WO2014198172A1 - 电流过零检测装置、信号获取电路及电路系统 - Google Patents

电流过零检测装置、信号获取电路及电路系统 Download PDF

Info

Publication number
WO2014198172A1
WO2014198172A1 PCT/CN2014/077218 CN2014077218W WO2014198172A1 WO 2014198172 A1 WO2014198172 A1 WO 2014198172A1 CN 2014077218 W CN2014077218 W CN 2014077218W WO 2014198172 A1 WO2014198172 A1 WO 2014198172A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
current zero
current
crossing
switch tube
Prior art date
Application number
PCT/CN2014/077218
Other languages
English (en)
French (fr)
Inventor
王静
张军明
范杰
周建平
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US14/896,668 priority Critical patent/US9577512B2/en
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to ES14810727T priority patent/ES2762537T3/es
Priority to EP14810727.9A priority patent/EP2995963B1/en
Publication of WO2014198172A1 publication Critical patent/WO2014198172A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/175Indicating the instants of passage of current or voltage through a given value, e.g. passage through zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the invention relates to the technical field of power supply, in particular to a current zero-crossing detecting device, a zero-crossing current signal acquiring circuit and a totem pole bridgeless circuit system.
  • the research on the power factor correction (PFC) rectification technology is developing towards high efficiency and high power density.
  • the totem pole bridgeless PFC topology is proposed in response to this trend, as shown in Figure 1. .
  • the first bridge arm unit, the second bridge arm unit and the capacitor Co are connected in parallel with each other, and one end of the connection is grounded; two of the first bridge arm units are connected in the same direction
  • the power frequency switch tubes S1 and S2; the second bridge arm unit has two switch tubes S3 and S4 connected in the same direction; the connection point between the two diodes and the connection point of the two switch tubes is connected; Power supply Vin and inductor L.
  • the totem pole PFC cannot be used as a bidirectional switch bridgeless PFC, and utilizes the characteristics of the fast recovery diode to improve EMI (Electromagnetic Interference).
  • EMI Electromagnetic Interference
  • the hard-switching characteristics of the CCM (Continous Conduction Mode) mode make it unable to meet the increasing demands of the industry. Therefore, the totem-free bridgeless PFC control strategy introduced in this paper is based on the TCM (triangular current mode) mode, according to the totem.
  • TCM triangular current mode
  • the simple topology of the column if it is controlled to achieve full input voltage in the TCM mode, zero voltage switching (ZVS) characteristics or valley switching (VS) characteristics in the full load range, can simultaneously meet the high Power density, high efficiency requirements.
  • the invention provides a current zero-crossing detecting device, a zero-crossing current signal acquiring circuit and a totem pole bridgeless circuit system, so as to solve the technical problem that the totem pole bridgeless circuit system has difficulty in timing control.
  • the invention provides a current zero-crossing detecting device, which comprises a current transformer, a first sampling switch tube, a second sample switching tube, a sample resistor and a comparator, wherein the current transformer comprises a primary winding and Secondary winding;
  • the primary winding is connected to the detected circuit
  • Two ends of the secondary winding are respectively connected to the drains of the first sample switching tube and the second sample switching tube;
  • the source of the first sample-like switch tube is connected to the source of the second sample-like switch tube, and the source is grounded; the two ends of the sample-like resistor are respectively connected to the drain of the second sample-like switch tube a source connection; a negative input end of the comparator is connected to a drain of the second sample switch tube, and a positive input terminal is connected to a reference voltage;
  • the first and second sample switching tubes are in a closed or open state.
  • the device further includes a reset impedance, and two ends of the reset impedance are respectively connected to both ends of the secondary winding.
  • the sampling switch tube is an insulated gate field effect transistor (Mosfet), or an insulated gate bipolar transistor (IGBT), or a bipolar transistor (BJT).
  • Mosfet insulated gate field effect transistor
  • IGBT insulated gate bipolar transistor
  • BJT bipolar transistor
  • the invention also provides a current zero-crossing signal acquisition circuit, the circuit comprising:
  • a first current zero-crossing detecting unit is located at a first circuit branch, and is configured to collect a current flowing through the first circuit branch when the AC input voltage is in a positive half cycle, to obtain a current zero-crossing signal of the first circuit branch;
  • a second current zero-crossing detecting unit is located at the second circuit branch, and is configured to collect current flowing through the first circuit branch when the AC input voltage is in a negative half cycle, and obtain a current zero-crossing signal of the second circuit branch ; as well as
  • the signal processing circuit is configured to select a current zero-crossing signal collected by the first current zero-crossing detecting unit when the AC input voltage is in the positive half-axis; and select the second when the AC input voltage is in the negative half-cycle The current zero-crossing signal collected by the current zero-crossing detection unit.
  • the first and second current zero-crossing detecting units are identical in structure, and include a current transformer, a first sampling switch tube, a second sample switching tube, a sample resistor, and a comparator, and the current transformer Including the primary winding and the secondary winding;
  • the primary winding is connected to the detected circuit
  • Two ends of the secondary winding are respectively connected to the drains of the first sample switching tube and the second sample switching tube;
  • the source of the first sample-like switch tube is connected to the source of the second sample-like switch tube, and the source is grounded; the two ends of the sample-like resistor are respectively connected to the drain of the second sample-like switch tube Source connection;
  • the negative input terminal of the comparator is connected to the drain of the second sample switch transistor, and the positive input terminal is connected to the reference voltage.
  • the signal processing circuit includes: a first AND gate, a second AND gate, and an OR gate, an input end of the first AND gate and an output end of the first current zero-crossing detection unit and a representative AC input a first power frequency signal of a voltage polarity is connected; an input end of the second AND gate is connected to an output end of the second current zero crossing detecting unit and a second power frequency signal representing a polarity of the AC input voltage; An input of the OR gate is coupled to the output of the first AND gate and the second AND gate.
  • the first and second current zero-crossing detecting units further include a reset impedance, and two ends of the reset impedance are respectively connected to both ends of the secondary winding.
  • the present invention also provides a totem pole bridgeless circuit system, the system comprising: a first bridge arm unit and a second bridge arm unit, the first bridge arm unit and the second bridge arm unit being connected in parallel to the first Between the parallel connection point and the second parallel connection point, the first bridge arm unit includes a first switch tube and a second switch tube connected in series in the same direction; and the second bridge arm unit includes a third switch tube connected in series in the same direction And a fourth switch tube; a power source and an inductor are connected between the first connection point between the first and second switch tubes and the second connection point between the third and fourth switch tubes, the second The bridge arm unit also includes:
  • first current zero-crossing detecting unit a first current zero-crossing detecting unit, a second current zero-crossing detecting unit, and a signal processing circuit
  • first current zero-crossing detecting unit and the third switching tube are connected in series to the first parallel connection point and the second connection point
  • second current zero-crossing detecting unit and the fourth switching tube are connected in series in a second parallel connection
  • the signal processing circuit is connected to the first current zero-crossing detecting unit and the second current zero-crossing detecting unit
  • a first current zero-crossing detecting unit configured to collect current through the third switching transistor when the AC input voltage is in a positive half cycle and the body diode of the third switching transistor is turned on, and obtain a current zero crossing thereof Signal
  • a second current zero-crossing detecting unit configured to collect current through the fourth switching transistor when the AC input voltage is in a negative half cycle and the body diode of the fourth switching transistor is turned on, and obtain a current zero crossing thereof Signal
  • the signal processing circuit is configured to select a current zero-crossing signal collected by the first current zero-crossing detecting unit when the alternating current input voltage is in the positive half-axis; and select the second current zero-crossing detecting unit to collect the alternating-current input voltage in the negative half-cycle Current zero crossing signal;
  • a switch control unit coupled to the signal processing circuit and the third and fourth switch tubes, configured to control the closing or opening of the third and fourth switch tubes according to signals output by the signal processing circuit.
  • the first and second current zero-crossing detecting unit structures respectively include: a current transformer, a first sampling switch tube, a second sample switching tube, a sample resistor and a comparator, and the current transformer Including the primary winding and the secondary winding;
  • the primary winding is connected to the detected circuit
  • Two ends of the secondary winding are respectively connected to the drains of the first sample switching tube and the second sample switching tube;
  • the source of the first sample-like switch tube is connected to the source of the second sample-like switch tube, and the source is grounded; the two ends of the sample-like resistor are respectively connected to the drain of the second sample-like switch tube Source connection;
  • the negative input terminal of the comparator is connected to the drain of the second sample switch transistor, and the positive input terminal is connected to the reference voltage.
  • the signal processing circuit includes: a first AND gate, a second AND gate, and an OR gate, an input end of the first AND gate and an output end of the first current zero-crossing detection unit, and the switch
  • the first power frequency signal outputted by the control unit and representing the polarity of the AC input voltage is connected;
  • the second AND gate is connected The input end is connected to the output end of the second current zero-crossing detecting unit and the second power frequency signal output by the switch control unit representing the polarity of the AC input voltage;
  • the input end of the OR gate and the first The door is connected to the output of the second AND gate.
  • the first and second current zero-crossing detecting units further include a reset impedance, and two ends of the reset impedance are respectively connected to both ends of the secondary winding.
  • the current zero-crossing detecting device, the zero-crossing current signal acquiring circuit and the totem pole bridgeless circuit system control the opening and closing of the switching tube by collecting the current zero-crossing signal, thereby realizing the full input voltage in the TCM mode, ZVS or VS control over the full load range improves the efficiency of the totem pole bridgeless PFC system.
  • FIG. 1 is a schematic structural view of a totem pole bridgeless PFC system in the related art
  • FIG. 2 is a schematic structural view of a totem pole bridgeless PFC system according to an embodiment of the present invention
  • FIG. 3 is a circuit diagram of a current zero crossing detection system of a totem pole bridgeless PFC system according to an embodiment of the present invention
  • FIG. 4 is a circuit diagram of a current zero-crossing detecting unit of a totem pole bridgeless PFC system operating in a positive half cycle of an alternating current according to an embodiment of the present invention
  • FIG. 5 is a circuit diagram of a current zero-crossing detecting unit of a totem pole bridgeless PFC system working on an AC negative half shaft according to an embodiment of the present invention
  • FIG. 6 is a waveform diagram of operation of a current zero-crossing detecting unit of a totem pole bridgeless PFC system according to an embodiment of the present invention
  • FIG. 7 is a waveform diagram showing the operation of a signal processing circuit of a totem pole bridgeless PFC system according to an embodiment of the present invention.
  • the totem pole bridgeless PFC circuit system of the embodiment of the present invention has a structural schematic diagram as shown in FIG. 2, which includes:
  • the first bridge arm unit 10 includes a first switch tube 110 and a second switch tube 120 connected in series in the same direction; and the second bridge arm unit 20 includes a unit in the same direction.
  • a power source Vin and an inductor L are connected between the three, and the second bridge arm unit 20 further includes:
  • the first and second current zero-crossing detecting units 210 and 221 and the signal processing circuit 230 wherein the first current zero-crossing detecting unit 210 and the third one of the two switching tubes are connected in series to the first parallel connection Between the point 1 and the second connection point 3; the second current zero-crossing detecting unit 221 and the fourth of the two switching tubes 220 are connected in series between the second parallel connection point 2 and the second connection point 3;
  • the signal processing circuit 230 is connected to the first current zero-crossing detecting unit 210 and the second current zero-crossing detecting unit 221.
  • the first current zero-crossing detecting unit 210 is configured to collect current flowing through a body diode of the third switching transistor 211 when the AC input voltage is in a positive half cycle and the body diode of the third switching transistor 211 is turned on And obtaining a current zero-crossing signal thereof, when the body diode of the third switching transistor 211 is turned off, releasing the energy collected by the first current zero-crossing detecting unit 210;
  • the second current zero-crossing detecting unit is configured to collect current flowing through the body diode of the fourth switching transistor 220 when the AC input voltage is in a negative half cycle and the body diode of the fourth switching transistor 220 is turned on And obtaining a current zero-crossing signal; when the fourth switching tube 220 is turned off, releasing the energy collected by the second current zero-crossing detecting unit 221;
  • the signal processing circuit 230 is configured to select a current zero-crossing signal collected by the first current zero-crossing detecting unit 210 when the AC input voltage is in the positive half-axis; and to select the second current-zero-crossing detecting unit 220 when the AC input voltage is in the negative half cycle. Set current zero crossing signal;
  • the switch control unit 30 is connected to the first switch tube 110 and the second switch tube 120, It is configured to provide two power frequency signals representing the polarity of the AC input voltage and complementary to each other, and control the closing or opening of the first switch tube 110 and the second switch tube 120; and the signal processing circuit 230
  • the third switch tube 211 and the fourth switch tube 220 are connected, and the third switch tube 211 or the fourth switch tube 221 is controlled to be closed or opened according to a signal output by the signal processing circuit 230.
  • the current signal output ends of the first current zero-crossing detecting unit 210 and the second current zero-crossing detecting unit 221 are connected to the input end of the signal processing circuit 230; and the two control outputs of the switch control unit 30 are given to the signal processing circuit.
  • 230 provides two power frequency signals representing the polarity of the AC input voltage.
  • the two control outputs are also directly connected to the first switch tube 110 and the second switch tube 220, and the other two control outputs are connected to the third switch tube 211 and
  • the fourth switch tube 221 is connected, such that when the AC input voltage is in the positive half cycle, the second switch tube 120 is directly turned on, and the body diode of the third switch tube 211 is turned on or off, the first current is passed.
  • the zero detection unit 210 correspondingly collects current or releases energy, and the first switch tube 110 is directly turned on during the same negative half cycle, and the second current zero crossing detection is performed when the body diode of the fourth switch tube 220 is turned on or off.
  • Unit 221 correspondingly collects current or releases energy.
  • the current zero-crossing signals according to the first current zero-crossing detecting unit 210 and the second current zero-crossing detecting unit 221 are subjected to signal selection by the signal processing circuit 230 under different polarities of the AC input voltage, and then sent to the switch control unit 30.
  • the control input terminal, the switch control unit 30 controls the closing or opening of the switch tube.
  • the switch control unit 30 controls the second switch tube 120 to be turned on, and according to the selection of the signal processing circuit 230.
  • the current zero-crossing signal of the first current zero-crossing detecting unit 210 is subjected to a predetermined delay based on the signal to control the turn-on of the fourth switching transistor 220.
  • the predetermined delay is set in accordance with the reverse recovery time and resonance time of the selected MOS transistor.
  • the first current zero-crossing detecting unit 210 and the second current zero-crossing detecting unit 221 can be implemented by the same method, such as by a component such as a current transformer.
  • a component such as a current transformer.
  • the second current zero-crossing detecting unit 221 does not collect the current zero-crossing signal of the fourth switching tube 220, and the secondary winding of the current transformer is directly connected to the switching transistor.
  • Short circuit when the energy storage for the inductor L is completed, the second switch tube 120 and the third switch tube 211 are closed, The fourth switch tube 220 is opened.
  • the inductor third switch tube 211, the second switch tube 120 and the first current zero-cross detection unit 210 form a freewheeling circuit, and the energy on the inductor L is released, and the first current zero-crossing detection is performed.
  • the unit 210 collects the forward current zero-crossing signal of the third switching transistor 211, and the secondary winding of the current transformer in the second current zero-crossing detecting unit 221 is still in a short-circuit state.
  • the first switch tube 110 and the third switch tube 211 are closed, and the fourth switch tube 220 is turned off.
  • the third switch tube 211, the first switch tube 110, the inductor L and the first current The zero-crossing detecting unit 210 constitutes an energy storage circuit.
  • the first current zero-crossing detecting unit 210 does not collect the current zero-crossing signal of the third switching transistor 211, and the secondary winding of the current transformer is directly connected to the switching transistor. Short circuit; after the energy storage of the inductor L is completed, the first switch tube 110 and the fourth switch tube 220 are closed, and the third switch tube 211 is turned off.
  • the fourth switch tube 220, the first switch tube 110, the inductor L and The second current zero-crossing detecting unit 221 constitutes a freewheeling circuit, and the energy on the inductor L is released.
  • the second current zero-crossing detecting unit 221 collects the forward current zero-crossing signal of the fourth switching transistor 220, and the first The secondary winding of the current transformer in the current zero-crossing detecting unit 210 is still in a short-circuit state.
  • the forward current zero-crossing signal flowing through the switching transistor or the switching transistor diode in the freewheeling circuit is required. That is, when the AC input power is in the positive half cycle, only the first current zero-crossing detecting unit 210 needs to collect the forward current zero-crossing signal of the third switching transistor 211; when the AC input power is in the negative half cycle, only the second is needed.
  • the current zero-crossing detecting unit 221 collects the forward current zero-crossing signal of the fourth switching transistor 220.
  • the first current zero-crossing detecting unit 210 needs to be controlled to obtain the forward current zero-crossing signal of the third switching transistor 211, and the second current The zero-crossing detecting unit 221 does not detect the zero-current signal; similarly, the second-current zero-crossing detecting unit 221 in the negative half-cycle obtains the forward current zero-crossing signal of the fourth switching transistor 220, and the first current zero-crossing detecting unit 210 does not have a zero current signal.
  • the first current zero-crossing detecting unit 210 and the second current zero-crossing detecting unit 221 are implemented in the same manner.
  • the first current zero-crossing detecting unit 210 includes:
  • the current transformer CT1 includes a primary winding and a secondary winding; an optional reset impedance R1, in parallel At both ends of the secondary winding of the current transformer CT1, but it should be noted that Rl can also be added.
  • the two sampling switches S11 and S12 are connected in series and connected in parallel with the secondary winding of the current transformer; wherein the drain of the first switching transistor S11 is connected to one end of the secondary winding, and the first switching transistor S11 is The source is connected to the drain of the second sample switch tube S12, and the source of the second sample switch tube S12 is connected to the other end of the secondary winding; the drain of the sample resistor R2 and the second sample switch tube S12 The pole and the source are connected in parallel at both ends.
  • the second current zero-crossing detecting unit 221 includes:
  • the current transformer CT2 includes a primary winding and a secondary winding; an optional reset impedance R3, Parallel to both ends of the secondary winding of the current transformer CT1, but it should be noted that R3 may not be added.
  • the two sampling switches S21 and S22 are connected in series and connected in parallel with the secondary winding of the current transformer; wherein the drain of the first switching transistor S21 is connected to one end of the secondary winding, and the first switching transistor S21 is The source is connected to the drain of the second sample switch tube S22, the source of the second sample switch tube S22 is connected to the other end of the secondary winding; the drain of the sample resistor R4 and the second sample switch tube S22 The pole and the source are connected in parallel at both ends.
  • the comparator T1 and the comparator T2 are connected to the signal processing circuit 230.
  • the output of the comparator T1 is the forward current zero-crossing signal of the first current zero-crossing detecting unit 210.
  • the output of the comparator T2 is the forward current zero-crossing signal of the second current zero-crossing detecting unit 221.
  • a sample switch tube includes a body diode and a parasitic capacitor.
  • the parasitic capacitance is used to reset to achieve a volt-second balance.
  • the signal processing circuit 230 includes first and second AND gates Z1, Z2 and an OR gate Z3.
  • the input end of the first AND gate zi is connected to the output end of the first current zero-cross detecting unit 210 and the first power frequency signal output by the switch control unit 30 representing the polarity of the AC input voltage;
  • the input end of the second AND gate Z2 is connected to the output of the second current zero-crossing detecting unit 221 and the second power frequency signal output by the switch control unit 30 representing the polarity of the AC input voltage;
  • the OR gate Z3 The input terminal is connected to the output ends of the first AND gate Z1 and the second AND gate Z2.
  • the switch control unit when the AC input voltage is in the positive and negative half cycles respectively, the switch control unit provides two power frequency signals representing the polarity of the AC input voltage, and the two power frequency signals are respectively obtained by the corresponding current zero crossing detecting unit.
  • the zero-signal phase and the subsequent positive-negative half-cycle effective current zero-crossing signal are then summed by the OR gate to obtain a current zero-crossing detection signal in the full input voltage range.
  • the current zero-crossing detecting unit in this embodiment operates at the positive half cycle of the AC input voltage, as shown in the figure.
  • the working principle of the current zero-crossing detecting unit of the third switching tube is as follows: In the positive half cycle of the entire AC input voltage, the sampling switch tubes S11 and S12 corresponding to the third switching tube are controlled to be turned off, and the sampling switch tube corresponding to the fourth switching tube is turned off. S21 and S22 are turned on. At this time, when the body diode of the third switch tube is turned on, that is, when the primary winding of the current transformer CT1 flows through the current as shown in FIG. 4(a), the secondary winding of the current transformer CT1 is induced as shown in the figure.
  • the current shown, the current transformer CT1 secondary winding, the sample resistor R2 and the body diode of the ⁇ -like switch S11 form a sample circuit, that is, the solid line circuit in Figure 4(a), and is set according to the direction of the arrow in the figure.
  • the optional reset impedance R1 shown in Figure 3 is connected in parallel with the secondary winding of CT1, the energy stored by the magnetizing inductor can also be reset by R1 at the same time, which will not be described in detail here.
  • the current transformer CT2 does not need to collect current, and the secondary winding of the current transformer CT2 is directly short-circuited by the sampling switches S21 and S22, and its working state is as shown in Fig. 4(c).
  • the current zero-crossing detecting unit in this embodiment operates at the negative half cycle of the AC input voltage, as shown in the figure.
  • the working principle of the current zero-crossing detecting unit of the fourth switching tube is as follows: In the negative half cycle of the entire AC input voltage, the sampling switch tubes S21 and S22 corresponding to the fourth switching tube are controlled to be turned off, and the sampling switch tube corresponding to the third switching tube is turned off. S11 and S12 are turned on. At this time, the body diode of the fourth switch tube is turned on, that is, the primary winding of the current transformer CT2 flows through the current as shown in FIG. 5(a), and the secondary winding of the current transformer CT2 is induced as shown in the figure.
  • the current, the current transformer CT2 secondary winding, the sample resistor R4 and the body diode of the sample switch S21 form a sample circuit, that is, the solid line circuit in Fig. 5(a), and are connected according to the direction of the arrow in the figure.
  • Figure 5 (b) If the optional reset impedance R3 shown in Figure 3 is connected in parallel with the secondary winding of CT2, the energy stored by the magnetizing inductor can also be reset by R3 at the same time, which will not be described in detail here.
  • the current transformer CT1 does not need to collect current, and the secondary winding of the current transformer CT1 is directly short-circuited by the sampling switches S11 and S12, and its working state is as shown in Fig. 5(c).
  • V CT1 is the voltage of the sample resistor R2 in the positive half cycle of the power frequency
  • V CT2 is the voltage of the sample resistor R4 in the negative half cycle of the power frequency.
  • the voltage signal is respectively compared with the reference voltage Vth of the comparator.
  • the comparator flips the output high level, thereby obtaining a zero-cross detection signal of the falling current of the inductor current, and the signal can be used to turn off the corresponding The freewheeling switch tube, and a certain delay based on this signal, turns on the main switch.
  • the third switch tube is a freewheeling tube
  • the fourth switch tube is a main switch tube
  • the power frequency is negative for half a week, just the opposite
  • the fourth switch tube is a freewheel tube
  • the third switch tube is mainly turning tube.
  • the working waveform of the signal processing circuit is shown in Figure 7.
  • the effective zero current detection signal Vzcdl and Vzcd2 are invalid signals.
  • the AC input voltage Vin is negative half cycle, it is effective.
  • the zero current detection signal Vzcd2, and Vzcdl is an invalid signal. Therefore, the power frequency signal V P representing the positive half cycle and the negative half cycle is provided by the switch control unit.
  • S , V Neg these two signals are used to control the opening or closing of the first switch tube and the second switch tube in the first bridge arm, and also used to shield the positive and negative half-cycle unwanted signals respectively, and obtain positive and negative A zero-current detection signal Vzcd that is effective for half a week.
  • the totem pole bridgeless PFC circuit system of the embodiment of the present invention includes a signal processing circuit and a switch control unit, and two current zero-crossing detecting units are added to the second bridge arm unit, and the switch control unit a forward zero-crossing signal collected by the first current zero-crossing detecting unit and the second current zero-crossing detecting unit, and a current zero-crossing signal obtained by the signal processing circuit for respectively controlling the second bridge arm unit
  • the third switch tube and the fourth switch tube are closed or opened.
  • the system of the embodiment of the invention controls the opening and closing of the switch tube by the zero point signal of the sample inductor current, and can realize the full input voltage and the full load range in the TCM mode. Internal ZVS or VS control, effectively realize the timing control of the totem pole bridgeless circuit system System to improve the efficiency of the totem pole bridgeless PFC system.
  • the embodiment of the present invention further provides a current zero-crossing detecting device.
  • the device includes a current transformer, a first sample switching tube, a second sampling switch tube, a sample resistor and a comparator.
  • the current transformer includes a primary winding and a secondary winding; wherein:
  • the primary winding is connected to the detected circuit
  • Two ends of the secondary winding are respectively connected to the drains of the first sample switching tube and the second sample switching tube;
  • the source of the first sample-like switch tube is connected to the source of the second sample-like switch tube, and the source is grounded; the two ends of the sample-like resistor are respectively connected to the drain of the second sample-like switch tube a source connection; a negative input end of the comparator is connected to a drain of the second sample switch tube, and a positive input end is connected to a reference voltage;
  • the first and second sample switching tubes are in a closed or open state.
  • the device further includes a reset impedance, and two ends of the reset impedance are respectively connected to both ends of the secondary winding.
  • the sample switch tube is an insulated gate field effect transistor (Mosfet), or an insulated gate bipolar transistor (IGBT), or a bipolar transistor (BJT).
  • Mosfet insulated gate field effect transistor
  • IGBT insulated gate bipolar transistor
  • BJT bipolar transistor
  • an embodiment of the present invention further provides a current zero-crossing signal acquisition circuit, and the circuit includes:
  • a first current zero-crossing detecting unit is located at a first circuit branch, and is configured to collect a current flowing through the first circuit branch when the AC input voltage is in a positive half cycle, to obtain a current zero-crossing signal of the first circuit branch;
  • a second current zero-crossing detecting unit is located at the second circuit branch, and is configured to collect current flowing through the first circuit branch when the AC input voltage is in a negative half cycle, and obtain a current zero-crossing signal of the second circuit branch ;
  • the signal processing circuit is configured to select a current zero-crossing signal collected by the first current zero-crossing detecting unit when the alternating current input voltage is in the positive half-axis; and select the second current zero-crossing detecting unit to collect the alternating-current input voltage in the negative half-cycle Current zero crossing signal.
  • the first and second current zero-crossing detecting units have the same structure, and include a current transformer, a first sample switching tube, a second sampling switch tube, a sample resistor and a comparator, and the current transformer includes a primary winding And secondary windings;
  • the primary winding is connected to the detected circuit
  • Two ends of the secondary winding are respectively connected to the drains of the first sample switching tube and the second sample switching tube;
  • the source of the first sample-like switch tube is connected to the source of the second sample-like switch tube, and the source is grounded; the two ends of the sample-like resistor are respectively connected to the drain of the second sample-like switch tube a source connection; a negative input end of the comparator is connected to a drain of the second sample switch tube, and a positive input end is connected to a reference voltage;
  • the signal processing circuit first AND gate, the second AND gate, and the OR gate, the input end of the first AND gate and the output end of the first current zero-crossing detection unit and the representative AC input voltage pole
  • the first power frequency signal is connected;
  • the input end of the second AND gate is connected to the output end of the second current zero-crossing detecting unit and the second power frequency signal representing the polarity of the AC input voltage;
  • the input end is connected to the output of the first AND gate and the second AND gate.
  • the first and second current zero-crossing detecting units further include a reset impedance, and both ends of the reset impedance are respectively connected to both ends of the secondary winding.
  • the current zero-crossing detecting device of the embodiment of the invention can collect the current zero-crossing signal of the alternating current, that is, the energy storage circuit composed of the secondary winding of the current transformer, two sampling switches, a sample resistor and a comparator. To collect current zero-crossing signals.
  • the current zero-crossing detecting device, the zero-crossing current signal acquiring circuit and the totem-pole bridgeless circuit system can control the opening and closing of the switching tube by collecting the current zero-crossing signal, thereby realizing

Abstract

一种电流过零检测装置、过零电流信号获取电路以及图腾柱无桥电路系统,电流过零检测装置包括电流互感器、第一釆样开关管、第二釆样开关管、釆样电阻和比较器,电流互感器包括原边绕组和副边绕组;原边绕组与被检测电路连接;副边绕组的两端分别与第一、第二釆样开关管的漏极连接;第一、第二釆样开关管的源极相连,且源极接地;釆样电阻的两端分别与第二釆样开关管的漏极与源极连接;比较器的负输入端与第二釆样开关管的漏极相连,正输入端与参考电压相连;第一、第二釆样开关管处于闭合或断开的状态。

Description

电流过零检测装置、 信号获取电路及电路系统
技术领域
本发明涉及供电技术领域, 特别涉及一种电流过零检测装置、 过零电流 信号获取电路以及图腾柱无桥电路系统。
背景技术
单向中功率 PFC ( Power Factor Correction )整流技术的研究正朝着高效 率、 高功率密度的趋势发展, 图腾柱无桥 PFC拓朴即是顺应这种趋势而被提 出的, 如图 1所示。 在图腾柱无桥升压变换电路系统中: 第一桥臂单元、 第 二桥臂单元和电容 Co之间相互并联连接,且连接的一端接地; 第一桥臂单元 中有两个同向串联的工频开关管 S1和 S2; 第二桥臂单元中有两个同向串联 的开关管 S3和 S4; 在两个二极管的连接点与两个开关管的连接点之间连接 有交;克电源 Vin和电感 L。
在上述的图腾柱无桥 PFC电路系统中, 由于该拓朴结构本身的限制, 图 腾柱 PFC不能像双向开关无桥 PFC—样, 利用快恢复二极管的特性来改善 EMI ( Electro Magnetic Interference ), 同时 CCM ( Continous Conduction Mode ) 模式的硬开关特性使其并不能满足业界日益增长的高效率的需求, 因此本文 介绍的图腾柱无桥 PFC控制策略^^于 TCM ( triangular current mode )模式 的, 根据图腾柱简约的拓朴结构, 若控制其在 TCM模式下实现全输入电压、 全负载范围内的零电压开通(zero voltage switching, ZVS )特性或谷底开通 ( valley switching, VS )特性, 可以同时满足高功率密度、 高效率的要求。
然而, 在上述控制策略进行实践和研究的过程中, 本申请的申请人发现: 在相关的图腾柱变换电路系统中, 基于以上控制思路, 需要及时准确地检测 PFC的电感电流过零点信号, 用于实现工频开关管 Sl、 S2和高频开关管 S3、 S4的时序控制, 从而实现 TCM模式下全输入电压、 全负载范围内的 ZVS或 VS控制。 发明内容
本发明提供一种电流过零检测装置、 过零电流信号获取电路以及图腾柱 无桥电路系统, 以解决图腾柱无桥电路系统时序控制困难的技术问题。
本发明提供了一种电流过零检测装置, 该装置包括电流互感器、 第一釆 样开关管、 第二釆样开关管、 釆样电阻和比较器, 所述电流互感器包括原边 绕组和副边绕组; 其中:
所述原边绕组与被检测电路连接;
所述副边绕组的两端分别与第一釆样开关管和第二釆样开关管的漏极连 接;
所述第一釆样开关管的源极与第二釆样开关管的源极相连,且源极接地; 所述釆样电阻的两端分别与所述第二釆样开关管的漏极与源极连接; 所述比较器的负输入端与所述第二釆样开关管的漏极相连, 正输入端与 参考电压相连; 以及
所述第一、 第二釆样开关管处于闭合或断开的状态。
可选地, 所述装置还包括复位阻抗, 所述复位阻抗的两端分别与所述副 边绕组的两端连接。
可选地, 所述釆样开关管为绝缘栅型场效应管 (Mosfet ) , 或绝缘栅型 双极型晶体管 (IGBT ) , 或双极型晶体管 (BJT ) 。
本发明还提供了一种电流过零点信号获取电路, 该电路包括:
第一电流过零检测单元, 位于第一电路分支, 其设置成在交流输入电压 处于正半周时, 釆集流过所述第一电路分支的电流, 得到第一电路分支的电 流过零点信号;
第二电流过零检测单元, 位于第二电路分支, 其设置成在交流输入电压 处于负半周时, 釆集流过所述第一电路分支的电流, 并得到第二电路分支的 电流过零点信号; 以及
所述信号处理电路, 其设置成交流输入电压处于正半轴时选择第一电流 过零检测单元釆集的电流过零点信号; 交流输入电压处于负半周时选择第二 电流过零检测单元釆集的电流过零点信号。
可选地, 所述第一、 第二电流过零检测单元结构相同, 包括电流互感器、 第一釆样开关管、 第二釆样开关管、 釆样电阻和比较器, 所述电流互感器包 括原边绕组和副边绕组; 其中:
所述原边绕组与被检测电路连接;
所述副边绕组的两端分别与第一釆样开关管和第二釆样开关管的漏极连 接;
所述第一釆样开关管的源极与第二釆样开关管的源极相连,且源极接地; 所述釆样电阻的两端分别与所述第二釆样开关管的漏极与源极连接; 以 及
所述比较器的负输入端与所述第二釆样开关管的漏极相连, 正输入端与 参考电压相连。
可选地, 所述信号处理电路包括: 第一与门、 第二与门以及或门, 所述 第一与门的输入端与所述第一电流过零检测单元的输出端以及代表交流输入 电压极性的第一工频信号相连; 所述第二与门的输入端与所述第二电流过零 检测单元的输出端以及代表交流输入电压极性的第二工频信号相连; 所述或 门的输入端与所述第一与门与第二与门的输出端相连。
可选地, 所述第一、 第二电流过零检测单元还包括复位阻抗, 所述复位 阻抗的两端分别与所述副边绕组的两端连接。
本发明还提供了一种图腾柱无桥电路系统, 该系统包括: 第一桥臂单元 和第二桥臂单元, 所述第一桥臂单元和所述第二桥臂单元并联连接于第一并 联连接点和第二并联连接点之间, 所述第一桥臂单元包括同向串联的第一开 关管和第二开关管; 所述第二桥臂单元包括同向串联的第三开关管和第四开 关管; 在所述第一、 第二开关管间的第一连接点与所述第三、 第四开关管间 的第二连接点之间连接有电源和电感, 所述第二桥臂单元还包括:
第一电流过零检测单元、 第二电流过零检测单元和信号处理电路, 其中 第一电流过零检测单元与所述第三开关管串联于所述第一并联连接点和第二 连接点之间; 第二电流过零检测单元与所述第四开关管串联于第二并联连接 点和第二连接点之间; 信号处理电路连接第一电流过零检测单元和第二电流 过零检测单元;
第一电流过零检测单元, 其设置成在交流输入电压处于正半周且所述第 三开关管的体二极管导通时, 釆集流过所述第三开关管电流, 并得到其电流 过零点信号;
第二电流过零检测单元, 其设置成在交流输入电压处于负半周且所述第 四开关管的体二极管导通时, 釆集流过所述第四开关管电流, 并得到其电流 过零点信号;
所述信号处理电路, 其设置成交流输入电压处于正半轴时选择第一电流 过零检测单元釆集的电流过零点信号; 交流输入电压处于负半周时选择第二 电流过零检测单元釆集的电流过零点信号;
开关控制单元, 与所述信号处理电路以及第三、 第四开关管连接, 其设 置成根据所述信号处理电路输出的信号控制所述第三、 第四开关管的闭合或 断开。
可选地, 所述第一、 第二电流过零检测单元结构分别包括: 电流互感器、 第一釆样开关管、 第二釆样开关管、 釆样电阻和比较器, 所述电流互感器包 括原边绕组和副边绕组; 其中:
所述原边绕组与被检测电路连接;
所述副边绕组的两端分别与第一釆样开关管和第二釆样开关管的漏极连 接;
所述第一釆样开关管的源极与第二釆样开关管的源极相连,且源极接地; 所述釆样电阻的两端分别与所述第二釆样开关管的漏极与源极连接; 以 及
所述比较器的负输入端与所述第二釆样开关管的漏极相连, 正输入端与 参考电压相连。
可选地, 所述信号处理电路包括: 第一与门、 第二与门以及或门, 所述 第一与门的输入端与所述第一电流过零检测单元的输出端以及所述开关控制 单元输出的代表交流输入电压极性的第一工频信号相连; 所述第二与门的输 入端与所述第二电流过零检测单元的输出端以及所述开关控制单元输出的代 表交流输入电压极性的第二工频信号相连; 所述或门的输入端与所述第一与 门与第二与门的输出端相连。 可选地, 所述第一、 第二电流过零检测单元还包括复位阻抗, 所述复位 阻抗的两端分别与所述副边绕组的两端连接。
本发明实施例电流过零检测装置、 过零电流信号获取电路以及图腾柱无 桥电路系统, 通过釆集电流过零信号来控制开关管的断开和闭合, 可实现 TCM模式下全输入电压、全负载范围内的 ZVS或 VS控制,提高图腾柱无桥 PFC系统的效率。
附图概述
图 1是相关技术中图腾柱无桥 PFC系统的结构示意图;
图 2是本发明实施例提供的图腾柱无桥 PFC系统的结构示意图; 图 3是本发明实施例提供的图腾柱无桥 PFC系统的电流过零检测系统的 电路图;
图 4是本发明实施例提供的图腾柱无桥 PFC系统的电流过零检测单元工 作于交流正半周的电路图;
图 5是本发明实施例提供的图腾柱无桥 PFC系统的电流过零检测单元工 作于交流负半轴的电路图;
图 6是本发明实施例提供的图腾柱无桥 PFC系统的电流过零检测单元的 工作波形图;
图 7是本发明实施例提供的图腾柱无桥 PFC系统的信号处理电路的工作 波形图。
本发明的较佳实施方式
下面结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整的描述。 基于本发明中的实施例, 本领域普通技术人员在没有作出 创造性劳动前提下所获得的所有其它实施例, 都属于本发明保护的范围。 需 要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以 相互任意组合。
本发明实施例的图腾柱无桥 PFC电路系统, 结构示意图如图 2所示, 包 括:
并联连接于第一并联连接点 1和第二并联连接点 2之间的第一桥臂单元
10和第二桥臂单元 20, 所述第一桥臂单元 10中包括同向串联的第一开关管 110和第二开关管 120; 所述第二桥臂单元 20中包括同向串联的第三开关管 211和第四开关管 220; 在所述第一、 第二开关管 110、 120间的第一连接点 4与所述第三、 第四开关管 211、 220间的第二连接点 3之间连接有电源 Vin 和电感 L, 所述第二桥臂单元 20还包括:
第一、 第二电流过零检测单元 210、 221和信号处理电路 230, 其中第一 电流过零检测单元 210与所述两个开关管中的第三开关管 211 串联于所述第 一并联连接点 1和第二连接点 3之间; 第二电流过零检测单元 221与所述两 个开关管中的第四开关管 220串联于第二并联连接点 2和第二连接点 3之间; 信号处理电路 230连接第一电流过零检测单元 210和第二电流过零检测单元 221。
所述第一电流过零检测单元 210设置成在交流输入电压处于正半周且所 述第三开关管 211的体二极管导通时, 釆集流过所述第三开关管 211的体二 极管的电流, 并得到其电流过零点信号, 当所述第三开关管 211的体二极管 截止时, 释放所述第一电流过零检测单元 210釆集的能量;
所述第二电流过零检测单元设置成在交流输入电压处于负半周时且所述 第四开关管 220的体二极管导通时, 釆集流过所述第四开关管 220的体二极 管的电流, 并得到其电流过零点信号; 当所述第四开关管 220断开时, 释放 所述第二电流过零检测单元 221釆集的能量;
所述信号处理电路 230设置成交流输入电压处于正半轴时选择第一电流 过零检测单元 210釆集的电流过零点信号; 交流输入电压处于负半周时选择 第二电流过零检测单元 220釆集的电流过零点信号;
所述开关控制单元 30, 与所述第一开关管 110和第二开关管 120连接, 其设置成提供两个代表交流输入电压极性且上下互补的工频信号, 控制所述 第一开关管 110和所述第二开关管 120的闭合或断开; 与所述信号处理电路 230及第三开关管 211和第四开关管 220连接, 根据所述信号处理电路 230 输出的信号控制所述第三开关管 211或所述第四开关管 221的闭合或断开。
相应地, 第一电流过零检测单元 210及第二电流过零检测单元 221的电 流信号输出端与信号处理电路 230的输入端连接;且开关控制单元 30的两个 控制输出端给信号处理电路 230提供两个代表交流输入电压极性的工频信 号, 这两个控制输出端也直接与第一开关管 110和第二开关管 220连接, 另 两个控制输出端与第三开关管 211和所述第四开关管 221连接, 这样当交流 输入电压处于正半周时, 第二开关管 120—直导通, 而第三开关管 211的体 二极管则在导通或截止时, 第一电流过零检测单元 210相应的釆集电流或释 放能量, 同样负半周时第一开关管 110—直导通, 而第四开关管 220的体二 极管则在导通或截止时, 第二电流过零检测单元 221相应的釆集电流或释放 能量。
这样, 根据第一电流过零检测单元 210和第二电流过零检测单元 221的 电流过零信号经过信号处理电路 230在交流输入电压的不同极性下进行信号 选择后, 送入开关控制单元 30的控制输入端, 开关控制单元 30控制开关管 的闭合或断开, 如交流输入电压工作在正半周时, 开关控制单元 30控制第二 开关管 120导通, 同时根据信号处理电路 230的选择得到第一电流过零检测 单元 210的电流过零信号, 在该信号基础上加以预定延迟来控制第四开关管 220的开通。
相应地, 预定延迟根据所选 MOS管的反向恢复时间和谐振时间来设定。 第一电流过零检测单元 210与所述第二电流过零检测单元 221可以通过 相同的方法来实现, 如通过电流互感器等元器件来实现。 这样, 当交流输入 电源处于正半周时, 闭合第二开关管 120和第四开关管 220、 断开第三开关 管 211 , 这时电感 第四开关管 220、 第二开关极管 120及第二电流过零检 测单元 221构成储能回路, 此时第二电流过零检测单元 221不釆集所述第四 开关管 220的电流过零点信号, 电流互感器的副边绕组直接被釆样开关管短 路; 当对电感 L的储能完成后, 闭合第二开关管 120和第三开关管 211、 断 开第四开关管 220, 这时电感 第三开关管 211、 第二开关管 120及第一电 流过零检测单元 210构成续流回路, 释放电感 L上的能量, 此时第一电流过 零检测单元 210会釆集所述第三开关管 211的正向电流过零点信号, 且第二 电流过零检测单元 221中电流互感器的副边绕组仍处于短路状态。
当交流输入电源处于负半周时, 闭合第一开关管 110和第三开关管 211、 断开第四开关管 220, 这时第三开关管 211、 第一开关管 110、 电感 L及第一 电流过零检测单元 210构成储能回路, 此时第一电流过零检测单元 210不釆 集所述第三开关管 211的电流过零点信号, 其电流互感器的副边绕组直接被 釆样开关管短路; 当对电感 L的储能完成后, 闭合第一开关管 110和第四开 关管 220、 断开第三开关管 211 , 这时第四开关管 220、 第一开关管 110、 电 感 L及第二电流过零检测单元 221构成续流回路, 释放电感 L上的能量, 此 时第二电流过零检测单元 221釆集所述第四开关管 220的正向电流过零点信 号,且第一电流过零检测单元 210中电流互感器的副边绕组仍处于短路状态。
因此, 在整个工频周期内, 只需要釆样续流回路中流过开关管或开关管 体二极管的正向电流过零点信号。 即当交流输入电源处于正半周时, 只需要 第一电流过零检测单元 210釆集所述第三开关管 211的正向电流过零点信号; 当交流输入电源处于负半周时, 只需要第二电流过零检测单元 221釆集所述 第四开关管 220的正向电流过零点信号。
从上述电路系统的控制原理可以看出, 当交流输入电源处于正半周时, 需要控制第一电流过零检测单元 210釆样得到第三开关管 211的正向电流过 零点信号, 而第二电流过零检测单元 221不釆样零电流信号; 同理, 负半周 时第二电流过零检测单元 221釆样得到第四开关管 220的正向电流过零点信 号, 而第一电流过零检测单元 210不釆样零电流信号。
参考图 3、 图 4和图 5所示, 在一个具体的实施例中, 第一电流过零检 测单元 210和第二电流过零检测单元 221用相同的方式来实现。
其中第一电流过零检测单元 210包括:
电流互感器 CT1 , 两个釆样开关管 S11和 S12、 一个釆样电阻 R2和一个 比较器 T1 , 所述电流互感器 CT1包括原边绕组和副边绕组; 一个可选的复位 阻抗 R1 , 并联在所述电流互感器 CT1 副边绕组的两端, 但需要指出的是, Rl也可以不加。
两个所述釆样开关管 S11和 S12串联后与电流互感器的副边绕组并联; 其中第一釆样开关管 S11的漏极与副边绕组的一端相连,第一釆样开关管 S11 的源极与第二釆样开关管 S12的漏极相连, 第二釆样开关管 S12的源极与副 边绕组的另一端相连;所述釆样电阻 R2与第二釆样开关管 S12的漏极与源极 两端并联连接。
第二电流过零检测单元 221包括:
电流互感器 CT2, 两个釆样开关管 S21和 S22、 一个釆样电阻 R4、 和一 个比较器 T2, 所述电流互感器 CT2包括原边绕组和副边绕组; 一个可选的复 位阻抗 R3 , 并联在所述电流互感器 CT1副边绕组的两端, 但需要指出的是, R3也可以不加。
两个所述釆样开关管 S21和 S22串联后与电流互感器的副边绕组并联; 其中第一釆样开关管 S21的漏极与副边绕组的一端相连,第一釆样开关管 S21 的源极与第二釆样开关管 S22的漏极相连, 第二釆样开关管 S22的源极与副 边绕组的另一端相连;所述釆样电阻 R4与第二釆样开关管 S22的漏极与源极 两端并联连接。
以上所述比较器 T1和比较器 T2与信号处理电路 230连接, 当交流输入 电源处于正半周时,比较器 T1的输出端为第一电流过零检测单元 210釆样的 正向电流过零点信号; 当交流输入电源处于负半周时, 比较器 T2的输出端为 第二电流过零检测单元 221釆样的正向电流过零点信号。
一般地, 釆样开关管包括体二极管和寄生电容。 其中寄生电容用于起到 复位作用, 以达到伏秒平衡。
所述信号处理电路 230包括第一、 第二与门 Zl、 Z2和一个或门 Z3。 所 述第一与门 zi的输入端与所述第一电流过零检测单元 210的输出端以及所述 开关控制单元 30输出的代表交流输入电压极性的第一工频信号相连;所述第 二与门 Z2的输入端与所述第二电流过零检测单元 221的输出端以及所述开关 控制单元 30 输出的代表交流输入电压极性的第二工频信号相连; 所述或门 Z3的输入端与所述第一与门 Z1与第二与门 Z2的输出端相连。 相应地, 当交流输入电压分别处于正、 负半周时, 开关控制单元提供两 个代表交流输入电压极性的工频信号, 这两个工频信号分别与对应的电流过 零检测单元得到的过零信号相与后得到正负半周有效的电流过零信号, 然后 通过或门叠加得到全输入电压范围内的电流过零检测信号。
本实施例中的电流过零检测单元工作在交流输入电压的正半周时, 如图
4(a)、 4(b)和 4(c)所示。
第三开关管的电流过零检测单元工作原理如下: 在整个交流输入电压的 正半周, 控制第三开关管对应的釆样开关管 S11和 S12关断, 第四开关管对 应的釆样开关管 S21和 S22导通。 此时, 当第三开关管的体二极管导通时, 即电流互感器 CT1的原边绕组流过如图 4(a)所示的电流时, 电流互感器 CT1 的副边绕组感应出如图所示的电流, 电流互感器 CT1副边绕组,釆样电阻 R2 及釆样开关管 S11的体二极管组成釆样电路, 即图 4(a)中实线回路, 并按照 图中箭头方向釆集相连接的第三开关管上流过的电流; 在第三开关管关断期 间, 电流互感器 CT1的激磁电感所储存的能量, 通过釆样开关管 S11的寄生 电容复位, 如图 4(b)所示。 如 CT1副边绕组并联有图 3所示的可选复位阻抗 R1时, 激磁电感所储存的能量, 也可以同时通过 R1复位, 这里不再详细叙 述。
在正半周内, 电流互感器 CT2不需要釆集电流, 电流互感器 CT2的副边 绕组直接被釆样开关管 S21和 S22短路, 其工作状态如图 4(c)中所示。
本实施例中的电流过零检测单元工作在交流输入电压的负半周时, 如图
5(a)、 5(b)和 5(c)所示。
第四开关管的电流过零检测单元工作原理如下: 在整个交流输入电压的 负半周, 控制第四开关管对应的釆样开关管 S21和 S22关断, 第三开关管对 应的釆样开关管 S11和 S12导通。 此时, 第四开关管的体二极管导通, 即电 流互感器 CT2的原边绕组流过如图 5(a)所示的电流, 电流互感器 CT2的副边 绕组感应出如图所示的电流, 电流互感器 CT2副边绕组、 釆样电阻 R4及釆 样开关管 S21的体二极管组成釆样电路, 即图 5(a)中实线回路, 并按照图中 箭头方向釆集相连接的第四开关管上流过的电流; 在第四开关管关断期间, 电流互感器 CT2的激磁电感所储存的能量, 通过开关 S21的寄生电容复位, 如图 5(b)所示。 如 CT2副边绕组并联有图 3所示的可选复位阻抗 R3时, 激 磁电感所储存的能量, 也可以同时通过 R3复位, 这里不再详细叙述。
在负半周内, 电流互感器 CT1不需要釆集电流, 电流互感器 CT1的副边 绕组直接被釆样开关管 S11和 S12短路, 其工作状态如图 5(c)中所示。
根据以上的分析可知, 当图腾柱无桥 PFC工作在 TCM工作模式下, 电 流互感器只釆样其续流回路中开关管上流过的电流, 即只釆样电感电流下降 段的电流, 并据此得到电流过零信号, 其工作波形如图 6所示。 VCT1为工频 正半周内釆样电阻 R2的电压, VCT2为工频负半周内釆样电阻 R4的电压。将 该电压信号分别与比较器的参考电压 Vth进行比较, 当釆样电压小于 Vth时, 比较器翻转输出高电平, 从而得到电感电流下降段的过零检测信号, 该信号 可用于关断对应的续流开关管, 以及在此信号基础上加以一定的延迟开通主 开关管。
其中, 工频正半周内, 第三开关管为续流管, 第四开关管为主开关管, 工频负半周内, 正好相反, 第四开关管为续流管, 第三开关管为主开关管。
信号处理电路的工作波形如图 7所示: 交流输入电压 Vin为正半周时, 得到有效的零电流检测信号 Vzcdl , Vzcd2 为无效的信号, 相反, 交流输入 电压 Vin为负半周时, 得到有效的零电流检测信号 Vzcd2, 而 Vzcdl则为无 效的信号。 因此, 利用开关控制单元提供代表正半周和负半周的工频信号 VPS、 VNeg, 这两个信号即用来控制第一桥臂中第一开关管和第二开关管的开 通或闭合, 也用于分别将正负半周的无用信号屏蔽掉后, 得到正负半周均有 效的零电流检测信号 Vzcd。
综上所述, 本发明实施例的图腾柱无桥 PFC电路系统中, 包括信号处理 电路和开关控制单元, 在第二桥臂单元中增加了两个电流过零检测单元, 所 述开关控制单元通过第一电流过零检测单元和第二电流过零检测单元釆集的 正向电流过零点信号, 经过信号处理电路处理后得到的电流过零点信号, 用 于分别控制第二桥臂单元中的第三开关管和第四开关管的闭合或断开。 和相 关技术中图腾柱无桥 PFC电路系统相比, 本发明实施例的系统通过釆样电感 电流的零点信号来控制开关管的断开和闭合, 可实现 TCM模式下全输入电 压、 全负载范围内的 ZVS或 VS控制, 有效实现图腾柱无桥电路系统时序控 制, 提高图腾柱无桥 PFC系统的效率。
本发明实施例还提供了一种电流过零检测装置, 如图 3所示, 该装置包 括电流互感器、 第一釆样开关管、 第二釆样开关管、 釆样电阻和比较器, 所 述电流互感器包括原边绕组和副边绕组; 其中:
所述原边绕组与被检测电路连接;
所述副边绕组的两端分别与第一釆样开关管和第二釆样开关管的漏极连 接;
所述第一釆样开关管的源极与第二釆样开关管的源极相连,且源极接地; 所述釆样电阻的两端分别与所述第二釆样开关管的漏极与源极连接; 所述比较器的负输入端与所述第二釆样开关管的漏极相连, 正输入端与 参考电压相连;
所述第一、 第二釆样开关管处于闭合或断开的状态。
可选地, 所述装置还包括复位阻抗, 所述复位阻抗的两端分别与所述副 边绕组的两端连接。
所述釆样开关管为绝缘栅型场效应管 (Mosfet ) , 或绝缘栅型双极型晶 体管 (IGBT ) , 或双极型晶体管 (BJT ) 。
另外, 本发明实施例还提供了一种电流过零点信号获取电路, 该电路包 括:
第一电流过零检测单元, 位于第一电路分支, 其设置成在交流输入电压 处于正半周时, 釆集流过所述第一电路分支的电流, 得到第一电路分支的电 流过零点信号;
第二电流过零检测单元, 位于第二电路分支, 其设置成在交流输入电压 处于负半周时, 釆集流过所述第一电路分支的电流, 并得到第二电路分支的 电流过零点信号;
所述信号处理电路, 其设置成交流输入电压处于正半轴时选择第一电流 过零检测单元釆集的电流过零点信号; 交流输入电压处于负半周时选择第二 电流过零检测单元釆集的电流过零点信号。 所述第一、 第二电流过零检测单元结构相同, 包括电流互感器、 第一釆 样开关管、 第二釆样开关管、 釆样电阻和比较器, 所述电流互感器包括原边 绕组和副边绕组; 其中:
所述原边绕组与被检测电路连接;
所述副边绕组的两端分别与第一釆样开关管和第二釆样开关管的漏极连 接;
所述第一釆样开关管的源极与第二釆样开关管的源极相连,且源极接地; 所述釆样电阻的两端分别与所述第二釆样开关管的漏极与源极连接; 所述比较器的负输入端与所述第二釆样开关管的漏极相连, 正输入端与 参考电压相连;
可选地, 所述信号处理电路第一与门、 第二与门以及或门, 所述第一与 门的输入端与所述第一电流过零检测单元的输出端以及代表交流输入电压极 性的第一工频信号相连; 所述第二与门的输入端与所述第二电流过零检测单 元的输出端以及代表交流输入电压极性的第二工频信号相连; 所述或门的输 入端与所述第一与门与第二与门的输出端相连。
所述第一、 第二电流过零检测单元还包括复位阻抗, 所述复位阻抗的两 端分别与所述副边绕组的两端连接。 本发明实施例的电流过零检测装置可以釆集交流电的电流过零信号, 即 通过电流互感器副边绕组、 两个釆样开关管、 一个釆样电阻及一个比较器组 成的储能电路, 来釆集电流过零信号。
认定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的专业 技术人员而言, 在不脱离本发明构思的前提下, 依据本发明的技术实质对以 上实施例所作的任何简单推演或替换, 均仍属于本发明的保护范围。
工业实用性 本发明实施例电流过零检测装置、 过零电流信号获取电路以及图腾柱无 桥电路系统, 通过釆集电流过零信号来控制开关管的断开和闭合, 可实现
TCM模式下全输入电压、全负载范围内的 ZVS或 VS控制,提高图腾柱无桥 PFC系统的效率。

Claims

权 利 要 求 书
1、 一种电流过零检测装置, 包括: 电流互感器、 第一釆样开关管、 第二 釆样开关管、 釆样电阻和比较器, 所述电流互感器包括原边绕组和副边绕组; 其中:
所述原边绕组与被检测电路连接;
所述副边绕组的两端分别与第一釆样开关管和第二釆样开关管的漏极连 接;
所述第一釆样开关管的源极与第二釆样开关管的源极相连,且源极接地; 所述釆样电阻的两端分别与所述第二釆样开关管的漏极与源极连接; 所述比较器的负输入端与所述第二釆样开关管的漏极相连, 正输入端与 参考电压相连; 以及
所述第一、 第二釆样开关管处于闭合或断开的状态。
2、 如权利要求 1所述的装置, 其中: 所述装置还包括复位阻抗, 所述复 位阻抗的两端分别与所述副边绕组的两端连接。
3、 如权利要求 1所述的装置, 其中, 所述釆样开关管为绝缘栅型场效应 管(Mosfet ) , 或绝缘栅型双极型晶体管(IGBT ) , 或双极型晶体管(BJT )。
4、 一种电流过零点信号获取电路, 包括:
第一电流过零检测单元, 位于第一电路分支, 其设置成在交流输入电压 处于正半周时, 釆集流过所述第一电路分支的电流, 得到第一电路分支的电 流过零点信号;
第二电流过零检测单元, 位于第二电路分支, 其设置成在交流输入电压 处于负半周时, 釆集流过所述第一电路分支的电流, 并得到第二电路分支的 电流过零点信号; 以及
所述信号处理电路, 其设置成交流输入电压处于正半轴时选择第一电流 过零检测单元釆集的电流过零点信号; 交流输入电压处于负半周时选择第二 电流过零检测单元釆集的电流过零点信号。
5、 如权利要求 4所述的电路, 其中: 所述第一、 第二电流过零检测单元 结构相同, 包括电流互感器、 第一釆样开关管、 第二釆样开关管、 釆样电阻 和比较器, 所述电流互感器包括原边绕组和副边绕组; 其中:
所述原边绕组与被检测电路连接;
所述副边绕组的两端分别与第一釆样开关管和第二釆样开关管的漏极连 接;
所述第一釆样开关管的源极与第二釆样开关管的源极相连,且源极接地; 所述釆样电阻的两端分别与所述第二釆样开关管的漏极与源极连接; 以 及
所述比较器的负输入端与所述第二釆样开关管的漏极相连, 正输入端与 参考电压相连。
6、如权利要求 4所述的电路,其中, 所述信号处理电路包括: 第一与门、 第二与门以及或门, 所述第一与门的输入端与所述第一电流过零检测单元的 输出端以及代表交流输入电压极性的第一工频信号相连; 所述第二与门的输 入端与所述第二电流过零检测单元的输出端以及代表交流输入电压极性的第 二工频信号相连; 所述或门的输入端与所述第一与门与第二与门的输出端相 连。
7、 如权利要求 4所述的电路, 其中: 所述第一、 第二电流过零检测单元 还包括复位阻抗, 所述复位阻抗的两端分别与所述副边绕组的两端连接。
8、 一种图腾柱无桥电路系统, 包括: 第一桥臂单元和第二桥臂单元, 所 述第一桥臂单元和所述第二桥臂单元并联连接于第一并联连接点和第二并联 连接点之间, 其中, 所述第一桥臂单元包括同向串联的第一开关管和第二开 关管; 所述第二桥臂单元包括同向串联的第三开关管和第四开关管; 在所述 第一、 第二开关管间的第一连接点与所述第三、 第四开关管间的第二连接点 之间连接有电源和电感, 所述第二桥臂单元还包括:
第一电流过零检测单元、 第二电流过零检测单元和信号处理电路, 其中 第一电流过零检测单元与所述第三开关管串联于所述第一并联连接点和第二 连接点之间; 第二电流过零检测单元与所述第四开关管串联于第二并联连接 点和第二连接点之间; 信号处理电路连接第一电流过零检测单元和第二电流 过零检测单元;
第一电流过零检测单元, 其设置成在交流输入电压处于正半周且所述第 三开关管的体二极管导通时, 釆集流过所述第三开关管电流, 并得到其电流 过零点信号;
第二电流过零检测单元, 其设置成在交流输入电压处于负半周且所述第 四开关管的体二极管导通时, 釆集流过所述第四开关管电流, 并得到其电流 过零点信号;
所述信号处理电路, 其设置成交流输入电压处于正半轴时选择第一电流 过零检测单元釆集的电流过零点信号; 交流输入电压处于负半周时选择第二 电流过零检测单元釆集的电流过零点信号; 以及
开关控制单元, 与所述信号处理电路以及第三、 第四开关管连接, 其设 置成根据所述信号处理电路输出的信号控制所述第三、 第四开关管的闭合或 断开。
9、 如权利要求 8所述的电路系统, 其中, 所述第一、 第二电流过零检测 单元结构分别包括: 电流互感器、 第一釆样开关管、 第二釆样开关管、 釆样 电阻和比较器, 所述电流互感器包括原边绕组和副边绕组; 其中:
所述原边绕组与被检测电路连接;
所述副边绕组的两端分别与第一釆样开关管和第二釆样开关管的漏极连 接;
所述第一釆样开关管的源极与第二釆样开关管的源极相连,且源极接地; 所述釆样电阻的两端分别与所述第二釆样开关管的漏极与源极连接; 以 及
所述比较器的负输入端与所述第二釆样开关管的漏极相连, 正输入端与 参考电压相连。
10、 如权利要求 8所述的电路系统, 其中, 所述信号处理电路包括: 第 一与门、 第二与门以及或门, 所述第一与门的输入端与所述第一电流过零检 测单元的输出端以及所述开关控制单元输出的代表交流输入电压极性的第一 工频信号相连; 所述第二与门的输入端与所述第二电流过零检测单元的输出 端以及所述开关控制单元输出的代表交流输入电压极性的第二工频信号相 连; 所述或门的输入端与所述第一与门与第二与门的输出端相连。
11、 如权利要求 8所述的电路系统, 其中: 所述第一、 第二电流过零检 测单元还包括: 复位阻抗, 所述复位阻抗的两端分别与所述副边绕组的两端 连接。
PCT/CN2014/077218 2013-06-09 2014-05-12 电流过零检测装置、信号获取电路及电路系统 WO2014198172A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/896,668 US9577512B2 (en) 2013-06-09 2014-04-25 Current zero-cross detection device, signal acquisition circuit, and circuit system
ES14810727T ES2762537T3 (es) 2013-06-09 2014-05-12 Dispositivo de detección de cruce por cero de corriente, circuito de obtención de señal y sistema de circuito
EP14810727.9A EP2995963B1 (en) 2013-06-09 2014-05-12 Current zero-cross detection device, signal acquisition circuit, and circuit system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310231150.9 2013-06-09
CN201310231150.9A CN104237615B (zh) 2013-06-09 2013-06-09 电流过零检测装置、信号获取电路及电路系统

Publications (1)

Publication Number Publication Date
WO2014198172A1 true WO2014198172A1 (zh) 2014-12-18

Family

ID=52021634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077218 WO2014198172A1 (zh) 2013-06-09 2014-05-12 电流过零检测装置、信号获取电路及电路系统

Country Status (6)

Country Link
US (1) US9577512B2 (zh)
EP (1) EP2995963B1 (zh)
CN (1) CN104237615B (zh)
ES (1) ES2762537T3 (zh)
MY (1) MY187621A (zh)
WO (1) WO2014198172A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105842527A (zh) * 2016-06-08 2016-08-10 江苏现代电力科技股份有限公司 抗干扰高精度过零检测装置
CN110579639A (zh) * 2019-10-08 2019-12-17 苏州博创集成电路设计有限公司 一种市电过零检测电路及应用该电路的开关电源系统

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104518656B (zh) * 2013-10-08 2018-10-12 南京中兴软件有限责任公司 图腾柱无桥功率因数校正软开关控制装置和方法
US9680382B2 (en) * 2015-08-03 2017-06-13 Power Integrations, Inc. Input frequency measurement
DE102015116995A1 (de) * 2015-10-06 2017-04-06 Infineon Technologies Austria Ag Schaltung zur Leistungsfaktorkorrektur und Verfahren zum Betrieb
US9941784B1 (en) * 2015-11-02 2018-04-10 Bel Power Solutions Inc. Power factor correction current sense with shunt switching circuit
CN105634295B (zh) * 2016-01-27 2019-04-09 深圳慧能泰半导体科技有限公司 一种电流采样电路及图腾柱无桥电路电流采样系统
CN105759108B (zh) * 2016-04-27 2018-11-20 深圳大学 一种提高crm pfc的零电压检测回路可靠性的电路及电子设备
CN107465336A (zh) * 2016-06-02 2017-12-12 中兴通讯股份有限公司 图腾无桥电路的驱动控制方法、驱动控制电路及系统
CN106383264B (zh) * 2016-06-08 2019-06-14 江苏现代电力科技股份有限公司 抗干扰高精度过零检测方法
US9923455B2 (en) * 2016-06-15 2018-03-20 Murata Manufacturing Co., Ltd. Current-sensing and gain-switching circuit and method for using wide range of current
JP6798802B2 (ja) * 2016-06-28 2020-12-09 日立ジョンソンコントロールズ空調株式会社 直流電源装置および空気調和機
CN106685206A (zh) * 2016-08-31 2017-05-17 株式会社村田制作所 功率因数校正装置及其控制方法以及电子设备
WO2018072209A1 (zh) * 2016-10-21 2018-04-26 北京小米移动软件有限公司 充电方法及电子设备
CN106771533B (zh) * 2017-03-15 2019-05-10 南京航空航天大学 一种基于磁隔离可反映直流偏置状态的交流电流检测电路
CN107482929B (zh) * 2017-07-25 2023-03-31 深圳慧能泰半导体科技有限公司 开关控制方法、控制器、图腾柱无桥系统及电子设备
CN107302304B (zh) * 2017-08-21 2023-04-07 深圳慧能泰半导体科技有限公司 一种开关控制方法及数字控制器
EP3484033B1 (en) 2017-11-14 2023-06-07 Delta Electronics (Thailand) Public Co., Ltd. Current measurement circuit
CN107994789A (zh) * 2017-11-24 2018-05-04 浙江大学 一种基于无桥pfc和llc谐振的隔离型集成式ac-dc变换器
CN109900953A (zh) * 2017-12-11 2019-06-18 上海宝康电子控制工程有限公司 用于检测道路交通信号机中的多路输出信号的电路结构
CN108809075B (zh) * 2018-06-01 2020-04-21 广东美的制冷设备有限公司 图腾柱pfc电路、脉宽控制方法、空调器及存储介质
CN108872695B (zh) * 2018-07-04 2020-08-14 广东省测试分析研究所(中国广州分析测试中心) 双相过零信号检测电路及光纤信号传输系统
CN112003454A (zh) * 2019-05-27 2020-11-27 恩智浦美国有限公司 具有零电流检测电路的无桥功率因数校正转换器
CN110308315A (zh) * 2019-07-30 2019-10-08 广州金升阳科技有限公司 一种电流互感器采样电路
US20220123668A1 (en) * 2019-10-10 2022-04-21 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion device
CN111049368B (zh) * 2019-12-16 2021-02-26 深圳麦格米特电气股份有限公司 一种软开关控制方法、图腾柱无桥电路及图腾柱无桥系统
CN113131734A (zh) * 2019-12-31 2021-07-16 华为技术有限公司 电流检测装置和功率因数矫正装置
CN111044772B (zh) * 2019-12-31 2022-05-20 广州金升阳科技有限公司 一种电流采样电路及控制方法
CN111413538B (zh) * 2020-03-31 2022-12-20 西安许继电力电子技术有限公司 无线充电接收侧无桥拓扑电流过零点检测电路及检测方法
GB2596801B (en) * 2020-07-03 2023-01-04 Raytheon Systems Ltd Bridge rectifier operation and power factor correction circuit
CN111856116A (zh) * 2020-07-21 2020-10-30 广州金升阳科技有限公司 一种无桥pfc电流采样电路及其应用
CN112039315B (zh) * 2020-08-03 2021-11-05 杭州中恒电气股份有限公司 过零检测电路、pfc电路及两路交错并联pfc电路
CN112366947A (zh) * 2020-11-02 2021-02-12 杭州瑞旗电子科技有限公司 一种高增益llc谐振变换器的控制电路
CN114665699A (zh) * 2020-12-23 2022-06-24 台达电子企业管理(上海)有限公司 功率因数校正转换器及其控制方法
CN113252972A (zh) * 2021-07-02 2021-08-13 深圳市高斯宝电气技术有限公司 一种无桥pfc电感电流过零检测电路
CN114123756A (zh) * 2021-11-24 2022-03-01 成都芯源系统有限公司 一种图腾柱pfc电路及其控制电路和控制方法
CN113890328B (zh) * 2021-12-08 2022-03-11 成都天核科技有限公司 一种基于GaN功率件的三相交错并联PFC电路
CN117254674B (zh) * 2023-11-20 2024-02-09 珠海镓未来科技有限公司 Pfc驱动控制模组及功率因数校正装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1855658A (zh) * 2005-03-31 2006-11-01 国际整流器公司 无桥路升压pfc电路的、使用单变流器的电流检测方法
CN101707441A (zh) * 2009-11-26 2010-05-12 华为技术有限公司 图腾柱无桥电路系统及电流采样装置
CN101728964A (zh) * 2010-01-12 2010-06-09 浙江大学 单电感三电平无桥功率因数校正变换器
CN102520232A (zh) * 2009-11-26 2012-06-27 华为技术有限公司 电流采样装置
CN102545582A (zh) * 2012-02-09 2012-07-04 华为技术有限公司 无桥功率因数校正电路及其控制方法
CN102647099A (zh) * 2011-02-22 2012-08-22 艾默生网络能源系统北美公司 一种组合开关以及同步整流电路

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5521807A (en) * 1992-12-31 1996-05-28 Interpoint Corporation DC-To-DC converter with secondary flyback core reset
US20030080723A1 (en) * 2001-10-31 2003-05-01 Qing Chen Average current estimation scheme for switching mode power supplies
CN2864700Y (zh) * 2005-11-01 2007-01-31 海信集团有限公司 过零检测电路及采用过零检测电路的冰箱
AU2006324378B2 (en) * 2005-12-12 2013-05-02 Clipsal Australia Pty Ltd Current zero crossing detector in a dimmer circuit
TWI364641B (en) * 2008-03-11 2012-05-21 Delta Electronics Inc Bridgeless pfc system for critical conduction mode and controlling method thereof
US8717791B2 (en) * 2009-09-30 2014-05-06 Astec International Limited Bridgeless boost PFC circuits and systems
CN102299649B (zh) * 2010-06-24 2015-11-25 盛飞 电源变换器
JP2012070490A (ja) * 2010-09-21 2012-04-05 Tdk Corp ブリッジレス力率改善コンバータ
CN102185504A (zh) * 2011-05-17 2011-09-14 成都芯源系统有限公司 电源电路及控制电源电路的方法
US9036376B2 (en) * 2011-11-14 2015-05-19 Cognipower, Llc Switched-mode compound power converter with main and supplemental regulators

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1855658A (zh) * 2005-03-31 2006-11-01 国际整流器公司 无桥路升压pfc电路的、使用单变流器的电流检测方法
CN101707441A (zh) * 2009-11-26 2010-05-12 华为技术有限公司 图腾柱无桥电路系统及电流采样装置
CN102520232A (zh) * 2009-11-26 2012-06-27 华为技术有限公司 电流采样装置
CN101728964A (zh) * 2010-01-12 2010-06-09 浙江大学 单电感三电平无桥功率因数校正变换器
CN102647099A (zh) * 2011-02-22 2012-08-22 艾默生网络能源系统北美公司 一种组合开关以及同步整流电路
CN102545582A (zh) * 2012-02-09 2012-07-04 华为技术有限公司 无桥功率因数校正电路及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2995963A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105842527A (zh) * 2016-06-08 2016-08-10 江苏现代电力科技股份有限公司 抗干扰高精度过零检测装置
CN105842527B (zh) * 2016-06-08 2018-10-16 江苏现代电力科技股份有限公司 抗干扰高精度过零检测装置
CN110579639A (zh) * 2019-10-08 2019-12-17 苏州博创集成电路设计有限公司 一种市电过零检测电路及应用该电路的开关电源系统
CN110579639B (zh) * 2019-10-08 2024-04-02 苏州博创集成电路设计有限公司 一种市电过零检测电路及应用该电路的开关电源系统

Also Published As

Publication number Publication date
ES2762537T3 (es) 2020-05-25
CN104237615B (zh) 2019-03-12
EP2995963A1 (en) 2016-03-16
MY187621A (en) 2021-10-04
US9577512B2 (en) 2017-02-21
CN104237615A (zh) 2014-12-24
EP2995963A4 (en) 2017-04-12
EP2995963B1 (en) 2019-09-18
US20160134185A1 (en) 2016-05-12

Similar Documents

Publication Publication Date Title
WO2014198172A1 (zh) 电流过零检测装置、信号获取电路及电路系统
US9899909B2 (en) Control device and method of totem-pole bridgeless PFC soft switch
TWI517545B (zh) 雙向直流變換器
TWI436574B (zh) 直流交流轉換器
WO2011063685A1 (zh) 图腾柱无桥电路系统及电流采样装置
WO2015161634A1 (zh) 一种pfc电路的电感电流检测方法及装置
CN110365203B (zh) 电流采样电路、电流过零检测电路、图腾柱无桥pfc电路及其控制方法
CN107070195A (zh) 半工频周期谐振软开关结构的图腾柱功率因数校正电路
TW201304381A (zh) 電源電路及電源電路的控制方法
WO2011000262A1 (zh) 无桥功率因数校正电路及其控制方法
TWI481181B (zh) 直流轉交流電力轉換裝置及其方法
CN107147296A (zh) 一种带下拉有源钳位支路的隔离型dc‑dc升压变换器
CN105846667A (zh) 功率因数校正pfc电路及其电流采样装置
CN101958550B (zh) 具电流检测电路的无桥功率因子校正电路系统及其方法
CN104242658B (zh) 开关电源的谷底导通数字控制电路
CN103825475A (zh) 提高车载充电机功率因数的电路及控制方法
CN107017779A (zh) 一种带下拉有源钳位支路的隔离型dc‑dc升压变换器控制方法
WO2021237699A1 (zh) 一种无桥功率因数校正pfc电路
CN105375740B (zh) 功率转换电路
CN111541368A (zh) 一种图腾柱无桥pfc电路系统及电流采样电路
CN207968333U (zh) 一种llc谐振变换器及其控制电路、谐振电流采样电路
TWI613881B (zh) 圖騰柱功率因數校正電路
CN108418433A (zh) 一种llc谐振变换器及其控制电路、谐振电流采样电路
CN212367124U (zh) 一种图腾柱无桥pfc电路系统及电流采样电路
CN206698109U (zh) 一种电流采样电路及无桥整流系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810727

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14896668

Country of ref document: US

Ref document number: 2014810727

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201600033

Country of ref document: ID