WO2014199659A1 - フェノール性水酸基含有化合物、フェノール樹脂、硬化性組成物、その硬化物、半導体封止材料、及びプリント配線基板 - Google Patents

フェノール性水酸基含有化合物、フェノール樹脂、硬化性組成物、その硬化物、半導体封止材料、及びプリント配線基板 Download PDF

Info

Publication number
WO2014199659A1
WO2014199659A1 PCT/JP2014/054137 JP2014054137W WO2014199659A1 WO 2014199659 A1 WO2014199659 A1 WO 2014199659A1 JP 2014054137 W JP2014054137 W JP 2014054137W WO 2014199659 A1 WO2014199659 A1 WO 2014199659A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
hydroxyl group
phenolic hydroxyl
curable composition
phenol resin
Prior art date
Application number
PCT/JP2014/054137
Other languages
English (en)
French (fr)
Other versions
WO2014199659A9 (ja
Inventor
泰 佐藤
歩 高橋
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2014534851A priority Critical patent/JP5621954B1/ja
Priority to US14/897,864 priority patent/US10081585B2/en
Priority to CN201480033987.5A priority patent/CN105517984B/zh
Priority to KR1020157031318A priority patent/KR102136614B1/ko
Publication of WO2014199659A1 publication Critical patent/WO2014199659A1/ja
Publication of WO2014199659A9 publication Critical patent/WO2014199659A9/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms by addition reactions, i.e. reactions involving at least one carbon-to-carbon unsaturated bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/14Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with at least one hydroxy group on a condensed ring system containing two rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/02Condensation polymers of aldehydes or ketones with phenols only of ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/16Condensation polymers of aldehydes or ketones with phenols only of ketones with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • C08L91/06Waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a phenolic hydroxyl group-containing compound having excellent heat resistance and flame retardancy in a cured product, a phenol resin containing the compound, a curable composition and a cured product thereof, a semiconductor sealing material, and a printed wiring board.
  • Phenolic resins are used as curing agents for epoxy resins, for example, and epoxy resin compositions that use phenolic resins as curing agents are not only adhesives, molding materials, and coating materials, but also cured products with heat resistance and moisture resistance. Because of its excellent point, it is widely used in the electrical and electronic fields such as semiconductor sealing materials and insulating materials for printed wiring boards.
  • power semiconductors represented by in-vehicle power modules
  • in-vehicle power modules are important technologies that hold the key to energy saving in electrical and electronic equipment.
  • Si silicon
  • SiC silicon carbide
  • the advantage of the SiC semiconductor is that it can be operated under higher temperature conditions. Therefore, the semiconductor encapsulant is required to have higher heat resistance than ever before.
  • the phenolic hydroxyl group containing compound represented by these is known (refer patent document 1). Although such a phenolic hydroxyl group-containing compound has a feature that is very excellent in heat resistance in a cured product, the flame retardancy is not sufficient.
  • the problem to be solved by the present invention is a phenolic hydroxyl group-containing compound excellent in heat resistance and flame retardancy in a cured product, a phenol resin containing the compound, a curable composition and its cured product, a semiconductor sealing material, and It is to provide a printed wiring board.
  • the present inventors have found that a reaction product of a compound having a quinone skeleton and a compound having a naphthol or dihydroxynaphthalene skeleton is bonded with aromatic nuclei without involving a methylene chain. Since it has a molecular structure with a high hydroxyl group concentration and the reactivity of the hydroxyl group is high, it has been found that the cured product is excellent in heat resistance and flame retardancy, and the present invention has been completed.
  • R 1 and R 2 are each an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group, Is an integer from 0 to 3, and n is an integer from 0 to 4.
  • l or n is 2 or more, the plurality of R 1 or R 2 may be the same or different from each other.
  • K is an integer of 1 to 3
  • m is 1 or 2
  • Ar is the following structural formula (Ar1)
  • R 3 is an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group, and R 3 is bonded to either of two aromatic nuclei.
  • S is an integer of 0 to 6.
  • a plurality of R 3 may be the same or different from each other, and r is 1 or 2 .
  • It is a structural site represented by ]
  • the present invention further relates to a phenol resin containing the phenolic hydroxyl group-containing compound.
  • the present invention further relates to a method for producing a phenol resin, characterized by reacting a compound (Q) having a quinone structure in the molecular structure with a compound (P) having a naphthol or dihydroxynaphthalene skeleton.
  • the present invention further relates to a phenol resin produced by the production method.
  • the present invention further relates to a curable composition containing the phenolic hydroxyl group-containing compound or phenol resin and a curing agent as essential components.
  • the present invention further relates to a cured product obtained by curing reaction of the curable composition.
  • the present invention further relates to a semiconductor sealing material containing an inorganic filler in addition to the curable composition.
  • the present invention further relates to a printed wiring board obtained by impregnating a reinforced composition with an organic solvent and varnishing the resin composition, impregnating a reinforcing base material, and stacking a copper foil and heat-pressing it.
  • a phenolic hydroxyl group-containing compound having a low melt viscosity and excellent heat resistance and flame retardancy in a cured product, a phenol resin containing the same, a curable composition and its cured product, a semiconductor sealing material, and a print A wiring board can be provided.
  • FIG. 1 is a GPC chart of the phenol resin (1) obtained in Example 1.
  • FIG. FIG. 2 is a 13C-NMR chart of the phenol resin (1) obtained in Example 1.
  • FIG. 3 is an MS spectrum of the phenol resin (1) obtained in Example 1.
  • FIG. 4 is a GPC chart of the phenol resin (2) obtained in Example 2.
  • FIG. 5 is an MS spectrum of the phenol resin (2) obtained in Example 2.
  • the phenolic hydroxyl compound of the present invention has the following general formula (I)
  • R 1 and R 2 are each an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group, Is an integer from 0 to 3, and n is an integer from 0 to 4.
  • l or n is 2 or more, the plurality of R 1 or R 2 may be the same or different from each other.
  • K is an integer of 1 to 3
  • m is 1 or 2
  • Ar is the following structural formula (Ar1)
  • R 3 is an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group, and R 3 is bonded to either of two aromatic nuclei.
  • S is an integer of 0 to 6.
  • a plurality of R 3 may be the same or different from each other, and r is 1 or 2 .
  • It is a structural site represented by ] It has the molecular structure represented by these.
  • the phenolic hydroxyl group-containing compound of the present invention represented by the general formula (I) has a structure in which aromatic nuclei are bonded to each other without a methylene chain, the molecular weight is low, and the aromatic ring and hydroxyl group concentration is low. It has high characteristics.
  • Such a compound is excellent in the heat resistance of the cured product, but has a high flammable hydroxyl group concentration and tends to be inferior in flame retardancy due to the presence of many reactive groups in close proximity.
  • the phenolic hydroxyl group-containing compound of the present invention has a biphenyl skeleton or a terphenyl skeleton, and in the structural formula (x1) or (x2), two hydroxyl groups located at the para position of the aromatic nucleus are reactive. Since it is excellent, it has the characteristics which are excellent in both the heat resistance in a hardened
  • the compound represented by the general formula (I) includes, for example, a compound (Q) having a quinone structure in a molecular structure and a compound (P) having a naphthol or dihydroxynaphthalene skeleton under non-catalytic or acid-catalyzed conditions. And those produced by a method of reacting in a temperature range of 40 to 180 ° C.
  • any component is selectively produced depending on the reaction conditions, or it is produced as a phenol resin that is a mixture of a plurality of types of phenolic hydroxyl group-containing compounds. I can do it.
  • the compound (Q) having a quinone structure in the molecular structure is, for example, the following structural formula (Q1) or (Q2)
  • R 1 and R 2 are each an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group; Is an integer from 0 to 3, and n is an integer from 0 to 4.
  • the plurality of R 1 or R 2 may be the same or different from each other.
  • Specific examples include parabenzoquinone, 2-methylbenzoquinone, 2,3,5-trimethyl-benzoquinone, naphthoquinone, and the like. These may be used alone or in combination of two or more.
  • the compound (P) having a naphthol or dihydroxynaphthalene skeleton in the molecular structure is, for example, the following structural formula (P1)
  • R 3 is an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group or an aralkyl group, and s is an integer of 0 to 6 . When s is 2 or more, the plurality of R 3 may be the same or different. R is 1 or 2, respectively.
  • specific examples thereof include 1-naphthol, 2-naphthol, 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, Examples include 2,7-dihydroxynaphthalene. These may be used alone or in combination of two or more.
  • a compound having a dihydroxynaphthalene skeleton in which r in the structural formula (P1) is 2 is preferable because it is excellent in heat resistance and flame retardancy in a cured product, and 1,5-dihydroxynaphthalene, 1,6- Dihydroxynaphthalene and 2,7-dihydroxynaphthalene are more preferable, and 2,7-dihydroxynaphthalene is particularly preferable.
  • the reaction between the compound (Q) having a quinone structure in the molecular structure and the compound (P) having a naphthol or dihydroxynaphthalene skeleton proceeds even under non-catalytic conditions because of its high reactivity. You may go.
  • the acid catalyst used here include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, organic acids such as methanesulfonic acid, p-toluenesulfonic acid, and oxalic acid, boron trifluoride, anhydrous aluminum chloride, and zinc chloride. And Lewis acid.
  • these acid catalysts When these acid catalysts are used, it is preferably used in an amount of 5.0% by mass or less based on the total mass of the compound (Q) having the quinone structure and the compound (P) having the naphthol or dihydroxynaphthalene skeleton. .
  • the reaction is preferably performed under solvent-free conditions, but may be performed in an organic solvent as necessary.
  • organic solvent used here include methyl cellosolve, isopropyl alcohol, ethyl cellosolve, toluene, xylene, and methyl isobutyl ketone.
  • the organic solvent is used in an amount of 50 to 50 parts per 100 parts by weight in total of the compound (Q) having a quinone structure and the compound (P) having a naphthol or dihydroxynaphthalene skeleton. It is preferable to use it in a proportion that is in the range of 200 parts by mass.
  • the target phenolic hydroxyl group-containing compound or phenol resin is obtained by drying under reduced pressure. Can be obtained.
  • the compound of the present invention has excellent heat resistance and flame retardancy in a cured product. is there.
  • the more preferable thing of the phenolic hydroxyl group containing compound which has a structure represented by the said general formula (I) is explained in full detail.
  • R 3 is an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group, or an aralkyl group, and R 3 is bonded to either of two aromatic nuclei.
  • S is an integer of 0 to 6.
  • a plurality of R 3 may be the same or different from each other, and r is 1 or 2 .
  • a phenolic hydroxyl group-containing compound represented by any of the above.
  • the phenolic hydroxyl group-containing compound represented by the structural formula (I-1) is more specifically represented by the following structural formula (1) or (2)
  • the phenolic hydroxyl group-containing compound represented by the structural formula (1) includes, for example, parabenzoquinone as the compound (Q) having a quinone structure in the molecular structure, and the compound (P) having the naphthol or dihydroxynaphthalene skeleton. It can be produced by the above-mentioned method using naphthol. At this time, the reaction ratio between parabenzoquinone and naphthol is low in melt viscosity, and a phenol resin having further excellent heat resistance and flame retardancy in a cured product can be obtained. Therefore, naphthol is 0.1 to 1 mol per 1 mol of parabenzoquinone. The ratio is preferably in the range of 10.0 mol.
  • a binuclear body having a k value of 1 in the structural formula (1) because it is particularly excellent in heat resistance and flame retardancy in a cured product. It is preferable to use it as a phenol resin containing the compound (x1) and the trinuclear compound (x2) having a k value of 2 in the structural formula (1), and the binuclear compound (x1 ) Content ratio in the range of 10 to 70% in the GPC measurement, and the content ratio of the trinuclear compound (x2) in the range of 10 to 50% in the GPC measurement. More preferred.
  • the content of the binuclear compound (x1), the trinuclear compound (x2), and other components in the phenol resin is phenol calculated from GPC measurement data under the following conditions. It is the ratio of the peak area of each component to the total peak area of the resin.
  • the compounds represented by the structural formula (1) include, for example, the following structural formulas (1-1) to (1-10)
  • the phenolic hydroxyl group-containing compound represented by the structural formula (2) is particularly excellent in heat resistance and flame retardancy in a cured product. Have.
  • the binuclear compound (x1) having a k value of 1 in the structural formula (2) and the k value in the structural formula (2) is preferably used as a phenol resin containing a trinuclear compound (x2) in which 2 is 2, and the content of the dinuclear compound (x1) in the phenol resin is 10 to 70% in terms of area ratio in GPC measurement. More preferably, the content of the trinuclear compound (x2) is in the range of 10 to 50% in terms of area ratio in GPC measurement.
  • the phenolic hydroxyl group-containing compound represented by any one of the structural formula (2) includes, for example, a compound having a quinone structure in the molecular structure (Q), parabenzoquinone, and a compound having the naphthol or dihydroxynaphthalene skeleton ( Dihydroxynaphthalene can be used as P) and can be produced by the method described above.
  • the reaction ratio of parabenzoquinone and dihydroxynaphthalene is such that a phenol resin having further excellent heat resistance and flame retardancy in the cured product can be obtained, so that dihydroxynaphthalene is 0.1 to 10.0 with respect to 1 mol of parabenzoquinone. It is preferable that it is the ratio used as the range of a mole.
  • the dihydroxynaphthalene used here may be any positional isomer such as 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene and the like. good.
  • 2,7-dihydroxynaphthalene is preferable because a phenol resin having a low melt viscosity and excellent heat resistance and flame retardancy in a cured product can be obtained.
  • the compounds represented by the structural formula (2) include, for example, the following structural formulas (2-1) to (2-24)
  • the phenolic hydroxyl group-containing compound represented by the structural formula (I-2) is more specifically represented by the following structural formula (3)
  • the phenolic hydroxyl group-containing compound represented by the structural formula (3) includes, for example, 2,4,6-trimethyl-parabenzoquinone as the compound (Q) having a quinone structure in the molecular structure, and the naphthol or dihydroxynaphthalene. It can be produced by the above-mentioned method using naphthol or dihydroxynaphthalene as the compound (P) having a skeleton. At this time, the reaction ratio between 2,4,6-trimethyl-parabenzoquinone and the compound (P) having the naphthol or dihydroxynaphthalene skeleton has a low melt viscosity and is further excellent in heat resistance and flame retardancy in the cured product.
  • the ratio is in the range of 0.1 to 10.0 mol of the compound (P) having the naphthol or dihydroxynaphthalene skeleton with respect to 1 mol of 2,4,6-trimethyl-parabenzoquinone. It is preferable.
  • the compounds represented by the structural formula (3) include, for example, the following structural formulas (3-1) to (3-12)
  • the phenolic hydroxyl group-containing compound represented by the structural formula (I-3) is more specifically the following structural formula (4) or (5)
  • the phenolic hydroxyl group-containing compound represented by the structural formula (4) includes, for example, naphthoquinone as the compound (Q) having a quinone structure in the molecular structure, and naphthol as the compound (P) having the naphthol or dihydroxynaphthalene skeleton.
  • the reaction ratio of naphthoquinone and naphthol is a compound having the naphthol or dihydroxynaphthalene skeleton with respect to 1 mol of naphthoquinone because the melt viscosity is low, and a phenol resin having further excellent heat resistance and flame retardancy in a cured product is obtained.
  • (P) is in a range of 0.1 to 10.0 mol.
  • the compounds represented by the structural formula (4) are, for example, the following structural formulas (4-1) to (4-4).
  • the phenolic hydroxyl group-containing compound represented by the structural formula (5) is particularly excellent in heat resistance and flame retardancy in a cured product. Have.
  • the binuclear compound (x1) having a k value of 1 in the structural formula (5) is contained as an essential component. It is preferably used as a phenol resin, and the content of the binuclear compound (x1) in the phenol resin is preferably in the range of 5 to 70% as an area ratio in GPC measurement.
  • the phenolic hydroxyl group-containing compound represented by the structural formula (5) includes, for example, naphthoquinone as the compound (Q) having a quinone structure in the molecular structure, and dihydroxy as the compound (P) having the naphthol or dihydroxynaphthalene skeleton.
  • naphthalene it can be produced by the method described above.
  • the reaction ratio of naphthoquinone and dihydroxynaphthalene is a phenol resin that is further excellent in heat resistance and flame retardancy in the cured product, the range of 0.1 to 10.0 mol of dihydroxynaphthalene is 1 mol of naphthoquinone. It is preferable that the ratio is
  • the dihydroxynaphthalene used here may be any of 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene and the like.
  • 2,7-dihydroxynaphthalene is preferable because a phenol resin excellent in heat resistance and flame retardancy in a cured product can be obtained.
  • the compounds represented by the structural formula (5) include, for example, the following structural formulas (5-1) to (5-8).
  • the phenol resin containing the phenolic hydroxyl group-containing compound represented by the structural formula (5) may further contain a phenolic hydroxyl group-containing compound other than these. Especially, since it is excellent in the flame retardance in hardened
  • the dinaphthofuran compound represented by these is such that the content ratio of the binuclear compound (x1) in which m is 1 in the structural formula (5) is 5 to 70% in terms of area ratio in GPC measurement.
  • the content of the dinaphthofuran compound is in the range of 1 to 60%.
  • the phenolic hydroxyl group-containing compounds of the present invention exemplified above, the phenolic hydroxyl group represented by the structural formula (2) or (5) is excellent in the balance between the melt viscosity and the heat resistance and flame retardancy of the cured product.
  • the containing compound is preferable, and further, the phenolic hydroxyl group-containing compound represented by the structural formula (5) is more preferable because it is further excellent in heat resistance and flame retardancy in the cured product.
  • the phenol resin containing the phenolic hydroxyl group-containing compound of the present invention preferably has a hydroxyl group equivalent of 60 to 150 g / equivalent because it is excellent in curability.
  • the softening point is preferably in the range of 80 to 150 ° C.
  • the curable composition of the present invention comprises the phenolic hydroxyl group-containing compound detailed above or a phenol resin containing the compound and a curing agent as essential components.
  • curing agent an epoxy resin is mentioned, for example.
  • the epoxy resin used here is 1,6-diglycidyloxynaphthalene, 2,7-diglycidyloxynaphthalene, ⁇ -naphthol novolak type epoxy resin, ⁇ -naphthol novolak type epoxy resin, ⁇ -naphthol / ⁇ -naphthol co-condensation type novolak polyglycidyl ether, naphthol aralkyl type epoxy resin, 1,1-bis (2,7-diglycidyloxy-1-naphthyl) alkane and other naphthalene skeleton-containing epoxy resin; bisphenol A type epoxy resin Bisphenol type epoxy resin such as bisphenol F type epoxy resin; biphenyl type epoxy resin such as biphenyl type epoxy resin and tetramethylbiphenyl type epoxy resin; phenol novolac type epoxy resin, cresol novolac type epoxy resin, Sphenol A novolak type epoxy resin, bisphenol F novolak type epoxy resin, bisphenol
  • the compounding ratio of the phenolic hydroxyl group-containing compound or phenol resin and the epoxy resin is equivalent to the phenolic hydroxyl group-containing compound or phenolic hydroxyl group in the phenol resin and the epoxy group in the epoxy resin. It is preferable that the ratio (phenolic hydroxyl group / epoxy group) is 1 / 0.5 to 1 / 1.5 because of excellent reactivity and heat resistance in the cured product.
  • an epoxy resin as a hardening
  • other curing agents for epoxy resins include various known curing agents such as amine compounds, amide compounds, acid anhydride compounds, and phenol compounds.
  • examples of the amine compound include diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, imidazole, BF 3 -amine complex, and guanidine derivative.
  • the amide compound include dicyandiamide.
  • polyamide resins synthesized from dimer of linolenic acid and ethylenediamine examples include acid anhydride compounds include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, and tetrahydrophthalic anhydride.
  • phenolic compounds include phenol novolac resin, cresol novolac resin Aromatic hydrocarbon formaldehyde resin modified phenolic resin, dicyclopentadiene phenol addition type resin, phenol aralkyl resin (Zylok resin), naphthol aralkyl resin, triphenylol methane resin, tetraphenylol ethane resin, naphthol novolak resin, naphthol-phenol co Condensed novolak resin, naphthol-cresol co-condensed novolak resin, biphenyl-modified phenol resin (polyhydric phenol compound in which phenol nucleus is linked by bismethylene group), biphenyl-modified naphthol resin (polyvalent naphthol compound in which phenol nucleus
  • the blending ratio of the phenolic hydroxyl group-containing compound or phenolic resin of the present invention and the curing agent for other epoxy resin is excellent in heat resistance and flame retardancy in the cured product. It is not particularly limited as long as the characteristics of the phenolic hydroxyl group-containing compound are utilized. For example, 5 to 95 parts by mass of the phenolic hydroxyl group-containing compound or phenol resin of the present invention in 100 parts by mass of the total of both. It is preferable that it is the range of these.
  • the mixture ratio with the said epoxy resin is the phenolic hydroxyl group containing compound or phenol resin of this invention, and the active hydrogen atom which the hardening
  • the reactivity and the heat resistance of the cured product are such that the equivalent ratio (active hydrogen atom / epoxy group) of the total and the epoxy group contained in the epoxy resin is 1 / 0.5 to 1 / 1.5. It is preferable because of its excellent resistance.
  • a curing accelerator can be used in combination as necessary.
  • Various curing accelerators can be used, and examples thereof include phosphorus compounds, tertiary amines, imidazoles, organic acid metal salts, Lewis acids, and amine complex salts.
  • imidazole compounds are 2-ethyl-4-methylimidazole
  • phosphorus compounds are triphenylphosphine because of their excellent curability, heat resistance, electrical properties, and moisture resistance reliability.
  • DBU 1,8-diazabicyclo- [5.4.0] -undecene
  • the curable composition of the present invention described in detail above may further contain other additive components depending on the application and desired performance. Specifically, for the purpose of further improving the flame retardancy, a non-halogen flame retardant containing substantially no halogen atom may be blended.
  • non-halogen flame retardant examples include a phosphorus flame retardant, a nitrogen flame retardant, a silicone flame retardant, an inorganic flame retardant, and an organic metal salt flame retardant. These may be used alone or in combination.
  • the phosphorus flame retardant can be either inorganic or organic.
  • the inorganic compound include phosphorous such as red phosphorus, monoammonium phosphate, diammonium phosphate, triammonium phosphate, and ammonium polyphosphate.
  • examples thereof include inorganic nitrogen-containing phosphorus compounds such as ammonium acids and phosphoric acid amides.
  • the red phosphorus is preferably subjected to a surface treatment for the purpose of preventing hydrolysis and the like, and the surface treatment method is, for example, (i) magnesium hydroxide, aluminum hydroxide, zinc hydroxide, titanium hydroxide, oxidation A method of coating with an inorganic compound such as bismuth, bismuth hydroxide, bismuth nitrate, or a mixture thereof; (ii) inorganic compounds such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, titanium hydroxide, and phenol resins; (Iii) Double coating with a thermosetting resin such as a phenol resin on a coating of an inorganic compound such as magnesium hydroxide, aluminum hydroxide, zinc hydroxide, or titanium hydroxide. And the like.
  • the surface treatment method is, for example, (i) magnesium hydroxide, aluminum hydroxide, zinc hydroxide, titanium hydroxide, oxidation A method of coating with an inorganic compound such as bismuth, bismuth hydroxide,
  • organic phosphorus compounds examples include 9,10-dihydro, as well as general-purpose organic phosphorus compounds such as phosphate ester compounds, phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphorane compounds, and organic nitrogen-containing phosphorus compounds.
  • the blending amount thereof is appropriately selected depending on the type of the phosphorus-based flame retardant, the other components of the curable composition, and the desired degree of flame retardancy.
  • a phenolic hydroxyl group-containing compound or a phenol resin In the case of using red phosphorus as a non-halogen flame retardant in 100 parts by mass of a curable composition containing all of a curing agent, other additives and fillers, the range of 0.1 to 2.0 parts by mass In the case of using an organophosphorus compound, it is preferably blended in the range of 0.1 to 10.0 parts by mass, particularly in the range of 0.5 to 6.0 parts by mass. It is preferable.
  • blending amounts are appropriately selected depending on the type of the phosphorus-based flame retardant, the other components of the curable composition, and the desired degree of flame retardancy.
  • red phosphorus when used as a non-halogen flame retardant, it is preferably blended in the range of 0.1 to 2.0 parts by mass.
  • organic phosphorus compound When an organic phosphorus compound is used, 0.1 to 10.0 parts by mass is similarly applied. It is preferable to mix in the range of 0.5 to 6.0 parts by mass.
  • the phosphorous flame retardant when using the phosphorous flame retardant, may be used in combination with hydrotalcite, magnesium hydroxide, boric compound, zirconium oxide, black dye, calcium carbonate, zeolite, zinc molybdate, activated carbon, etc. Good.
  • nitrogen flame retardant examples include triazine compounds, cyanuric acid compounds, isocyanuric acid compounds, phenothiazines, and the like, and triazine compounds, cyanuric acid compounds, and isocyanuric acid compounds are preferable.
  • triazine compound examples include melamine, acetoguanamine, benzoguanamine, melon, melam, succinoguanamine, ethylene dimelamine, melamine polyphosphate, triguanamine, and the like, for example, (i) guanylmelamine sulfate, melem sulfate, melam sulfate (Ii) Co-condensates of phenolic compounds such as phenol, cresol, xylenol, butylphenol, nonylphenol with melamines such as melamine, benzoguanamine, acetoguanamine, formguanamine and formaldehyde, (iii) (Ii) a mixture of a co-condensate of (ii) and a phenol resin such as a phenol formaldehyde condensate, (iv) a mixture of (ii) and (iii) further modified with paulownia oil, isomerized lins
  • cyanuric acid compound examples include cyanuric acid and melamine cyanurate.
  • the compounding amount of the nitrogen-based flame retardant is appropriately selected depending on the type of the nitrogen-based flame retardant, the other components of the curable composition, and the desired degree of flame retardancy.
  • the curable composition 100 It is preferable to mix in the range of 0.05 to 10 parts by mass, particularly 0.1 to 5 parts by mass.
  • a metal hydroxide, a molybdenum compound or the like may be used in combination.
  • the silicone flame retardant is not particularly limited as long as it is an organic compound containing a silicon atom, and examples thereof include silicone oil, silicone rubber, and silicone resin.
  • the amount of the silicone-based flame retardant is appropriately selected depending on the type of the silicone-based flame retardant, the other components of the curable composition, and the desired degree of flame retardancy.
  • the curable composition 100 It is preferable to blend in the range of 0.05 to 20 parts by mass in parts by mass.
  • inorganic flame retardant examples include metal hydroxide, metal oxide, metal carbonate compound, metal powder, boron compound, and low melting point glass.
  • metal hydroxide examples include aluminum hydroxide, magnesium hydroxide, dolomite, hydrotalcite, calcium hydroxide, barium hydroxide, and zirconium hydroxide.
  • metal oxide examples include zinc molybdate, molybdenum trioxide, zinc stannate, tin oxide, aluminum oxide, iron oxide, titanium oxide, manganese oxide, zirconium oxide, zinc oxide, molybdenum oxide, cobalt oxide, bismuth oxide, Examples thereof include chromium oxide, nickel oxide, copper oxide, and tungsten oxide.
  • metal carbonate compound examples include zinc carbonate, magnesium carbonate, calcium carbonate, barium carbonate, basic magnesium carbonate, aluminum carbonate, iron carbonate, cobalt carbonate, and titanium carbonate.
  • metal powder examples include aluminum, iron, titanium, manganese, zinc, molybdenum, cobalt, bismuth, chromium, nickel, copper, tungsten, and tin.
  • Examples of the boron compound include zinc borate, zinc metaborate, barium metaborate, boric acid, and borax.
  • low-melting-point glass examples include Shipley (Bokusui Brown), hydrated glass SiO 2 —MgO—H 2 O, PbO—B 2 O 3 system, ZnO—P 2 O 5 —MgO system, and P 2 O 5. Glassy compounds such as —B 2 O 3 —PbO—MgO, P—Sn—O—F, PbO—V 2 O 5 —TeO 2 , Al 2 O 3 —H 2 O, and lead borosilicate Can be mentioned.
  • the blending amount of the inorganic flame retardant is appropriately selected depending on the kind of the inorganic flame retardant, the other components of the curable composition, and the desired degree of flame retardancy.
  • the curable composition 100 It is preferable to mix in the range of 0.5 to 50 parts by mass, particularly in the range of 5 to 30 parts by mass.
  • organometallic salt flame retardant for example, ferrocene, acetylacetonate metal complex, organometallic carbonyl compound, organocobalt salt compound, organosulfonic acid metal salt, metal atom and aromatic compound or heterocyclic compound are ionically bonded or coordinated Examples include a bonded compound.
  • the amount of the organic metal salt flame retardant is appropriately selected depending on the type of the organic metal salt flame retardant, the other components of the curable composition, and the desired degree of flame retardancy. Preferably in the range of 0.005 to 10 parts by mass in 100 parts by mass of the composition.
  • various compounding agents such as a silane coupling agent, a release agent, a pigment, and an emulsifier can be added to the curable composition of the present invention as necessary.
  • an inorganic filler can be blended as necessary. Since the phenolic hydroxyl group-containing compound and phenol resin used in the present invention have a low melt viscosity, it is possible to increase the blending amount of the inorganic filler.
  • Such a curable composition is particularly suitable for a semiconductor sealing material. It can use suitably for a use.
  • the inorganic filler examples include fused silica, crystalline silica, alumina, silicon nitride, and aluminum hydroxide. Especially, since it becomes possible to mix
  • the fused silica can be used in either crushed or spherical shape, but in order to increase the blending amount of the fused silica and to suppress an increase in the melt viscosity of the curable composition, a spherical one is mainly used. It is preferable. Furthermore, in order to increase the blending amount of the spherical silica, it is preferable to appropriately adjust the particle size distribution of the spherical silica.
  • the filling rate is preferably in the range of 0.5 to 95 parts by mass in 100 parts by mass of the curable composition.
  • a conductive filler such as silver powder or copper powder can be used.
  • an organic solvent examples include methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, methoxypropanol, cyclohexanone, methyl cellosolve, ethyl diglycol acetate, and propylene glycol monomethyl ether acetate.
  • the amount used can be appropriately selected depending on the application. For example, in the printed wiring board application, it is preferable to use a polar solvent having a boiling point of 160 ° C.
  • methyl ethyl ketone such as methyl ethyl ketone, acetone, dimethylformamide, and the non-volatile content is 40 to 80% by mass. It is preferable to use in the ratio which becomes.
  • organic solvents for example, ketones such as acetone, methyl ethyl ketone, cyclohexanone, acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, carbitol acetate, It is preferable to use carbitols such as cellosolve and butyl carbitol, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like, and the nonvolatile content is 30 to 60% by mass. It is preferable to use in proportions.
  • the curable composition of the present invention can be obtained by uniformly mixing the above-described components.
  • the curable composition of the present invention in which a phenolic hydroxyl group-containing compound or resin, a curing agent, and, if necessary, a curing accelerator is blended can be easily converted into a cured product by a method similar to a conventionally known method.
  • Examples of the cured product include molded cured products such as laminates, cast products, adhesive layers, coating films, and films.
  • the phenolic hydroxyl group-containing compound and phenolic resin of the present invention are excellent in heat resistance and flame retardancy in a cured product, and thus can be used for various electronic materials. Among these, it can be suitably used particularly as a semiconductor sealing material application.
  • the semiconductor encapsulating material is made uniform, for example, using a phenolic hydroxyl group-containing compound or a phenol resin containing the phenolic component of the present invention, a compound such as a curing agent, and a filler, using an extruder, a kneader, a roll, or the like. Can be adjusted by a method of sufficiently mixing.
  • the filler used here include the inorganic filler described above.
  • the filler is preferably used in the range of 0.5 to 95 parts by mass in 100 parts by mass of the curable composition. Among these, it is preferable to use in the range of 70 to 95 parts by weight, particularly in the range of 80 to 95 parts by weight because flame retardancy, moisture resistance and solder crack resistance are improved and the linear expansion coefficient can be reduced. preferable.
  • a method for molding a semiconductor package using the obtained semiconductor sealing material includes, for example, molding the semiconductor sealing material using a casting or transfer molding machine, injection molding machine, etc., and further a temperature of 50 to 200 ° C. Examples of the method include heating for 2 to 10 hours under conditions, and by such a method, a semiconductor device which is a molded product can be obtained.
  • the varnish containing the phenolic hydroxyl group-containing compound or phenol resin of the present invention, a curing agent, an organic solvent, other additives, etc. A method of impregnating a reinforcing base material with a curable composition in a shape and stacking a copper foil and heat-pressing it.
  • the reinforcing substrate that can be used here include paper, glass cloth, glass nonwoven fabric, aramid paper, aramid cloth, glass mat, and glass roving cloth.
  • the varnish-like curable composition described above is first heated at a heating temperature corresponding to the solvent type used, preferably 50 to 170 ° C., so that a prepreg as a cured product is obtained. obtain.
  • the mass ratio of the curable composition and the reinforcing substrate used at this time is not particularly limited, but it is usually preferable to prepare so that the resin content in the prepreg is 20 to 60 mass%.
  • the prepreg obtained as described above is laminated by a conventional method, and a copper foil is appropriately stacked, and heat-pressed at 170 to 250 ° C. for 10 minutes to 3 hours under a pressure of 1 to 10 MPa, A desired printed circuit board can be obtained.
  • Softening point measurement method Conforms to JIS K7234.
  • GPC Measurement conditions are as follows. Measuring device: “HLC-8220 GPC” manufactured by Tosoh Corporation Column: Guard column “HXL-L” manufactured by Tosoh Corporation + “TSK-GEL G2000HXL” manufactured by Tosoh Corporation + “TSK-GEL G2000HXL” manufactured by Tosoh Corporation + Tosoh Corporation “TSK-GEL G3000HXL” + “TSK-GEL G4000HXL” manufactured by Tosoh Corporation Detector: RI (differential refractometer) Data processing: “GPC-8020 Model II version 4.10” manufactured by Tosoh Corporation Measurement conditions: Column temperature 40 ° C Developing solvent Tetrahydrofuran Flow rate 1.0 ml / min Standard: The following monodisperse polystyrene having a known molecular weight was used according to the measurement manual of “GPC-8020 model II version 4.10”.
  • FIG. 1 shows a GPC chart of the obtained phenol intermediate
  • FIG. 2 shows a 13 CNMR spectrum
  • FIG. 3 shows an MS spectrum.
  • the hydroxyl equivalent of the phenol intermediate (5) was 68 g / equivalent, and the softening point was 126 ° C.
  • 268 peaks corresponding to the dinuclear compound (x1) represented by the following structural formula (a-1), corresponding to the trinuclear compound (x2) represented by the following structural formula (b-1) 426 peaks were detected.
  • the content of the binuclear compound (x1) equivalent component in the phenol resin calculated from the GPC chart was 43.6%
  • the content of the trinuclear compound (x2) equivalent component was 30.7%.
  • the hydroxyl equivalent of the phenol intermediate (6) was 101 g / equivalent, and the softening point was 130 ° C. From the MS spectrum, 318 peaks corresponding to the dinuclear compound (x1) represented by the following structural formula (a-2) and 300 peaks corresponding to the dinaphthofuran compound represented by the following structural formula (c) were detected. It was. The content of the binuclear compound (x1) equivalent component in the phenol resin calculated from the GPC chart was 49.7%, and the content of the dinaphthofuran compound represented by the following structural formula (c) was 6.0%. It was.
  • TPP Triphenylphosphine
  • a curable composition was obtained by melt-kneading at a temperature of 5 minutes for 5 minutes. Using the obtained curable composition, a sample having a width of 12.7 mm, a length of 127 mm, and a thickness of 1.6 mm was molded by a transfer molding machine at a temperature of 175 ° C. for 90 seconds, and then at a temperature of 175 ° C. for 5 hours. After curing, an evaluation sample was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

硬化物における耐熱性及び難燃性に優れるフェノール性水酸基含有化合物、これを含むフェノール樹脂、硬化性組成物とその硬化物、半導体封止材料、及びプリント配線基板を提供すること。下記一般式(I)[式中Xは、下記構造式(x1)又は(x2){式(x1)又は(x2)中、kは1~3の整数、mは1又は2であり、Arは下記構造式(Ar1)(式中、rは1又は2である。) で表される構造部位である。k又はmが2以上の場合、複数のArは同一であっても良いし、それぞれ異なっていても良い。} で表される構造部位である。] で表される分子構造を有することを特徴とするフェノール性水酸基含有化合物。

Description

フェノール性水酸基含有化合物、フェノール樹脂、硬化性組成物、その硬化物、半導体封止材料、及びプリント配線基板
 本発明は、硬化物における耐熱性及び難燃性に優れるフェノール性水酸基含有化合物、これを含むフェノール樹脂、硬化性組成物とその硬化物、半導体封止材料、及プリント配線基板に関する。
 フェノール樹脂は、例えばエポキシ樹脂の硬化剤として利用されており、フェノール樹脂を硬化剤とするエポキシ樹脂組成物は、接着剤や成形材料、塗料材料の他、硬化物が耐熱性や耐湿性などに優れる点から半導体封止材料やプリント配線板用絶縁材料等の電気・電子分野等にも広く用いられている。
 このうち、車載用パワーモジュールに代表されるパワー半導体は電気・電子機器における省エネルギー化の鍵を握る重要な技術であり、パワー半導体の更なる大電流化、小型化、高効率化に伴い、従来のシリコン(Si)半導体から炭化ケイ素(SiC)半導体への移行が進められている。SiC半導体の利点はより高温条件下での動作が可能な点にあり、従って、半導体封止材にはこれまで以上に高い耐熱性が要求される。これに加え、ハロゲン系難燃剤を用いずとも高い難燃性を示すことも半導体封止材用樹脂の重要な要求性能であり、これらの性能を兼備する樹脂材料が求められている。
 これら様々な要求特性に対応するための樹脂材料として、例えば、下記構造式
Figure JPOXMLDOC01-appb-C000004
で表されるフェノール性水酸基含有化合物が知られている(特許文献1参照)。このようなフェノール性水酸基含有化合物は硬化物における耐熱性には非常に優れる特徴を有するものの、難燃性が十分ではないものであった。
特開2002-114889号
 従って、本発明が解決しようとする課題は、硬化物における耐熱性及び難燃性に優れるフェノール性水酸基含有化合物、これを含むフェノール樹脂、硬化性組成物とその硬化物、半導体封止材料、及びプリント配線基板を提供することにある。
 本発明者らは上記課題を解決するため鋭意検討した結果、キノン骨格を有する化合物と、ナフトール又はジヒドロキシナフタレン骨格を有する化合物との反応生成物は、メチレン鎖を介さずに芳香核同士が結合した水酸基濃度の高い分子構造を有し、かつ、該水酸基の反応性が高いことから、硬化物における耐熱性及び難燃性に優れるものであることを見出し、本発明を完成するに至った。
 即ち、本発明は、下記一般式(I)
Figure JPOXMLDOC01-appb-C000005
[式中Xは、下記構造式(x1)又は(x2)
Figure JPOXMLDOC01-appb-C000006
{式(x1)又は(x2)中、R及びRはそれぞれ炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、アリール基又はアラルキル基の何れかであり、lは0~3の整数、nは0~4の整数である。lまたはnが2以上の場合、複数のR又はRは同一であっても良いし、それぞれ異なっていても良い。また、kは1~3の整数、mは1又は2であり、Arは下記構造式(Ar1)
Figure JPOXMLDOC01-appb-C000007
(式中、Rは炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、アリール基又はアラルキル基の何れかであり、Rは2つの芳香核のうちどちらに結合していてもよく、sは0~6の整数である。sが2以上の場合、複数のRは同一であっても良いし、それぞれ異なっていても良い。また、rは1又は2である。)
で表される構造部位である。k又はmが2以上の場合、複数のArは同一であっても良いし、それぞれ異なっていても良い。}
で表される構造部位である。]
で表される分子構造を有することを特徴とするフェノール性水酸基含有化合物に関する。
 本発明は更に、前記フェノール性水酸基含有化合物を含有するフェノール樹脂に関する。
 本発明は更に、分子構造中にキノン構造を有する化合物(Q)と、ナフトール又はジヒドロキシナフタレン骨格を有する化合物(P)とを反応させることを特徴とするフェノール樹脂の製造方法に関する。
 本発明は更に、前記製造方法により製造されるフェノール樹脂に関する。
 本発明は更に、前記フェノール性水酸基含有化合物又はフェノール樹脂、及び硬化剤を必須の成分とする硬化性組成物に関する。
 本発明は更に、前記硬化性組成物を硬化反応させてなる硬化物に関する。
 本発明は更に、前記硬化性組成物に加え、更に無機充填材を含有する半導体封止材料に関する。
 本発明は更に、前記硬化性組成物に有機溶剤を配合してワニス化した樹脂組成物を、補強基材に含浸し銅箔を重ねて加熱圧着させることにより得られたプリント配線基板に関する。
 本発明によれば、溶融粘度が低く、硬化物における耐熱性及び難燃性に優れるフェノール性水酸基含有化合物、これを含むフェノール樹脂、硬化性組成物とその硬化物、半導体封止材料、及びプリント配線基板を提供できる。
図1は、実施例1で得られたフェノール樹脂(1)のGPCチャートである。 図2は、実施例1で得られたフェノール樹脂(1)の13C-NMRチャートである。 図3は、実施例1で得られたフェノール樹脂(1)のMSスペクトルである。 図4は、実施例2で得られたフェノール樹脂(2)のGPCチャートである。 図5は、実施例2で得られたフェノール樹脂(2)のMSスペクトルである。
 以下、本発明を詳細に説明する。
 本発明のフェノール性水酸基化合物は、下記一般式(I)
Figure JPOXMLDOC01-appb-C000008

[式中Xは、下記構造式(x1)又は(x2)
Figure JPOXMLDOC01-appb-C000009
{式(x1)又は(x2)中、R及びRはそれぞれ炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、アリール基又はアラルキル基の何れかであり、lは0~3の整数、nは0~4の整数である。lまたはnが2以上の場合、複数のR又はRは同一であっても良いし、それぞれ異なっていても良い。また、kは1~3の整数、mは1又は2であり、Arは下記構造式(Ar1)
Figure JPOXMLDOC01-appb-C000010

(式中、Rは炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、アリール基又はアラルキル基の何れかであり、Rは2つの芳香核のうちどちらに結合していてもよく、sは0~6の整数である。sが2以上の場合、複数のRは同一であっても良いし、それぞれ異なっていても良い。また、rは1又は2である。)
で表される構造部位である。k又はmが2以上の場合、複数のArは同一であっても良いし、それぞれ異なっていても良い。}
で表される構造部位である。]
で表される分子構造を有することを特徴とする。
 前記一般式(I)で表される本発明のフェノール性水酸基含有化合物は、メチレン鎖を介さずに芳香核同士が結合した構造を有することから、分子量が低く、かつ、芳香環及び水酸基濃度が高い特徴を有する。このような化合物は硬化物の耐熱性に優れる反面、易燃性の水酸基濃度が高くなり、多数の反応性基が近接して存在するため難燃性に劣る傾向がある。これに対し本発明のフェノール性水酸基含有化合物は、ビフェニル骨格或いはターフェニル骨格を有すること、前記構造式(x1)又は(x2)中、芳香核のパラ位に位置する2つの水酸基が反応性に優れることから、硬化物における耐熱性と難燃性との両方に優れる特徴を有する。
 前記一般式(I)で表される化合物は、例えば、分子構造中にキノン構造を有する化合物(Q)と、ナフトール又はジヒドロキシナフタレン骨格を有する化合物(P)とを、無触媒又は酸触媒条件下、40~180℃の温度範囲で反応させる方法により製造されるものが挙げられる。このような方法により本発明のフェノール性水酸基含有化合物を製造する場合、反応条件により任意の成分を選択的に製造したり、複数種のフェノール性水酸基含有化合物の混合物であるフェノール樹脂として製造したりすることが出来る。また、混合物であるフェノール樹脂から任意の成分のみを単離して用いても良い。
 前記分子構造中にキノン構造を有する化合物(Q)は、例えば、下記構造式(Q1)又は(Q2)
Figure JPOXMLDOC01-appb-C000011
[式(Q1)又は(Q2)中、R及びRはそれぞれ炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、アリール基又はアラルキル基の何れかであり、lは0~3の整数、nは0~4の整数である。lまたはnが2以上の場合、複数のR又はRは同一であっても良いし、それぞれ異なっていても良い。]
で表される化合物が挙げられ、具体的には、パラベンゾキノン、2-メチルベンゾキノン、2,3,5-トリメチル-ベンゾキノン、ナフトキノン等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。
 前記分子構造中にナフトール又はジヒドロキシナフタレン骨格を有する化合物(P)は、例えば、下記構造式(P1)
Figure JPOXMLDOC01-appb-C000012
[式(P1)中、Rは炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、アリール基又はアラルキル基の何れかであり、sは0~6の整数である。sが2以上の場合、複数のRは同一であっても良いし、それぞれ異なっていても良い。また、rはそれぞれ1又は2である。]
で表される化合物が挙げられ、具体的には、1-ナフトール、2-ナフトール、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。
 中でも、硬化物における耐熱性と難燃性とに優れることから、前記構造式(P1)中のrが2であるジヒドロキシナフタレン骨格を有する化合物が好ましく、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレンがより好ましく、2,7-ジヒドロキシナフタレンが特に好ましい。
 前記分子構造中にキノン構造を有する化合物(Q)とナフトール又はジヒドロキシナフタレン骨格を有する化合物(P)との反応は、反応性が高いことから無触媒条件下でも進行するが、適宜酸触媒を用いて行っても良い。ここで用いる酸触媒は例えば、塩酸、硫酸、リン酸、などの無機酸や、メタンスルホン酸、p-トルエンスルホン酸、シュウ酸等の有機酸、三フッ化ホウ素、無水塩化アルミニウム、塩化亜鉛等のルイス酸等が挙げられる。これら酸触媒を用いる場合は、前記キノン構造を有する化合物(Q)と前記ナフトール又はジヒドロキシナフタレン骨格を有する化合物(P)との合計質量に対し、5.0質量%以下の量で用いることが好ましい。
 また、該反応は無溶剤条件下で行うことが好ましいが、必要に応じ有機溶媒中で行っても良い。ここで用いる有機溶媒は例えば、メチルセロソルブ、イソプロピルアルコール、エチルセロソルブ、トルエン、キシレン、メチルイソブチルケトンなどが挙げられる。これら有機溶剤を用いる場合は、反応効率が向上することから、キノン構造を有する化合物(Q)とナフトール又はジヒドロキシナフタレン骨格を有する化合物(P)との合計100質量部に対し、有機溶剤が50~200質量部の範囲となる割合で用いることが好ましい
 前記分子構造中にキノン構造を有する化合物(Q)と前記ナフトール又はジヒドロキシナフタレン骨格を有する化合物(P)との反応終了後は、減圧乾燥するなどして目的のフェノール性水酸基含有化合物或いはフェノール樹脂を得ることが出来る。
 本発明のフェノール性水酸基含有化合物は、前記一般式(I)で表される構造を有するものであればいずれも、硬化物における耐熱性及び難燃性に優れるという本願発明の効果を奏するものである。以下、前記一般式(I)で表される構造を有するフェノール性水酸基含有化合物のより好ましいものについて詳述する。
 前記一般式(I)で表されるフェノール性水酸基含有化合物の代表的なものとして、下記構造式(I-1)~(I-3)
Figure JPOXMLDOC01-appb-C000013
[式(I-1)~(I-3)中、kは1~3の整数、mは1又は2であり、Arは下記構造式(Ar1)
Figure JPOXMLDOC01-appb-C000014
(式中、Rは炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、アリール基又はアラルキル基の何れかであり、Rは2つの芳香核のうちどちらに結合していてもよく、sは0~6の整数である。sが2以上の場合、複数のRは同一であっても良いし、それぞれ異なっていても良い。また、rは1又は2である。)
で表される構造部位である。k又はmが2以上の場合、複数のArは同一であっても良いし、それぞれ異なっていても良い。]
の何れかで表されるフェノール性水酸基含有化合物が挙げられる。
 前記構造式(I-1)で表されるフェノール性水酸基含有化合物は、更に具体的には、下記構造式(1)又は(2)
Figure JPOXMLDOC01-appb-C000015
[式(1)又は(2)中kは1~3の整数である。]
で表される化合物が挙げられる。
 前記構造式(1)で表されるフェノール性水酸基含有化合物は、例えば、前記分子構造中にキノン構造を有する化合物(Q)としてパラベンゾキノンを、前記ナフトール又はジヒドロキシナフタレン骨格を有する化合物(P)としてナフトールを用い、前述の方法により製造することが出来る。このときパラベンゾキノンとナフトールとの反応割合は、溶融粘度が低く、硬化物における耐熱性及び難燃性に一層優れるフェノール樹脂が得られることから、パラベンゾキノン1モルに対し、ナフトールが0.1~10.0モルの範囲となる割合であることが好ましい。
 前記構造式(1)で表されるフェノール性水酸基含有化合物の中でも、硬化物における耐熱性及び難燃性に特に優れることから、前記構造式(1)においてkの値が1である2核体化合物(x1)と、前記構造式(1)においてkの値が2である3核体化合物(x2)とを含有するフェノール樹脂として用いることが好ましく、フェノール樹脂中の前記2核体化合物(x1)の含有率がGPC測定における面積比率で10~70%の範囲であり、かつ、前記3核体化合物(x2)の含有率がGPC測定における面積比率で10~50%の範囲であることがより好ましい。
 なお、本発明において、フェノール樹脂中の前記2核体化合物(x1)、前記3核体化合物(x2)及びその他の成分の含有率とは、下記の条件によるGPC測定データから算出される、フェノール樹脂の全ピーク面積に対する前記各成分のピーク面積の割合である。
<GPC測定条件>
 測定装置 :東ソー株式会社製「HLC-8220 GPC」、
 カラム:東ソー株式会社製ガードカラム「HXL-L」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G3000HXL」
    +東ソー株式会社製「TSK-GEL G4000HXL」
 検出器: RI(示差屈折計)
 データ処理:東ソー株式会社製「GPC-8020モデルIIバージョン4.10」
 測定条件: カラム温度  40℃
       展開溶媒   テトラヒドロフラン
       流速     1.0ml/分
 標準  : 前記「GPC-8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
  (使用ポリスチレン)
   東ソー株式会社製「A-500」
   東ソー株式会社製「A-1000」
   東ソー株式会社製「A-2500」
   東ソー株式会社製「A-5000」
   東ソー株式会社製「F-1」
   東ソー株式会社製「F-2」
   東ソー株式会社製「F-4」
   東ソー株式会社製「F-10」
   東ソー株式会社製「F-20」
   東ソー株式会社製「F-40」
   東ソー株式会社製「F-80」
   東ソー株式会社製「F-128」
 試料  : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
 前記構造式(1)で表される化合物は、例えば、下記構造式(1-1)~(1-10)
Figure JPOXMLDOC01-appb-C000016

の何れかで表される化合物などが挙げられる。
 前記構造式(2)で表されるフェノール性水酸基含有化合物は、前記一般式(I)で表されるフェノール性水酸基含有化合物の中でも、特に硬化物における耐熱性及び難燃性に特に優れる特徴を有する。
 中でも、硬化物における耐熱性及び難燃性に一層優れることから、前記構造式(2)においてkの値が1である2核体化合物(x1)と、前記構造式(2)においてkの値が2である3核体化合物(x2)とを含有するフェノール樹脂として用いることが好ましく、フェノール樹脂中の前記2核体化合物(x1)の含有率がGPC測定における面積比率で10~70%の範囲であり、かつ、前記3核体化合物(x2)の含有率がGPC測定における面積比率で10~50%の範囲であることがより好ましい。
 前記構造式(2)の何れかで表されるフェノール性水酸基含有化合物は、例えば、前記分子構造中にキノン構造を有する化合物(Q)としてパラベンゾキノンを、前記ナフトール又はジヒドロキシナフタレン骨格を有する化合物(P)としてジヒドロキシナフタレンを用い、前述の方法により製造することが出来る。このときパラベンゾキノンとジヒドロキシナフタレンとの反応割合は、硬化物における耐熱性及び難燃性に一層優れるフェノール樹脂が得られることから、パラベンゾキノン1モルに対し、ジヒドロキシナフタレンが0.1~10.0モルの範囲となる割合であることが好ましい。
 ここで用いるジヒドロキシナフタレンは、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン等何れの位置異性体のものでも良い。中でも、溶融粘度が低く、硬化物における耐熱性及び難燃性にも優れるフェノール樹脂が得られることから、2,7-ジヒドロキシナフタレンが好ましい。
 前記構造式(2)で表される化合物は、例えば、下記構造式(2-1)~(2-24)
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019

の何れかで表される化合物などが挙げられる。
 前記構造式(I-2)で表されるフェノール性水酸基含有化合物は、更に具体的には、下記構造式(3)
Figure JPOXMLDOC01-appb-C000020

[式(3)中rは1又は2である。]
の何れかで表されるフェノール性水酸基含有化合物が挙げられる。
 前記構造式(3)で表されるフェノール性水酸基含有化合物は、例えば、前記分子構造中にキノン構造を有する化合物(Q)として2,4,6-トリメチル-パラベンゾキノンを、前記ナフトール又はジヒドロキシナフタレン骨格を有する化合物(P)としてナフトール又はジヒドロキシナフタレンを用い、前述の方法により製造することが出来る。このとき、2,4,6-トリメチル-パラベンゾキノンと、前記ナフトール又はジヒドロキシナフタレン骨格を有する化合物(P)との反応割合は、溶融粘度が低く、硬化物における耐熱性及び難燃性に一層優れるフェノール樹脂が得られることから、2,4,6-トリメチル-パラベンゾキノン1モルに対し、前記ナフトール又はジヒドロキシナフタレン骨格を有する化合物(P)0.1~10.0モルの範囲となる割合であることが好ましい。
 前記構造式(3)で表される化合物は、例えば、下記構造式(3-1)~(3-12)
Figure JPOXMLDOC01-appb-C000021

の何れかで表される化合物等が挙げられる。
 前記構造式(I-3)で表されるフェノール性水酸基含有化合物は、更に具体的には、下記構造式(4)又は(5)
Figure JPOXMLDOC01-appb-C000022

[式(4)又は(5)中mは1又は2である。]
の何れかで表されるフェノール性水酸基含有化合物が挙げられる。
 前記構造式(4)で表されるフェノール性水酸基含有化合物は、例えば、前記分子構造中にキノン構造を有する化合物(Q)としてナフトキノンを、前記ナフトール又はジヒドロキシナフタレン骨格を有する化合物(P)としてナフトールを用い、前述の方法により製造することが出来る。このときナフトキノンとナフトールとの反応割合は、溶融粘度が低く、硬化物における耐熱性及び難燃性に一層優れるフェノール樹脂が得られることからナフトキノン1モルに対し、前記ナフトール又はジヒドロキシナフタレン骨格を有する化合物(P)が0.1~10.0モルの範囲となる割合であることが好ましい。
 前記構造式(4)で表される化合物は、例えば、下記構造式(4-1)~(4-4)
Figure JPOXMLDOC01-appb-C000023
の何れかで表されるエポキシ化合物が挙げられる。
 前記構造式(5)で表されるフェノール性水酸基含有化合物は、前記一般式(I)で表されるフェノール性水酸基含有化合物の中でも、特に硬化物における耐熱性及び難燃性に特に優れる特徴を有する。
 中でも、溶融粘度が低く、硬化物における耐熱性及び難燃性に一層優れることから、前記構造式(5)においてkの値が1である2核体化合物(x1)を必須の成分として含有するフェノール樹脂として用いることが好ましく、フェノール樹脂中の前記2核体化合物(x1)の含有率がGPC測定における面積比率で5~70%の範囲であることが好ましい。
 前記構造式(5)で表されるフェノール性水酸基含有化合物は、例えば、前記分子構造中にキノン構造を有する化合物(Q)としてナフトキノンを、前記ナフトール又はジヒドロキシナフタレン骨格を有する化合物(P)としてジヒドロキシナフタレンを用い、前述の方法により製造することが出来る。このときナフトキノンとジヒドロキシナフタレンとの反応割合は、硬化物における耐熱性及び難燃性に一層優れるフェノール樹脂となることから、ナフトキノン1モルに対し、ジヒドロキシナフタレンが0.1~10.0モルの範囲となる割合であることが好ましい。
 ここで用いるジヒドロキシナフタレンは、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン等何れのものでも良い。中でも、硬化物における耐熱性及び難燃性にも優れるフェノール樹脂が得られることから、2,7-ジヒドロキシナフタレンが好ましい。
 前記構造式(5)で表される化合物は、例えば、下記構造式(5-1)~(5-8)
Figure JPOXMLDOC01-appb-C000024
 前記構造式(5)で表されるフェノール性水酸基含有化合物を含有するフェノール樹脂は、更にこれら以外のフェノール性水酸基含有化合物を含有していても良い。中でも、硬化物における難燃性に優れることから、下記構造式(5’)
Figure JPOXMLDOC01-appb-C000025
で表されるジナフトフラン化合物を含有していることが好ましい。この場合、フェノール樹脂中の各成分の含有割合は、前記構造式(5)においてmの値が1である2核体化合物(x1)の含有率がGPC測定における面積比率で5~70%の範囲であり、かつ、前記ジナフトフラン化合物の含有率が1~60%の範囲であることが好ましい。
 以上例示した本発明のフェノール性水酸基含有化合物のうち、溶融粘度と硬化物の耐熱性及び難燃性とのバランスに優れる点では前記構造式(2)又は(5)で表されるフェノール性水酸基含有化合物が好ましく、更に、硬化物における耐熱性及び難燃性に一層優れることから前記構造式(5)で表されるフェノール性水酸基含有化合物がより好ましい。
 前記本発明のフェノール性水酸基含有化合物を含むフェノール樹脂は、硬化性に優れることからその水酸基当量が60~150g/当量の範囲であることが好ましい。また、軟化点が80~150℃の範囲であることが好ましい。
 本発明の硬化性組成物は、以上詳述したフェノール性水酸基含有化合物又はこれを含むフェノール樹脂と、硬化剤とを必須成分とするものである。該硬化剤としては、例えば、エポキシ樹脂が挙げられる。
 ここで用いるエポキシ樹脂は、具体的には、1,6-ジグリシジルオキシナフタレン、2,7-ジグリシジルオキシナフタレン、α-ナフトールノボラック型エポキシ樹脂、β-ナフトールノボラック型エポキシ樹脂、α-ナフトール/β-ナフトール共縮合型ノボラックのポリグリシジルエーテル、ナフトールアラルキル型エポキシ樹脂、1,1-ビス(2,7-ジグリシジルオキシ-1-ナフチル)アルカン等のナフタレン骨格含有エポキシ樹脂;ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂;ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂等のビフェニル型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、フェノール系化合物とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物、ビフェニルノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリフェニルメタン型エポキシ樹脂;テトラフェニルエタン型エポキシ樹脂;ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂;フェノールアラルキル型エポキシ樹脂;リン原子含有エポキシ樹脂;前記本発明の変性エポキシ樹脂等が挙げられる。
 硬化剤としてエポキシ樹脂を用いる場合、フェノール性水酸基含有化合物又はフェノール樹脂とエポキシ樹脂との配合割合は、フェノール性水酸基含有化合物又はフェノール樹脂中のフェノール性水酸基と、エポキシ樹脂中のエポキシ基との当量比(フェノール性水酸基/エポキシ基)が1/0.5~1/1.5となる割合であることが、反応性及び硬化物における耐熱性に優れることから好ましい。
 また、硬化剤としてエポキシ樹脂を用いる場合、本発明のフェノール性水酸基含有化合物又はフェノール樹脂に併せて、その他のエポキシ樹脂用硬化剤を併用しても良い。その他のエポキシ樹脂用硬化剤は、例えば、アミン系化合物、アミド系化合物、酸無水物系化合物、フェノ-ル系化合物などの各種の公知の硬化剤が挙げられる。具体的には、アミン系化合物としてはジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ-ル、BF-アミン錯体、グアニジン誘導体等が挙げられ、アミド系化合物としては、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等が挙げられ、酸無水物系化合物としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられ、フェノール系化合物としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、ナフトールアラルキル樹脂、トリフェニロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミン、ベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)やアルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール化合物)等の多価フェノール化合物が挙げられる。
前記その他のエポキシ樹脂用硬化剤を用いる場合、本発明のフェノール性水酸基含有化合物又はフェノール樹脂と、その他のエポキシ樹脂用硬化剤との配合割合は、硬化物における耐熱性及び難燃性に優れる本願フェノール性水酸基含有化合物の特徴が活かされる範囲であれば特に制限されるものではなく、例えば、両者の合計質量100質量部中、本発明のフェノール性水酸基含有化合物又はフェノール樹脂が5~95質量部の範囲であることが好ましい。
 また、その他のエポキシ樹脂用硬化剤を用いる場合、前記エポキシ樹脂との配合割合は、本発明のフェノール性水酸基含有化合物又はフェノール樹脂と、その他のエポキシ樹脂用硬化剤とが含有する活性水素原子の合計と、エポキシ樹脂が含有するエポキシ基との当量比(活性水素原子/エポキシ基)が1/0.5~1/1.5となる割合であることが、反応性及び硬化物における耐熱性に優れることから好ましい。
 本発明の硬化性組成物には、必要に応じて硬化促進剤を適宜併用することもできる。前記硬化促進剤としては種々のものが使用できるが、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。特に半導体封止材料用途として使用する場合には、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、イミダゾール化合物では2-エチル-4-メチルイミダゾール、リン系化合物ではトリフェニルフォスフィン、第3級アミンでは1,8-ジアザビシクロ-[5.4.0]-ウンデセン(DBU)が好ましい。
 以上詳述した本発明の硬化性組成物は、用途や所望の性能に応じて、更に、その他の添加剤成分を含有していても良い。具体的には、難燃性をさらに向上させる目的で、実質的にハロゲン原子を含有しない非ハロゲン系難燃剤を配合してもよい。
 前記非ハロゲン系難燃剤は、例えば、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられる。これらはそれぞれ単独で使用しても、複数種を併用しても良い。
 前記リン系難燃剤は、無機系、有機系の何れも使用でき、無機系化合物としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム類、リン酸アミド等の無機系含窒素リン化合物が挙げられる。
 前記赤リンは加水分解等の防止を目的として表面処理が施されていることが好ましく、表面処理方法は、例えば、(i)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン、酸化ビスマス、水酸化ビスマス、硝酸ビスマス又はこれらの混合物等の無機化合物で被覆処理する方法、(ii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物、及びフェノール樹脂等の熱硬化性樹脂の混合物で被覆処理する方法、(iii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物の被膜の上にフェノール樹脂等の熱硬化性樹脂で二重に被覆処理する方法等が挙げられる。
 前記有機リン系化合物は、例えば、リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物等の汎用有機リン系化合物の他、9,10-ジヒドロ-9-オキサー10-ホスファフェナントレン=10-オキシド、10-(2,5―ジヒドロオキシフェニル)―10H-9-オキサ-10-ホスファフェナントレン=10-オキシド、10―(2,7-ジヒドロオキシナフチル)-10H-9-オキサ-10-ホスファフェナントレン=10-オキシド等の環状有機リン化合物、及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等が挙げられる。
 それらの配合量としては、リン系難燃剤の種類、硬化性組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、フェノール性水酸基含有化合物又はフェノール樹脂、硬化剤、及びその他の添加剤や充填材等全てを配合した硬化性組成物100質量部中、赤リンを非ハロゲン系難燃剤として使用する場合は0.1~2.0質量部の範囲で配合することが好ましく、有機リン化合物を使用する場合は同様に0.1~10.0質量部の範囲で配合することが好ましく、特に0.5~6.0質量部の範囲で配合することが好ましい。
 それらの配合量は、リン系難燃剤の種類、硬化性組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、硬化性組成物100質量部中、赤リンを非ハロゲン系難燃剤として使用する場合は0.1~2.0質量部の範囲で配合することが好ましく、有機リン化合物を使用する場合は同様に0.1~10.0質量部の範囲で配合することが好ましく、特に0.5~6.0質量部の範囲で配合することが好ましい。
 また前記リン系難燃剤を使用する場合、該リン系難燃剤にハイドロタルサイト、水酸化マグネシウム、ホウ化合物、酸化ジルコニウム、黒色染料、炭酸カルシウム、ゼオライト、モリブデン酸亜鉛、活性炭等を併用してもよい。
 前記窒素系難燃剤は、例えば、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等が挙げられ、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物が好ましい。
 前記トリアジン化合物は、例えば、メラミン、アセトグアナミン、ベンゾグアナミン、メロン、メラム、サクシノグアナミン、エチレンジメラミン、ポリリン酸メラミン、トリグアナミン等の他、例えば、(i)硫酸グアニルメラミン、硫酸メレム、硫酸メラムなどの硫酸アミノトリアジン化合物、(ii)フェノール、クレゾール、キシレノール、ブチルフェノール、ノニルフェノール等のフェノール系化合物と、メラミン、ベンゾグアナミン、アセトグアナミン、ホルムグアナミン等のメラミン類およびホルムアルデヒドとの共縮合物、(iii)前記(ii)の共縮合物とフェノールホルムアルデヒド縮合物等のフェノール樹脂類との混合物、(iv)前記(ii)、(iii)を更に桐油、異性化アマニ油等で変性したもの等が挙げられる。
 前記シアヌル酸化合物は、例えば、シアヌル酸、シアヌル酸メラミン等を挙げることができる。
 前記窒素系難燃剤の配合量は、窒素系難燃剤の種類、硬化性組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、硬化性組成物100質量部中、0.05~10質量部の範囲で配合することが好ましく、特に0.1~5質量部の範囲で配合することが好ましい。
 また前記窒素系難燃剤を使用する際、金属水酸化物、モリブデン化合物等を併用してもよい。
 前記シリコーン系難燃剤は、ケイ素原子を含有する有機化合物であれば特に制限がなく使用でき、例えば、シリコーンオイル、シリコーンゴム、シリコーン樹脂等が挙げられる。
 前記シリコーン系難燃剤の配合量は、シリコーン系難燃剤の種類、硬化性組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、硬化性組成物100質量部中、0.05~20質量部の範囲で配合することが好ましい。また前記シリコーン系難燃剤を使用する際、モリブデン化合物、アルミナ等を併用してもよい。
 前記無機系難燃剤は、例えば、金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等が挙げられる。
 前記金属水酸化物は、例えば、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、水酸化ジルコニウム等を挙げることができる。
 前記金属酸化物は、例えば、モリブデン酸亜鉛、三酸化モリブデン、スズ酸亜鉛、酸化スズ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化ニッケル、酸化銅、酸化タングステン等を挙げることができる。
 前記金属炭酸塩化合物は、例えば、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、塩基性炭酸マグネシウム、炭酸アルミニウム、炭酸鉄、炭酸コバルト、炭酸チタン等を挙げることができる。
 前記金属粉は、例えば、アルミニウム、鉄、チタン、マンガン、亜鉛、モリブデン、コバルト、ビスマス、クロム、ニッケル、銅、タングステン、スズ等を挙げることができる。
 前記ホウ素化合物は、例えば、ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、ホウ酸、ホウ砂等を挙げることができる。
 前記低融点ガラスは、例えば、シープリー(ボクスイ・ブラウン社)、水和ガラスSiO-MgO-HO、PbO-B系、ZnO-P-MgO系、P-B-PbO-MgO系、P-Sn-O-F系、PbO-V-TeO系、Al-HO系、ホウ珪酸鉛系等のガラス状化合物を挙げることができる。
 前記無機系難燃剤の配合量は、無機系難燃剤の種類、硬化性組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、硬化性組成物100質量部中、0.5~50質量部の範囲で配合することが好ましく、特に5~30質量部の範囲で配合することが好ましい。
 前記有機金属塩系難燃剤、例えば、フェロセン、アセチルアセトナート金属錯体、有機金属カルボニル化合物、有機コバルト塩化合物、有機スルホン酸金属塩、金属原子と芳香族化合物又は複素環化合物がイオン結合又は配位結合した化合物等が挙げられる。
 前記有機金属塩系難燃剤の配合量は、有機金属塩系難燃剤の種類、硬化性組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、硬化性組成物100質量部中、0.005~10質量部の範囲で配合することが好ましい
 この他、本発明の硬化性組成物は必要に応じて、シランカップリング剤、離型剤、顔料、乳化剤等の種々の配合剤を添加することができる。
 本発明の硬化性組成物には、必要に応じて無機質充填材を配合することができる。本発明で用いるフェノール性水酸基含有化合物及びフェノール樹脂は溶融粘度が低い特徴を有することから、無機質充填剤の配合量を高めることが可能であり、このような硬化性組成物は特に半導体封止材料用途に好適に用いることが出来る。
 前記無機質充填材は、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等が挙げられる。中でも、無機質充填材をより多く配合することが可能となることから、前記溶融シリカが好ましい。前記溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め、且つ、硬化性組成物の溶融粘度の上昇を抑制するためには、球状のものを主に用いることが好ましい。更に、球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。その充填率は硬化性組成物100質量部中、0.5~95質量部の範囲で配合することが好ましい。
 この他、本発明の硬化性組成物を導電ペーストなどの用途に使用する場合は、銀粉や銅粉等の導電性充填剤を用いることができる。
 本発明の硬化性組成物をプリント配線基板用ワニスに調整する場合には、有機溶剤を配合することが好ましい。ここで使用し得る前記有機溶剤としては、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、エチルジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられ、その選択や適正な使用量は用途によって適宜選択し得るが、例えば、プリント配線板用途では、メチルエチルケトン、アセトン、ジメチルホルムアミド等の沸点が160℃以下の極性溶剤であることが好ましく、また、不揮発分40~80質量%となる割合で使用することが好ましい。一方、ビルドアップ用接着フィルム用途では、有機溶剤として、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等を用いることが好ましく、また、不揮発分30~60質量%となる割合で使用することが好ましい。
 本発明の硬化性組成物は、上記した各成分を均一に混合することにより得られる。フェノール性水酸基含有化合物又は樹脂、硬化剤、更に必要により硬化促進剤の配合された本発明の硬化性組成物は、従来知られている方法と同様の方法で容易に硬化物とすることができる。該硬化物は、積層物、注型物、接着層、塗膜、フィルム等の成形硬化物が挙げられる。
 本発明のフェノール性水酸基含有化合物及びフェノール樹脂は硬化物における耐熱性及び難燃性に優れることから、各種電子材料用途に用いることが出来る。中でも、特に半導体封止材料用途として好適に用いることが出来る。
 該半導体封止材料は、例えば、本発明のフェノール性水酸基含有化合物又はフェノール樹脂を含むフェノール成分、硬化剤、及び充填材等の配合物を、押出機、ニーダー、ロール等を用いて均一になるまで十分に混合する方法により調整することが出来る。ここで用いる充填材は前記した無機充填材が挙げられ、前述の通り、硬化性組成物100質量部中、0.5~95質量部の範囲で用いることが好ましい。中でも、難燃性や耐湿性、耐半田クラック性が向上し、線膨張係数を低減できることから、70~95質量部の範囲で用いることが好ましく、80~95質量部の範囲で用いることが特に好ましい。
 得られた半導体封止材料を用いて半導体パッケージを成型する方法は、例えば、該半導体封止材料を注型或いはトランスファー成形機、射出成型機などを用いて成形し、更に50~200℃の温度条件下で2~10時間加熱する方法が挙げられ、このような方法により、成形物である半導体装置を得ることが出来る。
 また、本発明のフェノール性水酸基含有化合物又はフェノール樹脂を用いてプリント回路基板を製造するには、本発明のフェノール性水酸基含有化合物又はフェノール樹脂、硬化剤、有機溶剤、その他添加剤等を含むワニス状の硬化性組成物を、補強基材に含浸し銅箔を重ねて加熱圧着させる方法が挙げられる。ここで使用し得る補強基材は、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布などが挙げられる。かかる方法を更に詳述すれば、先ず、前記したワニス状の硬化性組成物を、用いた溶剤種に応じた加熱温度、好ましくは50~170℃で加熱することによって、硬化物であるプリプレグを得る。この時用いる硬化性組成物と補強基材の質量割合としては、特に限定されないが、通常、プリプレグ中の樹脂分が20~60質量%となるように調製することが好ましい。次いで、上記のようにして得られたプリプレグを、常法により積層し、適宜銅箔を重ねて、1~10MPaの加圧下に170~250℃で10分~3時間、加熱圧着させることにより、目的とするプリント回路基板を得ることができる。
 次に本発明を実施例、比較例により具体的に説明するが、以下において「部」及び「%」は特に断わりのない限り質量基準である。尚、軟化点及びGPC、NMR、MSスペクトルは以下の条件にて測定した。
軟化点測定法:JIS K7234に準拠。
GPC:測定条件は以下の通り。
 測定装置 :東ソー株式会社製「HLC-8220 GPC」、
 カラム:東ソー株式会社製ガードカラム「HXL-L」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G3000HXL」
    +東ソー株式会社製「TSK-GEL G4000HXL」
 検出器: RI(示差屈折計)
 データ処理:東ソー株式会社製「GPC-8020モデルIIバージョン4.10」
 測定条件: カラム温度  40℃
       展開溶媒   テトラヒドロフラン
       流速     1.0ml/分
 標準  : 前記「GPC-8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
  (使用ポリスチレン)
   東ソー株式会社製「A-500」
   東ソー株式会社製「A-1000」
   東ソー株式会社製「A-2500」
   東ソー株式会社製「A-5000」
   東ソー株式会社製「F-1」
   東ソー株式会社製「F-2」
   東ソー株式会社製「F-4」
   東ソー株式会社製「F-10」
   東ソー株式会社製「F-20」
   東ソー株式会社製「F-40」
   東ソー株式会社製「F-80」
   東ソー株式会社製「F-128」
 試料  : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
13C-NMR:測定条件は以下の通り。
装置:日本電子(株)製 AL-400
測定モード:SGNNE(NOE消去の1H完全デカップリング法)
溶媒 :ジメチルスルホキシド
パルス角度:45°パルス
試料濃度 :30wt%
積算回数 :10000回
MS :日本電子株式会社製 二重収束型質量分析装置「AX505H(FD505H)」
実施例1 フェノール樹脂(1)の製造
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、2,7-ジヒドロキシナフタレン240質量部(1.5モル)、パラベンゾキノン162質量部(1.5モル)、イソプロピルアルコール268質量部、シュウ酸8質量部を仕込み、撹拌しながら室温から120℃まで昇温した。120℃に到達した後、2時間攪拌して反応させた。反応終了後、180℃まで加熱して減圧下乾燥し、フェノール中間体(5)359質量部を得た。得られたフェノール中間体のGPCチャートを図1に、13CNMRスペクトルを図2、およびMSスペクトルを図3に示す。フェノール中間体(5)の水酸基当量は68g/当量であり、軟化点は126℃であった。MSスペクトルから下記構造式(a-1)で表される2核体化合物(x1)に相当する268のピーク、下記構造式(b-1)で表される3核体化合物(x2)に相当する426のピークが検出された。GPCチャートから算出されるフェノール樹脂中の2核体化合物(x1)相当成分の含有量は43.6%、3核体化合物(x2)相当成分の含有量は30.7%であった。
Figure JPOXMLDOC01-appb-C000026
実施例2 フェノール樹脂(2)の製造
 温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、2,7-ジヒドロキシナフタレン160質量部(1.0モル)、ナフトキノン158質量部(1.0モル)、メチルイソブチルケトン318質量部を仕込み、撹拌しながら室温から150℃まで昇温した。150℃に到達した後、3時間攪拌して反応させた。反応終了後、180℃まで加熱して減圧下乾燥し、フェノール中間体(6)300質量部を得た。得られたフェノール中間体のGPCチャートを図4に、MSスペクトルを図5に示す。フェノール中間体(6)の水酸基当量は101g/当量であり、軟化点は130℃であった。MSスペクトルから下記構造式(a-2)で表される2核体化合物(x1)に相当する318のピーク、下記構造式(c)で表されるジナフトフラン化合物に相当する300のピークが検出された。GPCチャートから算出されるフェノール樹脂中の2核体化合物(x1)相当成分の含有量は49.7%、下記構造式(c)で表されるジナフトフラン化合物の含有量は6.0%であった。
Figure JPOXMLDOC01-appb-C000027
 実施例3~4及び比較例1
 先で得たフェノール樹脂(1)、(2)及び比較対象用フェノール樹脂(1’)[トリフェニルメタン型フェノール樹脂(明和化成株式会社製「MEH-7500」水酸基当量98g/当量)]について下記の要領で耐熱性及び難燃性の評価試験を行った。
<耐熱性の評価>
1)評価サンプルの作成
 前記フェノール樹脂(1)、(2)、(1’)の何れかと、硬化剤としてナフタレン型エポキシ樹脂(DIC株式会社製「EXA-4750」エポキシ基当量188g/当量)、硬化促進剤としてトリフェニルホスフィン(以下「TPP」と略記する。)を用い、下記表2に示す組成で配合して硬化性組成物を得た。これを11cm×9cm×2.4mmの型枠に流し込み、プレスで150℃の温度で10分間成型した後、型枠から成型物を取り出し、次いで、175℃の温度で5時間後硬化させて評価サンプルを得た。
2)ガラス転移温度の測定
 粘弾性測定装置(DMA:レオメトリック社製固体粘弾性測定装置RSAII、レクタンギュラーテンション法;周波数1Hz、昇温速度3℃/min)を用い、前記評価サンプルについて弾性率変化が最大となる(tanδ変化率が最も大きい)温度を測定し、これをガラス転移温度として評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000028
<難燃性の評価>
1)評価サンプルの作成
 前記エポキシ樹脂(1)、(2)、(1’)の何れかと、硬化剤としてナフタレン型エポキシ樹脂(DIC株式会社製「EXA-4750」エポキシ基当量188g/当量)、硬化促進剤としてトリフェニルホスフィン(以下「TPP」と略記する。)、無機充填材として球状シリカ(電気化学株式会社製「FB-5604」)、シランカップリング剤としてカップリング剤(信越化学株式会社製「KBM-403」)、カルナウバワックス(株式会社セラリカ野田製「PEARL WAX No.1-P」)、カーボンブラックを、下記表3に示す組成で配合し、2本ロールを用いて85℃の温度で5分間溶融混練して硬化性組成物を得た。得られた硬化性組成物を用い、トランスファー成形機にて幅12.7mm、長さ127mm、厚み1.6mm大のサンプルを175℃の温度で90秒成形した後、175℃の温度で5時間後硬化して評価用サンプルを得た。
2)難燃性の評価
 先で得た厚さ1.6mmの評価用サンプル5本を用い、UL-94試験法に準拠して燃焼試験を行った。結果を表2に示す。
難燃試験クラス
*1:1回の接炎における最大燃焼時間(秒)
*2:試験片5本の合計燃焼時間(秒)
Figure JPOXMLDOC01-appb-T000029

Claims (10)

  1. 下記一般式(I)
    Figure JPOXMLDOC01-appb-C000001

    [式中Xは、下記構造式(x1)又は(x2)
    Figure JPOXMLDOC01-appb-C000002

    {式(x1)又は(x2)中、R及びRはそれぞれ炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、アリール基又はアラルキル基の何れかであり、lは0~3の整数、nは0~4の整数である。lまたはnが2以上の場合、複数のR又はRは同一であっても良いし、それぞれ異なっていても良い。また、kは1~3の整数、mは1又は2であり、Arは下記構造式(Ar1)
    Figure JPOXMLDOC01-appb-C000003

    (式中、Rは炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、アリール基又はアラルキル基の何れかであり、Rは2つの芳香核のうちどちらに結合していてもよく、sは0~6の整数である。sが2以上の場合、複数のRは同一であっても良いし、それぞれ異なっていても良い。また、rは1又は2である。)
    で表される構造部位である。k又はmが2以上の場合、複数のArは同一であっても良いし、それぞれ異なっていても良い。}
    で表される構造部位である。]
    で表される分子構造を有することを特徴とするフェノール性水酸基含有化合物。
  2. 請求項1に記載のフェノール性水酸基含有化合物を含有するフェノール樹脂。
  3. 分子構造中にキノン構造を有する化合物(Q)と、ナフトール又はジヒドロキシナフタレン骨格を有する化合物(P)とを反応させることを特徴とするフェノール樹脂の製造方法。
  4. 請求項3に記載の製造方法により製造されるフェノール樹脂。
  5. 水酸基当量が60~150g/当量の範囲にある請求項2又は4に記載のフェノール樹脂。
  6. 軟化点が80~150℃の範囲にある請求項2、4又は5に記載のフェノール樹脂。
  7. 請求項1に記載のフェノール性水酸基含有化合物又は請求項2、4、5、6の何れか一つに記載のフェノール樹脂と、硬化剤とを必須成分とする硬化性組成物。
  8. 請求項7に記載の硬化性組成物を硬化反応させてなる硬化物。
  9. 請求項7に記載の硬化性組成物に加え、更に無機充填剤を含有する半導体封止材料。
  10. 請求項7に記載の硬化性組成物に有機溶剤を配合してワニス化した樹脂組成物を、補強基材に含浸し銅箔を重ねて加熱圧着させることにより得られたプリント配線基板。
PCT/JP2014/054137 2013-06-14 2014-02-21 フェノール性水酸基含有化合物、フェノール樹脂、硬化性組成物、その硬化物、半導体封止材料、及びプリント配線基板 WO2014199659A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014534851A JP5621954B1 (ja) 2013-06-14 2014-02-21 フェノール性水酸基含有化合物、フェノール樹脂、硬化性組成物、その硬化物、半導体封止材料、及びプリント配線基板
US14/897,864 US10081585B2 (en) 2013-06-14 2014-02-21 Compound containing phenolic hydroxyl group, phenolic resin, curable composition, cured product thereof, semiconductor sealing material, and printed circuit board
CN201480033987.5A CN105517984B (zh) 2013-06-14 2014-02-21 含酚性羟基化合物、酚醛树脂、固化性组合物、其固化物、半导体密封材料、及印刷电路基板
KR1020157031318A KR102136614B1 (ko) 2013-06-14 2014-02-21 페놀성 수산기 함유 화합물, 페놀 수지, 경화성 조성물, 그 경화물, 반도체 봉지 재료, 및 프린트 배선 기판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-125563 2013-06-14
JP2013125563 2013-06-14

Publications (2)

Publication Number Publication Date
WO2014199659A1 true WO2014199659A1 (ja) 2014-12-18
WO2014199659A9 WO2014199659A9 (ja) 2016-01-21

Family

ID=51942598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054137 WO2014199659A1 (ja) 2013-06-14 2014-02-21 フェノール性水酸基含有化合物、フェノール樹脂、硬化性組成物、その硬化物、半導体封止材料、及びプリント配線基板

Country Status (6)

Country Link
US (1) US10081585B2 (ja)
JP (2) JP5621954B1 (ja)
KR (1) KR102136614B1 (ja)
CN (1) CN105517984B (ja)
TW (1) TWI606999B (ja)
WO (1) WO2014199659A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121209A (ja) * 2014-12-24 2016-07-07 Dic株式会社 ベンゾオキサジン化合物、ベンゾオキサジン樹脂、ベンゾオキサジン化合物の製造方法、硬化性樹脂組成物、その硬化物、frp材料、半導体封止材料、ワニス、回路基板、プリプレグ、及びビルドアップフィルム
JP2016121208A (ja) * 2014-12-24 2016-07-07 Dic株式会社 カルボキシル基含有感光性化合物、感光性樹脂、その硬化物、これらを用いたレジスト材料、及びカルボキシル基含有感光性化合物の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208131A1 (ja) * 2013-06-26 2014-12-31 Dic株式会社 エポキシ化合物、エポキシ樹脂、硬化性組成物、その硬化物、半導体封止材料、及びプリント配線基板
JP6403003B2 (ja) * 2014-12-05 2018-10-10 Dic株式会社 シアン酸エステル化合物、シアン酸エステル樹脂、硬化性組成物、その硬化物、ビルドアップフィルム、半導体封止材料、プリプレグ、回路基板、及びシアン酸エステル樹脂の製造方法
JP6435830B2 (ja) * 2014-12-11 2018-12-12 Dic株式会社 (メタ)アクリレート化合物、ラジカル硬化性樹脂、ラジカル硬化性組成物、その硬化物、レジスト材料、及びラジカル硬化性樹脂の製造方法
JP6413740B2 (ja) * 2014-12-16 2018-10-31 Dic株式会社 ベンゾオキサジン化合物、ベンゾオキサジン樹脂、ベンゾオキサジン樹脂の製造方法、硬化性樹脂組成物、その硬化物、frp材料、半導体封止材料、ワニス、回路基板、プリプレグ、及びビルドアップフィルム
JP6410097B2 (ja) * 2014-12-17 2018-10-24 Dic株式会社 ベンゾオキサジン化合物、ベンゾオキサジン樹脂、ベンゾオキサジン樹脂の製造方法、硬化性樹脂組成物、その硬化物、frp材料、半導体封止材料、ワニス、回路基板、プリプレグ、及びビルドアップフィルム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023613A (ja) * 2011-07-22 2013-02-04 Dic Corp ポリヒドロキシ化合物、エポキシ樹脂、熱硬化性樹脂組成物、その硬化物及び半導体封止材料

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302673A (en) * 1991-06-21 1994-04-12 Dai-Ichi Kogyo Seiyaku Co., Ltd. Poly-hydroxynaphthalene compounds and epoxy resin composition
JPH0672933A (ja) * 1992-08-28 1994-03-15 Dai Ichi Kogyo Seiyaku Co Ltd ポリヒドロキシナフタレン系化合物及びエポキシ樹脂組成物
JP3608877B2 (ja) 1996-07-09 2005-01-12 京セラミタ株式会社 キノン誘導体およびそれを用いた電子写真感光体
JP2002114889A (ja) 2000-10-05 2002-04-16 Ube Ind Ltd 耐熱性フェノールノボラック樹脂およびその硬化物
EP2557099B1 (en) 2010-08-06 2020-02-12 DIC Corporation Novel phenol resin, curable resin composition, cured article thereof, and printed wiring board
JP5716963B2 (ja) 2011-07-22 2015-05-13 Dic株式会社 ポリヒドロキシ化合物、エポキシ樹脂、熱硬化性樹脂組成物、その硬化物及び半導体封止材料

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023613A (ja) * 2011-07-22 2013-02-04 Dic Corp ポリヒドロキシ化合物、エポキシ樹脂、熱硬化性樹脂組成物、その硬化物及び半導体封止材料

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
HANS BROCKMANN: "Regioselektive Synthesen von 3,3'-Bijuglon, Mamegakinon, Dianellinon, cyclo- Trijuglon, Xylospyrin und Trianellinon durch Phenol Chinon-Addition", LIEBIGS ANNALEN DER CHEMIE, vol. 3, 1983, pages 433 - 447 *
HANS BROCKMANN: "Zur cyclo-Trimerisierung von 1,4-Naphthochinon; Kooperieren von Phenol/ Chinon-Additionen mit Redoxreaktionen", LIEBIGS ANNALEN DER CHEMIE, vol. 1, 1988, pages 1 - 7 *
HARTMUT LAATSCH: "Dimere Naphthochinone, XI. Oxidationsprodukte substituierter Binaphthyle", LIEBIGS ANNALEN DER CHEMIE, vol. 7, 1984, pages 1367 - 1381, XP002979504 *
MADHUSHREE DAS SARMA ET AL.: "Synthesis and antiproliferative activity of some novel derivatives of diospyrin, a plant-derived naphthoquinonoid", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 15, no. 11, 2007, pages 3672 - 3677, XP022047551, DOI: doi:10.1016/j.bmc.2007.03.022 *
MELANIE T. CUSHION ET AL.: "Effects of Atovaquone and Diospyrin-Based Drugs on the Cellular ATP of Pneumocystis carinii f. sp. carinii", ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, vol. 44, no. 3, 2000, pages 713 - 719, XP008143193 *
MICHELLE YU HUAY LAI: "Synthetic Studies Towards the Crisamicins", June 2002 (2002-06-01), pages 83 - 96 *
N. LALL ET AL.: "Antimycobacterial activity of diospyrin derivatives and a structural analogue of diospyrin against Mycobacterium tuberculosis in vitro", JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, vol. 51, no. 2, 2003, pages 435 - 438 *
RUDOLF PUMMERER ET AL.: "Die Kondensation von Chinonen mit Phenolen. 3. Mitteilung uber Diarylchinone.", BERICHTE DER DEUTSCHEN CHEMISCHEN GESELLSCHAFT [ABTEILUNG] B: ABHANDLUNGEN, vol. 60B, 1927, pages 1442 - 1451, XP001068313 *
UTPAL SANYAL ET AL.: "Liquid chromatographic separation of derivatives of diospyrin, a bioactive bisnaphthoquinonoid plant-product, and analogous naphthyl compounds", JOURNAL OF CHROMATOGRAPHY A, vol. 1017, no. 1-2, 2003, pages 225 - 232, XP004463097, DOI: doi:10.1016/j.chroma.2003.08.008 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121209A (ja) * 2014-12-24 2016-07-07 Dic株式会社 ベンゾオキサジン化合物、ベンゾオキサジン樹脂、ベンゾオキサジン化合物の製造方法、硬化性樹脂組成物、その硬化物、frp材料、半導体封止材料、ワニス、回路基板、プリプレグ、及びビルドアップフィルム
JP2016121208A (ja) * 2014-12-24 2016-07-07 Dic株式会社 カルボキシル基含有感光性化合物、感光性樹脂、その硬化物、これらを用いたレジスト材料、及びカルボキシル基含有感光性化合物の製造方法

Also Published As

Publication number Publication date
TW201446718A (zh) 2014-12-16
KR20160019412A (ko) 2016-02-19
JP2015017257A (ja) 2015-01-29
JP5621954B1 (ja) 2014-11-12
TWI606999B (zh) 2017-12-01
JP5664817B2 (ja) 2015-02-04
US20160122269A1 (en) 2016-05-05
CN105517984B (zh) 2018-07-03
KR102136614B1 (ko) 2020-07-22
US10081585B2 (en) 2018-09-25
JPWO2014199659A1 (ja) 2017-02-23
CN105517984A (zh) 2016-04-20
WO2014199659A9 (ja) 2016-01-21

Similar Documents

Publication Publication Date Title
JP5637419B1 (ja) エポキシ化合物、エポキシ樹脂、硬化性組成物、その硬化物、半導体封止材料、及びプリント配線基板
JP5664817B2 (ja) フェノール性水酸基含有化合物、フェノール樹脂、硬化性組成物、その硬化物、半導体封止材料、及びプリント配線基板
JP5682805B1 (ja) フェノール性水酸基含有化合物、フェノール樹脂、硬化性組成物、その硬化物、半導体封止材料、及びプリント配線基板
JP5692471B1 (ja) フェノール性水酸基含有化合物、フェノール樹脂、硬化性組成物、その硬化物、半導体封止材料、及びプリント配線基板
JP5679248B1 (ja) エポキシ化合物、エポキシ樹脂、硬化性組成物、その硬化物、半導体封止材料、及びプリント配線基板
JP5682804B1 (ja) フェノール性水酸基含有化合物、フェノール樹脂、硬化性組成物、その硬化物、半導体封止材料、及びプリント配線基板
JP5850228B2 (ja) 硬化性樹脂組成物、その硬化物、シアン酸エステル樹脂、半導体封止材料、プリプレグ、回路基板、及び、ビルドアップフィルム
WO2017145772A1 (ja) エポキシ樹脂、硬化性樹脂組成物及びその硬化物
JP6241186B2 (ja) フェノール樹脂、エポキシ樹脂、これらの製造方法、硬化性組成物、その硬化物、半導体封止材料、及びプリント配線基板
JP6288493B2 (ja) フェノール樹脂、エポキシ樹脂、これらの製造方法、硬化性組成物、その硬化物、半導体封止材料、及びプリント配線基板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014534851

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810822

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157031318

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14897864

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14810822

Country of ref document: EP

Kind code of ref document: A1