の基材フィルム3と、他方の基材ロール12から繰り出された基材フィルム4(他方の基材フィルム4)とにより、光硬化性樹脂層2を挟み込んで、積層フィルム1(図6参照)とする。
 ラミネート部14は、基材フィルム3,4および光硬化性樹脂層2を挟み込む一対のロール14a、14bによって構成されている。
The laminating unit 14 includes a photocurable resin layer formed by one base film 3 that has passed through the coating unit 13 and a base film 4 (the other base film 4) that is fed out from the other base roll 12. 2 is sandwiched to obtain a laminated film 1 (see FIG. 6).
The laminate part 14 is constituted by a pair of rolls 14 a and 14 b that sandwich the base films 3 and 4 and the photocurable resin layer 2.
 紫外線照射部15は、移送される積層フィルム1に紫外線R1を照射して、光硬化性樹脂層2を硬化させて光硬化性樹脂フィルム1とする。紫外線照射部15は、ラミネート部14よりも積層フィルム1の移送方向の下流側に配されている。具体的な紫外線照射部15としては、例えばアーク放電を利用したランプ(メタルハライドランプ、キセノンランプ、水銀灯など)、グロー放電を利用したランプ(ネオン灯など)等が挙げられる。 The ultraviolet irradiation unit 15 irradiates the transferred laminated film 1 with ultraviolet R1 to cure the photocurable resin layer 2 to obtain the photocurable resin film 1. The ultraviolet irradiation unit 15 is arranged on the downstream side of the laminating unit 14 in the transfer direction of the laminated film 1. Specific examples of the ultraviolet irradiation unit 15 include lamps using arc discharge (metal halide lamp, xenon lamp, mercury lamp, etc.), lamps using glow discharge (neon lamp, etc.), and the like.
 巻取ロール16は、不図示のモータ等により駆動回転して紫外線照射部15を通過した後の光硬化性樹脂フィルム1を巻き取る。 The winding roll 16 is driven and rotated by a motor or the like (not shown) to wind the photocurable resin film 1 after passing through the ultraviolet irradiation unit 15.
 図1および図2に示すように、第2加工部7は、光硬化性樹脂フィルム1をその長手方向に移送しながら、光硬化性樹脂フィルム1に遠赤外線を照射して光硬化性樹脂フィルム1を加熱することで、光硬化性樹脂層2をさらに硬化させる。
 第2加工部7は、光硬化性樹脂フィルム1を供給する供給ロール31、光硬化性樹脂フィルム1を加熱する加熱炉32、光硬化性樹脂フィルム1を巻き取る巻取ロール33(図3参照)、を備えている。
As shown in FIG. 1 and FIG. 2, the second processing unit 7 irradiates the photocurable resin film 1 with far infrared rays while transferring the photocurable resin film 1 in the longitudinal direction thereof. The photocurable resin layer 2 is further cured by heating 1.
The 2nd process part 7 is the supply roll 31 which supplies the photocurable resin film 1, the heating furnace 32 which heats the photocurable resin film 1, and the winding roll 33 which winds up the photocurable resin film 1 (refer FIG. 3). ).
 加熱炉32は、連続式加熱炉であって、光硬化性樹脂フィルム1が導入される炉本体34と、炉本体34内で光硬化性樹脂フィルム1を移送する1または複数の移送ローラ35と、炉本体34内の光硬化性樹脂フィルム1を加熱する1または複数の遠赤外線ヒータ36(遠赤外線照射手段)とを有する。 The heating furnace 32 is a continuous heating furnace, and includes a furnace main body 34 into which the photocurable resin film 1 is introduced, one or a plurality of transfer rollers 35 that transfer the photocurable resin film 1 in the furnace main body 34, and And one or a plurality of far infrared heaters 36 (far infrared irradiation means) for heating the photocurable resin film 1 in the furnace body 34.
 図4は、遠赤外線ヒータ36を示す図であり、(a)は遠赤外線ヒータの平面図であり、(b)は遠赤外線ヒータの側面図である。この図に示すように、遠赤外線ヒータ36は、例えば平板状に形成されている。
 遠赤外線ヒータ36は、アルミニウム合金、ステンレス鋼等からなる矩形の金属薄板37と、この金属薄板37の長手方向の両端面37a、37a間に貫通する貫通穴38に挿通する発熱体39とを有する。
4A and 4B are diagrams showing the far-infrared heater 36, in which FIG. 4A is a plan view of the far-infrared heater, and FIG. 4B is a side view of the far-infrared heater. As shown in this figure, the far-infrared heater 36 is formed in a flat plate shape, for example.
The far-infrared heater 36 includes a rectangular thin metal plate 37 made of aluminum alloy, stainless steel, or the like, and a heating element 39 that is inserted into a through hole 38 that penetrates between both end surfaces 37a and 37a in the longitudinal direction of the thin metal plate 37. .
 金属薄板37の外面には、遠赤外線放射層40が形成されている。
 遠赤外線放射層40の材料としては、遠赤外線放射材料、例えばシリカ(SiO)、酸化ジルコニウム(ZrO)、酸化錫(SnO)、酸化チタン(TiO)、アルミナ(Al)、ベリリア(BeO)、コージェライト(2MgO・2Al・5SiO)などのII~IV族の金属酸化物セラミックス、酸化鉄(Fe)、酸化クロム(Cr)、酸化ニッケル(NiO)、酸化コバルト(CoO)等などのII~VIII族の金属酸化物セラミックス、炭化珪素(SiC)などの非酸化物セラミックス、およびそれらの混合物等が好適に用いられる。
 遠赤外線放射層40には、遠赤外線放射材料を主成分とする粉体が合成樹脂、ガラス等の結合剤によって結合された材料を使用するのが好ましい。
 遠赤外線放射層40の厚さは、例えば10~100μmである。遠赤外線放射層40は、ディッピング法などにより形成することができる。
A far-infrared radiation layer 40 is formed on the outer surface of the metal thin plate 37.
As the material of the far-infrared radiation layer 40, a far-infrared radiation material such as silica (SiO 2 ), zirconium oxide (ZrO 2 ), tin oxide (SnO 2 ), titanium oxide (TiO 2 ), alumina (Al 2 O 3 ) II to IV metal oxide ceramics such as beryllia (BeO 2 ), cordierite (2MgO · 2Al 2 O 3 · 5SiO 2 ), iron oxide (Fe 2 O 3 ), chromium oxide (Cr 2 O 3 ), II-VIII group metal oxide ceramics such as nickel oxide (NiO) and cobalt oxide (CoO), non-oxide ceramics such as silicon carbide (SiC), and mixtures thereof are preferably used.
For the far-infrared radiation layer 40, it is preferable to use a material in which a powder mainly composed of a far-infrared radiation material is bound by a binder such as synthetic resin or glass.
The thickness of the far-infrared radiation layer 40 is, for example, 10 to 100 μm. The far-infrared radiation layer 40 can be formed by a dipping method or the like.
 図5に示すように、発熱体39は、有底円筒状の金属製のカートリッジ41内にその内径寸法よりも小さい外径を有する螺旋状の抵抗発熱体42が収納された構造を有する。
 抵抗発熱体42の端部42a、42bは、図示せぬ電源(外部エネルギー源)に接続されている。
As shown in FIG. 5, the heating element 39 has a structure in which a spiral resistance heating element 42 having an outer diameter smaller than the inner diameter dimension is accommodated in a bottomed cylindrical metal cartridge 41.
Ends 42a and 42b of the resistance heating element 42 are connected to a power source (external energy source) (not shown).
 抵抗発熱体42への通電により発熱体39が発熱し、金属薄板37が高温となると、遠赤外線放射層40が加熱される。これによって、遠赤外線放射層40は遠赤外線を放出する。遠赤外線は、波長が例えば4~1000μmである電磁波である。 When the resistance heating element 42 is energized, the heating element 39 generates heat, and when the metal thin plate 37 reaches a high temperature, the far-infrared radiation layer 40 is heated. As a result, the far-infrared radiation layer 40 emits far-infrared rays. Far-infrared rays are electromagnetic waves having a wavelength of, for example, 4 to 1000 μm.
 図示例では、発熱体39は、3つの貫通穴38(38a、38b、38c)のうち側縁37b、37bに近い貫通穴38a、38cに挿入される。中央の貫通穴38bには、温度調節用の空気を導入することができる。 In the illustrated example, the heating element 39 is inserted into the through holes 38a and 38c near the side edges 37b and 37b among the three through holes 38 (38a, 38b and 38c). Air for temperature adjustment can be introduced into the central through hole 38b.
 図1に示すように、遠赤外線ヒータ36は、炉本体34内で移送される光硬化性樹脂フィルム1に対面する位置に設けられる。
 具体的には、炉本体34内には、水平配置された1または複数の遠赤外線ヒータ36からなる上面側ヒータ43と、水平配置された1または複数の遠赤外線ヒータ36からなる下面側ヒータ44とが設けられ、これらの間に光硬化性樹脂フィルム1が移送される移送空間45が確保されている。
As shown in FIG. 1, the far-infrared heater 36 is provided at a position facing the photocurable resin film 1 transferred in the furnace body 34.
Specifically, in the furnace body 34, an upper surface side heater 43 composed of one or more far infrared heaters 36 arranged horizontally and a lower surface side heater 44 composed of one or more far infrared heaters 36 arranged horizontally. And a transfer space 45 in which the photocurable resin film 1 is transferred is secured between them.
 図1に示す例では、上面側ヒータ43は、1または複数のヒータブロックからなる。図示例の上面側ヒータ43は4つのヒータブロック43A~43Dを有する。ヒータブロック43A~43Dは、この順番で入口34aから出口34bにかけて配列されている。
 ヒータブロック43A~43Dは、例えば互いに同じ長さ寸法および面積を有する。このため、ヒータブロック43Aは、上面側ヒータ43のうち長さ方向の約4分の1の部分を構成し、他のヒータブロック43B~43Dも、それぞれ上面側ヒータ43のうち長さ方向の約4分の1の部分を構成する。
 ヒータブロック43A~43Dは、それぞれ1または複数の遠赤外線ヒータ36からなる。
 図示例では、ヒータブロック43A~43Dは、それぞれ複数のヒータユニット46からなる。ヒータユニット46は1または複数の遠赤外線ヒータ36によって構成される。
In the example shown in FIG. 1, the upper surface side heater 43 includes one or a plurality of heater blocks. The upper heater 43 in the illustrated example has four heater blocks 43A to 43D. The heater blocks 43A to 43D are arranged in this order from the inlet 34a to the outlet 34b.
The heater blocks 43A to 43D have, for example, the same length dimension and area. For this reason, the heater block 43A constitutes about a quarter of the length of the upper surface side heater 43, and the other heater blocks 43B to 43D also have a length direction of the upper surface side heater 43, respectively. It constitutes a quarter part.
Each of the heater blocks 43A to 43D includes one or a plurality of far infrared heaters 36.
In the illustrated example, each of the heater blocks 43A to 43D includes a plurality of heater units 46. The heater unit 46 includes one or more far infrared heaters 36.
 下面側ヒータ44は、1または複数のヒータブロックからなる。図示例の下面側ヒータ44は4つのヒータブロック44A~44Dを有する。ヒータブロック44A~44Dは、この順番で入口34aから出口34bにかけて配列されている。
 ヒータブロック44A~44Dは互いに同じ長さ寸法および面積を有する。このため、ヒータブロック44Aは、下面側ヒータ44のうち長さ方向の約4分の1の部分を構成し、ヒータブロック44B~44Dも、それぞれ下面側ヒータ44のうち長さ方向の約4分の1の部分を構成する。
 ヒータブロック44A~44Dは、それぞれ1または複数の遠赤外線ヒータ36からなる。
 図示例では、ヒータブロック44A~44Dは、それぞれ複数のヒータユニット47からなる。ヒータユニット47は1または複数の遠赤外線ヒータ36によって構成される。
The lower surface side heater 44 includes one or a plurality of heater blocks. In the illustrated example, the lower surface side heater 44 includes four heater blocks 44A to 44D. The heater blocks 44A to 44D are arranged in this order from the inlet 34a to the outlet 34b.
The heater blocks 44A to 44D have the same length dimension and area. For this reason, the heater block 44A constitutes about a quarter of the length of the lower surface side heater 44, and the heater blocks 44B to 44D also respectively correspond to about 4 minutes of the length direction of the lower surface side heater 44. 1 part.
Each of the heater blocks 44A to 44D includes one or a plurality of far infrared heaters 36.
In the illustrated example, each of the heater blocks 44A to 44D includes a plurality of heater units 47. The heater unit 47 includes one or a plurality of far infrared heaters 36.
 ヒータブロック43A~43Dおよびヒータブロック44A~44Dは、遠赤外線ヒータ36の発熱体39への供給電力の調整により、それぞれ独立に遠赤外線の照射量を設定可能であることが好ましい。
 また、各ヒータブロックを構成する複数の遠赤外線ヒータ36は、それぞれ独立に遠赤外線の照射量を設定可能であることが好ましい。
 このため、上面側ヒータ43および下面側ヒータ44は、移送方向D1の領域ごとに独立に加熱温度の設定ができる。例えば、ヒータブロック43A~44Dごと、またはヒータユニット46、47ごとに独立に加熱温度の設定ができる。ヒータユニット46、47が複数の遠赤外線ヒータ36からなる場合には、その遠赤外線ヒータ36ごとに独立に加熱温度の設定ができる。
The heater blocks 43A to 43D and the heater blocks 44A to 44D are preferably capable of independently setting the far-infrared irradiation amount by adjusting the power supplied to the heating element 39 of the far-infrared heater 36.
Moreover, it is preferable that the far-infrared heater 36 which comprises each heater block can set the irradiation amount of a far-infrared radiation each independently.
For this reason, the heating temperature of the upper surface side heater 43 and the lower surface side heater 44 can be set independently for each region in the transfer direction D1. For example, the heating temperature can be set independently for each of the heater blocks 43A to 44D or for each of the heater units 46 and 47. When the heater units 46 and 47 are composed of a plurality of far infrared heaters 36, the heating temperature can be set independently for each far infrared heater 36.
 遠赤外線ヒータ36は、貫通穴38が光硬化性樹脂フィルム1の移送方向D1(図4の上下方向)に対し垂直な方向となるように設置することができる。 The far-infrared heater 36 can be installed so that the through hole 38 is perpendicular to the transfer direction D1 of the photocurable resin film 1 (vertical direction in FIG. 4).
 図2に示すように、移送ローラ35は、光硬化性樹脂フィルム1を送り移動させる機能を有する。移送ローラ35は、軸部35aと、軸部35aより外径が大きい移送部35bとを有し、軸部35aを中心として回転することで、移送部35b上に載せられた光硬化性樹脂フィルム1を移送できる。
 移送ローラ35は、軸部35aを光硬化性樹脂フィルム1の移送方向(図2の紙面に垂直な方向)に対して垂直に向けて水平に設置されている。
 図1に示すように、複数の移送ローラ35は、光硬化性樹脂フィルム1の移送方向(図1の右方向)に間隔をおいて設けることができる。
As illustrated in FIG. 2, the transfer roller 35 has a function of feeding and moving the photocurable resin film 1. The transfer roller 35 has a shaft portion 35a and a transfer portion 35b having an outer diameter larger than that of the shaft portion 35a, and rotates around the shaft portion 35a so that the photocurable resin film placed on the transfer portion 35b. 1 can be transferred.
The transfer roller 35 is installed horizontally with the shaft portion 35a oriented vertically to the transfer direction of the photocurable resin film 1 (direction perpendicular to the paper surface of FIG. 2).
As shown in FIG. 1, the plurality of transfer rollers 35 can be provided at intervals in the transfer direction of the photocurable resin film 1 (right direction in FIG. 1).
 巻取ロール33は、不図示のモータ等により駆動回転して光硬化性樹脂フィルム1を巻き取る。巻取ロール33は、光硬化性樹脂フィルム1をその長手方向に移送する移送手段を構成している。 The take-up roll 33 is driven and rotated by a motor or the like (not shown) to take up the photocurable resin film 1. The winding roll 33 constitutes a transfer means for transferring the photocurable resin film 1 in the longitudinal direction.
 次に、以上のように構成される製造装置10を用いた光硬化性樹脂フィルムの製造方法の一例について説明する。
 図3に示すように、第1加工部6の塗工部13において一方の基材フィルム3の一方の面に液状の光硬化性樹脂組成物を塗工する(塗工工程)。
 次いで、ラミネート部14において、塗工部13を通過した一方の基材フィルム3と、他方の基材ロール12から繰り出された他方の基材フィルム4とにより光硬化性樹脂層2を挟み込んで積層フィルム1とする(ラミネート工程)。
Next, an example of the manufacturing method of the photocurable resin film using the manufacturing apparatus 10 comprised as mentioned above is demonstrated.
As shown in FIG. 3, a liquid photocurable resin composition is applied to one surface of one base film 3 in the coating portion 13 of the first processing portion 6 (coating step).
Next, in the laminating section 14, the photocurable resin layer 2 is sandwiched between the one base film 3 that has passed through the coating section 13 and the other base film 4 that has been fed out from the other base roll 12. It is set as the film 1 (lamination process).
 次いで、紫外線照射部15により移送される積層フィルム1に対して紫外線R1を照射して光硬化性樹脂層2の重合反応を進行させて光硬化性樹脂層2を硬化させ、光硬化性樹脂フィルム1を得る(紫外線照射工程)。
 この際、光硬化性樹脂層2は、重合反応が完全には進行せず、未反応物が残る半硬化状態であってよい。光硬化性樹脂層2は、ゲル状~固体状のいずれかの形態(例えばゲル状~半固体状)となるのが好ましい。
Next, the laminated film 1 transferred by the ultraviolet irradiation unit 15 is irradiated with ultraviolet R1 to advance the polymerization reaction of the photocurable resin layer 2 to cure the photocurable resin layer 2, and the photocurable resin film. 1 is obtained (ultraviolet irradiation process).
At this time, the photocurable resin layer 2 may be in a semi-cured state in which the polymerization reaction does not proceed completely and an unreacted product remains. The photocurable resin layer 2 is preferably in any form of gel or solid (for example, gel or semisolid).
 紫外線照射工程を経た光硬化性樹脂フィルム1は巻取ロール16に巻き取られる。巻取ロール16は、そのまま供給ロール31として用いられる。 The photocurable resin film 1 that has undergone the ultraviolet irradiation process is wound up on a winding roll 16. The winding roll 16 is used as the supply roll 31 as it is.
 図1に示すように、光硬化性樹脂フィルム1を、供給ロール31から炉本体34に導入する。光硬化性樹脂フィルム1は、移送ローラ35によって、上面側ヒータ43と下面側ヒータ44との間の移送空間45を、水平面に沿って入口34aから出口34bに向けて移送される。 As shown in FIG. 1, the photocurable resin film 1 is introduced from the supply roll 31 to the furnace body 34. The photocurable resin film 1 is transferred by the transfer roller 35 through the transfer space 45 between the upper surface side heater 43 and the lower surface side heater 44 from the inlet 34a toward the outlet 34b along the horizontal plane.
 この際、上面側ヒータ43および下面側ヒータ44を構成する遠赤外線ヒータ36の抵抗発熱体42への通電により発熱体39を発熱させ、金属薄板37を高温とし、遠赤外線放射層40を加熱する。これによって、遠赤外線放射層40は遠赤外線を放出する(図4参照)。 At this time, the heating element 39 is heated by energizing the resistance heating element 42 of the far infrared heater 36 that constitutes the upper surface heater 43 and the lower surface heater 44, the metal thin plate 37 is heated to a high temperature, and the far infrared radiation layer 40 is heated. . Thereby, the far-infrared radiation layer 40 emits far-infrared rays (see FIG. 4).
 遠赤外線ヒータ36からの遠赤外線は、対面する光硬化性樹脂フィルム1に放射される。遠赤外線によって、光硬化性樹脂層2の重合反応はさらに進行し、光硬化性樹脂層2の硬度が高められる(熱硬化工程)。
 これによって、光硬化性樹脂層2の硬度が高められた光硬化性樹脂フィルム1を得る。
Far-infrared rays from the far-infrared heater 36 are radiated to the facing photocurable resin film 1. By far infrared rays, the polymerization reaction of the photocurable resin layer 2 further proceeds and the hardness of the photocurable resin layer 2 is increased (thermosetting step).
Thereby, the photocurable resin film 1 in which the hardness of the photocurable resin layer 2 is increased is obtained.
 加熱炉32内は、空気雰囲気であってもよいし、窒素ガス雰囲気であってもよい。窒素ガス雰囲気とすれば、光硬化性樹脂層2内の重合開始剤が空気に触れて消費されることにより光硬化性樹脂層2の重合反応が不十分となる事態を回避できる。 The inside of the heating furnace 32 may be an air atmosphere or a nitrogen gas atmosphere. When the nitrogen gas atmosphere is used, a situation in which the polymerization reaction of the photocurable resin layer 2 becomes insufficient due to consumption of the polymerization initiator in the photocurable resin layer 2 by contact with air can be avoided.
 図7は、熱硬化工程における加熱炉32内の温度の測定結果を示すグラフである。横軸は光硬化性樹脂フィルム1の移送過程における温度変化であり、加熱炉32内の移送方向の位置を表す。縦軸は温度を示す。
 実線は光硬化性樹脂フィルム1の温度変化を示す(試験1)。破線は光硬化性樹脂フィルム1に代えて基材フィルム3のみを加熱炉32に導入した場合の基材フィルム3の温度変化を示す(試験2)。
 2点鎖線は上面側ヒータ43および下面側ヒータ44の設定温度を示す。
FIG. 7 is a graph showing the measurement results of the temperature in the heating furnace 32 in the thermosetting process. The horizontal axis represents the temperature change during the transfer process of the photocurable resin film 1 and represents the position in the transfer direction in the heating furnace 32. The vertical axis represents temperature.
A solid line shows the temperature change of the photocurable resin film 1 (Test 1). A broken line shows the temperature change of the base film 3 when only the base film 3 is introduced into the heating furnace 32 in place of the photocurable resin film 1 (Test 2).
A two-dot chain line indicates a set temperature of the upper surface heater 43 and the lower surface heater 44.
 図7に示すように、加熱炉32では、ヒータブロック43A~44Dごと(詳しくはヒータユニット47ごと)に温度を設定することで、加熱炉32内の移送方向の光硬化性樹脂フィルム1の温度分布を調整できる。
 図示例では、加熱炉32の長さ方向のほぼ中央位置にピークがある温度分布となっている(試験1)。
 また、試験1と試験2との比較により、光硬化性樹脂フィルム1の温度は、光硬化性樹脂層2の重合反応の反応熱により高くなっていることがわかる。
 遠赤外線ヒータ36の遠赤外線の照射量は、この光硬化性樹脂層2の重合反応の反応熱を考慮に入れて定めるのが望ましい。
As shown in FIG. 7, in the heating furnace 32, the temperature of the photocurable resin film 1 in the transfer direction in the heating furnace 32 is set by setting the temperature for each of the heater blocks 43A to 44D (specifically, for each heater unit 47). The distribution can be adjusted.
In the illustrated example, the temperature distribution has a peak at a substantially central position in the length direction of the heating furnace 32 (Test 1).
Moreover, it can be seen from comparison between Test 1 and Test 2 that the temperature of the photocurable resin film 1 is higher due to the reaction heat of the polymerization reaction of the photocurable resin layer 2.
The far-infrared irradiation amount of the far-infrared heater 36 is preferably determined in consideration of the reaction heat of the polymerization reaction of the photocurable resin layer 2.
 光硬化性樹脂フィルム1の最高温度は、165~180℃(好ましくは170~175℃)が好適である。
 これによって、基材フィルム3,4の熱変形や熱分解を回避し、かつ光硬化性樹脂層2における重合反応を十分に進めることができる。
The maximum temperature of the photocurable resin film 1 is preferably 165 to 180 ° C. (preferably 170 to 175 ° C.).
Thereby, the thermal deformation and thermal decomposition of the base films 3 and 4 can be avoided, and the polymerization reaction in the photocurable resin layer 2 can be sufficiently advanced.
 光硬化性樹脂層2における重合反応を確実に進めるためには、急激な温度上昇や急激な温度降下を避けるのが好ましい。このため、図7の試験1に示すように、温度上昇および降下を緩やかに設定することによって、重合反応を確実に進め、高い硬度の光硬化性樹脂フィルム1が得られる。
 また、高温状態を長く維持しすぎると、基材フィルム3,4と光硬化性樹脂層2との密着が過剰に強くなって、後の工程において基材フィルム3,4を剥がすのが容易でなくなるが、図7の試験1に示すように、高温状態となる時間を短く設定することによって、このような事態を防止できる。
In order to advance the polymerization reaction in the photocurable resin layer 2 with certainty, it is preferable to avoid a sudden temperature rise or a sudden temperature drop. For this reason, as shown in Test 1 in FIG. 7, by slowly setting the temperature rise and drop, the polymerization reaction is reliably advanced, and a high-hardness photocurable resin film 1 can be obtained.
Further, if the high temperature state is maintained for a long time, the adhesion between the base films 3 and 4 and the photocurable resin layer 2 becomes excessively strong, and it is easy to peel off the base films 3 and 4 in a later step. However, as shown in Test 1 of FIG. 7, such a situation can be prevented by setting a short time for the high temperature state.
 製造装置10では、遠赤外線ヒータ36を備えているので、遠赤外線により光硬化性樹脂フィルム1を加熱することができる。
 光硬化性樹脂フィルム1は、光硬化性樹脂層2を一対の基材フィルム3,4により挟み込んだ積層構造を有するため光硬化性樹脂層2への加熱効率が低くなりやすいが、遠赤外線は光硬化性樹脂フィルム1の深部にまで達してこれを加熱するため、加熱効率を高めることができる。
 このため、光硬化性樹脂フィルム1の生産効率を高めることができる。また、熱損失を少なくし、エネルギー消費量を抑制することができる。
Since the manufacturing apparatus 10 includes the far-infrared heater 36, the photocurable resin film 1 can be heated by far-infrared rays.
The photocurable resin film 1 has a laminated structure in which the photocurable resin layer 2 is sandwiched between a pair of base films 3 and 4, so that the heating efficiency to the photocurable resin layer 2 tends to be low. Since it reaches the deep part of the photocurable resin film 1 and heats it, the heating efficiency can be increased.
For this reason, the production efficiency of the photocurable resin film 1 can be increased. Moreover, heat loss can be reduced and energy consumption can be suppressed.
 また、遠赤外線により光硬化性樹脂フィルム1を内部まで確実に加熱できるため、空気を媒体として熱伝導により加熱する方式(熱風加熱式等)に比べ、過剰加熱が起こりにくく、基材フィルム3,4の変形や熱分解を防ぐことができる。
 過剰加熱を原因とする基材フィルム3,4の変形により基材フィルム3,4が光硬化性樹脂層2から剥がれると、光硬化性樹脂層2内の重合開始剤が空気に触れて消費されて光硬化性樹脂層2の重合反応が不十分となる可能性があるが、製造装置10ではこのような事態を防止できるため、光硬化性樹脂層2の重合反応を十分に進行させることができる。
 また、製造装置10では、加熱効率を高めることができるため、必要な加熱時間を短くできる。また、加熱炉32の移送方向D1の長さを短くすることもできる。
Moreover, since the photocurable resin film 1 can be reliably heated to the inside by far-infrared rays, overheating is less likely to occur compared to a method of heating by heat conduction using air as a medium (such as a hot air heating method), and the substrate film 3, 4 deformation and thermal decomposition can be prevented.
When the base films 3 and 4 are peeled off from the photocurable resin layer 2 due to deformation of the base films 3 and 4 due to excessive heating, the polymerization initiator in the photocurable resin layer 2 is consumed by contact with air. The polymerization reaction of the photocurable resin layer 2 may be insufficient, but the manufacturing apparatus 10 can prevent such a situation, so that the polymerization reaction of the photocurable resin layer 2 can be sufficiently advanced. it can.
Moreover, in the manufacturing apparatus 10, since heating efficiency can be improved, a required heating time can be shortened. Further, the length of the heating furnace 32 in the transfer direction D1 can be shortened.
 遠赤外線による加熱を採用する製造装置10は、熱風加熱式等に比べ、加熱炉32内の気流等による光硬化性樹脂フィルム1の移送への悪影響を考慮する必要はなく、正常な移送が可能である。
 また、遠赤外線ヒータ36の採用により内部構造を簡略化できるため、製造装置10を小型化でき、装置の設置スペースの削減の点で有利である。
The manufacturing apparatus 10 that employs heating by far infrared rays does not need to consider the adverse effect on the transfer of the photocurable resin film 1 due to the airflow in the heating furnace 32, and can be transferred normally, compared to the hot air heating type and the like. It is.
In addition, since the internal structure can be simplified by adopting the far infrared heater 36, the manufacturing apparatus 10 can be downsized, which is advantageous in reducing the installation space of the apparatus.
 製造装置10では、遠赤外線ヒータ36を採用するため、熱風加熱式等に比べ、加熱炉32内の温度設定が容易である。例えば、加熱炉32内の移送方向D1の領域ごとの温度設定が可能であるため、光硬化性樹脂フィルム1の特性に応じた加熱が可能である。
 例えば、図7の試験1に示すように、温度上昇および降下を緩やかに設定することによって、光硬化性樹脂層2における重合反応を確実に進めることができる。特に、温度降下が急激であると重合反応の進行が不十分となりやすいが、温度降下の勾配を緩やかにすることによって、重合反応を確実に進行させ、光硬化性樹脂層2の硬度を高めることができる。
Since the manufacturing apparatus 10 employs the far-infrared heater 36, it is easier to set the temperature in the heating furnace 32 than a hot air heating type or the like. For example, since the temperature can be set for each region in the transfer direction D1 in the heating furnace 32, heating according to the characteristics of the photocurable resin film 1 is possible.
For example, as shown in Test 1 of FIG. 7, the polymerization reaction in the photocurable resin layer 2 can be surely advanced by setting the temperature rise and drop gently. In particular, if the temperature drop is abrupt, the progress of the polymerization reaction tends to be insufficient. However, by slowing the gradient of the temperature drop, the polymerization reaction is reliably advanced and the hardness of the photocurable resin layer 2 is increased. Can do.
 また、遠赤外線ヒータ36を採用するため、熱風加熱式等とは異なり、発塵が起こらず、塵埃の悪影響を防止できる。
 さらに、加熱炉32内の光硬化性樹脂フィルム1の幅方向の温度を均一化し、光硬化性樹脂フィルム1の特性を幅方向に均一化できる。
Further, since the far-infrared heater 36 is employed, unlike the hot air heating type or the like, dust generation does not occur and adverse effects of dust can be prevented.
Furthermore, the temperature in the width direction of the photocurable resin film 1 in the heating furnace 32 can be made uniform, and the characteristics of the photocurable resin film 1 can be made uniform in the width direction.
 以上、本発明の詳細について説明したが、本発明は上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることができる。
 図6の光硬化性樹脂フィルム1の両側縁部は、一対の基材フィルム3,4のみを積層して構成されているが、他の部分と同様に光硬化性樹脂層2を一対の基材フィルム3,4により挟み込んで構成されてもよい。
 なお、硬度の指標としては、JIS K6253、JIS K7215等がある。
Although the details of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.
Both side edge portions of the photocurable resin film 1 in FIG. 6 are configured by laminating only a pair of base films 3 and 4, but the photocurable resin layer 2 is paired with a pair of bases as in the other portions. It may be configured to be sandwiched between the material films 3 and 4.
The hardness index includes JIS K6253 and JIS K7215.
1 光硬化性樹脂フィルム
2 光硬化性樹脂層
3,4 基材フィルム
5 耳部
7 第2加工部
10 製造装置
32 加熱炉
33 巻取ロール(移送手段)
36 遠赤外線ヒータ(遠赤外線照射手段)
DESCRIPTION OF SYMBOLS 1 Photocurable resin film 2 Photocurable resin layer 3, 4 Base film 5 Ear part 7 2nd process part 10 Manufacturing apparatus 32 Heating furnace 33 Winding roll (transfer means)
36 far infrared heater (far infrared irradiation means)

Claims (7)

  1.  液状の光硬化性樹脂組成物からなる光硬化性樹脂層を一対の基材フィルムにより挟み込んでなる帯状の積層フィルムに光を照射して前記光硬化性樹脂層を硬化させて得た光硬化性樹脂フィルムを加熱して前記光硬化性樹脂層の硬度を高める加熱炉を有し、
     前記加熱炉は、前記光硬化性樹脂フィルムに遠赤外線を照射することによって前記光硬化性樹脂フィルムを加熱する1または複数の遠赤外線照射手段を有する光硬化性樹脂フィルムの製造装置。
    Photocurability obtained by irradiating light to a belt-like laminated film in which a photocurable resin layer comprising a liquid photocurable resin composition is sandwiched between a pair of substrate films to cure the photocurable resin layer A heating furnace for heating the resin film to increase the hardness of the photocurable resin layer;
    The said heating furnace is a manufacturing apparatus of the photocurable resin film which has a 1 or several far-infrared irradiation means which heats the said photocurable resin film by irradiating the said photocurable resin film with a far infrared ray.
  2.  前記遠赤外線照射手段は、前記加熱炉内に導入された前記光硬化性樹脂フィルムに対面するように設置された平板状の遠赤外線ヒータを有する請求項1に記載の光硬化性樹脂フィルムの製造装置。 The said far-infrared irradiation means has a flat far-infrared heater installed so that the said photocurable resin film introduce | transduced in the said heating furnace may be faced, The manufacture of the photocurable resin film of Claim 1 apparatus.
  3.  前記光硬化性樹脂フィルムをその長手方向に移送する移送手段をさらに有し、
     前記遠赤外線照射手段は、前記移送手段により移送される前記光硬化性樹脂フィルムに前記遠赤外線を照射する請求項1または請求項2に記載の光硬化性樹脂フィルムの製造装置。
    A transfer means for transferring the photocurable resin film in the longitudinal direction thereof;
    The said far-infrared irradiation means is a manufacturing apparatus of the photocurable resin film of Claim 1 or Claim 2 which irradiates the said far-infrared rays to the said photocurable resin film transferred by the said transfer means.
  4.  前記複数の遠赤外線照射手段は、前記光硬化性樹脂フィルムの移送方向に沿って並べて設置され、かつ互いに独立に遠赤外線の照射量を設定できる請求項1から請求項3のいずれか一項に記載の光硬化性樹脂フィルムの製造装置。 The plurality of far-infrared irradiation means are arranged side by side along the transfer direction of the photocurable resin film, and can set a far-infrared irradiation amount independently of each other. The manufacturing apparatus of the photocurable resin film of description.
  5.  前記光硬化性樹脂フィルムの少なくとも一方の側縁部は、前記一対の基材フィルムのみを積層して構成されている請求項1から請求項4のいずれか一項に記載の光硬化性樹脂フィルムの製造装置。 The photocurable resin film according to any one of claims 1 to 4, wherein at least one side edge portion of the photocurable resin film is configured by laminating only the pair of base material films. Manufacturing equipment.
  6.  前記光硬化性樹脂組成物は、多価アリルエステル樹脂である請求項1から請求項5のいずれか一項に記載の光硬化性樹脂フィルムの製造装置。 The said photocurable resin composition is polyvalent allyl ester resin, The manufacturing apparatus of the photocurable resin film as described in any one of Claims 1-5.
  7.  液状の光硬化性樹脂組成物からなる光硬化性樹脂層を一対の基材フィルムにより挟み込んでなる帯状の積層フィルムに光を照射して前記光硬化性樹脂層を硬化させて得た光硬化性樹脂フィルムを、遠赤外線照射手段を有する加熱炉に導入し、
     前記遠赤外線照射手段によって前記光硬化性樹脂フィルムに遠赤外線を照射して前記光硬化性樹脂フィルムを加熱する光硬化性樹脂フィルムの製造方法。
    Photocurability obtained by irradiating light to a belt-like laminated film in which a photocurable resin layer comprising a liquid photocurable resin composition is sandwiched between a pair of substrate films to cure the photocurable resin layer The resin film is introduced into a heating furnace having far infrared irradiation means,
    The manufacturing method of the photocurable resin film which irradiates a far-infrared ray to the said photocurable resin film by the said far-infrared irradiation means, and heats the said photocurable resin film.
PCT/JP2014/066433 2013-06-25 2014-06-20 Method for producing and device for producing photocurable resin film WO2014208468A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015524027A JP6270840B2 (en) 2013-06-25 2014-06-20 Method for producing photocurable resin film
KR1020157032883A KR101990181B1 (en) 2013-06-25 2014-06-20 Method for producing and device for producing photocurable resin film
CN201480032485.0A CN105263687B (en) 2013-06-25 2014-06-20 The manufacture device and manufacture method of light-cured resin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013132686 2013-06-25
JP2013-132686 2013-06-25

Publications (1)

Publication Number Publication Date
WO2014208468A1 true WO2014208468A1 (en) 2014-12-31

Family

ID=52141807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066433 WO2014208468A1 (en) 2013-06-25 2014-06-20 Method for producing and device for producing photocurable resin film

Country Status (5)

Country Link
JP (1) JP6270840B2 (en)
KR (1) KR101990181B1 (en)
CN (1) CN105263687B (en)
TW (1) TWI613236B (en)
WO (1) WO2014208468A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208596A1 (en) * 2015-06-22 2016-12-29 住友化学株式会社 Method for manufacturing organic electronic element, and method for forming electron hole injection layer
WO2016208597A1 (en) * 2015-06-22 2016-12-29 住友化学株式会社 Method for manufacturing organic electronic element, and method for forming organic thin film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI750533B (en) * 2018-11-19 2021-12-21 日商昭和電工股份有限公司 The apparatus for producing cured resin film and method for producing cured resin film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153318A (en) * 1989-11-10 1991-07-01 Dainippon Ink & Chem Inc Manufacture of laminated board
JP2006306081A (en) * 2005-03-31 2006-11-09 Nippon Steel Chem Co Ltd Method for producing transparent film
JP2007276310A (en) * 2006-04-07 2007-10-25 Mitsubishi Rayon Co Ltd Method of manufacturing methacrylic resin laminate
JP2007290364A (en) * 2006-03-27 2007-11-08 Nippon Synthetic Chem Ind Co Ltd:The Continuous manufacturing method of resin substrate and resin substrate
JP2011189554A (en) * 2010-03-12 2011-09-29 Mitsubishi Rayon Co Ltd Method for continuous manufacture of resin laminate

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190528A (en) * 1985-02-20 1986-08-25 Daicel Chem Ind Ltd Production of diallyl phthalate film
DE19650310A1 (en) * 1996-02-02 1997-08-07 Schaefer Hans Juergen Dimensionally stable, untwisted, non-curved epoxide glass laminate production
JP2003103642A (en) * 2001-09-28 2003-04-09 Asahi Glass Matex Co Ltd Method for continuous production of lattice-shaped body made of fiber-reinforced synthetic resin
JP2003300219A (en) * 2002-04-09 2003-10-21 Ricoh Co Ltd Plastic mirror and method for manufacturing the same
KR20080111059A (en) * 2006-03-27 2008-12-22 닛폰고세이가가쿠고교 가부시키가이샤 Continuous process for producing resin substrate and resin substrate
JP5046735B2 (en) * 2007-05-07 2012-10-10 協立化学産業株式会社 Film bonding apparatus and polarizing plate manufacturing apparatus
JP4964748B2 (en) * 2007-11-22 2012-07-04 新日鐵化学株式会社 Method for producing transparent laminate film
JP5189379B2 (en) 2008-02-20 2013-04-24 リンテック株式会社 Resin composition, film using the same, and method for producing film
WO2012086742A1 (en) * 2010-12-24 2012-06-28 昭和電工株式会社 Process for production of cured film, and cured film
JP5858469B2 (en) * 2011-01-28 2016-02-10 サン・トックス株式会社 Release film-bonded double-sided PSA sheet and method for producing the same
CN103192533B (en) * 2013-03-30 2015-02-11 福建新力元反光材料有限公司 UV (Ultraviolet) curing optical film production device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03153318A (en) * 1989-11-10 1991-07-01 Dainippon Ink & Chem Inc Manufacture of laminated board
JP2006306081A (en) * 2005-03-31 2006-11-09 Nippon Steel Chem Co Ltd Method for producing transparent film
JP2007290364A (en) * 2006-03-27 2007-11-08 Nippon Synthetic Chem Ind Co Ltd:The Continuous manufacturing method of resin substrate and resin substrate
JP2007276310A (en) * 2006-04-07 2007-10-25 Mitsubishi Rayon Co Ltd Method of manufacturing methacrylic resin laminate
JP2011189554A (en) * 2010-03-12 2011-09-29 Mitsubishi Rayon Co Ltd Method for continuous manufacture of resin laminate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208596A1 (en) * 2015-06-22 2016-12-29 住友化学株式会社 Method for manufacturing organic electronic element, and method for forming electron hole injection layer
WO2016208597A1 (en) * 2015-06-22 2016-12-29 住友化学株式会社 Method for manufacturing organic electronic element, and method for forming organic thin film
JPWO2016208597A1 (en) * 2015-06-22 2018-04-05 住友化学株式会社 Method for manufacturing organic electronic device and method for forming organic thin film
JPWO2016208596A1 (en) * 2015-06-22 2018-04-05 住友化学株式会社 Method for manufacturing organic electronic device and method for forming hole injection layer
EP3313152A4 (en) * 2015-06-22 2019-01-23 Sumitomo Chemical Company, Limited Method for manufacturing organic electronic element, and method for forming organic thin film
US10333067B2 (en) 2015-06-22 2019-06-25 Sumitomo Chemical Company, Limited Method for manufacturing organic electronic element, and method for forming electron hole injection layer

Also Published As

Publication number Publication date
TW201518350A (en) 2015-05-16
KR20150143823A (en) 2015-12-23
JP6270840B2 (en) 2018-01-31
CN105263687A (en) 2016-01-20
JPWO2014208468A1 (en) 2017-02-23
TWI613236B (en) 2018-02-01
KR101990181B1 (en) 2019-06-17
CN105263687B (en) 2017-12-19

Similar Documents

Publication Publication Date Title
JP6270840B2 (en) Method for producing photocurable resin film
JP5889067B2 (en) Manufacturing method of optical film
WO2004103683A1 (en) Method for producing optical sheet and optical sheet
JP5995412B2 (en) Optical film manufacturing method, polarizing plate, and image display device manufacturing method
KR20150100649A (en) Light diffusion film
JP5078269B2 (en) Production method of transparent film
WO2014208466A1 (en) Method for producing and device for producing photocurable resin film
JPH05305259A (en) Ultraviolet irradiation apparatus
JP7072670B2 (en) Cured resin film manufacturing equipment and cured resin film manufacturing method
JP2014226702A (en) Cutting processor and cutting processing method
JP4344618B2 (en) Antireflection film and method for producing the same
JP5912517B2 (en) Manufacturing method of optical film, manufacturing method of polarizing plate, and manufacturing method of image display device
JP2007140543A (en) Lens sheet and its production method
JP2009292060A (en) Lens sheet
JP2017191190A (en) Method for producing optical film
JPH11281805A (en) Lens sheet and its manufacture method
JP2010250237A (en) Method for manufacturing lens sheet
JP6098777B2 (en) Optical film and optical apparatus using the same
JP6125749B2 (en) Optical film, polarizing plate and image display device
EP4425248A1 (en) Optical laminate, optical device, and method for producing optical laminate
JP2013174638A (en) Production method of optical film, polarizing plate and image display device
WO2012057358A1 (en) Optical film, method for manufacturing same, polarization plate, and image display device
KR20120122919A (en) Process for producing optical film, polarizing plate and image display device
JP2000035502A (en) Production of double-faced lenticular lens sheet
JP2014132291A (en) Method for producing optical film, polarizing plate, and image display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480032485.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818413

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015524027

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157032883

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14818413

Country of ref document: EP

Kind code of ref document: A1