WO2015098842A1 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2015098842A1
WO2015098842A1 PCT/JP2014/083915 JP2014083915W WO2015098842A1 WO 2015098842 A1 WO2015098842 A1 WO 2015098842A1 JP 2014083915 W JP2014083915 W JP 2014083915W WO 2015098842 A1 WO2015098842 A1 WO 2015098842A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin sheet
thermosetting resin
chip
substrate
film
Prior art date
Application number
PCT/JP2014/083915
Other languages
French (fr)
Japanese (ja)
Inventor
豪士 志賀
浩介 盛田
石坂 剛
智絵 飯野
石井 淳
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013270095A external-priority patent/JP2015126124A/en
Priority claimed from JP2014098074A external-priority patent/JP2015216230A/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020167018602A priority Critical patent/KR20160102214A/en
Priority to CN201480070975.XA priority patent/CN105849880A/en
Publication of WO2015098842A1 publication Critical patent/WO2015098842A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5389Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device.
  • Patent Document 1 discloses that a substrate on which a semiconductor chip is mounted by a flip-chip connection method is placed in a cavity of a mold, and then a molten epoxy resin composition is formed in the cavity.
  • a technique is described in which a gap under a chip and a whole chip are sealed together by injecting an object at a predetermined pressure.
  • a technique for collectively filling the gap under the chip and sealing the whole chip is sometimes called mold underfill.
  • An object of the present invention is to solve the above-mentioned problems and to provide a method for manufacturing a semiconductor device that can manufacture a semiconductor device with few voids.
  • the present invention A chip mounting substrate comprising a substrate and a semiconductor chip flip-chip mounted on the substrate; A stage in which a peripheral portion of a laminate including a thermosetting resin sheet disposed on a chip mounting substrate, a central portion in contact with the thermosetting resin sheet, and a film including a peripheral portion disposed in the periphery of the central portion is in contact with the substrate Forming a sealed container including a stage and a film by pressing the A step of filling the gap between the substrate and the semiconductor chip with the thermosetting resin sheet while covering the semiconductor chip with the thermosetting resin sheet by increasing the pressure outside the sealed container to be higher than the pressure inside the sealed container.
  • the present invention relates to a device manufacturing method.
  • the gap between the substrate and the semiconductor chip is filled with the thermosetting resin sheet while the semiconductor chip is covered with the thermosetting resin sheet using the pressure difference between the inside and outside of the sealed container.
  • there is no need to fill the cavity with resin Therefore, it is possible to manufacture a semiconductor device with fewer voids as compared with a transfer molding type mold underfill. Further, the segregation of the filler is less likely to occur as compared to the transfer molding type mold underfill.
  • a vacuum heat bonding apparatus (hereinafter also referred to as a vacuum heat press apparatus) described in JP2013-52424A can be used.
  • the substrate is not particularly limited, and examples thereof include an organic substrate, a semiconductor wafer substrate, and a glass substrate.
  • An example of the semiconductor wafer substrate is a silicon wafer substrate.
  • the chip mounting board preferably includes a plurality of semiconductor chips.
  • the manufacturing method of the semiconductor device of the present invention includes a step of forming a sealed container and a step of filling the gap between the substrate and the semiconductor chip with the thermosetting resin sheet while covering the semiconductor chip with the thermosetting resin sheet.
  • the sealing body obtained by the step of filling the gap between the substrate and the semiconductor chip with the thermosetting resin sheet while covering the semiconductor chip with the thermosetting resin sheet is heated.
  • the method for manufacturing a semiconductor device of the present invention includes, for example, a step of forming a cured body by heating a sealing body, a step of forming a rewiring body by forming a rewiring layer on the cured body, and a rewiring body A step of obtaining a semiconductor device by dicing can be further included.
  • a semiconductor device with few voids can be manufactured.
  • a pressure cylinder lower plate 102 is disposed on a base 101, and a slide moving table 103 is evacuated by a slide cylinder 104 on the pressure cylinder lower plate 102. It is arranged so as to be movable inside and outside the heat and pressure apparatus.
  • a lower heater plate 105 is disposed above the slide moving table 103, a lower plate member 106 is disposed on the upper surface of the lower heater plate 105, and a stage (hereinafter also referred to as a substrate mounting table) is disposed on the upper surface of the lower plate member 106. 107) is arranged.
  • a plurality of support columns 108 are disposed on the pressure cylinder lower plate 102, and a pressure cylinder upper plate 109 is fixed to the upper end portion of the support column 108.
  • An intermediate moving member (intermediate member) 110 is disposed below the pressure cylinder upper plate 109 through a support column 108, and an upper heater plate 111 is fixed below the intermediate moving member 110 via a heat insulating plate.
  • An upper frame member 112 is airtightly fixed to the outer peripheral portion of the lower surface of the plate 111 and extends downward.
  • an inner frame 113 is fixed to the inner surface of the upper frame member 112 on the lower surface of the upper heater plate 111.
  • a flat plate 117 is fixed on the lower surface of the upper heater plate 111 inside the inner frame 113.
  • the inner frame body 113 includes a frame-shaped pressing portion 113a at the lower end portion and a rod 113b extending upward therefrom, a spring is disposed around the rod 113b, and the rod 113b is heat-insulated and fixed to the lower surface of the upper heater plate 111. ing.
  • the frame-shaped presser portion 113a is biased downward by a spring with respect to the rod 113b.
  • the frame-shaped presser portion 113 a can hold the film 13 in an airtight manner with the stage 107.
  • a pressure cylinder 114 is disposed on the upper surface of the pressure cylinder upper plate 109, and the cylinder rod 115 of the pressure cylinder 114 passes through the pressure cylinder upper plate 109 and is fixed to the upper surface of the intermediate moving member 110.
  • S is a stopper that restricts the downward movement of the intermediate moving member 110, the upper heater plate 111, and the upper frame member 112 by the pressure cylinder 114.
  • the stopper plate descends and stops on the upper surface of the main body of the pressure cylinder 114. It comes to contact with.
  • As the pressurizing cylinder 114 a hydraulic cylinder, a pneumatic cylinder, a servo cylinder, or the like is used.
  • the pressurizing cylinder 114 is lowered from the state where the upper frame member 112 is pulled up, and the lower end portion of the upper frame member 112 slides in an airtight manner on the stepped portion provided at the outer peripheral end portion of the lower plate member 106, and is once pressurized there.
  • the cylinder 114 is stopped.
  • a storage container including the upper heater plate 111, the upper frame member 112, and the lower plate member 106 is formed.
  • the upper frame member 112 is provided with a vacuum / pressure port 116 for evacuating and pressurizing the inside of the storage container (hereinafter also referred to as a chamber).
  • the slide cylinder 104 can pull out the slide moving table 103, the lower heater plate 105, the lower plate member 106, and the stage 107 as a unit.
  • the laminated body 1 etc. can be arrange
  • the laminate 1 is placed on the stage 107.
  • the laminate 1 includes a chip mounting substrate 11, a thermosetting resin sheet 12 disposed on the chip mounting substrate 11, and a film 13 disposed on the thermosetting resin sheet 12.
  • the chip mounting substrate 11 includes a substrate 11a and a semiconductor chip 11b flip-chip mounted on the substrate 11a.
  • the semiconductor chip 11b and the substrate 11a are electrically connected via bumps 11c.
  • thermosetting resin sheet 12 is a size capable of sealing the semiconductor chip 11b.
  • the film 13 includes a central portion 13a that is in contact with the thermosetting resin sheet 12 and a peripheral portion 13b that is disposed around the central portion 13a.
  • the outer dimension of the film 13 is a size that can cover the chip mounting substrate 11 and the thermosetting resin sheet 12.
  • the film 13 is not particularly limited, and examples thereof include a fluorine film, a polyolefin film, and a polyethylene terephthalate (PET) film.
  • the tensile elongation at break of the film 13 at 23 ° C. is preferably 30% or more, more preferably 40% or more. When it is 30% or more, the unevenness followability at the time of molding is good.
  • the tensile elongation at break of the film 13 at 23 ° C. is preferably 300% or less, more preferably 100% or less. If it is 300% or less, peeling work is easy.
  • the tensile elongation at break can be measured according to ASTM D882.
  • the softening temperature of the film 13 is not specifically limited, Preferably it is 80 degrees C or less, More preferably, it is 60 degrees C or less. When the temperature is 80 ° C. or less, the unevenness followability at the time of molding is good.
  • the softening temperature of the film 13 is preferably 0 ° C. or higher.
  • the temperature at which the tensile elastic modulus is 300 MPa is defined as the softening temperature.
  • the thickness of the film 13 is not particularly limited, but is preferably 10 ⁇ m to 200 ⁇ m.
  • the stage 107 has been heated in advance.
  • the temperature of the stage 107 is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, and further preferably 85 ° C. or higher. When it is 70 ° C. or higher, the thermosetting resin sheet 12 can be melted and fluidized.
  • the temperature of the stage 107 is preferably 120 ° C. or lower, more preferably 110 ° C. or lower. When the temperature is 120 ° C. or lower, the progress of thermosetting of the thermosetting resin sheet 12 can be suppressed, and an increase in viscosity can be suppressed.
  • the upper heater plate 111 and the upper frame member 112 are lowered, and the lower end portion of the upper frame member 112 is slid in an air-tight manner along the outer edge portion of the lower plate member 106.
  • a chamber hermetically surrounded by the frame member 112 and the lower plate member 106 is formed. At the stage where the chamber is formed, the lowering of the upper heater plate 111 and the upper frame member 112 is stopped.
  • the pressure in the chamber is preferably 500 Pa or less.
  • the sealed container 121 includes a stage 107 and a film 13. Inside the airtight container 121, the chip mounting substrate 11 and the thermosetting resin sheet 12 disposed on the chip mounting substrate 11 are disposed. In addition, in order to form the airtight container 121 after making the inside of a chamber into a pressure reduction state, the inside and the outside of the airtight container 121 are in a pressure reduction state.
  • the pressure in the chamber is set to atmospheric pressure by opening the vacuum / pressure port 116. That is, the pressure outside the sealed container 121 is set to atmospheric pressure.
  • the pressure in the chamber is increased by introducing gas into the vacuum / pressurizing port 116. That is, the pressure outside the sealed container 121 is increased above the atmospheric pressure.
  • the thermosetting resin sheet 12 is filled in the gap between the substrate 11a and the semiconductor chip 11b while covering the semiconductor chip 11b with the thermosetting resin sheet 12.
  • the sealing body 2 is obtained.
  • the gas is not particularly limited, and examples thereof include air and nitrogen.
  • the pressure outside the sealed container 121 after the gas introduction is preferably 0.5 MPa or more, more preferably 0.6 MPa or more, and further preferably 0.7 MPa or more.
  • the upper limit of the pressure outside the sealed container 121 is not particularly limited, but is preferably 0.99 MPa or less, more preferably 0.9 MPa or less.
  • the sealing body 2 includes a chip mounting substrate 11 and a resin layer 21 disposed on the chip mounting substrate 11.
  • the resin layer 21 includes an underfill portion 21a sandwiched between the substrate 11a and the semiconductor chip 11b, and a sealing portion 21b disposed around the underfill portion 21a.
  • the semiconductor chip 11b is covered with a sealing portion 21b.
  • the sealing body 2 is in contact with the film 13.
  • a spacer 131 is arranged beside the sealing body 2.
  • the sealing body 2 is pressed by lowering the flat plate 117 until it contacts the spacer 131, and the thickness of the sealing body 2 is adjusted. Thereby, the thickness of the sealing body 2 can be made uniform.
  • the pressure when pressing the sealing body 2 with the flat plate 117 is preferably 0.1 MPa to 80 MPa.
  • the resin layer 21 is cured by heating the sealing body 2 to form the cured body 3.
  • the cured body 3 includes a chip mounting substrate 11 and a cured layer 31 disposed on the chip mounting substrate 11.
  • the hardened layer 31 includes a connection protection part 31a sandwiched between the substrate 11a and the semiconductor chip 11b, and a chip protection part 31b disposed around the connection protection part 31a.
  • the semiconductor chip 11b is covered with a chip protection part 31b.
  • the heating temperature is preferably 100 ° C or higher, more preferably 120 ° C or higher.
  • the upper limit of the heating temperature is preferably 200 ° C. or lower, more preferably 180 ° C. or lower.
  • the heating time is preferably 10 minutes or more, more preferably 30 minutes or more.
  • the upper limit of the heating time is preferably 180 minutes or less, more preferably 120 minutes or less.
  • bumps 32 are provided on the substrate 11a.
  • the cured body 3 is separated (diced) to obtain the semiconductor device 4.
  • thermosetting resin sheet 12 The thermosetting resin sheet 12 will be described.
  • the minimum melt viscosity at 50 ° C. to 150 ° C. of the thermosetting resin sheet 12 is preferably 5 Pa ⁇ S or more, more preferably 10 Pa ⁇ S or more. When it is 5 Pa ⁇ S or more, the handling property during heating is excellent.
  • the minimum melt viscosity at 50 ° C. to 150 ° C. of the thermosetting resin sheet 12 is preferably 2000 Pa ⁇ S or less, more preferably 1500 Pa ⁇ S or less, still more preferably 1000 Pa ⁇ S or less, even more preferably 500 Pa ⁇ S or less, Particularly preferably, it is 300 Pa ⁇ S or less.
  • the pressure is 2000 Pa ⁇ S or less, the thermosetting resin sheet 12 can follow the semiconductor chip 11 b. Moreover, the thermosetting resin sheet 12 can be easily filled in the gap between the substrate 11a and the semiconductor chip 11b.
  • the minimum melt viscosity can be measured by the method described in Examples.
  • the minimum melt viscosity of the thermosetting resin sheet 12 can be controlled by the content of the inorganic filler, the average particle diameter of the inorganic filler, and the like.
  • the minimum melt viscosity can be reduced by reducing the amount of inorganic filler and using an inorganic filler having a large average particle diameter.
  • the thermosetting resin sheet 12 preferably contains a thermosetting resin.
  • a thermosetting resin an epoxy resin, a phenol resin, etc. can be used conveniently, for example.
  • the epoxy resin is not particularly limited.
  • triphenylmethane type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, modified bisphenol A type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, modified bisphenol F type epoxy resin, dicyclopentadiene type Various epoxy resins such as an epoxy resin, a phenol novolac type epoxy resin, and a phenoxy resin can be used. These epoxy resins may be used alone or in combination of two or more.
  • bisphenol A type epoxy resin is preferable because it can provide flexibility, and liquid at 23 ° C. is more preferable.
  • the epoxy equivalent of the bisphenol A type epoxy resin is preferably 150 g / eq to 250 g / eq.
  • a bisphenol F type epoxy resin together with a bisphenol A type epoxy resin because the viscosity can be lowered.
  • the softening point of the bisphenol F type epoxy resin is preferably 50 ° C. or higher. When it is 50 ° C. or higher, handling properties at room temperature can be improved.
  • the softening point of the bisphenol F type epoxy resin is preferably 100 ° C. or lower. Melt viscosity can be reduced as it is 100 degrees C or less.
  • the epoxy equivalent of the bisphenol F type epoxy resin is preferably 150 g / eq to 250 g / eq.
  • the content of the bisphenol A type epoxy resin in 100% by weight of the epoxy resin is preferably 20% by weight or more, more preferably 25% by weight or more. Since it is excellent in the flexibility of the thermosetting resin sheet 12 as it is 20 weight% or more, handling is easy.
  • the content of the bisphenol A type epoxy resin in 100% by weight of the epoxy resin is preferably 70% by weight or less, more preferably 65% by weight or less. When it is 70% by weight or less, the Tg of the cured product of the thermosetting resin sheet 12 can be increased, and the heat cycle reliability can be improved.
  • the phenol resin is not particularly limited as long as it causes a curing reaction with the epoxy resin.
  • a phenol novolak type curing agent hereinafter, the phenol novolak type curing agent is also referred to as a phenol novolak resin
  • a phenol aralkyl resin a phenol aralkyl resin
  • a biphenyl aralkyl resin a dicyclopentadiene type phenol resin
  • cresol novolak resin a cresol novolak resin
  • resole resin or the like
  • These phenolic resins may be used alone or in combination of two or more.
  • a phenol novolac type curing agent is preferable from the viewpoint of high curing reactivity.
  • the hydroxyl equivalent of the phenol resin is preferably 70 g / eq to 250 g / eq.
  • the softening point of the phenol resin is preferably 50 ° C. or higher. When it is 50 ° C. or higher, handling properties at room temperature can be improved.
  • the softening point of the phenol resin is preferably 120 ° C. or lower. Melt viscosity can be reduced as it is 120 degrees C or less.
  • the total content of the epoxy resin and the phenol resin in the thermosetting resin sheet 12 is preferably 5% by weight or more, more preferably 8% by weight or more. When it is 5% by weight or more, sufficient cured product strength can be obtained.
  • the total content of the epoxy resin and the phenol resin in the thermosetting resin sheet 12 is preferably 30% by weight or less, more preferably 25% by weight or less, further preferably 20% by weight or less, and particularly preferably 15% by weight or less. is there. When it is 30% by weight or less, the linear expansion coefficient of the cured product is small, and low water absorption is easily obtained.
  • the blending ratio of the epoxy resin and the phenol resin is such that the total of hydroxyl groups in the phenol resin is 0.7 equivalent to 1.5 equivalents with respect to 1 equivalent of the epoxy group in the epoxy resin. It is preferably blended, more preferably 0.9 equivalent to 1.2 equivalent.
  • thermosetting resin sheet 12 preferably contains an inorganic filler.
  • the inorganic filler examples include quartz glass, talc, silica (such as fused silica and crystalline silica), alumina (aluminum oxide), boron nitride, aluminum nitride, and silicon carbide.
  • silica is preferable because the thermal expansion coefficient can be satisfactorily reduced.
  • Silica is preferably fused silica and more preferably spherical fused silica because it is excellent in fluidity.
  • a thermally conductive filler is preferable because of its high thermal conductivity, and alumina, boron nitride, and aluminum nitride are more preferable.
  • an electrically insulating thing is preferable.
  • the maximum particle size of the inorganic filler is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less. When the thickness is 30 ⁇ m or less, the gap between the substrate 11a and the semiconductor chip 11b can be satisfactorily filled. On the other hand, the maximum particle size of the inorganic filler is preferably 5 ⁇ m or more. The maximum particle size of the inorganic filler can be measured by the method described in the examples.
  • At least peak A and peak B exist in the particle size distribution of the inorganic filler. Specifically, it is preferable that the peak A exists in the particle size range of 0.01 ⁇ m to 10 ⁇ m and the peak B exists in the particle size range of 1 ⁇ m to 100 ⁇ m. Thereby, it becomes possible to fill the inorganic filler that forms the peak A between the inorganic fillers that form the peak B, and the inorganic filler can be highly filled.
  • the peak A exists in a particle size range of 0.1 ⁇ m or more. More preferably, the peak A exists in a particle size range of 1 ⁇ m or less.
  • the peak B is more preferably present in the particle size range of 2.5 ⁇ m or more, and more preferably in the particle size range of 4 ⁇ m or more. More preferably, the peak B exists in a particle size range of 10 ⁇ m or less.
  • peaks other than peak A and peak B may exist.
  • the particle size distribution of the inorganic filler can be measured by the following method.
  • Thermosetting resin sheet 12 is put in a crucible and ignited to incinerate thermosetting resin sheet 12.
  • the obtained ash was dispersed in pure water and subjected to ultrasonic treatment for 10 minutes, and the particle size distribution (volume basis) using a laser diffraction / scattering particle size distribution analyzer (“LS 13 320” manufactured by Beckman Coulter, Inc .; wet method). )
  • the inorganic filler may be treated (pretreated) with a silane coupling agent. Thereby, the wettability with resin can be improved and the dispersibility of an inorganic filler can be improved.
  • the silane coupling agent is a compound having a hydrolyzable group and an organic functional group in the molecule.
  • hydrolyzable group examples include an alkoxy group having 1 to 6 carbon atoms such as a methoxy group and an ethoxy group, an acetoxy group, and a 2-methoxyethoxy group.
  • a methoxy group is preferable because it easily removes volatile components such as alcohol generated by hydrolysis.
  • organic functional group examples include vinyl group, epoxy group, styryl group, methacryl group, acrylic group, amino group, ureido group, mercapto group, sulfide group, and isocyanate group.
  • an epoxy group is preferable because it easily reacts with an epoxy resin or a phenol resin.
  • silane coupling agent examples include vinyl group-containing silane coupling agents such as vinyltrimethoxysilane and vinyltriethoxysilane; 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyl Epoxy group-containing silane coupling agents such as dimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane; p-styryltrimethoxysilane, etc.
  • vinyl group-containing silane coupling agents such as vinyltrimethoxysilane and vinyltriethoxysilane
  • 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane 3-glycidoxypropylmethyl Epoxy group-containing silane coupling agents such as dimethoxysilane, 3-glycidoxypropyl
  • Styryl group-containing silane coupling agent 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltri Methacrylic group-containing silane coupling agents such as toxisilane; Acrylic group-containing silane coupling agents such as 3-acryloxypropyltrimethoxysilane; N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (Aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N Amino group-containing silane coupling agents such as phenyl-3-a
  • the method for treating the inorganic filler with the silane coupling agent is not particularly limited, and is a wet method in which the inorganic filler and the silane coupling agent are mixed in a solvent, and the inorganic filler and the silane coupling agent are treated in a gas phase. And dry method.
  • the treatment amount of the silane coupling agent is not particularly limited, but it is preferable to treat 0.1 part by weight to 1 part by weight of the silane coupling agent with respect to 100 parts by weight of the untreated inorganic filler.
  • the content of the inorganic filler in the thermosetting resin sheet 12 is preferably 70% by weight or more, more preferably 75% by weight or more. When it is 70% by weight or more, the thermal expansion coefficient of the cured product of the thermosetting resin sheet 12 can be reduced, and the heat resistance cycle reliability of the semiconductor device 4 can be improved.
  • the content of the inorganic filler in the thermosetting resin sheet 12 is preferably 90% by weight or less, more preferably 87% by weight or less. When it is 90% by weight or less, the fluidity of the thermosetting resin sheet 12 can be improved, and the thermosetting resin sheet 12 can follow the semiconductor chip 11b. Further, the gap between the substrate 11a and the semiconductor chip 11b can be satisfactorily filled.
  • thermosetting resin sheet 12 preferably contains a curing accelerator.
  • the curing accelerator is not particularly limited as long as it can cure the epoxy resin and the phenol resin, and examples thereof include organophosphorus compounds such as triphenylphosphine and tetraphenylphosphonium tetraphenylborate; 2-phenyl-4, And imidazole compounds such as 5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole. Of these, 2-phenyl-4,5-dihydroxymethylimidazole is preferred because good storage stability can be obtained.
  • the content of the curing accelerator is preferably 0.1 parts by weight or more, more preferably 0.5 parts by weight or more with respect to 100 parts by weight of the total of the epoxy resin and the phenol resin. When it is 0.1 parts by weight or more, curing is completed within a practical time. Further, the content of the curing accelerator is preferably 5 parts by weight or less, more preferably 2 parts by weight or less. When it is 5 parts by weight or less, good storage stability is obtained.
  • the thermosetting resin sheet 12 may include a thermoplastic resin.
  • Thermoplastic resins include natural rubber, butyl rubber, isoprene rubber, chloroprene rubber, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, polybutadiene resin, polycarbonate resin, thermoplasticity.
  • thermoplastic resin An elastomer is preferable as the thermoplastic resin.
  • a core-shell type acrylic resin having a core layer made of a rubber component and a shell layer made of an acrylic resin is particularly preferable because of dispersibility in an epoxy resin.
  • the rubber component of the core layer is not particularly limited, and examples thereof include butadiene rubber, isoprene rubber, chloroprene rubber, acrylic rubber, and silicon rubber.
  • the average particle diameter of the core-shell type acrylic resin is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more. Dispersibility is favorable in it being 0.1 micrometer or more.
  • the average particle diameter of the core-shell type acrylic resin is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less.
  • seat is favorable in it being 200 micrometers or less.
  • the average particle size can be derived by, for example, using a sample arbitrarily extracted from the population and measuring it using a laser diffraction / scattering particle size distribution measuring apparatus.
  • the content of the thermoplastic resin in the thermosetting resin sheet 12 is preferably 1% by weight or more, and more preferably 2% by weight or more. When it is 1% by weight or more, sufficient cured product strength can be obtained.
  • the content of the thermoplastic resin in the thermosetting resin sheet 12 is preferably 20% by weight or less, and more preferably 10% by weight or less. When it is 20% by weight or less, the linear expansion coefficient of the cured product is small, and low water absorption is easily obtained.
  • thermosetting resin sheet 12 may appropriately contain, in addition to the above-described components, a compounding agent generally used for producing a sealing resin, for example, a flame retardant component, a pigment, and the like.
  • thermosetting resin sheet 12 can be manufactured by a coating method.
  • a coating method For example, an adhesive composition solution containing each of the components described above is prepared, and the adhesive composition solution is applied on a base separator to a predetermined thickness to form a coating film, and then the coating film is dried.
  • the thermosetting resin sheet 12 can be manufactured.
  • the solvent used in the adhesive composition solution is not particularly limited, but an organic solvent capable of uniformly dissolving, kneading or dispersing the above components is preferable.
  • organic solvent capable of uniformly dissolving, kneading or dispersing the above components.
  • examples thereof include ketone solvents such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, acetone, methyl ethyl ketone, and cyclohexanone, toluene, xylene, and the like.
  • polyethylene terephthalate (PET), polyethylene, polypropylene, a plastic film or paper surface-coated with a release agent such as a fluorine-type release agent or a long-chain alkyl acrylate release agent can be used.
  • a release agent such as a fluorine-type release agent or a long-chain alkyl acrylate release agent
  • Examples of the method for applying the adhesive composition solution include roll coating, screen coating, and gravure coating.
  • the drying conditions for the coating film are not particularly limited, and for example, the drying can be performed at a drying temperature of 70 to 160 ° C. and a drying time of 1 to 5 minutes.
  • thermosetting resin sheet 12 the method of plastically processing the kneaded material obtained by kneading each said component (for example, an epoxy resin, a phenol resin, an inorganic filler, a hardening accelerator, etc.) in a sheet form is also preferable.
  • each said component for example, an epoxy resin, a phenol resin, an inorganic filler, a hardening accelerator, etc.
  • the inorganic filler can be highly filled and the thermal expansion coefficient can be designed low.
  • a kneaded material was prepared by melting and kneading an epoxy resin, a phenol resin, an inorganic filler, a curing accelerator, and the like with a known kneader such as a mixing roll, a pressure kneader, and an extruder.
  • the kneaded product is plastically processed into a sheet.
  • the upper limit of the temperature is preferably 140 ° C. or less, and more preferably 130 ° C. or less.
  • the lower limit of the temperature is preferably equal to or higher than the softening point of each component described above, for example, 30 ° C or higher, and preferably 50 ° C or higher.
  • the kneading time is preferably 1 to 30 minutes.
  • the kneading is preferably performed under reduced pressure conditions (under reduced pressure atmosphere), and the pressure under reduced pressure conditions is, for example, 1 ⁇ 10 ⁇ 4 to 0.1 kg / cm 2 .
  • the kneaded material after melt-kneading is preferably subjected to plastic working in a high temperature state without cooling.
  • the plastic working method is not particularly limited, and examples thereof include a flat plate pressing method, a T die extrusion method, a screw die extrusion method, a roll rolling method, a roll kneading method, an inflation extrusion method, a coextrusion method, and a calendering method.
  • the plastic working temperature is preferably not less than the softening point of each component described above, and is 40 to 150 ° C., preferably 50 to 140 ° C., more preferably 70 to 120 ° C. in consideration of the thermosetting property and moldability of the epoxy resin. is there.
  • the thickness of the thermosetting resin sheet 12 is not particularly limited, but is preferably 100 ⁇ m or more, more preferably 150 ⁇ m or more.
  • the thickness of the thermosetting resin sheet 12 is preferably 2000 ⁇ m or less, more preferably 1000 ⁇ m or less. Within the above range, the semiconductor chip 11b can be satisfactorily sealed.
  • the thermosetting resin sheet 12 may have a single layer structure or a multilayer structure in which two or more thermosetting resin layers are laminated.
  • a single layer structure is preferred because there is no risk of delamination and the sheet thickness is highly uniform.
  • the laminate 1 is disposed on the stage 107.
  • the chip mounting substrate 11 is disposed on the stage 107, and then the thermosetting resin sheet 12 is disposed on the chip mounting substrate 11. Then, the film 13 is disposed on the thermosetting resin sheet 12.
  • Modification 2 In the first embodiment, the laminate 1 is disposed on the stage 107. In the second modification, the laminate including the chip mounting substrate 11 and the thermosetting resin sheet 12 disposed on the chip mounting substrate 11 is disposed on the stage 107. The film 13 is then placed on the laminate.
  • the process of forming the sealed container 121 by pressing the outer peripheral portion 13b of the stacked body 1 against the stage 107, and the pressure outside the sealed container 121 are sealed.
  • the step of filling the gap between the substrate 11a and the semiconductor chip 11b with the thermosetting resin sheet 12 while covering the semiconductor chip 11b with the thermosetting resin sheet 12 by increasing the pressure inside 121 is included.
  • Embodiment 1 does not require a step of filling the cavity with resin. Therefore, the semiconductor device 4 with fewer voids can be manufactured as compared with the transfer molding type mold underfill. Further, the segregation of the filler is less likely to occur as compared to the transfer molding type mold underfill.
  • the manufacturing method of the semiconductor device 4 of the first embodiment further includes a step of forming the cured body 3 by heating the sealing body 2 and a step of obtaining the semiconductor device 4 by dicing the cured body 3. .
  • the laminated film 10 is fixed to the frame-shaped presser portion 113a.
  • the laminated film 10 includes a thermosetting resin sheet 12 and a film 13 disposed on the thermosetting resin sheet 12.
  • a fixing method for example, a method of adsorbing the laminated film 10 to the frame-shaped presser portion 113a, a method of fixing the laminated film 10 to the frame-shaped presser portion 113a with an adhesive, and a method of winding the film 13 around the frame-shaped presser portion 113a and so on.
  • the chip mounting substrate 11 is placed on the stage 107.
  • the stage 107 has been heated in advance. Suitable temperature conditions for the stage 107 are the same as those described in the first embodiment.
  • the upper heater plate 111 and the upper frame member 112 are lowered, and the lower end portion of the upper frame member 112 is slid in an airtight manner along the outer edge portion of the lower plate member 106.
  • a chamber hermetically surrounded by the frame member 112 and the lower plate member 106 is formed. At the stage where the chamber is formed, the lowering of the upper heater plate 111 and the upper frame member 112 is stopped.
  • the pressure in the chamber is preferably 500 Pa or less.
  • the laminated film 10 is disposed on the chip mounting substrate 11 by lowering the frame-shaped pressing part 113a, and the laminated body 1 is formed.
  • the sealed container 121 includes a stage 107 and a film 13. Inside the airtight container 121, the chip mounting substrate 11 and the thermosetting resin sheet 12 disposed on the chip mounting substrate 11 are disposed. In addition, in order to form the airtight container 121 after making the inside of a chamber into the pressure reduction state, the inside and the outside of the airtight container 121 are in a pressure reduction state.
  • the pressure in the chamber is set to atmospheric pressure by opening the vacuum / pressure port 116. That is, the pressure outside the sealed container 121 is set to atmospheric pressure.
  • the pressure in the chamber is increased by introducing a gas into the vacuum / pressure port 116. That is, the pressure outside the sealed container 121 is increased above the atmospheric pressure.
  • the thermosetting resin sheet 12 is filled in the gap between the substrate 11a and the semiconductor chip 11b while covering the semiconductor chip 11b with the thermosetting resin sheet 12.
  • the sealing body 2 is obtained.
  • the gas is not particularly limited, and examples thereof include air and nitrogen.
  • a suitable pressure outside the sealed container 121 is the same as the pressure described in the first embodiment.
  • a spacer 131 is disposed beside the sealing body 2.
  • the sealing body 2 is pressed and the thickness of the sealing body 2 is adjusted. Thereby, the thickness of the sealing body 2 can be made uniform.
  • the pressure when pressing the sealing body 2 with the flat plate 117 is preferably 0.5 kgf / cm 2 to 20 kgf / cm 2 .
  • the resin layer 21 is cured by heating the sealing body 2 to form the cured body 3.
  • Suitable heating temperature is the same as the heating temperature described in the first embodiment.
  • a suitable heating time is the same as the heating time described in the first embodiment.
  • bumps 32 are provided on the substrate 11a.
  • the cured body 3 is separated (diced) to obtain the semiconductor device 4.
  • Modification 1 In the second embodiment, after the laminated film 10 is fixed to the frame-shaped holding portion 113a, the chip mounting substrate 11 is arranged on the stage 107. In the first modification, after the chip mounting substrate 11 is arranged on the stage 107, The laminated film 10 is fixed to the frame-shaped presser portion 113a.
  • Modification 2 In the second embodiment, the sealing body 2 is pressed by the flat plate 117, but in the second modification, the sealing body 2 is not pressed.
  • the process of forming the sealed container 121 by pressing the outer peripheral portion 13b of the stacked body 1 against the stage 107, and the pressure outside the sealed container 121 are controlled.
  • the step of filling the gap between the substrate 11a and the semiconductor chip 11b with the thermosetting resin sheet 12 while covering the semiconductor chip 11b with the thermosetting resin sheet 12 by increasing the pressure inside 121 is included.
  • the method for manufacturing the semiconductor device 4 according to the second embodiment further includes a step of forming the laminated body 1 by placing the laminated film 10 on the chip mounting substrate 11 under a reduced pressure atmosphere. Since the laminated film 10 is disposed on the chip mounting substrate 11 under a reduced pressure atmosphere, it is possible to prevent voids from being generated around the semiconductor chip 11b.
  • the method for manufacturing the semiconductor device 4 of the second embodiment further includes a step of forming the cured body 3 by heating the sealing body 2 and a step of obtaining the semiconductor device 4 by dicing the cured body 3. .
  • the laminate 6 includes a chip mounting wafer 61, a thermosetting resin sheet 12 disposed on the chip mounting wafer 61, and a film 13 disposed on the thermosetting resin sheet 12.
  • the film 13 includes a central portion 13a that is in contact with the thermosetting resin sheet 12 and a peripheral portion 13b that is disposed around the central portion 13a.
  • the chip mounting wafer 61 includes a semiconductor wafer 61a and a semiconductor chip 61b flip-chip mounted (flip chip bonding) on the semiconductor wafer 61a.
  • the semiconductor wafer 61a includes an electrode 601a and a through electrode 601b electrically connected to the electrode 601a. That is, the semiconductor wafer 61a includes a through electrode 601b extending in the thickness direction of the semiconductor wafer 61a and an electrode 601a electrically connected to the through electrode 601b. Both sides of the semiconductor wafer 61a can be defined by a circuit forming surface provided with the electrode 601a and a surface facing the circuit forming surface.
  • the semiconductor chip 61b has a circuit formation surface (active surface). Bumps 62 are arranged on the circuit formation surface of the semiconductor chip 61b.
  • the semiconductor chip 61 b and the semiconductor wafer 61 a are electrically connected via bumps 62.
  • the stage 107 has been heated in advance. Suitable temperature conditions for the stage 107 are the same as those described in the first embodiment.
  • the upper heater plate 111 and the upper frame member 112 are lowered, and the lower end portion of the upper frame member 112 is slid in an airtight manner along the outer edge portion of the lower plate member 106 to A chamber hermetically surrounded by the frame member 112 and the lower plate member 106 is formed.
  • the lowering of the upper heater plate 111 and the upper frame member 112 is stopped.
  • the pressure in the chamber is preferably 500 Pa or less.
  • the sealed container 121 includes a stage 107 and a film 13. Inside the sealed container 121, the chip mounting wafer 61 and the thermosetting resin sheet 12 disposed on the chip mounting wafer 61 are disposed. In addition, in order to form the airtight container 121 after making the inside of a vacuum chamber into a pressure reduction state, the inside and the outside of the airtight container 121 are in a pressure reduction state.
  • the pressure in the chamber is set to atmospheric pressure by opening the vacuum / pressure port 116. That is, the pressure outside the sealed container 121 is set to atmospheric pressure.
  • the pressure in the chamber is increased by introducing a gas into the vacuum / pressure port 116. That is, the pressure outside the sealed container 121 is increased above the atmospheric pressure.
  • the thermosetting resin sheet 12 is filled in the gap between the semiconductor wafer 61a and the semiconductor chip 61b while covering the semiconductor chip 61b with the thermosetting resin sheet 12. Thereby, the sealing body 7 is obtained.
  • the gas is not particularly limited, and examples thereof include air and nitrogen.
  • a suitable pressure outside the sealed container 121 is the same as the pressure described in the first embodiment.
  • the sealing body 7 includes a chip mounting wafer 61 and a resin layer 71 disposed on the chip mounting wafer 61.
  • the resin layer 71 includes an underfill portion 71a sandwiched between the semiconductor wafer 61a and the semiconductor chip 61b, and a sealing portion 71b disposed around the underfill portion 71a.
  • the semiconductor chip 61b is covered with a sealing portion 71b.
  • the sealing body 7 is in contact with the film 13.
  • a spacer 131 is arranged beside the sealing body 7.
  • the sealing body 7 is pressed by lowering the flat plate 117 until it hits the spacer 131, and the thickness of the sealing body 7 is adjusted. Thereby, the thickness of the sealing body 7 can be made uniform.
  • the pressure when pressing the sealing body 7 with the flat plate 117 is preferably 0.5 kgf / cm 2 to 20 kgf / cm 2 .
  • the resin layer 71 is cured by heating the sealing body 7 to form the cured body 8.
  • Suitable heating temperature is the same as the heating temperature described in the first embodiment.
  • a suitable heating time is the same as the heating time described in the first embodiment.
  • the cured body 8 includes a chip mounting wafer 61 and a cured layer 81 arranged on the chip mounting wafer 61.
  • the hardened layer 81 includes a connection protection part 81a sandwiched between the semiconductor wafer 61a and the semiconductor chip 61b, and a chip protection part 81b disposed around the connection protection part 81a.
  • the semiconductor chip 61b is covered with a chip protection part 81b.
  • Both sides of the cured body 8 can be defined by a wafer surface on which the semiconductor wafer 61a is disposed and a cured surface facing the wafer surface.
  • a cured layer 81 is disposed on the cured surface.
  • the hardened layer 81 of the hardened body 8 is ground.
  • the semiconductor wafer 61a of the cured body 8 is ground to expose the through electrode 601b. That is, the through electrode 601b is exposed on the ground surface 82 obtained by grinding the wafer surface.
  • a rewiring layer 83 is formed on the ground surface 82 by using a semi-additive method or the like, and a rewiring body 84 is formed.
  • the rewiring layer 83 includes a rewiring 83a.
  • bumps 85 are formed on the rewiring layer 83. The bump 85 is electrically connected to the semiconductor chip 61b through the rewiring 83a, the through electrode 601b, the electrode 601a, and the bump 62.
  • the rewiring body 84 is separated (diced) to obtain the semiconductor device 9.
  • the laminate 6 is disposed on the stage 107, but in the first modification, the chip mounting wafer 61 is disposed on the stage 107, and then the thermosetting resin sheet 12 is disposed on the chip mounting wafer 61. Then, the film 13 is disposed on the thermosetting resin sheet 12.
  • Modification 2 In the third embodiment, the laminated body 6 is arranged on the stage 107. However, in the second modification, the laminated body including the chip mounting wafer 61 and the thermosetting resin sheet 12 arranged on the chip mounting wafer 61 is placed on the stage 107. The film 13 is then placed on the laminate.
  • the process of forming the sealed container 121 by pressing the outer peripheral portion 13b of the stacked body 6 against the stage 107, and the pressure outside the sealed container 121 are controlled.
  • the step of filling the thermosetting resin sheet 12 into the gap between the semiconductor wafer 61a and the semiconductor chip 61b while covering the semiconductor chip 61b with the thermosetting resin sheet 12 by increasing the pressure from the pressure inside 121 is included.
  • Embodiment 3 does not require a step of filling the cavity with resin. Therefore, the semiconductor device 9 with fewer voids can be manufactured as compared with the transfer molding type mold underfill. Further, the segregation of the filler is less likely to occur as compared to the transfer molding type mold underfill.
  • the manufacturing method of the semiconductor device 9 according to the third embodiment includes a step of forming the cured body 8 by heating the sealing body 7 and a step of forming the rewiring body 84 by forming the rewiring layer 83 on the cured body 8. And a step of obtaining the semiconductor device 9 by dicing the rewiring body 84.
  • Epoxy resin A EP828 manufactured by Mitsubishi Chemical Corporation (bisphenol A type epoxy resin, epkin equivalent of 184 g / eq to 194 g / eq, liquid at 23 ° C.)
  • Epoxy resin B YSLV-80XY manufactured by Nippon Steel Chemical Co., Ltd. (bisphenol F type epoxy resin, Epokin equivalent: 200 g / eq, softening point: 80 ° C.)
  • Phenol resin MEH-7500-3S manufactured by Meiwa Kasei Co., Ltd.
  • Spherical filler A 5SDC (fused spherical silica, average particle size 5 ⁇ m) manufactured by Denki Kagaku Kogyo Co., Ltd.
  • Spherical filler B SO-25R (fused spherical silica, average particle size 0.5 ⁇ m) manufactured by Admatechs Carbon black: # 20 manufactured by Mitsubishi Chemical Curing accelerator: 2PHZ-PW (2-phenyl-4,5-dihydroxymethylimidazole) manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • the obtained kneaded material was coated on a release treatment film by a slot die method under a condition of 120 ° C. to form a sheet, and the thickness disposed on the release treatment film and the release treatment film.
  • a sealing sheet provided with a thermosetting resin sheet having a thickness of 500 ⁇ m, a length of 190 mm, and a width of 240 mm was produced.
  • the release treatment film a polyethylene terephthalate film having a thickness of 50 ⁇ m subjected to silicone release treatment was used.
  • thermosetting resin sheet Preparation of thermosetting resin sheet
  • the release treatment film was removed from the sealing sheet to obtain a thermosetting resin sheet having a length of 190 mm, a width of 240 mm, and a thickness of 500 ⁇ m.
  • a chip mounting substrate including an organic substrate having a length of 190 mm and a width of 240 mm and a plurality of chips flip-chip mounted on the organic substrate was prepared.
  • the gap between the substrate and the chip was 80 ⁇ m.
  • a 10 mm square chip having a thickness of 780 ⁇ m was used as the chip.
  • the pitch of the solder bumps was 400 ⁇ m.
  • Example 1 A laminate was formed by disposing a thermosetting resin sheet on the chip mounting substrate.
  • the laminate includes a chip mounting substrate and a thermosetting resin sheet disposed on the chip mounting substrate.
  • the laminate was placed on the stage of a vacuum press apparatus (VACUUM ACE manufactured by Mikado Technos) set to 90 degrees.
  • a release film polyethylene terephthalate film having a thickness of 25 ⁇ m subjected to silicone release treatment
  • the laminated body provided with the release film arrange
  • a storage container including an upper heater plate, an upper frame member, and a lower plate member was formed. Inside the containment vessel (chamber), a stage and a laminated body arranged on the stage were arranged. Next, the pressure in the chamber was reduced. Next, the outer peripheral portion of the release film was pressed against the stage to form a sealed container composed of the stage and the release film. Next, the pressure outside the sealed container was set to atmospheric pressure by opening the chamber. Thereby, the laminate was pressed with the release film. Next, the pressure outside the sealed container was set to 0.5 MPa for 180 seconds. Thereby, the thermosetting resin sheet was filled in the gap between the organic substrate and the chip while the chip was covered with the thermosetting resin sheet.
  • thermosetting resin sheet A laminate was formed by disposing a thermosetting resin sheet on the chip mounting substrate.
  • the laminate includes a chip mounting substrate and a thermosetting resin sheet disposed on the chip mounting substrate.
  • the laminate was placed on the stage of a vacuum press apparatus (VACUUM ACE manufactured by Mikado Technos) set to 90 degrees.
  • a release film polyethylene terephthalate film having a thickness of 25 ⁇ m subjected to silicone release treatment
  • the laminated body provided with the release film arrange
  • thermosetting resin sheet was filled in the gap between the organic substrate and the chip while the chip was covered with the thermosetting resin sheet.
  • thermosetting resin sheets having a thickness of 500 ⁇ m were laminated at 90 ° C. to obtain a laminated sheet having a thickness of 1000 ⁇ m.
  • a test piece having a diameter of 25 mm was obtained by punching the laminated sheet to a diameter of 25 mm.
  • the viscosity of the test piece was measured at 50 ° C. to 150 ° C. using a rheometer (Mahrs III manufactured by Thermo Fisher Scientific) at 1 Hz, a strain of 5%, and a heating rate of 10 ° C./min. The lowest measured viscosity was taken as the lowest melt viscosity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

 Provided is a method for manufacturing a semiconductor device making it possible to manufacture a semiconductor device with fewer voids. This invention pertains to a method for manufacturing a semiconductor device including: a step for forming a sealed container provided with a stage and a film by causing the peripheral section of a laminate provided with a chip mounting substrate, a thermoset resin sheet disposed on the chip mounting substrate, and the film, which is provided with a center section that contacts the thermoset resin sheet and a peripheral section disposed around the center section, to be pressed onto the stage, which contacts the chip mounting substrate; and a step for raising the pressure outside the sealed container above the pressure inside the sealed container and thereby packing the thermoset resin sheet into the gap between the substrate and a semiconductor chip while covering the semiconductor chip with the thermoset resin sheet.

Description

半導体装置の製造方法Manufacturing method of semiconductor device
 本発明は、半導体装置の製造方法に関する。 The present invention relates to a method for manufacturing a semiconductor device.
 フリップチップ接続方式の半導体装置の製造技術に関して、特許文献1には、半導体チップがフリップチップ接続方式で実装された基板を金型のキャビティ内に配置した後、キャビティ内に溶融状態のエポキシ樹脂組成物を所定の圧力で注入することにより、チップ下のギャップの充填とチップ全体の封止とを一括して行う技術が記載されている。チップ下のギャップの充填とチップ全体の封止とを一括して行う技術は、モールドアンダーフィルと呼ばれることがある。 Regarding the manufacturing technology of a flip-chip connection type semiconductor device, Patent Document 1 discloses that a substrate on which a semiconductor chip is mounted by a flip-chip connection method is placed in a cavity of a mold, and then a molten epoxy resin composition is formed in the cavity. A technique is described in which a gap under a chip and a whole chip are sealed together by injecting an object at a predetermined pressure. A technique for collectively filling the gap under the chip and sealing the whole chip is sometimes called mold underfill.
特許第5256185号公報Japanese Patent No. 5256185
 特許文献1に記載の技術では、半導体装置内にボイドが生じやすい。キャビティを充填中にエポキシ樹脂組成物の粘度が上昇し、キャビティ全体を充填することが難しいためである。また、特許文献1に記載の技術では、エポキシ樹脂組成物中に配合されたフィラーのうち小粒径のフィラーが流れやすいため、フィラーの偏析が起こりやすい。 In the technique described in Patent Document 1, voids are likely to occur in a semiconductor device. This is because the viscosity of the epoxy resin composition increases during the filling of the cavity and it is difficult to fill the entire cavity. Moreover, in the technique of patent document 1, since the filler with a small particle diameter tends to flow among the fillers mix | blended in the epoxy resin composition, segregation of a filler tends to occur.
 本発明は前記課題を解決し、ボイドが少ない半導体装置を製造できる半導体装置の製造方法を提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems and to provide a method for manufacturing a semiconductor device that can manufacture a semiconductor device with few voids.
 本発明は、
 基板及び基板にフリップチップ実装された半導体チップを備えるチップ実装基板、
 チップ実装基板上に配置された熱硬化性樹脂シート、並びに
 熱硬化性樹脂シートと接する中央部及び中央部の周辺に配置された周辺部を備えるフィルム
 を備える積層体の
 周辺部を基板と接するステージに押し付けることにより、ステージ及びフィルムを備える密閉容器を形成する工程と、
 密閉容器の外部の圧力を密閉容器の内部の圧力より高めることにより、半導体チップを熱硬化性樹脂シートで覆いつつ、基板と半導体チップのギャップに熱硬化性樹脂シートを充填する工程と
 を含む半導体装置の製造方法に関する。
The present invention
A chip mounting substrate comprising a substrate and a semiconductor chip flip-chip mounted on the substrate;
A stage in which a peripheral portion of a laminate including a thermosetting resin sheet disposed on a chip mounting substrate, a central portion in contact with the thermosetting resin sheet, and a film including a peripheral portion disposed in the periphery of the central portion is in contact with the substrate Forming a sealed container including a stage and a film by pressing the
A step of filling the gap between the substrate and the semiconductor chip with the thermosetting resin sheet while covering the semiconductor chip with the thermosetting resin sheet by increasing the pressure outside the sealed container to be higher than the pressure inside the sealed container. The present invention relates to a device manufacturing method.
 本発明では、密閉容器の内外の圧力差を利用して、半導体チップを熱硬化性樹脂シートで覆いつつ、基板と半導体チップのギャップに熱硬化性樹脂シートを充填する。本発明では、キャビティを樹脂で充填する工程が必要ない。したがって、トランスファ成型方式のモールドアンダーフィルに比べて、ボイドが少ない半導体装置を製造できる。また、トランスファ成型方式のモールドアンダーフィルに比べて、フィラーの偏析が生じ難い。 In the present invention, the gap between the substrate and the semiconductor chip is filled with the thermosetting resin sheet while the semiconductor chip is covered with the thermosetting resin sheet using the pressure difference between the inside and outside of the sealed container. In the present invention, there is no need to fill the cavity with resin. Therefore, it is possible to manufacture a semiconductor device with fewer voids as compared with a transfer molding type mold underfill. Further, the segregation of the filler is less likely to occur as compared to the transfer molding type mold underfill.
 本発明では、例えば、特開2013-52424号公報に記載の真空加熱接合装置(以下、真空熱加圧装置ともいう)などを使用できる。 In the present invention, for example, a vacuum heat bonding apparatus (hereinafter also referred to as a vacuum heat press apparatus) described in JP2013-52424A can be used.
 基板としては特に限定されず、例えば、有機基板、半導体ウェハ基板、ガラス基板などが挙げられる。半導体ウェハ基板としては、シリコンウェハ基板などが挙げられる。 The substrate is not particularly limited, and examples thereof include an organic substrate, a semiconductor wafer substrate, and a glass substrate. An example of the semiconductor wafer substrate is a silicon wafer substrate.
 チップ実装基板は、半導体チップを複数備えることが好ましい。 The chip mounting board preferably includes a plurality of semiconductor chips.
 本発明の半導体装置の製造方法は、密閉容器を形成する工程と、半導体チップを熱硬化性樹脂シートで覆いつつ、基板と半導体チップのギャップに熱硬化性樹脂シートを充填する工程とを含む限り特に限定されない。本発明の半導体装置の製造方法は、例えば、半導体チップを熱硬化性樹脂シートで覆いつつ、基板と半導体チップのギャップに熱硬化性樹脂シートを充填する工程により得られた封止体を加熱することにより、硬化体を形成する工程、及び硬化体をダイシングすることにより、半導体装置を得る工程などをさらに含むことができる。本発明の半導体装置の製造方法は、例えば、封止体を加熱することにより硬化体を形成する工程、硬化体に再配線層を形成することにより再配線体を形成する工程、及び再配線体をダイシングすることにより半導体装置を得る工程などをさらに含むことができる。 As long as the manufacturing method of the semiconductor device of the present invention includes a step of forming a sealed container and a step of filling the gap between the substrate and the semiconductor chip with the thermosetting resin sheet while covering the semiconductor chip with the thermosetting resin sheet. There is no particular limitation. In the method for manufacturing a semiconductor device of the present invention, for example, the sealing body obtained by the step of filling the gap between the substrate and the semiconductor chip with the thermosetting resin sheet while covering the semiconductor chip with the thermosetting resin sheet is heated. By this, the process of forming a hardening body, the process of obtaining a semiconductor device by dicing a hardening body, etc. can further be included. The method for manufacturing a semiconductor device of the present invention includes, for example, a step of forming a cured body by heating a sealing body, a step of forming a rewiring body by forming a rewiring layer on the cured body, and a rewiring body A step of obtaining a semiconductor device by dicing can be further included.
 本発明によれば、ボイドが少ない半導体装置を製造できる。 According to the present invention, a semiconductor device with few voids can be manufactured.
真空加熱接合装置の概略断面図である。It is a schematic sectional drawing of a vacuum heating joining apparatus. ステージ上に積層体を配置した様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the laminated body has been arrange | positioned on the stage. チェンバーを形成した様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the chamber was formed. チップ実装基板及び熱硬化性樹脂シートを格納する密閉容器を形成した様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the airtight container which stores a chip mounting substrate and a thermosetting resin sheet was formed. 密閉容器の外部の圧力を大気圧にした様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the external pressure of the airtight container was made into atmospheric pressure. 密閉容器の内外の圧力差を利用して封止体を形成した様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the sealing body was formed using the pressure difference inside and outside of an airtight container. 封止体の横にスペーサーを配置した様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the spacer was arrange | positioned beside the sealing body. 封止体を平板で押さえつけた様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the sealing body was pressed down with the flat plate. 硬化体の概略断面図である。It is a schematic sectional drawing of a hardening body. 硬化体の基板上にバンプを設けた様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the bump was provided on the board | substrate of a hardening body. 硬化体をダイシングすることにより得られた半導体装置の概略断面図である。It is a schematic sectional drawing of the semiconductor device obtained by dicing a hardening body. 積層フィルムを枠状押え部に固定することによりチップ実装基板の上方に積層フィルムを配置した様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the laminated | multilayer film was arrange | positioned above a chip mounting board | substrate by fixing a laminated | multilayer film to a frame-shaped holding part. チェンバーを形成した様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the chamber was formed. チップ実装基板及び熱硬化性樹脂シートを格納する密閉容器を形成した様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the airtight container which stores a chip mounting substrate and a thermosetting resin sheet was formed. 密閉容器の外部の圧力を大気圧にした様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the external pressure of the airtight container was made into atmospheric pressure. 密閉容器の内外の圧力差を利用して封止体を形成した様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the sealing body was formed using the pressure difference inside and outside of an airtight container. 封止体の横にスペーサーを配置した様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the spacer was arrange | positioned beside the sealing body. 封止体を平板で押さえつけた様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the sealing body was pressed down with the flat plate. 硬化体の概略断面図である。It is a schematic sectional drawing of a hardening body. 硬化体の基板上にバンプを設けた様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the bump was provided on the board | substrate of a hardening body. 硬化体をダイシングすることにより得られた半導体装置の概略断面図である。It is a schematic sectional drawing of the semiconductor device obtained by dicing a hardening body. ステージ上に積層体を配置した様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the laminated body has been arrange | positioned on the stage. チップ実装ウェハの概略断面図である。It is a schematic sectional drawing of a chip mounting wafer. チェンバーを形成した様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the chamber was formed. チップ実装ウェハ及び熱硬化性樹脂シートを格納する密閉容器を形成した様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the airtight container which stores a chip mounting wafer and a thermosetting resin sheet was formed. 密閉容器の外部の圧力を大気圧にした様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the external pressure of the airtight container was made into atmospheric pressure. 密閉容器の内外の圧力差を利用して封止体を形成した様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the sealing body was formed using the pressure difference inside and outside of an airtight container. 封止体の横にスペーサーを配置した様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the spacer was arrange | positioned beside the sealing body. 封止体を平板で押さえつけた様子の概略を示す断面図である。It is sectional drawing which shows the outline of a mode that the sealing body was pressed down with the flat plate. 硬化体の概略断面図である。It is a schematic sectional drawing of a hardening body. 硬化層を研削した後の硬化体の概略断面図である。It is a schematic sectional drawing of the hardening body after grinding a hardening layer. 半導体ウェハを研削した後の硬化体の概略断面図である。It is a schematic sectional drawing of the hardening body after grinding a semiconductor wafer. 再配線体の概略断面図である。It is a schematic sectional drawing of a rewiring body. 再配線体をダイシングすることにより得られた半導体装置の概略断面図である。It is a schematic sectional drawing of the semiconductor device obtained by dicing a rewiring body.
 以下に実施形態を掲げ、本発明を詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to embodiments, but the present invention is not limited only to these embodiments.
 [実施形態1]
 まず、真空加熱接合装置について説明する。
[Embodiment 1]
First, a vacuum heating bonding apparatus will be described.
 (真空加熱接合装置)
 図1に示すように、真空熱加圧装置においては、基台101上に加圧シリンダ下板102が配置され、加圧シリンダ下板102の上にはスライド移動テーブル103がスライドシリンダ104によって真空熱加圧装置内外を移動可能に配置されている。スライド移動テーブル103の上方には、下ヒータ板105が配置されており、下ヒータ板105の上面には下板部材106が配置され、下板部材106の上面にはステージ(以下、基板置台ともいう)107が配置されている。
(Vacuum heating bonding equipment)
As shown in FIG. 1, in the vacuum heat pressurizing apparatus, a pressure cylinder lower plate 102 is disposed on a base 101, and a slide moving table 103 is evacuated by a slide cylinder 104 on the pressure cylinder lower plate 102. It is arranged so as to be movable inside and outside the heat and pressure apparatus. A lower heater plate 105 is disposed above the slide moving table 103, a lower plate member 106 is disposed on the upper surface of the lower heater plate 105, and a stage (hereinafter also referred to as a substrate mounting table) is disposed on the upper surface of the lower plate member 106. 107) is arranged.
 加圧シリンダ下板102の上には複数の支柱108が配置され、支柱108の上端部には加圧シリンダ上板109が固定されている。加圧シリンダ上板109の下方には支柱108を通して中間移動部材(中間部材)110が配置されており、中間移動部材110の下方には断熱板を介して上ヒータ板111が固定され、上ヒータ板111の下面の外周部には上枠部材112が気密に固定され下方に延びている。また、上ヒータ板111の下面で上枠部材112の内方には内方枠体113が固定されている。また、上ヒータ板111の下面上で内方枠体113の内方には平板117が固定されている。 A plurality of support columns 108 are disposed on the pressure cylinder lower plate 102, and a pressure cylinder upper plate 109 is fixed to the upper end portion of the support column 108. An intermediate moving member (intermediate member) 110 is disposed below the pressure cylinder upper plate 109 through a support column 108, and an upper heater plate 111 is fixed below the intermediate moving member 110 via a heat insulating plate. An upper frame member 112 is airtightly fixed to the outer peripheral portion of the lower surface of the plate 111 and extends downward. Further, an inner frame 113 is fixed to the inner surface of the upper frame member 112 on the lower surface of the upper heater plate 111. A flat plate 117 is fixed on the lower surface of the upper heater plate 111 inside the inner frame 113.
 内方枠体113は、下端部の枠状押え部113aとそれから上方に延びるロッド113bとを備え、ロッド113bの周りにはスプリングが配置され、ロッド113bは上ヒータ板111の下面に断熱固定されている。枠状押え部113aはロッド113bに対してスプリングにより下方に付勢されている。枠状押え部113aは、ステージ107との間にフィルム13を気密に保持できる。 The inner frame body 113 includes a frame-shaped pressing portion 113a at the lower end portion and a rod 113b extending upward therefrom, a spring is disposed around the rod 113b, and the rod 113b is heat-insulated and fixed to the lower surface of the upper heater plate 111. ing. The frame-shaped presser portion 113a is biased downward by a spring with respect to the rod 113b. The frame-shaped presser portion 113 a can hold the film 13 in an airtight manner with the stage 107.
 加圧シリンダ上板109の上面には加圧シリンダ114が配置され、加圧シリンダ114のシリンダロッド115は加圧シリンダ上板109を通って中間移動部材110の上面に固定され、加圧シリンダ114によって、中間移動部材110と上ヒータ板111と上枠部材112とが上下に一体的に移動可能となっている。図1において、Sは、加圧シリンダ114による中間移動部材110と上ヒータ板111と上枠部材112の下方の移動を規制するストッパーであり、下降して加圧シリンダ114本体の上面のストッパープレートに当接するようになっている。加圧シリンダ114としては、油圧シリンダ、空圧シリンダ、サーボシリンダなどが使用される。 A pressure cylinder 114 is disposed on the upper surface of the pressure cylinder upper plate 109, and the cylinder rod 115 of the pressure cylinder 114 passes through the pressure cylinder upper plate 109 and is fixed to the upper surface of the intermediate moving member 110. Thus, the intermediate moving member 110, the upper heater plate 111, and the upper frame member 112 can be moved integrally in the vertical direction. In FIG. 1, S is a stopper that restricts the downward movement of the intermediate moving member 110, the upper heater plate 111, and the upper frame member 112 by the pressure cylinder 114. The stopper plate descends and stops on the upper surface of the main body of the pressure cylinder 114. It comes to contact with. As the pressurizing cylinder 114, a hydraulic cylinder, a pneumatic cylinder, a servo cylinder, or the like is used.
 加圧シリンダ114が上枠部材112を引き上げた状態から下降させ、上枠部材112の下端部が下板部材106の外周部端部に設けた段差部に気密に摺動し、そこで一旦加圧シリンダ114を停止させる。これにより、上ヒータ板111、上枠部材112及び下板部材106を備える格納容器が形成される。なお、上枠部材112には格納容器の内部(以下、チェンバーともいう)を真空引きし、加圧するための真空・加圧口116が設けられている。 The pressurizing cylinder 114 is lowered from the state where the upper frame member 112 is pulled up, and the lower end portion of the upper frame member 112 slides in an airtight manner on the stepped portion provided at the outer peripheral end portion of the lower plate member 106, and is once pressurized there. The cylinder 114 is stopped. Thus, a storage container including the upper heater plate 111, the upper frame member 112, and the lower plate member 106 is formed. The upper frame member 112 is provided with a vacuum / pressure port 116 for evacuating and pressurizing the inside of the storage container (hereinafter also referred to as a chamber).
 チェンバーを開いた状態で、スライドシリンダ104によって、スライド移動テーブル103、下ヒータ板105、下板部材106及びステージ107を一体として外部に引き出すことができる。これらを引き出した状態で、ステージ107の上に、積層体1などを配置できる。 With the chamber open, the slide cylinder 104 can pull out the slide moving table 103, the lower heater plate 105, the lower plate member 106, and the stage 107 as a unit. The laminated body 1 etc. can be arrange | positioned on the stage 107 in the state pulled out.
 (半導体装置4の製造方法)
 次に、半導体装置4の製造方法について説明する。
(Method for Manufacturing Semiconductor Device 4)
Next, a method for manufacturing the semiconductor device 4 will be described.
 図2に示すように、積層体1をステージ107上に配置する。積層体1は、チップ実装基板11、チップ実装基板11上に配置された熱硬化性樹脂シート12及び熱硬化性樹脂シート12上に配置されたフィルム13を備える。 As shown in FIG. 2, the laminate 1 is placed on the stage 107. The laminate 1 includes a chip mounting substrate 11, a thermosetting resin sheet 12 disposed on the chip mounting substrate 11, and a film 13 disposed on the thermosetting resin sheet 12.
 チップ実装基板11は、基板11a、基板11aにフリップチップ実装された半導体チップ11bを備える。半導体チップ11bと基板11aは、バンプ11cを介して電気的に接続されている。 The chip mounting substrate 11 includes a substrate 11a and a semiconductor chip 11b flip-chip mounted on the substrate 11a. The semiconductor chip 11b and the substrate 11a are electrically connected via bumps 11c.
 熱硬化性樹脂シート12の外形寸法は、半導体チップ11bを封止可能な大きさである。 The outer dimension of the thermosetting resin sheet 12 is a size capable of sealing the semiconductor chip 11b.
 フィルム13は、熱硬化性樹脂シート12と接する中央部13a及び中央部13aの周辺に配置された周辺部13bを備える。フィルム13の外形寸法は、チップ実装基板11及び熱硬化性樹脂シート12を覆うことが可能な大きさである。 The film 13 includes a central portion 13a that is in contact with the thermosetting resin sheet 12 and a peripheral portion 13b that is disposed around the central portion 13a. The outer dimension of the film 13 is a size that can cover the chip mounting substrate 11 and the thermosetting resin sheet 12.
 フィルム13としては特に限定されず、例えば、フッ素系フィルム、ポリオレフィン系フィルム、ポリエチレンテレフタレート(PET)フィルムなどが挙げられる。 The film 13 is not particularly limited, and examples thereof include a fluorine film, a polyolefin film, and a polyethylene terephthalate (PET) film.
 フィルム13の23℃における引張破断伸びは好ましくは30%以上、より好ましくは40%以上である。30%以上であると、成型時の凹凸追従性が良い。フィルム13の23℃における引張破断伸びは好ましくは300%以下、より好ましくは100%以下である。300%以下であると、剥離作業がし易い。
 引張破断伸びは、ASTM D882に従って測定できる。
The tensile elongation at break of the film 13 at 23 ° C. is preferably 30% or more, more preferably 40% or more. When it is 30% or more, the unevenness followability at the time of molding is good. The tensile elongation at break of the film 13 at 23 ° C. is preferably 300% or less, more preferably 100% or less. If it is 300% or less, peeling work is easy.
The tensile elongation at break can be measured according to ASTM D882.
 フィルム13の軟化温度は特に限定されないが、好ましくは80℃以下、より好ましくは60℃以下である。80℃以下であると、成型時の凹凸追従性が良い。また、フィルム13の軟化温度は、好ましくは0℃以上である。
 なお、引っ張り弾性率が300MPaとなる温度を軟化温度とする。
Although the softening temperature of the film 13 is not specifically limited, Preferably it is 80 degrees C or less, More preferably, it is 60 degrees C or less. When the temperature is 80 ° C. or less, the unevenness followability at the time of molding is good. The softening temperature of the film 13 is preferably 0 ° C. or higher.
The temperature at which the tensile elastic modulus is 300 MPa is defined as the softening temperature.
 フィルム13の厚さは特に限定されないが、好ましくは10μm~200μmである。 The thickness of the film 13 is not particularly limited, but is preferably 10 μm to 200 μm.
 ステージ107はあらかじめ加熱されている。ステージ107の温度は、好ましくは70℃以上、より好ましくは80℃以上、さらに好ましくは85℃以上である。70℃以上であると、熱硬化性樹脂シート12を溶融させ、流動させることが可能である。ステージ107の温度は好ましくは120℃以下、より好ましくは110℃以下である。120℃以下であると、熱硬化性樹脂シート12の熱硬化の進行を抑制することが可能で、粘度上昇を抑えることができる。 The stage 107 has been heated in advance. The temperature of the stage 107 is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, and further preferably 85 ° C. or higher. When it is 70 ° C. or higher, the thermosetting resin sheet 12 can be melted and fluidized. The temperature of the stage 107 is preferably 120 ° C. or lower, more preferably 110 ° C. or lower. When the temperature is 120 ° C. or lower, the progress of thermosetting of the thermosetting resin sheet 12 can be suppressed, and an increase in viscosity can be suppressed.
 図3に示すように、上ヒータ板111及び上枠部材112を下降させ、上枠部材112の下端部を下板部材106の外縁部に沿って気密に摺動させ、上ヒータ板111、上枠部材112及び下板部材106によって気密に囲われたチェンバーを形成する。チェンバーを形成した段階で、上ヒータ板111及び上枠部材112の下降を停止する。 As shown in FIG. 3, the upper heater plate 111 and the upper frame member 112 are lowered, and the lower end portion of the upper frame member 112 is slid in an air-tight manner along the outer edge portion of the lower plate member 106. A chamber hermetically surrounded by the frame member 112 and the lower plate member 106 is formed. At the stage where the chamber is formed, the lowering of the upper heater plate 111 and the upper frame member 112 is stopped.
 次いで、真空引きを行い、チェンバー内を減圧状態とする。チェンバー内の圧力は、好ましくは500Pa以下である。 Next, evacuation is performed, and the chamber is depressurized. The pressure in the chamber is preferably 500 Pa or less.
 図4に示すように、枠状押え部113aを下降させることにより、フィルム13の外周部13bをステージ107に押さえつけて、密閉容器121を形成する。密閉容器121は、ステージ107及びフィルム13を備える。密閉容器121の内部には、チップ実装基板11及びチップ実装基板11上に配置された熱硬化性樹脂シート12が配置されている。なお、チェンバー内を減圧状態にした後に密閉容器121を形成するため、密閉容器121の内部及び外部は減圧状態である。 As shown in FIG. 4, by lowering the frame-shaped presser portion 113 a, the outer peripheral portion 13 b of the film 13 is pressed against the stage 107 to form a sealed container 121. The sealed container 121 includes a stage 107 and a film 13. Inside the airtight container 121, the chip mounting substrate 11 and the thermosetting resin sheet 12 disposed on the chip mounting substrate 11 are disposed. In addition, in order to form the airtight container 121 after making the inside of a chamber into a pressure reduction state, the inside and the outside of the airtight container 121 are in a pressure reduction state.
 図5に示すように、真空・加圧口116を開放することにより、チェンバー内の圧力を大気圧にする。すなわち、密閉容器121の外部の圧力を大気圧にする。 As shown in FIG. 5, the pressure in the chamber is set to atmospheric pressure by opening the vacuum / pressure port 116. That is, the pressure outside the sealed container 121 is set to atmospheric pressure.
 図6に示すように、真空・加圧口116にガスを導入することによりチェンバー内の圧力を高める。すなわち、密閉容器121の外部の圧力を大気圧よりも高める。これにより、半導体チップ11bを熱硬化性樹脂シート12で覆いつつ、基板11aと半導体チップ11bのギャップに熱硬化性樹脂シート12を充填する。これにより、封止体2を得る。 As shown in FIG. 6, the pressure in the chamber is increased by introducing gas into the vacuum / pressurizing port 116. That is, the pressure outside the sealed container 121 is increased above the atmospheric pressure. Thereby, the thermosetting resin sheet 12 is filled in the gap between the substrate 11a and the semiconductor chip 11b while covering the semiconductor chip 11b with the thermosetting resin sheet 12. Thereby, the sealing body 2 is obtained.
 ガスとしては特に限定されず、空気、窒素などが挙げられる。 The gas is not particularly limited, and examples thereof include air and nitrogen.
 ガス導入後の密閉容器121の外部の圧力は、好ましくは0.5MPa以上、より好ましくは0.6MPa以上、さらに好ましくは0.7MPa以上である。密閉容器121の外部の圧力の上限は特に限定されないが、好ましくは0.99MPa以下、より好ましくは0.9MPa以下である。 The pressure outside the sealed container 121 after the gas introduction is preferably 0.5 MPa or more, more preferably 0.6 MPa or more, and further preferably 0.7 MPa or more. The upper limit of the pressure outside the sealed container 121 is not particularly limited, but is preferably 0.99 MPa or less, more preferably 0.9 MPa or less.
 封止体2は、チップ実装基板11及びチップ実装基板11上に配置された樹脂層21を備える。樹脂層21は、基板11aと半導体チップ11bの間に挟まれたアンダーフィル部21a、及びアンダーフィル部21aの周辺に配置された封止部21bを備える。半導体チップ11bは、封止部21bにより覆われている。封止体2は、フィルム13と接している。 The sealing body 2 includes a chip mounting substrate 11 and a resin layer 21 disposed on the chip mounting substrate 11. The resin layer 21 includes an underfill portion 21a sandwiched between the substrate 11a and the semiconductor chip 11b, and a sealing portion 21b disposed around the underfill portion 21a. The semiconductor chip 11b is covered with a sealing portion 21b. The sealing body 2 is in contact with the film 13.
 図7に示すように、封止体2の横にスペーサー131を配置する。 As shown in FIG. 7, a spacer 131 is arranged beside the sealing body 2.
 図8に示すように、平板117をスペーサー131に当たるまで下降させることにより、封止体2をプレスし、封止体2の厚みを調整する。これにより、封止体2の厚みを均一化することができる。平板117で封止体2を押す際の圧力としては、0.1MPa~80MPaが好ましい。 As shown in FIG. 8, the sealing body 2 is pressed by lowering the flat plate 117 until it contacts the spacer 131, and the thickness of the sealing body 2 is adjusted. Thereby, the thickness of the sealing body 2 can be made uniform. The pressure when pressing the sealing body 2 with the flat plate 117 is preferably 0.1 MPa to 80 MPa.
 次いで、フィルム13を取り除く。 Next, the film 13 is removed.
 次いで、封止部21bのうち基板11aから側方にはみ出した部分を切り離す。 Next, the portion of the sealing portion 21b that protrudes laterally from the substrate 11a is cut off.
 図9に示すように、封止体2を加熱することで樹脂層21を硬化させて、硬化体3を形成する。 As shown in FIG. 9, the resin layer 21 is cured by heating the sealing body 2 to form the cured body 3.
 硬化体3は、チップ実装基板11及びチップ実装基板11上に配置された硬化層31を備える。硬化層31は、基板11aと半導体チップ11bの間に挟まれた接続保護部31a、及び接続保護部31aの周辺に配置されたチップ保護部31bを備える。半導体チップ11bは、チップ保護部31bにより覆われている。 The cured body 3 includes a chip mounting substrate 11 and a cured layer 31 disposed on the chip mounting substrate 11. The hardened layer 31 includes a connection protection part 31a sandwiched between the substrate 11a and the semiconductor chip 11b, and a chip protection part 31b disposed around the connection protection part 31a. The semiconductor chip 11b is covered with a chip protection part 31b.
 加熱温度は、好ましくは100℃以上、より好ましくは120℃以上である。一方、加熱温度の上限は、好ましくは200℃以下、より好ましくは180℃以下である。加熱時間は、好ましくは10分以上、より好ましくは30分以上である。一方、加熱時間の上限は、好ましくは180分以下、より好ましくは120分以下である。 The heating temperature is preferably 100 ° C or higher, more preferably 120 ° C or higher. On the other hand, the upper limit of the heating temperature is preferably 200 ° C. or lower, more preferably 180 ° C. or lower. The heating time is preferably 10 minutes or more, more preferably 30 minutes or more. On the other hand, the upper limit of the heating time is preferably 180 minutes or less, more preferably 120 minutes or less.
 図10に示すように、基板11a上にバンプ32を設ける。 As shown in FIG. 10, bumps 32 are provided on the substrate 11a.
 図11に示すように、硬化体3を個片化(ダイシング)して、半導体装置4を得る。 As shown in FIG. 11, the cured body 3 is separated (diced) to obtain the semiconductor device 4.
 (熱硬化性樹脂シート12)
 熱硬化性樹脂シート12について説明する。
(Thermosetting resin sheet 12)
The thermosetting resin sheet 12 will be described.
 熱硬化性樹脂シート12の50℃~150℃における最低溶融粘度は、好ましくは5Pa・S以上、より好ましくは10Pa・S以上である。5Pa・S以上であると、加熱時のハンドリング性に優れる。熱硬化性樹脂シート12の50℃~150℃における最低溶融粘度は、好ましくは2000Pa・S以下、より好ましくは1500Pa・S以下、さらに好ましくは1000Pa・S以下、よりさらに好ましくは500Pa・S以下、特に好ましくは300Pa・S以下である。2000Pa・S以下であると、半導体チップ11bに対して熱硬化性樹脂シート12を追従させることができる。また、基板11aと半導体チップ11bのギャップに熱硬化性樹脂シート12を容易に充填できる。
 最低溶融粘度は、実施例に記載の方法で測定できる。
The minimum melt viscosity at 50 ° C. to 150 ° C. of the thermosetting resin sheet 12 is preferably 5 Pa · S or more, more preferably 10 Pa · S or more. When it is 5 Pa · S or more, the handling property during heating is excellent. The minimum melt viscosity at 50 ° C. to 150 ° C. of the thermosetting resin sheet 12 is preferably 2000 Pa · S or less, more preferably 1500 Pa · S or less, still more preferably 1000 Pa · S or less, even more preferably 500 Pa · S or less, Particularly preferably, it is 300 Pa · S or less. When the pressure is 2000 Pa · S or less, the thermosetting resin sheet 12 can follow the semiconductor chip 11 b. Moreover, the thermosetting resin sheet 12 can be easily filled in the gap between the substrate 11a and the semiconductor chip 11b.
The minimum melt viscosity can be measured by the method described in Examples.
 熱硬化性樹脂シート12の最低溶融粘度は、無機充填剤の含有量、無機充填剤の平均粒子径などによりコントロールできる。例えば、無機充填剤を減量すること、平均粒子径の大きい無機充填剤を使用することにより、最低溶融粘度を低減できる。 The minimum melt viscosity of the thermosetting resin sheet 12 can be controlled by the content of the inorganic filler, the average particle diameter of the inorganic filler, and the like. For example, the minimum melt viscosity can be reduced by reducing the amount of inorganic filler and using an inorganic filler having a large average particle diameter.
 熱硬化性樹脂シート12は、熱硬化性樹脂を含むことが好ましい。熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂などを好適に使用できる。 The thermosetting resin sheet 12 preferably contains a thermosetting resin. As a thermosetting resin, an epoxy resin, a phenol resin, etc. can be used conveniently, for example.
 エポキシ樹脂としては、特に限定されるものではない。例えば、トリフェニルメタン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、変性ビスフェノールA型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、変性ビスフェノールF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、フェノキシ樹脂などの各種のエポキシ樹脂を用いることができる。これらエポキシ樹脂は単独で用いてもよいし2種以上併用してもよい。 The epoxy resin is not particularly limited. For example, triphenylmethane type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, modified bisphenol A type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, modified bisphenol F type epoxy resin, dicyclopentadiene type Various epoxy resins such as an epoxy resin, a phenol novolac type epoxy resin, and a phenoxy resin can be used. These epoxy resins may be used alone or in combination of two or more.
 なかでも、可撓性を付与できるという理由から、ビスフェノールA型エポキシ樹脂が好ましく、23℃で液状のものがより好ましい。ビスフェノールA型エポキシ樹脂のエポキシ当量は、150g/eq~250g/eqが好ましい。 Among these, bisphenol A type epoxy resin is preferable because it can provide flexibility, and liquid at 23 ° C. is more preferable. The epoxy equivalent of the bisphenol A type epoxy resin is preferably 150 g / eq to 250 g / eq.
 また、低粘度化させることができるという理由から、ビスフェノールA型エポキシ樹脂とともに、ビスフェノールF型エポキシ樹脂を使用することが好ましい。ビスフェノールF型エポキシ樹脂の軟化点は、好ましくは50℃以上である。50℃以上であると、常温でのハンドリング性を向上できる。ビスフェノールF型エポキシ樹脂の軟化点は、好ましくは100℃以下である。100℃以下であると、溶融粘度を低下させることができる。ビスフェノールF型エポキシ樹脂のエポキシ当量は、150g/eq~250g/eqが好ましい。 Moreover, it is preferable to use a bisphenol F type epoxy resin together with a bisphenol A type epoxy resin because the viscosity can be lowered. The softening point of the bisphenol F type epoxy resin is preferably 50 ° C. or higher. When it is 50 ° C. or higher, handling properties at room temperature can be improved. The softening point of the bisphenol F type epoxy resin is preferably 100 ° C. or lower. Melt viscosity can be reduced as it is 100 degrees C or less. The epoxy equivalent of the bisphenol F type epoxy resin is preferably 150 g / eq to 250 g / eq.
 エポキシ樹脂100重量%中のビスフェノールA型エポキシ樹脂の含有量は、好ましくは20重量%以上、より好ましくは25重量%以上である。20重量%以上であると、熱硬化性樹脂シート12の可撓性に優れるため、取扱が容易である。エポキシ樹脂100重量%中のビスフェノールA型エポキシ樹脂の含有量は、好ましくは70重量%以下、より好ましくは65重量%以下である。70重量%以下であると、熱硬化性樹脂シート12の硬化物のTgを高めることが可能で、耐熱サイクル信頼性を高められる。 The content of the bisphenol A type epoxy resin in 100% by weight of the epoxy resin is preferably 20% by weight or more, more preferably 25% by weight or more. Since it is excellent in the flexibility of the thermosetting resin sheet 12 as it is 20 weight% or more, handling is easy. The content of the bisphenol A type epoxy resin in 100% by weight of the epoxy resin is preferably 70% by weight or less, more preferably 65% by weight or less. When it is 70% by weight or less, the Tg of the cured product of the thermosetting resin sheet 12 can be increased, and the heat cycle reliability can be improved.
 フェノール樹脂は、エポキシ樹脂との間で硬化反応を生起するものであれば特に限定されるものではない。例えば、フェノールノボラック型硬化剤(以下、フェノールノボラック型硬化剤をフェノールノボラック樹脂ともいう)、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ジシクロペンタジエン型フェノール樹脂、クレゾールノボラック樹脂、レゾール樹脂などが用いられる。これらフェノール樹脂は単独で用いてもよいし、2種以上併用してもよい。なかでも、硬化反応性が高いという観点から、フェノールノボラック型硬化剤が好ましい。 The phenol resin is not particularly limited as long as it causes a curing reaction with the epoxy resin. For example, a phenol novolak type curing agent (hereinafter, the phenol novolak type curing agent is also referred to as a phenol novolak resin), a phenol aralkyl resin, a biphenyl aralkyl resin, a dicyclopentadiene type phenol resin, a cresol novolak resin, a resole resin, or the like is used. These phenolic resins may be used alone or in combination of two or more. Among these, a phenol novolac type curing agent is preferable from the viewpoint of high curing reactivity.
 エポキシ樹脂との反応性の観点から、フェノール樹脂の水酸基当量は、70g/eq~250g/eqが好ましい。フェノール樹脂の軟化点は、好ましくは50℃以上である。50℃以上であると、常温でのハンドリング性を向上することができる。フェノール樹脂の軟化点は、好ましくは120℃以下である。120℃以下であると、溶融粘度を低下させることができる。 From the viewpoint of reactivity with the epoxy resin, the hydroxyl equivalent of the phenol resin is preferably 70 g / eq to 250 g / eq. The softening point of the phenol resin is preferably 50 ° C. or higher. When it is 50 ° C. or higher, handling properties at room temperature can be improved. The softening point of the phenol resin is preferably 120 ° C. or lower. Melt viscosity can be reduced as it is 120 degrees C or less.
 熱硬化性樹脂シート12中のエポキシ樹脂及びフェノール樹脂の合計含有量は、好ましくは5重量%以上、より好ましくは8重量%以上である。5重量%以上であると、充分な硬化物強度が得られる。熱硬化性樹脂シート12中のエポキシ樹脂及びフェノール樹脂の合計含有量は、好ましくは30重量%以下、より好ましくは25重量%以下、さらに好ましくは20重量%以下、特に好ましくは15重量%以下である。30重量%以下であると、硬化物の線膨張係数が小さく、かつ低吸水性が得られやすい。 The total content of the epoxy resin and the phenol resin in the thermosetting resin sheet 12 is preferably 5% by weight or more, more preferably 8% by weight or more. When it is 5% by weight or more, sufficient cured product strength can be obtained. The total content of the epoxy resin and the phenol resin in the thermosetting resin sheet 12 is preferably 30% by weight or less, more preferably 25% by weight or less, further preferably 20% by weight or less, and particularly preferably 15% by weight or less. is there. When it is 30% by weight or less, the linear expansion coefficient of the cured product is small, and low water absorption is easily obtained.
 エポキシ樹脂とフェノール樹脂の配合割合は、硬化反応性という観点から、エポキシ樹脂中のエポキシ基1当量に対して、フェノール樹脂中の水酸基の合計が0.7当量~1.5当量となるように配合することが好ましく、より好ましくは0.9当量~1.2当量である。 From the viewpoint of curing reactivity, the blending ratio of the epoxy resin and the phenol resin is such that the total of hydroxyl groups in the phenol resin is 0.7 equivalent to 1.5 equivalents with respect to 1 equivalent of the epoxy group in the epoxy resin. It is preferably blended, more preferably 0.9 equivalent to 1.2 equivalent.
 熱硬化性樹脂シート12は、無機充填剤を含むことが好ましい。 The thermosetting resin sheet 12 preferably contains an inorganic filler.
 無機充填剤としては、例えば、石英ガラス、タルク、シリカ(溶融シリカや結晶性シリカなど)、アルミナ(酸化アルミニウム)、窒化ホウ素、窒化アルミニウム、炭化珪素などが挙げられる。なかでも、熱膨張係数を良好に低減できるという理由から、シリカが好ましい。シリカとしては、流動性に優れるという理由から、溶融シリカが好ましく、球状溶融シリカがより好ましい。また、熱伝導率が高いという理由から、熱伝導性フィラーが好ましく、アルミナ、窒化ホウ素、窒化アルミニウムがより好ましい。なお、無機充填剤としては、電気絶縁性のものが好ましい。 Examples of the inorganic filler include quartz glass, talc, silica (such as fused silica and crystalline silica), alumina (aluminum oxide), boron nitride, aluminum nitride, and silicon carbide. Among these, silica is preferable because the thermal expansion coefficient can be satisfactorily reduced. Silica is preferably fused silica and more preferably spherical fused silica because it is excellent in fluidity. In addition, a thermally conductive filler is preferable because of its high thermal conductivity, and alumina, boron nitride, and aluminum nitride are more preferable. In addition, as an inorganic filler, an electrically insulating thing is preferable.
 無機充填剤の最大粒子径は、好ましくは30μm以下、より好ましくは20μm以下である。30μm以下であると、基板11aと半導体チップ11bのギャップを良好に充填できる。一方、無機充填剤の最大粒子径は、好ましくは5μm以上である。
 無機充填剤の最大粒子径は、実施例に記載の方法で測定できる。
The maximum particle size of the inorganic filler is preferably 30 μm or less, more preferably 20 μm or less. When the thickness is 30 μm or less, the gap between the substrate 11a and the semiconductor chip 11b can be satisfactorily filled. On the other hand, the maximum particle size of the inorganic filler is preferably 5 μm or more.
The maximum particle size of the inorganic filler can be measured by the method described in the examples.
 無機充填剤の粒度分布において、ピークA及びピークBが少なくとも存在することが好ましい。具体的には、0.01μm~10μmの粒径範囲にピークAが存在し、1μm~100μmの粒径範囲にピークBが存在することが好ましい。これにより、ピークBを形成する無機充填剤の間に、ピークAを形成する無機充填剤を充填することが可能となり、無機充填剤を高充填できる。 It is preferable that at least peak A and peak B exist in the particle size distribution of the inorganic filler. Specifically, it is preferable that the peak A exists in the particle size range of 0.01 μm to 10 μm and the peak B exists in the particle size range of 1 μm to 100 μm. Thereby, it becomes possible to fill the inorganic filler that forms the peak A between the inorganic fillers that form the peak B, and the inorganic filler can be highly filled.
 ピークAは0.1μm以上の粒径範囲に存在することがより好ましい。ピークAは1μm以下の粒径範囲に存在することがより好ましい。 More preferably, the peak A exists in a particle size range of 0.1 μm or more. More preferably, the peak A exists in a particle size range of 1 μm or less.
 ピークBは2.5μm以上の粒径範囲に存在することがより好ましく、4μm以上の粒径範囲に存在することがさらに好ましい。ピークBは10μm以下の粒径範囲に存在することがより好ましい。 The peak B is more preferably present in the particle size range of 2.5 μm or more, and more preferably in the particle size range of 4 μm or more. More preferably, the peak B exists in a particle size range of 10 μm or less.
 無機充填剤の粒度分布において、ピークA及びピークB以外のピークが存在してもよい。 In the particle size distribution of the inorganic filler, peaks other than peak A and peak B may exist.
 なお、無機充填剤の粒度分布は、以下の方法で測定できる。 In addition, the particle size distribution of the inorganic filler can be measured by the following method.
 無機充填剤の粒度分布の測定方法
 熱硬化性樹脂シート12をるつぼに入れ、強熱して熱硬化性樹脂シート12を灰化させる。得られた灰分を純水中に分散させて10分間超音波処理し、レーザー回折散乱式粒度分布測定装置(ベックマンコールター社製、「LS 13 320」;湿式法)を用いて粒度分布(体積基準)を求める。
Method for Measuring Particle Size Distribution of Inorganic Filler Thermosetting resin sheet 12 is put in a crucible and ignited to incinerate thermosetting resin sheet 12. The obtained ash was dispersed in pure water and subjected to ultrasonic treatment for 10 minutes, and the particle size distribution (volume basis) using a laser diffraction / scattering particle size distribution analyzer (“LS 13 320” manufactured by Beckman Coulter, Inc .; wet method). )
 無機充填剤は、シランカップリング剤により処理(前処理)されていてもよい。これにより、樹脂との濡れ性を向上でき、無機充填剤の分散性を高めることができる。 The inorganic filler may be treated (pretreated) with a silane coupling agent. Thereby, the wettability with resin can be improved and the dispersibility of an inorganic filler can be improved.
 シランカップリング剤は、分子中に加水分解性基及び有機官能基を有する化合物である。 The silane coupling agent is a compound having a hydrolyzable group and an organic functional group in the molecule.
 加水分解性基としては、例えば、メトキシ基、エトキシ基などの炭素数1~6のアルコキシ基、アセトキシ基、2-メトキシエトキシ基などが挙げられる。なかでも、加水分解によって生じるアルコールなどの揮発成分を除去し易いという理由から、メトキシ基が好ましい。 Examples of the hydrolyzable group include an alkoxy group having 1 to 6 carbon atoms such as a methoxy group and an ethoxy group, an acetoxy group, and a 2-methoxyethoxy group. Among these, a methoxy group is preferable because it easily removes volatile components such as alcohol generated by hydrolysis.
 有機官能基としては、ビニル基、エポキシ基、スチリル基、メタクリル基、アクリル基、アミノ基、ウレイド基、メルカプト基、スルフィド基、イソシアネート基などが挙げられる。なかでも、エポキシ樹脂、フェノール樹脂と反応し易いという理由から、エポキシ基が好ましい。 Examples of the organic functional group include vinyl group, epoxy group, styryl group, methacryl group, acrylic group, amino group, ureido group, mercapto group, sulfide group, and isocyanate group. Among these, an epoxy group is preferable because it easily reacts with an epoxy resin or a phenol resin.
 シランカップリング剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシランなどのビニル基含有シランカップリング剤;2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシランなどのエポキシ基含有シランカップリング剤;p-スチリルトリメトキシシランなどのスチリル基含有シランカップリング剤;3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシランなどのメタクリル基含有シランカップリング剤;3-アクリロキシプロピルトリメトキシシランなどのアクリル基含有シランカップリング剤;N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランなどのアミノ基含有シランカップリング剤;3-ウレイドプロピルトリエトキシシランなどのウレイド基含有シランカップリング剤;3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシランなどのメルカプト基含有シランカップリング剤;ビス(トリエトキシシリルプロピル)テトラスルフィドなどのスルフィド基含有シランカップリング剤;3-イソシアネートプロピルトリエトキシシランなどのイソシアネート基含有シランカップリング剤などが挙げられる。 Examples of the silane coupling agent include vinyl group-containing silane coupling agents such as vinyltrimethoxysilane and vinyltriethoxysilane; 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyl Epoxy group-containing silane coupling agents such as dimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane; p-styryltrimethoxysilane, etc. Styryl group-containing silane coupling agent: 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltri Methacrylic group-containing silane coupling agents such as toxisilane; Acrylic group-containing silane coupling agents such as 3-acryloxypropyltrimethoxysilane; N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (Aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N Amino group-containing silane coupling agents such as phenyl-3-aminopropyltrimethoxysilane and N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane; ureido such as 3-ureidopropyltriethoxysilane Group-containing silane cup A mercapto group-containing silane coupling agent such as 3-mercaptopropylmethyldimethoxysilane and 3-mercaptopropyltrimethoxysilane; a sulfide group-containing silane coupling agent such as bis (triethoxysilylpropyl) tetrasulfide; 3-isocyanate Examples include isocyanate group-containing silane coupling agents such as propyltriethoxysilane.
 シランカップリング剤により無機充填剤を処理する方法としては特に限定されず、溶媒中で無機充填剤とシランカップリング剤を混合する湿式法、気相中で無機充填剤とシランカップリング剤を処理させる乾式法などが挙げられる。 The method for treating the inorganic filler with the silane coupling agent is not particularly limited, and is a wet method in which the inorganic filler and the silane coupling agent are mixed in a solvent, and the inorganic filler and the silane coupling agent are treated in a gas phase. And dry method.
 シランカップリング剤の処理量は特に限定されないが、未処理の無機充填剤100重量部に対して、シランカップリング剤を0.1重量部~1重量部処理することが好ましい。 The treatment amount of the silane coupling agent is not particularly limited, but it is preferable to treat 0.1 part by weight to 1 part by weight of the silane coupling agent with respect to 100 parts by weight of the untreated inorganic filler.
 熱硬化性樹脂シート12中の無機充填剤の含有量は、好ましくは70重量%以上、より好ましくは75重量%以上である。70重量%以上であると、熱硬化性樹脂シート12の硬化物の熱膨張係数を低下させることが可能で、半導体装置4の耐熱サイクル信頼性を高められる。熱硬化性樹脂シート12中の無機充填剤の含有量は、好ましくは90重量%以下、より好ましくは87重量%以下である。90重量%以下であると、熱硬化性樹脂シート12の流動性を向上させることが可能で、半導体チップ11bに対して熱硬化性樹脂シート12を追従させることができる。また、基板11aと半導体チップ11bのギャップを良好に充填できる。 The content of the inorganic filler in the thermosetting resin sheet 12 is preferably 70% by weight or more, more preferably 75% by weight or more. When it is 70% by weight or more, the thermal expansion coefficient of the cured product of the thermosetting resin sheet 12 can be reduced, and the heat resistance cycle reliability of the semiconductor device 4 can be improved. The content of the inorganic filler in the thermosetting resin sheet 12 is preferably 90% by weight or less, more preferably 87% by weight or less. When it is 90% by weight or less, the fluidity of the thermosetting resin sheet 12 can be improved, and the thermosetting resin sheet 12 can follow the semiconductor chip 11b. Further, the gap between the substrate 11a and the semiconductor chip 11b can be satisfactorily filled.
 熱硬化性樹脂シート12は、硬化促進剤を含むことが好ましい。 The thermosetting resin sheet 12 preferably contains a curing accelerator.
 硬化促進剤としては、エポキシ樹脂とフェノール樹脂の硬化を進行させるものであれば特に限定されず、例えば、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレートなどの有機リン系化合物;2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールなどのイミダゾール系化合物;などが挙げられる。なかでも、良好な保存性が得られるという理由から、2-フェニル-4,5-ジヒドロキシメチルイミダゾールが好ましい。 The curing accelerator is not particularly limited as long as it can cure the epoxy resin and the phenol resin, and examples thereof include organophosphorus compounds such as triphenylphosphine and tetraphenylphosphonium tetraphenylborate; 2-phenyl-4, And imidazole compounds such as 5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole. Of these, 2-phenyl-4,5-dihydroxymethylimidazole is preferred because good storage stability can be obtained.
 硬化促進剤の含有量は、エポキシ樹脂及びフェノール樹脂の合計100重量部に対して、好ましくは0.1重量部以上、より好ましくは0.5重量部以上である。0.1重量部以上であると、実用的な時間内で硬化が完了する。また、硬化促進剤の含有量は、好ましくは5重量部以下、より好ましくは2重量部以下である。5重量部以下であると、良好な保存性が得られる。 The content of the curing accelerator is preferably 0.1 parts by weight or more, more preferably 0.5 parts by weight or more with respect to 100 parts by weight of the total of the epoxy resin and the phenol resin. When it is 0.1 parts by weight or more, curing is completed within a practical time. Further, the content of the curing accelerator is preferably 5 parts by weight or less, more preferably 2 parts by weight or less. When it is 5 parts by weight or less, good storage stability is obtained.
 熱硬化性樹脂シート12は、熱可塑性樹脂を含んでもよい。 The thermosetting resin sheet 12 may include a thermoplastic resin.
 熱可塑性樹脂としては、天然ゴム、ブチルゴム、イソプレンゴム、クロロプレンゴム、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体、ポリブタジエン樹脂、ポリカーボネート樹脂、熱可塑性ポリイミド樹脂、6-ナイロンや6,6-ナイロンなどのポリアミド樹脂、フェノキシ樹脂、アクリル樹脂、PETやPBTなどの飽和ポリエステル樹脂、ポリアミドイミド樹脂、フッ素樹脂、スチレン-イソブチレン-スチレンブロック共重合体、メチルメタクリレート-ブタジエン-スチレン共重合体(MBS樹脂)などが挙げられる。 Thermoplastic resins include natural rubber, butyl rubber, isoprene rubber, chloroprene rubber, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, polybutadiene resin, polycarbonate resin, thermoplasticity. Polyimide resin, polyamide resin such as 6-nylon and 6,6-nylon, phenoxy resin, acrylic resin, saturated polyester resin such as PET and PBT, polyamideimide resin, fluorine resin, styrene-isobutylene-styrene block copolymer, methyl And methacrylate-butadiene-styrene copolymer (MBS resin).
 熱可塑性樹脂としては、エラストマーが好ましい。エポキシ樹脂への分散性という理由から、ゴム成分からなるコア層とアクリル樹脂からなるシェル層とを有するコアシェル型アクリル樹脂が特に好ましい。 An elastomer is preferable as the thermoplastic resin. A core-shell type acrylic resin having a core layer made of a rubber component and a shell layer made of an acrylic resin is particularly preferable because of dispersibility in an epoxy resin.
 コア層のゴム成分は特に限定されず、例えば、ブタジエンゴム、イソプレンゴム、クロロプレンゴム、アクリルゴム、シリコンゴムなどが挙げられる。 The rubber component of the core layer is not particularly limited, and examples thereof include butadiene rubber, isoprene rubber, chloroprene rubber, acrylic rubber, and silicon rubber.
 コアシェル型アクリル樹脂の平均粒子径は、好ましくは0.1μm以上、より好ましくは0.5μm以上である。0.1μm以上であると、分散性が良好である。コアシェル型アクリル樹脂の平均粒子径は、好ましくは200μm以下、より好ましくは100μm以下である。200μm以下であると、作製したシートの平坦性が良好である。
 なお、平均粒子径は、例えば、母集団から任意に抽出される試料を用い、レーザー回折散乱式粒度分布測定装置を用いて測定することにより導き出すことができる。
The average particle diameter of the core-shell type acrylic resin is preferably 0.1 μm or more, more preferably 0.5 μm or more. Dispersibility is favorable in it being 0.1 micrometer or more. The average particle diameter of the core-shell type acrylic resin is preferably 200 μm or less, more preferably 100 μm or less. The flatness of the produced sheet | seat is favorable in it being 200 micrometers or less.
The average particle size can be derived by, for example, using a sample arbitrarily extracted from the population and measuring it using a laser diffraction / scattering particle size distribution measuring apparatus.
 熱硬化性樹脂シート12中の熱可塑性樹脂の含有量は、1重量%以上が好ましく、2重量%以上がより好ましい。1重量%以上であると、充分な硬化物強度が得られる。熱硬化性樹脂シート12中の熱可塑性樹脂の含有量は、20重量%以下が好ましく、10重量%以下がより好ましい。20重量%以下であると、硬化物の線膨張係数が小さく、かつ低吸水性が得られやすい。 The content of the thermoplastic resin in the thermosetting resin sheet 12 is preferably 1% by weight or more, and more preferably 2% by weight or more. When it is 1% by weight or more, sufficient cured product strength can be obtained. The content of the thermoplastic resin in the thermosetting resin sheet 12 is preferably 20% by weight or less, and more preferably 10% by weight or less. When it is 20% by weight or less, the linear expansion coefficient of the cured product is small, and low water absorption is easily obtained.
 熱硬化性樹脂シート12は、前記成分以外にも、封止樹脂の製造に一般に使用される配合剤、例えば、難燃剤成分、顔料などを適宜含有してよい。 The thermosetting resin sheet 12 may appropriately contain, in addition to the above-described components, a compounding agent generally used for producing a sealing resin, for example, a flame retardant component, a pigment, and the like.
 熱硬化性樹脂シート12の製造方法は特に限定されない。例えば、熱硬化性樹脂シート12を塗工方式で製造することができる。例えば、前記各成分を含有する接着剤組成物溶液を作製し、接着剤組成物溶液を基材セパレータ上に所定厚みとなる様に塗布して塗布膜を形成した後、塗布膜を乾燥させることで、熱硬化性樹脂シート12を製造できる。 The manufacturing method of the thermosetting resin sheet 12 is not particularly limited. For example, the thermosetting resin sheet 12 can be manufactured by a coating method. For example, an adhesive composition solution containing each of the components described above is prepared, and the adhesive composition solution is applied on a base separator to a predetermined thickness to form a coating film, and then the coating film is dried. Thus, the thermosetting resin sheet 12 can be manufactured.
 接着剤組成物溶液に用いる溶媒としては特に限定されないが、前記各成分を均一に溶解、混練又は分散できる有機溶媒が好ましい。例えば、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン系溶媒、トルエン、キシレンなどが挙げられる。 The solvent used in the adhesive composition solution is not particularly limited, but an organic solvent capable of uniformly dissolving, kneading or dispersing the above components is preferable. Examples thereof include ketone solvents such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, acetone, methyl ethyl ketone, and cyclohexanone, toluene, xylene, and the like.
 基材セパレータとしては、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレンや、フッ素系剥離剤、長鎖アルキルアクリレート系剥離剤などの剥離剤により表面コートされたプラスチックフィルムや紙などが使用可能である。接着剤組成物溶液の塗布方法としては、例えば、ロール塗工、スクリーン塗工、グラビア塗工などが挙げられる。また、塗布膜の乾燥条件は特に限定されず、例えば、乾燥温度70~160℃、乾燥時間1~5分間で行うことができる。 As the base material separator, polyethylene terephthalate (PET), polyethylene, polypropylene, a plastic film or paper surface-coated with a release agent such as a fluorine-type release agent or a long-chain alkyl acrylate release agent can be used. Examples of the method for applying the adhesive composition solution include roll coating, screen coating, and gravure coating. The drying conditions for the coating film are not particularly limited, and for example, the drying can be performed at a drying temperature of 70 to 160 ° C. and a drying time of 1 to 5 minutes.
 熱硬化性樹脂シート12の製造方法について、前記各成分(例えば、エポキシ樹脂、フェノール樹脂、無機充填剤及び硬化促進剤など)を混練して得られる混練物をシート状に塑性加工する方法も好ましい。これにより、無機充填剤を高充填でき、熱膨張係数を低く設計できる。 About the manufacturing method of the thermosetting resin sheet 12, the method of plastically processing the kneaded material obtained by kneading each said component (for example, an epoxy resin, a phenol resin, an inorganic filler, a hardening accelerator, etc.) in a sheet form is also preferable. . Thereby, the inorganic filler can be highly filled and the thermal expansion coefficient can be designed low.
 具体的には、エポキシ樹脂、フェノール樹脂、無機充填剤及び硬化促進剤などをミキシングロール、加圧式ニーダー、押出機などの公知の混練機で溶融混練することにより混練物を調製し、得られた混練物をシート状に塑性加工する。混練条件として、温度の上限は、140℃以下が好ましく、130℃以下がより好ましい。温度の下限は、上述の各成分の軟化点以上であることが好ましく、例えば30℃以上、好ましくは50℃以上である。混練の時間は、好ましくは1~30分である。また、混練は、減圧条件下(減圧雰囲気下)で行うことが好ましく、減圧条件下の圧力は、例えば、1×10-4~0.1kg/cmである。 Specifically, a kneaded material was prepared by melting and kneading an epoxy resin, a phenol resin, an inorganic filler, a curing accelerator, and the like with a known kneader such as a mixing roll, a pressure kneader, and an extruder. The kneaded product is plastically processed into a sheet. As kneading conditions, the upper limit of the temperature is preferably 140 ° C. or less, and more preferably 130 ° C. or less. The lower limit of the temperature is preferably equal to or higher than the softening point of each component described above, for example, 30 ° C or higher, and preferably 50 ° C or higher. The kneading time is preferably 1 to 30 minutes. The kneading is preferably performed under reduced pressure conditions (under reduced pressure atmosphere), and the pressure under reduced pressure conditions is, for example, 1 × 10 −4 to 0.1 kg / cm 2 .
 溶融混練後の混練物は、冷却することなく高温状態のままで塑性加工することが好ましい。塑性加工方法としては特に制限されず、平板プレス法、Tダイ押出法、スクリューダイ押出法、ロール圧延法、ロール混練法、インフレーション押出法、共押出法、カレンダー成形法などが挙げられる。塑性加工温度としては上述の各成分の軟化点以上が好ましく、エポキシ樹脂の熱硬化性および成形性を考慮すると、例えば40~150℃、好ましくは50~140℃、さらに好ましくは70~120℃である。 The kneaded material after melt-kneading is preferably subjected to plastic working in a high temperature state without cooling. The plastic working method is not particularly limited, and examples thereof include a flat plate pressing method, a T die extrusion method, a screw die extrusion method, a roll rolling method, a roll kneading method, an inflation extrusion method, a coextrusion method, and a calendering method. The plastic working temperature is preferably not less than the softening point of each component described above, and is 40 to 150 ° C., preferably 50 to 140 ° C., more preferably 70 to 120 ° C. in consideration of the thermosetting property and moldability of the epoxy resin. is there.
 熱硬化性樹脂シート12の厚みは特に限定されないが、好ましくは100μm以上、より好ましくは150μm以上である。また、熱硬化性樹脂シート12の厚みは、好ましくは2000μm以下、より好ましくは1000μm以下である。上記範囲内であると、半導体チップ11bを良好に封止できる。 The thickness of the thermosetting resin sheet 12 is not particularly limited, but is preferably 100 μm or more, more preferably 150 μm or more. The thickness of the thermosetting resin sheet 12 is preferably 2000 μm or less, more preferably 1000 μm or less. Within the above range, the semiconductor chip 11b can be satisfactorily sealed.
 熱硬化性樹脂シート12は、単層構造であってもよいし、2以上の熱硬化性樹脂層を積層した多層構造であってもよい。しかしながら、層間剥離のおそれがなく、シート厚の均一性が高いという理由から、単層構造が好ましい。 The thermosetting resin sheet 12 may have a single layer structure or a multilayer structure in which two or more thermosetting resin layers are laminated. However, a single layer structure is preferred because there is no risk of delamination and the sheet thickness is highly uniform.
 (変形例1)
 実施形態1では、積層体1をステージ107上に配置するが、変形例1では、チップ実装基板11をステージ107上に配置し、次いでチップ実装基板11上に熱硬化性樹脂シート12を配置し、次いで熱硬化性樹脂シート12上にフィルム13を配置する。
(Modification 1)
In the first embodiment, the laminate 1 is disposed on the stage 107. In the first modification, the chip mounting substrate 11 is disposed on the stage 107, and then the thermosetting resin sheet 12 is disposed on the chip mounting substrate 11. Then, the film 13 is disposed on the thermosetting resin sheet 12.
 (変形例2)
 実施形態1では、積層体1をステージ107上に配置するが、変形例2では、チップ実装基板11及びチップ実装基板11上に配置された熱硬化性樹脂シート12を備える積層物をステージ107上に配置し、次いで積層物上にフィルム13を配置する。
(Modification 2)
In the first embodiment, the laminate 1 is disposed on the stage 107. In the second modification, the laminate including the chip mounting substrate 11 and the thermosetting resin sheet 12 disposed on the chip mounting substrate 11 is disposed on the stage 107. The film 13 is then placed on the laminate.
 (変形例3)
 実施形態1では、平板117で封止体2をプレスするが、変形例3では封止体2をプレスしない。
(Modification 3)
In the first embodiment, the sealing body 2 is pressed by the flat plate 117, but in the third modification, the sealing body 2 is not pressed.
 以上のとおり、実施形態1の半導体装置4の製造方法は、積層体1の外周部13bをステージ107に押し付けることにより、密閉容器121を形成する工程と、密閉容器121の外部の圧力を密閉容器121の内部の圧力より高めることにより、半導体チップ11bを熱硬化性樹脂シート12で覆いつつ、基板11aと半導体チップ11bのギャップに熱硬化性樹脂シート12を充填する工程とを含む。 As described above, in the method for manufacturing the semiconductor device 4 according to the first embodiment, the process of forming the sealed container 121 by pressing the outer peripheral portion 13b of the stacked body 1 against the stage 107, and the pressure outside the sealed container 121 are sealed. The step of filling the gap between the substrate 11a and the semiconductor chip 11b with the thermosetting resin sheet 12 while covering the semiconductor chip 11b with the thermosetting resin sheet 12 by increasing the pressure inside 121 is included.
 実施形態1では、キャビティを樹脂で充填する工程が必要ない。したがって、トランスファ成型方式のモールドアンダーフィルに比べて、ボイドが少ない半導体装置4を製造できる。また、トランスファ成型方式のモールドアンダーフィルに比べて、フィラーの偏析が生じ難い。 Embodiment 1 does not require a step of filling the cavity with resin. Therefore, the semiconductor device 4 with fewer voids can be manufactured as compared with the transfer molding type mold underfill. Further, the segregation of the filler is less likely to occur as compared to the transfer molding type mold underfill.
 実施形態1の半導体装置4の製造方法は、封止体2を加熱することにより、硬化体3を形成する工程、及び硬化体3をダイシングすることにより、半導体装置4を得る工程などをさらに含む。 The manufacturing method of the semiconductor device 4 of the first embodiment further includes a step of forming the cured body 3 by heating the sealing body 2 and a step of obtaining the semiconductor device 4 by dicing the cured body 3. .
 [実施形態2] [Embodiment 2]
 図12に示すように、積層フィルム10を枠状押え部113aに固定する。積層フィルム10は、熱硬化性樹脂シート12及び熱硬化性樹脂シート12上に配置されたフィルム13を備える。固定方法としては、例えば、枠状押え部113aに積層フィルム10を吸着させる方法、接着剤で枠状押え部113aに積層フィルム10を固定する方法、枠状押え部113aにフィルム13を巻きつける方法などがある。次いで、チップ実装基板11をステージ107上に配置する。 As shown in FIG. 12, the laminated film 10 is fixed to the frame-shaped presser portion 113a. The laminated film 10 includes a thermosetting resin sheet 12 and a film 13 disposed on the thermosetting resin sheet 12. As a fixing method, for example, a method of adsorbing the laminated film 10 to the frame-shaped presser portion 113a, a method of fixing the laminated film 10 to the frame-shaped presser portion 113a with an adhesive, and a method of winding the film 13 around the frame-shaped presser portion 113a and so on. Next, the chip mounting substrate 11 is placed on the stage 107.
 ステージ107はあらかじめ加熱されている。ステージ107の好適な温度条件は、実施形態1で説明した温度条件と同様である。 The stage 107 has been heated in advance. Suitable temperature conditions for the stage 107 are the same as those described in the first embodiment.
 図13に示すように、上ヒータ板111及び上枠部材112を下降させ、上枠部材112の下端部を下板部材106の外縁部に沿って気密に摺動させ、上ヒータ板111、上枠部材112及び下板部材106によって気密に囲われたチェンバーを形成する。チェンバーを形成した段階で、上ヒータ板111及び上枠部材112の下降を停止する。 As shown in FIG. 13, the upper heater plate 111 and the upper frame member 112 are lowered, and the lower end portion of the upper frame member 112 is slid in an airtight manner along the outer edge portion of the lower plate member 106. A chamber hermetically surrounded by the frame member 112 and the lower plate member 106 is formed. At the stage where the chamber is formed, the lowering of the upper heater plate 111 and the upper frame member 112 is stopped.
 次いで、真空引きを行い、チェンバー内を減圧状態とする。チェンバー内の圧力は、好ましくは500Pa以下である。 Next, evacuation is performed, and the chamber is depressurized. The pressure in the chamber is preferably 500 Pa or less.
 枠状押え部113aを下降させることにより、積層フィルム10をチップ実装基板11上に配置して、積層体1を形成する。 The laminated film 10 is disposed on the chip mounting substrate 11 by lowering the frame-shaped pressing part 113a, and the laminated body 1 is formed.
 図14に示すように、積層体1を形成した後も枠状押え部113aの下降を続けることにより、フィルム13の外周部13bをステージ107に押さえつけて、密閉容器121を形成する。密閉容器121は、ステージ107及びフィルム13を備える。密閉容器121の内部には、チップ実装基板11及びチップ実装基板11上に配置された熱硬化性樹脂シート12が配置されている。なお、チェンバー内を減圧状態にした後に密閉容器121を形成するため、密閉容器121の内部及び外部は減圧状態である。 As shown in FIG. 14, by continuing the lowering of the frame-shaped presser portion 113 a after forming the laminated body 1, the outer peripheral portion 13 b of the film 13 is pressed against the stage 107 to form the sealed container 121. The sealed container 121 includes a stage 107 and a film 13. Inside the airtight container 121, the chip mounting substrate 11 and the thermosetting resin sheet 12 disposed on the chip mounting substrate 11 are disposed. In addition, in order to form the airtight container 121 after making the inside of a chamber into the pressure reduction state, the inside and the outside of the airtight container 121 are in a pressure reduction state.
 図15に示すように、真空・加圧口116を開放することにより、チェンバー内の圧力を大気圧にする。すなわち、密閉容器121の外部の圧力を大気圧にする。 As shown in FIG. 15, the pressure in the chamber is set to atmospheric pressure by opening the vacuum / pressure port 116. That is, the pressure outside the sealed container 121 is set to atmospheric pressure.
 図16に示すように、真空・加圧口116にガスを導入することによりチェンバー内の圧力を高める。すなわち、密閉容器121の外部の圧力を大気圧よりも高める。これにより、半導体チップ11bを熱硬化性樹脂シート12で覆いつつ、基板11aと半導体チップ11bのギャップに熱硬化性樹脂シート12を充填する。これにより、封止体2を得る。 As shown in FIG. 16, the pressure in the chamber is increased by introducing a gas into the vacuum / pressure port 116. That is, the pressure outside the sealed container 121 is increased above the atmospheric pressure. Thereby, the thermosetting resin sheet 12 is filled in the gap between the substrate 11a and the semiconductor chip 11b while covering the semiconductor chip 11b with the thermosetting resin sheet 12. Thereby, the sealing body 2 is obtained.
 ガスとしては特に限定されず、空気、窒素などが挙げられる。 The gas is not particularly limited, and examples thereof include air and nitrogen.
 密閉容器121の外部の好適な圧力は、実施形態1で説明した圧力と同様である。 A suitable pressure outside the sealed container 121 is the same as the pressure described in the first embodiment.
 図17に示すように、封止体2の横にスペーサー131を配置する。 As shown in FIG. 17, a spacer 131 is disposed beside the sealing body 2.
 図18に示すように、平板117をスペーサー131に当たるまで下降させることにより、封止体2をプレスし、封止体2の厚みを調整する。これにより、封止体2の厚みを均一化することができる。平板117で封止体2を押す際の圧力としては、0.5kgf/cm~20kgf/cmが好ましい。 As shown in FIG. 18, by lowering the flat plate 117 until it hits the spacer 131, the sealing body 2 is pressed and the thickness of the sealing body 2 is adjusted. Thereby, the thickness of the sealing body 2 can be made uniform. The pressure when pressing the sealing body 2 with the flat plate 117 is preferably 0.5 kgf / cm 2 to 20 kgf / cm 2 .
 次いで、フィルム13を取り除く。 Next, the film 13 is removed.
 次いで、封止部21bのうち基板11aから側方にはみ出した部分を切り離す。 Next, the portion of the sealing portion 21b that protrudes laterally from the substrate 11a is cut off.
 図19に示すように、封止体2を加熱することで樹脂層21を硬化させて、硬化体3を形成する。 As shown in FIG. 19, the resin layer 21 is cured by heating the sealing body 2 to form the cured body 3.
 好適な加熱温度は、実施形態1で説明した加熱温度と同様である。好適な加熱時間は、実施形態1で説明した加熱時間と同様である。 Suitable heating temperature is the same as the heating temperature described in the first embodiment. A suitable heating time is the same as the heating time described in the first embodiment.
 図20に示すように、基板11a上にバンプ32を設ける。 As shown in FIG. 20, bumps 32 are provided on the substrate 11a.
 図21に示すように、硬化体3を個片化(ダイシング)して、半導体装置4を得る。 As shown in FIG. 21, the cured body 3 is separated (diced) to obtain the semiconductor device 4.
 (変形例1)
 実施形態2では、積層フィルム10を枠状押え部113aに固定した後、チップ実装基板11をステージ107上に配置するが、変形例1では、チップ実装基板11をステージ107上に配置した後、積層フィルム10を枠状押え部113aに固定する。
(Modification 1)
In the second embodiment, after the laminated film 10 is fixed to the frame-shaped holding portion 113a, the chip mounting substrate 11 is arranged on the stage 107. In the first modification, after the chip mounting substrate 11 is arranged on the stage 107, The laminated film 10 is fixed to the frame-shaped presser portion 113a.
 (変形例2)
 実施形態2では、平板117で封止体2をプレスするが、変形例2では封止体2をプレスしない。
(Modification 2)
In the second embodiment, the sealing body 2 is pressed by the flat plate 117, but in the second modification, the sealing body 2 is not pressed.
 以上のとおり、実施形態2の半導体装置4の製造方法は、積層体1の外周部13bをステージ107に押し付けることにより、密閉容器121を形成する工程と、密閉容器121の外部の圧力を密閉容器121の内部の圧力より高めることにより、半導体チップ11bを熱硬化性樹脂シート12で覆いつつ、基板11aと半導体チップ11bのギャップに熱硬化性樹脂シート12を充填する工程とを含む。 As described above, in the method for manufacturing the semiconductor device 4 according to the second embodiment, the process of forming the sealed container 121 by pressing the outer peripheral portion 13b of the stacked body 1 against the stage 107, and the pressure outside the sealed container 121 are controlled. The step of filling the gap between the substrate 11a and the semiconductor chip 11b with the thermosetting resin sheet 12 while covering the semiconductor chip 11b with the thermosetting resin sheet 12 by increasing the pressure inside 121 is included.
 実施形態2の半導体装置4の製造方法は、減圧雰囲気下で積層フィルム10をチップ実装基板11上に配置して、積層体1を形成する工程をさらに含む。減圧雰囲気下で積層フィルム10をチップ実装基板11上に配置するので、半導体チップ11b周辺にボイドが生じることを防止できる。 The method for manufacturing the semiconductor device 4 according to the second embodiment further includes a step of forming the laminated body 1 by placing the laminated film 10 on the chip mounting substrate 11 under a reduced pressure atmosphere. Since the laminated film 10 is disposed on the chip mounting substrate 11 under a reduced pressure atmosphere, it is possible to prevent voids from being generated around the semiconductor chip 11b.
 実施形態2の半導体装置4の製造方法は、封止体2を加熱することにより、硬化体3を形成する工程、及び硬化体3をダイシングすることにより、半導体装置4を得る工程などをさらに含む。 The method for manufacturing the semiconductor device 4 of the second embodiment further includes a step of forming the cured body 3 by heating the sealing body 2 and a step of obtaining the semiconductor device 4 by dicing the cured body 3. .
 [実施形態3]
 図22に示すように、積層体6をステージ107上に配置する。積層体6は、チップ実装ウェハ61、チップ実装ウェハ61上に配置された熱硬化性樹脂シート12及び熱硬化性樹脂シート12上に配置されたフィルム13を備える。
[Embodiment 3]
As shown in FIG. 22, the stacked body 6 is disposed on the stage 107. The laminate 6 includes a chip mounting wafer 61, a thermosetting resin sheet 12 disposed on the chip mounting wafer 61, and a film 13 disposed on the thermosetting resin sheet 12.
 フィルム13は、熱硬化性樹脂シート12と接する中央部13a及び中央部13aの周辺に配置された周辺部13bを備える。 The film 13 includes a central portion 13a that is in contact with the thermosetting resin sheet 12 and a peripheral portion 13b that is disposed around the central portion 13a.
 図23に示すように、チップ実装ウェハ61は、半導体ウェハ61a及び半導体ウェハ61aにフリップチップ実装(フリップチップボンディング)された半導体チップ61bを備える。 As shown in FIG. 23, the chip mounting wafer 61 includes a semiconductor wafer 61a and a semiconductor chip 61b flip-chip mounted (flip chip bonding) on the semiconductor wafer 61a.
 半導体ウェハ61aは、電極601a、及び電極601aと電気的に接続された貫通電極601bを備える。すなわち、半導体ウェハ61aは、半導体ウェハ61aの厚み方向に延びる貫通電極601b、及び貫通電極601bと電気的に接続された電極601aを備える。半導体ウェハ61aは、電極601aが設けられた回路形成面、及び回路形成面に対向した面で両面を定義できる。 The semiconductor wafer 61a includes an electrode 601a and a through electrode 601b electrically connected to the electrode 601a. That is, the semiconductor wafer 61a includes a through electrode 601b extending in the thickness direction of the semiconductor wafer 61a and an electrode 601a electrically connected to the through electrode 601b. Both sides of the semiconductor wafer 61a can be defined by a circuit forming surface provided with the electrode 601a and a surface facing the circuit forming surface.
 半導体チップ61bは回路形成面(活性面)を備える。半導体チップ61bの回路形成面上には、バンプ62が配置されている。 The semiconductor chip 61b has a circuit formation surface (active surface). Bumps 62 are arranged on the circuit formation surface of the semiconductor chip 61b.
 半導体チップ61bと半導体ウェハ61aは、バンプ62を介して電気的に接続されている。 The semiconductor chip 61 b and the semiconductor wafer 61 a are electrically connected via bumps 62.
 ステージ107はあらかじめ加熱されている。ステージ107の好適な温度条件は、実施形態1で説明した温度条件と同様である。 The stage 107 has been heated in advance. Suitable temperature conditions for the stage 107 are the same as those described in the first embodiment.
 図24に示すように、上ヒータ板111及び上枠部材112を下降させ、上枠部材112の下端部を下板部材106の外縁部に沿って気密に摺動させ、上ヒータ板111、上枠部材112及び下板部材106によって気密に囲われたチェンバーを形成する。チェンバーを形成した段階で、上ヒータ板111及び上枠部材112の下降を停止する。 As shown in FIG. 24, the upper heater plate 111 and the upper frame member 112 are lowered, and the lower end portion of the upper frame member 112 is slid in an airtight manner along the outer edge portion of the lower plate member 106 to A chamber hermetically surrounded by the frame member 112 and the lower plate member 106 is formed. At the stage where the chamber is formed, the lowering of the upper heater plate 111 and the upper frame member 112 is stopped.
 次いで、真空引きを行い、チェンバー内を減圧状態とする。チェンバー内の圧力は、好ましくは500Pa以下である。 Next, evacuation is performed, and the chamber is depressurized. The pressure in the chamber is preferably 500 Pa or less.
 図25に示すように、枠状押え部113aを下降させることにより、フィルム13の外周部13bをステージ107に押さえつけて、密閉容器121を形成する。密閉容器121は、ステージ107及びフィルム13を備える。密閉容器121の内部には、チップ実装ウェハ61及びチップ実装ウェハ61上に配置された熱硬化性樹脂シート12が配置されている。なお、真空チェンバー内を減圧状態にした後に密閉容器121を形成するため、密閉容器121の内部及び外部は減圧状態である。 25, by lowering the frame-shaped presser portion 113a, the outer peripheral portion 13b of the film 13 is pressed against the stage 107, and the sealed container 121 is formed. The sealed container 121 includes a stage 107 and a film 13. Inside the sealed container 121, the chip mounting wafer 61 and the thermosetting resin sheet 12 disposed on the chip mounting wafer 61 are disposed. In addition, in order to form the airtight container 121 after making the inside of a vacuum chamber into a pressure reduction state, the inside and the outside of the airtight container 121 are in a pressure reduction state.
 図26に示すように、真空・加圧口116を開放することにより、チェンバー内の圧力を大気圧にする。すなわち、密閉容器121の外部の圧力を大気圧にする。 As shown in FIG. 26, the pressure in the chamber is set to atmospheric pressure by opening the vacuum / pressure port 116. That is, the pressure outside the sealed container 121 is set to atmospheric pressure.
 図27に示すように、真空・加圧口116にガスを導入することによりチェンバー内の圧力を高める。すなわち、密閉容器121の外部の圧力を大気圧よりも高める。これにより、半導体チップ61bを熱硬化性樹脂シート12で覆いつつ、半導体ウェハ61aと半導体チップ61bのギャップに熱硬化性樹脂シート12を充填する。これにより、封止体7を得る。 As shown in FIG. 27, the pressure in the chamber is increased by introducing a gas into the vacuum / pressure port 116. That is, the pressure outside the sealed container 121 is increased above the atmospheric pressure. Thus, the thermosetting resin sheet 12 is filled in the gap between the semiconductor wafer 61a and the semiconductor chip 61b while covering the semiconductor chip 61b with the thermosetting resin sheet 12. Thereby, the sealing body 7 is obtained.
 ガスとしては特に限定されず、空気、窒素などが挙げられる。 The gas is not particularly limited, and examples thereof include air and nitrogen.
 密閉容器121の外部の好適な圧力は、実施形態1で説明した圧力と同様である。 A suitable pressure outside the sealed container 121 is the same as the pressure described in the first embodiment.
 封止体7は、チップ実装ウェハ61及びチップ実装ウェハ61上に配置された樹脂層71を備える。樹脂層71は、半導体ウェハ61aと半導体チップ61bの間に挟まれたアンダーフィル部71a、及びアンダーフィル部71aの周辺に配置された封止部71bを備える。半導体チップ61bは、封止部71bにより覆われている。封止体7は、フィルム13と接している。 The sealing body 7 includes a chip mounting wafer 61 and a resin layer 71 disposed on the chip mounting wafer 61. The resin layer 71 includes an underfill portion 71a sandwiched between the semiconductor wafer 61a and the semiconductor chip 61b, and a sealing portion 71b disposed around the underfill portion 71a. The semiconductor chip 61b is covered with a sealing portion 71b. The sealing body 7 is in contact with the film 13.
 図28に示すように、封止体7の横にスペーサー131を配置する。 28, a spacer 131 is arranged beside the sealing body 7.
 図29に示すように、平板117をスペーサー131に当たるまで下降させることにより、封止体7をプレスし、封止体7の厚みを調整する。これにより、封止体7の厚みを均一化することができる。平板117で封止体7を押す際の圧力としては、0.5kgf/cm~20kgf/cmが好ましい。 As shown in FIG. 29, the sealing body 7 is pressed by lowering the flat plate 117 until it hits the spacer 131, and the thickness of the sealing body 7 is adjusted. Thereby, the thickness of the sealing body 7 can be made uniform. The pressure when pressing the sealing body 7 with the flat plate 117 is preferably 0.5 kgf / cm 2 to 20 kgf / cm 2 .
 次いで、フィルム13を取り除く。 Next, the film 13 is removed.
 次いで、封止部71bのうち半導体ウェハ61aから側方にはみ出した部分を切り離す。 Next, the portion of the sealing portion 71b that protrudes laterally from the semiconductor wafer 61a is cut off.
 図30に示すように、封止体7を加熱することで樹脂層71を硬化させて、硬化体8を形成する。 As shown in FIG. 30, the resin layer 71 is cured by heating the sealing body 7 to form the cured body 8.
 好適な加熱温度は、実施形態1で説明した加熱温度と同様である。好適な加熱時間は、実施形態1で説明した加熱時間と同様である。 Suitable heating temperature is the same as the heating temperature described in the first embodiment. A suitable heating time is the same as the heating time described in the first embodiment.
 硬化体8は、チップ実装ウェハ61及びチップ実装ウェハ61上に配置された硬化層81を備える。硬化層81は、半導体ウェハ61aと半導体チップ61bの間に挟まれた接続保護部81a、及び接続保護部81aの周辺に配置されたチップ保護部81bを備える。半導体チップ61bは、チップ保護部81bにより覆われている。 The cured body 8 includes a chip mounting wafer 61 and a cured layer 81 arranged on the chip mounting wafer 61. The hardened layer 81 includes a connection protection part 81a sandwiched between the semiconductor wafer 61a and the semiconductor chip 61b, and a chip protection part 81b disposed around the connection protection part 81a. The semiconductor chip 61b is covered with a chip protection part 81b.
 硬化体8は、半導体ウェハ61aが配置されたウェハ面、及びウェハ面に対向した硬化面で両面を定義できる。硬化面には、硬化層81が配置されている。 Both sides of the cured body 8 can be defined by a wafer surface on which the semiconductor wafer 61a is disposed and a cured surface facing the wafer surface. A cured layer 81 is disposed on the cured surface.
 図31に示すように、硬化体8の硬化層81を研削する。 As shown in FIG. 31, the hardened layer 81 of the hardened body 8 is ground.
 図32に示すように、硬化体8の半導体ウェハ61aを研削して、貫通電極601bを露出させる。すなわち、ウェハ面を研削して得られた研削面82では、貫通電極601bが露出している。 32, the semiconductor wafer 61a of the cured body 8 is ground to expose the through electrode 601b. That is, the through electrode 601b is exposed on the ground surface 82 obtained by grinding the wafer surface.
 図33に示すように、セミアディティブ法などを利用して、研削面82上に再配線層83を形成して、再配線体84を形成する。再配線層83は、再配線83aを備える。次いで、再配線層83上にバンプ85を形成する。バンプ85は再配線83a、貫通電極601b、電極601a及びバンプ62を介して半導体チップ61bと電気的に接続している。 As shown in FIG. 33, a rewiring layer 83 is formed on the ground surface 82 by using a semi-additive method or the like, and a rewiring body 84 is formed. The rewiring layer 83 includes a rewiring 83a. Next, bumps 85 are formed on the rewiring layer 83. The bump 85 is electrically connected to the semiconductor chip 61b through the rewiring 83a, the through electrode 601b, the electrode 601a, and the bump 62.
 図34に示すように、再配線体84を個片化(ダイシング)して、半導体装置9を得る。 As shown in FIG. 34, the rewiring body 84 is separated (diced) to obtain the semiconductor device 9.
 (変形例1)
 実施形態3では、積層体6をステージ107上に配置するが、変形例1では、チップ実装ウェハ61をステージ107上に配置し、次いでチップ実装ウェハ61上に熱硬化性樹脂シート12を配置し、次いで熱硬化性樹脂シート12上にフィルム13を配置する。
(Modification 1)
In the third embodiment, the laminate 6 is disposed on the stage 107, but in the first modification, the chip mounting wafer 61 is disposed on the stage 107, and then the thermosetting resin sheet 12 is disposed on the chip mounting wafer 61. Then, the film 13 is disposed on the thermosetting resin sheet 12.
 (変形例2)
 実施形態3では、積層体6をステージ107上に配置するが、変形例2では、チップ実装ウェハ61及びチップ実装ウェハ61上に配置された熱硬化性樹脂シート12を備える積層物をステージ107上に配置し、次いで積層物上にフィルム13を配置する。
(Modification 2)
In the third embodiment, the laminated body 6 is arranged on the stage 107. However, in the second modification, the laminated body including the chip mounting wafer 61 and the thermosetting resin sheet 12 arranged on the chip mounting wafer 61 is placed on the stage 107. The film 13 is then placed on the laminate.
 (変形例3)
 実施形態3では、平板117で封止体7をプレスするが、変形例3では封止体2をプレスしない。
(Modification 3)
In the third embodiment, the sealing body 7 is pressed by the flat plate 117, but in the third modification, the sealing body 2 is not pressed.
 (変形例4)
 実施形態3では、硬化体8の硬化層81を研削するが、変形例4では、硬化層81を研削しない。
(Modification 4)
In the third embodiment, the hardened layer 81 of the hardened body 8 is ground, but in the fourth modification, the hardened layer 81 is not ground.
 以上のとおり、実施形態3の半導体装置9の製造方法は、積層体6の外周部13bをステージ107に押し付けることにより、密閉容器121を形成する工程と、密閉容器121の外部の圧力を密閉容器121の内部の圧力より高めることにより、半導体チップ61bを熱硬化性樹脂シート12で覆いつつ、半導体ウェハ61aと半導体チップ61bのギャップに熱硬化性樹脂シート12を充填する工程とを含む。 As described above, in the method of manufacturing the semiconductor device 9 according to the third embodiment, the process of forming the sealed container 121 by pressing the outer peripheral portion 13b of the stacked body 6 against the stage 107, and the pressure outside the sealed container 121 are controlled. The step of filling the thermosetting resin sheet 12 into the gap between the semiconductor wafer 61a and the semiconductor chip 61b while covering the semiconductor chip 61b with the thermosetting resin sheet 12 by increasing the pressure from the pressure inside 121 is included.
 実施形態3では、キャビティを樹脂で充填する工程が必要ない。したがって、トランスファ成型方式のモールドアンダーフィルに比べて、ボイドが少ない半導体装置9を製造できる。また、トランスファ成型方式のモールドアンダーフィルに比べて、フィラーの偏析が生じ難い。 Embodiment 3 does not require a step of filling the cavity with resin. Therefore, the semiconductor device 9 with fewer voids can be manufactured as compared with the transfer molding type mold underfill. Further, the segregation of the filler is less likely to occur as compared to the transfer molding type mold underfill.
 実施形態3の半導体装置9の製造方法は、封止体7を加熱することにより硬化体8を形成する工程、硬化体8に再配線層83を形成することにより再配線体84を形成する工程、及び再配線体84をダイシングすることにより半導体装置9を得る工程などをさらに含む。 The manufacturing method of the semiconductor device 9 according to the third embodiment includes a step of forming the cured body 8 by heating the sealing body 7 and a step of forming the rewiring body 84 by forming the rewiring layer 83 on the cured body 8. And a step of obtaining the semiconductor device 9 by dicing the rewiring body 84.
 以下に、この発明の好適な実施例を例示的に詳しく説明する。ただし、この実施例に記載されている材料や配合量などは、特に限定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。 Hereinafter, preferred embodiments of the present invention will be described in detail by way of example. However, the materials, blending amounts, and the like described in the examples are not intended to limit the scope of the present invention only to those unless otherwise specified.
 熱硬化性樹脂シートを作製するために使用した成分について説明する。
 エポキシ樹脂A:三菱化学社製のEP828(ビスフェノールA型エポキシ樹脂、エポキン当量184g/eq~194g/eq、23℃で液状)
 エポキシ樹脂B:新日鐵化学社製のYSLV-80XY(ビスフェノールF型エポキシ樹脂、エポキン当量:200g/eq、軟化点:80℃)
 フェノール樹脂:明和化成社製のMEH-7500-3S(フェノールノボラック型硬化剤、水酸基当量103g/eq、軟化点83℃)
 球状フィラーA:電気化学工業社製の5SDC(溶融球状シリカ、平均粒子径5μm)
 球状フィラーB:アドマテックス社製のSO-25R(溶融球状シリカ、平均粒子径0.5μm)
 カーボンブラック:三菱化学社製の#20
 硬化促進剤:四国化成工業社製の2PHZ-PW(2-フェニル-4,5-ジヒドロキシメチルイミダゾール)
The component used in order to produce a thermosetting resin sheet is demonstrated.
Epoxy resin A: EP828 manufactured by Mitsubishi Chemical Corporation (bisphenol A type epoxy resin, epkin equivalent of 184 g / eq to 194 g / eq, liquid at 23 ° C.)
Epoxy resin B: YSLV-80XY manufactured by Nippon Steel Chemical Co., Ltd. (bisphenol F type epoxy resin, Epokin equivalent: 200 g / eq, softening point: 80 ° C.)
Phenol resin: MEH-7500-3S manufactured by Meiwa Kasei Co., Ltd. (phenol novolac type curing agent, hydroxyl group equivalent 103 g / eq, softening point 83 ° C.)
Spherical filler A: 5SDC (fused spherical silica, average particle size 5 μm) manufactured by Denki Kagaku Kogyo Co., Ltd.
Spherical filler B: SO-25R (fused spherical silica, average particle size 0.5 μm) manufactured by Admatechs
Carbon black: # 20 manufactured by Mitsubishi Chemical
Curing accelerator: 2PHZ-PW (2-phenyl-4,5-dihydroxymethylimidazole) manufactured by Shikoku Kasei Kogyo Co., Ltd.
 [封止用シートの作製]
 エポキシ樹脂A(商品名「EP828」、三菱化学社製)100重量部に対して、エポキシ樹脂B(商品名「YSLV-80XY」、新日鐵化学社製)103重量部、フェノール樹脂(商品名「MEH-7500-3S」、明和化成社製)93重量部、球状フィラーA(商品名「5SDC」、電気化学工業社製)1500重量部、球状フィラーB(商品名「SO-25R」、アドマテックス社製)350重量部、カーボンブラック(商品名「#20」、三菱化学社製)5重量部、硬化促進剤(商品名「2PHZ-PW」、四国化成工業社製)3重量部を配合し、ロール混練機により60℃で2分間、80℃2分間、120℃6分間、この順番で加熱していき、合計10分間、減圧条件下(0.01kg/cm)で溶融混練し、混練物を調製した。次いで、得られた混練物を、120℃の条件下、スロットダイ法により離型処理フィルム上に塗工してシート状に形成し、離型処理フィルム及び離型処理フィルム上に配置された厚さ500μm、縦190mm、横240mmの熱硬化樹脂シートを備える封止用シートを作製した。離型処理フィルムとしては、シリコーン離型処理した厚さが50μmのポリエチレンテレフタレートフィルムを用いた。
[Preparation of sealing sheet]
100 parts by weight of epoxy resin A (trade name “EP828”, manufactured by Mitsubishi Chemical Corporation), 103 parts by weight of epoxy resin B (trade name “YSLV-80XY”, manufactured by Nippon Steel Chemical Co., Ltd.), phenol resin (trade name) "MEH-7500-3S", manufactured by Meiwa Kasei Co., Ltd.) 93 parts by weight, spherical filler A (trade name "5SDC", manufactured by Denki Kagaku Kogyo), 1500 parts by weight, spherical filler B (trade name "SO-25R", ad 350 parts by weight of Mattex Co., Ltd., 5 parts by weight of carbon black (trade name “# 20”, manufactured by Mitsubishi Chemical Corporation), 3 parts by weight of curing accelerator (trade name “2PHZ-PW”, manufactured by Shikoku Kasei Kogyo Co., Ltd.) And then heated in this order in a roll kneader at 60 ° C. for 2 minutes, 80 ° C. for 2 minutes, 120 ° C. for 6 minutes, and melt-kneaded under reduced pressure conditions (0.01 kg / cm 2 ) for a total of 10 minutes, Prepare the kneaded material It was. Next, the obtained kneaded material was coated on a release treatment film by a slot die method under a condition of 120 ° C. to form a sheet, and the thickness disposed on the release treatment film and the release treatment film. A sealing sheet provided with a thermosetting resin sheet having a thickness of 500 μm, a length of 190 mm, and a width of 240 mm was produced. As the release treatment film, a polyethylene terephthalate film having a thickness of 50 μm subjected to silicone release treatment was used.
 [熱硬化樹脂シートの作製]
 封止用シートから離型処理フィルムを取り除いて縦190mm、横240mm、厚さ500μmの熱硬化樹脂シートを得た。
[Preparation of thermosetting resin sheet]
The release treatment film was removed from the sealing sheet to obtain a thermosetting resin sheet having a length of 190 mm, a width of 240 mm, and a thickness of 500 μm.
 [チップ実装基板の準備]
 縦190mm、横240mmの有機基板及び有機基板にフリップチップ実装された複数のチップを備えるチップ実装基板を準備した。チップ実装基板において、基板とチップのギャップは80μmであった。チップとしては、厚み780μmの10mm角チップを使用した。チップにおいて、はんだバンプのピッチは400μmであった。
[Preparation of chip mounting board]
A chip mounting substrate including an organic substrate having a length of 190 mm and a width of 240 mm and a plurality of chips flip-chip mounted on the organic substrate was prepared. In the chip mounting substrate, the gap between the substrate and the chip was 80 μm. A 10 mm square chip having a thickness of 780 μm was used as the chip. In the chip, the pitch of the solder bumps was 400 μm.
 [封止体の作製]
 (実施例1)
 チップ実装基板上に熱硬化樹脂シートを配置することにより、積層物を形成した。積層物は、チップ実装基板及びチップ実装基板上に配置された熱硬化樹脂シートを備える。90度に設定された真空プレス装置(ミカドテクノス社製のVACUUM ACE)のステージ上に積層物を配置した。次いで、積層物上に離型フィルム(シリコーン離型処理された厚み25μmのポリエチレンテレフタレートフィルム)を配置して、積層物を離型フィルムで覆った。これにより、チップ実装基板、チップ実装基板上に配置された熱硬化樹脂シート及び熱硬化樹脂シート上に配置された離型フィルムを備える積層体を形成した。次いで、上ヒータ板、上枠部材及び下板部材を備える格納容器を形成した。格納容器の内部(チェンバー)には、ステージ及びステージ上に配置された積層体が配置されていた。次いで、チェンバー内を減圧した。次いで、離型フィルムの外周部をステージに押さえつけて、ステージ及び離型フィルムからなる密閉容器を形成した。次いで、チェンバーを開放することにより、密閉容器の外部の圧力を大気圧にした。これにより、離型フィルムで積層物を押さえつけた。次いで、密閉容器の外部の圧力を、180秒間、0.5MPaにした。これにより、チップを熱硬化性樹脂シートで覆いつつ、有機基板とチップのギャップに熱硬化性樹脂シートを充填した。
[Preparation of sealed body]
Example 1
A laminate was formed by disposing a thermosetting resin sheet on the chip mounting substrate. The laminate includes a chip mounting substrate and a thermosetting resin sheet disposed on the chip mounting substrate. The laminate was placed on the stage of a vacuum press apparatus (VACUUM ACE manufactured by Mikado Technos) set to 90 degrees. Next, a release film (polyethylene terephthalate film having a thickness of 25 μm subjected to silicone release treatment) was placed on the laminate, and the laminate was covered with the release film. Thereby, the laminated body provided with the release film arrange | positioned on the chip mounting board | substrate, the thermosetting resin sheet arrange | positioned on a chip mounting board | substrate, and the thermosetting resin sheet was formed. Next, a storage container including an upper heater plate, an upper frame member, and a lower plate member was formed. Inside the containment vessel (chamber), a stage and a laminated body arranged on the stage were arranged. Next, the pressure in the chamber was reduced. Next, the outer peripheral portion of the release film was pressed against the stage to form a sealed container composed of the stage and the release film. Next, the pressure outside the sealed container was set to atmospheric pressure by opening the chamber. Thereby, the laminate was pressed with the release film. Next, the pressure outside the sealed container was set to 0.5 MPa for 180 seconds. Thereby, the thermosetting resin sheet was filled in the gap between the organic substrate and the chip while the chip was covered with the thermosetting resin sheet.
 (比較例1)
 チップ実装基板上に熱硬化樹脂シートを配置することにより、積層物を形成した。積層物は、チップ実装基板及びチップ実装基板上に配置された熱硬化樹脂シートを備える。90度に設定された真空プレス装置(ミカドテクノス社製のVACUUM ACE)のステージ上に積層物を配置した。次いで、積層物上に離型フィルム(シリコーン離型処理された厚み25μmのポリエチレンテレフタレートフィルム)を配置して、積層物を離型フィルムで覆った。これにより、チップ実装基板、チップ実装基板上に配置された熱硬化樹脂シート及び熱硬化樹脂シート上に配置された離型フィルムを備える積層体を形成した。積層体の横にスペーサーを配置した。次いで、上ヒータ板、上枠部材及び下板部材を備える格納容器を形成した。格納容器の内部(チェンバー)には、ステージ、ステージ上に配置された積層体、積層体の横に配置されたスペーサーが配置されていた。次いで、チェンバー内を減圧した。次いで、積層体の上方に配置された平板をスペーサーに当たるまで下降させることにより、積層体をプレスした。これにより、チップを熱硬化性樹脂シートで覆いつつ、有機基板とチップのギャップに熱硬化性樹脂シートを充填した。
(Comparative Example 1)
A laminate was formed by disposing a thermosetting resin sheet on the chip mounting substrate. The laminate includes a chip mounting substrate and a thermosetting resin sheet disposed on the chip mounting substrate. The laminate was placed on the stage of a vacuum press apparatus (VACUUM ACE manufactured by Mikado Technos) set to 90 degrees. Next, a release film (polyethylene terephthalate film having a thickness of 25 μm subjected to silicone release treatment) was placed on the laminate, and the laminate was covered with the release film. Thereby, the laminated body provided with the release film arrange | positioned on the chip mounting board | substrate, the thermosetting resin sheet arrange | positioned on a chip mounting board | substrate, and the thermosetting resin sheet was formed. Spacers were placed beside the laminate. Next, a storage container including an upper heater plate, an upper frame member, and a lower plate member was formed. Inside the containment vessel (chamber), a stage, a laminated body arranged on the stage, and a spacer arranged beside the laminated body were arranged. Next, the pressure in the chamber was reduced. Next, the laminate was pressed by lowering the flat plate disposed above the laminate until it hits the spacer. Thereby, the thermosetting resin sheet was filled in the gap between the organic substrate and the chip while the chip was covered with the thermosetting resin sheet.
 [評価]
 封止体及び熱硬化性樹脂シートについて下記の評価を行った。結果を表1に示す。
[Evaluation]
The following evaluation was performed about the sealing body and the thermosetting resin sheet. The results are shown in Table 1.
 (封止性)
 封止体を超音波探査映像装置で観察し、封止体中に空隙がない場合を○と判定し、空隙がある場合を×と判定した。結果を表1に示す。
(Sealing property)
The sealing body was observed with an ultrasonic exploration imaging apparatus, and a case where there was no void in the sealing body was determined as ◯, and a case where there was a void was determined as x. The results are shown in Table 1.
 (最低溶融粘度)
 ロールラミネーターを用いて、厚み500μmの熱硬化性樹脂シートを90℃にて2枚積層し、厚み1000μmの積層シートを得た。積層シートを直径25mmに打ち抜くことにより、直径25mmの試験片を得た。試験片について、レオメーター(サーモフィッシャーサイエンティフィック社製のMahrs III)を用いて、1Hz、歪み5%、昇温速度10℃/分で50℃~150℃で粘度を測定した。測定された粘度の最低値を最低溶融粘度とした。
(Minimum melt viscosity)
Using a roll laminator, two thermosetting resin sheets having a thickness of 500 μm were laminated at 90 ° C. to obtain a laminated sheet having a thickness of 1000 μm. A test piece having a diameter of 25 mm was obtained by punching the laminated sheet to a diameter of 25 mm. The viscosity of the test piece was measured at 50 ° C. to 150 ° C. using a rheometer (Mahrs III manufactured by Thermo Fisher Scientific) at 1 Hz, a strain of 5%, and a heating rate of 10 ° C./min. The lowest measured viscosity was taken as the lowest melt viscosity.
Figure JPOXMLDOC01-appb-T000001
 
 
Figure JPOXMLDOC01-appb-T000001
 
 
      1   積層体
     11   チップ実装基板
     11a  基板
     11b  半導体チップ
     11c  バンプ
     12   熱硬化性樹脂シート
     13   フィルム
     13a  中央部
     13b  周辺部
      2   封止体
     21   樹脂層
     21a  アンダーフィル部
     21b  封止部
      3   硬化体
     31   硬化層
     31a  接続保護部
     31b  チップ保護部
     32   バンプ
      4   半導体装置
DESCRIPTION OF SYMBOLS 1 Laminated body 11 Chip mounting board | substrate 11a Board | substrate 11b Semiconductor chip 11c Bump 12 Thermosetting resin sheet 13 Film 13a Center part 13b Peripheral part 2 Sealing body 21 Resin layer 21a Underfill part 21b Sealing part 3 Curing body 31 Curing layer 31a Connection protector 31b Chip protector 32 Bump 4 Semiconductor device
     10   積層フィルム 10: Laminated film
    101   基台
    102   加圧シリンダ下板
    103   スライド移動テーブル
    104   スライドシリンダ
    105   下ヒータ板
    106   下板部材
    107   ステージ
    108   支柱
    109   加圧シリンダ上板
    110   中間移動部材
    111   上ヒータ板
    112   上枠部材
    113   内方枠体
    113a  枠状押え部
    113b  ロッド
    114   加圧シリンダ
    115   シリンダロッド
    116   真空・加圧口
    117   平板
     S    ストッパー
    121   密閉容器
    131   スペーサー
101 Base 102 Pressurizing cylinder lower plate 103 Slide moving table 104 Slide cylinder 105 Lower heater plate 106 Lower plate member 107 Stage 108 Post 109 Pressure cylinder upper plate 110 Intermediate moving member 111 Upper heater plate 112 Upper frame member 113 Inner frame Body 113a Frame-shaped presser 113b Rod 114 Pressure cylinder 115 Cylinder rod 116 Vacuum / pressure port 117 Flat plate S Stopper 121 Sealed container 131 Spacer
      6   積層体
     61   チップ実装ウェハ
     61a  半導体ウェハ
    601a  電極
    601b  貫通電極
     61b  半導体チップ
     62   バンプ
      7   封止体
     71   樹脂層
     71a  アンダーフィル部
     71b  封止部
      8   硬化体
     81   硬化層
     81a  接続保護部
     81b  チップ保護部
     82   研削面
     83   再配線層
     83a  再配線
     84   再配線体
     85   バンプ
      9   半導体装置
6 Laminated body 61 Chip mounting wafer 61a Semiconductor wafer 601a Electrode 601b Through electrode 61b Semiconductor chip 62 Bump 7 Sealing body 71 Resin layer 71a Underfill part 71b Sealing part 8 Curing body 81 Curing layer 81a Connection protection part 81b Chip protection part 82 Grinding surface 83 Rewiring layer 83a Rewiring 84 Rewiring body 85 Bump 9 Semiconductor device

Claims (2)

  1.  基板及び前記基板にフリップチップ実装された半導体チップを備えるチップ実装基板、
     前記チップ実装基板上に配置された熱硬化性樹脂シート、並びに
     前記熱硬化性樹脂シートと接する中央部及び前記中央部の周辺に配置された周辺部を備えるフィルム
     を備える積層体の
     前記周辺部を前記基板と接するステージに押し付けることにより、前記ステージ及び前記フィルムを備える密閉容器を形成する工程と、
     前記密閉容器の外部の圧力を前記密閉容器の内部の圧力より高めることにより、前記半導体チップを前記熱硬化性樹脂シートで覆いつつ、前記基板と前記半導体チップのギャップに前記熱硬化性樹脂シートを充填する工程と
     を含む半導体装置の製造方法。
    A chip mounting substrate comprising a substrate and a semiconductor chip flip-chip mounted on the substrate;
    The thermosetting resin sheet disposed on the chip mounting substrate, a central portion in contact with the thermosetting resin sheet, and a film including a peripheral portion disposed around the central portion. Forming a sealed container comprising the stage and the film by pressing against a stage in contact with the substrate;
    By increasing the pressure outside the sealed container to be higher than the pressure inside the sealed container, the thermosetting resin sheet is placed in the gap between the substrate and the semiconductor chip while covering the semiconductor chip with the thermosetting resin sheet. And a filling process.
  2.  前記チップ実装基板は、前記半導体チップを複数備える請求項1に記載の半導体装置の製造方法。 The method for manufacturing a semiconductor device according to claim 1, wherein the chip mounting substrate includes a plurality of the semiconductor chips.
PCT/JP2014/083915 2013-12-26 2014-12-22 Method for manufacturing semiconductor device WO2015098842A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167018602A KR20160102214A (en) 2013-12-26 2014-12-22 Method for manufacturing semiconductor device
CN201480070975.XA CN105849880A (en) 2013-12-26 2014-12-22 Method for manufacturing semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-270095 2013-12-26
JP2013270095A JP2015126124A (en) 2013-12-26 2013-12-26 Semiconductor package manufacturing method
JP2014-098074 2014-05-09
JP2014098074A JP2015216230A (en) 2014-05-09 2014-05-09 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2015098842A1 true WO2015098842A1 (en) 2015-07-02

Family

ID=53478696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083915 WO2015098842A1 (en) 2013-12-26 2014-12-22 Method for manufacturing semiconductor device

Country Status (4)

Country Link
KR (1) KR20160102214A (en)
CN (1) CN105849880A (en)
TW (1) TW201533856A (en)
WO (1) WO2015098842A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108369928A (en) * 2015-12-25 2018-08-03 太阳油墨制造株式会社 Sealing material for semiconductor
CN111312606A (en) * 2019-11-29 2020-06-19 尚越光电科技股份有限公司 Safe and reliable high-voltage-resistant testing equipment for flexible CIGS solar module

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038941A1 (en) * 2015-09-02 2017-03-09 日立化成株式会社 Resin composition, cured product, sealing film, and sealing structure
WO2021029259A1 (en) * 2019-08-09 2021-02-18 ナガセケムテックス株式会社 Multi-layer sheet for mold underfill encapsulation, method for mold underfill encapsulation, electronic component mounting substrate, and production method for electronic component mounting substrate
CN112976666B (en) * 2019-12-12 2022-07-26 东莞市天贺电子科技有限公司 Dynamic balance buffer mechanism applied to compression forming die

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218496A (en) * 2007-02-28 2008-09-18 Namics Corp Sealing resin film
JP2010109246A (en) * 2008-10-31 2010-05-13 Yaskawa Electric Corp Semiconductor device, and method of manufacturing the same
JP2010263199A (en) * 2009-04-07 2010-11-18 Furukawa Electric Co Ltd:The Manufacturing method of semiconductor device, and semiconductor device
WO2012023373A1 (en) * 2010-08-20 2012-02-23 ニチゴー・モートン株式会社 Stacking apparatus
JP2012059743A (en) * 2010-09-06 2012-03-22 Nitto Denko Corp Method of manufacturing electronic component device, and electronic component sealing resin composition sheet for the same
WO2013035251A1 (en) * 2011-09-05 2013-03-14 ミカドテクノス株式会社 Vacuum thermal bonding device and vacuum thermal bonding method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9200920D0 (en) 1992-01-16 1992-03-11 Lucas Ind Plc Method of and an apparatus for misfire and rough road detection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218496A (en) * 2007-02-28 2008-09-18 Namics Corp Sealing resin film
JP2010109246A (en) * 2008-10-31 2010-05-13 Yaskawa Electric Corp Semiconductor device, and method of manufacturing the same
JP2010263199A (en) * 2009-04-07 2010-11-18 Furukawa Electric Co Ltd:The Manufacturing method of semiconductor device, and semiconductor device
WO2012023373A1 (en) * 2010-08-20 2012-02-23 ニチゴー・モートン株式会社 Stacking apparatus
JP2012059743A (en) * 2010-09-06 2012-03-22 Nitto Denko Corp Method of manufacturing electronic component device, and electronic component sealing resin composition sheet for the same
WO2013035251A1 (en) * 2011-09-05 2013-03-14 ミカドテクノス株式会社 Vacuum thermal bonding device and vacuum thermal bonding method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108369928A (en) * 2015-12-25 2018-08-03 太阳油墨制造株式会社 Sealing material for semiconductor
CN108369928B (en) * 2015-12-25 2022-01-18 太阳油墨制造株式会社 Sealing material for semiconductor
CN111312606A (en) * 2019-11-29 2020-06-19 尚越光电科技股份有限公司 Safe and reliable high-voltage-resistant testing equipment for flexible CIGS solar module
CN111312606B (en) * 2019-11-29 2023-06-02 尚越光电科技股份有限公司 Safe and reliable flexible CIGS solar module high-voltage-resistant test equipment

Also Published As

Publication number Publication date
CN105849880A (en) 2016-08-10
TW201533856A (en) 2015-09-01
KR20160102214A (en) 2016-08-29

Similar Documents

Publication Publication Date Title
JP2015216229A (en) Method for manufacturing semiconductor device, and thermosetting resin sheet
US9659883B2 (en) Thermally curable resin sheet for sealing semiconductor chip, and method for manufacturing semiconductor package
WO2015098838A1 (en) Method for producing semiconductor device, and thermosetting resin sheet
JP6259608B2 (en) Resin sheet for sealing electronic device and method for manufacturing electronic device package
WO2015098833A1 (en) Production method for semiconductor package
WO2015098842A1 (en) Method for manufacturing semiconductor device
WO2015079887A1 (en) Sealing thermosetting-resin sheet and hollow-package manufacturing method
WO2014136720A1 (en) Semiconductor device manufacturing method and thermosetting resin sheet
WO2015098829A1 (en) Production method for semiconductor package
WO2015098835A1 (en) Method for producing semiconductor package
JP2015216230A (en) Method for manufacturing semiconductor device
WO2014203830A1 (en) Electronic device sealing method, electronic device package production method, and sealing sheet
WO2014162951A1 (en) Semiconductor device manufacturing method
TW201621000A (en) Resin composition, semiconductor device manufacturing method and semiconductor device
WO2014156833A1 (en) Hollow sealing resin sheet and production method for hollow package
JP2015065368A (en) Resin sheet, and method for manufacturing electronic device package
JP2015220400A (en) Method for manufacturing electronic device package and method for sealing electronic device
JP7014195B2 (en) A method for manufacturing a sealing material, a semiconductor device sealed by the sealing material, and a semiconductor package having the sealing material.
WO2015064304A1 (en) Resin sheet for sealing electronic device and method for manufacturing electronic-device package
WO2015041076A1 (en) Sheet for electronic device seal and method for manufacturing electronic device package
JP2015220401A (en) Method for manufacturing electronic device package and method for sealing electronic device
WO2015053149A1 (en) Method for producing electronic device package and method for sealing electronic device
JP6234410B2 (en) Resin sheet for sealing electronic device and method for manufacturing electronic device package
JP2015079909A (en) Method for manufacturing electronic device package
WO2015045850A1 (en) Resin sheet and electronic device package production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167018602

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14873680

Country of ref document: EP

Kind code of ref document: A1