WO2014196515A1 - Curable epoxy resin composition - Google Patents

Curable epoxy resin composition Download PDF

Info

Publication number
WO2014196515A1
WO2014196515A1 PCT/JP2014/064696 JP2014064696W WO2014196515A1 WO 2014196515 A1 WO2014196515 A1 WO 2014196515A1 JP 2014064696 W JP2014064696 W JP 2014064696W WO 2014196515 A1 WO2014196515 A1 WO 2014196515A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
epoxy resin
curable epoxy
compound
group
Prior art date
Application number
PCT/JP2014/064696
Other languages
French (fr)
Japanese (ja)
Inventor
▲高▼林尚史
鈴木弘世
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to JP2015521447A priority Critical patent/JP6460985B2/en
Publication of WO2014196515A1 publication Critical patent/WO2014196515A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/26Di-epoxy compounds heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/06Triglycidylisocyanurates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a curable epoxy resin composition, a cured product obtained by curing the curable epoxy resin composition, and an optical semiconductor device in which an optical semiconductor element is sealed with a cured product of the curable epoxy resin composition About.
  • a sealing agent for forming a sealing material having high heat resistance for example, a composition containing monoallyl diglycidyl isocyanurate and a bisphenol A type epoxy resin is known (see Patent Document 1).
  • the coloring of the sealant proceeds by light and heat emitted from the optical semiconductor element and should be output originally. As a result, the light is absorbed, and as a result, the intensity of the light output from the optical semiconductor device is lowered with time.
  • -Liquid alicyclic epoxy resins having an alicyclic skeleton such as an adduct of epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate and ⁇ -caprolactone and 1,2,8,9-diepoxylimonene are known. ing.
  • the cured products of these alicyclic epoxy resins are vulnerable to various stresses, and cracks occur when a thermal shock such as a cooling cycle (repeating heating and cooling periodically) is applied. Etc. had occurred.
  • the sealing material for the optical semiconductor element in the optical semiconductor device is high enough not to be peeled off from the lead frame or electrode of the optical semiconductor device even when a stimulus such as high temperature or long-time heating or thermal shock is applied. It is required to have adhesion. This is because if the sealing material is peeled off from the lead frame or electrode of the optical semiconductor device, the quality of the optical semiconductor device is significantly deteriorated.
  • the object of the present invention is to have high transparency, heat resistance, and light resistance, particularly high adhesion, and thermal shock resistance (characteristic that does not easily cause defects such as cracks when a thermal shock is applied).
  • An object of the present invention is to provide a curable epoxy resin composition that can form a cured product excellent in the optical semiconductor device and can improve the durability of the optical semiconductor device by being used as a sealant in the optical semiconductor device.
  • Another object of the present invention is to provide a cured product having high transparency, heat resistance and light resistance, particularly high adhesion and excellent thermal shock resistance.
  • Another object of the present invention is to provide an optical semiconductor device with excellent durability that is less likely to cause a decrease in luminous intensity even when a thermal shock or high-temperature heat is applied.
  • an alicyclic epoxy compound an isocyanuric acid derivative having one or more oxirane rings in the molecule, and one or more oxetane rings in the molecule.
  • the curable epoxy resin composition containing an oxetane compound as an essential component has high transparency, heat resistance, and light resistance, and can form a cured product having particularly high adhesion and excellent thermal shock resistance. It has been found that the durability of an optical semiconductor device can be improved by using it as a sealant in an optical semiconductor device, and the present invention has been completed.
  • the present invention relates to an alicyclic epoxy compound (A), an isocyanuric acid derivative (B) having one or more oxirane rings in the molecule, and an oxetane compound (C) having one or more oxetane rings in the molecule. And a curable epoxy resin composition.
  • isocyanuric acid derivative (B) is represented by the following formula (1-1): [Wherein R 1 and R 2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. ]
  • the said curable epoxy resin composition which is a compound represented by these is provided.
  • the curable epoxy resin composition is provided wherein the oxetane compound (C) is an oxetane compound (C1) having one or more oxetane rings and one hydroxyl group in the molecule.
  • the curable epoxy resin composition is provided in which the alicyclic epoxy compound (A) is a compound having a cyclohexene oxide group.
  • the alicyclic epoxy compound (A) has the following formula (I-1)
  • the said curable epoxy resin composition which is a compound represented by these is provided.
  • the curable epoxy resin composition containing the curing catalyst (D) is provided.
  • the curable epoxy resin composition containing a curing agent (E) and a curing accelerator (F) is provided.
  • the curable epoxy resin composition containing an inorganic filler (G) is provided.
  • the curable epoxy resin composition is provided wherein the inorganic filler (G) is a glass filler.
  • the present invention also provides a cured product obtained by curing the curable epoxy resin composition.
  • the said curable epoxy resin composition which is a resin composition for optical semiconductor sealing is provided.
  • the present invention also provides an optical semiconductor device in which an optical semiconductor element is sealed with a cured product of the curable epoxy resin composition.
  • a curable epoxy resin composition comprising: (2) Isocyanuric acid derivative (B) is represented by the following formula (1-1) [Wherein R 1 and R 2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. ] The curable epoxy resin composition as described in (1) which is a compound represented by these.
  • the alicyclic epoxy compound (A) is represented by the following formula (I-1)
  • the content of the alicyclic epoxy compound (A) is preferably 5 to 95% by weight, more preferably 10 to 90% by weight, and still more preferably based on the curable epoxy resin composition (100% by weight).
  • the ratio of the alicyclic epoxy compound (A) to the total amount of the cationic curable compound (total cationic curable compound) contained in the curable epoxy resin composition is preferably 10 to 95% by weight, more preferably 20%.
  • the content of the isocyanuric acid derivative (B) is preferably 5 to 100 parts by weight, more preferably 8 to 80 parts by weight, and still more preferably 10 parts per 100 parts by weight of the alicyclic epoxy compound (A).
  • the ratio of the isocyanuric acid derivative (B) to the total amount (100% by weight) of the cationic curable compound contained in the curable epoxy resin composition is preferably 1 to 40% by weight, more preferably 5 to 30% by weight.
  • Oxetane compound (C) is 3,3-bis (vinyloxymethyl) oxetane, 3-methyl-3- (hydroxymethyl) oxetane, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane, 3 -Ethyl-3- (hydroxymethyl) oxetane, 3-ethyl-3-[(phenoxy) methyl] oxetane, 3-ethyl-3- (hexyloxymethyl) oxetane, 3-ethyl-3- (chloromethyl) oxetane, 3,3-bis (chloromethyl) oxetane, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, bis ⁇ [1-ethyl (3-ox)
  • the oxetane compound (C) is at least one selected from the group consisting of 3-ethyl-3- (hydroxymethyl) oxetane and 3-methyl-3- (hydroxymethyl) oxetane.
  • the content of the oxetane compound (C) is preferably 10 to 150 parts by weight, more preferably 15 to 125 parts by weight, and still more preferably 20 to 120 parts by weight with respect to 100 parts by weight of the alicyclic epoxy compound (A).
  • the curing catalyst (D) is at least one selected from the group consisting of a photocationic polymerization initiator, a thermal cationic polymerization initiator, a Lewis acid / amine complex, a Bronsted acid salt, and an imidazole (13 ) Curable epoxy resin composition.
  • the content of the curing catalyst (D) is preferably from 0.01 to 15 parts by weight, more preferably from 0.1 to 15 parts by weight based on 100 parts by weight of the total amount of the cationic curable compounds contained in the curable epoxy resin composition.
  • the curing agent (E) is an acid anhydride (acid anhydride curing agent), an amine (amine curing agent), a polyamide resin, an imidazole (imidazole curing agent), or a polymercaptan (polymercaptan).
  • Curable epoxy resin composition according to (16) which is at least one selected from the group consisting of (system curing agents), phenols (phenolic curing agents), polycarboxylic acids, dicyandiamides, and organic acid hydrazides.
  • the content of the curing agent (E) is preferably 50 to 200 parts by weight, more preferably 80 to 150 parts by weight with respect to 100 parts by weight of the total amount of the cationic curable compounds contained in the curable epoxy resin composition.
  • the curing accelerator (F) is 1,8-diazabicyclo [5.4.0] undecene-7 (DBU) or a salt thereof (eg, phenol salt, octylate, p-toluenesulfonate, formic acid Salt, tetraphenylborate salt, etc.); 1,5-diazabicyclo [4.3.0] nonene-5 (DBN) or a salt thereof (eg, phenol salt, octylate, p-toluenesulfonate, formate, Tetraphenylborate salts, etc.); tertiary amines such as benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, N, N-dimethylcyclohexylamine; 2-ethyl-4-methylimidazole, 1-cyanoethyl Imidazoles such as -2-ethyl-4-methylimidazole; phosphate esters;
  • the content of the curing accelerator (F) is preferably 0.01 to 5 parts by weight, more preferably 0 with respect to 100 parts by weight of the total amount of the cationic curable compounds contained in the curable epoxy resin composition.
  • the content of the inorganic filler (G) is preferably 1 to 25 parts by weight, more preferably 3 to 20 parts by weight, and further preferably 5 to 15 parts by weight with respect to 100 parts by weight of the total amount of the cationic curable compound.
  • the content of the inorganic filler (G) is preferably 1 to 50 parts by weight, more preferably 2 to 40 parts by weight, even more preferably 3 to 3 parts by weight with respect to 100 parts by weight of the alicyclic epoxy compound (A).
  • the curable epoxy resin composition of the present invention Since the curable epoxy resin composition of the present invention has the above configuration, it is cured to form a cured product having high transparency, heat resistance, and light resistance, particularly high adhesion and excellent thermal shock resistance. it can. For this reason, by using the curable epoxy resin composition of the present invention as a sealing agent (an optical semiconductor sealing resin composition) in an optical semiconductor device, the luminous intensity is lowered even when thermal shock or high temperature heat is applied. It is possible to obtain an optical semiconductor device excellent in durability, which is less likely to occur.
  • a sealing agent an optical semiconductor sealing resin composition
  • FIG. 1 It is the schematic which shows one Embodiment of the optical semiconductor device by which the optical semiconductor element was sealed with the hardened
  • the left figure (a) is a perspective view, and the right figure (b) is a sectional view.
  • the curable epoxy resin composition of the present invention comprises an alicyclic epoxy compound (A) (sometimes referred to as “component (A)”) and an isocyanuric acid derivative (B) having one or more oxirane rings in the molecule. ) (Sometimes referred to as “isocyanuric acid derivative (B)” or “component (B)”) and an oxetane compound (C) having one or more oxetane rings in the molecule (“oxetane compound (C)” or A composition (which may be referred to as “component (C)”) as an essential component (curable composition).
  • the alicyclic epoxy compound (A) in the curable epoxy resin composition of the present invention is a compound having at least an alicyclic (aliphatic ring) structure and an epoxy group in the molecule (in one molecule).
  • the alicyclic epoxy compound (A) specifically, (i) a compound having an epoxy group (alicyclic epoxy group) composed of two adjacent carbon atoms and oxygen atoms constituting the alicyclic ring, (Ii) A compound in which an epoxy group is directly bonded to the alicyclic ring with a single bond, and the like.
  • the isocyanuric acid derivative (B) described later is not included in the alicyclic epoxy compound (A).
  • the compound having an epoxy group (alicyclic epoxy group) composed of two adjacent carbon atoms and oxygen atoms constituting the alicyclic ring (i) is arbitrarily selected from known or commonly used compounds. Can be used. Especially, as said alicyclic epoxy group, a cyclohexene oxide group is preferable.
  • a compound having a cyclohexene oxide group from the viewpoint of transparency and heat resistance of the cured product
  • a compound (alicyclic epoxy compound) represented by the following formula (I) is preferable.
  • X represents a single bond or a linking group (a divalent group having one or more atoms).
  • the linking group include divalent hydrocarbon groups, alkenylene groups in which part or all of carbon-carbon double bonds are epoxidized, carbonyl groups, ether bonds, ester bonds, carbonate groups, amide groups, and the like. And a group in which a plurality of are connected.
  • Examples of the compound in which X in the above formula (I) is a single bond include 3,4,3 ′, 4′-diepoxybicyclohexane and the like.
  • Examples of the divalent hydrocarbon group include a linear or branched alkylene group having 1 to 18 carbon atoms and a divalent alicyclic hydrocarbon group.
  • Examples of the linear or branched alkylene group having 1 to 18 carbon atoms include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, and a trimethylene group.
  • divalent alicyclic hydrocarbon group examples include 1,2-cyclopentylene group, 1,3-cyclopentylene group, cyclopentylidene group, 1,2-cyclohexylene group, 1,3-cyclopentylene group, And divalent cycloalkylene groups (including cycloalkylidene groups) such as cyclohexylene group, 1,4-cyclohexylene group, and cyclohexylidene group.
  • alkenylene group in the alkenylene group in which part or all of the carbon-carbon double bond is epoxidized include, for example, vinylene group, propenylene group, 1-butenylene group And straight-chain or branched alkenylene groups having 2 to 8 carbon atoms such as 2-butenylene group, butadienylene group, pentenylene group, hexenylene group, heptenylene group and octenylene group.
  • the epoxidized alkenylene group is preferably an alkenylene group in which all of the carbon-carbon double bonds are epoxidized, more preferably 2 to 4 carbon atoms in which all of the carbon-carbon double bonds are epoxidized. Alkenylene group.
  • the linking group X is particularly preferably a linking group containing an oxygen atom, specifically, —CO—, —O—CO—O—, —COO—, —O—, —CONH—, epoxidation.
  • Representative examples of the alicyclic epoxy compounds represented by the above formula (I) include compounds represented by the following formulas (I-1) to (I-10), bis (3,4-epoxycyclohexylmethyl) ) Ether, 1,2-bis (3,4-epoxycyclohexane-1-yl) ethane, 1,2-epoxy-1,2-bis (3,4-epoxycyclohexane-1-yl) ethane, 2,2 -Bis (3,4-epoxycyclohexane-1-yl) propane and the like.
  • l and m each represents an integer of 1 to 30.
  • R in the following formula (I-5) is an alkylene group having 1 to 8 carbon atoms, and is a methylene group, ethylene group, propylene group, isopropylene group, butylene group, isobutylene group, s-butylene group, pentylene group, hexylene.
  • linear or branched alkylene groups such as a group, a heptylene group, and an octylene group.
  • linear or branched alkylene groups having 1 to 3 carbon atoms such as a methylene group, an ethylene group, a propylene group, and an isopropylene group are preferable.
  • N1 to n6 in the following formulas (I-9) and (I-10) each represents an integer of 1 to 30.
  • Examples of the compound (ii) in which the epoxy group is directly bonded to the alicyclic ring with a single bond include compounds represented by the following formula (II).
  • R ′ is a group obtained by removing p —OH from a p-valent alcohol in the structural formula, and p and n each represent a natural number.
  • the p-valent alcohol [R ′-(OH) p ] include polyhydric alcohols such as 2,2-bis (hydroxymethyl) -1-butanol (alcohols having 1 to 15 carbon atoms, etc.).
  • p is preferably 1 to 6
  • n is preferably 1 to 30.
  • n in each () (inside parenthesis) may be the same or different.
  • the compound examples include 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol [for example, trade name “EHPE3150”, ( Manufactured by Daicel Corporation).
  • the alicyclic epoxy compound (A) can be used singly or in combination of two or more.
  • commercially available products such as trade names “Celoxide 2021P” and “Celoxide 2081” (manufactured by Daicel Corporation) may be used.
  • alicyclic epoxy compound (A) 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate represented by the above formula (I-1) [for example, trade name “Celoxide 2021P” (Daicel Co., Ltd.) etc. are particularly preferred.
  • the content (blending amount) of the alicyclic epoxy compound (A) in the curable epoxy resin composition of the present invention is not particularly limited, but is 5 to 95 with respect to the curable epoxy resin composition (100% by weight). % By weight is preferable, more preferably 10 to 90% by weight, and still more preferably 15 to 85% by weight. By controlling the content of the alicyclic epoxy compound (A) within the above range, the heat resistance, light resistance, and thermal shock resistance of the cured product tend to be further improved.
  • the ratio of the alicyclic epoxy compound (A) to the total amount (total cationic curable compound) of the cationic curable compound (for example, components (A) to (C)) contained in the curable epoxy resin composition is not particularly limited. Is preferably 10 to 95% by weight, more preferably 20 to 90% by weight, still more preferably 30 to 80% by weight. By controlling the ratio of the alicyclic epoxy compound (A) to the above range, the heat resistance, light resistance, and thermal shock resistance of the cured product tend to be further improved.
  • the isocyanuric acid derivative (B) in the curable epoxy resin composition of the present invention is a derivative of isocyanuric acid and is a compound having at least one oxirane ring in the molecule.
  • the number of oxirane rings in the molecule of the isocyanuric acid derivative (B) may be one or more, and is not particularly limited, but is preferably 1 to 6, more preferably 1 to 3.
  • isocyanuric acid derivative (B) As an isocyanuric acid derivative (B), the compound represented by following formula (1) is mentioned, for example.
  • R X to R Z are the same or different and each represents a hydrogen atom or a monovalent organic group. However, at least one of R X to R Z is a monovalent organic group containing an oxirane ring.
  • the monovalent organic group include a monovalent aliphatic hydrocarbon group (for example, an alkyl group and an alkenyl group); a monovalent aromatic hydrocarbon group (for example, an aryl group); A cyclic group; a monovalent group formed by combining two or more of an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group.
  • the monovalent organic group may have a substituent (for example, a substituent such as a hydroxy group, a carboxy group, or a halogen atom).
  • a substituent for example, a substituent such as a hydroxy group, a carboxy group, or a halogen atom.
  • Examples of the monovalent organic group containing an oxirane ring include groups having an oxirane ring such as an epoxy group, a glycidyl group, a 2-methylepoxypropyl group, and a cyclohexene oxide group.
  • isocyanuric acid derivative (B) a compound represented by the following formula (1-1) (monoallyl diglycidyl isocyanurate compound), a compound represented by the following formula (1-2) ( Diallyl monoglycidyl isocyanurate compound), a compound represented by the following formula (1-3) (triglycidyl isocyanurate compound), and the like.
  • R 1 and R 2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • alkyl group having 1 to 8 carbon atoms include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, pentyl, hexyl, heptyl, octyl and the like. Examples thereof include a chain or branched alkyl group.
  • R 1 and R 2 are particularly preferably hydrogen atoms.
  • Representative examples of the compound represented by the formula (1-1) include monoallyldiglycidyl isocyanurate, 1-allyl-3,5-bis (2-methylepoxypropyl) isocyanurate, 1- (2 -Methylpropenyl) -3,5-diglycidyl isocyanurate, 1- (2-methylpropenyl) -3,5-bis (2-methylepoxypropyl) isocyanurate, and the like.
  • Representative examples of the compound represented by the above formula (1-2) include diallyl monoglycidyl isocyanurate, 1,3-diallyl-5- (2-methylepoxypropyl) isocyanurate, 1,3-bis ( 2-methylpropenyl) -5-glycidyl isocyanurate, 1,3-bis (2-methylpropenyl) -5- (2-methylepoxypropyl) isocyanurate, and the like.
  • Representative examples of the compound represented by the above formula (1-3) include triglycidyl isocyanurate and tris (2-methylepoxypropyl) isocyanurate.
  • the isocyanuric acid derivative (B) may be modified in advance by adding a compound that reacts with an oxirane ring such as alcohol or acid anhydride.
  • the isocyanuric acid derivative (B) compounds represented by the above formulas (1-1) to (1-3) are preferable, and a compound represented by the above formula (1-1) is more preferable.
  • the isocyanuric acid derivative (B) can be used alone or in combination of two or more.
  • Commercially available products can be used as the isocyanuric acid derivative (B). Examples of such commercially available products include the trade name “TEPIC” (manufactured by Nissan Chemical Industries, Ltd.) and the trade name “MA-DGIC”. (Manufactured by Shikoku Kasei Kogyo Co., Ltd.), trade name “DA-MGIC” (manufactured by Shikoku Kasei Kogyo Co., Ltd.) and the like.
  • the content (blending amount) of the isocyanuric acid derivative (B) in the curable epoxy resin composition of the present invention is not particularly limited, but is 5 to 100 parts by weight with respect to 100 parts by weight of the alicyclic epoxy compound (A). It is preferably 8 to 80 parts by weight, more preferably 10 to 60 parts by weight.
  • the content of the isocyanuric acid derivative (B) is set to 5 parts by weight or more, the adhesiveness and thermal shock resistance of the cured product tend to be further improved.
  • the content of the isocyanuric acid derivative (B) exceeds 100 parts by weight, the solubility of the isocyanuric acid derivative (B) in the curable epoxy resin composition is lowered, and the physical properties of the cured product may be adversely affected. .
  • the ratio of the isocyanuric acid derivative (B) to the total amount (100% by weight) of the cationically polymerizable compound (cationic curable compound) contained in the curable epoxy resin composition of the present invention is not particularly limited, but is 1 to 40% by weight. It is preferably 5 to 30% by weight, more preferably 8 to 25% by weight. By setting the proportion of the isocyanuric acid derivative (B) to 1% by weight or more, the adhesion and thermal shock resistance of the cured product tend to be further improved.
  • the proportion of the isocyanuric acid derivative (B) exceeds 40% by weight, the solubility of the isocyanuric acid derivative (B) in the curable epoxy resin composition is lowered, and the physical properties of the cured product may be adversely affected.
  • the oxetane compound (C) in the curable epoxy resin composition of the present invention is a compound having one or more oxetane rings in the molecule.
  • the number of oxetane rings in the molecule of the oxetane compound (C) may be one or more, and is not particularly limited, but is preferably 1 to 6, and more preferably 1 to 4.
  • oxetane compound (C) known or conventional oxetane compounds can be used, and are not particularly limited.
  • the oxetane compound (C) may be referred to as a compound having one hydroxyl group in the molecule (“oxetane compound (C1)” in terms of further improving the adhesion and thermal shock resistance of the cured product; A compound having one or more oxetane rings and one hydroxyl group in the molecule is preferred.
  • the oxetane compound (C1) include 3-ethyl-3- (hydroxymethyl) oxetane and 3-methyl-3- (hydroxymethyl) oxetane.
  • the oxetane compound (C) can be used singly or in combination of two or more.
  • Commercially available products can be used as the oxetane compound (C). Examples of such commercially available products include “Aron Oxetane OXT-101” and “Aron Oxetane OXT-221” (above, Toagosei Co., Ltd.). Etc.).
  • the content (blending amount) of the oxetane compound (C) in the curable epoxy resin composition of the present invention is not particularly limited, but is 10 to 150 parts by weight with respect to 100 parts by weight of the alicyclic epoxy compound (A).
  • the amount is preferably 15 to 125 parts by weight, more preferably 20 to 120 parts by weight.
  • the curable epoxy resin composition of the present invention may further contain a curing catalyst (D).
  • the curing catalyst (D) starts and / or accelerates a curing reaction (polymerization reaction) of a cationic curable compound such as an alicyclic epoxy compound (A), an isocyanuric acid derivative (B), or an oxetane compound (C). And a compound having a function of curing the curable epoxy resin composition.
  • the curing catalyst (D) is not particularly limited.
  • a cationic polymerization initiator photocation polymerization initiator, thermal cation polymerization, which initiates polymerization by generating cationic species by applying light irradiation or heat treatment). Initiators, etc.
  • Lewis acid / amine complexes Bronsted acid salts, imidazoles and the like.
  • Examples of the photocationic polymerization initiator as the curing catalyst (D) include hexafluoroantimonate salts, pentafluorohydroxyantimonate salts, hexafluorophosphate salts, hexafluoroarsenate salts, and more specifically.
  • triarylsulfonium hexafluorophosphate eg, p-phenylthiophenyldiphenylsulfonium hexafluorophosphate
  • sulfonium salts such as triarylsulfonium hexafluoroantimonate (particularly, triarylsulfonium salts)
  • diaryl iodonium hexafluorophosphate Diaryl iodonium hexafluoroantimonate, bis (dodecylphenyl) iodonium tetrakis (pentafluorophenyl) borate
  • iodonium salts such as donium [4- (4-methylphenyl-2-methylpropyl) phenyl] hexafluorophosphate
  • phosphonium salts such as tetrafluorophosphonium hexafluorophosphate
  • pyridinium salts such as N-hexy
  • cationic photopolymerization initiator examples include, for example, trade names “UVACURE 1590” (manufactured by Daicel Cytec Co., Ltd.); trade names “CD-1010”, “CD-1011”, “CD-1012” (above, the United States).
  • Commercial products such as trade name “Irgacure 264” (manufactured by BASF); trade name “CIT-1682” (manufactured by Nippon Soda Co., Ltd.) can be preferably used.
  • thermal cationic polymerization initiator as the curing catalyst (D) include aryldiazonium salts, aryliodonium salts, arylsulfonium salts, allene-ion complexes, etc., and trade names “PP-33”, “CP-66”.
  • thermal cationic polymerization initiator a compound of a chelate compound of a metal such as aluminum or titanium and acetoacetic acid or diketones and a silanol such as triphenylsilanol, or a metal such as aluminum or titanium and acetoacetic acid or diketone
  • a compound of a chelate compound with a phenol and a phenol such as bisphenol S.
  • a known or commonly used Lewis acid / amine complex-based curing catalyst can be used, and is not particularly limited.
  • a known or commonly used Lewis acid / amine complex-based curing catalyst can be used, and is not particularly limited.
  • Bronsted acid salts as the curing catalyst (D), known or commonly used Bronsted acid salts can be used, and are not particularly limited.
  • imidazole as the curing catalyst (D), known or commonly used imidazoles can be used, and are not particularly limited.
  • the curing catalyst (D) can be used singly or in combination of two or more.
  • a commercial item can also be used as a curing catalyst (D).
  • the content (blending amount) of the curing catalyst (D) in the curable epoxy resin composition of the present invention is not particularly limited, but is 100 parts by weight based on the total amount of the cationic curable compound contained in the curable epoxy resin composition. 0.01 to 15 parts by weight, more preferably 0.01 to 12 parts by weight, still more preferably 0.05 to 10 parts by weight, and particularly preferably 0.05 to 8 parts by weight.
  • the curing catalyst (D) within the above range, the curing rate of the curable epoxy resin composition is increased, and the heat resistance and transparency of the cured product tend to be improved in a balanced manner.
  • the curable epoxy resin composition of the present invention may further contain a curing agent (E) (for example, instead of the curing catalyst (D)).
  • the curing agent (E) works to cure the curable epoxy resin composition by reacting with a cationic curable compound such as an alicyclic epoxy compound (A), an isocyanuric acid derivative (B), or an oxetane compound (C). It is a compound which has this.
  • a known or conventional curing agent can be used as a curing agent for epoxy resin, and is not particularly limited.
  • acid anhydrides (acid anhydride curing agents), amines ( Amine curing agents), polyamide resins, imidazoles (imidazole curing agents), polymercaptans (polymercaptan curing agents), phenols (phenolic curing agents), polycarboxylic acids, dicyandiamides, organic acid hydrazides, etc.
  • acid anhydrides (acid anhydride curing agents)
  • amines Amine curing agents
  • polyamide resins imidazoles (imidazole curing agents)
  • polymercaptans polymercaptan curing agents
  • phenols phenolic curing agents
  • polycarboxylic acids dicyandiamides
  • organic acid hydrazides etc.
  • acid anhydrides as the curing agent (E), known or commonly used acid anhydride-based curing agents can be used, and are not particularly limited.
  • methyltetrahydrophthalic anhydride Acids (4-methyltetrahydrophthalic anhydride, 3-methyltetrahydrophthalic anhydride, etc.
  • methylhexahydrophthalic anhydride (4-methylhexahydrophthalic anhydride, 3-methylhexahydrophthalic anhydride, etc.
  • dodecenyl anhydride Acid methylendomethylenetetrahydrophthalic anhydride, phthalic anhydride, maleic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylcyclohexene dicarboxylic anhydride, pyromellitic anhydride, trimellitic anhydride, benzophenone tetracarboxylic anhydride Products, n
  • acid anhydrides for example, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, dodecenyl succinic anhydride, methylendomethylenetetrahydrophthalic anhydride, etc.
  • acid anhydride that is solid at 25 ° C.
  • it is dissolved in a liquid acid anhydride at 25 ° C. to form a liquid mixture, whereby the curing agent (E ) Tends to be improved.
  • saturated monocyclic hydrocarbon dicarboxylic acid anhydrides (including those in which a substituent such as an alkyl group is bonded to the ring) are preferable from the viewpoint of heat resistance and transparency of the cured product.
  • amines as the curing agent (E), known or conventional amine-based curing agents can be used, and are not particularly limited.
  • phenols phenolic curing agent
  • curing agent (E) known or commonly used phenolic curing agents can be used, and are not particularly limited.
  • novolac type phenol resins novolac type cresol resins
  • examples include paraxylylene-modified phenol resins, aralkyl resins such as paraxylylene / metaxylylene-modified phenol resins, terpene-modified phenol resins, dicyclopentadiene-modified phenol resins, and triphenol propane.
  • polyamide resin as the curing agent (E) examples include a polyamide resin having one or both of a primary amino group and a secondary amino group in the molecule.
  • imidazole (imidazole curing agent) as the curing agent (E) a known or commonly used imidazole curing agent can be used, and is not particularly limited.
  • Examples of the polymercaptans (polymercaptan-based curing agent) as the curing agent (E) include liquid polymercaptan and polysulfide resin.
  • polycarboxylic acids examples include adipic acid, sebacic acid, terephthalic acid, trimellitic acid, carboxyl group-containing polyester, and the like.
  • the curing agent (E) acid anhydrides (acid anhydride curing agents) are preferable from the viewpoint of heat resistance and transparency of the cured product.
  • curing agent (E) can also be used individually by 1 type in the curable epoxy resin composition of this invention, and can also be used in combination of 2 or more type.
  • a commercial item can also be used as a hardening
  • acid anhydride-based curing agents include trade names “Licacid MH-700”, “Licacid MH-700F” (manufactured by Shin Nippon Rika Co., Ltd.); trade name “HN-5500” (Hitachi) Kasei Kogyo Co., Ltd.).
  • the content (blending amount) of the curing agent (E) in the curable epoxy resin composition of the present invention is not particularly limited, but is 100 parts by weight based on the total amount of the cationic curable compound contained in the curable epoxy resin composition. 50 to 200 parts by weight, and more preferably 80 to 150 parts by weight. More specifically, when acid anhydrides are used as the curing agent (E), 0.5% per equivalent of epoxy group in the compound having all epoxy groups contained in the curable epoxy resin composition of the present invention. It is preferable to use at a ratio of ⁇ 1.5 equivalent.
  • curing agent (E) By making content of a hardening
  • the curable epoxy resin composition of the present invention preferably further contains a curing accelerator (F), particularly when it contains a curing agent (E).
  • the curing accelerator (F) is a compound having a function of accelerating the reaction rate when a cationic curable compound (particularly a compound having an epoxy group) reacts with the curing agent (E).
  • the curing accelerator (F) may be a known or conventional curing accelerator, and is not particularly limited.
  • DBU 1,8-diazabicyclo [5.4.0] undecene-7
  • DBN 1,5-diazabicyclo [4.3.0] nonene-5
  • phenol salt, octylate, p-toluenesulfonate, formate, tetraphenylborate, etc. benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, N, N-dimethylcyclohexyl Tertiary amines such as amines; 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole Phosphines such as triphenylphosphine and tris (dimethoxy)
  • a hardening accelerator (F) can also be used individually by 1 type in the curable epoxy resin composition of this invention, and can also be used in combination of 2 or more types.
  • the curing accelerator (F) trade names “U-CAT SA 506”, “U-CAT SA 102”, “U-CAT 5003”, “U-CAT 18X”, “U-CAT 12XD” ( (Developed product) (San Apro Co., Ltd.); Trade names “TPP-K”, “TPP-MK” (Hokuko Chemical Co., Ltd.); Trade name “PX-4ET” (Nippon Chemical Industry ( It is also possible to use a commercial product such as a product manufactured by Co., Ltd.
  • the content (blending amount) of the curing accelerator (F) in the curable epoxy resin composition of the present invention is not particularly limited, but is based on 100 parts by weight of the total amount of the cationic curable compound contained in the curable epoxy resin composition.
  • the amount is preferably 0.01 to 5 parts by weight, more preferably 0.03 to 3 parts by weight, and still more preferably 0.03 to 2 parts by weight.
  • the curable epoxy resin composition of the present invention may further contain an inorganic filler (G).
  • an inorganic filler G
  • known or conventional inorganic fillers can be used, and are not particularly limited, but silica filler (such as nano silica), alumina filler, mica, synthetic mica, talc, calcium oxide, calcium carbonate, oxidation Zirconium (such as nano zirconia), titanium oxide (such as nano titania), barium titanate, kaolin, bentonite, diatomaceous earth, boron nitride, aluminum nitride, silicon carbide, zinc oxide, cerium oxide, cesium oxide, magnesium oxide, glass filler, glass fiber Graphite, carbon nanotubes, calcium hydroxide, magnesium hydroxide, aluminum hydroxide, cellulose and the like.
  • the inorganic filler (G) may have a surface modified with a surface modifier.
  • the surface modifier include known or commonly used surface modifiers, and are not particularly limited. Examples thereof include saturated or unsaturated mono- and polycarboxylic acids having 1 to 12 carbon atoms; esters of the polycarboxylic acids. Amides; ⁇ -dicarbonyl compounds; silane coupling agents and the like.
  • the inorganic filler (G) can be used singly or in combination of two or more. Moreover, as an inorganic filler (G), a commercial item can also be used.
  • silica fillers and glass fillers are preferable, and glass fillers are more preferable from the viewpoint of achieving both high transparency of the cured product and thermal shock resistance.
  • silica filler known or conventional silica fillers can be used, and are not particularly limited, and examples thereof include fused silica, crystalline silica, and high-purity synthetic silica.
  • the shape of the silica filler is not particularly limited, and examples thereof include a spherical shape, a crushed shape, a fiber shape, a needle shape, a scale shape, and a whisker shape.
  • the silica filler can be produced by a known or commonly used method. Commercially available products may be used as the silica filler. For example, the product name “Furex RD-8” (manufactured by Tatsumori), the product name “HPS-0500” (manufactured by Toagosei Co., Ltd.) ) And the like.
  • glass filler known or conventional glass fillers can be used, and are not particularly limited.
  • glass which comprises a glass filler
  • T glass, E glass, C glass, A glass, S glass, L glass, D glass, NE glass, quartz glass, low dielectric constant glass examples include high dielectric constant glass.
  • E glass, T glass, and NE glass are preferable because they have few ionic impurities and are excellent in heat resistance and electrical insulation.
  • a glass filler can also be used individually by 1 type in the curable epoxy resin composition of this invention, and can also be used in combination of 2 or more type.
  • the refractive index of the sodium D line (light having a wavelength of 589.29 nm) of the glass filler is not particularly limited, but is preferably 1.40 to 2.10, and more preferably 1.45 to 1.60. By controlling the refractive index within the above range, the transparency of the cured product tends to be improved.
  • wire of a glass filler can be measured using an Abbe refractometer (measurement temperature: 25 degreeC), for example.
  • the glass filler may be surface-treated with various known or commonly used surface treatment agents.
  • the surface treatment agent include silane coupling agents such as ⁇ -aminopropyltriethoxysilane and ⁇ -glycidoxypropyltriethoxysilane, surfactants, inorganic acids, and the like.
  • the surface treatment may improve wettability, affinity, and adhesion at the interface of the glass filler with other components (for example, a cationic curable compound).
  • the glass filler can be produced by a known or common method.
  • a commercial item can also be used, for example, a brand name "Glass beads CF0018WB15C” (made by Nippon Frit Co., Ltd.), a brand name “Glass beads CF0018WB15” (made by Nippon Frit Co., Ltd.), The trade name “Glass Powder L-BSL7” (manufactured by OHARA INC.), The trade name “Glass Powder L-LAH81” (manufactured by OHARA INC.), Etc.
  • the content (blending amount) of the inorganic filler (G) in the curable epoxy resin composition of the present invention is not particularly limited, but is preferably 1 to 25 parts by weight with respect to 100 parts by weight of the total amount of the cationic curable compound, The amount is more preferably 3 to 20 parts by weight, still more preferably 5 to 15 parts by weight.
  • the content of the inorganic filler (G) is 1 part by weight or more, the thermal shock resistance of the cured product tends to be further improved.
  • the content of the inorganic filler (G) is 25 parts by weight or less, the transparency of the cured product tends to be further improved.
  • the content (blending amount) of the inorganic filler (G) in the curable epoxy resin composition of the present invention is not particularly limited, but is 1 to 50 parts by weight with respect to 100 parts by weight of the alicyclic epoxy compound (A).
  • the amount is preferably 2 to 40 parts by weight, more preferably 3 to 30 parts by weight.
  • the curable epoxy resin composition of the present invention may contain various additives within a range that does not impair the effects of the present invention.
  • a compound having a hydroxyl group such as ethylene glycol, diethylene glycol, propylene glycol, or glycerin is contained as the additive, the reaction can be allowed to proceed slowly.
  • curing aids organosiloxane compounds, metal oxide particles, rubber particles, silicone-based and fluorine-based antifoaming agents, silane coupling agents, fillers, Conventional additives such as plasticizers, leveling agents, antistatic agents, mold release agents, flame retardants, colorants, antioxidants, ultraviolet absorbers, ion adsorbents, pigments and dyes can be used.
  • the curable epoxy resin composition of the present invention is not particularly limited, but can be prepared by stirring and mixing each of the above-described components in a heated state as necessary.
  • the curable epoxy resin composition of the present invention can be used as a one-component composition in which each component is mixed in advance.
  • components divided into two or more each component The component may be a mixture of two or more components
  • may be used as a multi-liquid composition for example, a two-liquid system
  • the stirring / mixing method is not particularly limited, and for example, known or commonly used stirring / mixing means such as various mixers such as a dissolver and a homogenizer, a kneader, a roll, a bead mill, and a self-revolving stirrer can be used. Further, after stirring and mixing, defoaming may be performed under vacuum.
  • stirring / mixing means such as various mixers such as a dissolver and a homogenizer, a kneader, a roll, a bead mill, and a self-revolving stirrer can be used. Further, after stirring and mixing, defoaming may be performed under vacuum.
  • cured product of the present invention By curing the curable epoxy resin composition of the present invention, a cured product having high transparency, heat resistance and light resistance, particularly high adhesion and excellent thermal shock resistance (the curable epoxy of the present invention).
  • a cured product obtained by curing the resin composition may be referred to as “cured product of the present invention”).
  • the curing means known or conventional means such as heat treatment or light irradiation treatment can be used.
  • the temperature for curing by heating is not particularly limited, but is preferably 45 to 200 ° C, more preferably 50 to 190 ° C, and still more preferably 55 to 180 ° C.
  • the heating time (curing time) for curing is not particularly limited, but is preferably 30 to 600 minutes, more preferably 45 to 540 minutes, and further preferably 60 to 480 minutes.
  • the curing temperature and the curing time are lower than the lower limit value in the above range, curing is insufficient.
  • the curing temperature and the curing time are higher than the upper limit value in the above range, the resin component may be decomposed.
  • the curing conditions depend on various conditions, for example, when the curing temperature is increased, the curing time can be shortened, and when the curing temperature is decreased, the curing time can be appropriately increased.
  • hardening can also be performed in one step and can also be performed in two or more steps.
  • the curable epoxy resin composition of the present invention is a resin composition for sealing an optical semiconductor (optical semiconductor element) in an optical semiconductor device, that is, a resin composition for optical semiconductor sealing (an optical semiconductor element in an optical semiconductor device). Can be preferably used.
  • the optical semiconductor sealing resin composition an optical semiconductor device in which an optical semiconductor element is sealed with a cured product having high transparency, heat resistance and light resistance and excellent thermal shock resistance can be obtained. .
  • the optical semiconductor device is less likely to cause a decrease in light intensity even when a thermal shock or high-temperature heat is applied, and has high durability.
  • the optical semiconductor device of the present invention is an optical semiconductor device in which an optical semiconductor element is sealed with a cured product of the curable epoxy resin composition (resin composition for optical semiconductor sealing) of the present invention.
  • the optical semiconductor element is sealed by injecting the curable epoxy resin composition prepared by the above-described method into a predetermined mold and heat-curing under predetermined conditions. Thereby, the optical semiconductor device with which the optical semiconductor element was sealed with the hardened
  • the curing temperature and the curing time can be appropriately set within the same range as when the cured product is prepared.
  • the curable epoxy resin composition of the present invention is not limited to the above-mentioned optical semiconductor element sealing application, for example, an adhesive, an electrical insulating material, a laminate, a coating, an ink, a paint, a sealant, a resist, a composite material, It can also be used for applications such as transparent substrates, transparent sheets, transparent films, optical elements, optical lenses, optical members, optical modeling, electronic paper, touch panels, solar cell substrates, optical waveguides, light guide plates, holographic memories, etc. .
  • Example 1 First, with the blending ratio (unit: parts by weight) shown in Table 1, the trade name “Celoxide 2021P” (manufactured by Daicel Corporation) and the trade name “TEPIC” (manufactured by Nissan Chemical Industries, Ltd.) The mixture was uniformly mixed using a stirrer (trade name “Awatori Nertaro AR-250”, manufactured by Shinky Co., Ltd.). In addition, the said mixing was implemented by stirring at 80 degreeC for 1 hour.
  • a stirrer trade name “Awatori Nertaro AR-250”, manufactured by Shinky Co., Ltd.
  • the product name “Aron Oxetane OXT-101” manufactured by Toagosei Co., Ltd.
  • the product name “Sun Aid SI-100L” curing catalyst, manufactured by Sanshin Chemical Industry Co., Ltd.
  • a curable epoxy resin composition was produced by uniformly mixing and defoaming using an apparatus (trade name “Awatori Nertaro AR-250”, manufactured by Shinky Co., Ltd.). Further, the curable epoxy resin composition obtained above was cast into an optical semiconductor lead frame (InGaN element, 3.5 mm ⁇ 2.8 mm) shown in FIG. 1, and then in an oven (resin curing oven) at 150 ° C.
  • FIG. 1 100 is a reflector (light reflecting resin composition), 101 is a metal wiring, 102 is an optical semiconductor element, 103 is a bonding wire, and 104 is a cured product (sealing material).
  • Examples 2-8, Comparative Examples 1-6 A curable epoxy resin composition was prepared in the same manner as in Example 1 except that the composition of the curable epoxy resin composition was changed to the composition shown in Table 1. In addition, when not using an isocyanuric acid derivative (B), it mixed at room temperature. Further, an optical semiconductor device was fabricated in the same manner as in Example 1.
  • Example 9 First, the product name “Celoxide 2021P” (manufactured by Daicel Corporation) and the product name “TEPIC” (manufactured by Nissan Chemical Industries, Ltd.) with the mixing ratio shown in Table 2 (unit: parts by weight) Using an apparatus (trade name “Awatori Nertaro AR-250”, manufactured by Shinky Co., Ltd.), the mixture was uniformly mixed. In addition, the said mixing was implemented by stirring at 80 degreeC for 1 hour.
  • the mixture was uniformly mixed and defoamed to obtain a curable epoxy resin composition. Further, the curable epoxy resin composition obtained above was cast into an optical semiconductor lead frame (InGaN element, 3.5 mm ⁇ 2.8 mm) shown in FIG. 1, and then in an oven (resin curing oven) at 120 ° C. By heating for 5 hours, the optical semiconductor device with which the optical semiconductor element was sealed with the hardened
  • an optical semiconductor lead frame InGaN element, 3.5 mm ⁇ 2.8 mm
  • Examples 10 to 16 and Comparative Examples 7 to 12 A curable epoxy resin composition was prepared in the same manner as in Example 9 except that the composition of the curable epoxy resin composition was changed to the composition shown in Table 2.
  • the inorganic filler (G) was blended when the mixture of the cationic curable compound and the curing agent composition were mixed. Further, an optical semiconductor device was fabricated in the same manner as in Example 9.
  • Thermal shock test The optical semiconductor devices obtained in the examples and comparative examples (two used for each curable epoxy resin composition) were exposed in an atmosphere of ⁇ 40 ° C. for 30 minutes, and then in an atmosphere of 100 ° C. A thermal shock with one cycle of exposure to 30 minutes was applied for 200 cycles using a thermal shock tester. After that, the optical semiconductor device was observed using a digital microscope (trade name “VHX-900”, manufactured by Keyence Corporation), and whether a crack with a length of 90 ⁇ m or more occurred in the cured product (sealing material). It was confirmed whether or not electrode peeling (peeling of the cured product (encapsulant) from the electrode surface) occurred.
  • the number of optical semiconductor devices with a crack of 90 ⁇ m or more in the cured product is shown in the column of “thermal shock test [number of cracks]” in Tables 1 and 2, and electrode peeling occurred.
  • the number of optical semiconductor devices thus prepared is shown in the column of “Thermal Shock Test [Number of Detachment]” in Tables 1 and 2.
  • Example and the comparative example is as follows.
  • TEPIC Trade name “TEPIC” [triglycidyl isocyanurate], manufactured by Nissan Chemical Industries, Ltd.
  • MA-DGIC Trade name “MA-DGIC” [monoallyl diglycidyl isocyanurate], manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • DA- MGIC Trade name “DA-MGIC” [diallyl monoglycidyl isocyanurate], manufactured by Shikoku Kasei Kogyo Co., Ltd. (oxetane compound (C))
  • OXT-101 Trade name “Aron Oxetane OXT-101” [3-Ethyl-3-hydroxymethyloxetane], manufactured by Toagosei Co., Ltd.
  • OXT-221 Trade name “Aron Oxetane OXT-221” [3-Ethyl ⁇ [ (3-ethyloxetane-3-yl) methoxy] methyl ⁇ oxetane], manufactured by Toagosei Co., Ltd.
  • silica filler Trade name “Furex RD-8” [Silica filler], manufactured by Tatsumori Co., Ltd.
  • Glass filler Trade name “Glass beads CF0018WB15C” [Glass beads, with surface treatment (3-methacryloxypropyltriethoxysilane) , Refractive index 1.52, average particle diameter 20 ⁇ m], manufactured by Nippon Frit Co., Ltd.
  • Test equipment Resin curing oven Espec Co., Ltd. GPHH-201 -Thermostatic chamber ESPEC Co., Ltd. Small high temperature chamber ST-120B1 ⁇ Total luminous flux measuring machine Optronic Laboratories Multi-spectral Radiation Measurement System OL771 ⁇ Thermal shock tester Espec Co., Ltd. Small thermal shock device TSE-11-A
  • the curable epoxy resin composition of the present invention Since the curable epoxy resin composition of the present invention has the above configuration, it is cured to form a cured product having high transparency, heat resistance, and light resistance, particularly high adhesion and excellent thermal shock resistance. it can. For this reason, by using the curable epoxy resin composition of the present invention as a sealing agent (an optical semiconductor sealing resin composition) in an optical semiconductor device, the luminous intensity is lowered even when thermal shock or high temperature heat is applied. It is possible to obtain an optical semiconductor device excellent in durability, which is less likely to occur.
  • a sealing agent an optical semiconductor sealing resin composition

Abstract

The purpose of the present invention is to provide a curable epoxy resin composition which enables the formation of a cured article having high transparency, heat resistance and light resistance and particularly having a high adhesion property and excellent thermal shock resistance, and which can be used as a sealing agent in an optical semiconductor device to improve durability of the optical semiconductor device. The present invention relates to a curable epoxy resin composition characterized by comprising (A) an alicyclic epoxy compound, (B) an isocyanuric acid derivative having at least one oxirane ring in the molecule, and (C) an oxetane compound having at least one oxetane ring in the molecule.

Description

硬化性エポキシ樹脂組成物Curable epoxy resin composition
 本発明は、硬化性エポキシ樹脂組成物、該硬化性エポキシ樹脂組成物を硬化して得られる硬化物、及び該硬化性エポキシ樹脂組成物の硬化物により光半導体素子が封止された光半導体装置に関する。本願は、2013年6月3日に、日本に出願した特願2013-117060号の優先権を主張し、その内容をここに援用する。 The present invention relates to a curable epoxy resin composition, a cured product obtained by curing the curable epoxy resin composition, and an optical semiconductor device in which an optical semiconductor element is sealed with a cured product of the curable epoxy resin composition About. This application claims the priority of Japanese Patent Application No. 2013-1117060 for which it applied to Japan on June 3, 2013, and uses the content here.
 近年、光半導体装置の高出力化が進んでおり、このような光半導体装置において光半導体素子を被覆する樹脂(封止材)には、高い耐熱性、耐光性が求められている。従来、耐熱性が高い封止材を形成するための封止剤として、例えば、モノアリルジグリシジルイソシアヌレートとビスフェノールA型エポキシ樹脂を含む組成物が知られている(特許文献1参照)。しかしながら、上記組成物を高出力の青色・白色光半導体用の封止剤として用いた場合には、光半導体素子から発せられる光及び熱によって封止材の着色が進行し、本来出力されるべき光が吸収されてしまい、その結果、光半導体装置から出力される光の光度が経時で低下するという問題が生じていた。 In recent years, the output of optical semiconductor devices has been increased, and high heat resistance and light resistance are required for the resin (encapsulant) covering the optical semiconductor element in such an optical semiconductor device. Conventionally, as a sealing agent for forming a sealing material having high heat resistance, for example, a composition containing monoallyl diglycidyl isocyanurate and a bisphenol A type epoxy resin is known (see Patent Document 1). However, when the composition is used as a sealant for a high-output blue / white light semiconductor, the coloring of the sealant proceeds by light and heat emitted from the optical semiconductor element and should be output originally. As a result, the light is absorbed, and as a result, the intensity of the light output from the optical semiconductor device is lowered with time.
 高い耐熱性及び耐光性を有し、黄変しにくい硬化物(封止材)を形成する封止剤として、3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレートとε-カプロラクトンの付加物、1,2,8,9-ジエポキシリモネンなどの脂環骨格を有する液状の脂環式エポキシ樹脂が知られている。しかし、これらの脂環式エポキシ樹脂の硬化物は各種応力に弱く、冷熱サイクル(加熱と冷却を周期的に繰り返すこと)のような熱衝撃が加えられた場合に、クラック(ひび割れ)が発生する等の問題が生じていた。 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate, 3,4 as a sealing agent that forms a cured product (sealing material) that has high heat resistance and light resistance and is not easily yellowed. -Liquid alicyclic epoxy resins having an alicyclic skeleton such as an adduct of epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate and ε-caprolactone and 1,2,8,9-diepoxylimonene are known. ing. However, the cured products of these alicyclic epoxy resins are vulnerable to various stresses, and cracks occur when a thermal shock such as a cooling cycle (repeating heating and cooling periodically) is applied. Etc. had occurred.
特開2000-344867号公報JP 2000-344867 A
 なお、光半導体装置における光半導体素子の封止材には、高温又は長時間の加熱や熱衝撃等の刺激が加えられた場合にも、光半導体装置のリードフレームや電極から剥離しないだけの高い密着性を有することが要求される。封止材が光半導体装置のリードフレームや電極から剥離してしまうと、光半導体装置の品質が著しく低下するためである。 The sealing material for the optical semiconductor element in the optical semiconductor device is high enough not to be peeled off from the lead frame or electrode of the optical semiconductor device even when a stimulus such as high temperature or long-time heating or thermal shock is applied. It is required to have adhesion. This is because if the sealing material is peeled off from the lead frame or electrode of the optical semiconductor device, the quality of the optical semiconductor device is significantly deteriorated.
 従って、本発明の目的は、高い透明性、耐熱性、及び耐光性を有し、特に密着性が高く、耐熱衝撃性(熱衝撃が加えられた場合にもクラック等の不具合を生じにくい特性)に優れた硬化物を形成でき、光半導体装置における封止剤として使用することにより、光半導体装置の耐久性を向上させることができる硬化性エポキシ樹脂組成物を提供することにある。
 また、本発明の他の目的は、高い透明性、耐熱性、及び耐光性を有し、特に密着性が高く、耐熱衝撃性に優れた硬化物を提供することにある。
 また、本発明の他の目的は、熱衝撃や高温の熱が加えられた場合でも光度低下が生じにくい、耐久性に優れた光半導体装置を提供することにある。
Accordingly, the object of the present invention is to have high transparency, heat resistance, and light resistance, particularly high adhesion, and thermal shock resistance (characteristic that does not easily cause defects such as cracks when a thermal shock is applied). An object of the present invention is to provide a curable epoxy resin composition that can form a cured product excellent in the optical semiconductor device and can improve the durability of the optical semiconductor device by being used as a sealant in the optical semiconductor device.
Another object of the present invention is to provide a cured product having high transparency, heat resistance and light resistance, particularly high adhesion and excellent thermal shock resistance.
Another object of the present invention is to provide an optical semiconductor device with excellent durability that is less likely to cause a decrease in luminous intensity even when a thermal shock or high-temperature heat is applied.
 本発明者らは、上記課題を解決するため鋭意検討した結果、脂環式エポキシ化合物と、分子内に1個以上のオキシラン環を有するイソシアヌル酸誘導体と、分子内に1個以上のオキセタン環を有するオキセタン化合物とを必須成分として含有する硬化性エポキシ樹脂組成物が、高い透明性、耐熱性、及び耐光性を有し、特に密着性が高く、耐熱衝撃性に優れた硬化物を形成でき、光半導体装置における封止剤として使用することにより、光半導体装置の耐久性を向上させることができることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have found that an alicyclic epoxy compound, an isocyanuric acid derivative having one or more oxirane rings in the molecule, and one or more oxetane rings in the molecule. The curable epoxy resin composition containing an oxetane compound as an essential component has high transparency, heat resistance, and light resistance, and can form a cured product having particularly high adhesion and excellent thermal shock resistance. It has been found that the durability of an optical semiconductor device can be improved by using it as a sealant in an optical semiconductor device, and the present invention has been completed.
 すなわち、本発明は、脂環式エポキシ化合物(A)と、分子内に1個以上のオキシラン環を有するイソシアヌル酸誘導体(B)と、分子内に1個以上のオキセタン環を有するオキセタン化合物(C)とを含むことを特徴とする硬化性エポキシ樹脂組成物を提供する。 That is, the present invention relates to an alicyclic epoxy compound (A), an isocyanuric acid derivative (B) having one or more oxirane rings in the molecule, and an oxetane compound (C) having one or more oxetane rings in the molecule. And a curable epoxy resin composition.
 さらに、イソシアヌル酸誘導体(B)が、下記式(1-1)
Figure JPOXMLDOC01-appb-C000003
[式中、R1、R2は、同一又は異なって、水素原子又は炭素数1~8のアルキル基を示す。]
で表される化合物である前記の硬化性エポキシ樹脂組成物を提供する。
Further, the isocyanuric acid derivative (B) is represented by the following formula (1-1):
Figure JPOXMLDOC01-appb-C000003
[Wherein R 1 and R 2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. ]
The said curable epoxy resin composition which is a compound represented by these is provided.
 さらに、オキセタン化合物(C)が、分子内に1個以上のオキセタン環及び1個の水酸基を有するオキセタン化合物(C1)である前記の硬化性エポキシ樹脂組成物を提供する。 Furthermore, the curable epoxy resin composition is provided wherein the oxetane compound (C) is an oxetane compound (C1) having one or more oxetane rings and one hydroxyl group in the molecule.
 さらに、脂環式エポキシ化合物(A)が、シクロヘキセンオキシド基を有する化合物である前記の硬化性エポキシ樹脂組成物を提供する。 Furthermore, the curable epoxy resin composition is provided in which the alicyclic epoxy compound (A) is a compound having a cyclohexene oxide group.
 さらに、脂環式エポキシ化合物(A)が、下記式(I-1)
Figure JPOXMLDOC01-appb-C000004
で表される化合物である前記の硬化性エポキシ樹脂組成物を提供する。
Further, the alicyclic epoxy compound (A) has the following formula (I-1)
Figure JPOXMLDOC01-appb-C000004
The said curable epoxy resin composition which is a compound represented by these is provided.
 さらに、硬化触媒(D)を含む前記の硬化性エポキシ樹脂組成物を提供する。 Furthermore, the curable epoxy resin composition containing the curing catalyst (D) is provided.
 さらに、硬化剤(E)及び硬化促進剤(F)を含む前記の硬化性エポキシ樹脂組成物を提供する。 Furthermore, the curable epoxy resin composition containing a curing agent (E) and a curing accelerator (F) is provided.
 さらに、無機フィラー(G)を含む前記の硬化性エポキシ樹脂組成物を提供する。 Furthermore, the curable epoxy resin composition containing an inorganic filler (G) is provided.
 さらに、無機フィラー(G)がガラスフィラーである前記の硬化性エポキシ樹脂組成物を提供する。 Furthermore, the curable epoxy resin composition is provided wherein the inorganic filler (G) is a glass filler.
 また、本発明は、前記の硬化性エポキシ樹脂組成物を硬化させて得られる硬化物を提供する。 The present invention also provides a cured product obtained by curing the curable epoxy resin composition.
 さらに、光半導体封止用樹脂組成物である前記の硬化性エポキシ樹脂組成物を提供する。 Furthermore, the said curable epoxy resin composition which is a resin composition for optical semiconductor sealing is provided.
 また、本発明は、前記の硬化性エポキシ樹脂組成物の硬化物により光半導体素子が封止された光半導体装置を提供する。 The present invention also provides an optical semiconductor device in which an optical semiconductor element is sealed with a cured product of the curable epoxy resin composition.
 すなわち、本発明は以下に関する。
 (1)脂環式エポキシ化合物(A)と、分子内に1個以上のオキシラン環を有するイソシアヌル酸誘導体(B)と、分子内に1個以上のオキセタン環を有するオキセタン化合物(C)とを含むことを特徴とする硬化性エポキシ樹脂組成物。
 (2)イソシアヌル酸誘導体(B)が、下記式(1-1)
Figure JPOXMLDOC01-appb-C000005
[式中、R1、R2は、同一又は異なって、水素原子又は炭素数1~8のアルキル基を示す。]
で表される化合物である(1)に記載の硬化性エポキシ樹脂組成物。
 (3)オキセタン化合物(C)が、分子内に1個以上のオキセタン環及び1個の水酸基を有するオキセタン化合物(C1)である(1)又は(2)に記載の硬化性エポキシ樹脂組成物。
 (4)脂環式エポキシ化合物(A)が、シクロヘキセンオキシド基を有する化合物である(1)~(3)のいずれか一つに記載の硬化性エポキシ樹脂組成物。
 (5)脂環式エポキシ化合物(A)が、下記式(I-1)
Figure JPOXMLDOC01-appb-C000006
で表される化合物である(1)~(4)のいずれか一つに記載の硬化性エポキシ樹脂組成物。
 (6)脂環式エポキシ化合物(A)の含有量が、硬化性エポキシ樹脂組成物(100重量%)に対して、好ましくは5~95重量%、より好ましくは10~90重量%、さらに好ましくは15~85重量%である(1)~(5)のいずれか一つに記載の硬化性エポキシ樹脂組成物。
 (7)硬化性エポキシ樹脂組成物に含まれるカチオン硬化性化合物の全量(全カチオン硬化性化合物)に対する脂環式エポキシ化合物(A)の割合が、好ましくは10~95重量%、より好ましくは20~90重量%、さらに好ましくは30~80重量%である(1)~(6)のいずれか一つに記載の硬化性エポキシ樹脂組成物。
 (8)イソシアヌル酸誘導体(B)の含有量が、脂環式エポキシ化合物(A)100重量部に対して、好ましくは5~100重量部、より好ましくは8~80重量部、さらに好ましくは10~60重量部である(1)~(7)のいずれか一つに記載の硬化性エポキシ樹脂組成物。
 (9)硬化性エポキシ樹脂組成物に含まれるカチオン硬化性化合物の全量(100重量%)に対するイソシアヌル酸誘導体(B)の割合が、好ましくは1~40重量%、より好ましくは5~30重量%、さらに好ましくは8~25重量%である(1)~(8)のいずれか一つに記載の硬化性エポキシ樹脂組成物。
 (10)オキセタン化合物(C)が、3,3-ビス(ビニルオキシメチル)オキセタン、3-メチル-3-(ヒドロキシメチル)オキセタン、3-エチル-3-(2-エチルヘキシルオキシメチル)オキセタン、3-エチル-3-(ヒドロキシメチル)オキセタン、3-エチル-3-[(フェノキシ)メチル]オキセタン、3-エチル-3-(ヘキシルオキシメチル)オキセタン、3-エチル-3-(クロロメチル)オキセタン、3,3-ビス(クロロメチル)オキセタン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、ビス{[1-エチル(3-オキセタニル)]メチル}エーテル、4,4’-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビシクロヘキシル、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]シクロヘキサン、1,4-ビス{〔(3-エチル-3-オキセタニル)メトキシ〕メチル}ベンゼン、及び3-エチル-3{〔(3-エチルオキセタン-3-イル)メトキシ〕メチル}オキセタンからなる群より選択される少なくとも1つである(1)~(9)のいずれか一つに記載の硬化性エポキシ樹脂組成物。
 (11)オキセタン化合物(C)が、3-エチル-3-(ヒドロキシメチル)オキセタン及び3-メチル-3-(ヒドロキシメチル)オキセタンからなる群より選択される少なくとも1つである(1)~(9)のいずれか一つに記載の硬化性エポキシ樹脂組成物。
 (12)オキセタン化合物(C)の含有量が、脂環式エポキシ化合物(A)100重量部に対して、好ましくは10~150重量部、より好ましくは15~125重量部、さらに好ましくは20~120重量部である(1)~(11)のいずれか一つに記載の硬化性エポキシ樹脂組成物。
 (13)さらに硬化触媒(D)を含む(1)~(12)のいずれか一つに記載の硬化性エポキシ樹脂組成物。
 (14)硬化触媒(D)が、光カチオン重合開始剤、熱カチオン重合開始剤、ルイス酸・アミン錯体、ブレンステッド酸塩類、及びイミダゾール類からなる群より選択される少なくとも一つである(13)に記載の硬化性エポキシ樹脂組成物。
 (15)硬化触媒(D)の含有量が、硬化性エポキシ樹脂組成物に含まれるカチオン硬化性化合物の全量100重量部に対して、好ましくは0.01~15重量部、より好ましくは0.01~12重量部、さらに好ましくは0.05~10重量部、特に好ましくは0.05~8重量部である(13)又は(14)に記載の硬化性エポキシ樹脂組成物。
 (16)さらに硬化剤(E)及び硬化促進剤(F)を含む(1)~(15)のいずれか一つに記載の硬化性エポキシ樹脂組成物。
 (17)硬化剤(E)が、酸無水物類(酸無水物系硬化剤)、アミン類(アミン系硬化剤)、ポリアミド樹脂、イミダゾール類(イミダゾール系硬化剤)、ポリメルカプタン類(ポリメルカプタン系硬化剤)、フェノール類(フェノール系硬化剤)、ポリカルボン酸類、ジシアンジアミド類、及び有機酸ヒドラジドからなる群より選択される少なくとも一つである(16)に記載の硬化性エポキシ樹脂組成物。
 (18)硬化剤(E)が、酸無水物類(酸無水物系硬化剤)である(16)又は(17)に記載の硬化性エポキシ樹脂組成物。
 (19)硬化剤(E)の含有量が、硬化性エポキシ樹脂組成物に含まれるカチオン硬化性化合物の全量100重量部に対して、好ましくは50~200重量部、より好ましくは80~150重量部である(16)~(18)のいずれか一つに記載の硬化性エポキシ樹脂組成物。
 (20)硬化促進剤(F)が、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)又はその塩(例えば、フェノール塩、オクチル酸塩、p-トルエンスルホン酸塩、ギ酸塩、テトラフェニルボレート塩など);1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)又はその塩(例えば、フェノール塩、オクチル酸塩、p-トルエンスルホン酸塩、ギ酸塩、テトラフェニルボレート塩など);ベンジルジメチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、N,N-ジメチルシクロヘキシルアミンなどの3級アミン;2-エチル-4-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾールなどのイミダゾール;リン酸エステル;トリフェニルホスフィン、トリス(ジメトキシ)ホスフィンなどのホスフィン類;テトラフェニルホスホニウムテトラ(p-トリル)ボレートなどのホスホニウム化合物;オクチル酸亜鉛、オクチル酸スズ、ステアリン酸亜鉛などの有機金属塩;及びアルミニウムアセチルアセトン錯体などの金属キレートからなる群より選択される少なくとも一つである(16)~(19)のいずれか一つに記載の硬化性エポキシ樹脂組成物。
 (21)硬化促進剤(F)の含有量が、硬化性エポキシ樹脂組成物に含まれるカチオン硬化性化合物の全量100重量部に対して、好ましくは0.01~5重量部、より好ましくは0.03~3重量部、さらに好ましくは0.03~2重量部である(16)~(20)のいずれか一つに記載の硬化性エポキシ樹脂組成物。
 (22)さらに無機フィラー(G)を含む(1)~(21)のいずれか一つに記載の硬化性エポキシ樹脂組成物。
 (23)無機フィラー(G)が、シリカフィラー及びガラスフィラーからなる群より選択される少なくとも一つである(22)に記載の硬化性エポキシ樹脂組成物。
 (24)無機フィラー(G)がガラスフィラーである(22)に記載の硬化性エポキシ樹脂組成物。
 (25)無機フィラー(G)の含有量が、カチオン硬化性化合物の全量100重量部に対して、好ましくは1~25重量部、より好ましくは3~20重量部、さらに好ましくは5~15重量部である(22)~(24)のいずれか一つに記載の硬化性エポキシ樹脂組成物。
 (26)無機フィラー(G)の含有量が、脂環式エポキシ化合物(A)100重量部に対して、好ましくは1~50重量部、より好ましくは2~40重量部、さらに好ましくは3~30重量部である(22)~(25)のいずれか一つに記載の硬化性エポキシ樹脂組成物。
 (27)(1)~(26)のいずれか一つに記載の硬化性エポキシ樹脂組成物を硬化させて得られる硬化物。
 (28)光半導体封止用樹脂組成物である(1)~(26)のいずれか一つに記載の硬化性エポキシ樹脂組成物。
 (29)(28)に記載の硬化性エポキシ樹脂組成物の硬化物により光半導体素子が封止された光半導体装置。
That is, the present invention relates to the following.
(1) An alicyclic epoxy compound (A), an isocyanuric acid derivative (B) having one or more oxirane rings in the molecule, and an oxetane compound (C) having one or more oxetane rings in the molecule. A curable epoxy resin composition comprising:
(2) Isocyanuric acid derivative (B) is represented by the following formula (1-1)
Figure JPOXMLDOC01-appb-C000005
[Wherein R 1 and R 2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. ]
The curable epoxy resin composition as described in (1) which is a compound represented by these.
(3) The curable epoxy resin composition according to (1) or (2), wherein the oxetane compound (C) is an oxetane compound (C1) having one or more oxetane rings and one hydroxyl group in the molecule.
(4) The curable epoxy resin composition according to any one of (1) to (3), wherein the alicyclic epoxy compound (A) is a compound having a cyclohexene oxide group.
(5) The alicyclic epoxy compound (A) is represented by the following formula (I-1)
Figure JPOXMLDOC01-appb-C000006
The curable epoxy resin composition according to any one of (1) to (4), which is a compound represented by:
(6) The content of the alicyclic epoxy compound (A) is preferably 5 to 95% by weight, more preferably 10 to 90% by weight, and still more preferably based on the curable epoxy resin composition (100% by weight). The curable epoxy resin composition according to any one of (1) to (5), wherein is from 15 to 85% by weight.
(7) The ratio of the alicyclic epoxy compound (A) to the total amount of the cationic curable compound (total cationic curable compound) contained in the curable epoxy resin composition is preferably 10 to 95% by weight, more preferably 20%. The curable epoxy resin composition according to any one of (1) to (6), which is ˜90 wt%, more preferably 30 to 80 wt%.
(8) The content of the isocyanuric acid derivative (B) is preferably 5 to 100 parts by weight, more preferably 8 to 80 parts by weight, and still more preferably 10 parts per 100 parts by weight of the alicyclic epoxy compound (A). The curable epoxy resin composition according to any one of (1) to (7), which is ˜60 parts by weight.
(9) The ratio of the isocyanuric acid derivative (B) to the total amount (100% by weight) of the cationic curable compound contained in the curable epoxy resin composition is preferably 1 to 40% by weight, more preferably 5 to 30% by weight. More preferably, the curable epoxy resin composition according to any one of (1) to (8), which is 8 to 25% by weight.
(10) Oxetane compound (C) is 3,3-bis (vinyloxymethyl) oxetane, 3-methyl-3- (hydroxymethyl) oxetane, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane, 3 -Ethyl-3- (hydroxymethyl) oxetane, 3-ethyl-3-[(phenoxy) methyl] oxetane, 3-ethyl-3- (hexyloxymethyl) oxetane, 3-ethyl-3- (chloromethyl) oxetane, 3,3-bis (chloromethyl) oxetane, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, bis {[1-ethyl (3-oxetanyl)] methyl} ether, 4,4 '-Bis [(3-ethyl-3-oxetanyl) methoxymethyl] bicyclohexyl, 1,4-bis [(3-ethyl-3 -Oxetanyl) methoxymethyl] cyclohexane, 1,4-bis {[(3-ethyl-3-oxetanyl) methoxy] methyl} benzene, and 3-ethyl-3 {[(3-ethyloxetan-3-yl) methoxy] The curable epoxy resin composition according to any one of (1) to (9), which is at least one selected from the group consisting of methyl} oxetane.
(11) The oxetane compound (C) is at least one selected from the group consisting of 3-ethyl-3- (hydroxymethyl) oxetane and 3-methyl-3- (hydroxymethyl) oxetane. The curable epoxy resin composition according to any one of 9).
(12) The content of the oxetane compound (C) is preferably 10 to 150 parts by weight, more preferably 15 to 125 parts by weight, and still more preferably 20 to 120 parts by weight with respect to 100 parts by weight of the alicyclic epoxy compound (A). The curable epoxy resin composition according to any one of (1) to (11), which is 120 parts by weight.
(13) The curable epoxy resin composition according to any one of (1) to (12), further comprising a curing catalyst (D).
(14) The curing catalyst (D) is at least one selected from the group consisting of a photocationic polymerization initiator, a thermal cationic polymerization initiator, a Lewis acid / amine complex, a Bronsted acid salt, and an imidazole (13 ) Curable epoxy resin composition.
(15) The content of the curing catalyst (D) is preferably from 0.01 to 15 parts by weight, more preferably from 0.1 to 15 parts by weight based on 100 parts by weight of the total amount of the cationic curable compounds contained in the curable epoxy resin composition. The curable epoxy resin composition according to (13) or (14), which is from 01 to 12 parts by weight, more preferably from 0.05 to 10 parts by weight, particularly preferably from 0.05 to 8 parts by weight.
(16) The curable epoxy resin composition according to any one of (1) to (15), further comprising a curing agent (E) and a curing accelerator (F).
(17) The curing agent (E) is an acid anhydride (acid anhydride curing agent), an amine (amine curing agent), a polyamide resin, an imidazole (imidazole curing agent), or a polymercaptan (polymercaptan). Curable epoxy resin composition according to (16), which is at least one selected from the group consisting of (system curing agents), phenols (phenolic curing agents), polycarboxylic acids, dicyandiamides, and organic acid hydrazides.
(18) The curable epoxy resin composition according to (16) or (17), wherein the curing agent (E) is an acid anhydride (an acid anhydride-based curing agent).
(19) The content of the curing agent (E) is preferably 50 to 200 parts by weight, more preferably 80 to 150 parts by weight with respect to 100 parts by weight of the total amount of the cationic curable compounds contained in the curable epoxy resin composition. The curable epoxy resin composition according to any one of (16) to (18), which is a part.
(20) The curing accelerator (F) is 1,8-diazabicyclo [5.4.0] undecene-7 (DBU) or a salt thereof (eg, phenol salt, octylate, p-toluenesulfonate, formic acid Salt, tetraphenylborate salt, etc.); 1,5-diazabicyclo [4.3.0] nonene-5 (DBN) or a salt thereof (eg, phenol salt, octylate, p-toluenesulfonate, formate, Tetraphenylborate salts, etc.); tertiary amines such as benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, N, N-dimethylcyclohexylamine; 2-ethyl-4-methylimidazole, 1-cyanoethyl Imidazoles such as -2-ethyl-4-methylimidazole; phosphate esters; triphenylphosphine, tris (dimeth B) Phosphines such as phosphine; Phosphonium compounds such as tetraphenylphosphonium tetra (p-tolyl) borate; Organometallic salts such as zinc octylate, tin octylate and zinc stearate; and metal chelates such as aluminum acetylacetone complex The curable epoxy resin composition according to any one of (16) to (19), which is at least one selected from the group.
(21) The content of the curing accelerator (F) is preferably 0.01 to 5 parts by weight, more preferably 0 with respect to 100 parts by weight of the total amount of the cationic curable compounds contained in the curable epoxy resin composition. The curable epoxy resin composition according to any one of (16) to (20), which is 0.03 to 3 parts by weight, more preferably 0.03 to 2 parts by weight.
(22) The curable epoxy resin composition according to any one of (1) to (21), further comprising an inorganic filler (G).
(23) The curable epoxy resin composition according to (22), wherein the inorganic filler (G) is at least one selected from the group consisting of a silica filler and a glass filler.
(24) The curable epoxy resin composition according to (22), wherein the inorganic filler (G) is a glass filler.
(25) The content of the inorganic filler (G) is preferably 1 to 25 parts by weight, more preferably 3 to 20 parts by weight, and further preferably 5 to 15 parts by weight with respect to 100 parts by weight of the total amount of the cationic curable compound. The curable epoxy resin composition according to any one of (22) to (24), which is a part.
(26) The content of the inorganic filler (G) is preferably 1 to 50 parts by weight, more preferably 2 to 40 parts by weight, even more preferably 3 to 3 parts by weight with respect to 100 parts by weight of the alicyclic epoxy compound (A). The curable epoxy resin composition according to any one of (22) to (25), which is 30 parts by weight.
(27) A cured product obtained by curing the curable epoxy resin composition according to any one of (1) to (26).
(28) The curable epoxy resin composition according to any one of (1) to (26), which is a resin composition for sealing an optical semiconductor.
(29) An optical semiconductor device in which an optical semiconductor element is sealed with a cured product of the curable epoxy resin composition according to (28).
 本発明の硬化性エポキシ樹脂組成物は上記構成を有するため、硬化させることで高い透明性、耐熱性、及び耐光性を有し、特に密着性が高く、耐熱衝撃性に優れた硬化物を形成できる。このため、本発明の硬化性エポキシ樹脂組成物を光半導体装置における封止剤(光半導体封止用樹脂組成物)として使用することにより、熱衝撃や高温の熱が加えられた場合でも光度低下が生じにくい、耐久性に優れた光半導体装置を得ることができる。 Since the curable epoxy resin composition of the present invention has the above configuration, it is cured to form a cured product having high transparency, heat resistance, and light resistance, particularly high adhesion and excellent thermal shock resistance. it can. For this reason, by using the curable epoxy resin composition of the present invention as a sealing agent (an optical semiconductor sealing resin composition) in an optical semiconductor device, the luminous intensity is lowered even when thermal shock or high temperature heat is applied. It is possible to obtain an optical semiconductor device excellent in durability, which is less likely to occur.
本発明の硬化性エポキシ樹脂組成物の硬化物により光半導体素子が封止された光半導体装置の一実施形態を示す概略図である。左側の図(a)は斜視図であり、右側の図(b)は断面図である。It is the schematic which shows one Embodiment of the optical semiconductor device by which the optical semiconductor element was sealed with the hardened | cured material of the curable epoxy resin composition of this invention. The left figure (a) is a perspective view, and the right figure (b) is a sectional view.
<硬化性エポキシ樹脂組成物>
 本発明の硬化性エポキシ樹脂組成物は、脂環式エポキシ化合物(A)(「成分(A)」と称する場合がある)と、分子内に1個以上のオキシラン環を有するイソシアヌル酸誘導体(B)(「イソシアヌル酸誘導体(B)」や「成分(B)」と称する場合がある)と、分子内に1個以上のオキセタン環を有するオキセタン化合物(C)(「オキセタン化合物(C)」や「成分(C)」と称する場合がある)とを必須成分として含む組成物(硬化性組成物)である。
<Curable epoxy resin composition>
The curable epoxy resin composition of the present invention comprises an alicyclic epoxy compound (A) (sometimes referred to as “component (A)”) and an isocyanuric acid derivative (B) having one or more oxirane rings in the molecule. ) (Sometimes referred to as “isocyanuric acid derivative (B)” or “component (B)”) and an oxetane compound (C) having one or more oxetane rings in the molecule (“oxetane compound (C)” or A composition (which may be referred to as “component (C)”) as an essential component (curable composition).
[脂環式エポキシ化合物(A)]
 本発明の硬化性エポキシ樹脂組成物における脂環式エポキシ化合物(A)は、分子内(一分子中)に脂環(脂肪族環)構造とエポキシ基とを少なくとも有する化合物である。脂環式エポキシ化合物(A)としては、具体的には、(i)脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基(脂環エポキシ基)を有する化合物、(ii)脂環にエポキシ基が直接単結合で結合している化合物などが挙げられる。但し、脂環式エポキシ化合物(A)には、後述のイソシアヌル酸誘導体(B)は含まれないものとする。
[Alicyclic epoxy compound (A)]
The alicyclic epoxy compound (A) in the curable epoxy resin composition of the present invention is a compound having at least an alicyclic (aliphatic ring) structure and an epoxy group in the molecule (in one molecule). As the alicyclic epoxy compound (A), specifically, (i) a compound having an epoxy group (alicyclic epoxy group) composed of two adjacent carbon atoms and oxygen atoms constituting the alicyclic ring, (Ii) A compound in which an epoxy group is directly bonded to the alicyclic ring with a single bond, and the like. However, the isocyanuric acid derivative (B) described later is not included in the alicyclic epoxy compound (A).
 上述の(i)脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基(脂環エポキシ基)を有する化合物としては、公知乃至慣用のものの中から任意に選択して使用することができる。中でも、上記脂環エポキシ基としては、シクロヘキセンオキシド基が好ましい。 The compound having an epoxy group (alicyclic epoxy group) composed of two adjacent carbon atoms and oxygen atoms constituting the alicyclic ring (i) is arbitrarily selected from known or commonly used compounds. Can be used. Especially, as said alicyclic epoxy group, a cyclohexene oxide group is preferable.
 上述の(i)脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基を有する化合物としては、硬化物の透明性、耐熱性の観点で、シクロヘキセンオキシド基を有する化合物が好ましく、特に、下記式(I)で表される化合物(脂環式エポキシ化合物)が好ましい。
Figure JPOXMLDOC01-appb-C000007
As the compound (i) having an epoxy group composed of two adjacent carbon atoms and oxygen atoms constituting the alicyclic ring, a compound having a cyclohexene oxide group from the viewpoint of transparency and heat resistance of the cured product In particular, a compound (alicyclic epoxy compound) represented by the following formula (I) is preferable.
Figure JPOXMLDOC01-appb-C000007
 上記式(I)中、Xは単結合又は連結基(1以上の原子を有する2価の基)を示す。上記連結基としては、例えば、2価の炭化水素基、炭素-炭素二重結合の一部又は全部がエポキシ化されたアルケニレン基、カルボニル基、エーテル結合、エステル結合、カーボネート基、アミド基、これらが複数個連結した基などが挙げられる。 In the above formula (I), X represents a single bond or a linking group (a divalent group having one or more atoms). Examples of the linking group include divalent hydrocarbon groups, alkenylene groups in which part or all of carbon-carbon double bonds are epoxidized, carbonyl groups, ether bonds, ester bonds, carbonate groups, amide groups, and the like. And a group in which a plurality of are connected.
 上記式(I)中のXが単結合である化合物としては、3,4,3',4'-ジエポキシビシクロヘキサンなどが挙げられる。 Examples of the compound in which X in the above formula (I) is a single bond include 3,4,3 ′, 4′-diepoxybicyclohexane and the like.
 上記2価の炭化水素基としては、炭素数が1~18の直鎖又は分岐鎖状のアルキレン基、2価の脂環式炭化水素基などが挙げられる。炭素数が1~18の直鎖又は分岐鎖状のアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基などが挙げられる。上記2価の脂環式炭化水素基としては、例えば、1,2-シクロペンチレン基、1,3-シクロペンチレン基、シクロペンチリデン基、1,2-シクロヘキシレン基、1,3-シクロヘキシレン基、1,4-シクロヘキシレン基、シクロヘキシリデン基などの2価のシクロアルキレン基(シクロアルキリデン基を含む)などが挙げられる。 Examples of the divalent hydrocarbon group include a linear or branched alkylene group having 1 to 18 carbon atoms and a divalent alicyclic hydrocarbon group. Examples of the linear or branched alkylene group having 1 to 18 carbon atoms include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, and a trimethylene group. Examples of the divalent alicyclic hydrocarbon group include 1,2-cyclopentylene group, 1,3-cyclopentylene group, cyclopentylidene group, 1,2-cyclohexylene group, 1,3-cyclopentylene group, And divalent cycloalkylene groups (including cycloalkylidene groups) such as cyclohexylene group, 1,4-cyclohexylene group, and cyclohexylidene group.
 上記炭素-炭素二重結合の一部又は全部がエポキシ化されたアルケニレン基(「エポキシ化アルケニレン基」と称する場合がある)におけるアルケニレン基としては、例えば、ビニレン基、プロペニレン基、1-ブテニレン基、2-ブテニレン基、ブタジエニレン基、ペンテニレン基、ヘキセニレン基、ヘプテニレン基、オクテニレン基などの炭素数2~8の直鎖又は分岐鎖状のアルケニレン基などが挙げられる。特に、上記エポキシ化アルケニレン基としては、炭素-炭素二重結合の全部がエポキシ化されたアルケニレン基が好ましく、より好ましくは炭素-炭素二重結合の全部がエポキシ化された炭素数2~4のアルケニレン基である。 Examples of the alkenylene group in the alkenylene group in which part or all of the carbon-carbon double bond is epoxidized (sometimes referred to as “epoxidized alkenylene group”) include, for example, vinylene group, propenylene group, 1-butenylene group And straight-chain or branched alkenylene groups having 2 to 8 carbon atoms such as 2-butenylene group, butadienylene group, pentenylene group, hexenylene group, heptenylene group and octenylene group. In particular, the epoxidized alkenylene group is preferably an alkenylene group in which all of the carbon-carbon double bonds are epoxidized, more preferably 2 to 4 carbon atoms in which all of the carbon-carbon double bonds are epoxidized. Alkenylene group.
 上記連結基Xとしては、特に、酸素原子を含有する連結基が好ましく、具体的には、-CO-、-O-CO-O-、-COO-、-O-、-CONH-、エポキシ化アルケニレン基;これらの基が複数個連結した基;これらの基の1又は2以上と2価の炭化水素基の1又は2以上とが連結した基などが挙げられる。2価の炭化水素基としては上記で例示したものが挙げられる。 The linking group X is particularly preferably a linking group containing an oxygen atom, specifically, —CO—, —O—CO—O—, —COO—, —O—, —CONH—, epoxidation. An alkenylene group; a group in which a plurality of these groups are linked; a group in which one or more of these groups are linked to one or more of divalent hydrocarbon groups, and the like. Examples of the divalent hydrocarbon group include those exemplified above.
 上記式(I)で表される脂環式エポキシ化合物の代表的な例としては、下記式(I-1)~(I-10)で表される化合物、ビス(3,4-エポキシシクロヘキシルメチル)エーテル、1,2-ビス(3,4-エポキシシクロヘキサン-1-イル)エタン、1,2-エポキシ-1,2-ビス(3,4-エポキシシクロヘキサン-1-イル)エタン、2,2-ビス(3,4-エポキシシクロヘキサン-1-イル)プロパンなどが挙げられる。なお、下記式(I-5)、(I-7)中のl、mは、それぞれ1~30の整数を表す。下記式(I-5)中のRは炭素数1~8のアルキレン基であり、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、s-ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基等の直鎖又は分岐鎖状のアルキレン基が挙げられる。これらの中でも、メチレン基、エチレン基、プロピレン基、イソプロピレン基等の炭素数1~3の直鎖又は分岐鎖状のアルキレン基が好ましい。下記式(I-9)、(I-10)中のn1~n6は、それぞれ1~30の整数を示す。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Representative examples of the alicyclic epoxy compounds represented by the above formula (I) include compounds represented by the following formulas (I-1) to (I-10), bis (3,4-epoxycyclohexylmethyl) ) Ether, 1,2-bis (3,4-epoxycyclohexane-1-yl) ethane, 1,2-epoxy-1,2-bis (3,4-epoxycyclohexane-1-yl) ethane, 2,2 -Bis (3,4-epoxycyclohexane-1-yl) propane and the like. In the following formulas (I-5) and (I-7), l and m each represents an integer of 1 to 30. R in the following formula (I-5) is an alkylene group having 1 to 8 carbon atoms, and is a methylene group, ethylene group, propylene group, isopropylene group, butylene group, isobutylene group, s-butylene group, pentylene group, hexylene. And linear or branched alkylene groups such as a group, a heptylene group, and an octylene group. Among these, linear or branched alkylene groups having 1 to 3 carbon atoms such as a methylene group, an ethylene group, a propylene group, and an isopropylene group are preferable. N1 to n6 in the following formulas (I-9) and (I-10) each represents an integer of 1 to 30.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 上述の(ii)脂環にエポキシ基が直接単結合で結合している化合物としては、例えば、下記式(II)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000010
Examples of the compound (ii) in which the epoxy group is directly bonded to the alicyclic ring with a single bond include compounds represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000010
 式(II)中、R′は、構造式上、p価のアルコールからp個の-OHを除した基であり、p、nはそれぞれ自然数を表す。p価のアルコール[R′-(OH)p]としては、2,2-ビス(ヒドロキシメチル)-1-ブタノール等の多価アルコールなど(炭素数1~15のアルコール等)が挙げられる。pは1~6が好ましく、nは1~30が好ましい。pが2以上の場合、それぞれの( )内(外側の括弧内)の基におけるnは同一でもよいし、異なっていてもよい。上記化合物としては、具体的には、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物[例えば、商品名「EHPE3150」、(株)ダイセル製]などが挙げられる。 In the formula (II), R ′ is a group obtained by removing p —OH from a p-valent alcohol in the structural formula, and p and n each represent a natural number. Examples of the p-valent alcohol [R ′-(OH) p ] include polyhydric alcohols such as 2,2-bis (hydroxymethyl) -1-butanol (alcohols having 1 to 15 carbon atoms, etc.). p is preferably 1 to 6, and n is preferably 1 to 30. When p is 2 or more, n in each () (inside parenthesis) may be the same or different. Specific examples of the compound include 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol [for example, trade name “EHPE3150”, ( Manufactured by Daicel Corporation).
 本発明の硬化性エポキシ樹脂組成物において脂環式エポキシ化合物(A)は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。また、脂環式エポキシ化合物(A)としては、例えば、商品名「セロキサイド2021P」、「セロキサイド2081」(以上、(株)ダイセル製)などの市販品を使用することもできる。 In the curable epoxy resin composition of the present invention, the alicyclic epoxy compound (A) can be used singly or in combination of two or more. In addition, as the alicyclic epoxy compound (A), for example, commercially available products such as trade names “Celoxide 2021P” and “Celoxide 2081” (manufactured by Daicel Corporation) may be used.
 中でも、脂環式エポキシ化合物(A)としては、上記式(I-1)で表される3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート[例えば、商品名「セロキサイド2021P」((株)ダイセル製)など]が特に好ましい。 Among them, as the alicyclic epoxy compound (A), 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate represented by the above formula (I-1) [for example, trade name “Celoxide 2021P” (Daicel Co., Ltd.) etc. are particularly preferred.
 本発明の硬化性エポキシ樹脂組成物における脂環式エポキシ化合物(A)の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物(100重量%)に対して、5~95重量%が好ましく、より好ましくは10~90重量%、さらに好ましくは15~85重量%である。脂環式エポキシ化合物(A)の含有量を上記範囲に制御することにより、硬化物の耐熱性、耐光性、耐熱衝撃性がより向上する傾向がある。 The content (blending amount) of the alicyclic epoxy compound (A) in the curable epoxy resin composition of the present invention is not particularly limited, but is 5 to 95 with respect to the curable epoxy resin composition (100% by weight). % By weight is preferable, more preferably 10 to 90% by weight, and still more preferably 15 to 85% by weight. By controlling the content of the alicyclic epoxy compound (A) within the above range, the heat resistance, light resistance, and thermal shock resistance of the cured product tend to be further improved.
 硬化性エポキシ樹脂組成物に含まれるカチオン硬化性化合物(例えば、成分(A)~(C))の全量(全カチオン硬化性化合物)に対する脂環式エポキシ化合物(A)の割合は、特に限定されないが、10~95重量%が好ましく、より好ましくは20~90重量%、さらに好ましくは30~80重量%である。脂環式エポキシ化合物(A)の割合を上記範囲に制御することにより、硬化物の耐熱性、耐光性、耐熱衝撃性がより向上する傾向がある。 The ratio of the alicyclic epoxy compound (A) to the total amount (total cationic curable compound) of the cationic curable compound (for example, components (A) to (C)) contained in the curable epoxy resin composition is not particularly limited. Is preferably 10 to 95% by weight, more preferably 20 to 90% by weight, still more preferably 30 to 80% by weight. By controlling the ratio of the alicyclic epoxy compound (A) to the above range, the heat resistance, light resistance, and thermal shock resistance of the cured product tend to be further improved.
[イソシアヌル酸誘導体(B)]
 本発明の硬化性エポキシ樹脂組成物におけるイソシアヌル酸誘導体(B)は、イソシアヌル酸の誘導体であって、分子内に1個以上のオキシラン環を少なくとも有する化合物である。イソシアヌル酸誘導体(B)が分子内に有するオキシラン環の数は、1個以上であればよく、特に限定されないが、1~6個が好ましく、より好ましくは1~3個である。
[Isocyanuric acid derivative (B)]
The isocyanuric acid derivative (B) in the curable epoxy resin composition of the present invention is a derivative of isocyanuric acid and is a compound having at least one oxirane ring in the molecule. The number of oxirane rings in the molecule of the isocyanuric acid derivative (B) may be one or more, and is not particularly limited, but is preferably 1 to 6, more preferably 1 to 3.
 イソシアヌル酸誘導体(B)としては、例えば、下記式(1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000011
As an isocyanuric acid derivative (B), the compound represented by following formula (1) is mentioned, for example.
Figure JPOXMLDOC01-appb-C000011
 式(1)中、RX~RZは、同一又は異なって、水素原子又は一価の有機基を示す。但し、RX~RZの少なくとも1個は、オキシラン環を含む一価の有機基である。上記一価の有機基としては、例えば、一価の脂肪族炭化水素基(例えば、アルキル基、アルケニル基等);一価の芳香族炭化水素基(例えば、アリール基等);一価の複素環式基;脂肪族炭化水素基、脂環式炭化水素基、及び芳香族炭化水素基の2以上が結合して形成された一価の基等が挙げられる。なお、一価の有機基は置換基(例えば、ヒドロキシ基、カルボキシ基、ハロゲン原子等の置換基)を有していてもよい。オキシラン環を含む一価の有機基としては、例えば、エポキシ基、グリシジル基、2-メチルエポキシプロピル基、シクロヘキセンオキシド基等のオキシラン環を有する基等が挙げられる。 In the formula (1), R X to R Z are the same or different and each represents a hydrogen atom or a monovalent organic group. However, at least one of R X to R Z is a monovalent organic group containing an oxirane ring. Examples of the monovalent organic group include a monovalent aliphatic hydrocarbon group (for example, an alkyl group and an alkenyl group); a monovalent aromatic hydrocarbon group (for example, an aryl group); A cyclic group; a monovalent group formed by combining two or more of an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group. The monovalent organic group may have a substituent (for example, a substituent such as a hydroxy group, a carboxy group, or a halogen atom). Examples of the monovalent organic group containing an oxirane ring include groups having an oxirane ring such as an epoxy group, a glycidyl group, a 2-methylepoxypropyl group, and a cyclohexene oxide group.
 より具体的には、イソシアヌル酸誘導体(B)としては、下記式(1-1)で表される化合物(モノアリルジグリシジルイソシアヌレート化合物)、下記式(1-2)で表される化合物(ジアリルモノグリシジルイソシアヌレート化合物)、下記式(1-3)で表される化合物(トリグリシジルイソシアヌレート化合物)等が挙げられる。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
More specifically, as an isocyanuric acid derivative (B), a compound represented by the following formula (1-1) (monoallyl diglycidyl isocyanurate compound), a compound represented by the following formula (1-2) ( Diallyl monoglycidyl isocyanurate compound), a compound represented by the following formula (1-3) (triglycidyl isocyanurate compound), and the like.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 上記式(1-1)~(1-3)中、R1、R2は、同一又は異なって、水素原子又は炭素数1~8のアルキル基を示す。炭素数1~8のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の直鎖又は分岐鎖状のアルキル基が挙げられる。中でも、メチル基、エチル基、プロピル基、イソプロピル基等の炭素数1~3の直鎖又は分岐鎖状のアルキル基が好ましい。上記式(1-1)~(1-3)中のR1及びR2は、水素原子であることが特に好ましい。 In the above formulas (1-1) to (1-3), R 1 and R 2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. Examples of the alkyl group having 1 to 8 carbon atoms include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, pentyl, hexyl, heptyl, octyl and the like. Examples thereof include a chain or branched alkyl group. Of these, a linear or branched alkyl group having 1 to 3 carbon atoms such as a methyl group, an ethyl group, a propyl group, and an isopropyl group is preferable. In the above formulas (1-1) to (1-3), R 1 and R 2 are particularly preferably hydrogen atoms.
 上記式(1-1)で表される化合物の代表的な例としては、モノアリルジグリシジルイソシアヌレート、1-アリル-3,5-ビス(2-メチルエポキシプロピル)イソシアヌレート、1-(2-メチルプロペニル)-3,5-ジグリシジルイソシアヌレート、1-(2-メチルプロペニル)-3,5-ビス(2-メチルエポキシプロピル)イソシアヌレートなどが挙げられる。 Representative examples of the compound represented by the formula (1-1) include monoallyldiglycidyl isocyanurate, 1-allyl-3,5-bis (2-methylepoxypropyl) isocyanurate, 1- (2 -Methylpropenyl) -3,5-diglycidyl isocyanurate, 1- (2-methylpropenyl) -3,5-bis (2-methylepoxypropyl) isocyanurate, and the like.
 上記式(1-2)で表される化合物の代表的な例としては、ジアリルモノグリシジルイソシアヌレート、1,3-ジアリル-5-(2-メチルエポキシプロピル)イソシアヌレート、1,3-ビス(2-メチルプロペニル)-5-グリシジルイソシアヌレート、1,3-ビス(2-メチルプロペニル)-5-(2-メチルエポキシプロピル)イソシアヌレートなどが挙げられる。 Representative examples of the compound represented by the above formula (1-2) include diallyl monoglycidyl isocyanurate, 1,3-diallyl-5- (2-methylepoxypropyl) isocyanurate, 1,3-bis ( 2-methylpropenyl) -5-glycidyl isocyanurate, 1,3-bis (2-methylpropenyl) -5- (2-methylepoxypropyl) isocyanurate, and the like.
 上記式(1-3)で表される化合物の代表的な例としては、トリグリシジルイソシアヌレート、トリス(2-メチルエポキシプロピル)イソシアヌレートなどが挙げられる。 Representative examples of the compound represented by the above formula (1-3) include triglycidyl isocyanurate and tris (2-methylepoxypropyl) isocyanurate.
 なお、イソシアヌル酸誘導体(B)は、アルコールや酸無水物などのオキシラン環と反応する化合物を加えてあらかじめ変性して用いてもよい。 The isocyanuric acid derivative (B) may be modified in advance by adding a compound that reacts with an oxirane ring such as alcohol or acid anhydride.
 中でも、イソシアヌル酸誘導体(B)としては、上記式(1-1)~(1-3)で表される化合物が好ましく、より好ましくは上記式(1-1)で表される化合物である。なお、本発明の硬化性エポキシ樹脂組成物においてイソシアヌル酸誘導体(B)は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。なお、イソシアヌル酸誘導体(B)としては市販品を使用することもでき、このような市販品として、例えば、商品名「TEPIC」(日産化学工業(株)製)、商品名「MA-DGIC」(四国化成工業(株)製)、商品名「DA-MGIC」(四国化成工業(株)製)などが挙げられる。 Among these, as the isocyanuric acid derivative (B), compounds represented by the above formulas (1-1) to (1-3) are preferable, and a compound represented by the above formula (1-1) is more preferable. In the curable epoxy resin composition of the present invention, the isocyanuric acid derivative (B) can be used alone or in combination of two or more. Commercially available products can be used as the isocyanuric acid derivative (B). Examples of such commercially available products include the trade name “TEPIC” (manufactured by Nissan Chemical Industries, Ltd.) and the trade name “MA-DGIC”. (Manufactured by Shikoku Kasei Kogyo Co., Ltd.), trade name “DA-MGIC” (manufactured by Shikoku Kasei Kogyo Co., Ltd.) and the like.
 本発明の硬化性エポキシ樹脂組成物におけるイソシアヌル酸誘導体(B)の含有量(配合量)は、特に限定されないが、脂環式エポキシ化合物(A)100重量部に対して、5~100重量部が好ましく、より好ましくは8~80重量部、さらに好ましくは10~60重量部である。イソシアヌル酸誘導体(B)の含有量を5重量部以上とすることにより、硬化物の密着性、耐熱衝撃性がより向上する傾向がある。一方、イソシアヌル酸誘導体(B)の含有量が100重量部を超えると、イソシアヌル酸誘導体(B)の硬化性エポキシ樹脂組成物における溶解性が低下し、硬化物の物性に悪影響が及ぶ場合がある。 The content (blending amount) of the isocyanuric acid derivative (B) in the curable epoxy resin composition of the present invention is not particularly limited, but is 5 to 100 parts by weight with respect to 100 parts by weight of the alicyclic epoxy compound (A). It is preferably 8 to 80 parts by weight, more preferably 10 to 60 parts by weight. By setting the content of the isocyanuric acid derivative (B) to 5 parts by weight or more, the adhesiveness and thermal shock resistance of the cured product tend to be further improved. On the other hand, when the content of the isocyanuric acid derivative (B) exceeds 100 parts by weight, the solubility of the isocyanuric acid derivative (B) in the curable epoxy resin composition is lowered, and the physical properties of the cured product may be adversely affected. .
 本発明の硬化性エポキシ樹脂組成物に含まれるカチオン重合性化合物(カチオン硬化性化合物)の全量(100重量%)に対するイソシアヌル酸誘導体(B)の割合は、特に限定されないが、1~40重量%が好ましく、より好ましくは5~30重量%、さらに好ましくは8~25重量%である。イソシアヌル酸誘導体(B)の割合を1重量%以上とすることにより、硬化物の密着性、耐熱衝撃性がより向上する傾向がある。一方、イソシアヌル酸誘導体(B)の割合が40重量%を超えると、イソシアヌル酸誘導体(B)の硬化性エポキシ樹脂組成物における溶解性が低下し、硬化物の物性に悪影響が及ぶ場合がある。 The ratio of the isocyanuric acid derivative (B) to the total amount (100% by weight) of the cationically polymerizable compound (cationic curable compound) contained in the curable epoxy resin composition of the present invention is not particularly limited, but is 1 to 40% by weight. It is preferably 5 to 30% by weight, more preferably 8 to 25% by weight. By setting the proportion of the isocyanuric acid derivative (B) to 1% by weight or more, the adhesion and thermal shock resistance of the cured product tend to be further improved. On the other hand, if the proportion of the isocyanuric acid derivative (B) exceeds 40% by weight, the solubility of the isocyanuric acid derivative (B) in the curable epoxy resin composition is lowered, and the physical properties of the cured product may be adversely affected.
[オキセタン化合物(C)]
 本発明の硬化性エポキシ樹脂組成物におけるオキセタン化合物(C)は、分子内に1個以上のオキセタン環を有する化合物である。オキセタン化合物(C)が分子内に有するオキセタン環の数は、1個以上であればよく、特に限定されないが、1~6個が好ましく、より好ましくは1~4個である。
[Oxetane compound (C)]
The oxetane compound (C) in the curable epoxy resin composition of the present invention is a compound having one or more oxetane rings in the molecule. The number of oxetane rings in the molecule of the oxetane compound (C) may be one or more, and is not particularly limited, but is preferably 1 to 6, and more preferably 1 to 4.
 オキセタン化合物(C)としては、公知乃至慣用のオキセタン化合物を使用することができ、特に限定されないが、例えば、3,3-ビス(ビニルオキシメチル)オキセタン、3-メチル-3-(ヒドロキシメチル)オキセタン、3-エチル-3-(2-エチルヘキシルオキシメチル)オキセタン、3-エチル-3-(ヒドロキシメチル)オキセタン、3-エチル-3-[(フェノキシ)メチル]オキセタン、3-エチル-3-(ヘキシルオキシメチル)オキセタン、3-エチル-3-(クロロメチル)オキセタン、3,3-ビス(クロロメチル)オキセタン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、ビス{[1-エチル(3-オキセタニル)]メチル}エーテル、4,4'-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビシクロヘキシル、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]シクロヘキサン、1,4-ビス{〔(3-エチル-3-オキセタニル)メトキシ〕メチル}ベンゼン、3-エチル-3{〔(3-エチルオキセタン-3-イル)メトキシ〕メチル}オキセタン等が挙げられる。 As the oxetane compound (C), known or conventional oxetane compounds can be used, and are not particularly limited. For example, 3,3-bis (vinyloxymethyl) oxetane, 3-methyl-3- (hydroxymethyl) Oxetane, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane, 3-ethyl-3- (hydroxymethyl) oxetane, 3-ethyl-3-[(phenoxy) methyl] oxetane, 3-ethyl-3- ( Hexyloxymethyl) oxetane, 3-ethyl-3- (chloromethyl) oxetane, 3,3-bis (chloromethyl) oxetane, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, bis {[1-ethyl (3-oxetanyl)] methyl} ether, 4,4′-bis [(3-ethyl-3 -Oxetanyl) methoxymethyl] bicyclohexyl, 1,4-bis [(3-ethyl-3-oxetanyl) methoxymethyl] cyclohexane, 1,4-bis {[(3-ethyl-3-oxetanyl) methoxy] methyl} benzene 3-ethyl-3 {[(3-ethyloxetane-3-yl) methoxy] methyl} oxetane and the like.
 中でも、オキセタン化合物(C)としては、硬化物の密着性、耐熱衝撃性をいっそう向上させる点で、分子内に1個の水酸基を有する化合物(「オキセタン化合物(C1)」と称する場合がある;分子内に1個以上のオキセタン環及び1個の水酸基を有する化合物)が好ましい。オキセタン化合物(C1)としては、3-エチル-3-(ヒドロキシメチル)オキセタン、3-メチル-3-(ヒドロキシメチル)オキセタン等が挙げられる。 Among them, the oxetane compound (C) may be referred to as a compound having one hydroxyl group in the molecule (“oxetane compound (C1)” in terms of further improving the adhesion and thermal shock resistance of the cured product; A compound having one or more oxetane rings and one hydroxyl group in the molecule is preferred. Examples of the oxetane compound (C1) include 3-ethyl-3- (hydroxymethyl) oxetane and 3-methyl-3- (hydroxymethyl) oxetane.
 なお、本発明の硬化性エポキシ樹脂組成物においてオキセタン化合物(C)は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。なお、オキセタン化合物(C)としては市販品を使用することもでき、このような市販品として、例えば、商品名「アロンオキセタンOXT-101」、「アロンオキセタンOXT-221」(以上、東亞合成(株)製)などが挙げられる。 In the curable epoxy resin composition of the present invention, the oxetane compound (C) can be used singly or in combination of two or more. Commercially available products can be used as the oxetane compound (C). Examples of such commercially available products include “Aron Oxetane OXT-101” and “Aron Oxetane OXT-221” (above, Toagosei Co., Ltd.). Etc.).
 本発明の硬化性エポキシ樹脂組成物におけるオキセタン化合物(C)の含有量(配合量)は、特に限定されないが、脂環式エポキシ化合物(A)100重量部に対して、10~150重量部が好ましく、より好ましくは15~125重量部、さらに好ましくは20~120重量部である。オキセタン化合物(C)の含有量を10重量部以上とすることにより、硬化物の密着性、耐熱衝撃性がより向上する傾向がある。一方、オキセタン化合物(C)の含有量を150重量部以下とすることにより、硬化物の透明性、耐熱性、耐候性がより向上する傾向がある。 The content (blending amount) of the oxetane compound (C) in the curable epoxy resin composition of the present invention is not particularly limited, but is 10 to 150 parts by weight with respect to 100 parts by weight of the alicyclic epoxy compound (A). The amount is preferably 15 to 125 parts by weight, more preferably 20 to 120 parts by weight. By setting the content of the oxetane compound (C) to 10 parts by weight or more, the adhesiveness and thermal shock resistance of the cured product tend to be further improved. On the other hand, when the content of the oxetane compound (C) is 150 parts by weight or less, the transparency, heat resistance, and weather resistance of the cured product tend to be further improved.
[硬化触媒(D)]
 本発明の硬化性エポキシ樹脂組成物は、さらに硬化触媒(D)を含んでいてもよい。硬化触媒(D)は、脂環式エポキシ化合物(A)、イソシアヌル酸誘導体(B)、オキセタン化合物(C)などのカチオン硬化性化合物の硬化反応(重合反応)を開始及び/又は促進させることにより、硬化性エポキシ樹脂組成物を硬化させる働きを有する化合物である。硬化触媒(D)としては、特に限定されないが、例えば、光照射や加熱処理等を施すことによりカチオン種を発生して、重合を開始させるカチオン重合開始剤(光カチオン重合開始剤、熱カチオン重合開始剤等)や、ルイス酸・アミン錯体、ブレンステッド酸塩類、イミダゾール類等が挙げられる。
[Curing catalyst (D)]
The curable epoxy resin composition of the present invention may further contain a curing catalyst (D). The curing catalyst (D) starts and / or accelerates a curing reaction (polymerization reaction) of a cationic curable compound such as an alicyclic epoxy compound (A), an isocyanuric acid derivative (B), or an oxetane compound (C). And a compound having a function of curing the curable epoxy resin composition. The curing catalyst (D) is not particularly limited. For example, a cationic polymerization initiator (photocation polymerization initiator, thermal cation polymerization, which initiates polymerization by generating cationic species by applying light irradiation or heat treatment). Initiators, etc.), Lewis acid / amine complexes, Bronsted acid salts, imidazoles and the like.
 硬化触媒(D)としての光カチオン重合開始剤としては、例えば、ヘキサフルオロアンチモネート塩、ペンタフルオロヒドロキシアンチモネート塩、ヘキサフルオロホスフェート塩、ヘキサフルオロアルセネート塩などが挙げられ、より具体的には、例えば、トリアリールスルホニウムヘキサフルオロホスフェート(例えば、p-フェニルチオフェニルジフェニルスルホニウムヘキサフルオロホスフェート等)、トリアリールスルホニウムヘキサフルオロアンチモネート等のスルホニウム塩(特に、トリアリールスルホニウム塩);ジアリールヨードニウムヘキサフルオロホスフェート、ジアリールヨードニウムヘキサフルオロアンチモネート、ビス(ドデシルフェニル)ヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ヨードニウム[4-(4-メチルフェニル-2-メチルプロピル)フェニル]ヘキサフルオロホスフェート等のヨードニウム塩;テトラフルオロホスホニウムヘキサフルオロホスフェート等のホスホニウム塩;N-ヘキシルピリジニウムテトラフルオロボレート等のピリジニウム塩等が挙げられる。また、光カチオン重合開始剤としては、例えば、商品名「UVACURE1590」(ダイセル・サイテック(株)製);商品名「CD-1010」、「CD-1011」、「CD-1012」(以上、米国サートマー製);商品名「イルガキュア264」(BASF製);商品名「CIT-1682」(日本曹達(株)製)などの市販品を好ましく使用することもできる。 Examples of the photocationic polymerization initiator as the curing catalyst (D) include hexafluoroantimonate salts, pentafluorohydroxyantimonate salts, hexafluorophosphate salts, hexafluoroarsenate salts, and more specifically. For example, triarylsulfonium hexafluorophosphate (eg, p-phenylthiophenyldiphenylsulfonium hexafluorophosphate), sulfonium salts such as triarylsulfonium hexafluoroantimonate (particularly, triarylsulfonium salts); diaryl iodonium hexafluorophosphate Diaryl iodonium hexafluoroantimonate, bis (dodecylphenyl) iodonium tetrakis (pentafluorophenyl) borate, Examples include iodonium salts such as donium [4- (4-methylphenyl-2-methylpropyl) phenyl] hexafluorophosphate; phosphonium salts such as tetrafluorophosphonium hexafluorophosphate; pyridinium salts such as N-hexylpyridinium tetrafluoroborate and the like. It is done. Examples of the cationic photopolymerization initiator include, for example, trade names “UVACURE 1590” (manufactured by Daicel Cytec Co., Ltd.); trade names “CD-1010”, “CD-1011”, “CD-1012” (above, the United States). Commercial products such as trade name “Irgacure 264” (manufactured by BASF); trade name “CIT-1682” (manufactured by Nippon Soda Co., Ltd.) can be preferably used.
 硬化触媒(D)としての熱カチオン重合開始剤としては、例えば、アリールジアゾニウム塩、アリールヨードニウム塩、アリールスルホニウム塩、アレン-イオン錯体などが挙げられ、商品名「PP-33」、「CP-66」、「CP-77」(以上(株)ADEKA製);商品名「FC-509」(スリーエム製);商品名「UVE1014」(G.E.製);商品名「サンエイド SI-60L」、「サンエイド SI-80L」、「サンエイド SI-100L」、「サンエイド SI-110L」、「サンエイド SI-150L」(以上、三新化学工業(株)製);商品名「CG-24-61」(BASF製)などの市販品を好ましく使用することができる。さらに、熱カチオン重合開始剤としては、アルミニウムやチタンなどの金属とアセト酢酸若しくはジケトン類とのキレート化合物とトリフェニルシラノール等のシラノールとの化合物、又は、アルミニウムやチタンなどの金属とアセト酢酸若しくはジケトン類とのキレート化合物とビスフェノールS等のフェノール類との化合物等も挙げられる。 Examples of the thermal cationic polymerization initiator as the curing catalyst (D) include aryldiazonium salts, aryliodonium salts, arylsulfonium salts, allene-ion complexes, etc., and trade names “PP-33”, “CP-66”. "CP-77" (manufactured by ADEKA); trade name "FC-509" (manufactured by 3M); trade name "UVE1014" (manufactured by GE); trade name "Sun-Aid SI-60L", "Sun-Aid SI-80L", "Sun-Aid SI-100L", "Sun-Aid SI-110L", "Sun-Aid SI-150L" (manufactured by Sanshin Chemical Industry Co., Ltd.); trade name "CG-24-61" ( Commercial products such as BASF) can be preferably used. Further, as the thermal cationic polymerization initiator, a compound of a chelate compound of a metal such as aluminum or titanium and acetoacetic acid or diketones and a silanol such as triphenylsilanol, or a metal such as aluminum or titanium and acetoacetic acid or diketone Examples thereof include a compound of a chelate compound with a phenol and a phenol such as bisphenol S.
 硬化触媒(D)としてのルイス酸・アミン錯体としては、公知乃至慣用のルイス酸・アミン錯体系硬化触媒を使用することができ、特に限定されないが、例えば、BF3・n-ヘキシルアミン、BF3・モノエチルアミン、BF3・ベンジルアミン、BF3・ジエチルアミン、BF3・ピペリジン、BF3・トリエチルアミン、BF3・アニリン、BF4・n-ヘキシルアミン、BF4・モノエチルアミン、BF4・ベンジルアミン、BF4・ジエチルアミン、BF4・ピペリジン、BF4・トリエチルアミン、BF4・アニリン、PF5・エチルアミン、PF5・イソプロピルアミン、PF5・ブチルアミン、PF5・ラウリルアミン、PF5・ベンジルアミン、AsF5・ラウリルアミン等が挙げられる。 As the Lewis acid / amine complex as the curing catalyst (D), a known or commonly used Lewis acid / amine complex-based curing catalyst can be used, and is not particularly limited. For example, BF 3 .n-hexylamine, BF 3 · monoethylamine, BF 3 · benzylamine, BF 3 · diethylamine, BF 3 · piperidine, BF 3 · triethylamine, BF 3 · aniline, BF 4 - n-hexylamine, BF 4 - monoethylamine, BF 4 - benzylamine , BF 4 · diethylamine, BF 4 · piperidine, BF 4 · triethylamine, BF 4 · aniline, PF 5 · ethylamine, PF 5 · isopropylamine, PF 5 · butylamine, PF 5 · laurylamine, PF 5 · benzylamine, AsF 5. Laurylamine etc. are mentioned.
 硬化触媒(D)としてのブレンステッド酸塩類としては、公知乃至慣用のブレンステッド酸塩類を使用することができ、特に限定されないが、例えば、脂肪族スルホニウム塩、芳香族スルホニウム塩、ヨードニウム塩、ホスホニウム塩等が挙げられる。 As the Bronsted acid salts as the curing catalyst (D), known or commonly used Bronsted acid salts can be used, and are not particularly limited. For example, aliphatic sulfonium salts, aromatic sulfonium salts, iodonium salts, phosphoniums. Examples include salts.
 硬化触媒(D)としてのイミダゾール類としては、公知乃至慣用のイミダゾール類を使用することができ、特に限定されないが、例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテート、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート、2-メチルイミダゾリウムイソシアヌレート、2-フェニルイミダゾリウムイソシアヌレート、2,4-ジアミノ-6-[2-メチルイミダゾリル-(1)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2-エチル-4-メチルイミダゾリル-(1)]-エチル-s-トリアジンなどが挙げられる。 As the imidazole as the curing catalyst (D), known or commonly used imidazoles can be used, and are not particularly limited. For example, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-undecyl Imidazole, 2-heptadecylimidazole, 2-phenylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2- Undecylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2-methylimidazolium isocyanurate, 2-phenylimidazolium isocyanurate, 2,4 - Amino-6- [2-methylimidazolyl- (1)]-ethyl-s-triazine, 2,4-diamino-6- [2-ethyl-4-methylimidazolyl- (1)]-ethyl-s-triazine, etc. Is mentioned.
 本発明の硬化性エポキシ樹脂組成物において硬化触媒(D)は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。なお、上述のように、硬化触媒(D)としては市販品を使用することもできる。 In the curable epoxy resin composition of the present invention, the curing catalyst (D) can be used singly or in combination of two or more. In addition, as above-mentioned, a commercial item can also be used as a curing catalyst (D).
 本発明の硬化性エポキシ樹脂組成物における硬化触媒(D)の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物に含まれるカチオン硬化性化合物の全量100重量部に対して、0.01~15重量部が好ましく、より好ましくは0.01~12重量部、さらに好ましくは0.05~10重量部、特に好ましくは0.05~8重量部である。硬化触媒(D)を上記範囲内で使用することにより、硬化性エポキシ樹脂組成物の硬化速度が速くなり、硬化物の耐熱性及び透明性がバランスよく向上する傾向がある。 The content (blending amount) of the curing catalyst (D) in the curable epoxy resin composition of the present invention is not particularly limited, but is 100 parts by weight based on the total amount of the cationic curable compound contained in the curable epoxy resin composition. 0.01 to 15 parts by weight, more preferably 0.01 to 12 parts by weight, still more preferably 0.05 to 10 parts by weight, and particularly preferably 0.05 to 8 parts by weight. By using the curing catalyst (D) within the above range, the curing rate of the curable epoxy resin composition is increased, and the heat resistance and transparency of the cured product tend to be improved in a balanced manner.
[硬化剤(E)]
 本発明の硬化性エポキシ樹脂組成物は、さらに(例えば、硬化触媒(D)の代わりに)硬化剤(E)を含んでいてもよい。硬化剤(E)は、脂環式エポキシ化合物(A)、イソシアヌル酸誘導体(B)、オキセタン化合物(C)等のカチオン硬化性化合物と反応することにより、硬化性エポキシ樹脂組成物を硬化させる働きを有する化合物である。硬化剤(E)としては、エポキシ樹脂用硬化剤として公知乃至慣用の硬化剤を使用することができ、特に限定されないが、例えば、酸無水物類(酸無水物系硬化剤)、アミン類(アミン系硬化剤)、ポリアミド樹脂、イミダゾール類(イミダゾール系硬化剤)、ポリメルカプタン類(ポリメルカプタン系硬化剤)、フェノール類(フェノール系硬化剤)、ポリカルボン酸類、ジシアンジアミド類、有機酸ヒドラジド等が挙げられる。
[Curing agent (E)]
The curable epoxy resin composition of the present invention may further contain a curing agent (E) (for example, instead of the curing catalyst (D)). The curing agent (E) works to cure the curable epoxy resin composition by reacting with a cationic curable compound such as an alicyclic epoxy compound (A), an isocyanuric acid derivative (B), or an oxetane compound (C). It is a compound which has this. As the curing agent (E), a known or conventional curing agent can be used as a curing agent for epoxy resin, and is not particularly limited. For example, acid anhydrides (acid anhydride curing agents), amines ( Amine curing agents), polyamide resins, imidazoles (imidazole curing agents), polymercaptans (polymercaptan curing agents), phenols (phenolic curing agents), polycarboxylic acids, dicyandiamides, organic acid hydrazides, etc. Can be mentioned.
 硬化剤(E)としての酸無水物類(酸無水物系硬化剤)としては、公知乃至慣用の酸無水物系硬化剤を使用することができ、特に限定されないが、例えば、メチルテトラヒドロ無水フタル酸(4-メチルテトラヒドロ無水フタル酸、3-メチルテトラヒドロ無水フタル酸等)、メチルヘキサヒドロ無水フタル酸(4-メチルヘキサヒドロ無水フタル酸、3-メチルヘキサヒドロ無水フタル酸等)、ドデセニル無水コハク酸、メチルエンドメチレンテトラヒドロ無水フタル酸、無水フタル酸、無水マレイン酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルシクロヘキセンジカルボン酸無水物、無水ピロメリット酸、無水トリメリット酸、ベンゾフェノンテトラカルボン酸無水物、無水ナジック酸、無水メチルナジック酸、水素化メチルナジック酸無水物、4-(4-メチル-3-ペンテニル)テトラヒドロ無水フタル酸、無水コハク酸、無水アジピン酸、無水セバシン酸、無水ドデカン二酸、メチルシクロヘキセンテトラカルボン酸無水物、ビニルエーテル-無水マレイン酸共重合体、アルキルスチレン無水マレイン酸共重合体などが挙げられる。中でも、取り扱い性の観点で、25℃で液状の酸無水物[例えば、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ドデセニル無水コハク酸、メチルエンドメチレンテトラヒドロ無水フタル酸等]が好ましい。一方、25℃で固体状の酸無水物については、例えば、25℃で液状の酸無水物に溶解させて液状の混合物とすることで、本発明の硬化性エポキシ樹脂組成物における硬化剤(E)としての取り扱い性が向上する傾向がある。酸無水物系硬化剤としては、硬化物の耐熱性、透明性の観点で、飽和単環炭化水素ジカルボン酸の無水物(環にアルキル基等の置換基が結合したものも含む)が好ましい。 As the acid anhydrides (acid anhydride-based curing agents) as the curing agent (E), known or commonly used acid anhydride-based curing agents can be used, and are not particularly limited. For example, methyltetrahydrophthalic anhydride Acids (4-methyltetrahydrophthalic anhydride, 3-methyltetrahydrophthalic anhydride, etc.), methylhexahydrophthalic anhydride (4-methylhexahydrophthalic anhydride, 3-methylhexahydrophthalic anhydride, etc.), dodecenyl anhydride Acid, methylendomethylenetetrahydrophthalic anhydride, phthalic anhydride, maleic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylcyclohexene dicarboxylic anhydride, pyromellitic anhydride, trimellitic anhydride, benzophenone tetracarboxylic anhydride Products, nadic anhydride, methyl nadic anhydride, Hydrogenated methyl nadic acid anhydride, 4- (4-methyl-3-pentenyl) tetrahydrophthalic anhydride, succinic anhydride, adipic anhydride, sebacic anhydride, dodecanedioic anhydride, methylcyclohexene tetracarboxylic anhydride, vinyl ether -Maleic anhydride copolymer, alkylstyrene maleic anhydride copolymer and the like. Among these, acid anhydrides [for example, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, dodecenyl succinic anhydride, methylendomethylenetetrahydrophthalic anhydride, etc.] that are liquid at 25 ° C. are preferable from the viewpoint of handleability. On the other hand, for the acid anhydride that is solid at 25 ° C., for example, it is dissolved in a liquid acid anhydride at 25 ° C. to form a liquid mixture, whereby the curing agent (E ) Tends to be improved. As the acid anhydride curing agent, saturated monocyclic hydrocarbon dicarboxylic acid anhydrides (including those in which a substituent such as an alkyl group is bonded to the ring) are preferable from the viewpoint of heat resistance and transparency of the cured product.
 硬化剤(E)としてのアミン類(アミン系硬化剤)としては、公知乃至慣用のアミン系硬化剤を使用することができ、特に限定されないが、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジプロピレンジアミン、ジエチルアミノプロピルアミン、ポリプロピレントリアミンなどの脂肪族ポリアミン;メンセンジアミン、イソホロンジアミン、ビス(4-アミノ-3-メチルジシクロヘキシル)メタン、ジアミノジシクロヘキシルメタン、ビス(アミノメチル)シクロヘキサン、N-アミノエチルピペラジン、3,9-ビス(3-アミノプロピル)-3,4,8,10-テトラオキサスピロ(5,5)ウンデカンなどの脂環式ポリアミン;m-フェニレンジアミン、p-フェニレンジアミン、トリレン-2,4-ジアミン、トリレン-2,6-ジアミン、メシチレン-2,4-ジアミン、3,5-ジエチルトリレン-2,4-ジアミン、3,5-ジエチルトリレン-2,6-ジアミン等の単核ポリアミン;ビフェニレンジアミン、4,4-ジアミノジフェニルメタン、2,5-ナフチレンジアミン、2,6-ナフチレンジアミンなどの芳香族ポリアミンなどが挙げられる。 As the amines (amine-based curing agent) as the curing agent (E), known or conventional amine-based curing agents can be used, and are not particularly limited. For example, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylene Aliphatic amines such as pentamine, dipropylenediamine, diethylaminopropylamine, polypropylenetriamine; mensendiamine, isophoronediamine, bis (4-amino-3-methyldicyclohexyl) methane, diaminodicyclohexylmethane, bis (aminomethyl) cyclohexane, Cycloaliphatic polyamines such as N-aminoethylpiperazine, 3,9-bis (3-aminopropyl) -3,4,8,10-tetraoxaspiro (5,5) undecane; m-phenylenediamine, p-phenyle Diamine, tolylene-2,4-diamine, tolylene-2,6-diamine, mesitylene-2,4-diamine, 3,5-diethyltolylene-2,4-diamine, 3,5-diethyltolylene-2, Mononuclear polyamines such as 6-diamine; aromatic polyamines such as biphenylenediamine, 4,4-diaminodiphenylmethane, 2,5-naphthylenediamine, and 2,6-naphthylenediamine.
 硬化剤(E)としてのフェノール類(フェノール系硬化剤)としては、公知乃至慣用のフェノール系硬化剤を使用することができ、特に限定されないが、例えば、ノボラック型フェノール樹脂、ノボラック型クレゾール樹脂、パラキシリレン変性フェノール樹脂、パラキシリレン・メタキシリレン変性フェノール樹脂等のアラルキル樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、トリフェノールプロパンなどが挙げられる。 As the phenols (phenolic curing agent) as the curing agent (E), known or commonly used phenolic curing agents can be used, and are not particularly limited. For example, novolac type phenol resins, novolac type cresol resins, Examples include paraxylylene-modified phenol resins, aralkyl resins such as paraxylylene / metaxylylene-modified phenol resins, terpene-modified phenol resins, dicyclopentadiene-modified phenol resins, and triphenol propane.
 硬化剤(E)としてのポリアミド樹脂としては、例えば、分子内に第1級アミノ基及び第2級アミノ基のいずれか一方又は両方を有するポリアミド樹脂等が挙げられる。 Examples of the polyamide resin as the curing agent (E) include a polyamide resin having one or both of a primary amino group and a secondary amino group in the molecule.
 硬化剤(E)としてのイミダゾール類(イミダゾール系硬化剤)としては、公知乃至慣用のイミダゾール系硬化剤を使用することができ、特に限定されないが、例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテート、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート、2-メチルイミダゾリウムイソシアヌレート、2-フェニルイミダゾリウムイソシアヌレート、2,4-ジアミノ-6-[2-メチルイミダゾリル-(1)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2-エチル-4-メチルイミダゾリル-(1)]-エチル-s-トリアジンなどが挙げられる。 As the imidazole (imidazole curing agent) as the curing agent (E), a known or commonly used imidazole curing agent can be used, and is not particularly limited. For example, 2-methylimidazole, 2-ethyl-4 -Methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methyl Imidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2-methylimidazolium isocyanurate, 2-phenyl Imidazolium Isocyanurate, 2,4-diamino-6- [2-methylimidazolyl- (1)]-ethyl-s-triazine, 2,4-diamino-6- [2-ethyl-4-methylimidazolyl- (1)] -Ethyl-s-triazine and the like.
 硬化剤(E)としてのポリメルカプタン類(ポリメルカプタン系硬化剤)としては、例えば、液状のポリメルカプタン、ポリスルフィド樹脂等が挙げられる。 Examples of the polymercaptans (polymercaptan-based curing agent) as the curing agent (E) include liquid polymercaptan and polysulfide resin.
 硬化剤(E)としてのポリカルボン酸類としては、例えば、アジピン酸、セバシン酸、テレフタル酸、トリメリット酸、カルボキシル基含有ポリエステル等が挙げられる。 Examples of polycarboxylic acids as the curing agent (E) include adipic acid, sebacic acid, terephthalic acid, trimellitic acid, carboxyl group-containing polyester, and the like.
 中でも、硬化剤(E)としては、硬化物の耐熱性、透明性の観点で、酸無水物類(酸無水物系硬化剤)が好ましい。なお、本発明の硬化性エポキシ樹脂組成物において硬化剤(E)は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。また、硬化剤(E)としては、市販品を使用することもできる。例えば、酸無水物系硬化剤の市販品としては、商品名「リカシッド MH-700」、「リカシッド MH-700F」(以上、新日本理化(株)製);商品名「HN-5500」(日立化成工業(株)製)等が挙げられる。 Among these, as the curing agent (E), acid anhydrides (acid anhydride curing agents) are preferable from the viewpoint of heat resistance and transparency of the cured product. In addition, the hardening | curing agent (E) can also be used individually by 1 type in the curable epoxy resin composition of this invention, and can also be used in combination of 2 or more type. Moreover, a commercial item can also be used as a hardening | curing agent (E). For example, commercially available acid anhydride-based curing agents include trade names “Licacid MH-700”, “Licacid MH-700F” (manufactured by Shin Nippon Rika Co., Ltd.); trade name “HN-5500” (Hitachi) Kasei Kogyo Co., Ltd.).
 本発明の硬化性エポキシ樹脂組成物における硬化剤(E)の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物に含まれるカチオン硬化性化合物の全量100重量部に対して、50~200重量部が好ましく、より好ましくは80~150重量部である。より具体的には、硬化剤(E)として酸無水物類を使用する場合、本発明の硬化性エポキシ樹脂組成物に含まれる全てのエポキシ基を有する化合物におけるエポキシ基1当量当たり、0.5~1.5当量となる割合で使用することが好ましい。硬化剤(E)の含有量を50重量部以上とすることにより、十分に硬化させることができ、硬化物の強靭性がより向上する傾向がある。一方、硬化剤(E)の含有量を200重量部以下とすることにより、着色が抑制され、色相に優れた硬化物が得られる傾向がある。 The content (blending amount) of the curing agent (E) in the curable epoxy resin composition of the present invention is not particularly limited, but is 100 parts by weight based on the total amount of the cationic curable compound contained in the curable epoxy resin composition. 50 to 200 parts by weight, and more preferably 80 to 150 parts by weight. More specifically, when acid anhydrides are used as the curing agent (E), 0.5% per equivalent of epoxy group in the compound having all epoxy groups contained in the curable epoxy resin composition of the present invention. It is preferable to use at a ratio of ˜1.5 equivalent. By making content of a hardening | curing agent (E) into 50 weight part or more, it can fully harden | cure and there exists a tendency for the toughness of hardened | cured material to improve more. On the other hand, by setting the content of the curing agent (E) to 200 parts by weight or less, coloring tends to be suppressed and a cured product excellent in hue tends to be obtained.
[硬化促進剤(F)]
 本発明の硬化性エポキシ樹脂組成物は、特に硬化剤(E)を含む場合には、さらに硬化促進剤(F)を含むことが好ましい。硬化促進剤(F)は、カチオン硬化性化合物(特に、エポキシ基を有する化合物)が硬化剤(E)と反応する際に、その反応速度を促進する機能を有する化合物である。硬化促進剤(F)としては、公知乃至慣用の硬化促進剤を使用することができ、特に限定されないが、例えば、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)又はその塩(例えば、フェノール塩、オクチル酸塩、p-トルエンスルホン酸塩、ギ酸塩、テトラフェニルボレート塩など);1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)又はその塩(例えば、フェノール塩、オクチル酸塩、p-トルエンスルホン酸塩、ギ酸塩、テトラフェニルボレート塩など);ベンジルジメチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、N,N-ジメチルシクロヘキシルアミンなどの3級アミン;2-エチル-4-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾールなどのイミダゾール;リン酸エステル;トリフェニルホスフィン、トリス(ジメトキシ)ホスフィンなどのホスフィン類;テトラフェニルホスホニウムテトラ(p-トリル)ボレートなどのホスホニウム化合物;オクチル酸亜鉛、オクチル酸スズ、ステアリン酸亜鉛などの有機金属塩;アルミニウムアセチルアセトン錯体などの金属キレートなどが挙げられる。
[Curing accelerator (F)]
The curable epoxy resin composition of the present invention preferably further contains a curing accelerator (F), particularly when it contains a curing agent (E). The curing accelerator (F) is a compound having a function of accelerating the reaction rate when a cationic curable compound (particularly a compound having an epoxy group) reacts with the curing agent (E). The curing accelerator (F) may be a known or conventional curing accelerator, and is not particularly limited. For example, 1,8-diazabicyclo [5.4.0] undecene-7 (DBU) or its Salts (for example, phenol salts, octylates, p-toluenesulfonates, formates, tetraphenylborate salts); 1,5-diazabicyclo [4.3.0] nonene-5 (DBN) or salts thereof ( For example, phenol salt, octylate, p-toluenesulfonate, formate, tetraphenylborate, etc.); benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, N, N-dimethylcyclohexyl Tertiary amines such as amines; 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole Phosphines such as triphenylphosphine and tris (dimethoxy) phosphine; phosphonium compounds such as tetraphenylphosphonium tetra (p-tolyl) borate; organic compounds such as zinc octylate, tin octylate and zinc stearate Metal salts; metal chelates such as aluminum acetylacetone complex.
 なお、本発明の硬化性エポキシ樹脂組成物において硬化促進剤(F)は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。また、硬化促進剤(F)としては、商品名「U-CAT SA 506」、「U-CAT SA 102」、「U-CAT 5003」、「U-CAT 18X」、「U-CAT 12XD」(開発品)(以上、サンアプロ(株)製);商品名「TPP-K」、「TPP-MK」(以上、北興化学工業(株)製);商品名「PX-4ET」(日本化学工業(株)製)などの市販品を使用することもできる。 In addition, a hardening accelerator (F) can also be used individually by 1 type in the curable epoxy resin composition of this invention, and can also be used in combination of 2 or more types. Further, as the curing accelerator (F), trade names “U-CAT SA 506”, “U-CAT SA 102”, “U-CAT 5003”, “U-CAT 18X”, “U-CAT 12XD” ( (Developed product) (San Apro Co., Ltd.); Trade names “TPP-K”, “TPP-MK” (Hokuko Chemical Co., Ltd.); Trade name “PX-4ET” (Nippon Chemical Industry ( It is also possible to use a commercial product such as a product manufactured by Co., Ltd.
 本発明の硬化性エポキシ樹脂組成物における硬化促進剤(F)の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物に含まれるカチオン硬化性化合物の全量100重量部に対して、0.01~5重量部が好ましく、より好ましくは0.03~3重量部、さらに好ましくは0.03~2重量部である。硬化促進剤(F)の含有量を0.01重量部以上とすることにより、いっそう効率的な硬化促進効果が得られる傾向がある。一方、硬化促進剤(F)の含有量を5重量部以下とすることにより、着色が抑制され、色相に優れた硬化物が得られる傾向がある。 The content (blending amount) of the curing accelerator (F) in the curable epoxy resin composition of the present invention is not particularly limited, but is based on 100 parts by weight of the total amount of the cationic curable compound contained in the curable epoxy resin composition. The amount is preferably 0.01 to 5 parts by weight, more preferably 0.03 to 3 parts by weight, and still more preferably 0.03 to 2 parts by weight. By setting the content of the curing accelerator (F) to 0.01 parts by weight or more, a more efficient curing promoting effect tends to be obtained. On the other hand, by setting the content of the curing accelerator (F) to 5 parts by weight or less, coloring tends to be suppressed and a cured product excellent in hue tends to be obtained.
[無機フィラー(G)]
 本発明の硬化性エポキシ樹脂組成物は、さらに無機フィラー(G)を含んでいてもよい。無機フィラー(G)としては、公知乃至慣用の無機フィラーを使用することができ、特に限定されないが、シリカフィラー(ナノシリカなど)、アルミナフィラー、マイカ、合成マイカ、タルク、酸化カルシウム、炭酸カルシウム、酸化ジルコニウム(ナノジルコニアなど)、酸化チタン(ナノチタニアなど)、チタン酸バリウム、カオリン、ベントナイト、珪藻土、窒化ホウ素、窒化アルミ、炭化ケイ素、酸化亜鉛、酸化セリウム、酸化セシウム、酸化マグネシウム、ガラスフィラー、ガラス繊維、グラファイト、カーボンナノチューブ、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、セルロースなどが挙げられる。
[Inorganic filler (G)]
The curable epoxy resin composition of the present invention may further contain an inorganic filler (G). As the inorganic filler (G), known or conventional inorganic fillers can be used, and are not particularly limited, but silica filler (such as nano silica), alumina filler, mica, synthetic mica, talc, calcium oxide, calcium carbonate, oxidation Zirconium (such as nano zirconia), titanium oxide (such as nano titania), barium titanate, kaolin, bentonite, diatomaceous earth, boron nitride, aluminum nitride, silicon carbide, zinc oxide, cerium oxide, cesium oxide, magnesium oxide, glass filler, glass fiber Graphite, carbon nanotubes, calcium hydroxide, magnesium hydroxide, aluminum hydroxide, cellulose and the like.
 無機フィラー(G)は、表面改質剤により表面が改質されたものであってもよい。上記表面改質剤としては、公知乃至慣用の表面改質剤が挙げられ、特に限定されないが、例えば、炭素数1~12の飽和又は不飽和モノ及びポリカルボン酸類;上記ポリカルボン酸類のエステル類;アミド類;β-ジカルボニル化合物;シランカップリング剤等が挙げられる。 The inorganic filler (G) may have a surface modified with a surface modifier. Examples of the surface modifier include known or commonly used surface modifiers, and are not particularly limited. Examples thereof include saturated or unsaturated mono- and polycarboxylic acids having 1 to 12 carbon atoms; esters of the polycarboxylic acids. Amides; β-dicarbonyl compounds; silane coupling agents and the like.
 なお、本発明の硬化性エポキシ樹脂組成物において無機フィラー(G)は、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。また、無機フィラー(G)としては、市販品を使用することもできる。 In the curable epoxy resin composition of the present invention, the inorganic filler (G) can be used singly or in combination of two or more. Moreover, as an inorganic filler (G), a commercial item can also be used.
 無機フィラー(G)の中でも、硬化物の高い透明性と耐熱衝撃性の両立の観点で、シリカフィラー、ガラスフィラーが好ましく、より好ましくはガラスフィラーである。 Among the inorganic fillers (G), silica fillers and glass fillers are preferable, and glass fillers are more preferable from the viewpoint of achieving both high transparency of the cured product and thermal shock resistance.
 シリカフィラーとしては、公知乃至慣用のシリカフィラーを使用することができ、特に限定されないが、例えば、溶融シリカ、結晶シリカ、高純度合成シリカなどが挙げられる。 As the silica filler, known or conventional silica fillers can be used, and are not particularly limited, and examples thereof include fused silica, crystalline silica, and high-purity synthetic silica.
 シリカフィラーの形状は、特に限定されないが、球状、破砕状、繊維状、針状、鱗片状、ウィスカー状などが挙げられる。 The shape of the silica filler is not particularly limited, and examples thereof include a spherical shape, a crushed shape, a fiber shape, a needle shape, a scale shape, and a whisker shape.
 シリカフィラーは、公知乃至慣用の方法により製造することができる。また、シリカフィラーとしては、市販品を使用することもでき、例えば、商品名「ヒューズレックスRD-8」((株)龍森製)、商品名「HPS-0500」(東亞合成(株)製)などが挙げられる。 The silica filler can be produced by a known or commonly used method. Commercially available products may be used as the silica filler. For example, the product name “Furex RD-8” (manufactured by Tatsumori), the product name “HPS-0500” (manufactured by Toagosei Co., Ltd.) ) And the like.
 ガラスフィラーとしては、公知乃至慣用のガラスフィラーを使用することができ、特に限定されないが、例えば、ガラスビーズ、ガラスフレーク、ガラスパウダー、ミルドガラス、ガラス繊維、ガラス繊維布(例えば、ガラスクロス、ガラス不織布など)などが挙げられる。 As the glass filler, known or conventional glass fillers can be used, and are not particularly limited. For example, glass beads, glass flakes, glass powder, milled glass, glass fiber, glass fiber cloth (for example, glass cloth, glass cloth) Non-woven fabric etc.).
 ガラスフィラーを構成するガラスの種類としては、特に限定されないが、例えば、Tガラス、Eガラス、Cガラス、Aガラス、Sガラス、Lガラス、Dガラス、NEガラス、石英ガラス、低誘電率ガラス、高誘電率ガラスなどが挙げられる。中でも、イオン性不純物が少なく、耐熱性及び電気絶縁性に優れる点で、Eガラス、Tガラス、NEガラスが好ましい。なお、本発明の硬化性エポキシ樹脂組成物においてガラスフィラーは、一種を単独で使用することもできるし、二種以上を組み合わせて使用することもできる。 Although it does not specifically limit as a kind of glass which comprises a glass filler, For example, T glass, E glass, C glass, A glass, S glass, L glass, D glass, NE glass, quartz glass, low dielectric constant glass, Examples include high dielectric constant glass. Among these, E glass, T glass, and NE glass are preferable because they have few ionic impurities and are excellent in heat resistance and electrical insulation. In addition, a glass filler can also be used individually by 1 type in the curable epoxy resin composition of this invention, and can also be used in combination of 2 or more type.
 ガラスフィラーのナトリウムD線(波長589.29nmの光)の屈折率は、特に限定されないが、1.40~2.10が好ましく、より好ましくは1.45~1.60である。屈折率を上記範囲に制御することにより、硬化物の透明性が向上する傾向がある。なお、ガラスフィラーのナトリウムD線の屈折率は、例えば、アッベ屈折計(測定温度:25℃)を使用して測定することができる。 The refractive index of the sodium D line (light having a wavelength of 589.29 nm) of the glass filler is not particularly limited, but is preferably 1.40 to 2.10, and more preferably 1.45 to 1.60. By controlling the refractive index within the above range, the transparency of the cured product tends to be improved. In addition, the refractive index of the sodium D line | wire of a glass filler can be measured using an Abbe refractometer (measurement temperature: 25 degreeC), for example.
 ガラスフィラーは、各種の公知乃至慣用の表面処理剤により表面処理されたものであってもよい。上記表面処理剤としては、例えば、γ-アミノプロピルトリエトキシシラン、γ-グリシドキシプロピルトリエトキシシランなどのシランカップリング剤、界面活性剤、無機酸などが挙げられる。上記表面処理により、ガラスフィラーのその他の成分(例えば、カチオン硬化性化合物等)との界面における濡れ性、親和性、密着性が向上する場合がある。 The glass filler may be surface-treated with various known or commonly used surface treatment agents. Examples of the surface treatment agent include silane coupling agents such as γ-aminopropyltriethoxysilane and γ-glycidoxypropyltriethoxysilane, surfactants, inorganic acids, and the like. The surface treatment may improve wettability, affinity, and adhesion at the interface of the glass filler with other components (for example, a cationic curable compound).
 上記ガラスフィラーは、公知乃至慣用の方法により製造することができる。また、ガラスフィラーとしては、市販品を使用することもでき、例えば、商品名「ガラスビーズCF0018WB15C」(日本フリット(株)製)、商品名「ガラスビーズCF0018WB15」(日本フリット(株)製)、商品名「ガラス粉末L-BSL7」((株)オハラ製)、商品名「ガラス粉末L-LAH81」((株)オハラ製)などが挙げられる。 The glass filler can be produced by a known or common method. Moreover, as a glass filler, a commercial item can also be used, for example, a brand name "Glass beads CF0018WB15C" (made by Nippon Frit Co., Ltd.), a brand name "Glass beads CF0018WB15" (made by Nippon Frit Co., Ltd.), The trade name “Glass Powder L-BSL7” (manufactured by OHARA INC.), The trade name “Glass Powder L-LAH81” (manufactured by OHARA INC.), Etc.
 本発明の硬化性エポキシ樹脂組成物における無機フィラー(G)の含有量(配合量)は、特に限定されないが、カチオン硬化性化合物の全量100重量部に対して、1~25重量部が好ましく、より好ましくは3~20重量部、さらに好ましくは5~15重量部である。無機フィラー(G)の含有量を1重量部以上とすることにより、硬化物の耐熱衝撃性がより向上する傾向がある。一方、無機フィラー(G)の含有量を25重量部以下とすることにより、硬化物の透明性がより向上する傾向がある。 The content (blending amount) of the inorganic filler (G) in the curable epoxy resin composition of the present invention is not particularly limited, but is preferably 1 to 25 parts by weight with respect to 100 parts by weight of the total amount of the cationic curable compound, The amount is more preferably 3 to 20 parts by weight, still more preferably 5 to 15 parts by weight. By setting the content of the inorganic filler (G) to 1 part by weight or more, the thermal shock resistance of the cured product tends to be further improved. On the other hand, when the content of the inorganic filler (G) is 25 parts by weight or less, the transparency of the cured product tends to be further improved.
 本発明の硬化性エポキシ樹脂組成物における無機フィラー(G)の含有量(配合量)は、特に限定されないが、脂環式エポキシ化合物(A)100重量部に対して、1~50重量部が好ましく、より好ましくは2~40重量部、さらに好ましくは3~30重量部である。無機フィラー(G)の含有量を1重量部以上とすることにより、硬化物の耐熱衝撃性がより向上する傾向がある。一方、無機フィラー(G)の含有量を50重量部以下とすることにより、硬化物の透明性がより向上する傾向がある。 The content (blending amount) of the inorganic filler (G) in the curable epoxy resin composition of the present invention is not particularly limited, but is 1 to 50 parts by weight with respect to 100 parts by weight of the alicyclic epoxy compound (A). The amount is preferably 2 to 40 parts by weight, more preferably 3 to 30 parts by weight. By setting the content of the inorganic filler (G) to 1 part by weight or more, the thermal shock resistance of the cured product tends to be further improved. On the other hand, when the content of the inorganic filler (G) is 50 parts by weight or less, the transparency of the cured product tends to be further improved.
[添加剤]
 本発明の硬化性エポキシ樹脂組成物は、上記以外にも、本発明の効果を損なわない範囲内で各種添加剤を含んでいてもよい。上記添加剤として、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン等の水酸基を有する化合物を含有させると、反応を緩やかに進行させることができる。その他にも、本発明の効果に悪影響を及ぼさない範囲で、硬化助剤、オルガノシロキサン化合物、金属酸化物粒子、ゴム粒子、シリコーン系やフッ素系の消泡剤、シランカップリング剤、充填剤、可塑剤、レベリング剤、帯電防止剤、離型剤、難燃剤、着色剤、酸化防止剤、紫外線吸収剤、イオン吸着体、顔料、染料等の慣用の添加剤を使用することができる。
[Additive]
In addition to the above, the curable epoxy resin composition of the present invention may contain various additives within a range that does not impair the effects of the present invention. For example, when a compound having a hydroxyl group such as ethylene glycol, diethylene glycol, propylene glycol, or glycerin is contained as the additive, the reaction can be allowed to proceed slowly. In addition, as long as the effect of the present invention is not adversely affected, curing aids, organosiloxane compounds, metal oxide particles, rubber particles, silicone-based and fluorine-based antifoaming agents, silane coupling agents, fillers, Conventional additives such as plasticizers, leveling agents, antistatic agents, mold release agents, flame retardants, colorants, antioxidants, ultraviolet absorbers, ion adsorbents, pigments and dyes can be used.
 本発明の硬化性エポキシ樹脂組成物は、特に限定されないが、上述の各成分を、必要に応じて加熱した状態で、攪拌・混合することにより調製することができる。なお、本発明の硬化性エポキシ樹脂組成物は、各成分があらかじめ混合されたものをそのまま使用する1液系の組成物として使用することもできるし、例えば、2以上に分割された成分(各成分は2以上の成分の混合物であってもよい)を使用前に所定の割合で混合して使用する多液系(例えば、2液系)の組成物として使用することもできる。上記攪拌・混合の方法は、特に限定されず、例えば、ディゾルバー、ホモジナイザーなどの各種ミキサー、ニーダー、ロール、ビーズミル、自公転式攪拌装置などの公知乃至慣用の攪拌・混合手段を使用できる。また、攪拌・混合後、真空下にて脱泡してもよい。 The curable epoxy resin composition of the present invention is not particularly limited, but can be prepared by stirring and mixing each of the above-described components in a heated state as necessary. In addition, the curable epoxy resin composition of the present invention can be used as a one-component composition in which each component is mixed in advance. For example, components divided into two or more (each component The component may be a mixture of two or more components) and may be used as a multi-liquid composition (for example, a two-liquid system) that is used by mixing at a predetermined ratio before use. The stirring / mixing method is not particularly limited, and for example, known or commonly used stirring / mixing means such as various mixers such as a dissolver and a homogenizer, a kneader, a roll, a bead mill, and a self-revolving stirrer can be used. Further, after stirring and mixing, defoaming may be performed under vacuum.
<硬化物>
 本発明の硬化性エポキシ樹脂組成物を硬化させることにより、高い透明性、耐熱性、及び耐光性を有し、特に密着性が高く、耐熱衝撃性に優れた硬化物(本発明の硬化性エポキシ樹脂組成物を硬化させて得られる硬化物を「本発明の硬化物」と称する場合がある)を得ることができる。硬化の手段としては、加熱処理や光照射処理等の公知乃至慣用の手段を利用できる。加熱により硬化させる際の温度(硬化温度)は、特に限定されないが、45~200℃が好ましく、より好ましくは50~190℃、さらに好ましくは55~180℃である。また、硬化の際に加熱する時間(硬化時間)は、特に限定されないが、30~600分が好ましく、より好ましくは45~540分、さらに好ましくは60~480分である。硬化温度と硬化時間が上記範囲の下限値より低い場合は硬化が不十分となり、逆に上記範囲の上限値より高い場合は樹脂成分の分解が起きる場合があるので、いずれも好ましくない。硬化条件は種々の条件に依存するが、例えば、硬化温度を高くした場合は硬化時間を短く、硬化温度を低くした場合は硬化時間を長くする等により、適宜調整することができる。また、硬化は、一段階で行うこともできるし、二段階以上の多段階で行うこともできる。
<Hardened product>
By curing the curable epoxy resin composition of the present invention, a cured product having high transparency, heat resistance and light resistance, particularly high adhesion and excellent thermal shock resistance (the curable epoxy of the present invention). A cured product obtained by curing the resin composition may be referred to as “cured product of the present invention”). As the curing means, known or conventional means such as heat treatment or light irradiation treatment can be used. The temperature for curing by heating (curing temperature) is not particularly limited, but is preferably 45 to 200 ° C, more preferably 50 to 190 ° C, and still more preferably 55 to 180 ° C. Further, the heating time (curing time) for curing is not particularly limited, but is preferably 30 to 600 minutes, more preferably 45 to 540 minutes, and further preferably 60 to 480 minutes. When the curing temperature and the curing time are lower than the lower limit value in the above range, curing is insufficient. On the contrary, when the curing temperature and the curing time are higher than the upper limit value in the above range, the resin component may be decomposed. Although the curing conditions depend on various conditions, for example, when the curing temperature is increased, the curing time can be shortened, and when the curing temperature is decreased, the curing time can be appropriately increased. Moreover, hardening can also be performed in one step and can also be performed in two or more steps.
<光半導体封止用樹脂組成物>
 本発明の硬化性エポキシ樹脂組成物は、光半導体装置における光半導体(光半導体素子)を封止するための樹脂組成物、即ち、光半導体封止用樹脂組成物(光半導体装置における光半導体素子の封止剤)として好ましく使用できる。上記光半導体封止用樹脂組成物として用いることにより、高い透明性、耐熱性、耐光性を有し、耐熱衝撃性に優れた硬化物により光半導体素子が封止された光半導体装置が得られる。上記光半導体装置は、熱衝撃や高温の熱が加えられた場合でも光度低下が生じにくく、耐久性が高い。
<Resin composition for optical semiconductor encapsulation>
The curable epoxy resin composition of the present invention is a resin composition for sealing an optical semiconductor (optical semiconductor element) in an optical semiconductor device, that is, a resin composition for optical semiconductor sealing (an optical semiconductor element in an optical semiconductor device). Can be preferably used. By using it as the optical semiconductor sealing resin composition, an optical semiconductor device in which an optical semiconductor element is sealed with a cured product having high transparency, heat resistance and light resistance and excellent thermal shock resistance can be obtained. . The optical semiconductor device is less likely to cause a decrease in light intensity even when a thermal shock or high-temperature heat is applied, and has high durability.
<光半導体装置>
 本発明の光半導体装置は、本発明の硬化性エポキシ樹脂組成物(光半導体封止用樹脂組成物)の硬化物により光半導体素子が封止された光半導体装置である。光半導体素子の封止は、上述の方法で調製した硬化性エポキシ樹脂組成物を所定の成形型内に注入し、所定の条件で加熱硬化して行う。これにより、硬化性エポキシ樹脂組成物の硬化物により光半導体素子が封止された光半導体装置が得られる。硬化温度と硬化時間は、硬化物の調製時と同様の範囲で適宜設定することができる。
<Optical semiconductor device>
The optical semiconductor device of the present invention is an optical semiconductor device in which an optical semiconductor element is sealed with a cured product of the curable epoxy resin composition (resin composition for optical semiconductor sealing) of the present invention. The optical semiconductor element is sealed by injecting the curable epoxy resin composition prepared by the above-described method into a predetermined mold and heat-curing under predetermined conditions. Thereby, the optical semiconductor device with which the optical semiconductor element was sealed with the hardened | cured material of the curable epoxy resin composition is obtained. The curing temperature and the curing time can be appropriately set within the same range as when the cured product is prepared.
 本発明の硬化性エポキシ樹脂組成物は、上述の光半導体素子の封止用途に限定されず、例えば、接着剤、電気絶縁材、積層板、コーティング、インク、塗料、シーラント、レジスト、複合材料、透明基材、透明シート、透明フィルム、光学素子、光学レンズ、光学部材、光造形、電子ペーパー、タッチパネル、太陽電池基板、光導波路、導光板、ホログラフィックメモリなどの用途にも使用することができる。 The curable epoxy resin composition of the present invention is not limited to the above-mentioned optical semiconductor element sealing application, for example, an adhesive, an electrical insulating material, a laminate, a coating, an ink, a paint, a sealant, a resist, a composite material, It can also be used for applications such as transparent substrates, transparent sheets, transparent films, optical elements, optical lenses, optical members, optical modeling, electronic paper, touch panels, solar cell substrates, optical waveguides, light guide plates, holographic memories, etc. .
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。なお、表1、2における「-」は、当該成分の配合を行わなかったことを意味する。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. In Tables 1 and 2, “-” means that the component was not blended.
実施例1
 まず、表1に示す配合割合(単位:重量部)で、商品名「セロキサイド2021P」((株)ダイセル製)、及び商品名「TEPIC」(日産化学工業(株)製)を、自公転式攪拌装置(商品名「あわとり練太郎AR-250」、(株)シンキー製)を使用して均一に混合した。なお、上記混合は、80℃で1時間攪拌することにより実施した。冷却後、商品名「アロンオキセタンOXT-101」(東亞合成(株)製)、及び、商品名「サンエイド SI-100L」(硬化触媒、三新化学工業(株)製)を、自公転式攪拌装置(商品名「あわとり練太郎AR-250」、(株)シンキー製)を使用して均一に混合し、脱泡して、硬化性エポキシ樹脂組成物を製造した。
 さらに、上記で得た硬化性エポキシ樹脂組成物を図1に示す光半導体のリードフレーム(InGaN素子、3.5mm×2.8mm)に注型した後、150℃のオーブン(樹脂硬化オーブン)で2時間加熱することで、上記硬化性エポキシ樹脂組成物の硬化物により光半導体素子が封止された光半導体装置を得た。なお、図1において、100はリフレクター(光反射用樹脂組成物)、101は金属配線、102は光半導体素子、103はボンディングワイヤ、104は硬化物(封止材)を示す。
Example 1
First, with the blending ratio (unit: parts by weight) shown in Table 1, the trade name “Celoxide 2021P” (manufactured by Daicel Corporation) and the trade name “TEPIC” (manufactured by Nissan Chemical Industries, Ltd.) The mixture was uniformly mixed using a stirrer (trade name “Awatori Nertaro AR-250”, manufactured by Shinky Co., Ltd.). In addition, the said mixing was implemented by stirring at 80 degreeC for 1 hour. After cooling, the product name “Aron Oxetane OXT-101” (manufactured by Toagosei Co., Ltd.) and the product name “Sun Aid SI-100L” (curing catalyst, manufactured by Sanshin Chemical Industry Co., Ltd.) A curable epoxy resin composition was produced by uniformly mixing and defoaming using an apparatus (trade name “Awatori Nertaro AR-250”, manufactured by Shinky Co., Ltd.).
Further, the curable epoxy resin composition obtained above was cast into an optical semiconductor lead frame (InGaN element, 3.5 mm × 2.8 mm) shown in FIG. 1, and then in an oven (resin curing oven) at 150 ° C. By heating for 2 hours, an optical semiconductor device in which the optical semiconductor element was sealed with the cured product of the curable epoxy resin composition was obtained. In FIG. 1, 100 is a reflector (light reflecting resin composition), 101 is a metal wiring, 102 is an optical semiconductor element, 103 is a bonding wire, and 104 is a cured product (sealing material).
実施例2~8、比較例1~6
 硬化性エポキシ樹脂組成物の組成を表1に示す組成に変更したこと以外は実施例1と同様にして、硬化性エポキシ樹脂組成物を調製した。なお、イソシアヌル酸誘導体(B)を使用しない場合には、室温で混合を実施した。
 また、実施例1と同様にして光半導体装置を作製した。
Examples 2-8, Comparative Examples 1-6
A curable epoxy resin composition was prepared in the same manner as in Example 1 except that the composition of the curable epoxy resin composition was changed to the composition shown in Table 1. In addition, when not using an isocyanuric acid derivative (B), it mixed at room temperature.
Further, an optical semiconductor device was fabricated in the same manner as in Example 1.
製造例1
(硬化剤組成物(K剤)の製造)
 表2に示す配合割合(単位:重量部)で、商品名「リカシッド MH-700」(硬化剤、新日本理化(株)製)、商品名「U-CAT 18X」(硬化促進剤、サンアプロ(株)製)、及びエチレングリコール(添加剤、和光純薬工業(株)製)を、自公転式攪拌装置(商品名「あわとり練太郎AR-250」、(株)シンキー製)を使用して均一に混合し、脱泡して硬化剤組成物(「K剤」と称する場合がある)を製造した。
Production Example 1
(Production of curing agent composition (K agent))
In the blending ratio (unit: parts by weight) shown in Table 2, the trade name “Rikacid MH-700” (curing agent, manufactured by Shin Nippon Rika Co., Ltd.), the trade name “U-CAT 18X” (curing accelerator, San Apro ( Co., Ltd.) and ethylene glycol (additive, manufactured by Wako Pure Chemical Industries, Ltd.) using a self-revolving stirrer (trade name “Awatori Nerita AR-250”, manufactured by Shinky Co., Ltd.) The mixture was uniformly mixed and defoamed to produce a curing agent composition (sometimes referred to as “K agent”).
実施例9
 まず、表2に示す配合割合(単位:重量部)で、商品名「セロキサイド2021P」((株)ダイセル製)、商品名「TEPIC」(日産化学工業(株)製)を、自公転式攪拌装置(商品名「あわとり練太郎AR-250」、(株)シンキー製)を使用して均一に混合した。なお、上記混合は、80℃で1時間攪拌することにより実施した。冷却後、商品名「アロンオキセタンOXT-101」(東亞合成(株)製)を、自公転式攪拌装置(商品名「あわとり練太郎AR-250」、(株)シンキー製)を使用して均一に混合し、脱泡して、混合物(カチオン硬化性化合物の混合物)を製造した。
 次に、表2に示す配合割合(単位:重量部)となるように、上記で得た混合物と、製造例1で得た硬化剤組成物(K剤)とを自公転式攪拌装置(商品名「あわとり練太郎AR-250」、(株)シンキー製)を使用して均一に混合し、脱泡して、硬化性エポキシ樹脂組成物を得た。
 さらに、上記で得た硬化性エポキシ樹脂組成物を図1に示す光半導体のリードフレーム(InGaN素子、3.5mm×2.8mm)に注型した後、120℃のオーブン(樹脂硬化オーブン)で5時間加熱することで、上記硬化性エポキシ樹脂組成物の硬化物により光半導体素子が封止された光半導体装置を得た。
Example 9
First, the product name “Celoxide 2021P” (manufactured by Daicel Corporation) and the product name “TEPIC” (manufactured by Nissan Chemical Industries, Ltd.) with the mixing ratio shown in Table 2 (unit: parts by weight) Using an apparatus (trade name “Awatori Nertaro AR-250”, manufactured by Shinky Co., Ltd.), the mixture was uniformly mixed. In addition, the said mixing was implemented by stirring at 80 degreeC for 1 hour. After cooling, use the product name “Aron Oxetane OXT-101” (manufactured by Toagosei Co., Ltd.) using a self-revolving stirrer (product name “Awatori Nertaro AR-250”, manufactured by Shinky Corp.) Mixing uniformly and degassing produced a mixture (mixture of cationically curable compounds).
Next, the mixture obtained as described above and the curing agent composition (K agent) obtained in Production Example 1 were mixed in a self-revolving stirrer (commodity) so as to have the blending ratio (unit: parts by weight) shown in Table 2. Using the name “Awatori Netaro AR-250” (Sinky Co., Ltd.), the mixture was uniformly mixed and defoamed to obtain a curable epoxy resin composition.
Further, the curable epoxy resin composition obtained above was cast into an optical semiconductor lead frame (InGaN element, 3.5 mm × 2.8 mm) shown in FIG. 1, and then in an oven (resin curing oven) at 120 ° C. By heating for 5 hours, the optical semiconductor device with which the optical semiconductor element was sealed with the hardened | cured material of the said curable epoxy resin composition was obtained.
実施例10~16、比較例7~12
 硬化性エポキシ樹脂組成物の組成を表2に示す組成に変更したこと以外は実施例9と同様にして、硬化性エポキシ樹脂組成物を調製した。なお、実施例15、16の場合、無機フィラー(G)はカチオン硬化性化合物の混合物と硬化剤組成物とを混合する際に配合した。
 また、実施例9と同様にして光半導体装置を作製した。
Examples 10 to 16 and Comparative Examples 7 to 12
A curable epoxy resin composition was prepared in the same manner as in Example 9 except that the composition of the curable epoxy resin composition was changed to the composition shown in Table 2. In Examples 15 and 16, the inorganic filler (G) was blended when the mixture of the cationic curable compound and the curing agent composition were mixed.
Further, an optical semiconductor device was fabricated in the same manner as in Example 9.
 <評価>
 実施例及び比較例で得られた光半導体装置について、下記の評価試験を実施した。
<Evaluation>
The following evaluation tests were carried out on the optical semiconductor devices obtained in the examples and comparative examples.
 [高温通電試験]
 実施例及び比較例で得られた光半導体装置の全光束を全光束測定機を用いて測定し、これを「0時間の全光束」とした。さらに、85℃の恒温槽内で100時間、光半導体装置に20mAの電流を流した後の全光束を測定し、これを「100時間後の全光束」とした。そして、次式から光度保持率を算出した。結果を表1、2の「光度保持率[%]」の欄に示す。
 {光度保持率(%)}
   ={100時間後の全光束(lm)}/{0時間の全光束(lm)}×100
[High temperature energization test]
The total luminous flux of the optical semiconductor devices obtained in the examples and comparative examples was measured using a total luminous flux measuring machine, and this was defined as “total luminous flux for 0 hour”. Further, the total luminous flux after flowing a current of 20 mA through the optical semiconductor device for 100 hours in a constant temperature bath at 85 ° C. was measured, and this was defined as “total luminous flux after 100 hours”. And luminous intensity retention was computed from the following formula. The results are shown in the column of “Luminance retention rate [%]” in Tables 1 and 2.
{Luminance retention (%)}
= {Total luminous flux after 100 hours (lm)} / {total luminous flux after 0 hours (lm)} × 100
 [熱衝撃試験]
 実施例及び比較例で得られた光半導体装置(各硬化性エポキシ樹脂組成物につき2個ずつ用いた)に対し、-40℃の雰囲気下に30分曝露し、続いて、100℃の雰囲気下に30分曝露することを1サイクルとした熱衝撃を、熱衝撃試験機を用いて200サイクル分与えた。
 その後、デジタルマイクロスコープ(商品名「VHX-900」、(株)キーエンス製)を使用して光半導体装置を観察し、硬化物(封止材)に長さが90μm以上のクラックが発生したか否か、及び、電極剥離(電極表面からの硬化物(封止材)の剥離)が発生したか否かを確認した。光半導体装置2個のうち、硬化物に長さが90μm以上のクラックが発生した光半導体装置の個数を表1、2の「熱衝撃試験[クラック数]」の欄に示し、電極剥離が発生した光半導体装置の個数を表1、2の「熱衝撃試験[剥離数]」の欄に示した。
[Thermal shock test]
The optical semiconductor devices obtained in the examples and comparative examples (two used for each curable epoxy resin composition) were exposed in an atmosphere of −40 ° C. for 30 minutes, and then in an atmosphere of 100 ° C. A thermal shock with one cycle of exposure to 30 minutes was applied for 200 cycles using a thermal shock tester.
After that, the optical semiconductor device was observed using a digital microscope (trade name “VHX-900”, manufactured by Keyence Corporation), and whether a crack with a length of 90 μm or more occurred in the cured product (sealing material). It was confirmed whether or not electrode peeling (peeling of the cured product (encapsulant) from the electrode surface) occurred. Of the two optical semiconductor devices, the number of optical semiconductor devices with a crack of 90 μm or more in the cured product is shown in the column of “thermal shock test [number of cracks]” in Tables 1 and 2, and electrode peeling occurred. The number of optical semiconductor devices thus prepared is shown in the column of “Thermal Shock Test [Number of Detachment]” in Tables 1 and 2.
 [総合判定]
 各試験の結果、下記(1)~(3)をいずれも満たすものを○(良好)と判定した。一方、下記(1)~(3)のいずれかを満たさない場合には×(不良)と判定した。
(1)高温通電試験:光度保持率が90%以上
(2)熱衝撃試験:硬化物(封止材)に長さが90μm以上のクラックが発生した光半導体装置の個数が0個
(3)熱衝撃試験:電極剥離が生じた光半導体装置の個数が0個
 結果を表1、2の「総合判定」の欄に示す。
[Comprehensive judgment]
As a result of each test, a sample satisfying all of the following (1) to (3) was judged as ◯ (good). On the other hand, when any of the following (1) to (3) was not satisfied, it was determined as x (defective).
(1) High-temperature energization test: luminous intensity retention of 90% or more (2) Thermal shock test: No. of optical semiconductor devices having cracks of 90 μm or more in cured product (encapsulant) (3) Thermal shock test: The number of optical semiconductor devices in which electrode peeling occurred was 0. The results are shown in the column “Comprehensive judgment” in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 なお、実施例、比較例で使用した成分は、以下の通りである。
(脂環式エポキシ化合物(A))
 セロキサイド2021P:商品名「セロキサイド2021P」[3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート]、(株)ダイセル製
(イソシアヌル酸誘導体(B))
 TEPIC:商品名「TEPIC」[トリグリシジルイソシアヌレート]、日産化学工業(株)製
 MA-DGIC:商品名「MA-DGIC」[モノアリルジグリシジルイソシアヌレート]、四国化成工業(株)製
 DA-MGIC:商品名「DA-MGIC」[ジアリルモノグリシジルイソシアヌレート]、四国化成工業(株)製
(オキセタン化合物(C))
 OXT-101:商品名「アロンオキセタンOXT-101」[3-エチル-3-ヒドロキシメチルオキセタン]、東亞合成(株)製
 OXT-221:商品名「アロンオキセタンOXT-221」[3-エチル{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン]、東亞合成(株)製
(無機フィラー(G))
 シリカフィラー:商品名「ヒューズレックスRD-8」[シリカフィラー]、(株)龍森製
 ガラスフィラー:商品名「ガラスビーズCF0018WB15C」[ガラスビーズ、表面処理有り(3-メタクリロキシプロピルトリエトキシシラン)、屈折率1.52、平均粒子径20μm]、日本フリット(株)製
(硬化触媒(D))
 サンエイド SI-100L:商品名「サンエイド SI-100L」、三新化学工業(株)製
(硬化物(E))
 MH-700:商品名「リカシッド MH-700」[4-メチルヘキサヒドロ無水フタル酸/ヘキサヒドロ無水フタル酸=70/30]、新日本理化(株)製
(硬化促進剤(F))
 U-CAT 18X:商品名「U-CAT 18X」、サンアプロ(株)製
(添加剤)
 エチレングリコール:和光純薬工業(株)製
In addition, the component used by the Example and the comparative example is as follows.
(Alicyclic epoxy compound (A))
Celoxide 2021P: Trade name “Celoxide 2021P” [3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate], manufactured by Daicel Corporation (isocyanuric acid derivative (B))
TEPIC: Trade name “TEPIC” [triglycidyl isocyanurate], manufactured by Nissan Chemical Industries, Ltd. MA-DGIC: Trade name “MA-DGIC” [monoallyl diglycidyl isocyanurate], manufactured by Shikoku Kasei Kogyo Co., Ltd. DA- MGIC: Trade name “DA-MGIC” [diallyl monoglycidyl isocyanurate], manufactured by Shikoku Kasei Kogyo Co., Ltd. (oxetane compound (C))
OXT-101: Trade name “Aron Oxetane OXT-101” [3-Ethyl-3-hydroxymethyloxetane], manufactured by Toagosei Co., Ltd. OXT-221: Trade name “Aron Oxetane OXT-221” [3-Ethyl {[ (3-ethyloxetane-3-yl) methoxy] methyl} oxetane], manufactured by Toagosei Co., Ltd. (inorganic filler (G))
Silica filler: Trade name "Furex RD-8" [Silica filler], manufactured by Tatsumori Co., Ltd. Glass filler: Trade name "Glass beads CF0018WB15C" [Glass beads, with surface treatment (3-methacryloxypropyltriethoxysilane) , Refractive index 1.52, average particle diameter 20 μm], manufactured by Nippon Frit Co., Ltd. (curing catalyst (D))
Sun-Aid SI-100L: Trade name “Sun-Aid SI-100L”, manufactured by Sanshin Chemical Industry Co., Ltd. (cured product (E))
MH-700: Trade name “Licacid MH-700” [4-methylhexahydrophthalic anhydride / hexahydrophthalic anhydride = 70/30], manufactured by Shin Nippon Rika Co., Ltd. (curing accelerator (F))
U-CAT 18X: Trade name “U-CAT 18X”, manufactured by San Apro (additive)
Ethylene glycol: Wako Pure Chemical Industries, Ltd.
 試験機器
 ・樹脂硬化オーブン
  エスペック(株)製 GPHH-201
 ・恒温槽
  エスペック(株)製 小型高温チャンバー ST-120B1
 ・全光束測定機
  オプトロニックラボラトリーズ社製 マルチ分光放射測定システム OL771
 ・熱衝撃試験機
  エスペック(株)製 小型冷熱衝撃装置 TSE-11-A
Test equipment ・ Resin curing oven Espec Co., Ltd. GPHH-201
-Thermostatic chamber ESPEC Co., Ltd. Small high temperature chamber ST-120B1
・ Total luminous flux measuring machine Optronic Laboratories Multi-spectral Radiation Measurement System OL771
・ Thermal shock tester Espec Co., Ltd. Small thermal shock device TSE-11-A
 100:リフレクター(光反射用樹脂組成物)
 101:金属配線
 102:光半導体素子
 103:ボンディングワイヤ
 104:硬化物(封止材)
100: Reflector (resin composition for light reflection)
DESCRIPTION OF SYMBOLS 101: Metal wiring 102: Optical semiconductor element 103: Bonding wire 104: Hardened | cured material (sealing material)
 本発明の硬化性エポキシ樹脂組成物は上記構成を有するため、硬化させることで高い透明性、耐熱性、及び耐光性を有し、特に密着性が高く、耐熱衝撃性に優れた硬化物を形成できる。このため、本発明の硬化性エポキシ樹脂組成物を光半導体装置における封止剤(光半導体封止用樹脂組成物)として使用することにより、熱衝撃や高温の熱が加えられた場合でも光度低下が生じにくい、耐久性に優れた光半導体装置を得ることができる。 Since the curable epoxy resin composition of the present invention has the above configuration, it is cured to form a cured product having high transparency, heat resistance, and light resistance, particularly high adhesion and excellent thermal shock resistance. it can. For this reason, by using the curable epoxy resin composition of the present invention as a sealing agent (an optical semiconductor sealing resin composition) in an optical semiconductor device, the luminous intensity is lowered even when thermal shock or high temperature heat is applied. It is possible to obtain an optical semiconductor device excellent in durability, which is less likely to occur.

Claims (12)

  1.  脂環式エポキシ化合物(A)と、分子内に1個以上のオキシラン環を有するイソシアヌル酸誘導体(B)と、分子内に1個以上のオキセタン環を有するオキセタン化合物(C)とを含むことを特徴とする硬化性エポキシ樹脂組成物。 Including an alicyclic epoxy compound (A), an isocyanuric acid derivative (B) having one or more oxirane rings in the molecule, and an oxetane compound (C) having one or more oxetane rings in the molecule. A curable epoxy resin composition.
  2.  イソシアヌル酸誘導体(B)が、下記式(1-1)
    Figure JPOXMLDOC01-appb-C000001
    [式中、R1、R2は、同一又は異なって、水素原子又は炭素数1~8のアルキル基を示す。]
    で表される化合物である請求項1に記載の硬化性エポキシ樹脂組成物。
    The isocyanuric acid derivative (B) is represented by the following formula (1-1):
    Figure JPOXMLDOC01-appb-C000001
    [Wherein R 1 and R 2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. ]
    The curable epoxy resin composition according to claim 1, which is a compound represented by the formula:
  3.  オキセタン化合物(C)が、分子内に1個以上のオキセタン環及び1個の水酸基を有するオキセタン化合物(C1)である請求項1又は2に記載の硬化性エポキシ樹脂組成物。 The curable epoxy resin composition according to claim 1 or 2, wherein the oxetane compound (C) is an oxetane compound (C1) having one or more oxetane rings and one hydroxyl group in the molecule.
  4.  脂環式エポキシ化合物(A)が、シクロヘキセンオキシド基を有する化合物である請求項1~3のいずれか一項に記載の硬化性エポキシ樹脂組成物。 The curable epoxy resin composition according to any one of claims 1 to 3, wherein the alicyclic epoxy compound (A) is a compound having a cyclohexene oxide group.
  5.  脂環式エポキシ化合物(A)が、下記式(I-1)
    Figure JPOXMLDOC01-appb-C000002
    で表される化合物である請求項1~4のいずれか一項に記載の硬化性エポキシ樹脂組成物。
    The alicyclic epoxy compound (A) is represented by the following formula (I-1)
    Figure JPOXMLDOC01-appb-C000002
    The curable epoxy resin composition according to any one of claims 1 to 4, which is a compound represented by the formula:
  6.  さらに硬化触媒(D)を含む請求項1~5のいずれか一項に記載の硬化性エポキシ樹脂組成物。 The curable epoxy resin composition according to any one of claims 1 to 5, further comprising a curing catalyst (D).
  7.  さらに硬化剤(E)及び硬化促進剤(F)を含む請求項1~6のいずれか一項に記載の硬化性エポキシ樹脂組成物。 The curable epoxy resin composition according to any one of claims 1 to 6, further comprising a curing agent (E) and a curing accelerator (F).
  8.  さらに無機フィラー(G)を含む請求項1~7のいずれか一項に記載の硬化性エポキシ樹脂組成物。 The curable epoxy resin composition according to any one of claims 1 to 7, further comprising an inorganic filler (G).
  9.  無機フィラー(G)がガラスフィラーである請求項8に記載の硬化性エポキシ樹脂組成物。 The curable epoxy resin composition according to claim 8, wherein the inorganic filler (G) is a glass filler.
  10.  請求項1~9のいずれか一項に記載の硬化性エポキシ樹脂組成物を硬化させて得られる硬化物。 A cured product obtained by curing the curable epoxy resin composition according to any one of claims 1 to 9.
  11.  光半導体封止用樹脂組成物である請求項1~9のいずれか一項に記載の硬化性エポキシ樹脂組成物。 The curable epoxy resin composition according to any one of claims 1 to 9, which is a resin composition for optical semiconductor encapsulation.
  12.  請求項11に記載の硬化性エポキシ樹脂組成物の硬化物により光半導体素子が封止された光半導体装置。 An optical semiconductor device in which an optical semiconductor element is sealed with a cured product of the curable epoxy resin composition according to claim 11.
PCT/JP2014/064696 2013-06-03 2014-06-03 Curable epoxy resin composition WO2014196515A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015521447A JP6460985B2 (en) 2013-06-03 2014-06-03 Curable epoxy resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013117060 2013-06-03
JP2013-117060 2013-06-03

Publications (1)

Publication Number Publication Date
WO2014196515A1 true WO2014196515A1 (en) 2014-12-11

Family

ID=52008156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064696 WO2014196515A1 (en) 2013-06-03 2014-06-03 Curable epoxy resin composition

Country Status (3)

Country Link
JP (2) JP6460985B2 (en)
TW (1) TW201502192A (en)
WO (1) WO2014196515A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017066242A (en) * 2015-09-29 2017-04-06 日立化成株式会社 Liquid composition for sealing, sealing material, and electronic component device
JP2018024880A (en) * 2017-08-30 2018-02-15 株式会社ダイセル Curable composition and optical element using the same
JP2019178209A (en) * 2018-03-30 2019-10-17 味の素株式会社 Resin composition and cured body thereof
US10584200B2 (en) 2015-08-07 2020-03-10 Daicel Corporation Curable composition and optical element obtained using same
JP2020045380A (en) * 2018-09-14 2020-03-26 日立化成株式会社 Curable resin composition and electronic part device
JP2020070391A (en) * 2018-11-01 2020-05-07 株式会社ダイセル Curable epoxy resin composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111640A1 (en) * 2007-03-15 2008-09-18 Nippon Steel Chemical Co., Ltd. Oxethane resin composition
JP2011157462A (en) * 2010-02-01 2011-08-18 Daicel Chemical Industries Ltd Curable epoxy resin composition

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3477111B2 (en) * 1999-06-01 2003-12-10 四国化成工業株式会社 Thermosetting epoxy resin composition
JP4177013B2 (en) * 2002-04-03 2008-11-05 ダイセル化学工業株式会社 Method for curing thermosetting epoxy resin composition, cured product and use thereof
JP2006131850A (en) * 2004-11-09 2006-05-25 Toagosei Co Ltd Thermosetting composition
JP4810911B2 (en) * 2005-07-26 2011-11-09 パナソニック電工株式会社 Epoxy resin composition, epoxy resin film, optical waveguide, optical / electrical hybrid wiring board, and electronic device
JP5298411B2 (en) * 2006-08-14 2013-09-25 三菱化学株式会社 Epoxy resin composition and use thereof
JP2008260853A (en) * 2007-04-12 2008-10-30 Hitachi Chem Co Ltd New curable resin, method for producing the same, epoxy resin composition and electronic part device
JP2009007404A (en) * 2007-06-26 2009-01-15 Showa Denko Kk Cationic-polymerizable composition and cured product obtained by curing the composition
JP2009098187A (en) * 2007-10-12 2009-05-07 Sekisui Chem Co Ltd Adhesive for optical components
JP2010018797A (en) * 2008-06-11 2010-01-28 Sekisui Chem Co Ltd Curable composition for optical parts, adhesive agent for optical parts, and sealing agent for organic electroluminescence element
JP2010248387A (en) * 2009-04-16 2010-11-04 Sekisui Chem Co Ltd Photocurable resin composition for optical member, adhesive and touch panel
JP2012001690A (en) * 2010-06-21 2012-01-05 Adeka Corp Photocurable resin composition
JP2012092309A (en) * 2010-09-29 2012-05-17 Shikoku Chem Corp Epoxy resin composition
JP2012077257A (en) * 2010-10-06 2012-04-19 Daicel Corp Method for producing cured product, and cured product
KR101870469B1 (en) * 2010-11-05 2018-06-22 가부시키가이샤 닛폰 쇼쿠바이 Cation-curable resin composition
WO2012124780A1 (en) * 2011-03-16 2012-09-20 東レ株式会社 Epoxy resin composition, method for producing same, and semiconductor device using same
JP2012236972A (en) * 2011-04-25 2012-12-06 Unitika Ltd Resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111640A1 (en) * 2007-03-15 2008-09-18 Nippon Steel Chemical Co., Ltd. Oxethane resin composition
JP2011157462A (en) * 2010-02-01 2011-08-18 Daicel Chemical Industries Ltd Curable epoxy resin composition

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10584200B2 (en) 2015-08-07 2020-03-10 Daicel Corporation Curable composition and optical element obtained using same
JP2017066242A (en) * 2015-09-29 2017-04-06 日立化成株式会社 Liquid composition for sealing, sealing material, and electronic component device
WO2017057637A1 (en) * 2015-09-29 2017-04-06 日立化成株式会社 Liquid composition for sealing, sealing material and electronic component device
JP2018024880A (en) * 2017-08-30 2018-02-15 株式会社ダイセル Curable composition and optical element using the same
JP2019178209A (en) * 2018-03-30 2019-10-17 味の素株式会社 Resin composition and cured body thereof
JP7047539B2 (en) 2018-03-30 2022-04-05 味の素株式会社 Resin composition and its cured product
JP2020045380A (en) * 2018-09-14 2020-03-26 日立化成株式会社 Curable resin composition and electronic part device
JP7322368B2 (en) 2018-09-14 2023-08-08 株式会社レゾナック Curable resin composition and electronic component device
JP2020070391A (en) * 2018-11-01 2020-05-07 株式会社ダイセル Curable epoxy resin composition
JP7329320B2 (en) 2018-11-01 2023-08-18 株式会社ダイセル Curable epoxy resin composition

Also Published As

Publication number Publication date
TW201502192A (en) 2015-01-16
JPWO2014196515A1 (en) 2017-02-23
JP2019023316A (en) 2019-02-14
JP6460985B2 (en) 2019-01-30

Similar Documents

Publication Publication Date Title
KR101746890B1 (en) Curable epoxy resin composition
JP5764432B2 (en) Curable epoxy resin composition
JP2019023316A (en) Curable epoxy resin composition
JP6343575B2 (en) Curable epoxy resin composition
KR101832537B1 (en) Curable epoxy resin composition
WO2014181787A1 (en) Curable epoxy resin composition and cured product thereof, diolefin compound and production method therefor, and production method for diepoxy compound
JP2016224338A (en) Antireflection material and method for producing the same
JP2015096602A (en) Curable epoxy resin composition
JP5703153B2 (en) Curable epoxy resin composition
JP2016212269A (en) Antireflection material
JP2016160352A (en) Curable epoxy resin composition
JP7171619B2 (en) Method for producing alicyclic epoxy compound product
JP2015110772A (en) Curable epoxy resin composition
JP2015086374A (en) Curable epoxy resin composition
JP6571923B2 (en) Method for producing cured product by laser light irradiation
JP2017115006A (en) Curable epoxy resin composition
JP2015098586A (en) Curable epoxy resin composition
JP6306483B2 (en) Curable epoxy resin composition
JP2015086375A (en) Curable epoxy resin composition
JP2019112477A (en) Curable epoxy resin composition
JP2016164254A (en) Curable epoxy resin composition for optical material
JP5977794B2 (en) Curable epoxy resin composition
JP2015086376A (en) Curable epoxy resin composition
JP2017155145A (en) Curable epoxy resin composition for optical material
JP6472754B2 (en) Curable epoxy resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14806862

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015521447

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14806862

Country of ref document: EP

Kind code of ref document: A1