WO2014203830A1 - Electronic device sealing method, electronic device package production method, and sealing sheet - Google Patents

Electronic device sealing method, electronic device package production method, and sealing sheet Download PDF

Info

Publication number
WO2014203830A1
WO2014203830A1 PCT/JP2014/065776 JP2014065776W WO2014203830A1 WO 2014203830 A1 WO2014203830 A1 WO 2014203830A1 JP 2014065776 W JP2014065776 W JP 2014065776W WO 2014203830 A1 WO2014203830 A1 WO 2014203830A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing sheet
electronic device
release film
sealing
substrate
Prior art date
Application number
PCT/JP2014/065776
Other languages
French (fr)
Japanese (ja)
Inventor
豊田 英志
石坂 剛
亀山 工次郎
祐作 清水
石井 淳
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201480034582.3A priority Critical patent/CN105324836A/en
Publication of WO2014203830A1 publication Critical patent/WO2014203830A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Definitions

  • the present invention relates to an electronic device sealing method, an electronic device package manufacturing method, and a sealing sheet.
  • Patent Document 1 a laminate in which a substrate, an electronic device, and a heat-softened sealing sheet are arranged in this order is covered with a release film in a vacuum chamber in a vacuum state, and the substrate, the electronic device, and the sealing sheet are accommodated.
  • a method of sealing an electronic device by forming a vacuum hermetically sealed space and then introducing a gas at atmospheric pressure or higher into the chamber to bring the sealing sheet into close contact with the electronic device and the substrate is disclosed.
  • Patent Document 1 can uniformly pressurize a sealing target such as an electronic device.
  • the sealing sheet softened by heating may protrude from the substrate (the sealing sheet protrudes outside the area to be sealed).
  • the sealing sheet cannot follow the unevenness
  • An object of the present invention is to provide an electronic device sealing method, an electronic device package manufacturing method, and a sealing sheet that can solve the above-described problems and prevent protrusion of the sealing sheet and that can satisfactorily embed unevenness.
  • substrate with a device provided with the electronic device arrange
  • the peripheral portion of the laminate including the sealing sheet disposed on the substrate with the device and the release film including the central portion in contact with the sealing sheet and the peripheral portion disposed around the central portion is pressed against the stage in contact with the substrate.
  • the electronic device is sealed by utilizing the pressure difference inside and outside the sealed space that houses the substrate, the electronic device, and the sealing sheet.
  • a vacuum heating bonding apparatus described in Japanese Patent No. 5189194 can be used.
  • the content of the inorganic filler is 60% by volume or more, the temperature showing the lowest complex viscosity ⁇ * is 100 to 150 ° C., and the lowest complex viscosity ⁇ * is 30 Pa ⁇ s. Since the above sealing sheet is used, the protrusion of the sealing sheet can be prevented. Moreover, since the sealing sheet having an inorganic filler content of 90% by volume or less and a minimum complex viscosity ⁇ * of 3000 Pa ⁇ s or less is used, the unevenness can be embedded well.
  • the tensile break elongation at room temperature of the release film is preferably 30 to 300%. Thereby, it is possible to perform sealing with good conformity to the unevenness of the electronic device on the substrate.
  • the adhesion between the sealing sheet and the release film is 0.1 N / 20 mm or less.
  • a release film can be favorably peeled from a sealing sheet.
  • the sealing method of 1st this invention arrange
  • the sealing sheet Since the sealing sheet is brought into contact with the electronic device under a reduced pressure atmosphere, it is possible to prevent entry of voids between the sealing sheet and the electronic device and entry of voids between the sealing sheet and the substrate.
  • the inside of the vacuum heat press is high temperature and it is easy for voids to enter.
  • voids can be prevented from entering, continuous operation is possible and productivity can be improved. .
  • the first aspect of the present invention also includes a step of forming a sealed container including a stage and a release film by pressing a peripheral portion of the laminated body against a stage in contact with the substrate, and a pressure outside the sealed container is set inside the sealed container. It is related with the manufacturing method of an electronic device package including the process of covering an electronic device with a sealing sheet by making it raise from a pressure.
  • the first aspect of the present invention also includes a step of forming a sealed container including a stage and a release film by pressing a peripheral portion of the laminated body against a stage in contact with the substrate, and a pressure outside the sealed container is set inside the sealed container. It is related with the sealing sheet for using for the sealing method of an electronic device including the process of covering an electronic device with a sealing sheet by making it raise from a pressure.
  • the sealing sheet of the first aspect of the present invention contains an inorganic filler, and the content of the inorganic filler is 60 to 90% by volume.
  • the sealing sheet of the first invention has a temperature showing a minimum complex viscosity ⁇ * measured at a temperature rising rate of 10 ° C./min, a measurement frequency of 1 Hz, and a strain of 5% of 100 to 150 ° C., and the minimum complex viscosity ⁇ * Is 30 to 3000 Pa ⁇ s.
  • 2nd this invention is a device temporary fixing body provided with the carrier, the adhesive arrange
  • the method of sealing an electronic device including the step of covering the electronic device with a sealing sheet by increasing the pressure outside the sealed container to be higher than the pressure inside the sealed container.
  • the electronic device is covered by utilizing the pressure difference between the inside and outside of the sealed container.
  • a vacuum heating bonding apparatus described in Japanese Patent No. 5189194 can be used.
  • the content of the inorganic filler is 60% by volume or more, the temperature showing the lowest complex viscosity ⁇ * is 100 to 150 ° C., and the lowest complex viscosity ⁇ * is 30 Pa ⁇ s. Since the above sealing sheet is used, the protrusion of the sealing sheet can be prevented. Moreover, since the sealing sheet having an inorganic filler content of 90% by volume or less and a minimum complex viscosity ⁇ * of 3000 Pa ⁇ s or less is used, the unevenness can be embedded well.
  • the sealing method of 2nd this invention is by arrange
  • the method may further include a step of forming a laminated structure. Since the sealing sheet is brought into contact with the electronic device under a reduced-pressure atmosphere, it is possible to prevent entry of voids between the sealing sheet and the electronic device and entry of voids between the sealing sheet and the adhesive.
  • the second aspect of the present invention also includes a step of forming a sealed container including a stage and a release film by pressing the peripheral portion of the laminated structure against a stage in contact with the carrier, and the pressure outside the sealed container is adjusted to the inside of the sealed container. It is related with the manufacturing method of an electronic device package including the process of covering an electronic device with a sealing sheet by making it raise from pressure of this.
  • the second aspect of the present invention also includes a step of forming a sealed container including a stage and a release film by pressing the peripheral portion of the laminated structure against a stage in contact with the carrier, and the pressure outside the sealed container is adjusted to the inside of the sealed container. It is related with the sealing sheet for using it for the sealing method of an electronic device including the process of covering an electronic device with a sealing sheet by making it raise from the pressure of this.
  • the sealing sheet according to the second aspect of the present invention contains an inorganic filler, and the content of the inorganic filler is 60 to 90% by volume.
  • the sealing sheet of the second aspect of the present invention has a temperature showing a minimum complex viscosity ⁇ * measured at a temperature rising rate of 10 ° C./min, a measurement frequency of 1 Hz and a strain of 5% of 100 to 150 ° C., and the minimum complex viscosity ⁇ * Is 30 to 3000 Pa ⁇ s.
  • Embodiment 1 (Vacuum heat press) First, the vacuum heat press apparatus (vacuum heating joining apparatus) used with the sealing method of Embodiment 1 is demonstrated.
  • a pressure cylinder lower plate 2 is disposed on a base 1, and a slide moving table 3 is vacuum heat pressed by a slide cylinder 4 on the pressure cylinder lower plate 2. It is arranged to be movable inside and outside the device.
  • a lower heater plate 5 is thermally insulated above the slide moving table 3.
  • a lower plate member 6 is disposed on the upper surface of the lower heater plate 5.
  • the substrate table 7 is also referred to as a stage 7).
  • a plurality of support columns 8 are arranged and erected on the pressure cylinder lower plate 2, and a pressure cylinder upper plate 9 is fixed to the upper end portion of the support column 8.
  • the support column 8 may be erected directly on the base 1.
  • An intermediate moving member (intermediate member) 10 is disposed below the pressure cylinder upper plate 9 through a support column 8, and an upper heater plate 11 is fixed below the intermediate moving member 10 via a heat insulating plate.
  • An upper frame member 12 is airtightly fixed to the outer peripheral portion of the lower surface of the plate 11 and extends downward.
  • An inner frame 13 is fixed to the inner surface of the upper frame member 12 on the lower surface of the upper heater plate 11.
  • the upper heater plate 11 can function as a heater for softening the release film 24 and the sealing sheet 23, for example.
  • the lower heater plate 5 can function as a preheating heater for the substrate 21, for example.
  • a top plate 17 (hereinafter also referred to as a flat plate 17) is fixed to the inner side of the inner frame
  • the inner frame 13 includes a frame-shaped pressing portion 13a at the lower end portion and a rod 13b extending upward therefrom, a spring is disposed around the rod 13b, and the rod 13b is insulated and fixed to the lower surface of the upper heater plate 11. ing.
  • the frame-shaped presser 13a is biased downward by a spring with respect to the rod 13b.
  • the release film 24 can be kept airtight between the frame-shaped presser 13 a and the stage 7.
  • a pressure cylinder 14 is disposed on the upper surface of the pressure cylinder upper plate 9, and a cylinder rod 15 of the pressure cylinder 14 passes through the pressure cylinder upper plate 9 and is fixed to the upper surface of the intermediate moving member 10. Accordingly, the intermediate moving member 10, the upper heater plate 11, and the upper frame body 12 can be integrally moved up and down.
  • S is a stopper that restricts the downward movement of the intermediate moving member 10, the upper heater plate 11, and the upper frame 12 by the pressure cylinder 14, and is lowered to a stopper plate on the upper surface of the pressure cylinder 14 body. It comes to contact with.
  • the vacuum partition (henceforth a vacuum partition is also called a storage container) provided with the upper heater board 11, the upper frame member 12, and the lower board member 6 can be formed.
  • the upper frame member 12 is provided with a vacuum / pressure port 16 for evacuating and pressurizing the inside of the vacuum partition (hereinafter, the interior of the vacuum partition is also referred to as a vacuum chamber).
  • the slide moving table 3, the lower heater plate 5, and the lower plate member 6 can be pulled out to the outside by the slide cylinder 4.
  • the substrate 21 and the like can be arranged on the stage 7 in a state where these are pulled out.
  • the laminated body 41 includes a device-equipped substrate 42, a sealing sheet 23 disposed on the device-equipped substrate 42, and a release film 24 disposed on the sealing sheet 23.
  • the device-equipped substrate 42 includes the substrate 21 and the electronic device 22 disposed on the substrate 21.
  • the release film 24 includes a central portion 24a that is in contact with the sealing sheet 23 and a peripheral portion 24b that is disposed around the central portion 24a.
  • the sealing sheet 23 and the release film 24 may be arranged in this order on the electronic device 22 arranged on the substrate 21.
  • the outer dimension of the release film 24 is a size that can cover the substrate 21, the electronic device 22, and the sealing sheet 23.
  • the outer dimension of the sealing sheet 23 is a size capable of sealing the electronic device 22.
  • the sealing sheet 23 is a size that is not sandwiched between the stage 7 and the frame-shaped pressing portion 13a.
  • the sealing sheet 23 will be described in detail later.
  • the electronic device 22 is not particularly limited.
  • a SAW (Surface Acoustic Wave) filter a MEMS (Micro Electro Mechanical Systems) device such as a pressure sensor and a vibration sensor, an IC (integrated circuit) such as an LSI, a transistor, etc.
  • a MEMS (Micro Electro Mechanical Systems) device such as a pressure sensor and a vibration sensor
  • an IC (integrated circuit) such as an LSI, a transistor, etc.
  • the substrate 21 is not particularly limited, and examples thereof include a printed wiring board, a ceramic substrate, a silicon substrate, and a metal substrate.
  • the substrate 21 is preferably one that has been subjected to plasma treatment. Argon etc. are mentioned as gas which turns into plasma. Thereby, the reliability of electrical connection can be improved.
  • the material of the release film 24 is not particularly limited, and examples thereof include a fluorine film and a polyolefin film. Of these, poly-4-methylpentene-1 is preferred because of its good heat resistance and tensile elongation characteristics.
  • the tensile elongation at break of the release film 24 at room temperature is preferably 30% or more, more preferably 40% or more. When it is 30% or more, the unevenness followability at the time of molding is good.
  • the tensile elongation at break of the release film 24 at room temperature is preferably 300% or less, more preferably 100% or less. If it is 300% or less, peeling work is easy.
  • the tensile elongation at break can be measured according to ASTM D882.
  • the softening temperature of the release film 24 is not specifically limited, Preferably it is 80 degrees C or less, More preferably, it is 60 degrees C or less. When the temperature is 80 ° C. or less, the unevenness followability during molding is good.
  • the softening temperature of the release film 24 is preferably 0 ° C. or higher.
  • the temperature at which the tensile elastic modulus is 300 MPa is defined as the softening temperature.
  • the surface of the release film 24 is preferably an uneven shape. Thereby, the release film 24 can be favorably peeled from the sealing sheet 23.
  • the thickness of the release film 24 is not particularly limited, but is preferably 10 ⁇ m to 200 ⁇ m. Within the above range, the electronic device 22 can be satisfactorily sealed.
  • FIG. 3 is a diagram schematically illustrating a state in which a vacuum partition is formed by the upper heater plate 11, the upper frame member 12, and the lower plate member 6.
  • the upper heater plate 11 is lowered by the pressure cylinder 14, and the lower end portion of the upper frame member 12 is slid in an airtight manner to the step of the outer edge portion of the lower plate member 6 to form a vacuum partition.
  • the vacuum chamber is formed inside the vacuum partition, the lowering of the upper heater plate 11 is stopped.
  • evacuation process In the evacuation step, evacuation is performed to bring the inside of the vacuum chamber into a reduced pressure state (preferably a vacuum state), and then the release film 24 and the sealing sheet 23 are heated and softened.
  • the release film 24 and the sealing sheet 23 may be heated before or during evacuation.
  • the heating temperature of the release film 24 and the sealing sheet 23 is preferably 50 ° C. to 150 ° C.
  • the sealing sheet 23 is inclined from the contact portion in contact with the electronic device 22 toward the periphery of the contact portion. Further, the release film 24 is inclined from the central portion 24a toward the peripheral portion 24b. A part of the peripheral portion 24 b is in contact with the stage 7.
  • the upper heater plate 11 is further lowered, and the release film 24 is pressed against the stage 7 on the lower surface of the lower end portion of the inner member 13, so that the substrate 21, the electronic device 22, and the sealing sheet 23 are pressed. Is covered with a release film 24.
  • a sealed space for accommodating the substrate 21, the electronic device 22, and the sealing sheet 23 is formed. That is, the hermetic container 121 is formed by pressing the peripheral portion 24b against the stage 7 with the frame-shaped pressing portion 13a.
  • the sealed container 121 includes a stage 7 and a release film 24. Inside the sealed container 121 (sealed space), the substrate 21, the electronic device 22, and the sealing sheet 23 are arranged. In addition, in order to form a sealed space after the inside of the vacuum chamber is in a reduced pressure state, the inside and the outside of the sealed space are in a reduced pressure state.
  • gas is introduced into the vacuum chamber through the vacuum / pressurizing port 16, the pressure outside the sealed space is increased from the inside of the sealed space, and the sealing sheet 23 is pressed against the electronic device 22.
  • the gas is not particularly limited, and examples thereof include air and nitrogen.
  • the gas pressure is not particularly limited, but is preferably atmospheric pressure or higher. By introducing gas, the pressure outside the sealed space can be raised to atmospheric pressure or higher.
  • the electronic device package includes a device-equipped substrate 42 and a resin layer disposed on the device-equipped substrate 42.
  • the top plate 17 is lowered, and the electronic device package is pressurized through the release film 24 to flatten the surface of the electronic device package on the release film 24 side. Also good. Thereby, the thickness of the electronic device package can be made uniform.
  • the pressure applied is preferably 0.5 to 20 kgf / cm 2 .
  • the resin layer is cured by heating the electronic device package. Next, bumps are provided on the electronic device package. Next, the electronic device package may be diced into chips.
  • rewiring may be formed in the electronic device package.
  • the sealing sheet 23 has a temperature showing a minimum complex viscosity ⁇ * measured at a heating rate of 10 ° C./min, a measurement frequency of 1 Hz, and a strain of 5% of 100 to 150 ° C., and a minimum complex viscosity ⁇ * of 30 to 3000 Pa ⁇ s. Since the temperature showing the lowest complex viscosity ⁇ * is 100 to 150 ° C. and the lowest complex viscosity ⁇ * is 30 Pa ⁇ s or more, the protrusion can be prevented. On the other hand, since the temperature showing the lowest complex viscosity ⁇ * is 100 to 150 ° C. and the lowest complex viscosity ⁇ * is 3000 Pa ⁇ s or less, the unevenness can be embedded well.
  • the minimum complex viscosity ⁇ * is preferably 100 Pa ⁇ s or more.
  • the lowest complex viscosity ⁇ * is preferably 2500 Pa ⁇ s or less, more preferably 2000 Pa ⁇ s or less.
  • the minimum complex viscosity ⁇ * can be controlled by the content of the inorganic filler, the type of the inorganic filler, and the melt viscosity of the organic component.
  • the temperature showing the lowest complex viscosity ⁇ * can be controlled mainly by the type and amount of the curing catalyst.
  • the temperature indicating the lowest complex viscosity ⁇ and the lowest complex viscosity ⁇ * can be measured by the method described in Examples.
  • the sealing sheet 23 contains a thermosetting resin.
  • a thermosetting resin an epoxy resin, a phenol resin, etc. can be used conveniently, for example.
  • the epoxy resin is not particularly limited.
  • triphenylmethane type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, modified bisphenol A type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, modified bisphenol F type epoxy resin, dicyclopentadiene type Various epoxy resins such as an epoxy resin, a phenol novolac type epoxy resin, and a phenoxy resin can be used. These epoxy resins may be used alone or in combination of two or more.
  • epoxy resin Although it does not specifically limit as an epoxy resin, From a viewpoint of ensuring the flexibility before hardening and the molding hardness and intensity
  • the phenol resin is not particularly limited as long as it causes a curing reaction with the epoxy resin.
  • a phenol novolac resin, a phenol aralkyl resin, a biphenyl aralkyl resin, a dicyclopentadiene type phenol resin, a cresol novolak resin, a resole resin, or the like is used.
  • These phenolic resins may be used alone or in combination of two or more.
  • phenolic resin those having a hydroxyl equivalent weight of 70 to 250 and a softening point of 50 to 110 ° C. are preferably used from the viewpoint of reactivity with the epoxy resin, and in particular, phenol novolak from the viewpoint of high curing reactivity. Resin can be used suitably. Moreover, the phenol resin which has a biphenyl aralkyl skeleton can be used suitably from the point of the low curvature property of a hardened
  • the total content of the epoxy resin and the phenol resin in the sealing sheet 23 is preferably 5% by weight or more, and more preferably 10% by weight or more. When it is 5% by weight or more, sufficient cured product strength can be obtained.
  • the total content of the epoxy resin and the phenol resin in the sealing sheet 23 is preferably 20% by weight or less, and more preferably 15% by weight or less. When it is 20% by weight or less, the linear expansion coefficient of the cured product is small, and low water absorption is easily obtained.
  • the blending ratio of the epoxy resin and the phenol resin is blended so that the total of hydroxyl groups in the phenol resin is 0.7 to 1.5 equivalents with respect to 1 equivalent of the epoxy group in the epoxy resin from the viewpoint of curing reactivity. It is preferable to use 0.9 to 1.2 equivalents.
  • the sealing sheet 23 contains an inorganic filler.
  • the inorganic filler examples include quartz glass, talc, silica (such as fused silica and crystalline silica), alumina, aluminum nitride, silicon nitride, and boron nitride.
  • silica and alumina are preferable, and silica is more preferable because the linear expansion coefficient can be satisfactorily reduced.
  • Silica is preferably fused silica and more preferably spherical fused silica because it is excellent in fluidity.
  • the average particle size of the inorganic filler is preferably 0.3 ⁇ m or more, more preferably 1 ⁇ m or more, and further preferably 5 ⁇ m or more. It is easy to obtain the flexibility and softness of the sealing sheet 23 as it is 0.3 ⁇ m or more.
  • the average particle size of the inorganic filler is preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less. When it is 40 ⁇ m or less, it is easy to increase the filling rate of the inorganic filler.
  • the average particle diameter can be derived, for example, by using a sample arbitrarily extracted from the population and measuring it using a laser diffraction / scattering particle size distribution measuring apparatus.
  • the content of the inorganic filler in the sealing sheet 23 is 60% by volume or more, preferably 65% by volume or more. Since it is 60 vol% or more, a molded product having low water absorption and low warpage can be obtained. On the other hand, the content of the inorganic filler is 90% by volume or less, preferably 85% by volume or less. Since it is 90 volume% or less, the crack and notch
  • the content of the inorganic filler can be explained by using “wt%” as a unit.
  • the content of silica will be described in units of “% by weight”. Since silica usually has a specific gravity of 2.2 g / cm 3 , the preferred range of the silica content (% by weight) is, for example, as follows. That is, the content of silica in the sealing sheet 23 is preferably 73% by weight or more, and more preferably 77% by weight or more. 94 weight% or less is preferable and, as for content of the silica in the sealing sheet 23, 91 weight% or less is more preferable.
  • the preferred range of the alumina content is, for example, as follows. That is, the content of alumina in the sealing sheet 23 is preferably 83% by weight or more, and more preferably 86% by weight or more. 95 weight% or less is preferable and, as for content of the alumina in the sealing sheet 23, 93 weight% or less is more preferable.
  • the sealing sheet 23 preferably contains a silane coupling agent.
  • the silane coupling agent is a compound having a hydrolyzable group and an organic functional group in the molecule.
  • hydrolyzable group examples include an alkoxy group having 1 to 6 carbon atoms such as a methoxy group and an ethoxy group, an acetoxy group, and a 2-methoxyethoxy group.
  • a methoxy group is preferable because it easily removes volatile components such as alcohol generated by hydrolysis.
  • organic functional group examples include vinyl group, epoxy group, styryl group, methacryl group, acrylic group, amino group, ureido group, mercapto group, sulfide group, and isocyanate group.
  • a methacryl group is preferable because it suppresses aggregation of the inorganic filler.
  • silane coupling agent examples include vinyl group-containing silane coupling agents such as vinyltrimethoxysilane and vinyltriethoxysilane; 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyl Epoxy group-containing silane coupling agents such as dimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane; p-styryltrimethoxysilane, etc.
  • vinyl group-containing silane coupling agents such as vinyltrimethoxysilane and vinyltriethoxysilane
  • 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane 3-glycidoxypropylmethyl Epoxy group-containing silane coupling agents such as dimethoxysilane, 3-glycidoxypropyl
  • Styryl group-containing silane coupling agent 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltri Methacrylic group-containing silane coupling agents such as toxisilane; Acrylic group-containing silane coupling agents such as 3-acryloxypropyltrimethoxysilane; N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (Aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N Amino group-containing silane coupling agents such as phenyl-3-a
  • the content of the silane coupling agent is not particularly limited, but is preferably 0.05 to 5 parts by weight with respect to 100 parts by weight of the inorganic filler.
  • the sealing sheet 23 contains a hardening accelerator.
  • the curing accelerator is not particularly limited as long as it can cure the epoxy resin and the phenol resin, and examples thereof include organophosphorus compounds such as triphenylphosphine and tetraphenylphosphonium tetraphenylborate; 2-phenyl-4, And imidazole compounds such as 5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole. Of these, 2-phenyl-4,5-dihydroxymethylimidazole is preferred because good storage stability can be obtained.
  • the content of the curing accelerator is preferably 0.1 parts by weight or more, more preferably 0.5 parts by weight or more with respect to 100 parts by weight of the total of the epoxy resin and the phenol resin. When it is 0.1 parts by weight or more, curing is completed within a practical time. Further, the content of the curing accelerator is preferably 5 parts by weight or less, more preferably 2 parts by weight or less. When it is 5 parts by weight or less, good storage stability is obtained.
  • the sealing sheet 23 contains a thermoplastic resin (elastomer).
  • Thermoplastic resins include natural rubber, butyl rubber, isoprene rubber, chloroprene rubber, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, polybutadiene resin, polycarbonate resin, thermoplasticity.
  • a core-shell type acrylic resin having a core layer made of a rubber component and a shell layer made of an acrylic resin is preferable because of dispersibility in an epoxy resin.
  • the rubber component constituting the core-shell type acrylic resin is not particularly limited, and examples thereof include butadiene rubber, isoprene rubber, chloroprene rubber, acrylic rubber, and silicon rubber.
  • the average particle diameter of the core-shell type acrylic resin is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more. Dispersibility is favorable in it being 0.1 micrometer or more.
  • the average particle diameter of the core-shell type acrylic resin is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less.
  • seat is favorable in it being 200 micrometers or less.
  • the average particle size can be derived by, for example, using a sample arbitrarily extracted from the population and measuring it using a laser diffraction / scattering particle size distribution measuring apparatus.
  • the content of the thermoplastic resin is preferably 1 part by weight or more, more preferably 5 parts by weight or more with respect to 100 parts by weight of an organic component (for example, epoxy resin, phenol resin, thermoplastic resin, curing accelerator, etc.). is there. A flexibility is favorable in it being 1 weight part or more. Further, the content of the thermoplastic resin is preferably 50 parts by weight or less, more preferably 40 parts by weight or less. When it is 50 parts by weight or less, fluidity and deformability are good.
  • an organic component for example, epoxy resin, phenol resin, thermoplastic resin, curing accelerator, etc.
  • the sealing sheet 23 may contain a pigment, a flame retardant component, and the like.
  • the pigment is not particularly limited, and examples thereof include carbon black.
  • the content of the pigment in the sealing sheet 23 is preferably 0.01 to 1% by weight.
  • various metal hydroxides such as aluminum hydroxide, magnesium hydroxide, iron hydroxide, calcium hydroxide, tin hydroxide, complex metal hydroxide, phosphazene compounds, and the like can be used.
  • phosphazene compounds are preferred because they are excellent in flame retardancy and strength after curing.
  • the manufacturing method of the sealing sheet 23 is not specifically limited, The method of carrying out the plastic processing of the kneaded material obtained by knead
  • the said each component for example, an epoxy resin, a phenol resin, an inorganic filler, and a hardening accelerator
  • the inorganic filler can be highly filled.
  • a kneaded material is prepared by melt-kneading an epoxy resin, a phenol resin, an inorganic filler, and a curing accelerator by a known kneader such as a mixing roll, a pressure kneader, an extruder, and the obtained kneading.
  • An object is plastically processed into a sheet.
  • the upper limit of the temperature is preferably 140 ° C. or less, and more preferably 130 ° C. or less.
  • the lower limit of the temperature is preferably equal to or higher than the softening point of each component described above, for example, 30 ° C or higher, and preferably 50 ° C or higher.
  • the kneading time is preferably 1 to 30 minutes.
  • the kneading is preferably performed under reduced pressure conditions (under reduced pressure atmosphere), and the pressure under reduced pressure conditions is, for example, 1 ⁇ 10 ⁇ 4 to 0.1 kg / cm 2 .
  • the kneaded material after melt-kneading is preferably subjected to plastic working in a high temperature state without cooling.
  • the plastic working method is not particularly limited, and examples thereof include a flat plate pressing method, a T die extrusion method, a screw die extrusion method, a roll rolling method, a roll kneading method, an inflation extrusion method, a coextrusion method, and a calendering method.
  • the plastic working temperature is preferably not less than the softening point of each component described above, and is 40 to 150 ° C., preferably 50 to 140 ° C., more preferably 70 to 120 ° C. in consideration of the thermosetting property and moldability of the epoxy resin. is there.
  • the sealing sheet 23 can also be manufactured by a coating method. For example, an adhesive composition solution containing each of the components described above is prepared, and the adhesive composition solution is applied on a base separator to a predetermined thickness to form a coating film, and then the coating film is dried. Thus, the sealing sheet 23 can be manufactured.
  • the solvent used in the adhesive composition solution is not particularly limited, but an organic solvent capable of uniformly dissolving, kneading or dispersing the above components is preferable.
  • organic solvent capable of uniformly dissolving, kneading or dispersing the above components.
  • examples thereof include ketone solvents such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, acetone, methyl ethyl ketone, and cyclohexanone, toluene, xylene, and the like.
  • polyethylene terephthalate (PET), polyethylene, polypropylene, a plastic film or paper surface-coated with a release agent such as a fluorine-type release agent or a long-chain alkyl acrylate release agent can be used.
  • a release agent such as a fluorine-type release agent or a long-chain alkyl acrylate release agent
  • Examples of the method for applying the adhesive composition solution include roll coating, screen coating, and gravure coating.
  • the drying conditions for the coating film are not particularly limited, and for example, the drying can be performed at a drying temperature of 70 to 160 ° C. and a drying time of 1 to 5 minutes.
  • the thickness of the sealing sheet 23 is not specifically limited, Preferably it is 100 micrometers or more, More preferably, it is 150 micrometers or more. Further, the thickness of the sealing sheet 23 is preferably 2000 ⁇ m or less, more preferably 1000 ⁇ m or less. Within the above range, the electronic device 22 can be satisfactorily sealed.
  • the sealing sheet 23 may have a single layer structure or a multilayer structure in which two or more sealing sheets are laminated, but there is no fear of delamination and the sheet thickness is highly uniform. Therefore, a single layer structure is preferable.
  • the sealing method of Embodiment 1 includes, for example, a step of arranging the sealing sheet 23 and the release film 24 in this order on the electronic device 22 arranged on the substrate 21, and a reduced-pressure atmosphere. Covering the substrate 21, the electronic device 22, and the sealing sheet 23 with the release film 24 to form a sealed space sealed by the release film 24, and increasing the pressure outside the sealed space from the inside of the sealed space And a step of sealing the electronic device 22 with the sealing sheet 23 using the pressure difference generated by the above. Moreover, the sealing method of Embodiment 1 further includes a step of lowering the top plate 17 from above the release film 24 and pressurizing the electronic device package via the release film 24 as necessary.
  • Embodiment 2 uses the release film 31 with the sealing sheet in which the sealing sheet 23 and the release film 24 are integrated, and contacts the electronic device 22 with the sealing sheet 23 after decompressing the inside of the vacuum chamber. This is different from the first embodiment. In the description of the second embodiment, the same contents as those in the first embodiment are omitted.
  • the adhesion between the sealing sheet 23 and the release film 24 is preferably 0.1 N / 20 mm or less.
  • the release film 24 can be favorably peeled from the sealing sheet 23 as it is 0.1 N / 20 mm or less.
  • the adhesive force of the sealing sheet 23 and the release film 24 can be measured by the method as described in an Example.
  • the method of fixing the release film 31 with the sealing sheet to the frame-shaped holding part 13a is not particularly limited.
  • the frame-like holding part 13a having a holding means for holding the release film 31 with the sealing sheet is used.
  • Examples thereof include a method of holding the release film 31 with the sealing sheet with the holding means, a method of attaching the release film 31 with the sealing sheet to the lower surface of the frame-shaped presser portion 13a via an adhesive, and the like.
  • FIG. 8 is a diagram schematically illustrating a state in which a vacuum partition is formed by the upper heater plate 11, the upper frame member 12, and the lower plate member 6.
  • the upper heater plate 11 is lowered by the pressure cylinder 14, and the lower end portion of the upper frame member 12 is slid in an airtight manner to the step of the outer edge portion of the lower plate member 6 to form a vacuum partition. Then, the lowering of the upper heater plate 11 is stopped until the release film 31 with the sealing sheet contacts the electronic device 22.
  • evacuation process In the evacuation step, evacuation is performed to bring the inside of the vacuum chamber into a reduced pressure state (preferably a vacuum state), and then the release film 24 and the sealing sheet 23 are heated and softened.
  • the release film 24 and the sealing sheet 23 may be heated before or during evacuation.
  • the heating temperature of the release film 24 and the sealing sheet 23 is preferably 50 ° C. to 150 ° C.
  • the heater plate 11 is further lowered, and the release film 24 is pressed on the lower surface of the lower end portion of the inner member 13, so that the substrate 21, the electronic device 22 and the sealing sheet 23 are released from the release film. Cover with 24. Thereby, a sealed space for accommodating the substrate 21, the electronic device 22, and the sealing sheet 23 is formed.
  • the inside and the outside of the sealed space are in a reduced pressure state.
  • the lowering of the heater plate 11 may be a series of operations or an intermittent operation.
  • gas is introduced into the vacuum chamber through the vacuum / pressurizing port 16, the pressure outside the sealed space is increased from the inside of the sealed space, and the sealing sheet 23 is pressed against the electronic device 22. Thereby, an electronic device package in which the electronic device 22 is sealed with the sealing sheet 23 can be obtained.
  • the gas is not particularly limited, and examples thereof include air and nitrogen.
  • the gas pressure is not particularly limited, but is preferably atmospheric pressure or higher. By introducing gas, the pressure outside the sealed space can be raised to atmospheric pressure or higher.
  • the top plate 17 is lowered and the electronic device package is pressurized through the release film 24, thereby flattening the surface of the electronic device package on the release film 24 side. Also good. Thereby, the thickness of the electronic device package can be made uniform.
  • the pressure applied is preferably 0.5 to 20 kgf / cm 2 .
  • Rewiring or a pump may be formed on the electronic device package. Further, the electronic device package may be diced into chips.
  • the sealing method of the second embodiment includes the steps of preparing the release film 31 with the sealing sheet in which the sealing sheet 23 is laminated on the release film 24, and the electronic device disposed on the substrate 21.
  • the step of disposing the release film 31 with the sealing sheet on the electronic device 22 with a gap between the electronic device 22 and the release film 31 with the sealing sheet is lowered in a reduced-pressure atmosphere.
  • the step of bringing into contact with the electronic device 22, the release film 31 with the sealing sheet is further lowered, the substrate 21, the electronic device 22 and the sealing sheet 23 are covered with the release film 24, and sealed with the release film 24.
  • the electronic device 22 is sealed with the sealing sheet 23 by using the pressure difference generated by the step of forming the sealed space and the pressure outside the sealed space being increased from the inside of the sealed space. And a step of stopping.
  • the sealing method of Embodiment 2 further includes a step of lowering the top plate 17 from above the release film 24 and pressurizing the electronic device package via the release film 24 as necessary.
  • the case where one electronic device 22 is arranged on the substrate 21 is shown, but the number of the electronic devices 22 is not particularly limited and may be plural.
  • the release film 24 is placed on the sealing sheet 23.
  • the release film 24 is released.
  • the film 24 may be fixed to the lower end portion of the inner frame 13.
  • the release film 24 may be disposed at a predetermined position by a release film sandwiching jig as shown in FIGS. 5 (a) to 5 (d) of Japanese Patent No. 5189194.
  • a release film 31 with a sealing sheet may be used instead of the sealing sheet 23 and the release film 24.
  • the laminated structure 101 is placed on the stage 7.
  • the laminated structure 101 includes a chip temporary fixing body 51, a sealing sheet 23 disposed on the chip temporary fixing body 51, and a release film 24 disposed on the sealing sheet 23.
  • the chip temporary fixing body 51 includes a carrier 51a, an adhesive 51b disposed on the carrier 51a, and a semiconductor chip 51c fixed on the adhesive 51b.
  • Examples of the carrier 51a include a metal plate and a brass chip plate.
  • Examples of the material of the carrier 51a include metal materials such as SUS, and plastic materials such as polyimide, polyamideimide, polyether ether ketone, and polyether sulfone.
  • the pressure-sensitive adhesive 51b is not particularly limited, but a heat-peelable pressure-sensitive adhesive such as a heat-foamable pressure-sensitive adhesive is usually used because it can be easily peeled off.
  • the semiconductor chip 51c includes an electrode pad 151c.
  • the circuit forming surface 251c provided with the electrode pad 151c is in contact with the adhesive 51b.
  • the outer dimension of the sealing sheet 23 is a size capable of sealing the semiconductor chip 51c.
  • the release film 24 includes a central portion 24a that is in contact with the sealing sheet 23 and a peripheral portion 24b that is disposed around the central portion 24a.
  • the outer dimension of the release film 24 is a size that can cover the chip temporary fixing body 51 and the sealing sheet 23.
  • Stage 7 is preheated.
  • the temperature of the stage 7 is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, and further preferably 85 ° C. or higher. When the temperature is 70 ° C. or higher, the sealing sheet 23 can be melted and fluidized.
  • the temperature of the stage 7 is preferably 100 ° C. or lower, more preferably 95 ° C. or lower. When it is 100 ° C. or lower, it can be molded while suppressing the curing reaction.
  • the upper heater plate 11 and the upper frame member 12 are lowered, and the lower end portion of the upper frame member 12 is airtightly slid along the outer edge portion of the lower plate member 6.
  • a vacuum chamber hermetically surrounded by the frame member 12 and the lower plate member 6 is formed. That is, a storage container including the upper heater plate 11, the upper frame member 12 and the lower plate member 6 is formed. At the stage where the vacuum chamber is formed, the lowering of the upper heater plate 11 and the upper frame member 12 is stopped.
  • the pressure in the vacuum chamber is preferably 500 Pa or less.
  • the sealed container 121 includes a stage 7 and a release film 24. Inside the sealed container 121, the chip temporary fixing body 51 and the sealing sheet 23 disposed on the chip temporary fixing body 51 are arranged. In addition, in order to form the airtight container 121 after making the inside of a vacuum chamber into a pressure reduction state, the inside and the outside of the airtight container 121 are in a pressure reduction state.
  • the pressure in the vacuum chamber is set to atmospheric pressure by opening the vacuum / pressurizing port 116. That is, the pressure outside the sealed container 121 is set to atmospheric pressure.
  • the pressure in the vacuum chamber is increased by introducing gas into the vacuum / pressurizing port 116. That is, the pressure outside the sealed container 121 is increased above the atmospheric pressure. Thereby, the semiconductor chip 51c is covered with the sealing sheet 23, and the sealing body 61 is obtained.
  • the gas is not particularly limited, and examples thereof include air and nitrogen.
  • the pressure outside the sealed container 121 after the gas introduction is preferably 0.1 MPa or more, more preferably 0.5 MPa or more, and further preferably 0.9 MPa or more.
  • the upper limit of the pressure outside the sealed container 121 is not particularly limited, but is preferably 5 MPa or less, more preferably 3 MPa or less.
  • the sealing body 61 includes a semiconductor chip 51c and a resin portion 61a that covers the semiconductor chip 51c.
  • the sealing body 61 is in contact with the adhesive 51b. Further, the sealing body 61 is in contact with the release film 24.
  • a spacer 131 is arranged beside the sealing body 61.
  • the sealing body 61 is pressed and the thickness of the sealing body 61 is adjusted by lowering the flat plate 17 until it hits the spacer 131. Thereby, the thickness of the sealing body 61 can be equalized.
  • the pressure when pressing the sealing body 61 with the flat plate 17 is preferably 0.5 kgf / cm 2 to 20 kgf / cm 2 .
  • the resin body 61 a is cured by heating the sealing body 61 to form the cured body 71.
  • the heating temperature is preferably 100 ° C or higher, more preferably 120 ° C or higher.
  • the upper limit of the heating temperature is preferably 200 ° C. or lower, more preferably 180 ° C. or lower.
  • the heating time is preferably 10 minutes or more, more preferably 30 minutes or more.
  • the upper limit of the heating time is preferably 180 minutes or less, more preferably 120 minutes or less.
  • the cured body 71 includes a semiconductor chip 51c and a protection part 71a that covers the semiconductor chip 51c.
  • the cured body 71 is in contact with the adhesive 51b.
  • the cured body 71 can be defined on both sides by a first main surface including the circuit forming surface 251c and a second main surface opposite to the first main surface.
  • the adhesive 51b is heated to reduce the adhesive force of the adhesive 51b.
  • the adhesive 51b is peeled from the cured body 71.
  • the cured body 71 is fixed to the suction stage by adsorbing the cured body 71 to the suction stage.
  • a buffer coat film 141 is formed on the first main surface.
  • photosensitive polyimide photosensitive polybenzoxazole (PBO), or the like can be used.
  • the mask 142 is removed.
  • a seed layer is formed on the buffer coat film 141 and the electrode pad 151c.
  • a resist 143 is formed on the seed layer.
  • a plating pattern 144 is formed on the seed layer by a plating method such as electrolytic copper plating.
  • the resist 143 is removed.
  • the rewiring 145 is formed by etching the seed layer.
  • a protective film 146 is formed on the rewiring 145.
  • the protective film 146 photosensitive polyimide, photosensitive polybenzoxazole (PBO), or the like can be used.
  • the rewiring body 104 is obtained by forming an opening in the protective film 146.
  • the rewiring body 104 includes a cured body 71 and a rewiring layer 140 disposed on the cured body 71.
  • the rewiring layer 140 includes a rewiring 145.
  • an electrode (UBM: Under Bump Metal) 147 is formed on the rewiring 145.
  • bumps 148 are formed on the electrodes 147.
  • the pump 148 is electrically connected to the electrode pad 151 c through the electrode 147 and the rewiring 145.
  • the rewiring body 104 is singulated (diced) to obtain the semiconductor package 105. As shown in FIG.
  • the semiconductor package 105 in which the wiring is drawn outside the chip region can be obtained.
  • the laminated structure 101 is disposed on the stage 7.
  • the chip temporary fixing body 51 is disposed on the stage 7, and then the sealing sheet 23 is disposed on the chip temporary fixing body 51. Then, the release film 24 is disposed on the sealing sheet 23.
  • Modification 2 In the third embodiment, the laminated structure 101 is disposed on the stage 7.
  • the laminated body including the chip temporary fixing body 51 and the sealing sheet 23 disposed on the chip temporary fixing body 51 is disposed on the stage 7. Then, the release film 24 is placed on the laminate.
  • the pressure outside the sealed container 121 is set to atmospheric pressure and then higher than the atmospheric pressure, but the third modification does not include the step of setting the pressure outside the sealed container 121 to atmospheric pressure. That is, the sealed container 121 is formed, and then the pressure outside the sealed container 121 is increased above the atmospheric pressure.
  • the modified example 7 is different from the third embodiment in that it further includes a step of forming the laminated structure 101 by disposing the release film 31 with a sealing sheet on the chip temporary fixing body 51 in a reduced pressure atmosphere. Since the modified example 7 is the same as the disposing step, the vacuum partition forming step, the evacuating step, and the contacting step of the second embodiment except that the device-equipped substrate 42 is changed to the chip temporary fixing body 51, the description thereof is omitted.
  • the hermetic container 121 including the stage 7 and the release film 24 is formed by pressing the peripheral portion 24b of the laminated structure 101 against the stage 7 in contact with the carrier 51a. And a step of covering the semiconductor chip 51c with the sealing sheet 23 by increasing the pressure outside the sealed container 121 to be higher than the pressure inside the sealed container 121.
  • the semiconductor package manufacturing method and the semiconductor chip sealing method are exemplified.
  • the second invention can be applied to an electronic device package manufacturing method and an electronic device sealing method. It will be easy to understand.
  • Epoxy resin YSLV-80XY manufactured by Nippon Steel Chemical Co., Ltd. (bisphenol F type epoxy resin, epkin equivalent 200 g / eq. Softening point 80 ° C.)
  • Phenolic resin MEH-7851-SS (phenol resin having a biphenylaralkyl skeleton, hydroxyl group equivalent 203 g / eq. Softening point 67 ° C.) manufactured by Meiwa Kasei Co., Ltd.
  • Curing accelerator 2PHZ-PW (2-phenyl-4,5-dihydroxymethylimidazole) manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • Thermoplastic resin Metablene J-5800 manufactured by Mitsubishi Rayon Co., Ltd. (core-shell type acrylic resin, average particle diameter 1 ⁇ m)
  • Silica filler 1 FB-9454FC (fused spherical silica, average particle size 20 ⁇ m) manufactured by Denki Kagaku Kogyo Co., Ltd.
  • Silica filler 2 SO-25R manufactured by Admatechs (fused spherical silica, average particle size 0.5 ⁇ m)
  • Silane coupling agent KBM-503 (3-methacryloxypropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd. Carbon black: MA-600 manufactured by Mitsubishi Chemical Corporation
  • Examples 1 to 3 and Comparative Examples 2 to 3 Each component was blended according to the blending ratio shown in Table 1, and melt-kneaded in a roll kneader at 60 to 120 ° C. for 10 minutes under reduced pressure conditions (0.01 kg / cm 2 ) to prepare a kneaded product. Subsequently, the obtained kneaded material was formed into a sheet shape by a flat plate pressing method to produce a sealing sheet having a thickness of 500 ⁇ m.
  • Sealing sheet 200mm square, thickness 500 ⁇ m
  • release film TPI film manufactured by Mitsui Chemicals, X-88BMT4, poly-4-methylpentene-1, double-sided embossing, double-sided mat, tensile elongation at break 50%, softening temperature 52 [deg.] C., thickness 50 [mu] m) were bonded together at a bonding condition of 70 [deg.] C. to produce a release film with a sealing sheet.
  • a semiconductor package was produced by the method described in Embodiment 2 using the obtained release film with a sealing sheet.
  • an organic substrate organic substrate size: 240 mm square, plasma treatment (350 W, 10 sec, Ar)
  • 100 semiconductor chips semiconductor chip size: 15 mm ⁇ 15 mm ⁇ thickness 0.3 mm
  • the release film with the sealing sheet was fixed to the frame-shaped presser 13a. Thereafter, the upper heater plate 11 was lowered to form a vacuum chamber for accommodating them. After evacuating the inside of the vacuum chamber at 10 Torr at room temperature, the release film with the sealing sheet was heated to 100 ° C. Thereafter, the release film was pressed on the lower surface of the lower end portion of the inner member 13 to form a sealed space for accommodating the organic substrate, the semiconductor chip, and the sealing sheet.
  • the atmosphere was pressurized (autoclave) so that the atmosphere outside the sealed space was 5 kg / cm 2, and the sealing sheet was pressed against the semiconductor chip using the pressure difference inside and outside the sealed space to produce a semiconductor package. Thereafter, the top plate 17 was lowered, and the semiconductor package was pressurized (2 kgf / cm 2 ) through the release film to flatten the surface of the semiconductor package on the release film side.
  • Example 2 Using the obtained sealing sheet, a semiconductor package was produced in the same manner as in Example 1 except that no release film was used.
  • Comparative Example 2 using a sealing sheet having an inorganic filler content of less than 60% by volume and a minimum complex viscosity ⁇ * of less than 30 Pa ⁇ s, it was confirmed that the sealing sheet protruded. Moreover, in Comparative Example 3 using a sealing sheet having a minimum complex viscosity ⁇ * exceeding 3000 Pa ⁇ s, it was confirmed that voids entered in the uneven portions.
  • the sealing sheet did not protrude and voids did not enter the concavo-convex portion.
  • Comparative Example 1 in which the release film was not used it was confirmed that the sealing sheet protruded and voids entered.

Abstract

Provided is an electronic device sealing method capable of preventing a sealing sheet from protruding while allowing surface reliefs to be embedded satisfactorily. The first invention relates to an electronic device sealing method comprising: the step of disposing a sealing sheet and a release film in this order over an electronic device disposed on a substrate; the step of covering the substrate, the electronic device, and the sealing sheet with the release film under a reduced pressure atmosphere to form a sealed space sealed by the release film; and the step of using a difference in pressure generated by making the pressure outside the sealed space higher than inside the sealed space to seal the electronic device with the sealing sheet.

Description

電子デバイスの封止方法、電子デバイスパッケージの製造方法及び封止シートElectronic device sealing method, electronic device package manufacturing method, and sealing sheet
 本発明は、電子デバイスの封止方法、電子デバイスパッケージの製造方法及び封止シートに関する。 The present invention relates to an electronic device sealing method, an electronic device package manufacturing method, and a sealing sheet.
 電子デバイスの封止方法として、基板上に配置された電子デバイスを封止シートで封止する方法が知られている。 As a method of sealing an electronic device, a method of sealing an electronic device arranged on a substrate with a sealing sheet is known.
 特許文献1は、真空状態の真空チェンバー内において、基板、電子デバイス及び加熱軟化した封止シートがこの順に配置された積層体を離型フィルムで覆って、基板、電子デバイス及び封止シートを収容する真空の密閉空間を形成した後、チャンバー内に大気圧以上のガスを導入して、封止シートを電子デバイス及び基板に密着させて、電子デバイスを封止する方法を開示している。 In Patent Document 1, a laminate in which a substrate, an electronic device, and a heat-softened sealing sheet are arranged in this order is covered with a release film in a vacuum chamber in a vacuum state, and the substrate, the electronic device, and the sealing sheet are accommodated. A method of sealing an electronic device by forming a vacuum hermetically sealed space and then introducing a gas at atmospheric pressure or higher into the chamber to bring the sealing sheet into close contact with the electronic device and the substrate is disclosed.
特許第5189194号公報Japanese Patent No. 5189194
 特許文献1に記載の封止方法は、電子デバイスなどの封止対象を均一に加圧できる。しかしながら、加熱して軟化させた封止シートが、基板からはみ出してしまう(封止シートが封止対象エリア外へはみ出してしまう)ことがある。また、電子デバイスを要素とする凹凸に封止シートが追従できず、凹凸を埋め込みできないことがある。 The sealing method described in Patent Document 1 can uniformly pressurize a sealing target such as an electronic device. However, the sealing sheet softened by heating may protrude from the substrate (the sealing sheet protrudes outside the area to be sealed). Moreover, the sealing sheet cannot follow the unevenness | corrugation which uses an electronic device as an element, and an unevenness | corrugation may be unable to be embedded.
 本発明は前記課題を解決し、封止シートのはみ出しを防止できるとともに、凹凸を良好に埋め込むことができる電子デバイスの封止方法、電子デバイスパッケージの製造方法及び封止シートを提供することを目的とする。 An object of the present invention is to provide an electronic device sealing method, an electronic device package manufacturing method, and a sealing sheet that can solve the above-described problems and prevent protrusion of the sealing sheet and that can satisfactorily embed unevenness. And
 第1の本発明は、基板及び基板上に配置された電子デバイスを備えるデバイス付き基板、
 デバイス付き基板上に配置された封止シート、並びに
 封止シートと接する中央部及び中央部の周辺に配置された周辺部を備える離型フィルムを備える積層体の
 周辺部を基板と接するステージに押し付けることにより、ステージ及び離型フィルムを備える密閉容器を形成する工程と、
 密閉容器の外部の圧力を密閉容器の内部の圧力より高めることにより、電子デバイスを封止シートで覆う工程とを含む電子デバイスの封止方法に関する。
1st this invention, the board | substrate with a device provided with the electronic device arrange | positioned on a board | substrate and a board | substrate,
The peripheral portion of the laminate including the sealing sheet disposed on the substrate with the device and the release film including the central portion in contact with the sealing sheet and the peripheral portion disposed around the central portion is pressed against the stage in contact with the substrate. A step of forming a sealed container including a stage and a release film;
The method of sealing an electronic device including the step of covering the electronic device with a sealing sheet by increasing the pressure outside the sealed container to be higher than the pressure inside the sealed container.
 第1の本発明の封止方法では、基板、電子デバイス及び封止シートを収容する密閉空間の内外の圧力差を利用して、電子デバイスを封止する。第1の本発明の封止方法では、例えば、特許第5189194号公報に記載の真空加熱接合装置を用いることができる。 In the sealing method of the first aspect of the present invention, the electronic device is sealed by utilizing the pressure difference inside and outside the sealed space that houses the substrate, the electronic device, and the sealing sheet. In the sealing method of the first aspect of the present invention, for example, a vacuum heating bonding apparatus described in Japanese Patent No. 5189194 can be used.
 第1の本発明の封止方法は、無機充填剤の含有量が60体積%以上であり、最低複素粘度η*を示す温度が100~150℃であり、最低複素粘度η*が30Pa・s以上の封止シートを用いるので、封止シートのはみ出しを防止できる。また、無機充填剤の含有量が90体積%以下であり、最低複素粘度η*が3000Pa・s以下の封止シートを用いるので、凹凸を良好に埋め込むことができる。 In the sealing method of the first invention, the content of the inorganic filler is 60% by volume or more, the temperature showing the lowest complex viscosity η * is 100 to 150 ° C., and the lowest complex viscosity η * is 30 Pa · s. Since the above sealing sheet is used, the protrusion of the sealing sheet can be prevented. Moreover, since the sealing sheet having an inorganic filler content of 90% by volume or less and a minimum complex viscosity η * of 3000 Pa · s or less is used, the unevenness can be embedded well.
 前記離型フィルムの常温における引張破断伸びが30~300%であることが好ましい。これにより、基板上の電子デバイスの凹凸に対し追従性良く封止を行うことができる。 The tensile break elongation at room temperature of the release film is preferably 30 to 300%. Thereby, it is possible to perform sealing with good conformity to the unevenness of the electronic device on the substrate.
 前記封止シートと前記離型フィルムとの密着力が、0.1N/20mm以下であることが好ましい。これにより、離型フィルムを封止シートから良好に剥離できる。 It is preferable that the adhesion between the sealing sheet and the release film is 0.1 N / 20 mm or less. Thereby, a release film can be favorably peeled from a sealing sheet.
 第1の本発明の封止方法は、離型フィルム及び離型フィルム上に積層された封止シートを備える封止シート付き離型フィルムを減圧雰囲気下でデバイス付き基板上に配置することにより、積層体を形成する工程をさらに含むことが好ましい。 The sealing method of 1st this invention arrange | positions a release film with a sealing sheet provided with the release sheet and the sealing sheet laminated | stacked on the release film on a board | substrate with a device in a pressure-reduced atmosphere, It is preferable to further include a step of forming a laminate.
 減圧雰囲気下で封止シートを電子デバイスと接触させるため、封止シートと電子デバイスの間へのボイドの入り込み、及び封止シートと基板の間へのボイドの入り込みを防止できる。電子デバイスパッケージを連続して封止する場合、真空熱加圧装置内が高温となりボイドが入り込み易いが、本工程では、ボイドの入り込みを防止できるため、連続運転が可能となり、生産性を向上できる。 Since the sealing sheet is brought into contact with the electronic device under a reduced pressure atmosphere, it is possible to prevent entry of voids between the sealing sheet and the electronic device and entry of voids between the sealing sheet and the substrate. When sealing the electronic device package continuously, the inside of the vacuum heat press is high temperature and it is easy for voids to enter. However, in this process, since voids can be prevented from entering, continuous operation is possible and productivity can be improved. .
 第1の本発明はまた、積層体の周辺部を基板と接するステージに押し付けることにより、ステージ及び離型フィルムを備える密閉容器を形成する工程と、密閉容器の外部の圧力を密閉容器の内部の圧力より高めることにより、電子デバイスを封止シートで覆う工程とを含む電子デバイスパッケージの製造方法に関する。 The first aspect of the present invention also includes a step of forming a sealed container including a stage and a release film by pressing a peripheral portion of the laminated body against a stage in contact with the substrate, and a pressure outside the sealed container is set inside the sealed container. It is related with the manufacturing method of an electronic device package including the process of covering an electronic device with a sealing sheet by making it raise from a pressure.
 第1の本発明はまた、積層体の周辺部を基板と接するステージに押し付けることにより、ステージ及び離型フィルムを備える密閉容器を形成する工程と、密閉容器の外部の圧力を密閉容器の内部の圧力より高めることにより、電子デバイスを封止シートで覆う工程とを含む電子デバイスの封止方法に使用するための封止シートに関する。第1の本発明の封止シートは、無機充填剤を含み、無機充填剤の含有量が60~90体積%である。第1の本発明の封止シートは、昇温速度10℃/分、測定周波数1Hz及び歪み5%で測定した最低複素粘度η*を示す温度が100~150℃であり、最低複素粘度η*が30~3000Pa・sである。 The first aspect of the present invention also includes a step of forming a sealed container including a stage and a release film by pressing a peripheral portion of the laminated body against a stage in contact with the substrate, and a pressure outside the sealed container is set inside the sealed container. It is related with the sealing sheet for using for the sealing method of an electronic device including the process of covering an electronic device with a sealing sheet by making it raise from a pressure. The sealing sheet of the first aspect of the present invention contains an inorganic filler, and the content of the inorganic filler is 60 to 90% by volume. The sealing sheet of the first invention has a temperature showing a minimum complex viscosity η * measured at a temperature rising rate of 10 ° C./min, a measurement frequency of 1 Hz, and a strain of 5% of 100 to 150 ° C., and the minimum complex viscosity η * Is 30 to 3000 Pa · s.
 第2の本発明は、キャリア、キャリア上に配置された粘着剤及び粘着剤上に配置された電子デバイスを備えるデバイス仮固定体、
 デバイス仮固定体上に配置された封止シート、並びに
 封止シートと接する中央部及び中央部の周辺に配置された周辺部を備える離型フィルムを備える積層構造体の
 周辺部をキャリアと接するステージに押し付けることにより、ステージ及び離型フィルムを備える密閉容器を形成する工程と、
 密閉容器の外部の圧力を密閉容器の内部の圧力より高めることにより、電子デバイスを封止シートで覆う工程とを含む電子デバイスの封止方法に関する。
2nd this invention is a device temporary fixing body provided with the carrier, the adhesive arrange | positioned on a carrier, and the electronic device arrange | positioned on an adhesive,
A stage in which the peripheral part of the laminated structure including the sealing sheet disposed on the device temporary fixing body and the release film including the central part in contact with the sealing sheet and the peripheral part disposed in the periphery of the central part is in contact with the carrier Forming a sealed container including a stage and a release film by pressing the
The method of sealing an electronic device including the step of covering the electronic device with a sealing sheet by increasing the pressure outside the sealed container to be higher than the pressure inside the sealed container.
 第2の本発明の封止方法では、密閉容器の内外の圧力差を利用して、電子デバイスを覆う。第2の本発明の封止方法では、例えば、特許第5189194号公報に記載の真空加熱接合装置を用いることができる。 In the sealing method of the second aspect of the present invention, the electronic device is covered by utilizing the pressure difference between the inside and outside of the sealed container. In the sealing method of the second aspect of the present invention, for example, a vacuum heating bonding apparatus described in Japanese Patent No. 5189194 can be used.
 第2の本発明の封止方法は、無機充填剤の含有量が60体積%以上であり、最低複素粘度η*を示す温度が100~150℃であり、最低複素粘度η*が30Pa・s以上の封止シートを用いるので、封止シートのはみ出しを防止できる。また、無機充填剤の含有量が90体積%以下であり、最低複素粘度η*が3000Pa・s以下の封止シートを用いるので、凹凸を良好に埋め込むことができる。
 第2の本発明の封止方法は、離型フィルム及び離型フィルム上に積層された封止シートを備える封止シート付き離型フィルムを減圧雰囲気下でデバイス仮固定体上に配置することにより、積層構造体を形成する工程をさらに含んでもよい。減圧雰囲気下で封止シートを電子デバイスと接触させるため、封止シートと電子デバイスの間へのボイドの入り込み、及び封止シートと粘着剤の間へのボイドの入り込みを防止できる。
In the sealing method of the second aspect of the present invention, the content of the inorganic filler is 60% by volume or more, the temperature showing the lowest complex viscosity η * is 100 to 150 ° C., and the lowest complex viscosity η * is 30 Pa · s. Since the above sealing sheet is used, the protrusion of the sealing sheet can be prevented. Moreover, since the sealing sheet having an inorganic filler content of 90% by volume or less and a minimum complex viscosity η * of 3000 Pa · s or less is used, the unevenness can be embedded well.
The sealing method of 2nd this invention is by arrange | positioning a mold release film with a sealing sheet provided with the mold release film and the sealing sheet laminated | stacked on the mold release film on a device temporary fixing body in a pressure-reduced atmosphere. The method may further include a step of forming a laminated structure. Since the sealing sheet is brought into contact with the electronic device under a reduced-pressure atmosphere, it is possible to prevent entry of voids between the sealing sheet and the electronic device and entry of voids between the sealing sheet and the adhesive.
 第2の本発明はまた、積層構造体の周辺部をキャリアと接するステージに押し付けることにより、ステージ及び離型フィルムを備える密閉容器を形成する工程と、密閉容器の外部の圧力を密閉容器の内部の圧力より高めることにより、電子デバイスを封止シートで覆う工程とを含む電子デバイスパッケージの製造方法に関する。 The second aspect of the present invention also includes a step of forming a sealed container including a stage and a release film by pressing the peripheral portion of the laminated structure against a stage in contact with the carrier, and the pressure outside the sealed container is adjusted to the inside of the sealed container. It is related with the manufacturing method of an electronic device package including the process of covering an electronic device with a sealing sheet by making it raise from pressure of this.
 第2の本発明はまた、積層構造体の周辺部をキャリアと接するステージに押し付けることにより、ステージ及び離型フィルムを備える密閉容器を形成する工程と、密閉容器の外部の圧力を密閉容器の内部の圧力より高めることにより、電子デバイスを封止シートで覆う工程とを含む電子デバイスの封止方法に使用するための封止シートに関する。第2の本発明の封止シートは、無機充填剤を含み、無機充填剤の含有量が60~90体積%である。第2の本発明の封止シートは、昇温速度10℃/分、測定周波数1Hz及び歪み5%で測定した最低複素粘度η*を示す温度が100~150℃であり、最低複素粘度η*が30~3000Pa・sである。 The second aspect of the present invention also includes a step of forming a sealed container including a stage and a release film by pressing the peripheral portion of the laminated structure against a stage in contact with the carrier, and the pressure outside the sealed container is adjusted to the inside of the sealed container. It is related with the sealing sheet for using it for the sealing method of an electronic device including the process of covering an electronic device with a sealing sheet by making it raise from the pressure of this. The sealing sheet according to the second aspect of the present invention contains an inorganic filler, and the content of the inorganic filler is 60 to 90% by volume. The sealing sheet of the second aspect of the present invention has a temperature showing a minimum complex viscosity η * measured at a temperature rising rate of 10 ° C./min, a measurement frequency of 1 Hz and a strain of 5% of 100 to 150 ° C., and the minimum complex viscosity η * Is 30 to 3000 Pa · s.
真空熱加圧装置の概略図である。It is the schematic of a vacuum heat press apparatus. 基板置台上に、基板、電子デバイス、封止シート、離型フィルムをこの順に配置した様子を模式的に示す図である。It is a figure which shows typically a mode that the board | substrate, the electronic device, the sealing sheet, and the release film were arrange | positioned in this order on the board | substrate mounting stand. 上ヒータ板、上枠部材及び下板部材によって真空隔壁を形成した様子を模式的に示す図である。It is a figure which shows typically a mode that the vacuum partition was formed with the upper heater board, the upper frame member, and the lower board member. 基板、電子デバイス及び封止シートを離型フィルムで覆って、基板、電子デバイス及び封止シートを収容する密閉空間を形成した様子を模式的に示す図である。It is a figure which shows typically a mode that the board | substrate, the electronic device, and the sealing sheet were covered with the release film, and the sealed space which accommodates a board | substrate, an electronic device, and a sealing sheet was formed. 真空チェンバーにガスを導入して、封止シートを電子デバイスに押しつけた様子を模式的に示す図である。It is a figure which shows typically a mode that gas was introduce | transduced into the vacuum chamber and the sealing sheet was pressed on the electronic device. 天板により電子デバイスパッケージを平坦化する様子を模式的に示す図である。It is a figure which shows typically a mode that an electronic device package is planarized with a top plate. 封止シート付き離型フィルムを枠状押え部に固定した様子を模式的に示す図である。It is a figure which shows typically a mode that the release film with a sealing sheet was fixed to the frame-shaped pressing part. 上ヒータ板、上枠部材及び下板部材によって真空隔壁を形成した様子を模式的に示す図である。It is a figure which shows typically a mode that the vacuum partition was formed with the upper heater board, the upper frame member, and the lower board member. 基板、電子デバイス及び封止シートを離型フィルムで覆って、基板、電子デバイス及び封止シートを収容する密閉空間を形成した様子を模式的に示す図である。It is a figure which shows typically a mode that the board | substrate, the electronic device, and the sealing sheet were covered with the release film, and the sealed space which accommodates a board | substrate, an electronic device, and a sealing sheet was formed. 真空チェンバーにガスを導入して、封止シートを電子デバイスに押しつけた様子を模式的に示す図である。It is a figure which shows typically a mode that gas was introduce | transduced into the vacuum chamber and the sealing sheet was pressed on the electronic device. 天板により電子デバイスパッケージを平坦化する様子を模式的に示す図である。It is a figure which shows typically a mode that an electronic device package is planarized with a top plate. ステージ上に積層構造体を配置した様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the laminated structure has been arrange | positioned on the stage. チップ仮固定体の概略断面図である。It is a schematic sectional drawing of a chip temporary fixing body. 真空チェンバーを形成した様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the vacuum chamber was formed. チップ仮固定体及び封止シートを格納する密閉容器を形成した様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the airtight container which stores a chip | tip temporary fixing body and a sealing sheet was formed. 密閉容器の外部の圧力を大気圧にした様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the external pressure of the airtight container was made into atmospheric pressure. 密閉容器の内外の圧力差を利用して封止体を形成した様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the sealing body was formed using the pressure difference inside and outside of an airtight container. 封止体の横にスペーサーを配置した様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the spacer was arrange | positioned beside the sealing body. 封止体を平板で押さえつけた様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the sealing body was pressed down with the flat plate. 硬化体などの概略断面図である。It is a schematic sectional drawing, such as a hardening body. 硬化体の概略断面図である。It is a schematic sectional drawing of a hardening body. 硬化体上にバッファーコート膜を形成した様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the buffer coat film | membrane was formed on the hardening body. バッファーコート膜上にマスクを配置した状態で、バッファーコート膜に開口を形成する様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that opening is formed in a buffer coat film in the state which has arrange | positioned the mask on the buffer coat film. マスク除去後の様子の概略を示す断面図である。It is sectional drawing which shows the outline of the mode after mask removal. シード層上に、レジストを形成した様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the resist was formed on the seed layer. シード層上にめっきパターンを形成した様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the plating pattern was formed on the seed layer. 再配線を形成した様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the rewiring was formed. 再配線上に保護膜を形成した様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the protective film was formed on rewiring. 保護膜に開口を形成した様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that opening was formed in the protective film. 再配線上に電極を形成した様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the electrode was formed on rewiring. 電極上にバンプを形成した様子の概略を示す断面図であるIt is sectional drawing which shows the outline of a mode that bump was formed on the electrode. 再配線体をダイシングすることにより得られた半導体パッケージの概略断面図である。It is a schematic sectional drawing of the semiconductor package obtained by dicing the rewiring body.
 以下に実施形態を掲げ、第1及び第2の本発明を詳細に説明するが、第1及び第2の本発明はこれらの実施形態のみに限定されるものではない。 Embodiments are listed below and the first and second aspects of the present invention are described in detail. However, the first and second aspects of the present invention are not limited only to these embodiments.
 [実施形態1]
 (真空熱加圧装置)
 まず、実施形態1の封止方法で使用する真空熱加圧装置(真空加熱接合装置)について説明する。
[Embodiment 1]
(Vacuum heat press)
First, the vacuum heat press apparatus (vacuum heating joining apparatus) used with the sealing method of Embodiment 1 is demonstrated.
 図1に示すように、真空熱加圧装置において、基台1上に加圧シリンダ下板2が配置され、加圧シリンダ下板2上にスライド移動テーブル3がスライドシリンダ4によって真空熱加圧装置内外を移動可能に配置されている。スライド移動テーブル3の上方には、下ヒータ板5が断熱配置されており、下ヒータ板5の上面には下板部材6が配置され、下板部材6の上面には基板置台7(以下、基板置台7をステージ7ともいう)が配置されている。 As shown in FIG. 1, in a vacuum heat press apparatus, a pressure cylinder lower plate 2 is disposed on a base 1, and a slide moving table 3 is vacuum heat pressed by a slide cylinder 4 on the pressure cylinder lower plate 2. It is arranged to be movable inside and outside the device. A lower heater plate 5 is thermally insulated above the slide moving table 3. A lower plate member 6 is disposed on the upper surface of the lower heater plate 5. The substrate table 7 is also referred to as a stage 7).
 加圧シリンダ下板2の上には複数の支柱8が配置立設され、支柱8の上端部には加圧シリンダ上板9が固定されている。支柱8は基台1上に直接立設してもよい。加圧シリンダ上板9の下方には支柱8を通して中間移動部材(中間部材)10が配置されており、中間移動部材10の下方には断熱板を介して上ヒータ板11が固定され、上ヒータ板11の下面の外周部には上枠部材12が気密に固定され下方に延びている。また、上ヒータ板11の下面で上枠部材12の内方には内方枠体13が固定されている。上ヒータ板11は、例えば離型フィルム24及び封止シート23の軟化用のヒータとして機能できる。下ヒータ板5は、例えば基板21の予熱用ヒータとして機能できる。また、上ヒータ板11の下面上で内方枠体13の内方には天板17(以下、平板17ともいう)が固定されている。 A plurality of support columns 8 are arranged and erected on the pressure cylinder lower plate 2, and a pressure cylinder upper plate 9 is fixed to the upper end portion of the support column 8. The support column 8 may be erected directly on the base 1. An intermediate moving member (intermediate member) 10 is disposed below the pressure cylinder upper plate 9 through a support column 8, and an upper heater plate 11 is fixed below the intermediate moving member 10 via a heat insulating plate. An upper frame member 12 is airtightly fixed to the outer peripheral portion of the lower surface of the plate 11 and extends downward. An inner frame 13 is fixed to the inner surface of the upper frame member 12 on the lower surface of the upper heater plate 11. The upper heater plate 11 can function as a heater for softening the release film 24 and the sealing sheet 23, for example. The lower heater plate 5 can function as a preheating heater for the substrate 21, for example. A top plate 17 (hereinafter also referred to as a flat plate 17) is fixed to the inner side of the inner frame 13 on the lower surface of the upper heater plate 11.
 内方枠体13は、下端部の枠状押え部13aとそれから上方に延びるロッド13bとを備え、ロッド13bの周りにはスプリングが配置され、ロッド13bは上ヒータ板11の下面に断熱固定されている。枠状押え部13aはロッド13bに対してスプリングにより下方に付勢されている。枠状押え部13aとステージ7の間に離型フィルム24を気密に保持できる。 The inner frame 13 includes a frame-shaped pressing portion 13a at the lower end portion and a rod 13b extending upward therefrom, a spring is disposed around the rod 13b, and the rod 13b is insulated and fixed to the lower surface of the upper heater plate 11. ing. The frame-shaped presser 13a is biased downward by a spring with respect to the rod 13b. The release film 24 can be kept airtight between the frame-shaped presser 13 a and the stage 7.
 加圧シリンダ上板9の上面には加圧シリンダ14が配置され、加圧シリンダ14のシリンダロッド15は加圧シリンダ上板9を通って中間移動部材10の上面に固定され、加圧シリンダ14によって、中間移動部材10と上ヒータ板11と上方枠体12とが上下に一体的に移動可能となっている。図1において、Sは、加圧シリンダ14による中間移動部材10と上ヒータ板11と上方枠体12の下方の移動を規制するストッパーであり、下降して加圧シリンダ14本体の上面のストッパープレートに当接するようになっている。加圧シリンダ14としては、油圧シリンダ、空圧シリンダ、サーボシリンダなどが使用される。 A pressure cylinder 14 is disposed on the upper surface of the pressure cylinder upper plate 9, and a cylinder rod 15 of the pressure cylinder 14 passes through the pressure cylinder upper plate 9 and is fixed to the upper surface of the intermediate moving member 10. Accordingly, the intermediate moving member 10, the upper heater plate 11, and the upper frame body 12 can be integrally moved up and down. In FIG. 1, S is a stopper that restricts the downward movement of the intermediate moving member 10, the upper heater plate 11, and the upper frame 12 by the pressure cylinder 14, and is lowered to a stopper plate on the upper surface of the pressure cylinder 14 body. It comes to contact with. As the pressure cylinder 14, a hydraulic cylinder, a pneumatic cylinder, a servo cylinder, or the like is used.
 加圧シリンダ14で上枠部材12を引き上げた状態から下降させることにより、上枠部材12の下端部を下板部材6の外周部端部に設けた段差部に気密に摺動させることができる。これにより、上ヒータ板11、上枠部材12及び下板部材6を備える真空隔壁(以下、真空隔壁を格納容器ともいう)を形成できる。なお、上枠部材12には真空隔壁の内部(以下、真空隔壁の内部を真空チェンバーともいう)を真空引きし、加圧するための真空・加圧口16が設けられている。 By lowering the upper frame member 12 from the state where the upper cylinder member 12 is pulled up by the pressure cylinder 14, the lower end portion of the upper frame member 12 can be airtightly slid to the stepped portion provided at the outer peripheral end portion of the lower plate member 6. . Thereby, the vacuum partition (henceforth a vacuum partition is also called a storage container) provided with the upper heater board 11, the upper frame member 12, and the lower board member 6 can be formed. The upper frame member 12 is provided with a vacuum / pressure port 16 for evacuating and pressurizing the inside of the vacuum partition (hereinafter, the interior of the vacuum partition is also referred to as a vacuum chamber).
 真空チェンバーを開いた状態で、スライドシリンダ4によって、スライド移動テーブル3、下ヒータ板5及び下板部材6を一体として外部に引き出すことができる。これらを引き出した状態で、ステージ7の上に、基板21などを配置できる。 With the vacuum chamber opened, the slide moving table 3, the lower heater plate 5, and the lower plate member 6 can be pulled out to the outside by the slide cylinder 4. The substrate 21 and the like can be arranged on the stage 7 in a state where these are pulled out.
 次に、実施形態1の封止方法の各工程について説明する。 Next, each process of the sealing method of Embodiment 1 is demonstrated.
 (配置工程)
 図2に示すように、ステージ7上に積層体41を配置する。積層体41は、デバイス付き基板42、デバイス付き基板42上に配置された封止シート23及び封止シート23上に配置された離型フィルム24を備える。
(Arrangement process)
As shown in FIG. 2, the stacked body 41 is disposed on the stage 7. The laminated body 41 includes a device-equipped substrate 42, a sealing sheet 23 disposed on the device-equipped substrate 42, and a release film 24 disposed on the sealing sheet 23.
 デバイス付き基板42は、基板21及び基板21上に配置された電子デバイス22を備える。 The device-equipped substrate 42 includes the substrate 21 and the electronic device 22 disposed on the substrate 21.
 離型フィルム24は、封止シート23と接する中央部24a及び中央部24aの周辺に配置された周辺部24bを備える。 The release film 24 includes a central portion 24a that is in contact with the sealing sheet 23 and a peripheral portion 24b that is disposed around the central portion 24a.
 なお、配置工程では、例えば、基板21上に配置された電子デバイス22の上に封止シート23と離型フィルム24をこの順に配置してもよい。 In the arrangement step, for example, the sealing sheet 23 and the release film 24 may be arranged in this order on the electronic device 22 arranged on the substrate 21.
 離型フィルム24の外形寸法は、基板21、電子デバイス22及び封止シート23を覆うことが可能な大きさである。 The outer dimension of the release film 24 is a size that can cover the substrate 21, the electronic device 22, and the sealing sheet 23.
 封止シート23の外形寸法は、電子デバイス22を封止可能な大きさである。例えば、ステージ7と枠状押え部13aの間に離型フィルム24を気密に保持した場合に、封止シート23はステージ7と枠状押え部13aの間に挟まれない大きさである。 The outer dimension of the sealing sheet 23 is a size capable of sealing the electronic device 22. For example, when the release film 24 is airtightly held between the stage 7 and the frame-shaped pressing portion 13a, the sealing sheet 23 is a size that is not sandwiched between the stage 7 and the frame-shaped pressing portion 13a.
 封止シート23は、後で詳細に説明する。 The sealing sheet 23 will be described in detail later.
 電子デバイス22としては特に限定されず、例えば、SAW(Surface Acoustic Wave)フィルタや、圧力センサ、振動センサなどのMEMS(Micro Electro Mechanical Systems)デバイスや、LSIなどのIC(集積回路)や、トランジスタなどの半導体;コンデンサ;抵抗などが挙げられる。 The electronic device 22 is not particularly limited. For example, a SAW (Surface Acoustic Wave) filter, a MEMS (Micro Electro Mechanical Systems) device such as a pressure sensor and a vibration sensor, an IC (integrated circuit) such as an LSI, a transistor, etc. Semiconductors, capacitors, resistors, and the like.
 基板21としては特に限定されず、例えば、プリント配線基板、セラミック基板、シリコン基板、金属基板などが挙げられる。 The substrate 21 is not particularly limited, and examples thereof include a printed wiring board, a ceramic substrate, a silicon substrate, and a metal substrate.
 基板21としては、プラズマ処理を施したものが好ましい。プラズマ化する気体としては、アルゴンなどが挙げられる。これにより、電気的接続の信頼性を向上できる。 The substrate 21 is preferably one that has been subjected to plasma treatment. Argon etc. are mentioned as gas which turns into plasma. Thereby, the reliability of electrical connection can be improved.
 離型フィルム24の材質としては特に限定されず、例えば、フッ素系フィルム、ポリオレフィン系フィルムなどが挙げられる。なかでも、耐熱性と引っ張り伸び特性が良いという理由から、ポリ-4-メチルペンテン-1が好ましい。 The material of the release film 24 is not particularly limited, and examples thereof include a fluorine film and a polyolefin film. Of these, poly-4-methylpentene-1 is preferred because of its good heat resistance and tensile elongation characteristics.
 離型フィルム24の常温における引張破断伸びは好ましくは30%以上、より好ましくは40%以上である。30%以上であると、成型時の凹凸追従性が良い。離型フィルム24の常温における引張破断伸びは好ましくは300%以下、より好ましくは100%以下である。300%以下であると、剥離作業がし易い。
 引張破断伸びは、ASTM D882に従って測定できる。
The tensile elongation at break of the release film 24 at room temperature is preferably 30% or more, more preferably 40% or more. When it is 30% or more, the unevenness followability at the time of molding is good. The tensile elongation at break of the release film 24 at room temperature is preferably 300% or less, more preferably 100% or less. If it is 300% or less, peeling work is easy.
The tensile elongation at break can be measured according to ASTM D882.
 離型フィルム24の軟化温度は特に限定されないが、好ましくは80℃以下、より好ましくは60℃以下である。80℃以下であると、成型時の凹凸追従性が良い。また、離型フィルム24の軟化温度は、好ましくは0℃以上である。
 なお、引っ張り弾性率が300MPaとなる温度を軟化温度とする。
Although the softening temperature of the release film 24 is not specifically limited, Preferably it is 80 degrees C or less, More preferably, it is 60 degrees C or less. When the temperature is 80 ° C. or less, the unevenness followability during molding is good. The softening temperature of the release film 24 is preferably 0 ° C. or higher.
The temperature at which the tensile elastic modulus is 300 MPa is defined as the softening temperature.
 離型フィルム24の表面は、凹凸形状が好ましい。これにより、離型フィルム24を封止シート23から良好に剥離できる。 The surface of the release film 24 is preferably an uneven shape. Thereby, the release film 24 can be favorably peeled from the sealing sheet 23.
 離型フィルム24の厚さは特に限定されないが、好ましくは10μm~200μmである。上記範囲内であると、良好に電子デバイス22を封止できる。 The thickness of the release film 24 is not particularly limited, but is preferably 10 μm to 200 μm. Within the above range, the electronic device 22 can be satisfactorily sealed.
 (真空隔壁形成工程)
 図3は、上ヒータ板11、上枠部材12及び下板部材6によって真空隔壁を形成した様子を模式的に示す図である。図3に示すように、加圧シリンダ14により上ヒータ板11を下降させ、上枠部材12の下端部を下板部材6の外縁部の段差に気密に摺動させて真空隔壁を形成する。真空隔壁の内部に真空チェンバーを形成した段階で、上ヒータ板11の下降を停止する。
(Vacuum partition formation process)
FIG. 3 is a diagram schematically illustrating a state in which a vacuum partition is formed by the upper heater plate 11, the upper frame member 12, and the lower plate member 6. As shown in FIG. 3, the upper heater plate 11 is lowered by the pressure cylinder 14, and the lower end portion of the upper frame member 12 is slid in an airtight manner to the step of the outer edge portion of the lower plate member 6 to form a vacuum partition. When the vacuum chamber is formed inside the vacuum partition, the lowering of the upper heater plate 11 is stopped.
 (真空引き工程)
 真空引き工程では、真空引きを行い、真空チェンバー内を減圧状態(好ましくは真空状態)とした後、離型フィルム24と封止シート23を加熱し、軟化させる。なお、離型フィルム24と封止シート23の加熱は、真空引き前、真空引き中に行ってもよい。
(Evacuation process)
In the evacuation step, evacuation is performed to bring the inside of the vacuum chamber into a reduced pressure state (preferably a vacuum state), and then the release film 24 and the sealing sheet 23 are heated and softened. The release film 24 and the sealing sheet 23 may be heated before or during evacuation.
 離型フィルム24と封止シート23の加熱温度は、50℃~150℃が好ましい。 The heating temperature of the release film 24 and the sealing sheet 23 is preferably 50 ° C. to 150 ° C.
 図3に示すように、封止シート23は、電子デバイス22と接する接触部から接触部の周辺に向かって傾斜している。また、離型フィルム24は、中央部24aから周辺部24bに向かって傾斜している。周辺部24bの一部はステージ7と接している。 As shown in FIG. 3, the sealing sheet 23 is inclined from the contact portion in contact with the electronic device 22 toward the periphery of the contact portion. Further, the release film 24 is inclined from the central portion 24a toward the peripheral portion 24b. A part of the peripheral portion 24 b is in contact with the stage 7.
 (密閉空間形成工程)
 図4に示すように、上ヒータ板11を更に下降させて、内方部材13の下端部の下面で、離型フィルム24をステージ7に押さえつけて、基板21、電子デバイス22及び封止シート23を離型フィルム24で覆う。これにより、基板21、電子デバイス22及び封止シート23を収容する密閉空間を形成する。
 すなわち、枠状押え部13aで周辺部24bをステージ7に押さえつけることにより、密閉容器121を形成する。密閉容器121は、ステージ7及び離型フィルム24を備える。密閉容器121の内部(密閉空間)には、基板21、電子デバイス22及び封止シート23が配置されている。なお、真空チェンバー内を減圧状態にした後に密閉空間を形成するため、密閉空間の内部及び外部は減圧状態である。
(Sealed space formation process)
As shown in FIG. 4, the upper heater plate 11 is further lowered, and the release film 24 is pressed against the stage 7 on the lower surface of the lower end portion of the inner member 13, so that the substrate 21, the electronic device 22, and the sealing sheet 23 are pressed. Is covered with a release film 24. Thereby, a sealed space for accommodating the substrate 21, the electronic device 22, and the sealing sheet 23 is formed.
That is, the hermetic container 121 is formed by pressing the peripheral portion 24b against the stage 7 with the frame-shaped pressing portion 13a. The sealed container 121 includes a stage 7 and a release film 24. Inside the sealed container 121 (sealed space), the substrate 21, the electronic device 22, and the sealing sheet 23 are arranged. In addition, in order to form a sealed space after the inside of the vacuum chamber is in a reduced pressure state, the inside and the outside of the sealed space are in a reduced pressure state.
 (封止工程)
 図5に示すように、真空・加圧口16を通して真空チェンバーにガスを導入して、密閉空間の外部の圧力を密閉空間の内部より高めて、封止シート23を電子デバイス22に押しつける。これにより、封止シート23で電子デバイス22が封止された電子デバイスパッケージを得ることができる。ガスとしては特に限定されず、空気、窒素などが挙げられる。また、ガス圧力は特に限定されないが、大気圧以上が好ましい。ガス導入により、密閉空間の外部の圧力を大気圧以上に高められる。電子デバイスパッケージは、デバイス付き基板42及びデバイス付き基板42上に配置された樹脂層を備える。
(Sealing process)
As shown in FIG. 5, gas is introduced into the vacuum chamber through the vacuum / pressurizing port 16, the pressure outside the sealed space is increased from the inside of the sealed space, and the sealing sheet 23 is pressed against the electronic device 22. Thereby, an electronic device package in which the electronic device 22 is sealed with the sealing sheet 23 can be obtained. The gas is not particularly limited, and examples thereof include air and nitrogen. The gas pressure is not particularly limited, but is preferably atmospheric pressure or higher. By introducing gas, the pressure outside the sealed space can be raised to atmospheric pressure or higher. The electronic device package includes a device-equipped substrate 42 and a resin layer disposed on the device-equipped substrate 42.
 図6に示すように、ガス導入後、天板17を下降させて、離型フィルム24を介して電子デバイスパッケージを加圧することにより、電子デバイスパッケージの離型フィルム24側の面を平坦化してもよい。これにより、電子デバイスパッケージの厚みを均一化できる。加圧する圧力としては、0.5~20kgf/cmが好ましい。 As shown in FIG. 6, after introducing the gas, the top plate 17 is lowered, and the electronic device package is pressurized through the release film 24 to flatten the surface of the electronic device package on the release film 24 side. Also good. Thereby, the thickness of the electronic device package can be made uniform. The pressure applied is preferably 0.5 to 20 kgf / cm 2 .
 (その他の工程)
 電子デバイスパッケージを加熱することにより、樹脂層を硬化させる。次いで、電子デバイスパッケージ上にバンプを設ける。次いで、電子デバイスパッケージをダイシングしてチップ化してもよい。
(Other processes)
The resin layer is cured by heating the electronic device package. Next, bumps are provided on the electronic device package. Next, the electronic device package may be diced into chips.
 なお、電子デバイスパッケージに再配線を形成してもよい。 Note that rewiring may be formed in the electronic device package.
 (封止シート23)
 次に、封止シート23について説明する。
(Sealing sheet 23)
Next, the sealing sheet 23 will be described.
 封止シート23は、昇温速度10℃/分、測定周波数1Hz及び歪み5%で測定した最低複素粘度η*を示す温度が100~150℃であり、最低複素粘度η*が30~3000Pa・sである。最低複素粘度η*を示す温度が100~150℃であり、最低複素粘度η*が30Pa・s以上であるので、はみ出しを防止できる。一方、最低複素粘度η*を示す温度が100~150℃であり、最低複素粘度η*が3000Pa・s以下であるので、凹凸を良好に埋め込むことができる。 The sealing sheet 23 has a temperature showing a minimum complex viscosity η * measured at a heating rate of 10 ° C./min, a measurement frequency of 1 Hz, and a strain of 5% of 100 to 150 ° C., and a minimum complex viscosity η * of 30 to 3000 Pa · s. Since the temperature showing the lowest complex viscosity η * is 100 to 150 ° C. and the lowest complex viscosity η * is 30 Pa · s or more, the protrusion can be prevented. On the other hand, since the temperature showing the lowest complex viscosity η * is 100 to 150 ° C. and the lowest complex viscosity η * is 3000 Pa · s or less, the unevenness can be embedded well.
 最低複素粘度η*は、好ましくは100Pa・s以上である。また、最低複素粘度η*は、好ましくは2500Pa・s以下、より好ましくは2000Pa・s以下である。 The minimum complex viscosity η * is preferably 100 Pa · s or more. The lowest complex viscosity η * is preferably 2500 Pa · s or less, more preferably 2000 Pa · s or less.
 最低複素粘度η*は、無機充填剤の含有量、無機充填剤の種類、有機成分の溶融粘度によりコントロールできる。 The minimum complex viscosity η * can be controlled by the content of the inorganic filler, the type of the inorganic filler, and the melt viscosity of the organic component.
 最低複素粘度η*を示す温度は、主には硬化触媒の種類と量によりコントロールできる。 The temperature showing the lowest complex viscosity η * can be controlled mainly by the type and amount of the curing catalyst.
 最低複素粘度η及び最低複素粘度η*を示す温度は、実施例に記載の方法で測定できる。 The temperature indicating the lowest complex viscosity η and the lowest complex viscosity η * can be measured by the method described in Examples.
 封止シート23は、熱硬化性樹脂を含むことが好ましい。熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂などを好適に使用できる。 It is preferable that the sealing sheet 23 contains a thermosetting resin. As a thermosetting resin, an epoxy resin, a phenol resin, etc. can be used conveniently, for example.
 エポキシ樹脂としては、特に限定されるものではない。例えば、トリフェニルメタン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、変性ビスフェノールA型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、変性ビスフェノールF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、フェノキシ樹脂などの各種のエポキシ樹脂を用いることができる。これらエポキシ樹脂は単独で用いてもよいし2種以上併用してもよい。 The epoxy resin is not particularly limited. For example, triphenylmethane type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, modified bisphenol A type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, modified bisphenol F type epoxy resin, dicyclopentadiene type Various epoxy resins such as an epoxy resin, a phenol novolac type epoxy resin, and a phenoxy resin can be used. These epoxy resins may be used alone or in combination of two or more.
 エポキシ樹脂としては特に限定しないが、硬化前の可とう性及び硬化後の成型物硬度、強度を確保する観点からは、エポキシ当量150~250、軟化点もしくは融点が50~130℃の常温で固形のものが好ましい。なかでも、ビスフェノール型エポキシ樹脂を含むことが好ましく、ビスフェノールF型エポキシ樹脂を含むことがより好ましい。 Although it does not specifically limit as an epoxy resin, From a viewpoint of ensuring the flexibility before hardening and the molding hardness and intensity | strength after hardening, it is solid at normal temperature of epoxy equivalent 150-250, a softening point, or melting | fusing point 50-130 degreeC. Are preferred. Especially, it is preferable that a bisphenol type epoxy resin is included, and it is more preferable that a bisphenol F type epoxy resin is included.
 フェノール樹脂は、エポキシ樹脂との間で硬化反応を生起するものであれば特に限定されるものではない。例えば、フェノールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ジシクロペンタジエン型フェノール樹脂、クレゾールノボラック樹脂、レゾール樹脂などが用いられる。これらフェノール樹脂は単独で用いてもよいし、2種以上併用してもよい。 The phenol resin is not particularly limited as long as it causes a curing reaction with the epoxy resin. For example, a phenol novolac resin, a phenol aralkyl resin, a biphenyl aralkyl resin, a dicyclopentadiene type phenol resin, a cresol novolak resin, a resole resin, or the like is used. These phenolic resins may be used alone or in combination of two or more.
 フェノール樹脂としては、エポキシ樹脂との反応性の観点から、水酸基当量が70~250、軟化点が50~110℃のものを用いることが好ましく、なかでも硬化反応性が高いという観点から、フェノールノボラック樹脂を好適に用いることができる。
また、硬化物の低反り性、低吸水性という点から、ビフェニルアラルキル骨格を有するフェノール樹脂を好適に用いることができる。
As the phenolic resin, those having a hydroxyl equivalent weight of 70 to 250 and a softening point of 50 to 110 ° C. are preferably used from the viewpoint of reactivity with the epoxy resin, and in particular, phenol novolak from the viewpoint of high curing reactivity. Resin can be used suitably.
Moreover, the phenol resin which has a biphenyl aralkyl skeleton can be used suitably from the point of the low curvature property of a hardened | cured material, and low water absorption.
 封止シート23中のエポキシ樹脂及びフェノール樹脂の合計含有量は、5重量%以上が好ましく、10重量%以上がより好ましい。5重量%以上であると、充分な硬化物強度が得られる。封止シート23中のエポキシ樹脂及びフェノール樹脂の合計含有量は、20重量%以下が好ましく、15重量%以下がより好ましい。20重量%以下であると、硬化物の線膨張係数が小さく、かつ低吸水性が得られやすい。 The total content of the epoxy resin and the phenol resin in the sealing sheet 23 is preferably 5% by weight or more, and more preferably 10% by weight or more. When it is 5% by weight or more, sufficient cured product strength can be obtained. The total content of the epoxy resin and the phenol resin in the sealing sheet 23 is preferably 20% by weight or less, and more preferably 15% by weight or less. When it is 20% by weight or less, the linear expansion coefficient of the cured product is small, and low water absorption is easily obtained.
 エポキシ樹脂とフェノール樹脂の配合割合は、硬化反応性という観点から、エポキシ樹脂中のエポキシ基1当量に対して、フェノール樹脂中の水酸基の合計が0.7~1.5当量となるように配合することが好ましく、より好ましくは0.9~1.2当量である。 The blending ratio of the epoxy resin and the phenol resin is blended so that the total of hydroxyl groups in the phenol resin is 0.7 to 1.5 equivalents with respect to 1 equivalent of the epoxy group in the epoxy resin from the viewpoint of curing reactivity. It is preferable to use 0.9 to 1.2 equivalents.
 封止シート23は、無機充填剤を含む。 The sealing sheet 23 contains an inorganic filler.
 無機充填剤としては、例えば、石英ガラス、タルク、シリカ(溶融シリカや結晶性シリカなど)、アルミナ、窒化アルミニウム、窒化珪素、窒化ホウ素などが挙げられる。なかでも、線膨張係数を良好に低減できるという理由から、シリカ、アルミナが好ましく、シリカがより好ましい。シリカとしては、流動性に優れるという理由から、溶融シリカが好ましく、球状溶融シリカがより好ましい。 Examples of the inorganic filler include quartz glass, talc, silica (such as fused silica and crystalline silica), alumina, aluminum nitride, silicon nitride, and boron nitride. Among these, silica and alumina are preferable, and silica is more preferable because the linear expansion coefficient can be satisfactorily reduced. Silica is preferably fused silica and more preferably spherical fused silica because it is excellent in fluidity.
 無機充填剤の平均粒径は、好ましくは0.3μm以上、より好ましくは1μm以上、さらに好ましくは5μm以上である。0.3μm以上であると、封止シート23の可撓性、柔軟性を得易い。無機充填剤の平均粒径は、好ましくは40μm以下、より好ましくは30μm以下である。40μm以下であると、無機充填剤を高充填率化し易い。
 なお、平均粒径は、例えば、母集団から任意に抽出される試料を用い、レーザー回折散乱式粒度分布測定装置を用いて測定することにより導き出すことができる。
The average particle size of the inorganic filler is preferably 0.3 μm or more, more preferably 1 μm or more, and further preferably 5 μm or more. It is easy to obtain the flexibility and softness of the sealing sheet 23 as it is 0.3 μm or more. The average particle size of the inorganic filler is preferably 40 μm or less, more preferably 30 μm or less. When it is 40 μm or less, it is easy to increase the filling rate of the inorganic filler.
The average particle diameter can be derived, for example, by using a sample arbitrarily extracted from the population and measuring it using a laser diffraction / scattering particle size distribution measuring apparatus.
 封止シート23中の無機充填剤の含有量は、60体積%以上であり、好ましくは65体積%以上である。60体積%以上であるので、低吸水性、低反り性の硬化後成型物が得られる。一方、無機充填剤の含有量は、90体積%以下であり、好ましくは85体積%以下である。90体積%以下であるので、硬化前の封止シート23の割れ、欠けを防止できる。 The content of the inorganic filler in the sealing sheet 23 is 60% by volume or more, preferably 65% by volume or more. Since it is 60 vol% or more, a molded product having low water absorption and low warpage can be obtained. On the other hand, the content of the inorganic filler is 90% by volume or less, preferably 85% by volume or less. Since it is 90 volume% or less, the crack and notch | chip of the sealing sheet 23 before hardening can be prevented.
 無機充填剤の含有量は、「重量%」を単位としても説明できる。代表的にシリカの含有量について、「重量%」を単位として説明する。
 シリカは通常、比重2.2g/cmであるので、シリカの含有量(重量%)の好適範囲は例えば以下のとおりである。
 すなわち、封止シート23中のシリカの含有量は、73重量%以上が好ましく、77重量%以上がより好ましい。封止シート23中のシリカの含有量は、94重量%以下が好ましく、91重量%以下がより好ましい。
The content of the inorganic filler can be explained by using “wt%” as a unit. Typically, the content of silica will be described in units of “% by weight”.
Since silica usually has a specific gravity of 2.2 g / cm 3 , the preferred range of the silica content (% by weight) is, for example, as follows.
That is, the content of silica in the sealing sheet 23 is preferably 73% by weight or more, and more preferably 77% by weight or more. 94 weight% or less is preferable and, as for content of the silica in the sealing sheet 23, 91 weight% or less is more preferable.
 アルミナは通常、比重3.9g/cmであるので、アルミナの含有量(重量%)の好適範囲は例えば以下のとおりである。
 すなわち、封止シート23中のアルミナの含有量は、83重量%以上が好ましく、86重量%以上がより好ましい。封止シート23中のアルミナの含有量は、95重量%以下が好ましく、93重量%以下がより好ましい。
Since alumina usually has a specific gravity of 3.9 g / cm 3 , the preferred range of the alumina content (% by weight) is, for example, as follows.
That is, the content of alumina in the sealing sheet 23 is preferably 83% by weight or more, and more preferably 86% by weight or more. 95 weight% or less is preferable and, as for content of the alumina in the sealing sheet 23, 93 weight% or less is more preferable.
 封止シート23は、シランカップリング剤を含むことが好ましい。 The sealing sheet 23 preferably contains a silane coupling agent.
 シランカップリング剤は、分子中に加水分解性基及び有機官能基を有する化合物である。 The silane coupling agent is a compound having a hydrolyzable group and an organic functional group in the molecule.
 加水分解性基としては、例えば、メトキシ基、エトキシ基などの炭素数1~6のアルコキシ基、アセトキシ基、2-メトキシエトキシ基等が挙げられる。なかでも、加水分解によって生じるアルコールなどの揮発成分を除去し易いという理由から、メトキシ基が好ましい。 Examples of the hydrolyzable group include an alkoxy group having 1 to 6 carbon atoms such as a methoxy group and an ethoxy group, an acetoxy group, and a 2-methoxyethoxy group. Among these, a methoxy group is preferable because it easily removes volatile components such as alcohol generated by hydrolysis.
 有機官能基としては、ビニル基、エポキシ基、スチリル基、メタクリル基、アクリル基、アミノ基、ウレイド基、メルカプト基、スルフィド基、イソシアネート基などが挙げられる。なかでも、無機充填剤の凝集を抑制するという理由から、メタクリル基が好ましい。 Examples of the organic functional group include vinyl group, epoxy group, styryl group, methacryl group, acrylic group, amino group, ureido group, mercapto group, sulfide group, and isocyanate group. Among these, a methacryl group is preferable because it suppresses aggregation of the inorganic filler.
 シランカップリング剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシランなどのビニル基含有シランカップリング剤;2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシランなどのエポキシ基含有シランカップリング剤;p-スチリルトリメトキシシランなどのスチリル基含有シランカップリング剤;3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシランなどのメタクリル基含有シランカップリング剤;3-アクリロキシプロピルトリメトキシシランなどのアクリル基含有シランカップリング剤;N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランなどのアミノ基含有シランカップリング剤;3-ウレイドプロピルトリエトキシシランなどのウレイド基含有シランカップリング剤;3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシランなどのメルカプト基含有シランカップリング剤;ビス(トリエトキシシリルプロピル)テトラスルフィドなどのスルフィド基含有シランカップリング剤;3-イソシアネートプロピルトリエトキシシランなどのイソシアネート基含有シランカップリング剤などが挙げられる。 Examples of the silane coupling agent include vinyl group-containing silane coupling agents such as vinyltrimethoxysilane and vinyltriethoxysilane; 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyl Epoxy group-containing silane coupling agents such as dimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane; p-styryltrimethoxysilane, etc. Styryl group-containing silane coupling agent: 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltri Methacrylic group-containing silane coupling agents such as toxisilane; Acrylic group-containing silane coupling agents such as 3-acryloxypropyltrimethoxysilane; N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (Aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N Amino group-containing silane coupling agents such as phenyl-3-aminopropyltrimethoxysilane and N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane; ureido such as 3-ureidopropyltriethoxysilane Group-containing silane cup A mercapto group-containing silane coupling agent such as 3-mercaptopropylmethyldimethoxysilane and 3-mercaptopropyltrimethoxysilane; a sulfide group-containing silane coupling agent such as bis (triethoxysilylpropyl) tetrasulfide; 3-isocyanate Examples include isocyanate group-containing silane coupling agents such as propyltriethoxysilane.
 シランカップリング剤の含有量は特に限定されないが、無機充填剤100重量部に対して、0.05~5重量部が好ましい。 The content of the silane coupling agent is not particularly limited, but is preferably 0.05 to 5 parts by weight with respect to 100 parts by weight of the inorganic filler.
 封止シート23は、硬化促進剤を含むことが好ましい。 It is preferable that the sealing sheet 23 contains a hardening accelerator.
 硬化促進剤としては、エポキシ樹脂とフェノール樹脂の硬化を進行させるものであれば特に限定されず、例えば、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレートなどの有機リン系化合物;2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールなどのイミダゾール系化合物;などが挙げられる。なかでも、良好な保存性が得られるという理由から、2-フェニル-4,5-ジヒドロキシメチルイミダゾールが好ましい。 The curing accelerator is not particularly limited as long as it can cure the epoxy resin and the phenol resin, and examples thereof include organophosphorus compounds such as triphenylphosphine and tetraphenylphosphonium tetraphenylborate; 2-phenyl-4, And imidazole compounds such as 5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole. Of these, 2-phenyl-4,5-dihydroxymethylimidazole is preferred because good storage stability can be obtained.
 硬化促進剤の含有量は、エポキシ樹脂及びフェノール樹脂の合計100重量部に対して、好ましくは0.1重量部以上、より好ましくは0.5重量部以上である。0.1重量部以上であると、実用的な時間内で硬化が完了する。また、硬化促進剤の含有量は、好ましくは5重量部以下、より好ましくは2重量部以下である。5重量部以下であると、良好な保存性が得られる。 The content of the curing accelerator is preferably 0.1 parts by weight or more, more preferably 0.5 parts by weight or more with respect to 100 parts by weight of the total of the epoxy resin and the phenol resin. When it is 0.1 parts by weight or more, curing is completed within a practical time. Further, the content of the curing accelerator is preferably 5 parts by weight or less, more preferably 2 parts by weight or less. When it is 5 parts by weight or less, good storage stability is obtained.
 封止シート23は、熱可塑性樹脂(エラストマー)を含むことが好ましい。 It is preferable that the sealing sheet 23 contains a thermoplastic resin (elastomer).
 熱可塑性樹脂としては、天然ゴム、ブチルゴム、イソプレンゴム、クロロプレンゴム、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体、ポリブタジエン樹脂、ポリカーボネート樹脂、熱可塑性ポリイミド樹脂、6-ナイロンや6,6-ナイロンなどのポリアミド樹脂、フェノキシ樹脂、アクリル樹脂、PETやPBTなどの飽和ポリエステル樹脂、ポリアミドイミド樹脂、フッ素樹脂、スチレン-イソブチレン-スチレンブロック共重合体、メチルメタクリレート-ブタジエン-スチレン共重合体(MBS樹脂)などが挙げられる。特に、エポキシ樹脂への分散性という理由から、ゴム成分からなるコア層とアクリル樹脂からなるシェル層とを有するコアシェル型アクリル樹脂が好ましい。 Thermoplastic resins include natural rubber, butyl rubber, isoprene rubber, chloroprene rubber, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, polybutadiene resin, polycarbonate resin, thermoplasticity. Polyimide resin, polyamide resin such as 6-nylon and 6,6-nylon, phenoxy resin, acrylic resin, saturated polyester resin such as PET and PBT, polyamideimide resin, fluorine resin, styrene-isobutylene-styrene block copolymer, methyl And methacrylate-butadiene-styrene copolymer (MBS resin). In particular, a core-shell type acrylic resin having a core layer made of a rubber component and a shell layer made of an acrylic resin is preferable because of dispersibility in an epoxy resin.
 コアシェル型アクリル樹脂を構成するゴム成分は特に限定されず、例えば、ブタジエンゴム、イソプレンゴム、クロロプレンゴム、アクリルゴム、シリコンゴムなどが挙げられる。 The rubber component constituting the core-shell type acrylic resin is not particularly limited, and examples thereof include butadiene rubber, isoprene rubber, chloroprene rubber, acrylic rubber, and silicon rubber.
 コアシェル型アクリル樹脂の平均粒子径は、好ましくは0.1μm以上、より好ましくは0.5μm以上である。0.1μm以上であると、分散性が良好である。コアシェル型アクリル樹脂の平均粒子径は、好ましくは200μm以下、より好ましくは100μm以下である。200μm以下であると、作製したシートの平坦性が良好である。
 なお、平均粒子径は、例えば、母集団から任意に抽出される試料を用い、レーザー回折散乱式粒度分布測定装置を用いて測定することにより導き出すことができる。
The average particle diameter of the core-shell type acrylic resin is preferably 0.1 μm or more, more preferably 0.5 μm or more. Dispersibility is favorable in it being 0.1 micrometer or more. The average particle diameter of the core-shell type acrylic resin is preferably 200 μm or less, more preferably 100 μm or less. The flatness of the produced sheet | seat is favorable in it being 200 micrometers or less.
The average particle size can be derived by, for example, using a sample arbitrarily extracted from the population and measuring it using a laser diffraction / scattering particle size distribution measuring apparatus.
 熱可塑性樹脂の含有量は、有機成分(例えば、エポキシ樹脂、フェノール樹脂、熱可塑性樹脂、硬化促進剤など)100重量部に対して、好ましくは1重量部以上、より好ましくは5重量部以上である。1重量部以上であると、可とう性が良好である。また、熱可塑性樹脂の含有量は、好ましくは50重量部以下、より好ましくは40重量部以下である。50重量部以下であると、流動性、変形性が良好である。 The content of the thermoplastic resin is preferably 1 part by weight or more, more preferably 5 parts by weight or more with respect to 100 parts by weight of an organic component (for example, epoxy resin, phenol resin, thermoplastic resin, curing accelerator, etc.). is there. A flexibility is favorable in it being 1 weight part or more. Further, the content of the thermoplastic resin is preferably 50 parts by weight or less, more preferably 40 parts by weight or less. When it is 50 parts by weight or less, fluidity and deformability are good.
 封止シート23には、顔料、難燃剤成分などを含有させてもよい。 The sealing sheet 23 may contain a pigment, a flame retardant component, and the like.
 顔料としては特に限定されず、カーボンブラックなどが挙げられる。封止シート23中の顔料の含有量は、0.01~1重量%が好ましい。 The pigment is not particularly limited, and examples thereof include carbon black. The content of the pigment in the sealing sheet 23 is preferably 0.01 to 1% by weight.
 難燃剤組成分としては、例えば水酸化アルミニウム、水酸化マグネシウム、水酸化鉄、水酸化カルシウム、水酸化スズ、複合化金属水酸化物などの各種金属水酸化物;ホスファゼン化合物などを用いることができる。なかでも、難燃性、硬化後の強度に優れるという理由から、ホスファゼン化合物が好ましい。 As the flame retardant composition, for example, various metal hydroxides such as aluminum hydroxide, magnesium hydroxide, iron hydroxide, calcium hydroxide, tin hydroxide, complex metal hydroxide, phosphazene compounds, and the like can be used. . Of these, phosphazene compounds are preferred because they are excellent in flame retardancy and strength after curing.
 封止シート23の製造方法は特に限定されないが、前記各成分(例えば、エポキシ樹脂、フェノール樹脂、無機充填剤及び硬化促進剤)を混練して得られる混練物をシート状に塑性加工する方法が好ましい。これにより、無機充填剤を高充填できる。 Although the manufacturing method of the sealing sheet 23 is not specifically limited, The method of carrying out the plastic processing of the kneaded material obtained by knead | mixing the said each component (for example, an epoxy resin, a phenol resin, an inorganic filler, and a hardening accelerator) in a sheet form. preferable. Thereby, the inorganic filler can be highly filled.
 具体的には、エポキシ樹脂、フェノール樹脂、無機充填剤及び硬化促進剤をミキシングロール、加圧式ニーダー、押出機などの公知の混練機で溶融混練することにより混練物を調製し、得られた混練物をシート状に塑性加工する。混練条件として、温度の上限は、140℃以下が好ましく、130℃以下がより好ましい。温度の下限は、上述の各成分の軟化点以上であることが好ましく、例えば30℃以上、好ましくは50℃以上である。混練の時間は、好ましくは1~30分である。また、混練は、減圧条件下(減圧雰囲気下)で行うことが好ましく、減圧条件下の圧力は、例えば、1×10-4~0.1kg/cmである。 Specifically, a kneaded material is prepared by melt-kneading an epoxy resin, a phenol resin, an inorganic filler, and a curing accelerator by a known kneader such as a mixing roll, a pressure kneader, an extruder, and the obtained kneading. An object is plastically processed into a sheet. As kneading conditions, the upper limit of the temperature is preferably 140 ° C. or less, and more preferably 130 ° C. or less. The lower limit of the temperature is preferably equal to or higher than the softening point of each component described above, for example, 30 ° C or higher, and preferably 50 ° C or higher. The kneading time is preferably 1 to 30 minutes. The kneading is preferably performed under reduced pressure conditions (under reduced pressure atmosphere), and the pressure under reduced pressure conditions is, for example, 1 × 10 −4 to 0.1 kg / cm 2 .
 溶融混練後の混練物は、冷却することなく高温状態のままで塑性加工することが好ましい。塑性加工方法としては特に制限されず、平板プレス法、Tダイ押出法、スクリューダイ押出法、ロール圧延法、ロール混練法、インフレーション押出法、共押出法、カレンダー成形法などが挙げられる。塑性加工温度としては上述の各成分の軟化点以上が好ましく、エポキシ樹脂の熱硬化性および成形性を考慮すると、例えば40~150℃、好ましくは50~140℃、さらに好ましくは70~120℃である。 The kneaded material after melt-kneading is preferably subjected to plastic working in a high temperature state without cooling. The plastic working method is not particularly limited, and examples thereof include a flat plate pressing method, a T die extrusion method, a screw die extrusion method, a roll rolling method, a roll kneading method, an inflation extrusion method, a coextrusion method, and a calendering method. The plastic working temperature is preferably not less than the softening point of each component described above, and is 40 to 150 ° C., preferably 50 to 140 ° C., more preferably 70 to 120 ° C. in consideration of the thermosetting property and moldability of the epoxy resin. is there.
 封止シート23を塗工方式で製造することもできる。例えば、前記各成分を含有する接着剤組成物溶液を作製し、接着剤組成物溶液を基材セパレータ上に所定厚みとなる様に塗布して塗布膜を形成した後、塗布膜を乾燥させることで、封止シート23を製造できる。 The sealing sheet 23 can also be manufactured by a coating method. For example, an adhesive composition solution containing each of the components described above is prepared, and the adhesive composition solution is applied on a base separator to a predetermined thickness to form a coating film, and then the coating film is dried. Thus, the sealing sheet 23 can be manufactured.
 接着剤組成物溶液に用いる溶媒としては特に限定されないが、前記各成分を均一に溶解、混練又は分散できる有機溶媒が好ましい。例えば、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン系溶媒、トルエン、キシレンなどが挙げられる。 The solvent used in the adhesive composition solution is not particularly limited, but an organic solvent capable of uniformly dissolving, kneading or dispersing the above components is preferable. Examples thereof include ketone solvents such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, acetone, methyl ethyl ketone, and cyclohexanone, toluene, xylene, and the like.
 基材セパレータとしては、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレンや、フッ素系剥離剤、長鎖アルキルアクリレート系剥離剤などの剥離剤により表面コートされたプラスチックフィルムや紙などが使用可能である。接着剤組成物溶液の塗布方法としては、例えば、ロール塗工、スクリーン塗工、グラビア塗工などが挙げられる。また、塗布膜の乾燥条件は特に限定されず、例えば、乾燥温度70~160℃、乾燥時間1~5分間で行うことができる。 As the base material separator, polyethylene terephthalate (PET), polyethylene, polypropylene, a plastic film or paper surface-coated with a release agent such as a fluorine-type release agent or a long-chain alkyl acrylate release agent can be used. Examples of the method for applying the adhesive composition solution include roll coating, screen coating, and gravure coating. The drying conditions for the coating film are not particularly limited, and for example, the drying can be performed at a drying temperature of 70 to 160 ° C. and a drying time of 1 to 5 minutes.
 封止シート23の厚さは特に限定されないが、好ましくは100μm以上、より好ましくは150μm以上である。また、封止シート23の厚さは、好ましくは2000μm以下、より好ましくは1000μm以下である。上記範囲内であると、良好に電子デバイス22を封止できる。 Although the thickness of the sealing sheet 23 is not specifically limited, Preferably it is 100 micrometers or more, More preferably, it is 150 micrometers or more. Further, the thickness of the sealing sheet 23 is preferably 2000 μm or less, more preferably 1000 μm or less. Within the above range, the electronic device 22 can be satisfactorily sealed.
 封止シート23は、単層構造であってもよいし、2以上の封止シートを積層した多層構造であってもよいが、層間剥離のおそれがなく、シート厚の均一性が高いという理由から、単層構造が好ましい。 The sealing sheet 23 may have a single layer structure or a multilayer structure in which two or more sealing sheets are laminated, but there is no fear of delamination and the sheet thickness is highly uniform. Therefore, a single layer structure is preferable.
 以上のとおり、実施形態1の封止方法は、例えば、基板21上に配置された電子デバイス22の上に封止シート23と離型フィルム24をこの順に配置する工程と、減圧雰囲気下で、基板21、電子デバイス22及び封止シート23を離型フィルム24で覆って、離型フィルム24により密閉された密閉空間を形成する工程と、密閉空間の外部の圧力を密閉空間の内部より高めることによって生じた圧力差を利用して、封止シート23で電子デバイス22を封止する工程とを含む。また、実施形態1の封止方法は、必要に応じて、離型フィルム24の上方から天板17を下降させて、離型フィルム24を介して電子デバイスパッケージを加圧する工程をさらに含む。 As described above, the sealing method of Embodiment 1 includes, for example, a step of arranging the sealing sheet 23 and the release film 24 in this order on the electronic device 22 arranged on the substrate 21, and a reduced-pressure atmosphere. Covering the substrate 21, the electronic device 22, and the sealing sheet 23 with the release film 24 to form a sealed space sealed by the release film 24, and increasing the pressure outside the sealed space from the inside of the sealed space And a step of sealing the electronic device 22 with the sealing sheet 23 using the pressure difference generated by the above. Moreover, the sealing method of Embodiment 1 further includes a step of lowering the top plate 17 from above the release film 24 and pressurizing the electronic device package via the release film 24 as necessary.
 [実施形態2]
 実施形態2は、封止シート23と離型フィルム24とが一体となった封止シート付き離型フィルム31を用いる点、及び真空チェンバー内を減圧した後に封止シート23を電子デバイス22と接触させる点で、実施形態1と異なる。なお、実施形態2の説明において、実施形態1と重複する内容は省略する。
[Embodiment 2]
Embodiment 2 uses the release film 31 with the sealing sheet in which the sealing sheet 23 and the release film 24 are integrated, and contacts the electronic device 22 with the sealing sheet 23 after decompressing the inside of the vacuum chamber. This is different from the first embodiment. In the description of the second embodiment, the same contents as those in the first embodiment are omitted.
 (準備工程)
 まず、封止シート23が離型フィルム24上に積層された封止シート付き離型フィルム31を準備する。
(Preparation process)
First, the release film 31 with the sealing sheet in which the sealing sheet 23 is laminated on the release film 24 is prepared.
 封止シート付き離型フィルム31において、封止シート23と離型フィルム24との密着力は、好ましくは0.1N/20mm以下である。0.1N/20mm以下であると、離型フィルム24を封止シート23から良好に剥離できる。
 なお、封止シート23と離型フィルム24との密着力は実施例に記載の方法で測定できる。
In the release film 31 with the sealing sheet, the adhesion between the sealing sheet 23 and the release film 24 is preferably 0.1 N / 20 mm or less. The release film 24 can be favorably peeled from the sealing sheet 23 as it is 0.1 N / 20 mm or less.
In addition, the adhesive force of the sealing sheet 23 and the release film 24 can be measured by the method as described in an Example.
 (配置工程)
 図7に示すように、電子デバイス22を搭載した基板21をステージ7上に載置し、次いで枠状押え部13aに封止シート付き離型フィルム31を固定する。これにより、電子デバイス22と封止シート付き離型フィルム31との間に隙間を設けることができる。なお、枠状押え部13aに封止シート付き離型フィルム31を固定した後に、電子デバイス22を搭載した基板21をステージ7上に載置してもよい。
(Arrangement process)
As shown in FIG. 7, the board | substrate 21 which mounted the electronic device 22 is mounted on the stage 7, and the release film 31 with a sealing sheet is then fixed to the frame-shaped holding part 13a. Thereby, a clearance gap can be provided between the electronic device 22 and the release film 31 with a sealing sheet. Note that the substrate 21 on which the electronic device 22 is mounted may be placed on the stage 7 after the release film 31 with the sealing sheet is fixed to the frame-shaped pressing portion 13a.
 枠状押え部13aに封止シート付き離型フィルム31を固定する方法は特に限定されず、例えば、封止シート付き離型フィルム31を把持するための把持手段を備えた枠状押え部13aを用い、把持手段で封止シート付き離型フィルム31を把持する方法、枠状押え部13aの下面に粘着剤を介して封止シート付き離型フィルム31を貼り付ける方法などが挙げられる。 The method of fixing the release film 31 with the sealing sheet to the frame-shaped holding part 13a is not particularly limited. For example, the frame-like holding part 13a having a holding means for holding the release film 31 with the sealing sheet is used. Examples thereof include a method of holding the release film 31 with the sealing sheet with the holding means, a method of attaching the release film 31 with the sealing sheet to the lower surface of the frame-shaped presser portion 13a via an adhesive, and the like.
 (真空隔壁形成工程)
 図8は、上ヒータ板11、上枠部材12及び下板部材6によって真空隔壁を形成した様子を模式的に示す図である。図8に示すように、加圧シリンダ14により上ヒータ板11を下降させ、上枠部材12の下端部を下板部材6の外縁部の段差に気密に摺動させて真空隔壁を形成する。そして、封止シート付き離型フィルム31が電子デバイス22に接触するまでに、上ヒータ板11の下降を停止する。
(Vacuum partition formation process)
FIG. 8 is a diagram schematically illustrating a state in which a vacuum partition is formed by the upper heater plate 11, the upper frame member 12, and the lower plate member 6. As shown in FIG. 8, the upper heater plate 11 is lowered by the pressure cylinder 14, and the lower end portion of the upper frame member 12 is slid in an airtight manner to the step of the outer edge portion of the lower plate member 6 to form a vacuum partition. Then, the lowering of the upper heater plate 11 is stopped until the release film 31 with the sealing sheet contacts the electronic device 22.
 (真空引き工程)
 真空引き工程では、真空引きを行い、真空チェンバー内を減圧状態(好ましくは真空状態)とした後、離型フィルム24と封止シート23を加熱し、軟化させる。なお、離型フィルム24と封止シート23の加熱は、真空引き前、真空引き中に行ってもよい。
(Evacuation process)
In the evacuation step, evacuation is performed to bring the inside of the vacuum chamber into a reduced pressure state (preferably a vacuum state), and then the release film 24 and the sealing sheet 23 are heated and softened. The release film 24 and the sealing sheet 23 may be heated before or during evacuation.
 離型フィルム24と封止シート23の加熱温度は、50℃~150℃が好ましい。 The heating temperature of the release film 24 and the sealing sheet 23 is preferably 50 ° C. to 150 ° C.
 (接触工程)
 本工程では、ヒータ板11を下降させて、封止シート23を電子デバイス22と接触させる。本工程では、真空チェンバー内を減圧状態とした後に、封止シート23を電子デバイス22と接触させるため、封止シート23と電子デバイス22の間へのボイドの入り込み、及び封止シート23と基板21の間へのボイドの入り込みを防止できる。電子デバイスパッケージを連続して封止する場合、真空熱加圧装置内が高温となりボイドが入り込み易いが、本工程では、ボイドの入り込みを防止できるため、連続運転が可能となり、生産性を向上できる。
(Contact process)
In this step, the heater plate 11 is lowered to bring the sealing sheet 23 into contact with the electronic device 22. In this step, after the inside of the vacuum chamber is in a reduced pressure state, the sealing sheet 23 is brought into contact with the electronic device 22, so that voids enter between the sealing sheet 23 and the electronic device 22, and the sealing sheet 23 and the substrate. Intrusion of voids between 21 can be prevented. When sealing the electronic device package continuously, the inside of the vacuum heat press is high temperature and it is easy for voids to enter. However, in this process, since voids can be prevented from entering, continuous operation is possible and productivity can be improved. .
 (密閉空間形成工程)
 図9に示すように、ヒータ板11を更に下降させて、内方部材13の下端部の下面で、離型フィルム24を押さえつけて、基板21、電子デバイス22及び封止シート23を離型フィルム24で覆う。これにより、基板21、電子デバイス22及び封止シート23を収容する密閉空間を形成する。なお、真空チェンバー内を減圧状態にした後に密閉空間を形成するため、密閉空間の内部及び外部は減圧状態である。
 なお、接触工程及び密閉空間形成工程において、ヒータ板11の下降は一連の動作であってもよいし、断続的な動作であってもよい。
(Sealed space formation process)
As shown in FIG. 9, the heater plate 11 is further lowered, and the release film 24 is pressed on the lower surface of the lower end portion of the inner member 13, so that the substrate 21, the electronic device 22 and the sealing sheet 23 are released from the release film. Cover with 24. Thereby, a sealed space for accommodating the substrate 21, the electronic device 22, and the sealing sheet 23 is formed. In addition, in order to form a sealed space after the inside of the vacuum chamber is in a reduced pressure state, the inside and the outside of the sealed space are in a reduced pressure state.
In the contact process and the sealed space forming process, the lowering of the heater plate 11 may be a series of operations or an intermittent operation.
 (封止工程)
 図10に示すように、真空・加圧口16を通して真空チェンバーにガスを導入して、密閉空間の外部の圧力を密閉空間の内部より高めて、封止シート23を電子デバイス22に押しつける。これにより、封止シート23で電子デバイス22が封止された電子デバイスパッケージを得ることができる。ガスとしては特に限定されず、空気、窒素などが挙げられる。また、ガス圧力は特に限定されないが、大気圧以上が好ましい。ガス導入により、密閉空間の外部の圧力を大気圧以上に高められる。
(Sealing process)
As shown in FIG. 10, gas is introduced into the vacuum chamber through the vacuum / pressurizing port 16, the pressure outside the sealed space is increased from the inside of the sealed space, and the sealing sheet 23 is pressed against the electronic device 22. Thereby, an electronic device package in which the electronic device 22 is sealed with the sealing sheet 23 can be obtained. The gas is not particularly limited, and examples thereof include air and nitrogen. The gas pressure is not particularly limited, but is preferably atmospheric pressure or higher. By introducing gas, the pressure outside the sealed space can be raised to atmospheric pressure or higher.
 図11に示すように、ガス導入後、天板17を下降させて、離型フィルム24を介して電子デバイスパッケージを加圧することにより、電子デバイスパッケージの離型フィルム24側の面を平坦化してもよい。これにより、電子デバイスパッケージの厚みを均一化できる。加圧する圧力としては、0.5~20kgf/cmが好ましい。 As shown in FIG. 11, after introducing the gas, the top plate 17 is lowered and the electronic device package is pressurized through the release film 24, thereby flattening the surface of the electronic device package on the release film 24 side. Also good. Thereby, the thickness of the electronic device package can be made uniform. The pressure applied is preferably 0.5 to 20 kgf / cm 2 .
 (その他の工程)
 電子デバイスパッケージに再配線や、パンプを形成してもよい。また、電子デバイスパッケージをダイシングしてチップ化してもよい。
(Other processes)
Rewiring or a pump may be formed on the electronic device package. Further, the electronic device package may be diced into chips.
 以上のとおり、実施形態2の封止方法は、封止シート23が離型フィルム24上に積層された封止シート付き離型フィルム31を準備する工程と、基板21上に配置された電子デバイス22の上に、電子デバイス22と隙間をあけて封止シート付き離型フィルム31を配置する工程と、減圧雰囲気下で、封止シート付き離型フィルム31を下降させて、封止シート23を電子デバイス22と接触させる工程と、封止シート付き離型フィルム31をさらに下降させて、基板21、電子デバイス22及び封止シート23を離型フィルム24で覆って、離型フィルム24により密閉された密閉空間を形成する工程と、密閉空間の外部の圧力を密閉空間の内部より高めることによって生じた圧力差を利用して、封止シート23で電子デバイス22を封止する工程とを含む。また、実施形態2の封止方法は、必要に応じて、離型フィルム24の上方から天板17を下降させて、離型フィルム24を介して電子デバイスパッケージを加圧する工程をさらに含む。 As described above, the sealing method of the second embodiment includes the steps of preparing the release film 31 with the sealing sheet in which the sealing sheet 23 is laminated on the release film 24, and the electronic device disposed on the substrate 21. The step of disposing the release film 31 with the sealing sheet on the electronic device 22 with a gap between the electronic device 22 and the release film 31 with the sealing sheet is lowered in a reduced-pressure atmosphere. The step of bringing into contact with the electronic device 22, the release film 31 with the sealing sheet is further lowered, the substrate 21, the electronic device 22 and the sealing sheet 23 are covered with the release film 24, and sealed with the release film 24. The electronic device 22 is sealed with the sealing sheet 23 by using the pressure difference generated by the step of forming the sealed space and the pressure outside the sealed space being increased from the inside of the sealed space. And a step of stopping. Moreover, the sealing method of Embodiment 2 further includes a step of lowering the top plate 17 from above the release film 24 and pressurizing the electronic device package via the release film 24 as necessary.
 なお、実施形態1及び実施形態2では、基板21上にひとつの電子デバイス22を配置する場合を示しているが、電子デバイス22の個数は特に限定されず、複数であってもよい。 In the first embodiment and the second embodiment, the case where one electronic device 22 is arranged on the substrate 21 is shown, but the number of the electronic devices 22 is not particularly limited and may be plural.
 実施形態1では、封止シート23上に離型フィルム24を載置するが、変形例では、例えば、特許第5189194号公報の図4(a)及び(b)に示されるように、離型フィルム24を内方枠体13の下端部に固定してもよい。 In the first embodiment, the release film 24 is placed on the sealing sheet 23. However, in a modification, for example, as shown in FIGS. 4A and 4B of Japanese Patent No. 5189194, the release film 24 is released. The film 24 may be fixed to the lower end portion of the inner frame 13.
 実施形態1では、離型フィルム24は、特許第5189194号公報の図5(a)~(d)に示されるような離型フィルム挟み冶具によって所定位置に配置されてもよい。 In Embodiment 1, the release film 24 may be disposed at a predetermined position by a release film sandwiching jig as shown in FIGS. 5 (a) to 5 (d) of Japanese Patent No. 5189194.
 実施形態1では、封止シート23と離型フィルム24に代えて、封止シート付き離型フィルム31を用いてもよい。 In Embodiment 1, a release film 31 with a sealing sheet may be used instead of the sealing sheet 23 and the release film 24.
 [実施形態3] [Embodiment 3]
 (半導体パッケージ105の製造方法)
 次に、半導体パッケージ105の製造方法について説明する。
(Method for Manufacturing Semiconductor Package 105)
Next, a method for manufacturing the semiconductor package 105 will be described.
 図12に示すように、積層構造体101をステージ7上に配置する。積層構造体101は、チップ仮固定体51、チップ仮固定体51上に配置された封止シート23及び封止シート23上に配置された離型フィルム24を備える。 As shown in FIG. 12, the laminated structure 101 is placed on the stage 7. The laminated structure 101 includes a chip temporary fixing body 51, a sealing sheet 23 disposed on the chip temporary fixing body 51, and a release film 24 disposed on the sealing sheet 23.
 図13に示すように、チップ仮固定体51は、キャリア51a、キャリア51a上に配置された粘着剤51b及び粘着剤51b上に固定された半導体チップ51cを備える。 As shown in FIG. 13, the chip temporary fixing body 51 includes a carrier 51a, an adhesive 51b disposed on the carrier 51a, and a semiconductor chip 51c fixed on the adhesive 51b.
 キャリア51aとしては、例えば、金属板、ブラスチップ板などが挙げられる。キャリア51aの材料としては、例えば、SUSなどの金属材料、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルサルフォンなどのプラスチック材料などである。 Examples of the carrier 51a include a metal plate and a brass chip plate. Examples of the material of the carrier 51a include metal materials such as SUS, and plastic materials such as polyimide, polyamideimide, polyether ether ketone, and polyether sulfone.
 粘着剤51bとしては特に限定されないが、容易に剥離できるという理由から、通常は、熱発泡性粘着剤などの熱剥離性粘着剤などを使用する。 The pressure-sensitive adhesive 51b is not particularly limited, but a heat-peelable pressure-sensitive adhesive such as a heat-foamable pressure-sensitive adhesive is usually used because it can be easily peeled off.
 半導体チップ51cは、電極パッド151cを備える。電極パッド151cが設けられた回路形成面251cが粘着剤51bと接する。 The semiconductor chip 51c includes an electrode pad 151c. The circuit forming surface 251c provided with the electrode pad 151c is in contact with the adhesive 51b.
 封止シート23の外形寸法は、半導体チップ51cを封止可能な大きさである。 The outer dimension of the sealing sheet 23 is a size capable of sealing the semiconductor chip 51c.
 離型フィルム24は、封止シート23と接する中央部24a及び中央部24aの周辺に配置された周辺部24bを備える。離型フィルム24の外形寸法は、チップ仮固定体51及び封止シート23を覆うことが可能な大きさである。 The release film 24 includes a central portion 24a that is in contact with the sealing sheet 23 and a peripheral portion 24b that is disposed around the central portion 24a. The outer dimension of the release film 24 is a size that can cover the chip temporary fixing body 51 and the sealing sheet 23.
 ステージ7はあらかじめ加熱されている。ステージ7の温度は、好ましくは70℃以上、より好ましくは80℃以上、さらに好ましくは85℃以上である。70℃以上であると、封止シート23を溶融させ、流動させることが可能である。ステージ7の温度は好ましくは100℃以下、より好ましくは95℃以下である。100℃以下であると、硬化反応を抑えて成型できる。 Stage 7 is preheated. The temperature of the stage 7 is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, and further preferably 85 ° C. or higher. When the temperature is 70 ° C. or higher, the sealing sheet 23 can be melted and fluidized. The temperature of the stage 7 is preferably 100 ° C. or lower, more preferably 95 ° C. or lower. When it is 100 ° C. or lower, it can be molded while suppressing the curing reaction.
 図14に示すように、上ヒータ板11及び上枠部材12を下降させ、上枠部材12の下端部を下板部材6の外縁部に沿って気密に摺動させ、上ヒータ板11、上枠部材12及び下板部材6によって気密に囲われた真空チェンバーを形成する。すなわち、上ヒータ板11、上枠部材12及び下板部材6を備える格納容器を形成する。真空チェンバーを形成した段階で、上ヒータ板11及び上枠部材12の下降を停止する。 As shown in FIG. 14, the upper heater plate 11 and the upper frame member 12 are lowered, and the lower end portion of the upper frame member 12 is airtightly slid along the outer edge portion of the lower plate member 6. A vacuum chamber hermetically surrounded by the frame member 12 and the lower plate member 6 is formed. That is, a storage container including the upper heater plate 11, the upper frame member 12 and the lower plate member 6 is formed. At the stage where the vacuum chamber is formed, the lowering of the upper heater plate 11 and the upper frame member 12 is stopped.
 次いで、真空引きを行い、真空チェンバー内を減圧状態とする。真空チェンバー内の圧力は、好ましくは500Pa以下である。 Next, evacuation is performed and the vacuum chamber is depressurized. The pressure in the vacuum chamber is preferably 500 Pa or less.
 図15に示すように、枠状押え部13aを下降させることにより、離型フィルム24の外周部24bをステージ7に押さえつけて、密閉容器121を形成する。密閉容器121は、ステージ7及び離型フィルム24を備える。密閉容器121の内部には、チップ仮固定体51及びチップ仮固定体51上に配置された封止シート23が配置されている。なお、真空チェンバー内を減圧状態にした後に密閉容器121を形成するため、密閉容器121の内部及び外部は減圧状態である。 As shown in FIG. 15, by lowering the frame-shaped presser portion 13a, the outer peripheral portion 24b of the release film 24 is pressed against the stage 7 to form the sealed container 121. The sealed container 121 includes a stage 7 and a release film 24. Inside the sealed container 121, the chip temporary fixing body 51 and the sealing sheet 23 disposed on the chip temporary fixing body 51 are arranged. In addition, in order to form the airtight container 121 after making the inside of a vacuum chamber into a pressure reduction state, the inside and the outside of the airtight container 121 are in a pressure reduction state.
 図16に示すように、真空・加圧口116を開放することにより、真空チェンバー内の圧力を大気圧にする。すなわち、密閉容器121の外部の圧力を大気圧にする。 As shown in FIG. 16, the pressure in the vacuum chamber is set to atmospheric pressure by opening the vacuum / pressurizing port 116. That is, the pressure outside the sealed container 121 is set to atmospheric pressure.
 図17に示すように、真空・加圧口116にガスを導入することにより真空チェンバー内の圧力を高める。すなわち、密閉容器121の外部の圧力を大気圧よりも高める。これにより、半導体チップ51cを封止シート23で覆って、封止体61を得る。 As shown in FIG. 17, the pressure in the vacuum chamber is increased by introducing gas into the vacuum / pressurizing port 116. That is, the pressure outside the sealed container 121 is increased above the atmospheric pressure. Thereby, the semiconductor chip 51c is covered with the sealing sheet 23, and the sealing body 61 is obtained.
 ガスとしては特に限定されず、空気、窒素などが挙げられる。 The gas is not particularly limited, and examples thereof include air and nitrogen.
 ガス導入後の密閉容器121の外部の圧力は、好ましくは0.1MPa以上、より好ましくは0.5MPa以上、さらに好ましくは0.9MPa以上である。密閉容器121の外部の圧力の上限は特に限定されないが、好ましくは5MPa以下、より好ましくは3MPa以下である。 The pressure outside the sealed container 121 after the gas introduction is preferably 0.1 MPa or more, more preferably 0.5 MPa or more, and further preferably 0.9 MPa or more. The upper limit of the pressure outside the sealed container 121 is not particularly limited, but is preferably 5 MPa or less, more preferably 3 MPa or less.
 封止体61は、半導体チップ51c及び半導体チップ51cを覆う樹脂部61aを備える。封止体61は粘着剤51bと接している。また、封止体61は離型フィルム24と接している。 The sealing body 61 includes a semiconductor chip 51c and a resin portion 61a that covers the semiconductor chip 51c. The sealing body 61 is in contact with the adhesive 51b. Further, the sealing body 61 is in contact with the release film 24.
 図18に示すように、封止体61の横にスペーサー131を配置する。 As shown in FIG. 18, a spacer 131 is arranged beside the sealing body 61.
 図19に示すように、平板17をスペーサー131に当たるまで下降させることにより、封止体61をプレスし、封止体61の厚みを調整する。これにより、封止体61の厚みを均一化することができる。平板17で封止体61を押す際の圧力としては、0.5kgf/cm~20kgf/cmが好ましい。 As shown in FIG. 19, the sealing body 61 is pressed and the thickness of the sealing body 61 is adjusted by lowering the flat plate 17 until it hits the spacer 131. Thereby, the thickness of the sealing body 61 can be equalized. The pressure when pressing the sealing body 61 with the flat plate 17 is preferably 0.5 kgf / cm 2 to 20 kgf / cm 2 .
 次いで、封止体61上に配置された離型フィルム24を取り除く。 Next, the release film 24 disposed on the sealing body 61 is removed.
 次いで、樹脂部61aのうちキャリア51aから側方にはみ出した部分を切り離す。 Next, the portion of the resin portion 61a that protrudes laterally from the carrier 51a is cut off.
 次いで、封止体61を加熱することで樹脂部61aを硬化させて、硬化体71を形成する。 Next, the resin body 61 a is cured by heating the sealing body 61 to form the cured body 71.
 加熱温度は、好ましくは100℃以上、より好ましくは120℃以上である。一方、加熱温度の上限は、好ましくは200℃以下、より好ましくは180℃以下である。加熱時間は、好ましくは10分以上、より好ましくは30分以上である。一方、加熱時間の上限は、好ましくは180分以下、より好ましくは120分以下である。 The heating temperature is preferably 100 ° C or higher, more preferably 120 ° C or higher. On the other hand, the upper limit of the heating temperature is preferably 200 ° C. or lower, more preferably 180 ° C. or lower. The heating time is preferably 10 minutes or more, more preferably 30 minutes or more. On the other hand, the upper limit of the heating time is preferably 180 minutes or less, more preferably 120 minutes or less.
 図20に示すように、硬化体71は、半導体チップ51c及び半導体チップ51cを覆う保護部71aを備える。硬化体71は、粘着剤51bと接している。硬化体71は、回路形成面251cを備える第1主面及び第1主面に対向した第2主面で両面を定義できる。 As shown in FIG. 20, the cured body 71 includes a semiconductor chip 51c and a protection part 71a that covers the semiconductor chip 51c. The cured body 71 is in contact with the adhesive 51b. The cured body 71 can be defined on both sides by a first main surface including the circuit forming surface 251c and a second main surface opposite to the first main surface.
 粘着剤51bを加熱して粘着剤51bの粘着力を低下させる。 The adhesive 51b is heated to reduce the adhesive force of the adhesive 51b.
 図21に示すように、硬化体71から粘着剤51bを剥離する。 As shown in FIG. 21, the adhesive 51b is peeled from the cured body 71.
 次いで、吸着ステージに硬化体71を吸着させることにより、硬化体71を吸着ステージに固定する。 Next, the cured body 71 is fixed to the suction stage by adsorbing the cured body 71 to the suction stage.
 図22に示すように、第1主面上にバッファーコート膜141を形成する。バッファーコート膜141としては、感光性のポリイミド、感光性のポリベンゾオキサゾール(PBO)などを使用できる。 As shown in FIG. 22, a buffer coat film 141 is formed on the first main surface. As the buffer coat film 141, photosensitive polyimide, photosensitive polybenzoxazole (PBO), or the like can be used.
 図23に示すように、バッファーコート膜141上にマスク142を配置した状態で、露光,現像、エッチングすることで、バッファーコート膜141に開口を形成し、電極パッド151cを露出させる。 As shown in FIG. 23, with the mask 142 placed on the buffer coat film 141, exposure, development, and etching are performed to form an opening in the buffer coat film 141 and expose the electrode pad 151c.
 次いで、図24に示すように、マスク142を除去する。 Next, as shown in FIG. 24, the mask 142 is removed.
 次いで、バッファーコート膜141及び電極パッド151c上に、シード層を形成する。 Next, a seed layer is formed on the buffer coat film 141 and the electrode pad 151c.
 図25に示すように、シード層上にレジスト143を形成する。 As shown in FIG. 25, a resist 143 is formed on the seed layer.
 図26に示すように、電解銅めっきなどのめっき法で、シード層上にめっきパターン144を形成する。 As shown in FIG. 26, a plating pattern 144 is formed on the seed layer by a plating method such as electrolytic copper plating.
 図27に示すように、レジスト143を除去する。次いで、シード層をエッチングすることにより再配線145を形成する。 As shown in FIG. 27, the resist 143 is removed. Next, the rewiring 145 is formed by etching the seed layer.
 図28に示すように、再配線145上に保護膜146を形成する。保護膜146としては、感光性のポリイミド、感光性のポリベンゾオキサゾール(PBO)などを使用できる。 28, a protective film 146 is formed on the rewiring 145. As the protective film 146, photosensitive polyimide, photosensitive polybenzoxazole (PBO), or the like can be used.
 図29に示すように、保護膜146に開口を形成することにより、再配線体104を得る。再配線体104は、硬化体71及び硬化体71上に配置された再配線層140を備える。再配線層140は、再配線145を含む。 29, the rewiring body 104 is obtained by forming an opening in the protective film 146. The rewiring body 104 includes a cured body 71 and a rewiring layer 140 disposed on the cured body 71. The rewiring layer 140 includes a rewiring 145.
 図30に示すように、再配線145上に電極(UBM:Under Bump Metal)147を形成する。 As shown in FIG. 30, an electrode (UBM: Under Bump Metal) 147 is formed on the rewiring 145.
 図31に示すように、電極147上にバンプ148を形成する。パンプ148は、電極147及び再配線145を介して電極パッド151cと電気的に接続されている。 As shown in FIG. 31, bumps 148 are formed on the electrodes 147. The pump 148 is electrically connected to the electrode pad 151 c through the electrode 147 and the rewiring 145.
 図32に示すように、再配線体104を個片化(ダイシング)して半導体パッケージ105を得る。 32, the rewiring body 104 is singulated (diced) to obtain the semiconductor package 105. As shown in FIG.
 以上により、チップ領域の外側に配線を引き出した半導体パッケージ105を得ることができる。 As described above, the semiconductor package 105 in which the wiring is drawn outside the chip region can be obtained.
 (変形例1)
 実施形態3では、積層構造体101をステージ7上に配置するが、変形例1では、チップ仮固定体51をステージ7上に配置し、次いでチップ仮固定体51上に封止シート23を配置し、次いで封止シート23上に離型フィルム24を配置する。
(Modification 1)
In the third embodiment, the laminated structure 101 is disposed on the stage 7. In the first modification, the chip temporary fixing body 51 is disposed on the stage 7, and then the sealing sheet 23 is disposed on the chip temporary fixing body 51. Then, the release film 24 is disposed on the sealing sheet 23.
 (変形例2)
 実施形態3では、積層構造体101をステージ7上に配置するが、変形例2では、チップ仮固定体51及びチップ仮固定体51上に配置された封止シート23を備える積層物をステージ7上に配置し、次いで積層物上に離型フィルム24を配置する。
(Modification 2)
In the third embodiment, the laminated structure 101 is disposed on the stage 7. In the second modification, the laminated body including the chip temporary fixing body 51 and the sealing sheet 23 disposed on the chip temporary fixing body 51 is disposed on the stage 7. Then, the release film 24 is placed on the laminate.
 (変形例3)
 実施形態3では、密閉容器121の外部の圧力を大気圧にし、次いで大気圧よりも高めるが、変形例3では、密閉容器121の外部の圧力を大気圧にする工程を含まない。すなわち、密閉容器121を形成し、次いで密閉容器121の外部の圧力を大気圧よりも高める。
(Modification 3)
In the third embodiment, the pressure outside the sealed container 121 is set to atmospheric pressure and then higher than the atmospheric pressure, but the third modification does not include the step of setting the pressure outside the sealed container 121 to atmospheric pressure. That is, the sealed container 121 is formed, and then the pressure outside the sealed container 121 is increased above the atmospheric pressure.
 (変形例4)
 実施形態3では、平板117で封止体61をプレスするが、変形例4では封止体61をプレスしない。
(Modification 4)
In the third embodiment, the sealing body 61 is pressed by the flat plate 117, but in the fourth modification, the sealing body 61 is not pressed.
 (変形例6)
 変形例6では、硬化体71の第2主面を研削する工程を含む。
 (変形例7)
 変形例7は、封止シート付き離型フィルム31を減圧雰囲気下でチップ仮固定体51上に配置することにより、積層構造体101を形成する工程をさらに含む点で実施形態3と異なる。変形例7は、デバイス付き基板42をチップ仮固定体51に変更した点以外は実施形態2の配置工程、真空隔壁形成工程、真空引き工程及び接触工程と同様であるので、説明を省略する。
(Modification 6)
In the modification 6, the process of grinding the 2nd main surface of the hardening body 71 is included.
(Modification 7)
The modified example 7 is different from the third embodiment in that it further includes a step of forming the laminated structure 101 by disposing the release film 31 with a sealing sheet on the chip temporary fixing body 51 in a reduced pressure atmosphere. Since the modified example 7 is the same as the disposing step, the vacuum partition forming step, the evacuating step, and the contacting step of the second embodiment except that the device-equipped substrate 42 is changed to the chip temporary fixing body 51, the description thereof is omitted.
 以上のとおり、実施形態3の半導体パッケージ105の製造方法は、積層構造体101の周辺部24bをキャリア51aと接するステージ7に押し付けることにより、ステージ7及び離型フィルム24を備える密閉容器121を形成する工程と、密閉容器121の外部の圧力を密閉容器121の内部の圧力より高めることにより、半導体チップ51cを封止シート23で覆う工程とを含む。 As described above, in the manufacturing method of the semiconductor package 105 according to the third embodiment, the hermetic container 121 including the stage 7 and the release film 24 is formed by pressing the peripheral portion 24b of the laminated structure 101 against the stage 7 in contact with the carrier 51a. And a step of covering the semiconductor chip 51c with the sealing sheet 23 by increasing the pressure outside the sealed container 121 to be higher than the pressure inside the sealed container 121.
 実施形態3の半導体パッケージ105の製造方法は、封止体61を加熱することにより硬化体71を形成する工程、硬化体71に再配線層140を形成することにより再配線体104を形成する工程、及び再配線体104をダイシングすることにより半導体パッケージ105を得る工程などをさらに含む。 In the method for manufacturing the semiconductor package 105 of the third embodiment, the step of forming the cured body 71 by heating the sealing body 61 and the step of forming the rewiring body 104 by forming the rewiring layer 140 on the cured body 71. And a step of obtaining the semiconductor package 105 by dicing the rewiring body 104.
 [その他の実施形態]
 実施形態3では、半導体パッケージの製造方法及び半導体チップの封止方法について例示したが、第2の本発明は、電子デバイスパッケージの製造方法及び電子デバイスの封止方法に適用できることは、当業者が容易に理解できるであろう。
[Other Embodiments]
In the third embodiment, the semiconductor package manufacturing method and the semiconductor chip sealing method are exemplified. However, it is understood by those skilled in the art that the second invention can be applied to an electronic device package manufacturing method and an electronic device sealing method. It will be easy to understand.
 以下に、この発明の好適な実施例を例示的に詳しく説明する。ただし、この実施例に記載されている材料や配合量などは、特に限定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。 Hereinafter, preferred embodiments of the present invention will be described in detail by way of example. However, the materials, blending amounts, and the like described in the examples are not intended to limit the scope of the present invention only to those unless otherwise specified.
 封止シートに配合した成分について説明する。
 エポキシ樹脂:新日鐵化学(株)製のYSLV-80XY(ビスフェノールF型エポキシ樹脂、エポキン当量200g/eq.軟化点80℃)
 フェノール樹脂:明和化成社製のMEH-7851-SS(ビフェニルアラルキル骨格を有するフェノール樹脂、水酸基当量203g/eq.軟化点67℃)
 硬化促進剤:四国化成工業社製の2PHZ-PW(2-フェニル-4,5-ジヒドロキシメチルイミダゾール)
 熱可塑性樹脂:三菱レイヨン社製のメタブレン J-5800(コアシェル型アクリル樹脂、平均粒子径1μm)
 シリカフィラー1:電気化学工業社製のFB-9454FC(溶融球状シリカ、平均粒子径20μm)
 シリカフィラー2:アドマテックス社製のSO-25R(溶融球状シリカ、平均粒子径0.5μm)
 シランカップリング剤:信越化学社製のKBM-503(3-メタクリロキシプロピルトリメトキシシラン)
 カーボンブラック:三菱化学社製のMA-600
The component mix | blended with the sealing sheet is demonstrated.
Epoxy resin: YSLV-80XY manufactured by Nippon Steel Chemical Co., Ltd. (bisphenol F type epoxy resin, epkin equivalent 200 g / eq. Softening point 80 ° C.)
Phenolic resin: MEH-7851-SS (phenol resin having a biphenylaralkyl skeleton, hydroxyl group equivalent 203 g / eq. Softening point 67 ° C.) manufactured by Meiwa Kasei Co., Ltd.
Curing accelerator: 2PHZ-PW (2-phenyl-4,5-dihydroxymethylimidazole) manufactured by Shikoku Kasei Kogyo Co., Ltd.
Thermoplastic resin: Metablene J-5800 manufactured by Mitsubishi Rayon Co., Ltd. (core-shell type acrylic resin, average particle diameter 1 μm)
Silica filler 1: FB-9454FC (fused spherical silica, average particle size 20 μm) manufactured by Denki Kagaku Kogyo Co., Ltd.
Silica filler 2: SO-25R manufactured by Admatechs (fused spherical silica, average particle size 0.5 μm)
Silane coupling agent: KBM-503 (3-methacryloxypropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd.
Carbon black: MA-600 manufactured by Mitsubishi Chemical Corporation
 [実施例1~3及び比較例2~3]
 表1に記載の配合比に従い、各成分を配合し、ロール混練機により60~120℃、10分間、減圧条件下(0.01kg/cm)で溶融混練し、混練物を調製した。次いで、得られた混練物を、平板プレス法により、シート状に形成して、厚さ500μmの封止シートを作製した。
[Examples 1 to 3 and Comparative Examples 2 to 3]
Each component was blended according to the blending ratio shown in Table 1, and melt-kneaded in a roll kneader at 60 to 120 ° C. for 10 minutes under reduced pressure conditions (0.01 kg / cm 2 ) to prepare a kneaded product. Subsequently, the obtained kneaded material was formed into a sheet shape by a flat plate pressing method to produce a sealing sheet having a thickness of 500 μm.
 封止シート(200mm角、厚さ500μm)と離型フィルム(三井化学社製のTPXフィルム X‐88BMT4、ポリ-4-メチルペンテン-1、両面エンボス、両面マット、引張破断伸び50%、軟化温度52℃、厚さ50μm)を、貼り合わせ条件70℃で貼り合わせて、封止シート付き離型フィルムを作製した。 Sealing sheet (200mm square, thickness 500μm) and release film (TPI film manufactured by Mitsui Chemicals, X-88BMT4, poly-4-methylpentene-1, double-sided embossing, double-sided mat, tensile elongation at break 50%, softening temperature 52 [deg.] C., thickness 50 [mu] m) were bonded together at a bonding condition of 70 [deg.] C. to produce a release film with a sealing sheet.
 得られた封止シート付き離型フィルムを用いて、実施形態2に記載の方法で半導体パッケージを作製した。 A semiconductor package was produced by the method described in Embodiment 2 using the obtained release film with a sealing sheet.
 すなわち、基板置台7上に、100個の半導体チップ(半導体チップサイズ:15mm×15mm×厚さ0.3mm)を搭載する有機基板(有機基板サイズ:240mm角、プラズマ処理(350W、10sec、Ar)されたもの)を載置した後、封止シート付き離型フィルムを枠状押え部13aに固定した。その後、上ヒータ板11を下降させ、これらを収容する真空チェンバーを形成した。常温にて真空チェンバー内が10Torrになるまで真空引きした後、封止シート付き離型フィルムを100℃になるまで加熱した。その後、内方部材13の下端部の下面で、離型フィルムを押さえつけ、有機基板、半導体チップ及び封止シートを収容する密閉空間を形成した。密閉空間の外部の雰囲気が5kg/cmとなるように雰囲気加圧(オートクレーブ)し、密閉空間内外の圧力差を利用して封止シートを半導体チップに押しつけて、半導体パッケージを作製した。その後、天板17を下降させて、離型フィルムを介して半導体パッケージを加圧(2kgf/cm)し、半導体パッケージの離型フィルム側の面を平坦化した。 That is, an organic substrate (organic substrate size: 240 mm square, plasma treatment (350 W, 10 sec, Ar)) on which 100 semiconductor chips (semiconductor chip size: 15 mm × 15 mm × thickness 0.3 mm) are mounted on the substrate table 7 The release film with the sealing sheet was fixed to the frame-shaped presser 13a. Thereafter, the upper heater plate 11 was lowered to form a vacuum chamber for accommodating them. After evacuating the inside of the vacuum chamber at 10 Torr at room temperature, the release film with the sealing sheet was heated to 100 ° C. Thereafter, the release film was pressed on the lower surface of the lower end portion of the inner member 13 to form a sealed space for accommodating the organic substrate, the semiconductor chip, and the sealing sheet. The atmosphere was pressurized (autoclave) so that the atmosphere outside the sealed space was 5 kg / cm 2, and the sealing sheet was pressed against the semiconductor chip using the pressure difference inside and outside the sealed space to produce a semiconductor package. Thereafter, the top plate 17 was lowered, and the semiconductor package was pressurized (2 kgf / cm 2 ) through the release film to flatten the surface of the semiconductor package on the release film side.
 [比較例1]
 表1に記載の配合比に従い、実施例1と同様の方法で厚さ500μmの封止シートを作製した。
[Comparative Example 1]
According to the blending ratio shown in Table 1, a sealing sheet having a thickness of 500 μm was produced in the same manner as in Example 1.
 得られた封止シートを用いて、離型フィルムを用いない点以外は実施例1と同様の方法で半導体パッケージを作製した。 Using the obtained sealing sheet, a semiconductor package was produced in the same manner as in Example 1 except that no release film was used.
 [評価]
 実施例及び比較例の封止シート、半導体パッケージ、離型フィルムについて下記の評価を行った。結果を表1に示す。
[Evaluation]
The following evaluation was performed about the sealing sheet of the Example and the comparative example, the semiconductor package, and the release film. The results are shown in Table 1.
 [複素粘度η*]
 動的粘弾性測定装置(TAインスツルメント社製、ARES)を用いて封止シート(直径8mm、厚さ500μm)の最低複素粘度η*を測定した(測定条件:昇温速度10℃/分、測定周波数1Hz及び歪み5%)。
[Complex viscosity η *]
The minimum complex viscosity η * of the sealing sheet (diameter 8 mm, thickness 500 μm) was measured using a dynamic viscoelasticity measuring apparatus (TA Instruments, ARES) (measuring condition: heating rate 10 ° C./min) , Measuring frequency 1 Hz and distortion 5%).
 [密着力]
 引っ張り試験機(エー・アンド・デイ製 テンシロン)を用いて、封止シートからの離型フィルム剥離力を測定した(試験片幅:20mm、引っ張り速度:300mm/min、剥離角度180度)。
[Adhesion]
Using a tensile tester (A & D Tensilon), the release film peeling force from the sealing sheet was measured (test piece width: 20 mm, pulling speed: 300 mm / min, peeling angle 180 degrees).
 [引張破断伸び]
 引っ張り試験機(エー・アンド・デイ製 テンシロン)を用いて、離型フィルムの破断伸びを測定した。(試験片幅:10mm、チャック間距離:10mm、引っ張り速度:60mm/min)
[Tensile breaking elongation]
The elongation at break of the release film was measured using a tensile tester (A & D Tensilon). (Test specimen width: 10 mm, distance between chucks: 10 mm, pulling speed: 60 mm / min)
 [凹凸追従性]
 半導体パッケージについて、チップ間及びチップ側面などの凹凸部にボイドが入り込んでいるかを超音波顕微鏡(日立製作所製 FineSAT FS200II)によって観察した。凹凸部にボイドが入り込んでいる場合を×、入り込んでいない場合を○と判定した。
[Unevenness tracking]
The semiconductor package was observed with an ultrasonic microscope (FineSAT FS200II, manufactured by Hitachi, Ltd.) to see if voids had entered between the chips and uneven portions such as the side surfaces of the chip. The case where a void had entered the uneven part was determined as x, and the case where a void did not enter was determined as ◯.
 [はみ出し]
 半導体パッケージについて、有機基板からの封止シートのはみ出しがないものを○、はみ出しがあるものを×と判定した。また、その距離を測定した。
[Overhang]
Regarding the semiconductor package, the case where the sealing sheet did not protrude from the organic substrate was judged as ◯, and the case where there was a protrusion was judged as x. Moreover, the distance was measured.
Figure JPOXMLDOC01-appb-T000001
 
 
Figure JPOXMLDOC01-appb-T000001
 
 
 無機充填剤の含有量が60体積%未満であり、最低複素粘度η*が30Pa・s未満の封止シートを用いた比較例2では、封止シートのはみ出しが確認された。また、最低複素粘度η*が3000Pa・sを超える封止シートを用いた比較例3では、凹凸部でボイドの入り込みが確認された。 In Comparative Example 2 using a sealing sheet having an inorganic filler content of less than 60% by volume and a minimum complex viscosity η * of less than 30 Pa · s, it was confirmed that the sealing sheet protruded. Moreover, in Comparative Example 3 using a sealing sheet having a minimum complex viscosity η * exceeding 3000 Pa · s, it was confirmed that voids entered in the uneven portions.
 一方、無機充填剤の含有量が60~90体積%であり、最低複素粘度η*を示す温度が100~150℃であり、前記最低複素粘度η*が30~3000Pa・sである封止シートを用いた実施例1~3では、封止シートがはみ出さず、凹凸部でボイドが入り込むこともなかった。
 ただし、離型フィルムを用いなかった比較例1では、封止シートのはみ出し及びボイドの入り込みが確認された。
On the other hand, a sealing sheet in which the content of the inorganic filler is 60 to 90% by volume, the temperature showing the lowest complex viscosity η * is 100 to 150 ° C., and the lowest complex viscosity η * is 30 to 3000 Pa · s. In Examples 1 to 3 using No, the sealing sheet did not protrude and voids did not enter the concavo-convex portion.
However, in Comparative Example 1 in which the release film was not used, it was confirmed that the sealing sheet protruded and voids entered.
 なお、実施形態1の方法で半導体パッケージを作製した場合でも、表1と同様の結果が得られた。 Even when a semiconductor package was manufactured by the method of Embodiment 1, the same results as in Table 1 were obtained.
     1  基台
     2  加圧シリンダ下板
     3  スライド移動テーブル
     4  スライドシリンダ
     5  下ヒータ板
     6  下板部材
     7  基板置台(ステージ)
     8  支柱
     9  加圧シリンダ上板
    10  中間移動部材
    11  上ヒータ板
    12  上枠部材
    13  内方枠体
    13a 枠状押え部
    13b ロッド
    14  加圧シリンダ
    15  シリンダロッド
    16  真空・加圧口
    17  天板(平板)
     S  ストッパー
1 Base 2 Pressure Cylinder Lower Plate 3 Slide Moving Table 4 Slide Cylinder 5 Lower Heater Plate 6 Lower Plate Member 7 Substrate Placement (Stage)
8 Struts 9 Pressurizing cylinder upper plate 10 Intermediate moving member 11 Upper heater plate 12 Upper frame member 13 Inner frame 13a Frame-shaped presser 13b Rod 14 Pressurizing cylinder 15 Cylinder rod 16 Vacuum / pressurizing port 17 Top plate (flat plate )
S Stopper
    21  基板
    22  電子デバイス
    23  封止シート
    24  離型フィルム
    24a 中央部
    24b 周辺部
    31  封止シート付き離型フィルム
    41  積層体
    42  デバイス付き基板
    121   密閉容器
DESCRIPTION OF SYMBOLS 21 Board | substrate 22 Electronic device 23 Sealing sheet 24 Release film 24a Center part 24b Peripheral part 31 Release film with sealing sheet 41 Laminated body 42 Board | substrate with device 121 Sealed container
    101   積層構造体
     51   チップ仮固定体
     51a  キャリア
     51b  粘着剤
     51c  半導体チップ
    151c  電極パッド
    251c  回路形成面
     61   封止体
     61a  樹脂部
     71   硬化体
     71a  保護部
    141   バッファーコート膜
    142   マスク
    143   レジスト
    144   めっきパターン
    145   再配線
    146   保護膜
    147   電極
    148   バンプ
    140   再配線層
    104   再配線体
    105   半導体パッケージ
 
101 Laminated Structure 51 Chip Temporary Fixture 51a Carrier 51b Adhesive 51c Semiconductor Chip 151c Electrode Pad 251c Circuit Forming Surface 61 Sealing Body 61a Resin Part 71 Cured Body 71a Protection Part 141 Buffer Coat Film 142 Mask 143 Resist 144 Plating Pattern 145 Wiring 146 Protective film 147 Electrode 148 Bump 140 Rewiring layer 104 Rewiring body 105 Semiconductor package

Claims (10)

  1.  基板及び前記基板上に配置された電子デバイスを備えるデバイス付き基板、
     前記デバイス付き基板上に配置された封止シート、並びに
     前記封止シートと接する中央部及び前記中央部の周辺に配置された周辺部を備える離型フィルムを備える積層体の
     前記周辺部を前記基板と接するステージに押し付けることにより、前記ステージ及び前記離型フィルムを備える密閉容器を形成する工程と、
     前記密閉容器の外部の圧力を前記密閉容器の内部の圧力より高めることにより、前記電子デバイスを前記封止シートで覆う工程とを含み、
     前記封止シートが無機充填剤を含み、
     前記封止シート中の前記無機充填剤の含有量が60~90体積%であり、
     前記封止シートは、昇温速度10℃/分、測定周波数1Hz及び歪み5%で測定した最低複素粘度η*を示す温度が100~150℃であり、
     前記最低複素粘度η*が30~3000Pa・sである電子デバイスの封止方法。
    A substrate with a device comprising a substrate and an electronic device disposed on the substrate;
    A sealing sheet disposed on the substrate with the device, a central part in contact with the sealing sheet, and a peripheral part disposed in the periphery of the central part. Forming a sealed container comprising the stage and the release film by pressing against a stage in contact with
    Covering the electronic device with the sealing sheet by increasing the pressure outside the sealed container above the pressure inside the sealed container,
    The sealing sheet contains an inorganic filler;
    The content of the inorganic filler in the sealing sheet is 60 to 90% by volume,
    The sealing sheet has a temperature indicating a minimum complex viscosity η * measured at a heating rate of 10 ° C./min, a measurement frequency of 1 Hz, and a strain of 5% of 100 to 150 ° C.,
    A method for sealing an electronic device, wherein the lowest complex viscosity η * is 30 to 3000 Pa · s.
  2.  前記離型フィルムの常温における引張破断伸びが30~300%である請求項1に記載の電子デバイスの封止方法。 2. The electronic device sealing method according to claim 1, wherein the release film has a tensile elongation at break of 30 to 300% at room temperature.
  3.  前記封止シートと前記離型フィルムとの密着力が、0.1N/20mm以下である請求項1又は2に記載の電子デバイスの封止方法。 The method for sealing an electronic device according to claim 1, wherein an adhesion force between the sealing sheet and the release film is 0.1 N / 20 mm or less.
  4.  前記離型フィルム及び前記離型フィルム上に積層された前記封止シートを備える封止シート付き離型フィルムを減圧雰囲気下で前記デバイス付き基板上に配置することにより、前記積層体を形成する工程をさらに含む請求項1~3のいずれかに記載の電子デバイスの封止方法。 The process of forming the said laminated body by arrange | positioning the release film with a sealing sheet provided with the said sealing sheet laminated | stacked on the said release film and the said release film on the said board | substrate with a device in a pressure-reduced atmosphere. The method for sealing an electronic device according to any one of claims 1 to 3, further comprising:
  5.  基板及び前記基板上に配置された電子デバイスを備えるデバイス付き基板、
     前記デバイス付き基板上に配置された封止シート、並びに
     前記封止シートと接する中央部及び前記中央部の周辺に配置された周辺部を備える離型フィルムを備える積層体の
     前記周辺部を前記基板と接するステージに押し付けることにより、前記ステージ及び前記離型フィルムを備える密閉容器を形成する工程と、
     前記密閉容器の外部の圧力を前記密閉容器の内部の圧力より高めることにより、前記電子デバイスを前記封止シートで覆う工程とを含み、
     前記封止シートが無機充填剤を含み、
     前記封止シート中の前記無機充填剤の含有量が60~90体積%であり、
     前記封止シートは、昇温速度10℃/分、測定周波数1Hz及び歪み5%で測定した最低複素粘度η*を示す温度が100~150℃であり、
     前記最低複素粘度η*が30~3000Pa・sである電子デバイスパッケージの製造方法。
    A substrate with a device comprising a substrate and an electronic device disposed on the substrate;
    A sealing sheet disposed on the substrate with the device, a central part in contact with the sealing sheet, and a peripheral part disposed in the periphery of the central part. Forming a sealed container comprising the stage and the release film by pressing against a stage in contact with
    Covering the electronic device with the sealing sheet by increasing the pressure outside the sealed container above the pressure inside the sealed container,
    The sealing sheet contains an inorganic filler;
    The content of the inorganic filler in the sealing sheet is 60 to 90% by volume,
    The sealing sheet has a temperature indicating a minimum complex viscosity η * measured at a heating rate of 10 ° C./min, a measurement frequency of 1 Hz, and a strain of 5% of 100 to 150 ° C.,
    A method for manufacturing an electronic device package, wherein the lowest complex viscosity η * is 30 to 3000 Pa · s.
  6.  前記離型フィルム及び前記離型フィルム上に積層された前記封止シートを備える封止シート付き離型フィルムを減圧雰囲気下で前記デバイス付き基板上に配置することにより、前記積層体を形成する工程をさらに含む請求項5に記載の電子デバイスパッケージの製造方法。 The process of forming the said laminated body by arrange | positioning the release film with a sealing sheet provided with the said sealing sheet laminated | stacked on the said release film and the said release film on the said board | substrate with a device in a pressure-reduced atmosphere. The method for manufacturing an electronic device package according to claim 5, further comprising:
  7.  基板及び前記基板上に配置された電子デバイスを備えるデバイス付き基板、
     前記デバイス付き基板上に配置された封止シート、並びに
     前記封止シートと接する中央部及び前記中央部の周辺に配置された周辺部を備える離型フィルムを備える積層体の
     前記周辺部を前記基板と接するステージに押し付けることにより、前記ステージ及び前記離型フィルムを備える密閉容器を形成する工程と、
     前記密閉容器の外部の圧力を前記密閉容器の内部の圧力より高めることにより、前記電子デバイスを前記封止シートで覆う工程とを含む電子デバイスの封止方法に使用するための封止シートであって、
     無機充填剤を含み、
     前記無機充填剤の含有量が60~90体積%であり、
     昇温速度10℃/分、測定周波数1Hz及び歪み5%で測定した最低複素粘度η*を示す温度が100~150℃であり、
     前記最低複素粘度η*が30~3000Pa・sである封止シート。
    A substrate with a device comprising a substrate and an electronic device disposed on the substrate;
    A sealing sheet disposed on the substrate with the device, a central part in contact with the sealing sheet, and a peripheral part disposed in the periphery of the central part. Forming a sealed container comprising the stage and the release film by pressing against a stage in contact with
    And a step of covering the electronic device with the sealing sheet by increasing the pressure outside the sealed container to be higher than the pressure inside the sealed container. And
    Containing inorganic fillers,
    The content of the inorganic filler is 60 to 90% by volume,
    The temperature showing the lowest complex viscosity η * measured at a heating rate of 10 ° C./min, a measurement frequency of 1 Hz and a strain of 5% is 100 to 150 ° C.,
    A sealing sheet having the lowest complex viscosity η * of 30 to 3000 Pa · s.
  8.  キャリア、前記キャリア上に配置された粘着剤及び前記粘着剤上に配置された電子デバイスを備えるデバイス仮固定体、
     前記デバイス仮固定体上に配置された封止シート、並びに
     前記封止シートと接する中央部及び前記中央部の周辺に配置された周辺部を備える離型フィルムを備える積層構造体の
     前記周辺部を前記キャリアと接するステージに押し付けることにより、前記ステージ及び前記離型フィルムを備える密閉容器を形成する工程と、
     前記密閉容器の外部の圧力を前記密閉容器の内部の圧力より高めることにより、前記電子デバイスを前記封止シートで覆う工程とを含み、
     前記封止シートが無機充填剤を含み、
     前記封止シート中の前記無機充填剤の含有量が60~90体積%であり、
     前記封止シートは、昇温速度10℃/分、測定周波数1Hz及び歪み5%で測定した最低複素粘度η*を示す温度が100~150℃であり、
     前記最低複素粘度η*が30~3000Pa・sである電子デバイスの封止方法。
    A temporary fixing body of a device comprising a carrier, an adhesive disposed on the carrier, and an electronic device disposed on the adhesive;
    The sealing sheet disposed on the device temporary fixing body, and the peripheral part of the laminated structure including a release film including a central part in contact with the sealing sheet and a peripheral part disposed around the central part. Forming a sealed container comprising the stage and the release film by pressing against a stage in contact with the carrier; and
    Covering the electronic device with the sealing sheet by increasing the pressure outside the sealed container above the pressure inside the sealed container,
    The sealing sheet contains an inorganic filler;
    The content of the inorganic filler in the sealing sheet is 60 to 90% by volume,
    The sealing sheet has a temperature indicating a minimum complex viscosity η * measured at a heating rate of 10 ° C./min, a measurement frequency of 1 Hz, and a strain of 5% of 100 to 150 ° C.,
    A method for sealing an electronic device, wherein the lowest complex viscosity η * is 30 to 3000 Pa · s.
  9.  キャリア、前記キャリア上に配置された粘着剤及び前記粘着剤上に配置された電子デバイスを備えるデバイス仮固定体、
     前記デバイス仮固定体上に配置された封止シート、並びに
     前記封止シートと接する中央部及び前記中央部の周辺に配置された周辺部を備える離型フィルムを備える積層構造体の
     前記周辺部を前記キャリアと接するステージに押し付けることにより、前記ステージ及び前記離型フィルムを備える密閉容器を形成する工程と、
     前記密閉容器の外部の圧力を前記密閉容器の内部の圧力より高めることにより、前記電子デバイスを前記封止シートで覆う工程とを含み、
     前記封止シートが無機充填剤を含み、
     前記封止シート中の前記無機充填剤の含有量が60~90体積%であり、
     前記封止シートは、昇温速度10℃/分、測定周波数1Hz及び歪み5%で測定した最低複素粘度η*を示す温度が100~150℃であり、
     前記最低複素粘度η*が30~3000Pa・sである電子デバイスパッケージの製造方法。
    A temporary fixing body of a device comprising a carrier, an adhesive disposed on the carrier, and an electronic device disposed on the adhesive;
    The sealing sheet disposed on the device temporary fixing body, and the peripheral part of the laminated structure including a release film including a central part in contact with the sealing sheet and a peripheral part disposed around the central part. Forming a sealed container comprising the stage and the release film by pressing against a stage in contact with the carrier; and
    Covering the electronic device with the sealing sheet by increasing the pressure outside the sealed container above the pressure inside the sealed container,
    The sealing sheet contains an inorganic filler;
    The content of the inorganic filler in the sealing sheet is 60 to 90% by volume,
    The sealing sheet has a temperature indicating a minimum complex viscosity η * measured at a heating rate of 10 ° C./min, a measurement frequency of 1 Hz, and a strain of 5% of 100 to 150 ° C.,
    A method for manufacturing an electronic device package, wherein the lowest complex viscosity η * is 30 to 3000 Pa · s.
  10.  キャリア、前記キャリア上に配置された粘着剤及び前記粘着剤上に配置された電子デバイスを備えるデバイス仮固定体、
     前記デバイス仮固定体上に配置された封止シート、並びに
     前記封止シートと接する中央部及び前記中央部の周辺に配置された周辺部を備える離型フィルムを備える積層構造体の
     前記周辺部を前記キャリアと接するステージに押し付けることにより、前記ステージ及び前記離型フィルムを備える密閉容器を形成する工程と、
     前記密閉容器の外部の圧力を前記密閉容器の内部の圧力より高めることにより、前記電子デバイスを前記封止シートで覆う工程とを含む電子デバイスの封止方法に使用するための封止シートであって、
     無機充填剤を含み、
     前記無機充填剤の含有量が60~90体積%であり、
     昇温速度10℃/分、測定周波数1Hz及び歪み5%で測定した最低複素粘度η*を示す温度が100~150℃であり、
     前記最低複素粘度η*が30~3000Pa・sである封止シート。
    A temporary fixing body of a device comprising a carrier, an adhesive disposed on the carrier, and an electronic device disposed on the adhesive;
    The sealing sheet disposed on the device temporary fixing body, and the peripheral part of the laminated structure including a release film including a central part in contact with the sealing sheet and a peripheral part disposed around the central part. Forming a sealed container comprising the stage and the release film by pressing against a stage in contact with the carrier; and
    And a step of covering the electronic device with the sealing sheet by increasing the pressure outside the sealed container to be higher than the pressure inside the sealed container. And
    Containing inorganic fillers,
    The content of the inorganic filler is 60 to 90% by volume,
    The temperature showing the lowest complex viscosity η * measured at a heating rate of 10 ° C./min, a measurement frequency of 1 Hz and a strain of 5% is 100 to 150 ° C.,
    A sealing sheet having the lowest complex viscosity η * of 30 to 3000 Pa · s.
PCT/JP2014/065776 2013-06-20 2014-06-13 Electronic device sealing method, electronic device package production method, and sealing sheet WO2014203830A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480034582.3A CN105324836A (en) 2013-06-20 2014-06-13 Electronic device sealing method, electronic device package production method, and sealing sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-129924 2013-06-20
JP2013129924 2013-06-20
JP2014-108217 2014-05-26
JP2014108217A JP2015026821A (en) 2013-06-20 2014-05-26 Electronic device sealing method, electronic device package production method, and sealing sheet

Publications (1)

Publication Number Publication Date
WO2014203830A1 true WO2014203830A1 (en) 2014-12-24

Family

ID=52104565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065776 WO2014203830A1 (en) 2013-06-20 2014-06-13 Electronic device sealing method, electronic device package production method, and sealing sheet

Country Status (4)

Country Link
JP (1) JP2015026821A (en)
CN (1) CN105324836A (en)
TW (1) TW201519329A (en)
WO (1) WO2014203830A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107210274B (en) * 2015-02-26 2021-09-03 昭和电工材料株式会社 Sealing film and electronic component device using the same
CN106328610B (en) * 2016-09-25 2018-12-07 绍兴柯桥东进纺织有限公司 A kind of multi-mode integrated circuit packaging system
JP6554516B2 (en) * 2017-08-31 2019-07-31 東京応化工業株式会社 Substrate heating apparatus, substrate processing system, and substrate heating method
CN110660679B (en) * 2018-06-29 2021-10-08 欣兴电子股份有限公司 Method for joining electronic components
TWI661518B (en) * 2018-06-29 2019-06-01 欣興電子股份有限公司 Method for bonding electric element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180511A (en) * 1997-09-11 1999-03-26 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing semiconductor
JP2008218496A (en) * 2007-02-28 2008-09-18 Namics Corp Sealing resin film
JP2008227475A (en) * 2007-02-14 2008-09-25 Toray Ind Inc Release sheet for semiconductor sealing, and its production process
WO2013035251A1 (en) * 2011-09-05 2013-03-14 ミカドテクノス株式会社 Vacuum thermal bonding device and vacuum thermal bonding method
JP2013138092A (en) * 2011-12-28 2013-07-11 Tdk Corp Electronic circuit module component and manufacturing method of the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4225162B2 (en) * 2003-08-18 2009-02-18 日立化成工業株式会社 Sealing film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180511A (en) * 1997-09-11 1999-03-26 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing semiconductor
JP2008227475A (en) * 2007-02-14 2008-09-25 Toray Ind Inc Release sheet for semiconductor sealing, and its production process
JP2008218496A (en) * 2007-02-28 2008-09-18 Namics Corp Sealing resin film
WO2013035251A1 (en) * 2011-09-05 2013-03-14 ミカドテクノス株式会社 Vacuum thermal bonding device and vacuum thermal bonding method
JP2013138092A (en) * 2011-12-28 2013-07-11 Tdk Corp Electronic circuit module component and manufacturing method of the same

Also Published As

Publication number Publication date
TW201519329A (en) 2015-05-16
JP2015026821A (en) 2015-02-05
CN105324836A (en) 2016-02-10

Similar Documents

Publication Publication Date Title
US9659883B2 (en) Thermally curable resin sheet for sealing semiconductor chip, and method for manufacturing semiconductor package
JP6259608B2 (en) Resin sheet for sealing electronic device and method for manufacturing electronic device package
WO2015098833A1 (en) Production method for semiconductor package
KR102067945B1 (en) Adhesive sheet and method for manufacturing semiconductor device
WO2014203830A1 (en) Electronic device sealing method, electronic device package production method, and sealing sheet
WO2014156837A1 (en) Hollow sealing resin sheet and production method for hollow package
WO2015079887A1 (en) Sealing thermosetting-resin sheet and hollow-package manufacturing method
WO2015098829A1 (en) Production method for semiconductor package
CN107210274B (en) Sealing film and electronic component device using the same
JP2015216229A (en) Method for manufacturing semiconductor device, and thermosetting resin sheet
TW201445648A (en) Semiconductor device manufacturing method and thermosetting resin sheet
WO2015098838A1 (en) Method for producing semiconductor device, and thermosetting resin sheet
WO2015098842A1 (en) Method for manufacturing semiconductor device
JP2007329162A (en) Electronic component device, manufacturing method thereof, and thermosetting resin sheet for sealing
JP2015216230A (en) Method for manufacturing semiconductor device
WO2014156833A1 (en) Hollow sealing resin sheet and production method for hollow package
JP2015220400A (en) Method for manufacturing electronic device package and method for sealing electronic device
JP2018198337A (en) Hollow sealing resin sheet and production method for hollow package
JP2015220401A (en) Method for manufacturing electronic device package and method for sealing electronic device
WO2020136902A1 (en) Die bonding film, adhesive sheet, and semiconductor package and method for manufacturing same
KR20160078364A (en) Resin sheet for sealing electronic device and method for manufacturing electronic-device package
WO2015053149A1 (en) Method for producing electronic device package and method for sealing electronic device
JP2015061017A (en) Sheet for sealing electronic device and manufacturing method of electronic device package
JP2005247953A (en) Adhesive composition for semiconductor and adhesive sheet for semiconductor using the same
JP2015076444A (en) Resin sheet and method for manufacturing electronic device package

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480034582.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14814156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14814156

Country of ref document: EP

Kind code of ref document: A1