WO2012057358A1 - Optical film, method for manufacturing same, polarization plate, and image display device - Google Patents

Optical film, method for manufacturing same, polarization plate, and image display device Download PDF

Info

Publication number
WO2012057358A1
WO2012057358A1 PCT/JP2011/075233 JP2011075233W WO2012057358A1 WO 2012057358 A1 WO2012057358 A1 WO 2012057358A1 JP 2011075233 W JP2011075233 W JP 2011075233W WO 2012057358 A1 WO2012057358 A1 WO 2012057358A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
fine particle
containing layer
layer
fine
Prior art date
Application number
PCT/JP2011/075233
Other languages
French (fr)
Japanese (ja)
Inventor
昌 神崎
篤志 金澤
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012057358A1 publication Critical patent/WO2012057358A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0268Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0294Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements

Definitions

  • the present invention relates to an optical film having a fine particle-containing layer on a base film and a method for producing the same.
  • the present invention also relates to a polarizing plate and an image display device using the optical film.
  • An image display device such as a liquid crystal display, a plasma display panel, a cathode ray tube (CRT) display, or an organic electroluminescence (EL) display has a significant loss of visibility when external light is reflected on its display surface.
  • an anti-glare film that has fine irregularities on the surface and scatters incident light to blur the reflected image is conventionally disposed on the surface of the image display device. It is.
  • the antiglare film can be produced, for example, by applying a resin liquid in which fine particles are dispersed on a base film to form an antiglare layer.
  • a resin liquid in which fine particles are dispersed on a base film to form an antiglare layer.
  • convex defects due to the coarse particles with large particle diameters contained in the fine particles protruding from the surface of the antiglare layer There is.
  • Such a convex defect causes excessive scattering of light incident on the surface of the antiglare layer, and causes so-called whitishness or contrast reduction in which the entire screen is felt whitish.
  • the surface quality of the antiglare layer surface is deteriorated. Therefore, it is important not to generate as many convex defects as possible due to the coarse particles protruding from the surface of the antiglare layer.
  • JP2010-102291-A has a value R / H obtained by dividing the average particle diameter R of the particles by the average thickness H of the antiglare layer in order to prevent the formation of large convex portions derived from the particles on the surface of the antiglare layer. It is disclosed that the value is 0.8 or less.
  • JP2010-159421-A includes coarse particles (from average particle diameter) as translucent fine particles contained in the light diffusion layer from the viewpoint of improving the surface uniformity of the light diffusion layer (antiglare layer). In which the ratio of particles having a particle diameter of 20% or more is 1% or less (more preferably 0.1% or less, and still more preferably 0.01% or less) of the total number of particles is obtained by classification operation or the like. It is described that it is preferable to do.
  • JP2010-102291-A proposes a method of reducing the average particle diameter R / average thickness H to 0.8 or less, particularly when the average particle diameter R and the average thickness H are close to each other, thereby eliminating the above convex defects. It is inadequate as a technique for doing this.
  • the average thickness H is sufficiently larger than the average particle size R in order to effectively eliminate the convex defects, the manufacturing cost increases due to the increase in the thickness of the antiglare layer, and there is a demand for thinning the optical film. It will not be along.
  • An object of the present invention is an optical film including a fine particle-containing layer on a base film, and sufficiently suppresses or prevents the occurrence of convex defects due to coarse particles without increasing the thickness of the fine particle-containing layer. It is an object of the present invention to provide an optical film provided with a fine particle-containing layer having good surface homogeneity and a method for producing such an optical film efficiently and at low cost. Another object of the present invention is to provide a polarizing plate and an image display device to which the optical film is applied.
  • the present invention includes the following.
  • An optical film comprising a base film and a fine particle-containing layer formed from a resin liquid containing fine particles on the base film, and having a particle diameter larger than the average thickness h of the fine particle-containing layer (coarse The ratio of the particles) to the total fine particles contained in the resin liquid is 2% or less, and the surface of the fine particle-containing layer has a shape formed by pressing the surface of the mold. .
  • optical film according to any one of [1] to [9], further comprising an antireflection layer laminated on the fine particle-containing layer.
  • the coating layer is formed by irradiating the coating layer with active energy rays from the base film side while pressing the surface of the mold against the surface of the coating layer.
  • a polarizing plate comprising a polarizing film and the optical film according to any one of [1] to [10], which is laminated on the polarizing film so that the base film side faces the polarizing film.
  • An image display device comprising the polarizing plate according to [13] and an image display element, wherein the polarizing plate is disposed on the image display element with the fine particle-containing layer side facing outside.
  • the occurrence of convex defects due to coarse particles in the fine particle-containing layer is sufficiently suppressed or prevented, and an optical film provided with a fine particle-containing layer having good surface uniformity can be provided.
  • an optical film is used as, for example, an antiglare film or a light diffusion film, excessive scattering of light incident on the surface of the fine particle-containing layer can be effectively suppressed, A decrease in contrast can be prevented.
  • the above optical films can be manufactured efficiently and at low cost.
  • the optical film of the present invention can be suitably applied to image display devices such as polarizing plates and liquid crystal display devices.
  • FIG. 1 is a schematic cross-sectional view showing a preferred example of the optical film of the present invention.
  • the optical film 100 shown in FIG. 1 according to the present invention includes a base film 101 and a fine particle-containing layer 102 laminated on the base film 101.
  • the fine particle-containing layer 102 is a layer having a translucent resin 103 as a base material, and translucent fine particles 104 are dispersed in the translucent resin 103.
  • the fine particle-containing layer 102 is formed by applying a resin liquid containing the fine particles 104 onto the base film 101.
  • the surface (outer surface) of the fine particle-containing layer 102 is formed by pressing the surface of the mold.
  • the fine particles 104 include coarse particles 110 (fine particles having a particle diameter larger than the average thickness h of the fine particle-containing layer 102). Since the portion of the coarse particle 110 that should protrude from the surface of the fine particle-containing layer 102 is in a state of being crushed by the pressing of the mold, the convex defect due to the protrusion of the coarse particle 110 is effectively suppressed or It is prevented and the surface uniformity is excellent.
  • the optical film of the present invention can be used as an optical film for an image display device for various purposes.
  • a mold having a concavo-convex surface since the concavo-convex structure is imparted to the surface of the fine particle-containing layer 102, it is disposed on the surface of the image display device, and glare or reflection of external light is reflected It can be used as an antiglare film to prevent (the fine particle-containing layer 102 functions as an antiglare layer).
  • the surface of the fine particle-containing layer 102 is a flat surface, and the image display device can be used regardless of whether the surface is an uneven shape or a flat surface.
  • the liquid crystal display Placed on the viewing side (front surface) of the liquid crystal display as a light diffusing film that improves the viewing angle or the like, or on the backlight side of a liquid crystal display device, etc., diffuses light incident on the liquid crystal cell and prevents moiré, etc. It can be used as a diffusion plate (or a diffusion sheet) (the fine particle-containing layer 102 functions as a light diffusion layer).
  • the base film 101 only needs to be translucent, and for example, glass or plastic film can be used.
  • the plastic film only needs to have appropriate transparency and mechanical strength. Specific examples include cellulose acetate resins such as TAC (triacetylcellulose), acrylic resins, polycarbonate resins, polyester resins such as polyethylene terephthalate, and polyolefin resins such as polyethylene and polypropylene.
  • the thickness of the base film 101 is, for example, 10 to 500 ⁇ m, and is preferably 10 to 300 ⁇ m, more preferably 20 to 300 ⁇ m from the viewpoint of thinning the optical film.
  • the optical film of the present invention includes a fine particle-containing layer 102 laminated on a base film 101.
  • the fine particle-containing layer 102 is a layer having a translucent resin 103 as a base material, and translucent fine particles 104 are dispersed in the translucent resin 103.
  • another layer including an adhesive layer may be provided between the base film 101 and the fine particle-containing layer 102.
  • the translucent resin 103 is not particularly limited as long as it has translucency.
  • an active energy ray curable resin such as an ultraviolet curable resin or an electron beam curable resin, A cured product of a thermosetting resin, a thermoplastic resin, a cured product of a metal alkoxide, or the like can be used.
  • an active energy ray-curable resin is preferable because it has high hardness and can impart high scratch resistance as an antiglare film or a light diffusion film provided on the surface of the image display device.
  • the translucent resin 103 is formed by curing the resin by irradiation or heating with an active energy ray.
  • the active energy ray-curable resin can contain a polyfunctional (meth) acrylate compound.
  • the polyfunctional (meth) acrylate compound is a compound having at least two (meth) acryloyloxy groups in the molecule.
  • polyfunctional (meth) acrylate compound examples include, for example, ester compounds of polyhydric alcohol and (meth) acrylic acid, urethane (meth) acrylate compounds, polyester (meth) acrylate compounds, epoxy (meth) acrylate compounds, and the like. And a polyfunctional polymerizable compound containing two or more (meth) acryloyl groups.
  • polyhydric alcohol examples include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, polypropylene glycol, propanediol, butanediol, and pentanediol.
  • Divalent alcohols such as hexanediol, neopentyl glycol, 2-ethyl-1,3-hexanediol, 2,2′-thiodiethanol, 1,4-cyclohexanedimethanol; trimethylolpropane, glycerol, pentaerythritol, Examples thereof include trihydric or higher alcohols such as diglycerol, dipentaerythritol, and ditrimethylolpropane.
  • esterified product of polyhydric alcohol and (meth) acrylic acid examples include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (Meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, tetramethylolmethane tri (meth) acrylate, 1,6-hexanediol di (meth) acrylate, tetramethylolmethanetetra (meta ) Acrylate, pentaglycerol tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, glycerin tri (meth) acrylate, di Pentaerythritol tri (me
  • Examples of the urethane (meth) acrylate compound include an urethanization reaction product of an isocyanate having a plurality of isocyanate groups in one molecule and a (meth) acrylic acid derivative having a hydroxyl group.
  • Examples of the organic isocyanate having a plurality of isocyanate groups in one molecule include two in one molecule such as hexamethylene diisocyanate, isophorone diisocyanate, tolylene diisocyanate, naphthalene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, dicyclohexylmethane diisocyanate.
  • examples of the (meth) acrylic acid derivative having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, Examples include 2-hydroxy-3-phenoxypropyl (meth) acrylate and pentaerythritol triacrylate.
  • the polyester (meth) acrylate compound is a polyester (meth) acrylate obtained by reacting a hydroxyl group-containing polyester with (meth) acrylic acid.
  • the hydroxyl group-containing polyester preferably used is a hydroxyl group-containing polyester obtained by an esterification reaction of a polyhydric alcohol, a carboxylic acid, a compound having a plurality of carboxyl groups, and / or an anhydride thereof.
  • the polyhydric alcohol include the same compounds as those described above.
  • bisphenol A etc. are mentioned as phenols other than a polyhydric alcohol.
  • the carboxylic acid include formic acid, acetic acid, butyl carboxylic acid, benzoic acid and the like.
  • Examples of the compound having a plurality of carboxyl groups and / or anhydride thereof include maleic acid, phthalic acid, fumaric acid, itaconic acid, adipic acid, terephthalic acid, maleic anhydride, phthalic anhydride, trimellitic acid, and cyclohexanedicarboxylic acid.
  • An acid anhydride etc. are mentioned.
  • Ester compounds such as (meth) acrylate, tripropylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate; hexamethylene diisocyanate and 2- Adduct of hydroxyethyl (meth) acrylate; adduct of isophorone diisocyanate and 2-hydroxyethyl (meth) acrylate; tolylene diisocyanate and 2-hydroxyethyl (meth) acrylate Adduct adduct modified isophorone diisocyanate with 2-hydroxyethyl (meth) acrylate; adducts and adducts of biuret of isophorone diisocyanate and 2-hydroxyethyl (meth) acrylate.
  • the active energy ray-curable resin preferably contains a urethane (meth) acrylate compound because it exhibits good flexibility (a property showing flexibility) when it is thickened.
  • a urethane (meth) acrylate compound because it exhibits good flexibility (a property showing flexibility) when it is thickened.
  • the active energy ray-curable resin may contain a monofunctional (meth) acrylate compound in addition to the polyfunctional (meth) acrylate compound.
  • the monofunctional (meth) acrylate compound include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, and 2-hydroxyethyl (meth) ) Acrylate, 2-hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, glycidyl (meth) acrylate, acryloylmorpholine N-vinylpyrrolidone, tetrahydrofurfuryl (meth) acrylate, cyclohexyl (meth) acrylate, 2-e
  • the active energy ray curable resin may contain a polymerizable oligomer.
  • the polymerizable oligomer is, for example, the polyfunctional (meth) acrylate compound, that is, an ester compound of a polyhydric alcohol and (meth) acrylic acid, a urethane (meth) acrylate compound, a polyester (meth) acrylate compound, or an epoxy (meth). It can be an oligomer such as a dimer, trimer or the like such as an acrylate.
  • polymerizable oligomer for example, urethane (meta) obtained by reaction of polyisocyanate having at least two isocyanate groups in the molecule and polyhydric alcohol having at least one (meth) acryloyloxy group.
  • polyisocyanate examples include hexamethylene diisocyanate, isophorone diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, a polymer of xylylene diisocyanate, and the like.
  • polyhydric alcohol having at least one (meth) acryloyloxy group Hydroxyl group-containing (meth) acrylic acid ester obtained by esterification reaction of polyhydric alcohol and (meth) acrylic acid, wherein the polyhydric alcohol is, for example, 1,3-butanediol, 1,4-butanediol, 1 , 6-hexanediol, diethylene glycol, triethylene glycol, neopentyl glycol, polyethylene glycol, polypropylene glycol, trimethylolpropane, glycerin, pentaerythritol Le, those dipentaerythritol and the like.
  • the polyhydric alcohol is, for example, 1,3-butanediol, 1,4-butanediol, 1 , 6-hexanediol, diethylene glycol, triethylene glycol, neopentyl glycol, polyethylene glycol, polypropylene glycol, trimethylolprop
  • this polyhydric alcohol having at least one (meth) acryloyloxy group a part of the alcoholic hydroxyl group of the polyhydric alcohol is esterified with (meth) acrylic acid, and the alcoholic hydroxyl group is present in the molecule. It remains.
  • a polyhydric alcohol having at least one (meth) acryloyloxy group is an organic compound having at least one (meth) acryloyloxy group.
  • Acrylate oligomers examples of the compound having a plurality of carboxyl groups and / or anhydrides thereof are the same as those described for the polyester (meth) acrylate of the polyfunctional (meth) acrylate compound.
  • the polyhydric alcohol having at least one (meth) acryloyloxy group include those described for the urethane (meth) acrylate oligomer.
  • examples of urethane (meth) acrylate oligomers are obtained by reacting isocyanates with hydroxyl groups of a hydroxyl group-containing polyester, a hydroxyl group-containing polyether or a hydroxyl group-containing (meth) acrylic acid ester.
  • the hydroxyl group-containing polyester preferably used is a hydroxyl group-containing polyester obtained by an esterification reaction of a polyhydric alcohol, a carboxylic acid, a compound having a plurality of carboxyl groups, and / or an anhydride thereof.
  • polyhydric alcohol examples include the same as those described for the polyester (meth) acrylate compound of the polyfunctional (meth) acrylate compound.
  • the hydroxyl group-containing polyether preferably used is a hydroxyl group-containing polyether obtained by adding one or more alkylene oxides and / or ⁇ -caprolactone to a polyhydric alcohol.
  • the polyhydric alcohol may be the same as that which can be used for the hydroxyl group-containing polyester.
  • the hydroxyl group-containing (meth) acrylic acid ester examples include the same as those described for the polymerizable oligomeric urethane (meth) acrylate oligomer.
  • isocyanates compounds having one or more isocyanate groups in the molecule are preferable, and divalent isocyanate compounds such as tolylene diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate are particularly preferable.
  • Each of these polymerizable oligomer compounds can be used alone or in combination with one or more other compounds.
  • thermosetting resin examples include a phenol resin, a urea melamine resin, an epoxy resin, an unsaturated polyester resin, and a silicone resin, in addition to a thermosetting urethane resin composed of an acrylic polyol and an isocyanate prepolymer.
  • thermoplastic resins include cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose, and methylcellulose; vinyl acetate and copolymers thereof, vinyl chloride and copolymers thereof, vinylidene chloride and copolymers thereof, and the like.
  • Acetal resins such as polyvinyl formal and polyvinyl butyral; Acrylic resins and copolymers thereof, Acrylic resins such as methacrylic resins and copolymers; Polystyrene resins; Polyamide resins; Polyester resins; Polycarbonate resins Etc.
  • a silicon oxide matrix made of a silicon alkoxide material can be used. Specifically, it is tetramethoxysilane, tetraethoxysilane, or the like, and can be made into an inorganic or organic-inorganic composite matrix (translucent resin) by hydrolysis or dehydration condensation.
  • Fine particles 104 are not particularly limited as long as they have translucency, and conventionally known particles can be used.
  • organic fine particles made of acrylic resin, melamine resin, polyethylene, polystyrene, organic silicone resin, acrylic-styrene copolymer, calcium carbonate, silica, aluminum oxide, barium carbonate, barium sulfate, titanium oxide, glass, etc.
  • inorganic fine particles Organic polymer balloons and glass hollow beads can also be used.
  • One kind of these fine particles may be used alone, or two or more kinds may be mixed and used.
  • the shape of the fine particles 104 may be any of a spherical shape, a flat shape, a plate shape, a needle shape, an indefinite shape, and the like, but a spherical shape or a substantially spherical shape is preferable.
  • the weight average particle diameter r of the fine particles 104 is preferably 1 ⁇ m or more and 15 ⁇ m or less, more preferably 4 ⁇ m or more and 10 ⁇ m or less.
  • the weight average particle size r is less than 1 ⁇ m, internal haze cannot be effectively expressed, and the glare reduction effect as an antiglare film becomes insufficient, or light diffusion as a light diffusion film or the like. Tend to be insufficient.
  • the weight average particle diameter r exceeds 15 ⁇ m, the average thickness h of the fine particle-containing layer 102 tends to be increased accordingly (this will be described in detail later). It is easy to invite. Further, the antiglare property and the light diffusibility may become excessively high.
  • the weight average particle diameter r of the fine particles 104 is measured by a Coulter counter method.
  • the fine particles 104 contained in the resin liquid for forming the fine particle-containing layer 102 typically have a fine particle-containing layer that can cause the above-described convex defects.
  • the fine particles having a particle diameter larger than the average thickness h are contained, and the content ratio is a ratio of the number of particles and can be 2% or less with respect to the whole fine particles 104 contained in the resin liquid. Is 0.5% or less, more preferably 0.2% or less.
  • the proportion of coarse particles is at least 2% or less with respect to the whole fine particles, the occurrence of convex defects can be sufficiently suppressed, and the fine particle-containing layer having good surface homogeneity is provided.
  • Optical film can be obtained.
  • the ratio of the number of coarse particles in the entire fine particles 104 can be, for example, 1.0 ⁇ 10 ⁇ 9 % or more.
  • coarse particles in the present invention refers to fine particles having a particle diameter larger than the average thickness h of the fine particle-containing layer 102. Therefore, coarse particles are fine particles that can protrude from the surface of the fine particle-containing layer and generate convex defects when the fine particle-containing layer is formed using a resin liquid containing the coarse particle.
  • the ratio of the number of coarse particles to the whole fine particles 104 is the number of particles (coarse particles) having a particle size larger than the average thickness h of the fine particle-containing layer, in which the particle size is measured for 50,000 particles by the Coulter counter method. Is calculated and divided by 50000.
  • convex defects can be confirmed by visual transmission or reflection observation. You may confirm by observing the surface or a cross section using an optical microscope, an electron microscope, etc.
  • the size of the convex defect depends on the particle diameter of the coarse particles, and is usually approximately the same as or larger than the particle diameter of the coarse particles.
  • the refractive index difference between the fine particles 104 and the translucent resin 103 is preferably in the range of 0.04 to 0.15. By setting the refractive index difference within the above range, moderate internal scattering due to the refractive index difference occurs, and a sufficient glare reduction effect or appropriate light diffusibility can be obtained.
  • the content of the fine particles 104 in the fine particle-containing layer 102 (substantially the same as the content of the fine particles 104 in the resin liquid described later) is 3 parts by weight or more and 60 parts by weight with respect to 100 parts by weight of the translucent resin 103. Preferably, the amount is 5 parts by weight or more and 50 parts by weight or less.
  • the content of the fine particles 104 is less than 3 parts by weight with respect to 100 parts by weight of the translucent resin, the antiglare property becomes insufficient and sufficient internal haze for reducing glare cannot be obtained, or light The diffusibility tends to be insufficient.
  • the content of the fine particles 104 exceeds 60 parts by weight with respect to 100 parts by weight of the translucent resin, the antiglare property and the light diffusibility become excessively high and the contrast tends to be lowered.
  • the average thickness h of the fine particle-containing layer 102 is preferably 3 ⁇ m or more and 20 ⁇ m or less, and more preferably 5 ⁇ m or more and 15 ⁇ m or less. According to the present invention, even when the average thickness h is as small as about 3 ⁇ m, the occurrence of convex defects can be satisfactorily suppressed. If the average thickness h is extremely small, the proportion of coarse particles in all fine particles becomes too large, and the occurrence of convex defects may not be sufficiently suppressed, and it is disadvantageous in terms of the mechanical strength of the optical film. .
  • the “average thickness h” of the fine particle-containing layer 102 is an average value of the thicknesses of two or more fine particle-containing layers arbitrarily selected along the effective range width direction of the optical film. The value of each thickness is measured using a contact-type film thickness meter.
  • the ratio r / h of the weight average particle diameter r of the fine particles 104 to the average thickness h of the fine particle-containing layer 102 is preferably 0.3 or more, more preferably 0.5 or more.
  • the ratio r / h is less than 0.3, it means that the average thickness h is increased or the weight average particle diameter r is decreased. In the former case, it is not preferable for the reason described above. In the latter case, the effect of reducing glare as an antiglare film is insufficient, or the light diffusibility as a light diffusion film or the like tends to be insufficient.
  • the ratio r / h is preferably 0.9 or less, and more preferably 0.85 or less.
  • the ratio r / h exceeds 0.9, it means that the average thickness h is increased or the weight average particle diameter r is increased. In the former case, it is not preferable for the reason described above. In the latter case, the antiglare property and the light diffusibility may become excessively high.
  • the ratio r / h is preferably in the range of 0.3 to 0.9. That is, the present invention relates to the weight average particle diameter r of the fine particles 104 and the average thickness h of the fine particle-containing layer 102. It is suitable when is relatively close. And this invention shows the special effect in the point that a convex defect can fully be suppressed also on the conditions where such a convex defect tends to occur frequently.
  • the maximum particle size R of the fine particles 104 contained in the fine particle-containing layer 102 (which can be said to be the maximum particle size of coarse particles contained in the fine particle-containing layer 102) is not particularly limited, but the average thickness of the fine particle-containing layer 102 is not limited.
  • the ratio R / h between the maximum particle size R and the average thickness h is preferably 2 or less, and more preferably 1.8 or less. If the ratio is extremely large, the protrusion of coarse particles may not be sufficiently flattened, and good surface smoothness may not be obtained.
  • the maximum particle size R of the fine particles 104 contained in the fine particle-containing layer 102 is a microscope of the surface of the fine particle-containing layer of the optical film produced by the same method except that the fine particle-containing layer is formed without pressing the surface of the mold. Observation is performed, and arbitrary 100 defects (protrusions of coarse particles from the surface of the fine particle-containing layer) are selected, and the largest particle size among the particle sizes of the fine particles forming these 100 defects is meant. .
  • the surface shape of the fine particle-containing layer 102 can be a flat surface, for example.
  • a flat surface can be formed as a transfer structure in which a template having a mirror surface is used as a template and the mirror surface is transferred to the surface of the fine particle-containing layer 102. Since the transfer is performed by pressing the surface of the mold against the surface of the coating layer forming the fine particle-containing layer 102, the portion protruding from the coating layer of coarse particles is crushed, resulting in a convex shape. Defects are effectively suppressed or prevented.
  • the optical film having such a flat surface can function as a light diffusion film or the like.
  • the fine particle-containing layer 102 may have surface irregularities.
  • Such surface irregularities can be formed as a transfer structure in which a mold having an irregular surface is used as a mold and the irregular surface is transferred to the surface of the fine particle-containing layer 102. Since the transfer is performed by pressing the surface of the mold against the surface of the coating layer forming the fine particle-containing layer 102, the portion protruding from the coating layer of coarse particles is crushed, resulting in a convex shape. Defects are effectively suppressed or prevented.
  • an optical film having such surface irregularities can function as an antiglare film or a light diffusion film.
  • the total haze is preferably 10% or more and 70% or less, and the internal haze is also preferably 10% or more and 70% or less.
  • the surface haze resulting from the surface shape of the fine particle-containing layer 102 is preferably 6% or less.
  • the total light transmittance (Tt) is the sum of the parallel light transmittance (Tp) and the diffuse light transmittance (Td) that are transmitted coaxially with the incident light.
  • the total light transmittance (Tt) and the diffused light transmittance (Td) are values measured in accordance with JIS K 7361.
  • the “internal haze” of the optical film is a haze other than the haze (surface haze) caused by the surface shape of the fine particle-containing layer 102 among all the hazes.
  • the total haze and / or internal haze When the total haze and / or internal haze is less than 10%, the antiglare property and the glare reduction effect or the light diffusibility tend to be insufficient. On the other hand, when the total haze and / or internal haze exceeds 70%, the antiglare property and the light diffusibility become excessively high, and the contrast tends to decrease. Further, the transparency of the optical film tends to be impaired.
  • the total haze and internal haze are each preferably 20% or more and 65% or less.
  • the surface haze resulting from the surface shape of the fine particle-containing layer 102 exceeds 6%, it becomes easy to generate whitish that the entire screen feels whitish due to the irregular reflection of the surface of the fine particle-containing layer. In order to prevent whitening more effectively, the surface haze is preferably 3% or less.
  • the total haze, internal haze, and surface haze of the optical film are specifically measured as follows. That is, first, in order to prevent warping of the film, the optical film is bonded to a glass substrate with an optically transparent adhesive so that the fine particle-containing layer 102 becomes the surface. A measurement sample is prepared, and the total haze value of the measurement sample is measured. For the total haze value, the total light transmittance (Tt) and diffuse light transmittance are measured using a haze transmittance meter (for example, a haze meter “HM-150” manufactured by Murakami Color Research Laboratory Co., Ltd.) in accordance with JIS K 7136. The rate (Td) is measured and calculated by the above formula (1).
  • a haze transmittance meter for example, a haze meter “HM-150” manufactured by Murakami Color Research Laboratory Co., Ltd.
  • a triacetyl cellulose film having a haze of approximately 0% is bonded to the surface of the fine particle-containing layer 102 using glycerin, and the haze is measured in the same manner as the above-described measurement of all haze.
  • the optical film of the present invention can be suitably produced (effectively and at low cost) by a method including the following steps (A) to (C).
  • a step of applying a resin liquid containing the fine particles 104 to form a coating layer on the base film 101 (B) A step of pressing the surface of the mold against the surface of the coating layer, and (C) fixing the coating layer onto the base film 101 in a state where the surface of the mold is pressed against the surface of the coating layer.
  • a step of forming the fine particle-containing layer 102 is forming the fine particle-containing layer 102.
  • the resin liquid used in the step (A) includes the fine particles 104, the translucent resin 103 or a resin forming the same (for example, an active energy ray curable resin, a thermosetting resin, or a metal alkoxide), and if necessary.
  • Other components such as a solvent such as an organic solvent, a leveling agent, a dispersant, an antistatic agent, and an antifouling agent may be contained.
  • the said resin liquid contains a photoinitiator (radical polymerization initiator).
  • photopolymerization initiator examples include acetophenone photopolymerization initiator, benzoin photopolymerization initiator, benzophenone photopolymerization initiator, thioxanthone photopolymerization initiator, triazine photopolymerization initiator, and oxadiazole photopolymerization initiator. An initiator or the like is used.
  • photopolymerization initiator examples include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,2′-bis (o-chlorophenyl) -4,4 ′, 5,5′-tetraphenyl-1,2 '-Biimidazole, 10-butyl-2-chloroacridone, 2-ethylanthraquinone, benzyl, 9,10-phenanthrenequinone, camphorquinone, methyl phenylglyoxylate, titanocene compound and the like can also be used.
  • the amount of the photopolymerization initiator used is usually 0.5 to 20 parts by weight, preferably 1 to 5 parts by weight with respect to 100 parts by weight of the resin contained in the resin liquid.
  • organic solvents examples include aliphatic hydrocarbons such as hexane, cyclohexane, and octane; aromatic hydrocarbons such as toluene and xylene; alcohols such as ethanol, 1-propanol, isopropanol, 1-butanol, and cyclohexanol; methyl ethyl ketone, methyl isobutyl Ketones such as ketone and cyclohexanone; esters such as ethyl acetate, butyl acetate and isobutyl acetate; glycols such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether Ethers; ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, etc.
  • aliphatic hydrocarbons such
  • These solvents may be used alone or as a mixture of several kinds as required. After coating, it is necessary to evaporate the organic solvent. Therefore, the boiling point is desirably in the range of 60 ° C to 160 ° C.
  • the saturated vapor pressure at 20 ° C. is preferably in the range of 0.1 kPa to 20 kPa.
  • the dispersion of the fine particles 104 in the resin liquid is preferably isotropic dispersion.
  • the resin liquid onto the base film 101 can be performed by, for example, a gravure coating method, a micro gravure coating method, a rod coating method, a knife coating method, an air knife coating method, a kiss coating method, a die coating method, or the like.
  • the average thickness h of the fine particle-containing layer 102, the ratio r / h of the weight average particle size r to the average thickness h of the fine particles 104, and the maximum particle size of the fine particles 104 are as follows.
  • the coating layer is formed by adjusting the coating thickness so that the ratio R / h of R to the average thickness h is within the above preferred range.
  • Various surface treatments may be applied to the surface of the base film 101 (surface on the fine particle-containing layer side) for the purpose of improving the coating property of the resin liquid or improving the adhesion with the fine particle-containing layer 102.
  • the surface treatment include corona discharge treatment, glow discharge treatment, acid surface treatment, alkali surface treatment, and ultraviolet irradiation treatment.
  • another layer such as a primer layer may be formed on the base film 101, and the resin liquid may be applied on the other layer.
  • the surface (fine particle content layer) of the base film 101 is improved. It is preferable to hydrophilize the surface on the opposite side of the surface by various surface treatments.
  • the surface of the mold is pressed against the surface of the coating layer (layer made of a resin liquid), and the shape of the surface is transferred to the surface of the coating layer.
  • the mold is for imparting a desired shape to the surface of the fine particle-containing layer 102, and has a surface shape composed of a transfer structure of the desired shape.
  • the surface shape of the mold can be transferred and the protrusions of coarse particles are crushed.
  • the mold include a mold having a mirror surface (for example, a mirror roll) and a mold having an uneven surface (for example, an emboss roll).
  • the uneven pattern may be a regular pattern, a random pattern, or a pseudo random pattern in which one or more random patterns of a specific size are spread. Although it is good, it is preferably a random pattern or a pseudo-random pattern from the viewpoint of preventing the reflected image from becoming iridescent due to interference of reflected light caused by the surface shape.
  • the outer shape of the mold is not particularly limited, and may be a flat plate shape or a cylindrical or cylindrical roll. From the viewpoint of continuous productivity, a mirror surface roll, an emboss roll, etc. A columnar or cylindrical mold is preferred. In this case, a predetermined surface shape is formed on the side surface of the columnar or cylindrical mold.
  • the material of the base material of the mold is not particularly limited, and can be appropriately selected from metal, glass, carbon, resin, or a composite thereof, but metal is preferable from the viewpoint of workability.
  • Suitable metal materials include aluminum, iron, or an alloy mainly composed of aluminum or iron from the viewpoint of cost.
  • a method for obtaining a mold for example, a method of polishing a substrate, sandblasting, and then applying electroless nickel plating (JP2006-53371-A); after applying copper plating or nickel plating to the substrate, Polishing, sand blasting, and chromium plating (JP2007-188952-A); copper plating or nickel plating, polishing, sand blasting, etching process or copper plating process And then applying chromium plating (JP 2007-237541-A); applying copper plating or nickel plating to the surface of the substrate, polishing, applying a photosensitive resin film on the polished surface, The pattern is exposed on the photosensitive resin film, then developed, and etched using the developed photosensitive resin film as a mask.
  • the surface irregularity shape of the template comprising a random pattern or a pseudo-random pattern is, for example, an FM screen method, a DLDS (Dynamic Low-Discretion Sequence) method, a method using a microphase separation pattern of a block copolymer, or a bandpass filter method.
  • the random pattern generated by the above can be formed by exposing and developing on the photosensitive resin film, and performing an etching process using the developed photosensitive resin film as a mask.
  • the coating layer is fixed on the base film 101 to form the fine particle-containing layer 102, and the optical film is formed.
  • an active energy ray curable resin, a thermosetting resin, or a metal alkoxide is used as the resin for forming the translucent resin 103, drying (removing the solvent) is performed as necessary, and then coating is performed.
  • the active energy ray is irradiated from the base film 101 side to the coating layer (when an active energy ray-curable resin is used) or heated (thermosetting type).
  • the active energy ray can be appropriately selected from ultraviolet rays, electron beams, near ultraviolet rays, visible light, near infrared rays, infrared rays, X-rays, etc. depending on the type of resin contained in the resin liquid.
  • An electron beam is preferable, and ultraviolet rays are particularly preferable because of easy handling and high energy.
  • a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • An ArF excimer laser, a KrF excimer laser, an excimer lamp, synchrotron radiation, or the like can also be used.
  • an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a xenon arc, and a metal halide lamp are preferably used.
  • the electron beam 50 to 1000 keV emitted from various electron beam accelerators such as Cockloft Walton type, Bande graph type, resonance transformation type, insulation core transformation type, linear type, dynamitron type, and high frequency type, preferably 100
  • An electron beam having an energy of ⁇ 300 keV can be mentioned.
  • thermoplastic resin used as the translucent resin 103
  • the coating layer is softened or melted, and the mold surface is pressed against the coating layer surface.
  • an optical film to which the surface shape of the mold is transferred can be produced.
  • the fine particle-containing layer 102 is not thickened (when the average thickness h of the fine particle-containing layer 102 is relatively close to the weight average particle diameter r of the fine particles 104).
  • convex defects can be effectively suppressed at low cost without performing additional operations such as classification of fine particles.
  • the production method according to the preferred embodiment includes a step of continuously feeding the base film 101 wound in a roll shape, the fine particles 104 and the ultraviolet curable resin in order to continuously produce the optical film of the present invention.
  • Such a manufacturing method can be implemented, for example, using a manufacturing apparatus shown in FIG.
  • the manufacturing method according to the preferred embodiment will be described with reference to FIG.
  • the base film 101 is continuously unwound by the unwinding device 201.
  • a resin liquid containing the fine particles 104 and the ultraviolet curable resin is applied onto the unwound base film 101 using the coating device 202 and the backup roll 203 facing the coating device 202.
  • the resin liquid is dried by passing it through a dryer 204.
  • the base film 101 provided with the coating layer is placed between the mirror metal roll or the embossing metal roll 205 and the nip roll 206, and the coating layer is a mirror metal roll or the embossing metal. It is wound around in close contact with the roll 205.
  • the mirror surface of the mirror surface metal roll or the uneven surface of the metal roll for embossing is pressed against the surface of the coating layer, and the surface shape is transferred.
  • the coating layer is cured by irradiating ultraviolet rays from the ultraviolet irradiation device 208 through the base film 101.
  • the mirror surface metal roll or the embossing metal roll 205 preferably includes a cooling device for adjusting the surface temperature to about room temperature to about 80 ° C. .
  • one or a plurality of ultraviolet irradiation devices 208 can be used.
  • the substrate film 101 (optical film) on which the fine particle-containing layer 102 is formed is peeled off from the mirror surface metal roll or the embossing metal roll 205 by the peeling roll 207.
  • the optical film produced as described above is taken up by the take-up device 209.
  • a protective film made of polyethylene terephthalate or polyethylene or the like may be wound on the surface of the fine particle-containing layer 102 through a pressure-sensitive adhesive layer having removability. Good.
  • the optical film of the present invention may further include an antireflection layer laminated on the fine particle-containing layer 102 (surface opposite to the base film 101).
  • the antireflection layer may be directly formed on the fine particle-containing layer 102.
  • An antireflection film in which an antireflection layer is formed on a transparent film is separately prepared, and this is applied to the fine particle-containing layer 102 using an adhesive or an adhesive. You may laminate.
  • the antireflection layer is provided to reduce the reflectance as much as possible, and reflection on the display screen can be more effectively prevented by forming the antireflection layer.
  • the antireflective layer includes a low refractive index layer composed of a material lower than the refractive index of the fine particle-containing layer 102; a high refractive index layer composed of a material higher than the refractive index of the fine particle-containing layer 102, and the high refractive index.
  • a laminated structure with a low refractive index layer composed of a material lower than the refractive index of the layer can be exemplified.
  • an antireflection film is laminated on the fine particle-containing layer 102 using an adhesive or an adhesive, a commercially available antireflection film can be used.
  • the polarizing plate of this invention is equipped with a polarizing film and the above-mentioned optical film laminated
  • a polarizing film has a function which takes out linearly polarized light from incident light, The kind is not specifically limited.
  • a suitable polarizing film there can be mentioned a polarizing film in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol resin.
  • polyvinyl alcohol-based resin examples include polyvinyl alcohol, which is a saponified product of vinyl acetate, partially formalized polyvinyl alcohol, and a saponified product of an ethylene / vinyl acetate copolymer.
  • dichroic dye iodine or a dichroic organic dye is used.
  • a polyene-oriented film of a polyvinyl alcohol dehydrated product or a polyvinyl chloride dehydrochlorinated product can also be a polarizing film. The thickness of the polarizing film is usually about 5 to 80 ⁇ m.
  • the polarizing plate of the present invention may be one in which the optical film of the present invention is laminated on one side or both sides (usually one side) of the polarizing film, and a transparent protective layer is laminated on one side of the polarizing film. And what laminated
  • the transparent protective layer can be formed on the polarizing film by a method of laminating a transparent resin film using an adhesive or the like, a method of applying a transparent resin-containing coating solution, or the like.
  • the optical film of the present invention can be bonded to a polarizing film using an adhesive or the like.
  • the transparent resin film serving as the transparent protective layer is preferably excellent in transparency, mechanical strength, thermal stability, moisture shielding properties, etc., and examples thereof include triacetyl cellulose, diacetyl cellulose, cellulose acetate propio Cellulose resins such as cellulose acetate such as nates; Polycarbonate resins; (Meth) acrylic resins such as polyacrylate and polymethyl methacrylate; Polyester resins such as polyethylene terephthalate and polyethylene naphthalate; Chains such as polyethylene and polypropylene Examples thereof include films made of polyolefin resin; cyclic polyolefin resin; styrene resin; polysulfone; polyether sulfone; polyvinyl chloride resin. These transparent resin films may be optically isotropic, or have optical anisotropy for the purpose of compensating the viewing angle when incorporated in an image display device. Also good.
  • the image display device of the present invention is a combination of the polarizing plate of the present invention and an image display element that displays various information on a screen.
  • the type of the image display device of the present invention is not particularly limited.
  • LCD liquid crystal display
  • CRT cathode ray tube
  • PDP plasma display
  • FED field emission display
  • SED conduction electron-emitting device display
  • OLED organic EL display
  • laser display and a projector television screen.
  • the polarizing plate when a liquid crystal panel is produced by disposing the polarizing plate of the present invention on a liquid crystal cell, the polarizing plate is disposed on the liquid crystal cell with the fine particle-containing layer 102 outside.
  • the optical film may be disposed on the viewing side of the image display element, on the backlight side, or on both.
  • the optical film when the optical film is arranged on the viewer side, the optical film functions as an antiglare film that prevents glare or reflection of external light, or a light diffusion film that improves the viewing angle.
  • the optical film when the optical film is disposed on the backlight side, the optical film functions as a diffusion plate (or diffusion sheet) that diffuses light incident on the liquid crystal cell and prevents moiré or the like.
  • the image display device of the present invention includes an optical film in which the occurrence of convex defects is effectively suppressed or prevented, the occurrence of whitening and the decrease in contrast are effectively suppressed, and visibility is improved. Excellent.
  • the average thickness h of the fine particle-containing layer, the weight average particle size r, the standard deviation and the maximum particle size R of the fine particles, and the ratio of the number of coarse particles in the entire fine particles are measured as follows.
  • (A) Average thickness h of the fine particle-containing layer The total thickness including the base film and the fine particle-containing layer every 5 cm along the effective range width direction of the optical film is measured by a contact-type film thickness meter [DIGIMICRO MH-15 (main body) and ZC-101 (counter) manufactured by NIKON The average value of these was calculated by subtracting 80 ⁇ m of the thickness of the base film from this average value to obtain the average thickness h of the fine particle-containing layer.
  • Example 1 60 parts by weight of pentaerythritol triacrylate, 40 parts by weight of polyfunctional urethanized acrylate (reaction product of hexamethylene diisocyanate and pentaerythritol triacrylate), polystyrene-based particles as fine particles (weight average particle diameter: 6.9 ⁇ m, standard deviation: 1.3 ⁇ m, the proportion of coarse particles with a particle diameter exceeding 10 ⁇ m in the entire fine particles: 0.12%, the proportion of coarse particles with a particle diameter exceeding 13 ⁇ m in the entire fine particles: 0.002% or less) 20 parts by weight, light
  • a polymerization initiator “Lucirin TPO” manufactured by BASF, chemical name: 2,4,6-trimethylbenzoyldiphenylphosphine oxide
  • propylene glycol monomethyl ether as a diluent solvent
  • the resin solution is applied on a triacetyl cellulose (TAC) film (base film) having a thickness of 80 ⁇ m with a die coater to form a coating layer, and a laminate of the base film and the coating layer is obtained. It was. After the obtained laminate was dried in a drying furnace, a chromium plating roll that had been polished so that the surface became a mirror surface was pressed and adhered to the coating layer surface of the laminate using a nip roll. In this state, the coating layer was cured by irradiating ultraviolet rays from the base film side so that the maximum illuminance in UVA was 700 mW / cm 2 and the integrated light quantity in UVA was 300 mJ / cm 2 . Thereafter, the laminate was peeled from the chromium plating roll to obtain an optical film having an average thickness h of the fine particle-containing layer of 10 ⁇ m.
  • TAC triacetyl cellulose
  • Example 2 ⁇ Example 2> Implemented except that polystyrene particles (weight average particle size: 8.2 ⁇ m, standard deviation: 0.6 ⁇ m, ratio of coarse particles with a particle diameter exceeding 10 ⁇ m in the entire fine particles: 1.6%) were used as the fine particles.
  • An optical film was produced in the same manner as in Example 1.
  • Example 3 An optical film was produced in the same manner as in Example 1 except that the average thickness h of the fine particle-containing layer was 13 ⁇ m.
  • Example 1 Except that the laminate of the base film and the coating layer produced in the same manner as in Example 1 was irradiated with ultraviolet rays from the coating layer side without carrying out the transfer step (pressing the chromium plating roll). An optical film was produced in the same manner as in Example 1. When the maximum particle size R of this optical film was measured, it was 13.5 ⁇ m (therefore, the maximum particle size R in the optical film of Example 1 was also 13.5 ⁇ m).

Abstract

Disclosed is an optical film that is provided with a base material film (101), and a fine particle-containing layer (102), which is formed on the base material film, and which is formed of a resin liquid that contains fine particles (104). The rate of fine particles (coarse particles), each of which has a particle diameter larger than the average thickness (h) of the fine particle-containing layer (102), to the whole fine particles (104) contained in the resin liquid is 2 % or less, and the surface of the fine particle-containing layer (102) has a shape formed by pressing thereto the surface of a mold. Also disclosed are a polarization plate having the optical film applied thereto and an image display device. Generation of a protruding defect due to the coarse particles is sufficiently suppressed or eliminated without increasing the thickness of the fine particle-containing layer, and the optical film provided with the fine particle-containing layer having excellent surface uniformity, and a method for manufacturing the optical film efficiently at low cost are provided.

Description

光学フィルムおよびその製造方法、偏光板、ならびに画像表示装置Optical film and manufacturing method thereof, polarizing plate, and image display device
 本発明は、基材フィルム上に微粒子含有層を備える光学フィルムおよびその製造方法に関する。また本発明は、当該光学フィルムを用いた偏光板および画像表示装置に関する。 The present invention relates to an optical film having a fine particle-containing layer on a base film and a method for producing the same. The present invention also relates to a polarizing plate and an image display device using the optical film.
 液晶ディスプレイ、プラズマディスプレイパネル、ブラウン管(陰極線管:CRT)ディスプレイ、有機エレクトロルミネッセンス(EL)ディスプレイなどの画像表示装置は、その表示面に外光が映り込むと視認性が著しく損なわれてしまう。このような外光の映り込みを防止するために、表面に微細な凹凸を有し、入射光を散乱させて映り込み像をぼかす防眩フィルムを画像表示装置の表面に配置することが従来行なわれている。 An image display device such as a liquid crystal display, a plasma display panel, a cathode ray tube (CRT) display, or an organic electroluminescence (EL) display has a significant loss of visibility when external light is reflected on its display surface. In order to prevent such reflection of external light, an anti-glare film that has fine irregularities on the surface and scatters incident light to blur the reflected image is conventionally disposed on the surface of the image display device. It is.
 防眩フィルムは、たとえば、基材フィルム上に微粒子を分散させた樹脂液を塗工して防眩層を形成することにより製造することができる。しかし、このような微粒子を含有させることにより表面凹凸を付与した防眩フィルムにおいては、微粒子に含まれる粒子径の大きい粗粒子が防眩層表面から突出することに起因する凸状欠陥が生じる場合がある。かかる凸状欠陥は、防眩層表面へ入射する光の過度の散乱を招き、画面全体が白っぽく感じられる、いわゆる白ちゃけやコントラスト低下を生じさせる。また、防眩層表面の面質を悪化させる。したがって、粗粒子が防眩層表面から突出することに起因する凸状欠陥を極力発生させないことが肝要である。 The antiglare film can be produced, for example, by applying a resin liquid in which fine particles are dispersed on a base film to form an antiglare layer. However, in the antiglare film provided with surface irregularities by containing such fine particles, there are convex defects due to the coarse particles with large particle diameters contained in the fine particles protruding from the surface of the antiglare layer There is. Such a convex defect causes excessive scattering of light incident on the surface of the antiglare layer, and causes so-called whitishness or contrast reduction in which the entire screen is felt whitish. In addition, the surface quality of the antiglare layer surface is deteriorated. Therefore, it is important not to generate as many convex defects as possible due to the coarse particles protruding from the surface of the antiglare layer.
 JP2010−102291−Aには、防眩層表面に粒子由来の大きな凸部が形成させることを防止すべく、粒子の平均粒径Rを防眩層の平均厚みHで除した値R/Hを0.8以下とすることが開示されている。また、JP2010−159421−Aには、光拡散層(防眩層)の表面の均質性などを向上させる観点から、光拡散層に含有される透光性微粒子として、粗大粒子(平均粒子径よりも20%以上粒子径が大きな粒子)の割合が全粒子数の1%以下(より好ましくは0.1%以下、さらに好ましくは0.01%以下)であるものを分級操作などにより取得し使用することが好ましい旨が記載されている。 JP2010-102291-A has a value R / H obtained by dividing the average particle diameter R of the particles by the average thickness H of the antiglare layer in order to prevent the formation of large convex portions derived from the particles on the surface of the antiglare layer. It is disclosed that the value is 0.8 or less. JP2010-159421-A includes coarse particles (from average particle diameter) as translucent fine particles contained in the light diffusion layer from the viewpoint of improving the surface uniformity of the light diffusion layer (antiglare layer). In which the ratio of particles having a particle diameter of 20% or more is 1% or less (more preferably 0.1% or less, and still more preferably 0.01% or less) of the total number of particles is obtained by classification operation or the like. It is described that it is preferable to do.
 JP2010−102291−Aが提案する平均粒径R/平均厚みHを0.8以下にするという手法は、とりわけ平均粒径Rの値と平均厚みHの値が近い場合、上記凸状欠陥を解消するための手法として不十分である。一方、凸状欠陥を有効に解消するために、平均厚みHを平均粒径Rと比べて十分大きくすると、防眩層の厚膜化により製造コストが増大するとともに、光学フィルムの薄膜化の要求に沿わないものとなる。 JP2010-102291-A proposes a method of reducing the average particle diameter R / average thickness H to 0.8 or less, particularly when the average particle diameter R and the average thickness H are close to each other, thereby eliminating the above convex defects. It is inadequate as a technique for doing this. On the other hand, if the average thickness H is sufficiently larger than the average particle size R in order to effectively eliminate the convex defects, the manufacturing cost increases due to the increase in the thickness of the antiglare layer, and there is a demand for thinning the optical film. It will not be along.
 また、JP2010−159421−Aが提案する微粒子の粒径分布を制御する手法においては、凸状欠陥の発生が十分に抑制される程度にまで粗大粒子の含有量を低減するためには、分級操作を繰り返す必要があり、製造コストが増大するとともに、製造効率が大きく低下する。 Further, in the method of controlling the particle size distribution of fine particles proposed by JP2010-159421-A, in order to reduce the content of coarse particles to such an extent that the occurrence of convex defects is sufficiently suppressed, classification operation is performed. Need to be repeated, resulting in an increase in manufacturing cost and a significant decrease in manufacturing efficiency.
 本発明の目的は、基材フィルム上に微粒子含有層を備える光学フィルムであって、微粒子含有層の厚膜化を伴わずに粗大な粒子に起因する凸状欠陥の発生が十分に抑制または防止されており、良好な表面均質性を有する微粒子含有層を備えた光学フィルムおよびこのような光学フィルムを効率的にかつ低コストで製造する方法を提供することにある。また、本発明の他の目的は、上記光学フィルムを適用した偏光板および画像表示装置を提供することにある。 An object of the present invention is an optical film including a fine particle-containing layer on a base film, and sufficiently suppresses or prevents the occurrence of convex defects due to coarse particles without increasing the thickness of the fine particle-containing layer. It is an object of the present invention to provide an optical film provided with a fine particle-containing layer having good surface homogeneity and a method for producing such an optical film efficiently and at low cost. Another object of the present invention is to provide a polarizing plate and an image display device to which the optical film is applied.
 本発明は、下記のものを含む。
[1] 基材フィルム及び、基材フィルム上に微粒子を含有する樹脂液より形成される微粒子含有層を備える光学フィルムであって、微粒子含有層の平均厚みhより大きい粒子径を有する微粒子(粗大粒子)の、樹脂液に含有される微粒子全体に対する割合が2%以下であり、微粒子含有層の表面が、鋳型の表面を押し当てて形成される形状を有する光学フィルム。。
The present invention includes the following.
[1] An optical film comprising a base film and a fine particle-containing layer formed from a resin liquid containing fine particles on the base film, and having a particle diameter larger than the average thickness h of the fine particle-containing layer (coarse The ratio of the particles) to the total fine particles contained in the resin liquid is 2% or less, and the surface of the fine particle-containing layer has a shape formed by pressing the surface of the mold. .
[2] 樹脂液に含有される微粒子の重量平均粒径rの微粒子含有層の平均厚みhに対する比r/hが0.3以上である[1]に記載の光学フィルム。 [2] The optical film according to [1], wherein the ratio r / h of the weight average particle diameter r of the fine particles contained in the resin liquid to the average thickness h of the fine particle-containing layer is 0.3 or more.
[3]r/hが0.9以下である[1]または[2]に記載の光学フィルム。 [3] The optical film according to [1] or [2], wherein r / h is 0.9 or less.
[4] 微粒子含有層に含有される微粒子の最大粒径Rの、微粒子含有層の平均厚みhに対する比R/hが2以下である[1]~[3]のいずれかに記載の光学フィルム。 [4] The optical film according to any one of [1] to [3], wherein the ratio R / h of the maximum particle size R of the fine particles contained in the fine particle-containing layer to the average thickness h of the fine particle-containing layer is 2 or less. .
[5] 樹脂液に含有される微粒子の重量平均粒径rが、1μm以上15μm以下である[1]~[4]のいずれかに記載の光学フィルム。 [5] The optical film according to any one of [1] to [4], wherein the fine particles contained in the resin liquid have a weight average particle diameter r of 1 μm to 15 μm.
[6] 微粒子含有層の平均厚みhが、3μm以上20μm以下である[1]~[5]のいずれかに記載の光学フィルム。 [6] The optical film according to any one of [1] to [5], wherein the average thickness h of the fine particle-containing layer is 3 μm or more and 20 μm or less.
[7] 微粒子含有層は、前記樹脂液の硬化物層である[1]~[6]のいずれかに記載の光学フィルム。 [7] The optical film according to any one of [1] to [6], wherein the fine particle-containing layer is a cured product layer of the resin liquid.
[8] 粗大粒子の前記樹脂液に含有される微粒子全体に対する割合が、0.2%以下である[1]~[7]のいずれかに記載の光学フィルム。 [8] The optical film according to any one of [1] to [7], wherein a ratio of coarse particles to the entire fine particles contained in the resin liquid is 0.2% or less.
[9] 鋳型が、鏡面からなる表面を有する鋳型または凹凸表面を有する鋳型である[1]~[8]のいずれかに記載の光学フィルム。 [9] The optical film according to any one of [1] to [8], wherein the mold is a mold having a mirror surface or a concavo-convex surface.
[10] 微粒子含有層上に積層された反射防止層をさらに備え[1]~[9]のいずれかに記載の光学フィルム。 [10] The optical film according to any one of [1] to [9], further comprising an antireflection layer laminated on the fine particle-containing layer.
[11] 請求の範囲1に記載の光学フィルムの製造方法であって、基材フィルム上に、微粒子を含有する樹脂液を塗工して塗工層を形成する工程と、該塗工層の表面に、鋳型の表面を押し当てる工程と、塗工層の表面に鋳型の表面を押し当てた状態で、塗工層を上記基材フィルム上に固着させることにより、微粒子含有層を形成する工程とを含む光学フィルムの製造方法。 [11] A method for producing an optical film according to claim 1, wherein a coating layer is formed by applying a resin liquid containing fine particles on a base film, and the coating layer A step of pressing the surface of the mold against the surface, and a step of forming a fine particle-containing layer by fixing the coating layer on the substrate film in a state where the surface of the mold is pressed against the surface of the coating layer The manufacturing method of an optical film containing these.
[12] 微粒子含有層を形成する工程は、塗工層の表面に鋳型の上記表面を押し当てた状態で、基材フィルム側から上記塗布層に活性エネルギー線を照射することにより塗工層を硬化させる工程を含む[11]に記載の製造方法。 [12] In the step of forming the fine particle-containing layer, the coating layer is formed by irradiating the coating layer with active energy rays from the base film side while pressing the surface of the mold against the surface of the coating layer. The production method according to [11], including a curing step.
[13] 偏光フィルムと、基材フィルム側が該偏光フィルムに対向するように該偏光フィルム上に積層される[1]~[10]のいずれかに記載の光学フィルムとを備える偏光板。 [13] A polarizing plate comprising a polarizing film and the optical film according to any one of [1] to [10], which is laminated on the polarizing film so that the base film side faces the polarizing film.
[14] [13]に記載の偏光板と画像表示素子とを備え、偏光板は、その微粒子含有層側を外側にして画像表示素子上に配置される画像表示装置。 [14] An image display device comprising the polarizing plate according to [13] and an image display element, wherein the polarizing plate is disposed on the image display element with the fine particle-containing layer side facing outside.
 本発明によれば、微粒子含有層における粗大な粒子に起因する凸状欠陥の発生が十分に抑制または防止されており、良好な表面均質性を有する微粒子含有層を備えた光学フィルムを提供できる。このような光学フィルムを、たとえば防眩フィルムや光拡散フィルムなどとして用いた場合には、微粒子含有層表面へ入射する光の過度の散乱を有効に抑制することができ、白ちゃけの発生やコントラストの低下を防止することができる。また、本発明の製造方法によれば、上記のような光学フィルムを効率的にかつ低コストで製造することができる。本発明の光学フィルムは、偏光板や、液晶表示装置等の画像表示装置に好適に適用することができる。 According to the present invention, the occurrence of convex defects due to coarse particles in the fine particle-containing layer is sufficiently suppressed or prevented, and an optical film provided with a fine particle-containing layer having good surface uniformity can be provided. When such an optical film is used as, for example, an antiglare film or a light diffusion film, excessive scattering of light incident on the surface of the fine particle-containing layer can be effectively suppressed, A decrease in contrast can be prevented. Moreover, according to the manufacturing method of this invention, the above optical films can be manufactured efficiently and at low cost. The optical film of the present invention can be suitably applied to image display devices such as polarizing plates and liquid crystal display devices.
本発明の光学フィルムの好ましい一例を示す概略断面図である。It is a schematic sectional drawing which shows a preferable example of the optical film of this invention. 本発明の光学フィルムを製造するための装置の一例を示す概略図である。It is the schematic which shows an example of the apparatus for manufacturing the optical film of this invention.
 <光学フィルム>
 図1は、本発明の光学フィルムの好ましい例を示す概略断面図である。本発明に係る図1に示される光学フィルム100は、基材フィルム101と、基材フィルム101上に積層された微粒子含有層102とを備える。微粒子含有層102は、透光性樹脂103を基材とする層であって、透光性樹脂103中に透光性の微粒子104が分散されてなる。微粒子含有層102は、微粒子104を含有する樹脂液を基材フィルム101上に塗工することによって形成されるものである。微粒子含有層102の表面(外側表面)は、鋳型の表面を押し当てることによって形成されている。したがって図示されるように、本発明の光学フィルムにおいては、微粒子104中に粗大粒子110(微粒子含有層102の平均厚みhよりも大きい粒子径を有する微粒子)が含まれている場合であっても、この粗大粒子110における微粒子含有層102表面から突出するはずの部分が上記鋳型の押し当てにより押し潰された状態となるため、粗大粒子110の突出に起因する凸状欠陥が効果的に抑制または防止され、表面均質性に優れたものとなる。
<Optical film>
FIG. 1 is a schematic cross-sectional view showing a preferred example of the optical film of the present invention. The optical film 100 shown in FIG. 1 according to the present invention includes a base film 101 and a fine particle-containing layer 102 laminated on the base film 101. The fine particle-containing layer 102 is a layer having a translucent resin 103 as a base material, and translucent fine particles 104 are dispersed in the translucent resin 103. The fine particle-containing layer 102 is formed by applying a resin liquid containing the fine particles 104 onto the base film 101. The surface (outer surface) of the fine particle-containing layer 102 is formed by pressing the surface of the mold. Therefore, as shown in the drawing, in the optical film of the present invention, even when the fine particles 104 include coarse particles 110 (fine particles having a particle diameter larger than the average thickness h of the fine particle-containing layer 102). Since the portion of the coarse particle 110 that should protrude from the surface of the fine particle-containing layer 102 is in a state of being crushed by the pressing of the mold, the convex defect due to the protrusion of the coarse particle 110 is effectively suppressed or It is prevented and the surface uniformity is excellent.
 本発明の光学フィルムは、各種用途の画像表示装置用光学フィルムとして使用することができる。たとえば、上記鋳型として凹凸表面を有する鋳型を用いた場合には、微粒子含有層102の表面には凹凸構造が付与されるため、画像表示装置の表面に配置され、ギラツキや外光の映り込みを防止する防眩フィルムとして用いることができる(微粒子含有層102は防眩層として機能する)。また、上記鋳型として鏡面からなる表面を有する鋳型を用いた場合には、微粒子含有層102の表面は平坦面となるが、該表面が凹凸形状および平坦面のいずれの場合においても、画像表示装置の視認側(表面)に配置され、視野角等を改善する光拡散フィルムとして、あるいは、液晶表示装置等のバックライト側に配置され、液晶セルに入射する光を拡散させ、モアレ等を防止する拡散板(または拡散シート)として用いることができる(微粒子含有層102は光拡散層として機能する)。 The optical film of the present invention can be used as an optical film for an image display device for various purposes. For example, when a mold having a concavo-convex surface is used as the mold, since the concavo-convex structure is imparted to the surface of the fine particle-containing layer 102, it is disposed on the surface of the image display device, and glare or reflection of external light is reflected It can be used as an antiglare film to prevent (the fine particle-containing layer 102 functions as an antiglare layer). Further, when a mold having a mirror surface is used as the mold, the surface of the fine particle-containing layer 102 is a flat surface, and the image display device can be used regardless of whether the surface is an uneven shape or a flat surface. Placed on the viewing side (front surface) of the liquid crystal display as a light diffusing film that improves the viewing angle or the like, or on the backlight side of a liquid crystal display device, etc., diffuses light incident on the liquid crystal cell and prevents moiré, etc. It can be used as a diffusion plate (or a diffusion sheet) (the fine particle-containing layer 102 functions as a light diffusion layer).
 以下、本発明の光学フィルムについて、さらに詳細に説明する。
 〔基材フィルム〕
 基材フィルム101は透光性のものであればよく、たとえばガラスやプラスチックフィルムなどを用いることができる。プラスチックフィルムとしては適度の透明性、機械強度を有していればよい。具体的には、たとえば、TAC(トリアセチルセルロース)等のセルロースアセテート系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、ポリエチレンテレフタレート等のポリエステル系樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂などが挙げられる。基材フィルム101の厚みは、たとえば10~500μmであり、光学フィルムの薄膜化等の観点から、好ましくは10~300μmであり、より好ましくは20~300μmである。
Hereinafter, the optical film of the present invention will be described in more detail.
[Base film]
The base film 101 only needs to be translucent, and for example, glass or plastic film can be used. The plastic film only needs to have appropriate transparency and mechanical strength. Specific examples include cellulose acetate resins such as TAC (triacetylcellulose), acrylic resins, polycarbonate resins, polyester resins such as polyethylene terephthalate, and polyolefin resins such as polyethylene and polypropylene. The thickness of the base film 101 is, for example, 10 to 500 μm, and is preferably 10 to 300 μm, more preferably 20 to 300 μm from the viewpoint of thinning the optical film.
 〔微粒子含有層〕
 本発明の光学フィルムは、基材フィルム101上に積層された微粒子含有層102を備える。微粒子含有層102は、透光性樹脂103を基材とする層であって、透光性樹脂103中に透光性の微粒子104が分散されてなる。なお、基材フィルム101と微粒子含有層102との間に他の層(接着剤層を含む)を有していてもよい。
[Fine particle containing layer]
The optical film of the present invention includes a fine particle-containing layer 102 laminated on a base film 101. The fine particle-containing layer 102 is a layer having a translucent resin 103 as a base material, and translucent fine particles 104 are dispersed in the translucent resin 103. Note that another layer (including an adhesive layer) may be provided between the base film 101 and the fine particle-containing layer 102.
 (1)透光性樹脂
 透光性樹脂103としては、透光性を有するものであれば特に限定はなく、たとえば、紫外線硬化型樹脂、電子線硬化型樹脂などの活性エネルギー線硬化型樹脂や熱硬化型樹脂の硬化物、熱可塑性樹脂、金属アルコキシドの硬化物などを用いることができる。この中でも、高い硬度を有し、画像表示装置表面に設ける防眩フィルムや光拡散フィルムとして高い耐擦傷性を付与できることから、活性エネルギー線硬化型樹脂が好適である。活性エネルギー線硬化型樹脂、熱硬化型樹脂または金属アルコキシドを用いる場合は、活性エネルギー線の照射または加熱により当該樹脂を硬化させることにより透光性樹脂103が形成される。
(1) Translucent resin The translucent resin 103 is not particularly limited as long as it has translucency. For example, an active energy ray curable resin such as an ultraviolet curable resin or an electron beam curable resin, A cured product of a thermosetting resin, a thermoplastic resin, a cured product of a metal alkoxide, or the like can be used. Among these, an active energy ray-curable resin is preferable because it has high hardness and can impart high scratch resistance as an antiglare film or a light diffusion film provided on the surface of the image display device. When an active energy ray curable resin, a thermosetting resin, or a metal alkoxide is used, the translucent resin 103 is formed by curing the resin by irradiation or heating with an active energy ray.
 活性エネルギー線硬化型樹脂としては、多官能(メタ)アクリレート化合物を含有するものであることができる。多官能(メタ)アクリレート化合物とは、分子中に少なくとも2個の(メタ)アクリロイルオキシ基を有する化合物である。 The active energy ray-curable resin can contain a polyfunctional (meth) acrylate compound. The polyfunctional (meth) acrylate compound is a compound having at least two (meth) acryloyloxy groups in the molecule.
 多官能(メタ)アクリレート化合物の具体例としては、たとえば、多価アルコールと(メタ)アクリル酸とのエステル化合物、ウレタン(メタ)アクリレート化合物、ポリエステル(メタ)アクリレート化合物、エポキシ(メタ)アクリレート化合物等の(メタ)アクリロイル基を2個以上含む多官能重合性化合物等が挙げられる。 Specific examples of the polyfunctional (meth) acrylate compound include, for example, ester compounds of polyhydric alcohol and (meth) acrylic acid, urethane (meth) acrylate compounds, polyester (meth) acrylate compounds, epoxy (meth) acrylate compounds, and the like. And a polyfunctional polymerizable compound containing two or more (meth) acryloyl groups.
 多価アルコールとしては、たとえば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール、ポリプロピレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコール、2−エチル−1,3−ヘキサンジオール、2,2’−チオジエタノール、1,4−シクロヘキサンジメタノール等の2価のアルコール;トリメチロールプロパン、グリセロール、ペンタエリスリトール、ジグリセロール、ジペンタエリスリトール、ジトリメチロールプロパン等の3価以上のアルコールが挙げられる。 Examples of the polyhydric alcohol include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, polypropylene glycol, propanediol, butanediol, and pentanediol. , Divalent alcohols such as hexanediol, neopentyl glycol, 2-ethyl-1,3-hexanediol, 2,2′-thiodiethanol, 1,4-cyclohexanedimethanol; trimethylolpropane, glycerol, pentaerythritol, Examples thereof include trihydric or higher alcohols such as diglycerol, dipentaerythritol, and ditrimethylolpropane.
 多価アルコールと(メタ)アクリル酸とのエステル化物の具体例としては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタグリセロールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。 Specific examples of the esterified product of polyhydric alcohol and (meth) acrylic acid include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (Meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethane tri (meth) acrylate, tetramethylolmethane tri (meth) acrylate, 1,6-hexanediol di (meth) acrylate, tetramethylolmethanetetra (meta ) Acrylate, pentaglycerol tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, glycerin tri (meth) acrylate, di Pentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate.
 ウレタン(メタ)アクリレート化合物としては、例えば、1分子中に複数個のイソシアネート基を有するイソシアネートと、水酸基を有する(メタ)アクリル酸誘導体のウレタン化反応物を挙げることができる。1分子中に複数個のイソシアネート基を有する有機イソシアネートとしては、例えば、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネート、ジフェニルメタンジイソシアネート、キシレリンジイソシアネート、ジシクロヘキシルメタンジイソシアネート等の1分子中に2個のイソシアネート基を有する有機イソシアネート、それら有機イソシアネートをイソシアヌレート変性、アダクト変性、ビウレット変性した1分子中に3個のイソシアネート基を有する有機イソシアネート等が挙げられる。水酸基を有する(メタ)アクリル酸誘導体としては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、ペンタエリスリトールトリアクリレート等が挙げられる。 Examples of the urethane (meth) acrylate compound include an urethanization reaction product of an isocyanate having a plurality of isocyanate groups in one molecule and a (meth) acrylic acid derivative having a hydroxyl group. Examples of the organic isocyanate having a plurality of isocyanate groups in one molecule include two in one molecule such as hexamethylene diisocyanate, isophorone diisocyanate, tolylene diisocyanate, naphthalene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, dicyclohexylmethane diisocyanate. And organic isocyanates having three isocyanate groups in one molecule obtained by subjecting these organic isocyanates to isocyanurate modification, adduct modification or biuret modification. Examples of the (meth) acrylic acid derivative having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, Examples include 2-hydroxy-3-phenoxypropyl (meth) acrylate and pentaerythritol triacrylate.
 ポリエステル(メタ)アクリレート化合物として好ましいものは、水酸基含有ポリエステルと(メタ)アクリル酸とを反応させて得られるポリエステル(メタ)アクリレートである。好ましく用いられる水酸基含有ポリエステルは、多価アルコールとカルボン酸や複数のカルボキシル基を有する化合物および/またはその無水物のエステル化反応によって得られる水酸基含有ポリエステルである。多価アルコールとしては前述した化合物と同様のものが例示できる。また、多価アルコール以外にも、フェノール類としてビスフェノールA等が挙げられる。カルボン酸としては、例えば、ギ酸、酢酸、ブチルカルボン酸、安息香酸等が挙げられる。複数のカルボキシル基を有する化合物および/またはその無水物としては、例えば、マレイン酸、フタル酸、フマル酸、イタコン酸、アジピン酸、テレフタル酸、無水マレイン酸、無水フタル酸、トリメリット酸、シクロヘキサンジカルボン酸無水物等が挙げられる。 Preferred as the polyester (meth) acrylate compound is a polyester (meth) acrylate obtained by reacting a hydroxyl group-containing polyester with (meth) acrylic acid. The hydroxyl group-containing polyester preferably used is a hydroxyl group-containing polyester obtained by an esterification reaction of a polyhydric alcohol, a carboxylic acid, a compound having a plurality of carboxyl groups, and / or an anhydride thereof. Examples of the polyhydric alcohol include the same compounds as those described above. Moreover, bisphenol A etc. are mentioned as phenols other than a polyhydric alcohol. Examples of the carboxylic acid include formic acid, acetic acid, butyl carboxylic acid, benzoic acid and the like. Examples of the compound having a plurality of carboxyl groups and / or anhydride thereof include maleic acid, phthalic acid, fumaric acid, itaconic acid, adipic acid, terephthalic acid, maleic anhydride, phthalic anhydride, trimellitic acid, and cyclohexanedicarboxylic acid. An acid anhydride etc. are mentioned.
 以上のような多官能(メタ)アクリレート化合物の中でも、硬化物(被膜)の強度向上や入手の容易性の点から、ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等のエステル化合物;ヘキサメチレンジイソシアネートと2−ヒドロキシエチル(メタ)アクリレートの付加体;イソホロンジイソシアネートと2−ヒドロキシエチル(メタ)アクリレートの付加体;トリレンジイソシアネートと2−ヒドロキシエチル(メタ)アクリレートの付加体;アダクト変性イソホロンジイソシアネートと2−ヒドロキシエチル(メタ)アクリレートの付加体;およびビウレット変性イソホロンジイソシアネートと2−ヒドロキシエチル(メタ)アクリレートとの付加体が好ましい。
さらに、活性エネルギー線硬化型樹脂は、厚膜化したときに良好な可撓性(柔軟性を示す性質)を示すことから、ウレタン(メタ)アクリレート化合物を含むことが好ましい。これらの多官能(メタ)アクリレート化合物のそれぞれは単独で、または他の1種以上と併用することができる。
Among the polyfunctional (meth) acrylate compounds as described above, hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, and diethylene glycol diene from the viewpoint of improving the strength of the cured product (coating film) and availability. Ester compounds such as (meth) acrylate, tripropylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate; hexamethylene diisocyanate and 2- Adduct of hydroxyethyl (meth) acrylate; adduct of isophorone diisocyanate and 2-hydroxyethyl (meth) acrylate; tolylene diisocyanate and 2-hydroxyethyl (meth) acrylate Adduct adduct modified isophorone diisocyanate with 2-hydroxyethyl (meth) acrylate; adducts and adducts of biuret of isophorone diisocyanate and 2-hydroxyethyl (meth) acrylate.
Further, the active energy ray-curable resin preferably contains a urethane (meth) acrylate compound because it exhibits good flexibility (a property showing flexibility) when it is thickened. Each of these polyfunctional (meth) acrylate compounds can be used alone or in combination with one or more other compounds.
 活性エネルギー線硬化型樹脂は、上記の多官能(メタ)アクリレート化合物のほかに、単官能(メタ)アクリレート化合物を含有していてもよい。単官能(メタ)アクリレート化合物としては、たとえば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、グリシジル(メタ)アクリレート、アクリロイルモルフォリン、N−ビニルピロリドン、テトラヒドロフルフリール(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アセチル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、3−メトキシブチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシ(メタ)アクリレート、エチレンオキサイド変性フェノキシ(メタ)アクリレート、プロピレンオキサイド(メタ)アクリレート、ノニルフェノール(メタ)アクリレート、エチレンオキサイド変性(メタ)アクリレート、プロピレンオキサイド変性ノニルフェノール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、2−(メタ)アクリロイルオキシエチル−2−ヒドロキシプロピルフタレート、ジメチルアミノエチル(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート等の(メタ)アクリレート類等を挙げることができる。これらの化合物のそれぞれは単独で、または他の1種以上と併用することができる。 The active energy ray-curable resin may contain a monofunctional (meth) acrylate compound in addition to the polyfunctional (meth) acrylate compound. Examples of the monofunctional (meth) acrylate compound include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, and 2-hydroxyethyl (meth) ) Acrylate, 2-hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, glycidyl (meth) acrylate, acryloylmorpholine N-vinylpyrrolidone, tetrahydrofurfuryl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isobornyl (meth) acrylate, aceto (Meth) acrylate, benzyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 3-methoxybutyl (meth) acrylate, ethyl carbitol (meth) acrylate, phenoxy (meth) acrylate, ethylene oxide modified phenoxy (meta ) Acrylate, propylene oxide (meth) acrylate, nonylphenol (meth) acrylate, ethylene oxide modified (meth) acrylate, propylene oxide modified nonylphenol (meth) acrylate, methoxydiethylene glycol (meth) acrylate, 2- (meth) acryloyloxyethyl-2 -Hydroxypropyl phthalate, dimethylaminoethyl (meth) acrylate, methoxytriethylene glycol (meth) acrylate, etc. Meth) acrylate and the like. Each of these compounds can be used alone or in combination with one or more other compounds.
 活性エネルギー線硬化型樹脂は重合性オリゴマーを含有していてもよい。重合性オリゴマーを含有させることにより、微粒子含有層102の硬度を調整することができる。重合性オリゴマーは、たとえば、前記多官能(メタ)アクリレート化合物、すなわち、多価アルコールと(メタ)アクリル酸とのエステル化合物、ウレタン(メタ)アクリレート化合物、ポリエステル(メタ)アクリレート化合物またはエポキシ(メタ)アクリレート等の2量体、3量体などのようなオリゴマーであることができる。 The active energy ray curable resin may contain a polymerizable oligomer. By including the polymerizable oligomer, the hardness of the fine particle-containing layer 102 can be adjusted. The polymerizable oligomer is, for example, the polyfunctional (meth) acrylate compound, that is, an ester compound of a polyhydric alcohol and (meth) acrylic acid, a urethane (meth) acrylate compound, a polyester (meth) acrylate compound, or an epoxy (meth). It can be an oligomer such as a dimer, trimer or the like such as an acrylate.
 また、その他の重合性オリゴマーとして、例えば、分子中に少なくとも2個のイソシアネート基を有するポリイソシアネートと、少なくとも1個の(メタ)アクリロイルオキシ基を有する多価アルコールとの反応により得られるウレタン(メタ)アクリレートオリゴマーを挙げることができる。ポリイソシアネートとしては、例えば、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、キシレリンジイソシアネートの重合物等が挙げられ、少なくとも1個の(メタ)アクリロイルオキシ基を有する多価アルコールとしては、多価アルコールと(メタ)アクリル酸のエステル化反応によって得られる水酸基含有(メタ)アクリル酸エステルであって、多価アルコールが、たとえば、1,3−ブタンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、ネオペンチルグリコール、ポリエチレングリコール、ポリプロピレングリコール、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ジペンタエリスリトール等であるものが挙げられる。この少なくとも1個の(メタ)アクリロイルオキシ基を有する多価アルコールは、多価アルコールのアルコール性水酸基の一部が(メタ)アクリル酸とエステル化反応しているとともに、アルコール性水酸基が分子中に残存するものである。 Further, as other polymerizable oligomer, for example, urethane (meta) obtained by reaction of polyisocyanate having at least two isocyanate groups in the molecule and polyhydric alcohol having at least one (meth) acryloyloxy group. ) Acrylate oligomers. Examples of the polyisocyanate include hexamethylene diisocyanate, isophorone diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, a polymer of xylylene diisocyanate, and the like. As the polyhydric alcohol having at least one (meth) acryloyloxy group, Hydroxyl group-containing (meth) acrylic acid ester obtained by esterification reaction of polyhydric alcohol and (meth) acrylic acid, wherein the polyhydric alcohol is, for example, 1,3-butanediol, 1,4-butanediol, 1 , 6-hexanediol, diethylene glycol, triethylene glycol, neopentyl glycol, polyethylene glycol, polypropylene glycol, trimethylolpropane, glycerin, pentaerythritol Le, those dipentaerythritol and the like. In this polyhydric alcohol having at least one (meth) acryloyloxy group, a part of the alcoholic hydroxyl group of the polyhydric alcohol is esterified with (meth) acrylic acid, and the alcoholic hydroxyl group is present in the molecule. It remains.
 さらに、その他の重合性オリゴマーの例として、複数のカルボキシル基を有する化合物および/またはその無水物と、少なくとも1個の(メタ)アクリロイルオキシ基を有する多価アルコールとの反応により得られるポリエステル(メタ)アクリレートオリゴマーを挙げることができる。複数のカルボキシル基を有する化合物および/またはその無水物としては、前記多官能(メタ)アクリレート化合物のポリエステル(メタ)アクリレートで記載したものと同様のものが例示できる。また、少なくとも1個の(メタ)アクリロイルオキシ基を有する多価アルコールとしては、上記ウレタン(メタ)アクリレートオリゴマーで記載したものと同様のものが例示できる。 Furthermore, as another example of the polymerizable oligomer, a polyester (meta) obtained by reacting a compound having a plurality of carboxyl groups and / or an anhydride thereof with a polyhydric alcohol having at least one (meth) acryloyloxy group. ) Acrylate oligomers. Examples of the compound having a plurality of carboxyl groups and / or anhydrides thereof are the same as those described for the polyester (meth) acrylate of the polyfunctional (meth) acrylate compound. Examples of the polyhydric alcohol having at least one (meth) acryloyloxy group include those described for the urethane (meth) acrylate oligomer.
 以上のような重合性オリゴマーに加えて、さらにウレタン(メタ)アクリレートオリゴマーの例として、水酸基含有ポリエステル、水酸基含有ポリエーテルまたは水酸基含有(メタ)アクリル酸エステルの水酸基にイソシアネート類を反応させて得られる化合物等が挙げられる。好ましく用いられる水酸基含有ポリエステルは、多価アルコールとカルボン酸や複数のカルボキシル基を有する化合物および/またはその無水物のエステル化反応によって得られる水酸基含有ポリエステルである。多価アルコールや、複数のカルボキシル基を有する化合物および/またはその無水物としては、それぞれ、多官能(メタ)アクリレート化合物のポリエステル(メタ)アクリレート化合物で記載したものと同様のものが例示できる。好ましく用いられる水酸基含有ポリエーテルは、多価アルコールに1種または2種以上のアルキレンオキサイドおよび/またはε−カプロラクトンを付加することによって得られる水酸基含有ポリエーテルである。多価アルコールは、前記水酸基含有ポリエステルに使用できるものと同じものであってよい。好ましく用いられる水酸基含有(メタ)アクリル酸エステルとしては、重合性オリゴマーのウレタン(メタ)アクリレートオリゴマーで記載したものと同様のものが例示できる。イソシアネート類としては、分子中に1個以上のイソシアネート基を持つ化合物が好ましく、トリレンジイソシアネートや、ヘキサメチレンジイソシアネート、イソホロンジイソシアネートなどの2価のイソシアネート化合物が特に好ましい。 In addition to the polymerizable oligomers as described above, examples of urethane (meth) acrylate oligomers are obtained by reacting isocyanates with hydroxyl groups of a hydroxyl group-containing polyester, a hydroxyl group-containing polyether or a hydroxyl group-containing (meth) acrylic acid ester. Compounds and the like. The hydroxyl group-containing polyester preferably used is a hydroxyl group-containing polyester obtained by an esterification reaction of a polyhydric alcohol, a carboxylic acid, a compound having a plurality of carboxyl groups, and / or an anhydride thereof. Examples of the polyhydric alcohol, the compound having a plurality of carboxyl groups, and / or the anhydride thereof are the same as those described for the polyester (meth) acrylate compound of the polyfunctional (meth) acrylate compound. The hydroxyl group-containing polyether preferably used is a hydroxyl group-containing polyether obtained by adding one or more alkylene oxides and / or ε-caprolactone to a polyhydric alcohol. The polyhydric alcohol may be the same as that which can be used for the hydroxyl group-containing polyester. Examples of the hydroxyl group-containing (meth) acrylic acid ester preferably used include the same as those described for the polymerizable oligomeric urethane (meth) acrylate oligomer. As the isocyanates, compounds having one or more isocyanate groups in the molecule are preferable, and divalent isocyanate compounds such as tolylene diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate are particularly preferable.
 これらの重合性オリゴマー化合物それぞれは単独で、または他の1種以上と併用することができる。 Each of these polymerizable oligomer compounds can be used alone or in combination with one or more other compounds.
 熱硬化型樹脂としては、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化型ウレタン樹脂のほか、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等が挙げられる。 Examples of the thermosetting resin include a phenol resin, a urea melamine resin, an epoxy resin, an unsaturated polyester resin, and a silicone resin, in addition to a thermosetting urethane resin composed of an acrylic polyol and an isocyanate prepolymer.
 熱可塑性樹脂としては、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース、メチルセルロース等のセルロース誘導体;酢酸ビニルおよびその共重合体、塩化ビニルおよびその共重合体、塩化ビニリデンおよびその共重合体等のビニル系樹脂;ポリビニルホルマール、ポリビニルブチラール等のアセタール系樹脂;アクリル樹脂およびその共重合体、メタクリル樹脂およびその共重合体等のアクリル系樹脂;ポリスチレン系樹脂;ポリアミド系樹脂;ポリエステル系樹脂;ポリカーボネート系樹脂等が挙げられる。 Examples of thermoplastic resins include cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose, and methylcellulose; vinyl acetate and copolymers thereof, vinyl chloride and copolymers thereof, vinylidene chloride and copolymers thereof, and the like. Acetal resins such as polyvinyl formal and polyvinyl butyral; Acrylic resins and copolymers thereof, Acrylic resins such as methacrylic resins and copolymers; Polystyrene resins; Polyamide resins; Polyester resins; Polycarbonate resins Etc.
 金属アルコキシドとしては、珪素アルコキシド系の材料を原料とする酸化珪素系マトリックス等を使用することができる。具体的には、テトラメトキシシラン、テトラエトキシシラン等であり、加水分解や脱水縮合により無機系または有機無機複合系マトリックス(透光性樹脂)とすることができる。 As the metal alkoxide, a silicon oxide matrix made of a silicon alkoxide material can be used. Specifically, it is tetramethoxysilane, tetraethoxysilane, or the like, and can be made into an inorganic or organic-inorganic composite matrix (translucent resin) by hydrolysis or dehydration condensation.
 (2)微粒子
 微粒子104としては、透光性を有する限り特に限定されるものではなく従来公知のものが使用できる。たとえば、アクリル系樹脂、メラミン樹脂、ポリエチレン、ポリスチレン、有機シリコーン樹脂、アクリル−スチレン共重合体等からなる有機微粒子や、炭酸カルシウム、シリカ、酸化アルミニウム、炭酸バリウム、硫酸バリウム、酸化チタン、ガラス等からなる無機微粒子などを挙げることができる。また、有機重合体のバルーンやガラス中空ビーズを使用することもできる。これらの微粒子の1種類を単独で使用してもよく、2種類以上を混合して使用してもよい。微粒子104の形状は、球状、扁平状、板状、針状、不定形状等のいずれであってもよいが、球状または略球状が好ましい。
(2) Fine particles The fine particles 104 are not particularly limited as long as they have translucency, and conventionally known particles can be used. For example, organic fine particles made of acrylic resin, melamine resin, polyethylene, polystyrene, organic silicone resin, acrylic-styrene copolymer, calcium carbonate, silica, aluminum oxide, barium carbonate, barium sulfate, titanium oxide, glass, etc. And inorganic fine particles. Organic polymer balloons and glass hollow beads can also be used. One kind of these fine particles may be used alone, or two or more kinds may be mixed and used. The shape of the fine particles 104 may be any of a spherical shape, a flat shape, a plate shape, a needle shape, an indefinite shape, and the like, but a spherical shape or a substantially spherical shape is preferable.
 微粒子104の重量平均粒径rは、好ましくは1μm以上15μm以下であり、より好ましくは4μm以上10μm以下である。重量平均粒径rが1μm未満であると、効果的に内部ヘイズを発現させることができず、防眩フィルムとしてのギラツキ低減効果が不十分になるか、あるいは、光拡散フィルム等としての光拡散性が不十分となる傾向にある。
一方、重量平均粒径rが15μmを超えると、これに伴い微粒子含有層102の平均厚みhも大きく設定される傾向にあるため(この点については後で詳述)、光学フィルムの厚膜化を招きやすい。また、防眩性や光拡散性が過度に高くなることがある。過度の光拡散性は、たとえば、液晶表示装置の視認側表面に光学フィルムを配置した場合、黒表示において、液晶パネルの正面方向に対して斜めに漏れ出してくる光が正面方向へ強く散乱されてしまう等の理由によりコントラストの低下招くおそれがある。なお、微粒子104の重量平均粒径rは、コールターカウンター法により測定される。
The weight average particle diameter r of the fine particles 104 is preferably 1 μm or more and 15 μm or less, more preferably 4 μm or more and 10 μm or less. When the weight average particle size r is less than 1 μm, internal haze cannot be effectively expressed, and the glare reduction effect as an antiglare film becomes insufficient, or light diffusion as a light diffusion film or the like. Tend to be insufficient.
On the other hand, when the weight average particle diameter r exceeds 15 μm, the average thickness h of the fine particle-containing layer 102 tends to be increased accordingly (this will be described in detail later). It is easy to invite. Further, the antiglare property and the light diffusibility may become excessively high. For example, when an optical film is disposed on the viewing-side surface of the liquid crystal display device, excessive light diffusibility is such that light that leaks obliquely with respect to the front direction of the liquid crystal panel is strongly scattered in the front direction in black display. There is a risk of lowering the contrast due to reasons such as. The weight average particle diameter r of the fine particles 104 is measured by a Coulter counter method.
 微粒子含有層102を形成するための樹脂液に含有される(微粒子含有層102に含有されることとなる)微粒子104は、典型的には、上述した凸状欠陥を生じさせ得る微粒子含有層の平均厚みhより大きい粒子径を有する微粒子を含有するものであるが、その含有割合は、粒子数割合で、樹脂液に含有される微粒子104全体に対して2%以下であることができ、好ましくは0.5%以下、より好ましくは0.2%以下である。本発明によれば、粗大粒子の割合が微粒子全体に対して少なくとも2%以下であれば、凸状欠陥の発生を十分に抑制することができ、良好な表面均質性を有する微粒子含有層を備えた光学フィルムを得ることができる。また、粗大粒子含有量の許容範囲が比較的広いので、上記JP2010−159421−Aに記載されるような分級操作を不要とすることができるか、または簡略化できる。微粒子104全体に占める粗大粒子数の割合は、たとえば1.0×10−9%以上であることができる。ここで、本発明でいう「粗大粒子」とは、微粒子含有層102の平均厚みhよりも大きい粒子径を有する微粒子を指す。したがって、粗大粒子は、これを含む樹脂液を用いて微粒子含有層を形成したときに、微粒子含有層表面から突出し凸状欠陥を発生させ得る微粒子である。微粒子104全体に占める粗大粒子数の割合は、コールターカウンター法により50000個の粒子について粒子径を測定し、このうち微粒子含有層の平均厚みhよりも大きい粒子径を有する粒子(粗大粒子)の数をカウントし、これを50000で除することにより求められる。 The fine particles 104 contained in the resin liquid for forming the fine particle-containing layer 102 (which will be contained in the fine particle-containing layer 102) typically have a fine particle-containing layer that can cause the above-described convex defects. The fine particles having a particle diameter larger than the average thickness h are contained, and the content ratio is a ratio of the number of particles and can be 2% or less with respect to the whole fine particles 104 contained in the resin liquid. Is 0.5% or less, more preferably 0.2% or less. According to the present invention, when the proportion of coarse particles is at least 2% or less with respect to the whole fine particles, the occurrence of convex defects can be sufficiently suppressed, and the fine particle-containing layer having good surface homogeneity is provided. Optical film can be obtained. Moreover, since the allowable range of the coarse particle content is relatively wide, the classification operation described in JP2010-159421-A can be made unnecessary or simplified. The ratio of the number of coarse particles in the entire fine particles 104 can be, for example, 1.0 × 10 −9 % or more. Here, “coarse particles” in the present invention refers to fine particles having a particle diameter larger than the average thickness h of the fine particle-containing layer 102. Therefore, coarse particles are fine particles that can protrude from the surface of the fine particle-containing layer and generate convex defects when the fine particle-containing layer is formed using a resin liquid containing the coarse particle. The ratio of the number of coarse particles to the whole fine particles 104 is the number of particles (coarse particles) having a particle size larger than the average thickness h of the fine particle-containing layer, in which the particle size is measured for 50,000 particles by the Coulter counter method. Is calculated and divided by 50000.
 なお、凸状欠陥の存在は、目視による透過または反射観察によって確認することができる。光学顕微鏡や電子顕微鏡などを用いて表面や断面を観察することにより確認してもよい。凸状欠陥のサイズは粗大粒子の粒子径に依存し、通常、粗大粒子の粒子径と略同じか、これより大きいサイズとなる。 The presence of convex defects can be confirmed by visual transmission or reflection observation. You may confirm by observing the surface or a cross section using an optical microscope, an electron microscope, etc. The size of the convex defect depends on the particle diameter of the coarse particles, and is usually approximately the same as or larger than the particle diameter of the coarse particles.
 微粒子104と透光性樹脂103との間の屈折率差は、は0.04~0.15の範囲が好ましい。屈折率差を上記範囲内とすることによって、当該屈折率差による適度な内部散乱が生じ、十分なギラツキ低減効果または適度な光拡散性を得ることができる。 The refractive index difference between the fine particles 104 and the translucent resin 103 is preferably in the range of 0.04 to 0.15. By setting the refractive index difference within the above range, moderate internal scattering due to the refractive index difference occurs, and a sufficient glare reduction effect or appropriate light diffusibility can be obtained.
 微粒子含有層102における微粒子104の含有量(後述する樹脂液における微粒子104の含有量と実質的に同じである)は、透光性樹脂103の100重量部に対して3重量部以上60重量部以下であることが好ましく、5重量部以上50重量部以下であることがより好ましい。微粒子104の含有量が透光性樹脂100重量部に対して3重量部未満であると、防眩性が不十分になるとともに、ギラツキ低減のための十分な内部ヘイズが得られず、あるいは光拡散性が不十分となる傾向にある。また、微粒子104の含有量が透光性樹脂100重量部に対して60重量部を超えると、防眩性や光拡散性が過度に高くなり、コントラストが低下する傾向にある。 The content of the fine particles 104 in the fine particle-containing layer 102 (substantially the same as the content of the fine particles 104 in the resin liquid described later) is 3 parts by weight or more and 60 parts by weight with respect to 100 parts by weight of the translucent resin 103. Preferably, the amount is 5 parts by weight or more and 50 parts by weight or less. When the content of the fine particles 104 is less than 3 parts by weight with respect to 100 parts by weight of the translucent resin, the antiglare property becomes insufficient and sufficient internal haze for reducing glare cannot be obtained, or light The diffusibility tends to be insufficient. On the other hand, when the content of the fine particles 104 exceeds 60 parts by weight with respect to 100 parts by weight of the translucent resin, the antiglare property and the light diffusibility become excessively high and the contrast tends to be lowered.
 (3)微粒子含有層の平均厚み
 微粒子含有層102の平均厚みhは、好ましくは3μm以上20μm以下とされ、より好ましくは5μm以上15μm以下とされる。本発明によれば、平均厚みhが3μm程度と小さい場合であっても、凸状欠陥の発生を良好に抑制することができる。平均厚みhが極端に小さいと、全微粒子に占める粗大粒子の割合が大きくなり過ぎて、凸状欠陥の発生を十分に抑制できないことがあり、また、光学フィルムの機械強度の面で不利である。一方、微粒子含有層102の平均厚みhを、20μmを超える程度まで極端に大きくすることは、既述したように、かかる手段によって仮に凸状欠陥の発生を抑えることができたとしても製造コストの増大をもたらし、また、光学フィルムの薄膜化の要求に沿わないものとなる。さらに、平均厚みhが20μmを超える場合には、作製した光学フィルムに発生するカールの量が大きくなり、他のフィルムや基板への貼合等における取り扱い性が悪くなることがある。微粒子含有層102の「平均厚みh」とは、光学フィルムの有効範囲幅方向に沿って任意に選択された2点以上の微粒子含有層の厚みの平均値である。各厚みの値は接触式膜厚計を用いて測定される。
(3) Average thickness h of the fine particle-containing layer The average thickness h of the fine particle-containing layer 102 is preferably 3 μm or more and 20 μm or less, and more preferably 5 μm or more and 15 μm or less. According to the present invention, even when the average thickness h is as small as about 3 μm, the occurrence of convex defects can be satisfactorily suppressed. If the average thickness h is extremely small, the proportion of coarse particles in all fine particles becomes too large, and the occurrence of convex defects may not be sufficiently suppressed, and it is disadvantageous in terms of the mechanical strength of the optical film. . On the other hand, extremely increasing the average thickness h of the fine particle-containing layer 102 to an extent exceeding 20 μm, as described above, can reduce the production cost even if the occurrence of convex defects can be suppressed by such means. This results in an increase and does not meet the demand for thinning the optical film. Furthermore, when the average thickness h exceeds 20 μm, the amount of curl generated in the produced optical film becomes large, and the handleability in bonding to other films or substrates may be deteriorated. The “average thickness h” of the fine particle-containing layer 102 is an average value of the thicknesses of two or more fine particle-containing layers arbitrarily selected along the effective range width direction of the optical film. The value of each thickness is measured using a contact-type film thickness meter.
 微粒子104の重量平均粒径rの微粒子含有層102の平均厚みhに対する比r/hは、好ましくは0.3以上であり、より好ましくは0.5以上である。当該比r/hが0.3を下回ることは、平均厚みhを大きくすること、または、重量平均粒径rを小さくすることを意味しており、前者の場合、上述の理由から好ましくない。また、後者の場合、防眩フィルムとしてのギラツキ低減効果が不十分になるか、あるいは、光拡散フィルム等としての光拡散性が不十分となる傾向にある。 The ratio r / h of the weight average particle diameter r of the fine particles 104 to the average thickness h of the fine particle-containing layer 102 is preferably 0.3 or more, more preferably 0.5 or more. When the ratio r / h is less than 0.3, it means that the average thickness h is increased or the weight average particle diameter r is decreased. In the former case, it is not preferable for the reason described above. In the latter case, the effect of reducing glare as an antiglare film is insufficient, or the light diffusibility as a light diffusion film or the like tends to be insufficient.
 一方、上記比r/hは、好ましくは0.9以下であり、より好ましくは0.85以下である。当該比r/hが0.9を超えることは、平均厚みhを大きくすること、または、重量平均粒径rを大きくすることを意味しており、前者の場合、上述の理由から好ましくない。また、後者の場合、防眩性や光拡散性が過度に高くなることがある。このように本発明においては、比r/hは0.3~0.9の範囲内が好適であり、すなわち、本発明は微粒子104の重量平均粒径rと微粒子含有層102の平均厚みhとが比較的近い場合に好適である。そして、本発明は、このような凸状欠陥が多発しやすい条件下においても凸状欠陥を十分に抑制できるという点において格別の効果を示す。 On the other hand, the ratio r / h is preferably 0.9 or less, and more preferably 0.85 or less. When the ratio r / h exceeds 0.9, it means that the average thickness h is increased or the weight average particle diameter r is increased. In the former case, it is not preferable for the reason described above. In the latter case, the antiglare property and the light diffusibility may become excessively high. As described above, in the present invention, the ratio r / h is preferably in the range of 0.3 to 0.9. That is, the present invention relates to the weight average particle diameter r of the fine particles 104 and the average thickness h of the fine particle-containing layer 102. It is suitable when is relatively close. And this invention shows the special effect in the point that a convex defect can fully be suppressed also on the conditions where such a convex defect tends to occur frequently.
 微粒子含有層102に含有される微粒子104の最大粒径R(微粒子含有層102に含有される粗大粒子の最大粒径ともいえる)は特に限定されるものではないが、微粒子含有層102の平均厚みhとの関係でいえば、最大粒径Rと平均厚みhとの比R/hは2以下とすることが好ましく、1.8以下とすることがより好ましい。当該比が極端に大きいと、粗大粒子の突出部分の平坦化が不十分となり、良好な表面平滑性が得られないことがあり得る。微粒子含有層102に含有される微粒子104の最大粒径Rとは、鋳型の表面を押し当てることなく微粒子含有層を形成すること以外は同一の方法で作製した光学フィルムについて微粒子含有層表面の顕微鏡観察を行ない、任意の100個の欠陥(微粒子含有層表面からの粗大粒子の突出部分)を選択し、これら100個の欠陥を形成している微粒子の粒子径のうちの最大の粒子径をいう。 The maximum particle size R of the fine particles 104 contained in the fine particle-containing layer 102 (which can be said to be the maximum particle size of coarse particles contained in the fine particle-containing layer 102) is not particularly limited, but the average thickness of the fine particle-containing layer 102 is not limited. In relation to h, the ratio R / h between the maximum particle size R and the average thickness h is preferably 2 or less, and more preferably 1.8 or less. If the ratio is extremely large, the protrusion of coarse particles may not be sufficiently flattened, and good surface smoothness may not be obtained. The maximum particle size R of the fine particles 104 contained in the fine particle-containing layer 102 is a microscope of the surface of the fine particle-containing layer of the optical film produced by the same method except that the fine particle-containing layer is formed without pressing the surface of the mold. Observation is performed, and arbitrary 100 defects (protrusions of coarse particles from the surface of the fine particle-containing layer) are selected, and the largest particle size among the particle sizes of the fine particles forming these 100 defects is meant. .
 〔微粒子含有層の表面形状〕
 微粒子含有層102の表面形状は、たとえば平坦面からなることができる。このような平坦面は、鋳型として鏡面からなる表面を有する鋳型を用い、微粒子含有層102の表面に該鏡面を転写した転写構造として形成することができる。該転写は、微粒子含有層102を形成する塗工層の表面に鋳型の表面を押し当てることによりなされるので、粗大粒子の塗工層から突出した部分は押し潰されて、その結果、凸状欠陥が効果的に抑制または防止される。上述のように、このような平坦面を有する光学フィルムは、光拡散フィルムなどとして機能し得る。
[Surface shape of fine particle-containing layer]
The surface shape of the fine particle-containing layer 102 can be a flat surface, for example. Such a flat surface can be formed as a transfer structure in which a template having a mirror surface is used as a template and the mirror surface is transferred to the surface of the fine particle-containing layer 102. Since the transfer is performed by pressing the surface of the mold against the surface of the coating layer forming the fine particle-containing layer 102, the portion protruding from the coating layer of coarse particles is crushed, resulting in a convex shape. Defects are effectively suppressed or prevented. As described above, the optical film having such a flat surface can function as a light diffusion film or the like.
 微粒子含有層102は表面凹凸を有していてもよい。このような表面凹凸は、鋳型として凹凸表面を有する鋳型を用い、微粒子含有層102の表面に該凹凸表面を転写した転写構造として形成することができる。該転写は、微粒子含有層102を形成する塗工層の表面に鋳型の表面を押し当てることによりなされるので、粗大粒子の塗工層から突出した部分は押し潰されて、その結果、凸状欠陥が効果的に抑制または防止される。上述のように、このような表面凹凸を有する光学フィルムは、防眩フィルムや光拡散フィルムなどとして機能し得る。 The fine particle-containing layer 102 may have surface irregularities. Such surface irregularities can be formed as a transfer structure in which a mold having an irregular surface is used as a mold and the irregular surface is transferred to the surface of the fine particle-containing layer 102. Since the transfer is performed by pressing the surface of the mold against the surface of the coating layer forming the fine particle-containing layer 102, the portion protruding from the coating layer of coarse particles is crushed, resulting in a convex shape. Defects are effectively suppressed or prevented. As described above, an optical film having such surface irregularities can function as an antiglare film or a light diffusion film.
 〔光学フィルムのヘイズ〕
 本発明の光学フィルムは、全ヘイズが10%以上70%以下であることが好ましく、内部ヘイズもまた10%以上70%以下であることが好ましい。また、微粒子含有層102の表面形状に起因する表面ヘイズは6%以下であることが好ましい。ここで、「全ヘイズ」とは、光学フィルムに光を照射して透過した光線の全量を表す全光線透過率(Tt)と、光学フィルムにより拡散されて透過した拡散光線透過率(Td)との比から下記式(1):
 全ヘイズ(%)=(Td/Tt)×100    (1)
により求められる。
[Haze of optical film]
In the optical film of the present invention, the total haze is preferably 10% or more and 70% or less, and the internal haze is also preferably 10% or more and 70% or less. The surface haze resulting from the surface shape of the fine particle-containing layer 102 is preferably 6% or less. Here, “total haze” refers to the total light transmittance (Tt) representing the total amount of light transmitted through irradiation of the optical film, and the diffused light transmittance (Td) diffused and transmitted by the optical film. From the ratio of the following formula (1):
Total haze (%) = (Td / Tt) × 100 (1)
Is required.
 全光線透過率(Tt)は、入射光と同軸のまま透過した平行光線透過率(Tp)と拡散光線透過率(Td)の和である。全光線透過率(Tt)および拡散光線透過率(Td)は、JIS K 7361に準拠して測定される値である。 The total light transmittance (Tt) is the sum of the parallel light transmittance (Tp) and the diffuse light transmittance (Td) that are transmitted coaxially with the incident light. The total light transmittance (Tt) and the diffused light transmittance (Td) are values measured in accordance with JIS K 7361.
 また、光学フィルムの「内部ヘイズ」とは、全ヘイズのうち、微粒子含有層102の表面形状に起因するヘイズ(表面ヘイズ)以外のヘイズである。 The “internal haze” of the optical film is a haze other than the haze (surface haze) caused by the surface shape of the fine particle-containing layer 102 among all the hazes.
 全ヘイズおよび/または内部ヘイズが10%未満の場合、防眩性およびギラツキ低減効果、あるいは光拡散性が不十分になる傾向にある。一方、全ヘイズおよび/または内部ヘイズが70%を超える場合は、防眩性や光拡散性が過度に高くなり、コントラストが低下する傾向にある。また、光学フィルムの透明性が損なわれる傾向にある。全ヘイズおよび内部ヘイズはそれぞれ、20%以上65%以下であることが好ましい。微粒子含有層102の表面形状に起因する表面ヘイズが6%を超える場合には、微粒子含有層の表面乱反射により画面全体が白っぽく感じられる白ちゃけが発生しやすくなる。白ちゃけをより効果的に防止するためには、表面ヘイズは3%以下であることが好ましい。 When the total haze and / or internal haze is less than 10%, the antiglare property and the glare reduction effect or the light diffusibility tend to be insufficient. On the other hand, when the total haze and / or internal haze exceeds 70%, the antiglare property and the light diffusibility become excessively high, and the contrast tends to decrease. Further, the transparency of the optical film tends to be impaired. The total haze and internal haze are each preferably 20% or more and 65% or less. When the surface haze resulting from the surface shape of the fine particle-containing layer 102 exceeds 6%, it becomes easy to generate whitish that the entire screen feels whitish due to the irregular reflection of the surface of the fine particle-containing layer. In order to prevent whitening more effectively, the surface haze is preferably 3% or less.
 光学フィルムの全ヘイズ、内部ヘイズおよび表面ヘイズは、具体的には次のようにして測定される。すなわち、まず、フィルムの反りを防止するため、光学的に透明な粘着剤を用いて光学フィルムを、微粒子含有層102が表面となるように、基材フィルム101側をガラス基板に貼合して測定用サンプルを作製し、当該測定用サンプルについて全ヘイズ値を測定する。全ヘイズ値は、JIS K 7136に準拠したヘイズ透過率計(たとえば、株式会社村上色彩技術研究所製のヘイズメーター「HM−150」)を用いて、全光線透過率(Tt)および拡散光線透過率(Td)を測定し、上記式(1)によって算出される。 The total haze, internal haze, and surface haze of the optical film are specifically measured as follows. That is, first, in order to prevent warping of the film, the optical film is bonded to a glass substrate with an optically transparent adhesive so that the fine particle-containing layer 102 becomes the surface. A measurement sample is prepared, and the total haze value of the measurement sample is measured. For the total haze value, the total light transmittance (Tt) and diffuse light transmittance are measured using a haze transmittance meter (for example, a haze meter “HM-150” manufactured by Murakami Color Research Laboratory Co., Ltd.) in accordance with JIS K 7136. The rate (Td) is measured and calculated by the above formula (1).
 ついで、微粒子含有層102の表面に、ヘイズがほぼ0%であるトリアセチルセルロースフィルムを、グリセリンを用いて貼合し、上述の全ヘイズの測定と同様にしてヘイズを測定する。当該ヘイズは、微粒子含有層102の表面形状に起因する表面ヘイズが貼合されたトリアセチルセルロースフィルムによってほぼ打ち消されていることから、光学フィルムの「内部ヘイズ」とみなすことができる。したがって、光学フィルムの「表面ヘイズ」は、下記式(2):
 表面ヘイズ(%)=全ヘイズ(%)−内部ヘイズ(%)        (2)
より求められる。
Next, a triacetyl cellulose film having a haze of approximately 0% is bonded to the surface of the fine particle-containing layer 102 using glycerin, and the haze is measured in the same manner as the above-described measurement of all haze. The haze is almost countered by the triacetyl cellulose film to which the surface haze due to the surface shape of the fine particle-containing layer 102 is bonded, and thus can be regarded as “internal haze” of the optical film. Therefore, the “surface haze” of the optical film is expressed by the following formula (2):
Surface haze (%) = Total haze (%)-Internal haze (%) (2)
More demanded.
 〔光学フィルムの製造方法〕
 次に、本発明の光学フィルムを製造するための方法について説明する。本発明の光学フィルムは、次の工程(A)~(C)を含む方法によって好適に(効率的にかつ低コストで)製造することができる。
(A)基材フィルム101上に、微粒子104を含有する樹脂液を塗工して塗工層を形成する工程、
(B)塗工層の表面に、鋳型の表面を押し当てる工程、および
(C)塗工層の表面に鋳型の上記表面を押し当てた状態で、塗工層を基材フィルム101上に固着させることにより、微粒子含有層102を形成する工程。
[Method for producing optical film]
Next, a method for producing the optical film of the present invention will be described. The optical film of the present invention can be suitably produced (effectively and at low cost) by a method including the following steps (A) to (C).
(A) A step of applying a resin liquid containing the fine particles 104 to form a coating layer on the base film 101,
(B) A step of pressing the surface of the mold against the surface of the coating layer, and (C) fixing the coating layer onto the base film 101 in a state where the surface of the mold is pressed against the surface of the coating layer. A step of forming the fine particle-containing layer 102.
 上記工程(A)で用いる樹脂液は、微粒子104、透光性樹脂103またはこれを形成する樹脂(たとえば、活性エネルギー線硬化型樹脂、熱硬化型樹脂または金属アルコキシド)を含み、および必要に応じて有機溶剤等の溶剤、レベリング剤、分散剤、帯電防止剤、防汚剤等のその他の成分を含んでいてもよい。また、透光性樹脂103を形成する樹脂として紫外線硬化型樹脂を用いる場合、上記樹脂液は、光重合開始剤(ラジカル重合開始剤)を含む。 The resin liquid used in the step (A) includes the fine particles 104, the translucent resin 103 or a resin forming the same (for example, an active energy ray curable resin, a thermosetting resin, or a metal alkoxide), and if necessary. Other components such as a solvent such as an organic solvent, a leveling agent, a dispersant, an antistatic agent, and an antifouling agent may be contained. Moreover, when using an ultraviolet curable resin as resin which forms the translucent resin 103, the said resin liquid contains a photoinitiator (radical polymerization initiator).
 光重合開始剤としては、たとえば、アセトフェノン系光重合開始剤、ベンゾイン系光重合開始剤、ベンゾフェノン系光重合開始剤、チオキサントン系光重合開始剤、トリアジン系光重合開始剤、オキサジアゾール系光重合開始剤などが用いられる。また、光重合開始剤として、たとえば、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド、2,2’−ビス(o−クロロフェニル)−4,4’,5,5’−テトラフェニル−1,2’−ビイミダゾール、10−ブチル−2−クロロアクリドン、2−エチルアントラキノン、ベンジル、9,10−フェナンスレンキノン、カンファーキノン、フェニルグリオキシル酸メチル、チタノセン化合物等も用いることができる。光重合開始剤の使用量は、通常、樹脂液に含有される樹脂100重量部に対して0.5~20重量部であり、好ましくは、1~5重量部である。 Examples of the photopolymerization initiator include acetophenone photopolymerization initiator, benzoin photopolymerization initiator, benzophenone photopolymerization initiator, thioxanthone photopolymerization initiator, triazine photopolymerization initiator, and oxadiazole photopolymerization initiator. An initiator or the like is used. Examples of the photopolymerization initiator include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2,2′-bis (o-chlorophenyl) -4,4 ′, 5,5′-tetraphenyl-1,2 '-Biimidazole, 10-butyl-2-chloroacridone, 2-ethylanthraquinone, benzyl, 9,10-phenanthrenequinone, camphorquinone, methyl phenylglyoxylate, titanocene compound and the like can also be used. The amount of the photopolymerization initiator used is usually 0.5 to 20 parts by weight, preferably 1 to 5 parts by weight with respect to 100 parts by weight of the resin contained in the resin liquid.
 有機溶剤としては、ヘキサン、シクロヘキサン、オクタンなどの脂肪族炭化水素;トルエン、キシレンなどの芳香族炭化水素;エタノール、1−プロパノール、イソプロパノール、1−ブタノール、シクロヘキサノールなどのアルコール類;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、酢酸イソブチルなどのエステル類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のグリコールエーテル類;エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等のエステル化グリコールエーテル類;2−メトキシエタノール、2−エトキシエタノール、2−ブトキシエタノール等のセルソルブ類;2−(2−メトキシエトキシ)エタノール、2−(2−エトキシエトキシ)エタノール、2−(2−ブトキシエトキシ)エタノール等のカルビトール類などから、粘度等を考慮して選択して用いることができる。これらの溶剤は、単独で用いてもよいし、必要に応じて数種類を混合して用いてもよい。塗工後は、上記有機溶剤を蒸発させる必要がある。そのため、沸点は60℃~160℃の範囲であることが望ましい。また、20℃における飽和蒸気圧は0.1kPa~20kPaの範囲であることが好ましい。 Examples of organic solvents include aliphatic hydrocarbons such as hexane, cyclohexane, and octane; aromatic hydrocarbons such as toluene and xylene; alcohols such as ethanol, 1-propanol, isopropanol, 1-butanol, and cyclohexanol; methyl ethyl ketone, methyl isobutyl Ketones such as ketone and cyclohexanone; esters such as ethyl acetate, butyl acetate and isobutyl acetate; glycols such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether Ethers; ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, etc. Esterified glycol ethers; Cellsolves such as 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol; 2- (2-methoxyethoxy) ethanol, 2- (2-ethoxyethoxy) ethanol, 2- (2- It can be selected from carbitols such as butoxyethoxy) ethanol in consideration of viscosity and the like. These solvents may be used alone or as a mixture of several kinds as required. After coating, it is necessary to evaporate the organic solvent. Therefore, the boiling point is desirably in the range of 60 ° C to 160 ° C. The saturated vapor pressure at 20 ° C. is preferably in the range of 0.1 kPa to 20 kPa.
 なお、光学フィルムの光学特性および表面形状を均質なものとするために、樹脂液中の微粒子104の分散は等方分散であることが好ましい。 In addition, in order to make the optical characteristics and surface shape of the optical film uniform, the dispersion of the fine particles 104 in the resin liquid is preferably isotropic dispersion.
 上記樹脂液の基材フィルム101上への塗工は、たとえば、グラビアコート法、マイクログラビアコート法、ロッドコート法、ナイフコート法、エアーナイフコート法、キスコート法、ダイコート法などによって行なうことができる。樹脂液の塗工にあたっては、上述のように、好ましくは、微粒子含有層102の平均厚みh、微粒子104の重量平均粒径rと平均厚みhとの比r/hおよび微粒子104の最大粒径Rと平均厚みhとの比R/hが上記好ましい範囲となるように塗工膜厚を調整して塗工層を形成する。 Application of the resin liquid onto the base film 101 can be performed by, for example, a gravure coating method, a micro gravure coating method, a rod coating method, a knife coating method, an air knife coating method, a kiss coating method, a die coating method, or the like. . In applying the resin liquid, as described above, preferably, the average thickness h of the fine particle-containing layer 102, the ratio r / h of the weight average particle size r to the average thickness h of the fine particles 104, and the maximum particle size of the fine particles 104 are as follows. The coating layer is formed by adjusting the coating thickness so that the ratio R / h of R to the average thickness h is within the above preferred range.
 樹脂液の塗工性の改良または微粒子含有層102との接着性の改良を目的として、基材フィルム101の表面(微粒子含有層側表面)には、各種表面処理を施してもよい。表面処理としては、コロナ放電処理、グロー放電処理、酸表面処理、アルカリ表面処理、紫外線照射処理などが挙げられる。また、基材フィルム101上に、たとえばプライマー層等の他の層を形成し、この他の層の上に、樹脂液を塗工するようにしてもよい。 Various surface treatments may be applied to the surface of the base film 101 (surface on the fine particle-containing layer side) for the purpose of improving the coating property of the resin liquid or improving the adhesion with the fine particle-containing layer 102. Examples of the surface treatment include corona discharge treatment, glow discharge treatment, acid surface treatment, alkali surface treatment, and ultraviolet irradiation treatment. Further, another layer such as a primer layer may be formed on the base film 101, and the resin liquid may be applied on the other layer.
 また、本発明の光学フィルムを、後述する偏光フィルムの保護フィルムとして使用する場合には、基材フィルム101と偏光フィルムとの接着性を向上させるために、基材フィルム101の表面(微粒子含有層とは反対側の表面)を各種表面処理によって親水化しておくことが好ましい。 Moreover, when using the optical film of this invention as a protective film of the polarizing film mentioned later, in order to improve the adhesiveness of the base film 101 and a polarizing film, the surface (fine particle content layer) of the base film 101 is improved. It is preferable to hydrophilize the surface on the opposite side of the surface by various surface treatments.
 ついで、上記工程(B)において、塗工層(樹脂液からなる層)の表面に、鋳型の表面を押し当てて、該表面の形状を塗工層表面に転写する。鋳型は、微粒子含有層102表面に所望の形状を付与するためのものであり、当該所望の形状の転写構造からなる表面形状を有している。該表面形状を塗工層表面に押し付けながら塗工層を基材フィルム101上に固着させることにより、鋳型の表面形状を転写できるとともに、粗大粒子の突出部が押し潰される。鋳型としては、鏡面からなる表面を有する鋳型(たとえば鏡面ロール)および凹凸表面を有する鋳型(たとえばエンボスロール)を挙げることができる。 Next, in the step (B), the surface of the mold is pressed against the surface of the coating layer (layer made of a resin liquid), and the shape of the surface is transferred to the surface of the coating layer. The mold is for imparting a desired shape to the surface of the fine particle-containing layer 102, and has a surface shape composed of a transfer structure of the desired shape. By fixing the coating layer onto the substrate film 101 while pressing the surface shape against the surface of the coating layer, the surface shape of the mold can be transferred and the protrusions of coarse particles are crushed. Examples of the mold include a mold having a mirror surface (for example, a mirror roll) and a mold having an uneven surface (for example, an emboss roll).
 鋳型が凹凸表面を有する場合において、凹凸形状のバターンは、規則的なパターンであってもよいし、ランダムパターン、あるいは特定サイズの1種類以上のランダムパターンを敷き詰めた、擬似ランダムパターンであってもよいが、表面形状に起因する反射光の干渉により、反射像が虹色に色づくことを防止する点から、ランダムパターンまたは擬似ランダムパターンであることが好ましい。 In the case where the mold has an uneven surface, the uneven pattern may be a regular pattern, a random pattern, or a pseudo random pattern in which one or more random patterns of a specific size are spread. Although it is good, it is preferably a random pattern or a pseudo-random pattern from the viewpoint of preventing the reflected image from becoming iridescent due to interference of reflected light caused by the surface shape.
 鋳型の外形形状は特に制限されるものではなく、平板状であってもよいし、円柱状または円筒状のロールであってもよいが、連続生産性の点から、鏡面ロールやエンボスロール等の、円柱状または円筒状の鋳型であることが好ましい。この場合、円柱状または円筒状の鋳型の側面に所定の表面形状が形成される。 The outer shape of the mold is not particularly limited, and may be a flat plate shape or a cylindrical or cylindrical roll. From the viewpoint of continuous productivity, a mirror surface roll, an emboss roll, etc. A columnar or cylindrical mold is preferred. In this case, a predetermined surface shape is formed on the side surface of the columnar or cylindrical mold.
 鋳型の基材の材質は特に制限されるものではなく、金属、ガラス、カーボン、樹脂、あるいはそれらの複合体から適宜選択できるが、加工性等の点から金属が好ましい。好適に用いられる金属材料としては、コストの観点からアルミニウム、鉄、またはアルミニウムもしくは鉄を主体とする合金などが挙げられる。 The material of the base material of the mold is not particularly limited, and can be appropriately selected from metal, glass, carbon, resin, or a composite thereof, but metal is preferable from the viewpoint of workability. Suitable metal materials include aluminum, iron, or an alloy mainly composed of aluminum or iron from the viewpoint of cost.
 鋳型を得る方法としては、たとえば、基材を研磨し、サンドブラスト加工を施した後、無電解ニッケルめっきを施す方法(JP2006−53371−A);基材に銅めっきまたはニッケルめっきを施した後、研磨し、サンドブラスト加工を施した後、クロムめっきを施す方法(JP2007−187952−A);銅めっきまたはニッケルめっきを施した後、研磨し、サンドブラスト加工を施した後、エッチング工程または銅めっき工程を施し、ついでクロムめっきを施す方法(JP2007−237541−A);基材の表面に銅めっきまたはニッケルめっきを施した後、研磨し、研磨された面に感光性樹脂膜を塗布形成し、該感光性樹脂膜上にパターンを露光した後、現像し、現像された感光性樹脂膜をマスクとして用いてエッチング処理を行ない、感光性樹脂膜を剥離し、さらにエッチング処理を行ない、凹凸面を鈍らせた後、形成された凹凸面にクロムめっきを施す方法;および旋盤等の工作機械を用いて、切削工具により鋳型となる基材を切削する方法(WO2007/077892−A)等が挙げられる。 As a method for obtaining a mold, for example, a method of polishing a substrate, sandblasting, and then applying electroless nickel plating (JP2006-53371-A); after applying copper plating or nickel plating to the substrate, Polishing, sand blasting, and chromium plating (JP2007-188952-A); copper plating or nickel plating, polishing, sand blasting, etching process or copper plating process And then applying chromium plating (JP 2007-237541-A); applying copper plating or nickel plating to the surface of the substrate, polishing, applying a photosensitive resin film on the polished surface, The pattern is exposed on the photosensitive resin film, then developed, and etched using the developed photosensitive resin film as a mask. A method of performing treatment, peeling the photosensitive resin film, further etching, dulling the uneven surface, and then plating the formed uneven surface with chrome; and a cutting tool using a machine tool such as a lathe And a method of cutting a base material to be a mold (WO2007 / 077892-A) and the like.
 ランダムパターンまたは擬似ランダムパターンからなる鋳型の表面凹凸形状は、たとえば、FMスクリーン法、DLDS(Dynamic Low−Discrepancy Sequence)法、ブロック共重合体のミクロ相分離パターンを利用する方法またはバンドパスフィルター法等によって生成されたランダムパターンを感光性樹脂膜上に露光、現像し、現像された感光性樹脂膜をマスクとして用いてエッチング処理を行なうことにより形成することができる。 The surface irregularity shape of the template comprising a random pattern or a pseudo-random pattern is, for example, an FM screen method, a DLDS (Dynamic Low-Discretion Sequence) method, a method using a microphase separation pattern of a block copolymer, or a bandpass filter method. The random pattern generated by the above can be formed by exposing and developing on the photosensitive resin film, and performing an etching process using the developed photosensitive resin film as a mask.
 次に、上記工程(C)において、塗工層の表面に鋳型の表面を押し当てた状態で、塗工層を基材フィルム101上に固着させて微粒子含有層102を形成し、光学フィルムを得る。具体的には、透光性樹脂103を形成する樹脂として活性エネルギー線硬化型樹脂、熱硬化型樹脂または金属アルコキシドを用いる場合は、必要に応じて乾燥(溶媒の除去)を行なった後、塗工層表面に鋳型表面を押し当てた状態で、基材フィルム101側から塗工層に対し活性エネルギー線の照射を行なうか(活性エネルギー線硬化型樹脂を用いる場合)または加熱する(熱硬化型樹脂または金属アルコキシドを用いる場合)ことにより、塗工層を硬化させる。活性エネルギー線としては、樹脂液に含まれる樹脂の種類に応じて紫外線、電子線、近紫外線、可視光、近赤外線、赤外線、X線などから適宜選択することができるが、これらの中で紫外線、電子線が好ましく、特に取り扱いが簡便で高エネルギーが得られることから紫外線が好ましい。 Next, in the step (C), in a state where the surface of the mold is pressed against the surface of the coating layer, the coating layer is fixed on the base film 101 to form the fine particle-containing layer 102, and the optical film is formed. obtain. Specifically, when an active energy ray curable resin, a thermosetting resin, or a metal alkoxide is used as the resin for forming the translucent resin 103, drying (removing the solvent) is performed as necessary, and then coating is performed. In the state where the mold surface is pressed against the surface of the work layer, the active energy ray is irradiated from the base film 101 side to the coating layer (when an active energy ray-curable resin is used) or heated (thermosetting type). When the resin or metal alkoxide is used), the coating layer is cured. The active energy ray can be appropriately selected from ultraviolet rays, electron beams, near ultraviolet rays, visible light, near infrared rays, infrared rays, X-rays, etc. depending on the type of resin contained in the resin liquid. An electron beam is preferable, and ultraviolet rays are particularly preferable because of easy handling and high energy.
 紫外線の光源としては、たとえば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。また、ArFエキシマレーザー、KrFエキシマレーザー、エキシマランプまたはシンクロトロン放射光等も用いることができる。これらの中でも、超高圧水銀灯、高圧水銀灯、低圧水銀灯、キセノンアーク、メタルハライドランプが好ましく用いられる。 As the ultraviolet light source, for example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used. An ArF excimer laser, a KrF excimer laser, an excimer lamp, synchrotron radiation, or the like can also be used. Among these, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a xenon arc, and a metal halide lamp are preferably used.
 また、電子線としては、コックロフトワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧型、直線型、ダイナミトロン型、高周波型等の各種電子線加速器から放出される50~1000keV、好ましくは100~300keVのエネルギーを有する電子線を挙げることができる。 As the electron beam, 50 to 1000 keV emitted from various electron beam accelerators such as Cockloft Walton type, Bande graph type, resonance transformation type, insulation core transformation type, linear type, dynamitron type, and high frequency type, preferably 100 An electron beam having an energy of ~ 300 keV can be mentioned.
 一方、透光性樹脂103として熱可塑性樹脂を用いる場合には、必要に応じて乾燥(溶媒の除去)を行なった後、塗工層を軟化または溶融させ、塗工層表面に鋳型表面を押し当て、この状態で塗工層を冷却することにより、鋳型の表面形状が転写された光学フィルムを作製することができる。 On the other hand, when a thermoplastic resin is used as the translucent resin 103, after drying (removing the solvent) as necessary, the coating layer is softened or melted, and the mold surface is pressed against the coating layer surface. When the coating layer is cooled in this state, an optical film to which the surface shape of the mold is transferred can be produced.
 以上に示される本発明の製造方法によれば、微粒子含有層102を厚膜化することなく(微粒子含有層102の平均厚みhが微粒子104の重量平均粒径rと比較的近い場合であっても)、また、微粒子の分級などの付加的な操作を実施することなく、凸状欠陥を効果的に低コストで抑制することができる。 According to the manufacturing method of the present invention described above, the fine particle-containing layer 102 is not thickened (when the average thickness h of the fine particle-containing layer 102 is relatively close to the weight average particle diameter r of the fine particles 104). In addition, convex defects can be effectively suppressed at low cost without performing additional operations such as classification of fine particles.
 次に、本発明の光学フィルムを製造するための好ましい実施形態について説明する。当該好ましい実施形態に係る製造方法は、本発明の光学フィルムを連続的に製造するために、ロール状に巻き付けられた基材フィルム101を連続的に送り出す工程、微粒子104および紫外線硬化型樹脂を含有する樹脂液を塗工し、必要に応じて乾燥させる工程、鋳型表面を塗工層表面に押し当てながら塗工層を硬化させる工程、および、得られた光学フィルムを巻き取る工程を含む。かかる製造方法は、たとえば図2に示される製造装置を用いて実施することができる。以下、図2を参照しながら、当該好ましい実施形態に係る製造方法について説明する。 Next, a preferred embodiment for producing the optical film of the present invention will be described. The production method according to the preferred embodiment includes a step of continuously feeding the base film 101 wound in a roll shape, the fine particles 104 and the ultraviolet curable resin in order to continuously produce the optical film of the present invention. A step of applying a resin liquid to be applied and drying it as necessary, a step of curing the coating layer while pressing the mold surface against the surface of the coating layer, and a step of winding up the obtained optical film. Such a manufacturing method can be implemented, for example, using a manufacturing apparatus shown in FIG. Hereinafter, the manufacturing method according to the preferred embodiment will be described with reference to FIG.
 まず、巻き出し装置201により基材フィルム101が連続的に巻き出される。ついで、巻き出された基材フィルム101上に、塗工装置202およびこれに対向するバックアップロール203を使用して、微粒子104および紫外線硬化型樹脂を含有する樹脂液が塗工される。次に、樹脂液に溶媒が含まれる場合には、乾燥機204を通過させることにより乾燥される。次に、塗工層が設けられた基材フィルム101は、鏡面金属製ロールまたはエンボス加工用金属製ロール205とニップロール206との間へ、その塗工層が鏡面金属製ロールまたはエンボス加工用金属製ロール205と密着するように巻き掛けられる。これにより、塗工層の表面に鏡面金属製ロールの鏡面またはエンボス加工用金属製ロールの凹凸面が押し付けられ、表面形状が転写される。ついで、基材フィルム101が鏡面金属製ロールまたはエンボス加工用金属製ロール205に巻き掛けられた状態で、基材フィルム101を通して、紫外線照射装置208から紫外線を照射することにより、塗工層を硬化させる。紫外線照射により照射面が高温になることから、鏡面金属製ロールまたはエンボス加工用金属製ロール205は、その表面温度を室温~80℃程度に調整するための冷却装置をその内部に備えることが好ましい。また、紫外線照射装置208は、1機、もしくは複数機を使用することができる。微粒子含有層102が形成された基材フィルム101(光学フィルム)は、剥離ロール207によって、鏡面金属製ロールまたはエンボス加工用金属製ロール205から剥離される。以上のようにして作製された光学フィルムは、巻き取り装置209へ巻き取られる。この際、微粒子含有層102を保護する目的で、再剥離性を有した粘着剤層を介して、微粒子含有層102表面にポリエチレンテレフタレートやポリエチレン等からなる保護フィルムを貼着しながら巻き取ってもよい。 First, the base film 101 is continuously unwound by the unwinding device 201. Next, a resin liquid containing the fine particles 104 and the ultraviolet curable resin is applied onto the unwound base film 101 using the coating device 202 and the backup roll 203 facing the coating device 202. Next, when a solvent is contained in the resin liquid, the resin liquid is dried by passing it through a dryer 204. Next, the base film 101 provided with the coating layer is placed between the mirror metal roll or the embossing metal roll 205 and the nip roll 206, and the coating layer is a mirror metal roll or the embossing metal. It is wound around in close contact with the roll 205. Thereby, the mirror surface of the mirror surface metal roll or the uneven surface of the metal roll for embossing is pressed against the surface of the coating layer, and the surface shape is transferred. Next, in a state where the base film 101 is wound around a mirror surface metal roll or an embossing metal roll 205, the coating layer is cured by irradiating ultraviolet rays from the ultraviolet irradiation device 208 through the base film 101. Let Since the irradiated surface becomes hot due to ultraviolet irradiation, the mirror surface metal roll or the embossing metal roll 205 preferably includes a cooling device for adjusting the surface temperature to about room temperature to about 80 ° C. . Further, one or a plurality of ultraviolet irradiation devices 208 can be used. The substrate film 101 (optical film) on which the fine particle-containing layer 102 is formed is peeled off from the mirror surface metal roll or the embossing metal roll 205 by the peeling roll 207. The optical film produced as described above is taken up by the take-up device 209. At this time, for the purpose of protecting the fine particle-containing layer 102, a protective film made of polyethylene terephthalate or polyethylene or the like may be wound on the surface of the fine particle-containing layer 102 through a pressure-sensitive adhesive layer having removability. Good.
 なお、剥離ロール207によって鏡面金属製ロールまたはエンボス加工用金属製ロール205から剥離された後に、追加の紫外線照射を行なってもよい。 In addition, after peeling from the mirror surface metal roll or the embossing metal roll 205 by the peeling roll 207, additional ultraviolet irradiation may be performed.
 〔光学フィルムの他の実施形態〕
 本発明の光学フィルムは、微粒子含有層102上(基材フィルム101とは反対側の面)に積層された反射防止層をさらに備えていてもよい。反射防止層は微粒子含有層102上に直接形成してもよく、透明フィルム上に反射防止層を形成した反射防止フィルムを別途用意し、これを粘着剤または接着剤を用いて微粒子含有層102に積層してもよい。反射防止層は、反射率を限りなく低くするために設けられるものであり、反射防止層の形成により、表示画面への映り込みをより効果的に防止することができる。反射防止層としては、微粒子含有層102の屈折率よりも低い材料から構成された低屈折率層;微粒子含有層102の屈折率より高い材料から構成された高屈折率層と、この高屈折率層の屈折率より低い材料から構成された低屈折率層との積層構造などを挙げることができる。反射防止フィルムを粘着剤または接着剤を用いて微粒子含有層102に積層する場合、市販の反射防止フィルムを使用できる。
[Other Embodiments of Optical Film]
The optical film of the present invention may further include an antireflection layer laminated on the fine particle-containing layer 102 (surface opposite to the base film 101). The antireflection layer may be directly formed on the fine particle-containing layer 102. An antireflection film in which an antireflection layer is formed on a transparent film is separately prepared, and this is applied to the fine particle-containing layer 102 using an adhesive or an adhesive. You may laminate. The antireflection layer is provided to reduce the reflectance as much as possible, and reflection on the display screen can be more effectively prevented by forming the antireflection layer. The antireflective layer includes a low refractive index layer composed of a material lower than the refractive index of the fine particle-containing layer 102; a high refractive index layer composed of a material higher than the refractive index of the fine particle-containing layer 102, and the high refractive index. A laminated structure with a low refractive index layer composed of a material lower than the refractive index of the layer can be exemplified. When an antireflection film is laminated on the fine particle-containing layer 102 using an adhesive or an adhesive, a commercially available antireflection film can be used.
 <偏光板>
 本発明の偏光板は、偏光フィルムと、基材フィルム101側が該偏光フィルムに対向するように該偏光フィルム上に積層される前述の光学フィルムとを備えるものである。偏光フィルムは、入射光から直線偏光を取り出す機能を有するものであって、その種類は特に限定されない。好適な偏光フィルムの例として、ポリビニルアルコール系樹脂に二色性色素が吸着配向している偏光フィルムを挙げることができる。ポリビニルアルコール系樹脂としては、酢酸ビニルのケン化物であるポリビニルアルコールのほか、部分ホルマール化ポリビニルアルコール、エチレン/酢酸ビニル共重合体のケン化物などが挙げられる。二色性色素としては、ヨウ素または二色性の有機染料が用いられる。また、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物のポリエン配向フィルムも、偏光フィルムとなり得る。偏光フィルムの厚さは、通常5~80μm程度である。
<Polarizing plate>
The polarizing plate of this invention is equipped with a polarizing film and the above-mentioned optical film laminated | stacked on this polarizing film so that the base film 101 side may oppose this polarizing film. A polarizing film has a function which takes out linearly polarized light from incident light, The kind is not specifically limited. As an example of a suitable polarizing film, there can be mentioned a polarizing film in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol resin. Examples of the polyvinyl alcohol-based resin include polyvinyl alcohol, which is a saponified product of vinyl acetate, partially formalized polyvinyl alcohol, and a saponified product of an ethylene / vinyl acetate copolymer. As the dichroic dye, iodine or a dichroic organic dye is used. In addition, a polyene-oriented film of a polyvinyl alcohol dehydrated product or a polyvinyl chloride dehydrochlorinated product can also be a polarizing film. The thickness of the polarizing film is usually about 5 to 80 μm.
 本発明の偏光板は、上記偏光フィルムの片面または両面(通常は片面である)に本発明の光学フィルムを積層したものであってもよく、上記偏光フィルムの一方の面に透明保護層を積層し、他方の面に本発明の光学フィルムを積層したものであってもよい。この際、光学フィルムは、偏光フィルムの透明保護層としての機能も有する。光学フィルムの微粒子含有層102に表面凹凸形状が付与されている場合、この微粒子含有層は防眩層としての機能も有する。透明保護層は、透明樹脂フィルムを、接着剤等を用いて貼合する方法や透明樹脂含有塗工液を塗布する方法などによって偏光フィルム上に形成することができる。同様に、本発明の光学フィルムは、接着剤等を用いて偏光フィルムに貼合することができる。 The polarizing plate of the present invention may be one in which the optical film of the present invention is laminated on one side or both sides (usually one side) of the polarizing film, and a transparent protective layer is laminated on one side of the polarizing film. And what laminated | stacked the optical film of this invention on the other surface may be sufficient. At this time, the optical film also has a function as a transparent protective layer of the polarizing film. When the surface irregularity shape is given to the fine particle-containing layer 102 of the optical film, the fine particle-containing layer also has a function as an antiglare layer. The transparent protective layer can be formed on the polarizing film by a method of laminating a transparent resin film using an adhesive or the like, a method of applying a transparent resin-containing coating solution, or the like. Similarly, the optical film of the present invention can be bonded to a polarizing film using an adhesive or the like.
 透明保護層となる透明樹脂フィルムは、透明性や機械強度、熱安定性、水分遮蔽性などに優れることが好ましく、このようなものとしては、たとえば、トリアセチルセルロース、ジアセチルセルロース、セルロースアセテートプロピオネート等のセルロースアセテートなどのセルロース系樹脂;ポリカーボネート系樹脂;ポリアクリレート、ポリメチルメタクリレートなどの(メタ)アクリル系樹脂;ポリエチレンテレフタラート、ポリエチレンナフタレートなどのポリエステル系樹脂;ポリエチレン、ポリプロピレンなどの鎖状ポリオレフィン系樹脂;環状ポリオレフィン系樹脂;スチレン系樹脂;ポリサルフォン;ポリエーテルサルフォン;ポリ塩化ビニル系樹脂などからなるフィルムが例示される。これらの透明樹脂フィルムは、光学的に等方性のものであってもよいし、画像表示装置に組み込んだ際の視野角の補償を目的として、光学的に異方性を有するものであってもよい。 The transparent resin film serving as the transparent protective layer is preferably excellent in transparency, mechanical strength, thermal stability, moisture shielding properties, etc., and examples thereof include triacetyl cellulose, diacetyl cellulose, cellulose acetate propio Cellulose resins such as cellulose acetate such as nates; Polycarbonate resins; (Meth) acrylic resins such as polyacrylate and polymethyl methacrylate; Polyester resins such as polyethylene terephthalate and polyethylene naphthalate; Chains such as polyethylene and polypropylene Examples thereof include films made of polyolefin resin; cyclic polyolefin resin; styrene resin; polysulfone; polyether sulfone; polyvinyl chloride resin. These transparent resin films may be optically isotropic, or have optical anisotropy for the purpose of compensating the viewing angle when incorporated in an image display device. Also good.
 <画像表示装置>
 本発明の画像表示装置は、上記本発明の偏光板と、種々の情報を画面に映し出す画像表示素子とを組み合わせたものである。本発明の画像表示装置の種類は特に限定されず、液晶パネルを使用した液晶ディスプレイ(LCD)のほか、ブラウン管(陰極線管:CRT)ディスプレイ、プラズマディスプレイ(PDP)、電解放出ディスプレイ(FED)、表面伝導型電子放出素子ディスプレイ(SED)、有機ELディスプレイ、レーザーディスプレイ、プロジェクタテレビのスクリーン等が挙げられる。
<Image display device>
The image display device of the present invention is a combination of the polarizing plate of the present invention and an image display element that displays various information on a screen. The type of the image display device of the present invention is not particularly limited. In addition to a liquid crystal display (LCD) using a liquid crystal panel, a cathode ray tube (CRT) display, a plasma display (PDP), a field emission display (FED), a surface Examples thereof include a conduction electron-emitting device display (SED), an organic EL display, a laser display, and a projector television screen.
 たとえば、本発明の偏光板を液晶セル上に配置して液晶パネルを製造する場合、偏光板は、その微粒子含有層102を外側にして液晶セル上に配置される。他の画像表示装置についても同様である。光学フィルムは、画像表示素子の視認側に配してもよいし、バックライト側に配してもよいし、あるいはその両方に配してもよい。光学フィルムを視認側に配した場合、光学フィルムは、ギラツキや外光の映り込みを防止する防眩フィルムまたは視野角等を改善する光拡散フィルムとして機能する。一方、光学フィルムをバックライト側に配した場合、光学フィルムは、液晶セルに入射する光を拡散させ、モアレ等を防止する拡散板(または拡散シート)として機能する。 For example, when a liquid crystal panel is produced by disposing the polarizing plate of the present invention on a liquid crystal cell, the polarizing plate is disposed on the liquid crystal cell with the fine particle-containing layer 102 outside. The same applies to other image display apparatuses. The optical film may be disposed on the viewing side of the image display element, on the backlight side, or on both. When the optical film is arranged on the viewer side, the optical film functions as an antiglare film that prevents glare or reflection of external light, or a light diffusion film that improves the viewing angle. On the other hand, when the optical film is disposed on the backlight side, the optical film functions as a diffusion plate (or diffusion sheet) that diffuses light incident on the liquid crystal cell and prevents moiré or the like.
 本発明の画像表示装置は、凸状欠陥の発生が効果的に抑制または防止された光学フィルムを含むものであるため、白ちゃけの発生やコントラストの低下が効果的に抑制されており、視認性に優れる。 Since the image display device of the present invention includes an optical film in which the occurrence of convex defects is effectively suppressed or prevented, the occurrence of whitening and the decrease in contrast are effectively suppressed, and visibility is improved. Excellent.
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。なお、微粒子含有層の平均厚みh、微粒子の重量平均粒径r、標準偏差および最大粒径R、ならびに微粒子全体に占める粗大粒子数の割合の測定方法は、下記のとおりである。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. The average thickness h of the fine particle-containing layer, the weight average particle size r, the standard deviation and the maximum particle size R of the fine particles, and the ratio of the number of coarse particles in the entire fine particles are measured as follows.
 (a)微粒子含有層の平均厚みh
 光学フィルムの有効範囲幅方向に沿って5cmおきに基材フィルムと微粒子含有層を含めた総厚みを、接触式膜厚計〔NIKON社製 DIGIMICRO MH−15(本体)およびZC−101(カウンター)〕を用いて測定してこれらの平均値を算出し、この平均値から、基材フィルムの厚み80μmを差し引くことにより微粒子含有層の平均厚みhとした。
(A) Average thickness h of the fine particle-containing layer
The total thickness including the base film and the fine particle-containing layer every 5 cm along the effective range width direction of the optical film is measured by a contact-type film thickness meter [DIGIMICRO MH-15 (main body) and ZC-101 (counter) manufactured by NIKON The average value of these was calculated by subtracting 80 μm of the thickness of the base film from this average value to obtain the average thickness h of the fine particle-containing layer.
 (b)微粒子の重量平均粒径rおよび標準偏差
 コールターカウンター法により測定した。
(B) Weight average particle diameter r and standard deviation of fine particles Measured by a Coulter counter method.
 (c)微粒子含有層に含有される微粒子の最大粒径R
 後述する比較例の光学フィルム等について微粒子含有層表面の顕微鏡観察を行ない、任意の100個の欠陥(微粒子含有層表面からの粗大粒子の突出部分)を選択し、これら100個の欠陥を形成している微粒子の粒子径のうちの最大の粒子径を最大粒径Rとした。
(C) Maximum particle size R of fine particles contained in the fine particle-containing layer
A microscopic observation of the surface of the fine particle-containing layer is performed on an optical film or the like of a comparative example which will be described later, and arbitrary 100 defects (protrusions of coarse particles from the surface of the fine particle-containing layer) are selected, and these 100 defects are formed. The maximum particle size of the particle sizes of the fine particles is defined as the maximum particle size R.
 (d)微粒子全体に占める粗大粒子数の割合
 コールターカウンター法により50000個の粒子について粒子径を測定し、このうち微粒子含有層の平均厚みhよりも大きい粒子径を有する粒子(粗大粒子)の数をカウントし、これを50000で除することにより粗大粒子数の割合とした。なお、下記実施例3および比較例2で用いたポリスチレン系粒子(実施例1で使用したものと同一)について当該測定方法を適用した場合、粒子径が13μmを超える粗大粒子数の割合は0.002%以下であるが、顕微鏡観察を行なうと、粒子径が13μmを超える粗大粒子が確認できることから、微粒子含有層の平均厚みhが13μm(実施例3および比較例2)であっても、粗大粒子による凸状欠陥が問題となることがわかる。
(D) The ratio of the number of coarse particles in the whole fine particles The particle size of 50,000 particles was measured by a Coulter counter method, and the number of particles (coarse particles) having a particle size larger than the average thickness h of the fine particle-containing layer. Was divided by 50000 to obtain the ratio of the number of coarse particles. In addition, when the said measuring method is applied about the polystyrene type particle | grains (same as what was used in Example 1) used in the following Example 3 and Comparative Example 2, the ratio of the number of coarse particles in which a particle diameter exceeds 13 micrometers is 0.00. However, even when the average thickness h of the fine particle-containing layer is 13 μm (Example 3 and Comparative Example 2), coarse particles having a particle diameter exceeding 13 μm can be confirmed by microscopic observation. It turns out that the convex defect by particle | grains becomes a problem.
 <実施例1>
 ペンタエリスリトールトリアクリレート60重量部、多官能ウレタン化アクリレート(ヘキサメチレンジイソシアネートとペンタエリスリトールトリアクリレートの反応生成物)40重量部、微粒子としてのポリスチレン系粒子(重量平均粒径:6.9μm、標準偏差:1.3μm、微粒子全体に占める粒子径が10μmを超える粗大粒子の割合:0.12%、微粒子全体に占める粒子径が13μmを超える粗大粒子の割合:0.002%以下)20重量部、光重合開始剤「ルシリン TPO」(BASF社製、化学名:2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド)5重量部、および、希釈溶剤としてのプロピレングリコールモノメチルエーテル80重量部を混合し、塗工層となる紫外線硬化性の樹脂液を調製した。
<Example 1>
60 parts by weight of pentaerythritol triacrylate, 40 parts by weight of polyfunctional urethanized acrylate (reaction product of hexamethylene diisocyanate and pentaerythritol triacrylate), polystyrene-based particles as fine particles (weight average particle diameter: 6.9 μm, standard deviation: 1.3 μm, the proportion of coarse particles with a particle diameter exceeding 10 μm in the entire fine particles: 0.12%, the proportion of coarse particles with a particle diameter exceeding 13 μm in the entire fine particles: 0.002% or less) 20 parts by weight, light A polymerization initiator “Lucirin TPO” (manufactured by BASF, chemical name: 2,4,6-trimethylbenzoyldiphenylphosphine oxide) 5 parts by weight and 80 parts by weight of propylene glycol monomethyl ether as a diluent solvent were mixed and coated. An ultraviolet curable resin liquid to be a work layer was prepared.
 上記樹脂液を、厚さ80μmのトリアセチルセルロース(TAC)フィルム(基材フィルム)上にダイコーターで塗工して塗工層を形成し、基材フィルムと塗工層との積層体を得た。得られた積層体を乾燥炉で乾燥させた後、表面が鏡面になるように研磨処理したクロムめっきロールを、積層体の塗工層表面にニップロールを用いて押し当て密着させた。
この状態で基材フィルム側より、UVAにおける最大照度が700mW/cm、UVAにおける光積算光量が300mJ/cmとなるように紫外線を照射し、塗工層を硬化させた。その後、クロムめっきロールから積層体を剥離することで、微粒子含有層の平均厚みhが10μmの光学フィルムを得た。
The resin solution is applied on a triacetyl cellulose (TAC) film (base film) having a thickness of 80 μm with a die coater to form a coating layer, and a laminate of the base film and the coating layer is obtained. It was. After the obtained laminate was dried in a drying furnace, a chromium plating roll that had been polished so that the surface became a mirror surface was pressed and adhered to the coating layer surface of the laminate using a nip roll.
In this state, the coating layer was cured by irradiating ultraviolet rays from the base film side so that the maximum illuminance in UVA was 700 mW / cm 2 and the integrated light quantity in UVA was 300 mJ / cm 2 . Thereafter, the laminate was peeled from the chromium plating roll to obtain an optical film having an average thickness h of the fine particle-containing layer of 10 μm.
 <実施例2>
 微粒子として、ポリスチレン系粒子(重量平均粒径:8.2μm、標準偏差:0.6μm、微粒子全体に占める粒子径が10μmを超える粗大粒子の割合:1.6%)を用いたこと以外は実施例1と同様にして光学フィルムを作製した。なお、鋳型の表面を押し当てることなく微粒子含有層を形成すること以外は同一の方法で作製した光学フィルムについて微粒子含有層表面の顕微鏡観察を行ない最大粒径Rを測定したところ、14.2μmであった。
<Example 2>
Implemented except that polystyrene particles (weight average particle size: 8.2 μm, standard deviation: 0.6 μm, ratio of coarse particles with a particle diameter exceeding 10 μm in the entire fine particles: 1.6%) were used as the fine particles. An optical film was produced in the same manner as in Example 1. The maximum particle size R of the optical film produced by the same method, except that the fine particle-containing layer was formed without pressing the surface of the mold, was measured and the maximum particle size R was measured. there were.
 <実施例3>
 微粒子含有層の平均厚みhを13μmとしたこと以外は実施例1と同様にして光学フィルムを作製した。
<Example 3>
An optical film was produced in the same manner as in Example 1 except that the average thickness h of the fine particle-containing layer was 13 μm.
 <比較例1>
 実施例1と同様にして作製した基材フィルムと塗工層との積層体に、転写工程(クロムめっきロールの押し当て)を実施せずに、塗工層側より紫外線を照射したこと以外は実施例1と同様にして光学フィルムを作製した。この光学フィルムについて最大粒径Rを測定したところ、13.5μmであった(したがって、実施例1の光学フィルムにおける最大粒径Rも13.5μmである)。
<Comparative Example 1>
Except that the laminate of the base film and the coating layer produced in the same manner as in Example 1 was irradiated with ultraviolet rays from the coating layer side without carrying out the transfer step (pressing the chromium plating roll). An optical film was produced in the same manner as in Example 1. When the maximum particle size R of this optical film was measured, it was 13.5 μm (therefore, the maximum particle size R in the optical film of Example 1 was also 13.5 μm).
 <比較例2>
 微粒子含有層の平均厚みhを13μmとしたこと以外は比較例1と同様にして光学フィルムを作製した。この光学フィルムについて最大粒径Rを測定したところ、13.5μmであった(したがって、実施例3の光学フィルムにおける最大粒径Rも13.5μmである)。
<Comparative Example 2>
An optical film was produced in the same manner as in Comparative Example 1 except that the average thickness h of the fine particle-containing layer was 13 μm. When the maximum particle size R of this optical film was measured, it was 13.5 μm (therefore, the maximum particle size R in the optical film of Example 3 was also 13.5 μm).
 [光学フィルムの凸欠陥の評価]
 得られた光学フィルムについて、粗大粒子(実施例1、2および比較例1については粒子径が10μmを超える粒子、実施例3および比較例2については粒子径が13μmを超える粒子)の微粒子含有層表面からの突出に起因する凸状欠陥の有無を、目視による透過または反射観察によって確認した。結果を表1に示す。
[Evaluation of convex defects in optical films]
About the obtained optical film, a fine particle-containing layer of coarse particles (particles having a particle diameter exceeding 10 μm for Examples 1 and 2 and Comparative Example 1, and particles having a particle diameter exceeding 13 μm for Example 3 and Comparative Example 2) The presence or absence of convex defects due to protrusion from the surface was confirmed by visual transmission or reflection observation. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるとおり、微粒子含有層の平均厚みhよりも大きい粒子径を有する粗大粒子の割合を2%以下とし、転写工程を実施した実施例1~3においては、凸状欠陥の発生を防止することができたが、転写工程を実施しなかった比較例1および2においては、凸状欠陥が発生した。 As shown in Table 1, in Examples 1 to 3 in which the ratio of coarse particles having a particle diameter larger than the average thickness h of the fine particle-containing layer was 2% or less and the transfer process was performed, the occurrence of convex defects was observed. In Comparative Examples 1 and 2 in which the transfer process was not performed, a convex defect occurred.
100 光学フィルム
101 基材フィルム
102 微粒子含有層
103 透光性樹脂
104 微粒子
110 粗大粒子
201 巻き出し装置
202 塗工装置
203 バックアップロール
204 乾燥機
205 鏡面金属製ロールまたはエンボス加工用金属製ロール
206 ニップロール
207 剥離ロール
208 紫外線照射装置
209 巻き取り装置
DESCRIPTION OF SYMBOLS 100 Optical film 101 Base film 102 Fine particle content layer 103 Translucent resin 104 Fine particle 110 Coarse particle 201 Unwinding device 202 Coating device 203 Backup roll 204 Dryer 205 Mirror surface metal roll or Embossing metal roll 206 Nip roll 207 Peeling roll 208 Ultraviolet irradiation device 209 Winding device

Claims (14)

  1.  基材フィルム及び、基材フィルム上に微粒子を含有する樹脂液より形成される微粒子含有層を備える光学フィルムであって、
     前記微粒子含有層の平均厚みhより大きい粒子径を有する微粒子(粗大粒子)の前記樹脂液に含有される微粒子全体に対する割合が2%以下であり、
     前記微粒子含有層の表面は、鋳型の表面を押し当てて形成される形状を有する光学フィルム。
    An optical film comprising a base film and a fine particle-containing layer formed from a resin liquid containing fine particles on the base film,
    The ratio of fine particles (coarse particles) having a particle diameter larger than the average thickness h of the fine particle-containing layer to the total fine particles contained in the resin liquid is 2% or less,
    The surface of the fine particle-containing layer is an optical film having a shape formed by pressing the surface of a mold.
  2.  前記樹脂液に含有される微粒子の重量平均粒径rの前記微粒子含有層の平均厚みhに対する比r/hが0.3以上である請求の範囲1に記載の光学フィルム。 2. The optical film according to claim 1, wherein the ratio r / h of the weight average particle diameter r of the fine particles contained in the resin liquid to the average thickness h of the fine particle-containing layer is 0.3 or more.
  3.  前記樹脂液に含有される微粒子の重量平均粒径rの前記微粒子含有層の平均厚みhに対する比r/hが0.9以下である請求の範囲1または2に記載の光学フィルム。 The optical film according to claim 1 or 2, wherein the ratio r / h of the weight average particle diameter r of the fine particles contained in the resin liquid to the average thickness h of the fine particle-containing layer is 0.9 or less.
  4.  前記微粒子含有層に含有される微粒子の最大粒径Rの前記微粒子含有層の平均厚みhに対する比R/hが2以下である請求の範囲1~3のいずれかに記載の光学フィルム。 4. The optical film according to claim 1, wherein the ratio R / h of the maximum particle size R of the fine particles contained in the fine particle-containing layer to the average thickness h of the fine particle-containing layer is 2 or less.
  5.  前記樹脂液に含有される微粒子の重量平均粒径rが1μm以上15μm以下である請求の範囲1~4のいずれかに記載の光学フィルム。 The optical film according to any one of claims 1 to 4, wherein the fine particles contained in the resin liquid have a weight average particle diameter r of 1 µm or more and 15 µm or less.
  6.  前記微粒子含有層の平均厚みhが3μm以上20μm以下である請求の範囲1~5のいずれかに記載の光学フィルム。 6. The optical film according to claim 1, wherein an average thickness h of the fine particle-containing layer is 3 μm or more and 20 μm or less.
  7.  前記微粒子含有層は、前記樹脂液の硬化物層である請求の範囲1~6のいずれかに記載の光学フィルム。 7. The optical film according to claim 1, wherein the fine particle-containing layer is a cured product layer of the resin liquid.
  8.  前記粗大粒子の前記樹脂液に含有される微粒子全体に対する割合が、0.2%以下である請求の範囲1~7のいずれかに記載の光学フィルム。 The optical film according to any one of claims 1 to 7, wherein a ratio of the coarse particles to the whole fine particles contained in the resin liquid is 0.2% or less.
  9.  前記鋳型が鏡面からなる表面を有する鋳型または凹凸表面を有する鋳型である請求の範囲1~8のいずれかに記載の光学フィルム。 The optical film according to any one of claims 1 to 8, wherein the mold is a mold having a mirror surface or a mold having an uneven surface.
  10.  前記微粒子含有層上に積層された反射防止層をさらに備える請求の範囲1~9のいずれかに記載の光学フィルム。 10. The optical film according to claim 1, further comprising an antireflection layer laminated on the fine particle-containing layer.
  11.  請求の範囲1に記載の光学フィルムの製造方法であって、
     基材フィルム上に、微粒子を含有する樹脂液を塗工して塗工層を形成する工程と、
     前記塗工層の表面に、鋳型の表面を押し当てる工程と、
     前記塗工層の表面に前記鋳型の前記表面を押し当てた状態で、前記塗工層を前記基材フィルム上に固着させることにより、微粒子含有層を形成する工程と、
    を含む光学フィルムの製造方法。
    It is a manufacturing method of the optical film of Claim 1, Comprising:
    On the base film, a process of coating a resin liquid containing fine particles to form a coating layer;
    Pressing the surface of the mold against the surface of the coating layer;
    Forming the fine particle-containing layer by fixing the coating layer on the base film in a state where the surface of the mold is pressed against the surface of the coating layer;
    The manufacturing method of the optical film containing this.
  12.  前記微粒子含有層を形成する工程は、前記塗工層の表面に前記鋳型の前記表面を押し当てた状態で、前記基材フィルム側から前記塗布層に活性エネルギー線を照射することにより前記塗工層を硬化させる工程を含む請求の範囲11に記載の製造方法。 The step of forming the fine particle-containing layer is performed by irradiating the coating layer with active energy rays from the base film side with the surface of the mold pressed against the surface of the coating layer. The manufacturing method of Claim 11 including the process of hardening a layer.
  13.  偏光フィルムと、
     前記基材フィルム側が前記偏光フィルムに対向するように、前記偏光フィルム上に積層される請求項1~10のいずれかに記載の光学フィルムと、
    を備える偏光板。
    A polarizing film;
    The optical film according to any one of claims 1 to 10, which is laminated on the polarizing film so that the base film side faces the polarizing film;
    A polarizing plate comprising:
  14.  請求の範囲13に記載の偏光板と、画像表示素子とを備え、
     前記偏光板は、その微粒子含有層側を外側にして前記画像表示素子上に配置される画像表示装置。
    A polarizing plate according to claim 13 and an image display element,
    The said polarizing plate is an image display apparatus arrange | positioned on the said image display element by making the fine particle content layer side into the outer side.
PCT/JP2011/075233 2010-10-29 2011-10-26 Optical film, method for manufacturing same, polarization plate, and image display device WO2012057358A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-243980 2010-10-29
JP2010243980A JP2012098368A (en) 2010-10-29 2010-10-29 Optical film and manufacturing method therefor, polarizing plate and image display device

Publications (1)

Publication Number Publication Date
WO2012057358A1 true WO2012057358A1 (en) 2012-05-03

Family

ID=45994058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075233 WO2012057358A1 (en) 2010-10-29 2011-10-26 Optical film, method for manufacturing same, polarization plate, and image display device

Country Status (3)

Country Link
JP (1) JP2012098368A (en)
TW (1) TW201232055A (en)
WO (1) WO2012057358A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200166677A1 (en) * 2017-08-04 2020-05-28 Daicel Corporation Antiglare film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258613A (en) * 1999-03-10 2000-09-22 Dainippon Printing Co Ltd Antidazzle sheet, display device and production of antidazzle sheet
JP2002328615A (en) * 2001-04-27 2002-11-15 Noritake Arai Surface structure of display equipment, display structure of information display equipment, and method for manufacturing surface structure of display equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258613A (en) * 1999-03-10 2000-09-22 Dainippon Printing Co Ltd Antidazzle sheet, display device and production of antidazzle sheet
JP2002328615A (en) * 2001-04-27 2002-11-15 Noritake Arai Surface structure of display equipment, display structure of information display equipment, and method for manufacturing surface structure of display equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200166677A1 (en) * 2017-08-04 2020-05-28 Daicel Corporation Antiglare film

Also Published As

Publication number Publication date
JP2012098368A (en) 2012-05-24
TW201232055A (en) 2012-08-01

Similar Documents

Publication Publication Date Title
JP5995412B2 (en) Optical film manufacturing method, polarizing plate, and image display device manufacturing method
JP5889067B2 (en) Manufacturing method of optical film
WO2011027905A1 (en) Light-diffusing film, manufacturing method therefor, light-diffusing polarizing plate, and liquid-crystal display device
WO2011027903A1 (en) Light-diffusing film, manufacturing method therefor, light-diffusing polarizing plate, and liquid-crystal display device
JP5539830B2 (en) Method for producing hard coat film
WO2012046790A1 (en) Light diffusion film and process for production thereof, light-diffusing polarizing plate, and liquid crystal display device
JP2012048223A (en) Light-diffusing film and method for manufacturing the same, light-diffusing polarizing plate and liquid crystal display device
WO2012067046A1 (en) Light dispersion film, polarization plate and image display device
WO2012060457A1 (en) Light diffusion film, method for manufacturing the light diffusion film, light-diffusing polarization plate, and liquid crystal display device
JP2012224735A (en) Resin composition, optical film, and liquid crystal display device
KR20160015162A (en) Anti-glare film
KR20160015160A (en) Anti-glare film
KR20160015161A (en) Anti-glare film
WO2015050274A1 (en) Anti-glare film
JP2012226038A (en) Optical film manufacturing method, polarizer, and image display device
KR101875244B1 (en) Optical film manufacturing method, polarizing plate, and image display device
WO2012057358A1 (en) Optical film, method for manufacturing same, polarization plate, and image display device
WO2012074123A1 (en) Optical film and liquid crystal display device
JP6125749B2 (en) Optical film, polarizing plate and image display device
JP2013174638A (en) Production method of optical film, polarizing plate and image display device
KR20120122919A (en) Process for producing optical film, polarizing plate and image display device
JP2013186456A (en) Manufacturing method of optical film, and optical film
JP2014132291A (en) Method for producing optical film, polarizing plate, and image display device
JP2012078742A (en) Coating device and manufacturing method of optical film
WO2015050273A1 (en) Anti-glare film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11836490

Country of ref document: EP

Kind code of ref document: A1