WO2014200034A1 - 有機エレクトロルミネッセンス素子の駆動方法 - Google Patents

有機エレクトロルミネッセンス素子の駆動方法 Download PDF

Info

Publication number
WO2014200034A1
WO2014200034A1 PCT/JP2014/065510 JP2014065510W WO2014200034A1 WO 2014200034 A1 WO2014200034 A1 WO 2014200034A1 JP 2014065510 W JP2014065510 W JP 2014065510W WO 2014200034 A1 WO2014200034 A1 WO 2014200034A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
functional layer
emitting functional
peak value
current peak
Prior art date
Application number
PCT/JP2014/065510
Other languages
English (en)
French (fr)
Inventor
有章 志田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to KR1020177030114A priority Critical patent/KR101877195B1/ko
Priority to US14/897,245 priority patent/US9824623B2/en
Priority to EP14810425.0A priority patent/EP3010310B1/en
Priority to CN201480033033.4A priority patent/CN105325057B/zh
Priority to KR1020157034958A priority patent/KR20160007587A/ko
Priority to JP2015522841A priority patent/JP6372486B2/ja
Publication of WO2014200034A1 publication Critical patent/WO2014200034A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/60Circuit arrangements for operating LEDs comprising organic material, e.g. for operating organic light-emitting diodes [OLED] or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/70Testing, e.g. accelerated lifetime tests
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • F21Y2105/14Planar light sources comprising a two-dimensional array of point-like light-generating elements characterised by the overall shape of the two-dimensional array
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • F21Y2115/15Organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/04Display protection
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to a method for driving an organic electroluminescence element.
  • organic electroluminescence element (organic EL element) has advantages such as less viewing angle dependency, a high contrast ratio, and a reduction in thickness as compared with a liquid crystal display device.
  • organic EL element has advantages such as less viewing angle dependency, a high contrast ratio, and a reduction in thickness as compared with a liquid crystal display device.
  • portable displays and portable rear displays using organic EL elements have been actively put on the market. Display using these organic EL elements is expected to be put on the market for large TVs due to its high visibility, and some plans for launch are reported. Yes.
  • the organic EL element is a self-luminous light source and is a surface-emitting light source, it has been spotlighted as next-generation illumination and has been developed in various places as organic EL illumination.
  • the organic EL element has RGB light emitting materials between the electrodes, and is prepared by arbitrarily adjusting and driving RGB light output, or by applying a layer design including the thickness of the organic layer.
  • the emission color and emission color intensity can be freely changed.
  • the organic EL element can emit light freely as a white color required for illumination use, for example, from a light bulb color such as a color temperature of 2000K or 3000K to a daylight white color such as 5000K or 6000K.
  • a phosphorescent material it is possible to realize luminous efficiency equivalent to or exceeding that of LEDs and fluorescent lamps, and realization as thinning illumination is expected.
  • an illumination or light source that changes colors by forming the RGB light emitting layer in a strip shape in the horizontal direction and changing the intensity ratio of each emitted color is also proposed.
  • an illumination or light source that changes colors by forming the RGB light emitting layer in a strip shape in the horizontal direction and changing the intensity ratio of each emitted color is also proposed.
  • the life (deterioration rate) of each light emitting layer is different. For this reason, the color tone of the light emission color of the organic electroluminescence element changes from the initial color tone over time. As a result, the display quality of the organic electroluminescence element is deteriorated over time.
  • the present invention provides a method for driving an organic electroluminescence element capable of suppressing a decrease in display quality.
  • the organic electroluminescence element driving method of the present invention is a driving method of an organic electroluminescence element in which a first current peak value is applied to a first light emitting layer and a second current peak value is applied to a second light emitting layer, A second current peak value having a current density lower than the first current peak value is applied to the second light emitting layer having a light emission efficiency lower than that of the first light emitting layer at the current density of the second current peak value, and the first light emitting layer is applied to the first light emitting layer. A first current peak value higher than the second current peak value is applied.
  • the first current peak value having a high current density is applied to the first light emitting layer having a high light emission efficiency
  • the low current density is applied to the second light emitting layer having a low light emission efficiency.
  • Two current peak values are applied.
  • luminance fall of a 1st light emitting layer can be accelerated
  • produces with progress of time can be suppressed, and the change of the color tone of an organic electroluminescent element can be suppressed. Accordingly, it is possible to suppress a decrease in display quality of the organic electroluminescence element.
  • FIG. 1 shows a configuration example of an organic EL element to which a driving method is applied.
  • the organic EL element 10 shown in FIG. 1 includes a first electrode 14, a first light emitting functional layer 11, a second electrode 15, a second light emitting functional layer 12, a third electrode 16, and a third light emitting functional layer 13 on a substrate 19.
  • the 4th electrode 17 has the structure laminated
  • the first light emitting functional layer 11 has a light emitting layer having a green (G) emission color
  • the second light emitting functional layer 12 has a light emitting layer having a red (R) emission color
  • the layer 13 includes a light emitting layer having a blue (B) emission color.
  • phosphorescent materials are used for the green light emitting layer and the red light emitting layer of the first light emitting functional layer 11 and the second light emitting functional layer 12, and a fluorescent material is used for the blue light emitting layer of the third light emitting functional layer 13. .
  • the organic EL element 10 is formed with an outer dimension of 40 mm ⁇ 40 mm.
  • the first electrode 14 is made of 300 nm ITO
  • the second electrode 15 is made of 15 nm Al
  • the third electrode 16 is made of 15 nm Al
  • the fourth electrode 17 is made of 100 nm Al.
  • the first light emitting functional layer 11 has a 30 nm MoO 3 hole injecting layer, a 50 nm ⁇ -NPD hole injecting layer, and a light emitting host material and a green light emitting color on the first electrode 14. It is formed of a phosphorescent material having a concentration of 3 to 5%, 30 nm of Alq3 as an electron transport layer of a luminescent dopant, and 1 nm of LiF as an electron injection material.
  • the second light emitting functional layer 12 is a light emitting material having a red emission color on the second electrode 15 with 30 nm of MoO 3 as a hole injection layer, 50 nm ⁇ -NPD as a hole transport layer, and a light emitting host material as a light emitting layer. It is formed of a phosphorescent material having a dopant concentration of 3 to 5%, 30 nm of Alq3 as an electron transport layer, and 1 nm of LiF as an electron injection material.
  • the third light emitting functional layer 13 is a light emitting material having a blue emission color on the third electrode 15 with 30 nm of MoO 3 as a hole injection layer, ⁇ -NPD of 50 nm as a hole transport layer, and a host material for light emission as a light emitting layer. It is made of a fluorescent material having a dopant concentration of 3 to 5%, 30 nm of Alq3 as an electron transport layer, and 1 nm of LiF as an electron injection material.
  • FIG. 2 shows the efficiency characteristics of each light emitting functional layer of the organic EL element having the above configuration.
  • the vertical axis indicates the luminous efficiency of each of the first light emitting functional layer 11, the second light emitting functional layer 12, and the third light emitting functional layer 13, and the current density applied to the horizontal axis. Yes.
  • the light emission efficiency varies greatly depending on each light emitting functional layer.
  • the first light emitting functional layer 11 and the second light emitting functional layer 12 made of a phosphorescent material have higher light emission efficiency even at a low current density than the third light emitting functional layer 13 made of a fluorescent material.
  • the first light emitting functional layer 11 and the second light emitting functional layer 12 made of a phosphorescent material have a light emitting efficiency that is significantly lower than that of the third light emitting functional layer 13 by increasing the current density. Then, at a certain current density, the luminous efficiency is lower than or equal to that of the third light emitting functional layer 13 made of a fluorescent material.
  • FIG. 3 shows driving waveforms when a conventional general driving method is used.
  • the drive waveform shown in FIG. 3 shows the current density applied on the vertical axis and the application time on the horizontal axis for each of the first light emitting functional layer 11, the second light emitting functional layer 12, and the third light emitting functional layer 13. Yes.
  • the application time to each light emitting functional layer is the same. That is, the application time to each light emitting functional layer is 1/3 duty of a frame frequency of 100 Hz. Independent light emission of 3.3 msec for each of RGB.
  • the organic EL element 10 having the above configuration displays white 1,000 cd / m 2 with CIE chromaticity ⁇ 0.3, 0.3>, each color used at this time is displayed. current peak value is, 3.8 mA / m 2 green light emitting layer, 4.2 mA / m 2 red light emitting layer, a 22mA / cm 2 in the blue emitting layer.
  • the organic EL element 10 having the above-described configuration has a light emission efficiency of about 4.9 cd / A for blue, about 21 cd / A for red, and about 25 cd / A for green.
  • FIG. 4 shows a life deterioration characteristic indicating a decrease in luminance over time of the light emitting functional layer.
  • each light emitting functional layer exhibits different luminance reductions as the driving time of the organic EL element elapses.
  • the luminance decrease of the third light emitting functional layer 13 using the fluorescent material having low light emission efficiency is large, and the luminance decrease of the first light emitting functional layer 11 using the phosphorescent material having high light emission efficiency is small. That is, the lifetime of the third light emitting functional layer 13 is short, and the lifetime of the first light emitting functional layer 11 is long.
  • the emission color changes from the initially set color tone with the passage of time.
  • the emission luminance of blue which has a large decrease in luminance, is reduced, and the color tone initially set is changed to a color tone with reduced blue light, for example, from the initially set white color tone to a yellowish color tone.
  • the emission color of the organic EL element changes with time, and the display quality deteriorates.
  • the above-described decrease in luminance of the light emitting layer corresponds to the light emission efficiency shown in FIG. That is, the third light emitting functional layer 13 using a fluorescent material having low light emission efficiency needs to be driven at a high current density of 22 mA / cm 2 in the blue light emission layer in order to compensate for the low light emission efficiency. In contrast, the first light emitting functional layer 11 using a phosphorescent material having high light emission efficiency can be driven at a low current density of 3.8 mA / m 2 .
  • the lifetime of the element varies depending on the applied current density, and the lifetime of the element is shorter when driven at a high current peak value, and the lifetime of the element tends to be longer when driven at a low current peak value. That is, in the organic EL element 10, the blue light emitting layer has a low luminous efficiency of about 4.9 cd / A and is driven at a high current density of 22 mA / cm 2 , so that the luminance is greatly reduced.
  • the green light-emitting layer has a high luminous efficiency of about 25 cd / A and is driven at a low current density of 3.8 mA / m 2 , so that the luminance reduction is small.
  • a high current peak value is applied to the light emitting layer with low light emission efficiency, and a low current peak value is applied to the light emitting layer with high light emission efficiency.
  • the lifetime deterioration characteristics of the respective light emitting functional layers are different, and the emission color changes with time.
  • the organic EL element having the light emitting function layers having different light emission efficiencies as described above as a method for matching the lifetimes of the light emitting function layers, for example, when forming the light emitting function layers in parallel by the RGB color separation method
  • this method when only a green light emitting layer with high luminous efficiency is displayed, there is a problem that a non-lighting area is visually recognized, and it is a good light source for visual recognition such as a decorative organic EL illumination. Absent.
  • the present invention applies a low current peak value to the light emitting functional layer having a low light emission efficiency and a high current peak value to the light emitting functional layer having a high light emitting efficiency, contrary to the above-described conventional driving method. Apply.
  • a difference occurring in the life deterioration characteristics of each light emitting functional layer is suppressed. That is, it is possible to bring the luminance reduction rate with the passage of time of each light emitting functional layer closer and to suppress the change in color tone with the passage of time.
  • Embodiment of Driving Method of Organic Electroluminescence Element An embodiment of a method for driving an organic electroluminescence element (organic EL element) of the present invention will be described. In this example, a method for driving an organic EL element having the same configuration as that shown in FIG. 1 used in the above description of the outline will be described. Moreover, the efficiency characteristics of each light emitting functional layer of the organic EL element are the same as those in FIG.
  • FIG. 5 shows drive waveforms according to the drive method of this example.
  • a fluorescent material having the highest current density applied to the first light emitting functional layer 11 that emits green light using a phosphorescent material having high light emission efficiency and low light emission efficiency is used.
  • the current density applied to the blue light emitting third light emitting functional layer 13 used is minimized.
  • the applied current density is set to a value between the first light emitting functional layer 11 and the third light emitting functional layer 13.
  • the lifetime deterioration characteristics of the respective light emitting functional layers can be matched. Specifically, a relatively low current peak value is applied to a light emitting layer having a relatively low luminous efficiency, and a high current peak value is applied to a light emitting layer having a high luminous efficiency.
  • the current peak value applied to each light emitting functional layer can be set as follows.
  • the applied current peak value can be derived from the relationship between the current density and the luminous efficiency shown in FIG.
  • the current peak value to be applied to the first light emitting functional layer 11 and the second light emitting functional layer 12 is determined in accordance with the third light emitting functional layer 13 having the lowest light emission efficiency.
  • the current peak value to be applied to the third light emitting functional layer 13 is set.
  • the current peak value applied to the third light emitting functional layer 13 is higher than the current density at which the light emitting efficiency of the third light emitting functional layer 13 and the light emitting efficiency of the first light emitting functional layer 11 are the same.
  • the current peak value is smaller than the current density at which the light emission efficiency of the third light emitting functional layer 13 and the light emission efficiency of the second light emitting functional layer 12 are the same.
  • the current peak value applied to the third light emitting functional layer 13 intersects the curve of the first light emitting functional layer 11 and the curve of the second light emitting functional layer 12 with the curve of the third light emitting functional layer 13 in FIG.
  • the current peak value is set at a position where the current density is lower than the position.
  • the current density applied to the third light emitting functional layer 13 is 22 mA / cm 2 .
  • a current density that obtains the same light emitting efficiency as the light emitting efficiency of the third light emitting functional layer 13 determined as described above is obtained.
  • a current peak value that is equal to or higher than the current density is set to a current peak value applied to the first light emitting functional layer 11.
  • the current density applied to the first light emitting functional layer 11 is 120 mA / cm 2 .
  • the current density at which the light emitting efficiency is the same as the light emitting efficiency of the third light emitting functional layer 13 determined as described above is obtained. Then, a current peak value that is equal to or higher than the current density is set to a current peak value to be applied to the second light emitting functional layer 12. For example, in this example, the current density applied to the second light emitting functional layer 12 is 95 mA / cm 2 .
  • FIG. 6 shows a life deterioration characteristic indicating a decrease in luminance over time of an organic EL element using the above current peak value.
  • the life deterioration characteristics of each light emitting functional layer of the organic EL element can be improved. That is, by applying a current peak value lower than that of the other light emitting functional layers to the light emitting functional layer having a low light emitting efficiency, the luminance of the light emitting functional layer having a low light emitting efficiency is moderately lowered and the life is extended.
  • a current peak value higher than the current density applied to the light emitting functional layer having a low light emitting efficiency is applied to the light emitting functional layer having a high light emitting efficiency. This promotes a decrease in luminance. As a result, the life-deterioration characteristics of the respective light emitting functional layers are shifted in a direction that matches.
  • the toning of the organic EL element is performed by adjusting the time for driving each light emitting functional layer.
  • the color of the organic EL element is adjusted by adjusting the current density applied to the light emitting functional layer.
  • toning of the organic EL element is performed by controlling the light emission time of each light emitting functional layer. As described above, when a high current peak value is applied to the first light emitting functional layer 11, the luminance of the first light emitting functional layer 11 is increased.
  • the luminance of the third light emitting functional layer 13 is lowered.
  • the decrease in luminance is compensated for by increasing the light emission time of the third light emitting functional layer 13 where the luminance decreases.
  • the increase in luminance is offset by shortening the light emission time of the first light emitting functional layer where the luminance is increased.
  • the light emitting functional layer tends to increase the luminance itself although the light emission efficiency decreases due to an increase in the applied current density.
  • the first light emitting functional layer 11 and the second light emitting functional layer 12 are driven at a higher current density than the third light emitting functional layer 13.
  • the luminance of the third light emitting functional layer 13 is low
  • the luminance of the first light emitting functional layer 11 and the second light emitting functional layer 12 is high
  • the organic EL element 10 is The desired color tone cannot be adjusted.
  • the first light emitting functional layer 11 and the second light emitting functional layer 12 having relatively high current density and high luminance have a short light emission time, and the current density is low and the luminance is low.
  • the light emission time of the three light emitting functional layers 13 is lengthened.
  • the organic EL element 10 displays white 1,000 cd / m 2 with CIE chromaticity ⁇ 0.3, 0.3>
  • the first light emitting functional layer 11 has 120 mA / cm 2 and the second light emitting functional layer. 12 is adjusted to apply a current of 95 mA / cm 2 and the third light emitting functional layer 13 is applied with a current of 22 mA / cm 2 .
  • the lighting rates of the first light emitting functional layer 11, the second light emitting functional layer 12, and the third light emitting functional layer 13 are set to different application times. That is, the frame frequency is 100 Hz, the first light emitting functional layer 11 is lit for 0.3 msec, the second light emitting functional layer 12 is lit for 0.5 msec, and the third light emitting functional layer 13 is lit for 3.3 msec.
  • changing the lighting rate may affect the life deterioration characteristics of the light emitting functional layer.
  • the decrease in luminance is moderate because the lighting rate of the first light emitting functional layer is low and the light emission time is shortened.
  • a current density at which the light emission efficiency of the first light emitting functional layer is lower than the light emission efficiency of the third light emitting functional layer that is, a current peak value higher than the above current density
  • luminance reduction is achieved. It can be accelerated to match the life degradation characteristics.
  • the lifetime deterioration characteristic of the organic EL element can be improved by considering the lighting rate for toning of the organic EL element.
  • the driving method of the organic EL element of this embodiment even if each light emitting functional layer having different light emission efficiency is formed in the same organic EL element, the life deterioration characteristic is improved and the time from the initial chromaticity is improved. It is possible to prevent a change in color tone due to progress. And the display quality of an organic EL element can be improved.
  • the frame frequency 100 Hz is used as the frame frequency, but a different frequency may be used.
  • the non-lighting time becomes long, so that when a frame frequency of about 100 Hz is used, it looks like flicker.
  • the frame frequency is as high as possible, such as 500 Hz.
  • the duty driving of the organic EL element in which three light emitting functional layers are stacked is exemplified, but the number of light emitting functional layers, the duty ratio, etc. of the organic EL element are not particularly limited.
  • the organic EL element to which the above driving method can be applied does not have to have a laminated structure, and may not have a laminated structure as long as the current peak value applied to each light emitting functional layer and the driving time can be controlled. Moreover, the structure which can drive a some light emission functional layer simultaneously may be sufficient.
  • the driving method of the organic EL element when the light emitting area of each light emitting functional layer is the same and the light emitting efficiency of each light emitting functional layer is different is described. It is not limited to this.
  • the organic EL element may have a configuration in which the area of the light emitting layer having a lower light emitting efficiency is larger than that of the light emitting layer having a high light emitting efficiency.
  • the organic EL element may have a configuration in which the area of the light emitting layer having a lower light emitting efficiency is larger than that of the light emitting layer having a high light emitting efficiency.
  • the lifetime deterioration characteristics can be matched by making the current peak value applied to the light emitting layer with high luminous efficiency larger than the current peak value applied to the light emitting layer with low luminous efficiency. That is, a technique for extending the life of a light emitting layer with low light emission efficiency by extending the area and matching the life deterioration characteristics of a light emitting layer with low light emission efficiency and a light emitting layer with high light emission efficiency by the driving method of the above-described embodiment. Can be used together.
  • phosphor materials and fluorescent materials are used as materials, only phosphor materials or only fluorescent materials may be used.
  • a current peak value corresponding to the light emission efficiency is applied as in the first light emitting functional layer (G) and the second light emitting functional layer (R) of the above-described embodiment.
  • the life deterioration characteristics of the light emitting layers can be matched. The same applies to the case where only the fluorescent material is used or other combinations.
  • the life deterioration characteristics depending on the material constituting each light emitting functional layer are described without consideration. Even when the life deterioration characteristics differ depending on the material used, as in the above-described embodiment, a low current peak value is applied to a material with a large decrease in brightness, and a high current peak value is applied to a material with a small decrease in brightness. By doing so, the life deterioration characteristics can be matched. And arbitrary toning becomes possible by controlling the application time to each light emitting functional layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

 第1発光層に第1電流波高値を印加し、第2発光層に第2電流波高値を印加する有機エレクトロルミネッセンス素子の駆動方法であって、第2電流波高値の電流密度において第1発光層よりも発光効率が低い第2発光層に、第1電流波高値よりも電流密度の低い第2電流波高値を印加し、第1発光層に、第2電流波高値よりも高い第1電流波高値を印加する。

Description

有機エレクトロルミネッセンス素子の駆動方法
 本発明は、有機エレクトロルミネッセンス素子の駆動方法に係わる。
 有機エレクトロルミネッセンス素子(有機EL素子)は液晶表示装置に比べ視野角依存性が少ない、コントラスト比が高い、薄膜化が可能等の利点を有している。
 また、近年では、有機EL素子を利用した携帯ディスプレイや携帯背面ディスプレイ等も積極的に市場投入されている。これらの有機EL素子を利用したディスプレイは、視認性の高さから、大型テレビへの市場投入が期待され、一部投入計画が報道されるなどフラットパネルディスプレイでの市場投入に拍車がかかってきている。
 また、有機EL素子は自己発光型光源であり、面発光光源であるため、次世代照明として脚光をあびており、有機EL照明として各所で開発がなされている。
 有機EL素子は、電極間内にRGBの発各光材料を有し、RGBの発光出力を任意に調製して駆動することで、又は、有機層の厚さを含めた層設計を施すことで、発光色や発光色強度を自由に変えることが可能となる。このため、有機EL素子は、照明用途として要求される白色として、例えば、色温度2000Kや3000Kなどの電球色から、5000Kや6000Kなどの昼白色まで、自由に発光することが可能である。さらに、燐光材料を使用することで、LEDや蛍光灯と同等又はそれを超える発光効率を実現でき、薄型化照明としての実現が期待されている。
 また、ディスプレイのように複数の色に可変なため、例えば、RGB発光層を水平方向に短冊状に形成し、それぞれの発光色の強度比を変えることで、色を変える照明や光源も提案されている(例えば、特許文献1参照)。
 さらに、発光層を透明基板と垂直方向にスタックすることで開口率を増やし、調色することも提案されている(例えば、特許文献2参照)。
特開2003-066868号公報 特表2008-503055号公報
 しかしながら、複数の発光層を備える有機エレクトロルミネッセンス素子では、各発光層の寿命(劣化速度)が異なる。このため、有機エレクトロルミネッセンス素子の発光色の色調が、時間経過と共に初期の色調から変化してしまう。この結果、有機エレクトロルミネッセンス素子の表示品質が、時間経過により低下してしまう。
 上述した問題の解決のため、本発明においては、表示品質の低下を抑制することが可能な有機エレクトロルミネッセンス素子の駆動方法を提供するものである。
 本発明の有機エレクトロルミネッセンス素子の駆動方法は、第1発光層に第1電流波高値を印加し、第2発光層に第2電流波高値を印加する有機エレクトロルミネッセンス素子の駆動方法であって、第2電流波高値の電流密度において第1発光層よりも発光効率が低い第2発光層に、第1電流波高値よりも電流密度の低い第2電流波高値を印加し、第1発光層に、第2電流波高値よりも高い第1電流波高値を印加する。
 本発明の有機エレクトロルミネッセンス素子の駆動方法によれば、発光効率の高い第1発光層に電流密度の高い第1電流波高値を印加し、発光効率の低い第2発光層に電流密度の低い第2電流波高値を印加する。これにより、第1発光層の輝度低下を促進し、第2発光層の輝度低下を抑制することができる。このため、時間経過により発生する各発光層の輝度低下の差を抑制し、有機エレクトロルミネッセンス素子の色調の変化を抑制することができる。従って、有機エレクトロルミネッセンス素子の表示品質の低下を抑制することができる。
 本発明によれば、表示品質の低下を抑制することが可能な有機エレクトロルミネッセンス素子の駆動方法を提供することができる。
有機EL素子の構成を示す図である。 図1に示す有機EL素子の効率特性を示す図である。 従来の有機EL素子の駆動方法を用いた場合の駆動波形を示す図である。 従来の有機EL素子の駆動方法を用いた場合の寿命劣化特性を示す図である。 実施形態の有機EL素子の駆動方法を用いた場合の駆動波形を示す図である。 実施形態の有機EL素子の駆動方法を用いた場合の寿命劣化特性を示す図である。
 以下、本発明を実施するための最良の形態の例を説明するが、本発明は以下の例に限定されるものではない。
 なお、説明は以下の順序で行う。
1.本発明の概要
2.有機エレクトロルミネッセンス素子の駆動方法の実施形態
〈1.本発明の概要〉
 本発明の具体的な実施形態の説明に先立ち、有機エレクトロルミネッセンス素子(有機EL素子)の駆動方法の概要について説明する。
 図1に、駆動方法を適用する有機EL素子の構成例を示す。
 図1に示す有機EL素子10は、基板19上に、第1電極14、第1発光機能層11、第2電極15、第2発光機能層12、第3電極16、第3発光機能層13、及び、第4電極17がこの順に積層された構成を有する。
 本例では、第1発光機能層11に緑色(G)発光色を有する発光層を有し、第2発光機能層12に赤色(R)発光色を有する発光層を有し、第3発光機能層13に青色(B)発光色を有する発光層を有する。また、第1発光機能層11及び第2発光機能層12の緑色発光層と赤色発光層とにリン光材料を使用され、第3発光機能層13の青色発光層に蛍光材料が使用されている。
 有機EL素子10は、40mm×40mmの外形寸法で形成されている。
 第1電極14は300nmのITO、第2電極15は15nmのAl、第3電極16は15nmのAl、第4電極17は100nmのAlで形成されている。
 また、第1発光機能層11は、第1電極14上に、正孔注入層として30nmのMoO、正孔輸送層として50nmのα-NPD、発光層として発光用ホスト材料と緑色発光色を有する濃度が3~5%のリン光材料、発光ドーパントの電子輸送層として30nmのAlq3、電子注入材料として1nmのLiFにより形成されている。
 第2発光機能層12は、第2電極15上に、正孔注入層として30nmのMoO、正孔輸送層として50nmのα-NPD、発光層として発光用ホスト材料と赤色発光色を有する発光ドーパントの濃度が3~5%のリン光材料、電子輸送層として30nmのAlq3、電子注入材料として1nmのLiFにより形成されている。
 第3発光機能層13は、第3電極15上に、正孔注入層として30nmのMoO、正孔輸送層として50nmのα-NPD、発光層として発光用ホスト材料と青色発光色を有する発光ドーパントの濃度が3~5%の蛍光材料、電子輸送層として30nmのAlq3、電子注入材料として1nmのLiFにより形成されている。
 上記構成の有機EL素子の各発光機能層の効率特性を図2に示す。
 図2に示す効率特性は、縦軸に、第1発光機能層11、第2発光機能層12、及び、第3発光機能層13のそれぞれの発光効率、横軸に印加する電流密度を示している。
 図2に示すように、各発光機能層に応じて発光効率が大きく異なる。特に、リン光材料で構成した第1発光機能層11と第2発光機能層12は、蛍光材料で構成した第3発光機能層13に比べて、低電流密度でも発光効率が高い。
 また、リン光材料で構成した第1発光機能層11と第2発光機能層12は、電流密度を高くすることにより発光効率が、第3発光機能層13よりも大きく低下する。そして、ある程度の電流密度において、蛍光材料で構成した第3発光機能層13と同等の発光効率以下に低下している。
 次に、従来の一般的な駆動方法を用いた場合の駆動波形を図3に示す。
 図3に示す駆動波形は、第1発光機能層11、第2発光機能層12、及び、第3発光機能層13のそれぞれについて、縦軸に印加する電流密度、横軸に印加時間を示している。
 図3に示すように、従来の一般的な駆動方法では、各発光機能層への印加時間が同じである。つまり、各発光機能層へ印加時間はフレーム周波数100Hzの1/3dutyである。RGBそれぞれ3.3msecの独立発光となる。
 従来の一般的な駆動方法において、上記構成の有機EL素子10をCIE色度<0.3,0.3>の白色1,000cd/mの表示を行うと、このときに使用する各色の電流波高値が、緑色発光層で3.8mA/m、赤色発光層で4.2mA/m、青色発光層で22mA/cmである。
 また、従来の一般的な駆動方法において、上記構成の有機EL素子10は、青色で約4.9cd/A、赤色で約21cd/A、緑色で約25cd/Aの発光効率を有する。
 有機EL素子は、発光時間の経過により、各発光機能層の輝度が低下する。この発光機能層の時間経過による輝度の低下を示す寿命劣化特性を図4に示す。
 図4に示すように、従来の駆動方法を用いた場合には、有機EL素子の駆動時間の経過とともに、各発光機能層が異なる輝度低下を示す。上記有機EL素子10では、発光効率の低い蛍光材料を用いた第3発光機能層13の輝度低下が大きく、発光効率の高いリン光材料を用いた第1発光機能層11の輝度低下が小さい。つまり、第3発光機能層13の寿命が短く、第1発光機能層11の寿命が長い。
 図4に示すように、各色で異なる寿命劣化特性を有する有機EL素子では、時間経過とともに、発光色が初期に設定した色調から変化してしまう。特に、輝度低下の大きい青色の発光輝度が低下し、初期に設定した色調から青色光の低下した色調、例えば、初期に設定した白色の色調から、黄色味を帯びた色調に変化してしまう。このように、従来の駆動方法では、時間経過と共に有機EL素子の発光色が変化し、表示品質が低下してしまう。
 上述の発光層の輝度低下は、上述の図2に示す発光効率に対応している。つまり、発光効率の低い蛍光材料を用いた第3発光機能層13では、発光効率の低さを補うために、青色発光層で22mA/cmの高い電流密度での駆動が必要となる。これに対して、発光効率の高いリン光材料を用いた第1発光機能層11では、3.8mA/mと低い電流密度での駆動が可能となる。
 素子の寿命は、印加する電流密度により異なり、高い電流波高値で駆動した方が素子の寿命は短くなり、低い電流波高値で駆動した方が素子の寿命は長くなりやすい。つまり、上記有機EL素子10では、青色発光層は、発光効率が約4.9cd/Aと低く、22mA/cmの高い電流密度で駆動しているために輝度低下が大きい。そして、緑色発光層は、発光効率が約25cd/Aと高く、3.8mA/mの低い電流密度で駆動しているために輝度低下が小さい。
 上述のように、従来の駆動方法では、発光効率の低い発光層に高い電流波高値を印加し、発光効率の高い発光層に低い電流波高値を印加している。この結果、各発光機能層の寿命劣化特性が異なり、時間経過による発光色の変化を招いている。
 また、上述のように発光効率が異なる発光機能層を有する有機EL素子において、各発光機能層の寿命を一致させる方法として、例えば、RGB塗り分け法で各発光機能層を並列に形成する際に、各色の発光面積又は開口率を変える素子形成方法がある。この方法は、特に有機ELディスプレイ等で一般的に広く採用されている。
 しかし、この方法では、発光効率の高い緑発光層だけを表示するような場合、非点灯域が視認されるなどの問題があり、装飾用の有機EL照明のような視認される光源としては芳しくない。
 そこで、本発明は、上述の従来の駆動方法とは逆に、発光効率の低い発光機能層に対して低い電流波高値を印加し、発光効率の高い発光機能層に対して高い電流波高値を印加する。このような駆動方法とすることにより、各発光機能層の寿命劣化特性に発生する差を抑制する。つまり、各発光機能層の時間経過による輝度低下速度を近づけ、時間経過による色調の変化を抑制することができる。
〈2.有機エレクトロルミネッセンス素子の駆動方法の実施形態〉
 本発明の有機エレクトロルミネッセンス素子(有機EL素子)の駆動方法の実施形態について説明する。なお、本例では、上述の概要の説明において用いた、図1に示す構成と同様の構成の有機EL素子の駆動方法について説明する。また、有機EL素子の各発光機能層の効率特性も、上述の図2と同様である。
 本例の駆動方法による駆動波形を図5に示す。
 図5に示すように、本実施形態の駆動方法では、発光効率の高いリン光材料を用いた緑色発光の第1発光機能層11に印加する電流密度が最も大きく、発光効率の低い蛍光材料を用いた青色発光の第3発光機能層13に印加する電流密度を最も小さくする。発光効率が両者の間にある第2発光機能層12では、印加する電流密度を第1発光機能層11と第3発光機能層13との間の値とする。
 このように、印加する電流密度を調整することにより、各発光機能層の寿命劣化特性を一致させることができる。具体的には、相対的に、発光効率の低い発光層に対して低い電流波高値を印加し、発光効率の高い発光層に対して高い電流波高値を印加する。
 各発光機能層に印加する電流波高値は、以下のように設定することができる。
 印加する電流波高値は、上述の図2に示す電流密度と発光効率の関係から導くことができる。例えば、最も発光効率の低い第3発光機能層13に合わせて、第1発光機能層11と第2発光機能層12に印加する電流波高値を決める。
 まず、第3発光機能層13に印加する電流波高値を設定する。図2に示す例では、第3発光機能層13に印加する電流波高値は、第3発光機能層13の発光効率と、第1発光機能層11の発光効率とが同じになる電流密度よりも小さい電流波高値とする。尚かつ、第3発光機能層13の発光効率と、第2発光機能層12の発光効率とが同じになる電流密度よりも小さい電流波高値とする。
 つまり、第3発光機能層13に印加する電流波高値は、図2において、第1発光機能層11の曲線及び第2発光機能層12の曲線と、第3発光機能層13の曲線とが交わる位置よりも、低い電流密度となる位置で電流波高値を設定する。例えば、本例では第3発光機能層13に印加する電流密度を22mA/cmとする。
 このように、第3発光機能層13に印加する電流密度を決めることにより、第3発光機能層13の発光効率が決まる。
 次に、第1発光機能層11において、上述のように決められた第3発光機能層13の発光効率と、同じ発光効率となる電流密度を求める。そして、この電流密度以上となる電流波高値を第1発光機能層11に印加する電流波高値に設定する。例えば、本例では第1発光機能層11に印加する電流密度は、120mA/cmとなる。
 同様に、第2発光機能層12において、上述のように決められた第3発光機能層13の発光効率と、同じ発光効率となる電流密度を求める。そして、この電流密度以上となる電流波高値を第2発光機能層12に印加する電流波高値に設定する。例えば、本例では第2発光機能層12に印加する電流密度は、95mA/cmとなる。
 上述の電流波高値を用いた有機EL素子の時間経過による輝度の低下を示す寿命劣化特性を図6に示す。
 図6に示すように、発光効率を基準にして電流密度を調整することにより、有機EL素子の各発光機能層の寿命劣化特性を改善することができる。
 つまり、発光効率の低い発光機能層に、他の発光機能層よりも低い電流波高値を印加することにより、発光効率の低い発光機能層の輝度低下を緩やかにして長寿命化する。また、発光効率の低い発光機能層に印加される電流密度において、発光効率が高い発光機能層に対しては、発光効率の低い発光機能層に印加される電流密度よりも高い電流波高値を印加することにより輝度低下を促進する。
 この結果、各発光機能層の寿命劣化特性が一致する方向に遷移する。
 また、有機EL素子の調色は、各発光機能層を駆動する時間を調整することにより行う。
 上述の概要で説明した方法では、発光機能層に印加する電流密度を調整することにより、有機EL素子の調色を行う。本実施形態では、発光機能層に印加する電流密度は、発光効率と寿命劣化特性とにより決められるため、印加する電流密度の調整による調色は難しい。従って、各発光機能層の発光時間を制御することにより、有機EL素子の調色を行う。
 上述のように、第1発光機能層11に高い電流波高値を印加すると、第1発光機能層11の輝度は高くなる。また、第3発光機能層13の発光効率に低い電流波高値を印加すると、第3発光機能層13の輝度は低くなる。このため、輝度の低くなる第3発光機能層13の発光時間を長くすることにより、輝度の低下を補う。また、輝度が高くなる第1発光機能層の発光時間を短くすることにより、輝度増加分を相殺する。
 発光機能層は、印加する電流密度が高くなることにより、発光効率が低下するものの、輝度自体は高くなる傾向にある。本例では、第1発光機能層11と、第2発光機能層12とが、第3発光機能層13よりも高い電流密度で駆動される。このため、従来例の駆動方法による1/3duty駆動では、第3発光機能層13の輝度が低く、第1発光機能層11及び第2発光機能層12の輝度が高くなり、有機EL素子10を所望の色調に調整することができない。
 そこで、図5に示す駆動波形のように、相対的に、電流密度が大きく輝度の高い第1発光機能層11及び第2発光機能層12の発光時間を短く、電流密度が小さく輝度の低い第3発光機能層13の発光時間を長くする。
 例えば、有機EL素子10において、CIE色度<0.3,0.3>の白色1,000cd/mを表示するとき、第1発光機能層11に120mA/cm、第2発光機能層12に95mA/cm、第3発光機能層13に22mA/cmの電流を印加するよう調整する。
 そして、第1発光機能層11、第2発光機能層12、及び、第3発光機能層13の点灯率を、それぞれ異なる印加時間にする。即ちフレーム周波数100Hz、第1発光機能層11を0.3msec点灯し、第2発光機能層12を0.5msec点灯し、第3発光機能層13を3.3msec点灯する。
 このように、予め発光効率と寿命劣化特性とにより各発光機能層に印加する電流波高値が決められる場合にも、各発光機能層の点灯率を調整することにより、有機EL素子の任意の調色が可能となる。
 これにより、発光効率に伴う寿命変化を各発光機能層で補い、各発光機能層で同等の寿命劣化特性を得ることができる。
 また、点灯率を変えることにより、発光機能層の寿命劣化特性に影響が出ることも考えられる。例えば、第1発光機能層の点灯率が低く、発光時間が短くなるため輝度低下が緩やかになることも考えられる。この場合には、第1発光機能層の発光効率が、第3発光機能層の発光効率よりも低い電流密度、つまり、上記の電流密度よりも高い電流波高値を印加することにより、輝度低下を加速させて寿命劣化特性を一致させることができる。
 このように、上述の発光効率と寿命劣化特性との関係に加えて、有機EL素子の調色のための点灯率を考慮することにより、有機EL素子の寿命劣化特性を改善することができる。
 従って、本実施形態の有機EL素子の駆動方法によれば、発光効率の異なる各発光機能層を同一有機EL素子内に形成しても、寿命劣化特性を改善し、初期の色度からの時間経過による色調の変化を防ぐことができる。そして、有機EL素子の表示品質を向上することができる。
 なお、本実施形態では、フレーム周波数に100Hzを使用したが、異なる周波数を使用してもかまわない。また、発光効率が著しく異なる素子を有する場合には、非点灯時間が長くなってしまうため、同じく100Hz程度のフレーム周波数を使用すると、フリッカーのように見えてしまう。このため、フレーム周波数は例えば500Hzなど極力高い方が好ましい。
 また、上述の実施形態では、発光機能層を3層積層した有機EL素子のduty駆動を例示しているが、有機EL素子の発光機能層の数、duty比等については特に問わない。上述の駆動方法が適用できる有機EL素子は、積層構造でなくてもよく、また、各発光機能層へ印加する電流波高値と駆動時間を制御できる構成であれば、積層構造でなくてもよく、また、複数の発光機能層を同時に駆動することが可能な構成であってもよい。
 さらに、上述の説明では、各発光機能層の発光面積が同じ場合、且つ、各発光機能層の発光効率が異なる場合の有機EL素子の駆動方法について説明しているが、有機EL素子の構成はこれに限られない。例えば、有機EL素子では、発光効率の高い発光層よりも発光効率の低い発光層の面積を拡大した構成とすることもできる。このように、発光効率の低い発光層の面積を大きくすることにより、より小さい電流波高値でも高い輝度を確保することができる。そして、小さい電流波高値で駆動することにより、発光効率の低い発光層の長寿命化が可能となる。
 この場合においても、発光効率の高い発光層に印加する電流波高値を、発光効率の低い発光層に印加する電流波高値よりも大きくすることにより、寿命劣化特性を一致させることができる。つまり、発光効率の低い発光層の面積拡大による長寿命化、及び、上述の実施形態の駆動方法による、発光効率の低い発光層と発光効率の高い発光層との寿命劣化特性を一致させる技術を併用することができる。
 また、発光面積を変えた場合にも、上述の実施形態の駆動方法を適用することにより、従来よりも面積差を縮小することができる。このため、各発光機能層の発光面積又は開口率の面積差による不均衡を防ぐことができ、非点灯域が視認される等の有機EL照明としての問題を抑制することができる。
 従って、有機ELディスプレイ等で一般的に広く採用されている、塗り分け法にて各発光機能層を並列に形成する際に、異なる発光効率有する有機発光層の発光面積又は開口率を変える素子形成方法においても、上述の実施形態の駆動方法を適用することにより、視認性を損なうことなく表示することが可能となる。
 また、材料についても、リン光材料と蛍光材料とを用いているが、リン光材料のみ、蛍光材料のみを用いてもよい。
 例えば、リン光材料のみを用いた場合にも、上述の実施形態の第1発光機能層(G)と第2発光機能層(R)とのように、発光効率に応じた電流波高値を印加し、印加時間を調整することにより、各発光層の寿命劣化特性を一致させることができる。蛍光材料のみを用いた場合や、その他組み合わせにおいても同様である。
 また、上述の実施形態では、各発光機能層を構成する材料に依存した寿命劣化特性については考慮せずに説明している。使用する材料に依存して寿命劣化特性が異なる場合にも、上述の実施形態と同様に、輝度低下の大きい材料に低い電流波高値を印加し、輝度低下の小さい材料に高い電流波高値を印加することにより、寿命劣化特性を一致させることができる。そして、各発光機能層への印加時間を制御することにより任意の調色が可能となる。
 なお、本発明は上述の実施形態例において説明した構成に限定されるものではなく、その他本発明構成を逸脱しない範囲において種々の変形、変更が可能である。
 10 有機EL素子、11 第1発光機能層、12 第2発光機能層、13 第3発光機能層、14 第1電極、15 第2電極、15 第3電極、16 第3電極、17 第4電極、19 基板

Claims (6)

  1.  第1発光層に第1電流波高値を印加し、第2発光層に第2電流波高値を印加する有機エレクトロルミネッセンス素子の駆動方法であって、
     前記第2電流波高値の電流密度において前記第1発光層よりも発光効率が低い前記第2発光層に、前記第1電流波高値よりも電流密度の低い前記第2電流波高値を印加し、
     前記第1発光層に、前記第2電流波高値よりも高い前記第1電流波高値を印加する
     有機エレクトロルミネッセンス素子の駆動方法。
  2.  前記第1電流波高値の印加時間が、前記第2電流波高値の印加時間よりも小さい請求項1に記載の有機エレクトロルミネッセンス素子の駆動方法。
  3.  前記第2電流波高値は、前記第1発光層と前記第2発光層との発光効率が一致する電流密度よりも小さい請求項1又は2に記載の有機エレクトロルミネッセンス素子の駆動方法。
  4.  前記第1発光層に、前記第2電流波高値での前記第2発光層の発光効率と同じ発光効率となる電流密度以上の前記第1電流波高値を印加する請求項1又は2に記載の有機エレクトロルミネッセンス素子の駆動方法。
  5.  同じ発光面積を有する前記第1発光層と前記第2発光層とに、前記第1電流波高値、前記第2電流波高値を印加する請求項1に記載の有機エレクトロルミネッセンス素子の駆動方法。
  6.  積層された前記第1発光層と前記第2発光層とに、前記第1電流波高値、前記第2電流波高値を印加する請求項1に記載の有機エレクトロルミネッセンス素子の駆動方法。
PCT/JP2014/065510 2013-06-13 2014-06-11 有機エレクトロルミネッセンス素子の駆動方法 WO2014200034A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020177030114A KR101877195B1 (ko) 2013-06-13 2014-06-11 유기 일렉트로루미네센스 소자의 구동 방법
US14/897,245 US9824623B2 (en) 2013-06-13 2014-06-11 Method for driving organic electroluminescent element
EP14810425.0A EP3010310B1 (en) 2013-06-13 2014-06-11 Method for driving an organic electroluminescent element
CN201480033033.4A CN105325057B (zh) 2013-06-13 2014-06-11 有机电致发光元件的驱动方法
KR1020157034958A KR20160007587A (ko) 2013-06-13 2014-06-11 유기 일렉트로루미네센스 소자의 구동 방법
JP2015522841A JP6372486B2 (ja) 2013-06-13 2014-06-11 有機エレクトロルミネッセンス素子の駆動方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013124957 2013-06-13
JP2013-124957 2013-06-13

Publications (1)

Publication Number Publication Date
WO2014200034A1 true WO2014200034A1 (ja) 2014-12-18

Family

ID=52022324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065510 WO2014200034A1 (ja) 2013-06-13 2014-06-11 有機エレクトロルミネッセンス素子の駆動方法

Country Status (6)

Country Link
US (1) US9824623B2 (ja)
EP (1) EP3010310B1 (ja)
JP (1) JP6372486B2 (ja)
KR (2) KR20160007587A (ja)
CN (1) CN105325057B (ja)
WO (1) WO2014200034A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017203788A1 (ja) * 2016-05-26 2017-11-30 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
WO2017203787A1 (ja) * 2016-05-26 2017-11-30 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
WO2018083974A1 (ja) * 2016-11-04 2018-05-11 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、及び、発光装置
CN115019675A (zh) * 2022-05-31 2022-09-06 武汉天马微电子有限公司 一种显示面板及显示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10295730B2 (en) * 2015-08-18 2019-05-21 Glo Ab Light bar for back light unit containing resistance modulated LED strings

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001282160A (ja) * 2000-03-31 2001-10-12 Nippon Seiki Co Ltd 電流駆動型発光表示装置
JP2003066868A (ja) 2001-08-24 2003-03-05 Matsushita Electric Ind Co Ltd 表示パネルおよびそれを用いた情報表示装置
JP2003234181A (ja) * 2002-02-08 2003-08-22 Denso Corp 表示装置及び表示装置の駆動方法
WO2005106835A1 (ja) * 2004-04-30 2005-11-10 Fuji Photo Film Co., Ltd. 色度調整可能な有機エレクトロルミネッセンス装置
JP2008503055A (ja) 2004-06-18 2008-01-31 ゼネラル・エレクトリック・カンパニイ スタック型有機エレクトロルミネッセンスデバイス
JP2010039241A (ja) * 2008-08-06 2010-02-18 Canon Inc 有機el表示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1761370A (zh) * 2004-10-14 2006-04-19 日本东北先锋公司 自发光显示装置及其制造方法
US20060114190A1 (en) 2004-11-16 2006-06-01 Chun-Hsiang Fang Active matrix organic electro-luminescence device array
JP5162554B2 (ja) 2009-09-25 2013-03-13 パナソニック株式会社 有機電界発光素子
JP2012028108A (ja) * 2010-07-22 2012-02-09 Nippon Seiki Co Ltd 有機elパネル
JP2012032453A (ja) * 2010-07-28 2012-02-16 Canon Inc 発光装置の駆動方法
JP2012109213A (ja) 2010-10-27 2012-06-07 Canon Inc 表示装置
JP2013089302A (ja) 2011-10-13 2013-05-13 Nippon Seiki Co Ltd 発光装置及び有機el素子の駆動方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001282160A (ja) * 2000-03-31 2001-10-12 Nippon Seiki Co Ltd 電流駆動型発光表示装置
JP2003066868A (ja) 2001-08-24 2003-03-05 Matsushita Electric Ind Co Ltd 表示パネルおよびそれを用いた情報表示装置
JP2003234181A (ja) * 2002-02-08 2003-08-22 Denso Corp 表示装置及び表示装置の駆動方法
WO2005106835A1 (ja) * 2004-04-30 2005-11-10 Fuji Photo Film Co., Ltd. 色度調整可能な有機エレクトロルミネッセンス装置
JP2008503055A (ja) 2004-06-18 2008-01-31 ゼネラル・エレクトリック・カンパニイ スタック型有機エレクトロルミネッセンスデバイス
JP2010039241A (ja) * 2008-08-06 2010-02-18 Canon Inc 有機el表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3010310A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017203788A1 (ja) * 2016-05-26 2017-11-30 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
WO2017203787A1 (ja) * 2016-05-26 2017-11-30 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
WO2018083974A1 (ja) * 2016-11-04 2018-05-11 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、及び、発光装置
CN115019675A (zh) * 2022-05-31 2022-09-06 武汉天马微电子有限公司 一种显示面板及显示装置

Also Published As

Publication number Publication date
US20160133180A1 (en) 2016-05-12
KR20160007587A (ko) 2016-01-20
KR101877195B1 (ko) 2018-07-10
CN105325057A (zh) 2016-02-10
EP3010310A1 (en) 2016-04-20
US9824623B2 (en) 2017-11-21
KR20170120712A (ko) 2017-10-31
JP6372486B2 (ja) 2018-08-15
EP3010310B1 (en) 2018-02-21
CN105325057B (zh) 2017-02-22
JPWO2014200034A1 (ja) 2017-02-23
EP3010310A4 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
TWI267822B (en) Organic electroluminescence device that can adjust chromaticity
KR101270187B1 (ko) 추가적인 프라이머리들 및 조정 가능한 백색점을 구비한 전계발광 디스플레이
US8100734B2 (en) Organic light emitting devices for illumination
TWI527211B (zh) 有機發光顯示裝置及其製造方法
JP6372486B2 (ja) 有機エレクトロルミネッセンス素子の駆動方法
JP4560494B2 (ja) 有機発光部品の操作方法および有機発光部品
JP2012243983A (ja) 有機エレクトロルミネッセンス素子
JP2011035087A (ja) 有機elパネル
JP2004127602A (ja) 発光素子
JP2006269100A (ja) 表示装置
JP2007095444A (ja) 有機エレクトロルミネッセンス表示装置
US10749127B2 (en) White organic light-emitting diode device
WO2013030975A1 (ja) 照明装置および発光制御方法
WO2012164683A1 (ja) 照明装置及び輝度調整方法
TW201412190A (zh) 光源模組
JP2006013226A (ja) 有機led素子
JP2016006744A (ja) 照明装置
US20170047380A1 (en) Organic electroluminescent element and organic electroluminescent panel
TWI692863B (zh) 亮度色溫可調串聯式有機發光二極體及其用途
KR20140070372A (ko) 유기 el 소자
JP2010021085A (ja) エレクトロルミネッセンス素子
JP2011165781A (ja) 有機el素子
JP2006059775A (ja) カラー有機el表示装置
JPH04319292A (ja) 発光装置
JP2006032844A (ja) 有機発光素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480033033.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810425

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522841

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014810425

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157034958

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14897245

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE