WO2014196441A1 - 重合性樹脂、活性エネルギー線硬化性組成物及び物品 - Google Patents

重合性樹脂、活性エネルギー線硬化性組成物及び物品 Download PDF

Info

Publication number
WO2014196441A1
WO2014196441A1 PCT/JP2014/064244 JP2014064244W WO2014196441A1 WO 2014196441 A1 WO2014196441 A1 WO 2014196441A1 JP 2014064244 W JP2014064244 W JP 2014064244W WO 2014196441 A1 WO2014196441 A1 WO 2014196441A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
polymerizable
functional group
meth
Prior art date
Application number
PCT/JP2014/064244
Other languages
English (en)
French (fr)
Inventor
潤 野口
良輔 橋出
鈴木 秀也
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to KR1020157033090A priority Critical patent/KR102095263B1/ko
Priority to JP2015521412A priority patent/JP5854303B2/ja
Publication of WO2014196441A1 publication Critical patent/WO2014196441A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/12Polymers provided for in subclasses C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16

Definitions

  • the present invention relates to a fluorine atom-containing polymerizable resin that can be added to an active energy ray-curable composition to impart excellent scratch resistance to a cured coating film of the composition.
  • the present invention also relates to an active energy ray-curable composition using the fluorine atom-containing polymerizable resin, and an article having a cured coating film of the composition.
  • Anti-glare and anti-reflection coatings such as AG, AG / LR, and Clear / LR are applied to the surface layer of the polarizing plate, which is the outermost surface of the liquid crystal display, but scratch resistance is required for the outermost layer. It is said that.
  • a method for improving scratch resistance a method for improving scratch resistance, a method (hard coat agent) for forming a crosslinked film obtained using a polyfunctional monomer such as polyfunctional (meth) acrylate on a substrate surface is known.
  • a coating material with good scratch resistance a method of adding a silicone or fluorine leveling agent, synthesis of inorganic compound particles such as silicon dioxide and aluminum oxide, carbon, or polyurethane resin, polystyrene resin, acrylic resin, etc. A method of adding resin particles has been proposed.
  • a polarizing plate can be obtained by bonding a protective film having optical strength and mechanical strength to both sides or one side of a polarizing film.
  • a protective film a triacetyl cellulose (TAC) film is usually used.
  • the surface of the TAC film is saponified with caustic alkali or the like, and a part or most of the —OCOCH 3 groups are hydrolyzed to —OH which is a hydrophilic group. It is necessary to disassemble.
  • a method for obtaining a protective layer having excellent scratch resistance for example, a method using an active energy ray-curable composition containing a silicone compound having a radically polymerizable unsaturated group in the molecule is known (see Patent Document 1). ).
  • the cured coating film of the active energy ray-curable composition to which the silicone compound is added is used in a saponification treatment (strong alkali treatment) such as a TAC film used for a polarizing plate of a liquid crystal display.
  • a saponification treatment strong alkali treatment
  • the problem to be solved by the present invention is to add fluorine atom-containing polymerization that can impart excellent scratch resistance to the coating surface even after saponification treatment by adding to the active energy ray-curable composition Providing a functional resin.
  • Another object of the present invention is to provide an active energy ray-curable composition using the polymerizable resin and an article having a cured coating film of the composition.
  • the present inventors have obtained a fluorinated polymerizable resin having a fluorinated alkyl group and a polymerizable unsaturated group, and a silicone chain at one end of the resin.
  • the active energy ray-curable composition containing this resin can impart excellent scratch resistance to the surface of the cured coating film even after saponification treatment. As a result, the present invention has been completed.
  • the present invention has a main chain formed by polymerization of a polymerizable unsaturated monomer, and the main chain has 1 to 6 fluorinated carbon atoms bonded with fluorine atoms as side chains.
  • a polymerizable resin is provided.
  • the present invention also includes an active energy ray comprising the polymerizable resin and an active energy ray-curable resin (E) or an active energy ray-curable monomer (F) other than the polymerizable resin.
  • a curable composition is provided.
  • the present invention provides an article characterized by having a cured coating film of the active energy ray-curable composition.
  • the surface of the cured coating film is imparted with a slip property and excellent scratch resistance is obtained. Moreover, since this scratch resistance can be exhibited even in a cured coating film that has been subjected to saponification treatment (strong alkali treatment), it is also useful as a material for a hard coat material of a TAC film used for a polarizing plate of a liquid crystal display. .
  • FIG. 1 is an IR spectrum chart of the polymerizable resin (1) obtained in Example 1.
  • FIG. 2 is a chart of 13 C-NMR spectrum of the polymerizable resin (1) obtained in Example 1.
  • FIG. 3 is a GPC chart of the polymerizable resin (1) obtained in Example 1.
  • FIG. 4 is an IR spectrum chart of the polymerizable resin (2) obtained in Example 2.
  • FIG. 5 is a chart (overall view) of 1 H-NMR spectrum of the polymerizable resin (2) obtained in Example 2.
  • 6 is a chart (25-fold enlarged view) of the 1 H-NMR spectrum of the polymerizable resin (2) obtained in Example 2.
  • FIG. FIG. 7 is a chart (overall view) of 13 C-NMR spectrum of the polymerizable resin (2) obtained in Example 2.
  • FIG. 1 is an IR spectrum chart of the polymerizable resin (1) obtained in Example 1.
  • FIG. 2 is a chart of 13 C-NMR spectrum of the polymerizable resin (1) obtained in Example 1.
  • FIG. 3
  • FIG. 8 is a chart ( 13 times magnified view) of the 13 C-NMR spectrum of the polymerizable resin (2) obtained in Example 2.
  • FIG. 9 is a chart (overall view) of 19 F-NMR spectrum of the polymerizable resin (2) obtained in Example 2.
  • FIG. 10 is a GPC chart of the polymerizable resin (2) obtained in Example 2.
  • the polymerizable resin of the present invention has a main chain formed by polymerization of a polymerizable unsaturated monomer, and the main chain has 1 to 6 carbon atoms bonded with fluorine atoms as side chains.
  • a polymerizable resin having a fluorinated alkyl group (x) and a polymerizable unsaturated group (y), and the main chain further has a structure containing a silicone chain having a molecular weight of 2,000 or more at one end.
  • One end may have a single silicone chain or a plurality of silicone chains, but in the present invention, one end has a single (one) silicone chain. It is preferable from the viewpoint of surface segregation of atoms.
  • fluorinated alkyl group (x) those having 4 to 6 carbon atoms are preferable because of a good balance of surface segregation, water / oil repellency and reduction of environmental load, and those having 6 carbon atoms. More preferred.
  • the equivalent of the polymerizable unsaturated group (y) in the polymerizable resin of the present invention is 200 to 3,500 g / eq. Because a cured coating film having excellent wear resistance can be obtained. In the range of 250 to 2,000 g / eq. The range of 300 to 1,500 g / eq. In the range of 400 to 1,000 g / eq. The range of is particularly preferable.
  • the molecular weight of the silicone chain needs to be 2,000 or more. By having such a molecular weight silicone chain, the slipperiness of the silicone chain can be suitably expressed. Excellent friction resistance can be imparted by reducing friction.
  • the molecular weight of the silicone chain is preferably from 2,000 to 20,000, more preferably from 5,000 to 10,000.
  • various forms of polymerizable resins can be obtained by changing the timing of polymerizing the raw materials.
  • the monomer (C) is simultaneously added to the reaction system and reacted, a so-called random copolymer polymerizable resin is obtained.
  • the polymerizable unsaturated monomer (B) and the polymerizable unsaturated monomer (C) are reacted separately, a so-called block copolymer-like polymerizable resin is obtained.
  • the polymerizable resins of the present invention by adding to the active energy ray-curable composition, excellent scratch resistance can be imparted even to a very thin coating film having a film thickness of about 0.1 ⁇ m.
  • a block copolymer is preferred because it becomes a polymerizable resin.
  • a random polymer polymerizable resin includes a compound (A) having a functional group having a radical generating ability at one end of a silicone chain having a molecular weight of 2,000 or more and a fluorine atom.
  • the block polymer polymerizable resin has, for example, a main chain formed by polymerization of a polymerizable unsaturated monomer and a fluorine atom as a side chain of the main chain.
  • Such a block polymer-like polymerizable resin can be preferably obtained, for example, by the following production method.
  • Method 1 Compound (A) having a functional group having radical generating ability at one end of a silicone chain having a molecular weight of 2,000 or more, and a fluorinated alkyl group having 1 to 6 carbon atoms bonded with fluorine atoms A structure derived from the polymerizable unsaturated monomer (B) by charging the polymerizable unsaturated monomer (B) having (x) into the reaction system and generating radicals from the compound (A).
  • a step (1) of obtaining a polymer segment (p) comprising: By introducing a polymerizable unsaturated monomer (C) having a reactive functional group (c1) into a reaction system containing the polymer segment (p) and generating radicals from the polymer segment (p)
  • a production method comprising a step (3) of charging (D) and reacting a reactive functional group (c1) with a reactive functional group (d1).
  • Method 2 Compound (A) having a functional group having radical generating ability at one end of a silicone chain having a molecular weight of 2,000 or more, and polymerizable unsaturated monomer (C) having a reactive functional group (c1) A polymer segment (q) containing a structure derived from the polymerizable unsaturated monomer (C) by preparing a radical from the compound (A) and preparing a polymer segment (q) (1-1) When, A polymerizable unsaturated monomer (B) is charged into a reaction system including the polymer segment (q), and radicals are generated from the polymer segment (q), whereby the polymer segment (q) and the polymerization are polymerized.
  • a production method comprising the step (3-1) of charging (D) and reacting the reactive functional group (c1) with the reactive functional group (d1).
  • Examples of the functional group having the radical generating ability of the compound (A) include an organic group having a halogen atom, an organic group having an alkyl tellurium group, an organic group having a dithioester group, an organic group having a peroxide group, and an azo group. And an organic group having a group.
  • the functionalities having the radical generating ability are used.
  • An organic group having a halogen atom, an organic group having an alkyl tellurium group, or an organic group having a dithioester group can be used as a group, and in particular, ease of synthesis, ease of polymerization control, and applicable polymerizable unsaturated monomer It is preferable to use an organic group having a halogen atom due to diversity of the body.
  • organic group having a halogen atom examples include 2-bromo-2-methylpropionyloxy group, 2-bromo-propionyloxy group, parachlorosulfonylbenzoyloxy group and the like.
  • organic group having a halogen atom into one end of a compound containing a silicone chain having a molecular weight of 2,000 or more in the main chain, for example, by bonding to one end of a silicone chain having a molecular weight of 2,000 or more by reaction.
  • examples include a method of reacting a compound (a1) having a functional group that can be formed with a compound (a2) having a functional group capable of reacting with this functional group to form a bond and an organic group having a halogen atom.
  • examples of the functional group at one end of the compound (a1) include a hydroxyl group, an isocyanate group, an epoxy group, a carboxyl group, a carboxylic acid halide group, and a carboxylic anhydride group.
  • a specific example of the compound (a1) having one of these functional groups at one end is preferably a compound represented by the following formula (a1-1).
  • R 1 to R 5 are each independently an alkyl group having 1 to 18 carbon atoms or a phenyl group.
  • R 6 is a divalent organic group or (It is a single bond. N is 20 to 200.)
  • examples of R 6 include an alkylene ether group in which an alkylene group having 1 or more carbon atoms such as a methylene group, a propylene group, or an isopropylidene group, and two or more alkylene groups are connected by an ether bond. .
  • examples of the functional group which the compound (a2) has and which can form a bond by reacting with the functional group which the compound (a1) has at one end include the following.
  • the functional group that the compound (a1) has is a hydroxyl group
  • the functional group other than the organic group having a halogen atom that the compound (a2) has is an isocyanate group, a carboxylic acid halide group, or a carboxylic acid anhydride group.
  • a carboxyl group is generated by reacting a hydroxyl group of the compound (a1) with an acid anhydride, and the compound having an epoxy group and an organic group having a halogen atom with respect to the carboxyl group. It is also possible to introduce an organic group having a halogen atom at one end of the compound (a1) by further reacting as a compound (a2).
  • the functional group of the compound (a1) is an isocyanate group
  • the functional group other than the organic group having a halogen atom of the compound (a2) is preferably a hydroxyl group.
  • carboxyl groups are preferable as functional groups other than the organic group which has the halogen atom which the said compound (a2) has.
  • the functional group of the compound (a1) is a carboxyl group
  • the functional group other than the organic group having a halogen atom of the compound (a2) is preferably an epoxy group.
  • the functional group which the said compound (a1) has is a carboxylic anhydride group
  • the functional group other than the organic group which has a halogen atom which the said compound (a2) has is preferably a hydroxyl group.
  • the functional group that the compound (a1) has is a hydroxyl group
  • a combination in which the functional group other than the organic group having a halogen atom in the compound (a2) is a carboxylic acid halide group is preferable from the viewpoint of easy reaction.
  • the following conditions are mentioned as reaction conditions in the case of this combination.
  • the functional group at one end of the compound (a1) is a hydroxyl group
  • the compound (a2) is a carboxylic acid having a halogen group.
  • a compound (A) having a functional group having a polymerization initiating ability at one end of a compound containing a silicone chain having a molecular weight of 2,000 or more in the main chain is obtained. be able to.
  • the compound (a1) when the functional group at one end of the compound (a1) is a hydroxyl group and the compound (a2) is a halide of a carboxylic acid having a halogen group, (a1) and ( By reacting with a2), the compound (A) having a functional group having a polymerization initiating ability can be obtained.
  • a basic catalyst can be used as necessary.
  • a catalyst such as tin octylate is used.
  • a compound having a functional group having a polymerization initiating ability can be obtained by reacting (a1) and (a2) in the presence.
  • the functional group at one end of the compound (a1) is an epoxy group and the compound (a2) has a halogen group and a carboxyl group as a functional group capable of reacting with the epoxy group, triphenylphosphine or tertiary amine
  • a compound having a functional group having a polymerization initiating ability can be obtained by reacting (a1) and (a2).
  • the compound (A) containing a silicone chain having a molecular weight of 2,000 or more in the main chain used in the present invention and having a functional group having radical generating ability at one end of the main chain include, for example, the following formulae: The compound etc. which are represented by these are mentioned.
  • the polymerizable unsaturated monomer (B) used in the present invention has a fluorinated alkyl group having 1 to 6 carbon atoms to which fluorine atoms are directly bonded.
  • the fluorinated alkyl group includes those having one or more carbon-carbon double bonds in the skeleton of the fluorinated alkyl group.
  • the polymerizable unsaturated group possessed by the monomer (B) is preferably a carbon-carbon unsaturated double bond having radical polymerizability, and examples thereof include a (meth) acryloyl group, a vinyl group and a maleimide group.
  • (meth) acryloyl is easy because of the availability of raw materials, the ease of controlling the compatibility with each compounding component in the active energy ray-curable composition described later, or the good polymerization reactivity. Groups are preferred.
  • (meth) acrylate refers to one or both of methacrylate and acrylate
  • (meth) acryloyl group refers to one or both of methacryloyl group and acryloyl group
  • “Acrylic acid” refers to one or both of methacrylic acid and acrylic acid.
  • Examples of the polymerizable unsaturated monomer (B) having a fluorinated alkyl group include those represented by the following general formula (1).
  • R represents a hydrogen atom or a methyl group
  • L represents one of the following formulas (L-1) to (L-10)
  • Rf represents the following formula (Rf -1) to any one of (Rf-7).
  • n represents an integer of 1-8.
  • m represents an integer of 1 to 8
  • n represents an integer of 0 to 8.
  • Rf ′′ in the above formulas (L-6) and (L-7) represents any one group of the following formulas (Rf-1) to (Rf-7).
  • N in the above formulas (Rf-1) and (Rf-2) is an integer of 1 to 6
  • n in (Rf-3) is an integer of 2 to 6
  • n in (Rf-4) Is an integer of 4-6.
  • m is an integer of 1 to 5
  • n is an integer of 0 to 4
  • the sum of m and n is 4 to 5.
  • m is an integer of 0 to 4
  • n is an integer of 1 to 4
  • p is an integer of 0 to 4
  • the total of m, n, and p is 4 to 5.
  • monomer (B) examples include the following monomers (B-1) to (B-11). These monomers (B) can be used alone or in combination of two or more.
  • n is an integer of 0 to 5, preferably an integer of 3 to 5.
  • the polymerizable unsaturated monomer (C) having a reactive functional group (c1) will be described.
  • the functional group (c1) of the monomer (C) include a hydroxyl group, an isocyanate group, an epoxy group, a carboxyl group, a carboxylic acid halide group, and a carboxylic anhydride group.
  • the polymerizable unsaturated group possessed by the monomer (C) is preferably a carbon-carbon unsaturated double bond having radical polymerizability, and more specifically, a vinyl group, (meth) acryloyl group, maleimide.
  • a (meth) acryloyl group is more preferable from the viewpoint of easy polymerization.
  • the monomer (C) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4 -Hydroxybutyl (meth) acrylate, 1,4-cyclohexanedimethanol mono (meth) acrylate, N- (2-hydroxyethyl) (meth) acrylamide, glycerin mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene Glycol mono (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 2- (meth) acryloyloxyethyl-2-hydroxyethyl phthalate, lactone modified with a hydroxyl group at the terminal (meth) Unsaturated monomer having a hydroxyl group such as acrylate; 2- (meth) acryloyloxye
  • the copolymer (P), the polymer (Q1) or the polymer (Q2) which is an intermediate of the polymerizable resin of the present invention is produced, the compound (A) and the monomer (B) In addition to the monomer (C), other polymerizable unsaturated monomers that can be copolymerized with these may be used.
  • Examples of such other polymerizable unsaturated monomers include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, n -Pentyl (meth) acrylate, n-hexyl (meth) acrylate, n-heptyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate , (Meth) acrylates such as dodecyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, and (meth) acrylate having a polyoxyalkylene chain; styren
  • the mass ratio [(B) / (C)] of the compound (B) to the monomer (C) is 10/90 to 90/90 because a cured product having high scratch resistance can be obtained.
  • the range of 10 is preferable, and the range of 20/80 to 80/20 is more preferable.
  • the monomer (B) and the single monomer are prepared by using the compound (A) as a radical polymerization initiator.
  • a method of subjecting the monomer (C) to living radical polymerization can be mentioned.
  • living radical polymerization a dormant species whose active polymerization end is protected by an atom or an atomic group reversibly generates a radical and reacts with a monomer, whereby a polymer having a very narrow molecular weight distribution can be obtained.
  • Examples of such living radical polymerization include atom transfer radical polymerization (ATRP), reversible addition-cleavage radical polymerization (RAFT), radical polymerization via nitroxide (NMP), radical polymerization using organic tellurium (TERP), etc. Is mentioned. It is preferable to produce the copolymer (P) by this living radical polymerization because a copolymer having a very narrow molecular weight distribution can be obtained. There is no particular restriction as to which of these methods is used, but the ATRP is preferable from the viewpoint of ease of control. ATRP is polymerized using an organic halide or a sulfonyl halide compound as an initiator, and a metal complex composed of a transition metal compound and a ligand as a catalyst.
  • ATRP atom transfer radical polymerization
  • RAFT reversible addition-cleavage radical polymerization
  • NMP radical polymerization via nitroxide
  • TMP radical polymerization using organic tellurium
  • TERP
  • transition metal compound used in the ATRP is represented by M n + X n .
  • Transition metal M n + is Cu + , Cu 2+ , Fe 2+ , Fe 3+ , Ru 2+ , Ru 3+ , Cr 2+ , Cr 3+ , Mo 0 , Mo + , Mo 2+ , Mo 3+ , W 2+ , W 3+ , Rh 3+ , Rh 4+ , Co + , Co 2+ , Re 2+ , Re 3+ , Ni 0 , Ni + , Mn 3+ , Mn 4+ , V 2+ , V 3+ , Zn + , Zn 2+ , Au + , Au 2+ , Ag + And Ag 2+ .
  • X is a halogen atom, an alkoxyl group having 1 to 6 carbon atoms, (SO 4 ) 1/2 , (PO 4 ) 1/3 , (HPO 4 ) 1/2 , (H 2 PO 4 ), triflate , Hexafluorophosphate, methane sulfonate, aryl sulfonate (preferably benzene sulfonate or toluene sulfonate), SeR 1 , CN and R 2 COO.
  • R 1 represents aryl, a linear or branched alkyl group having 1 to 20 carbon atoms (preferably 1 to 10 carbon atoms)
  • R 2 represents a hydrogen atom or halogen 1 to 5 times.
  • n represents a formal charge on the metal and is an integer from 0 to 7.
  • the transition metal complex is preferably a group 7, 8, 9, 10, or 11 transition metal complex, a complex of zero-valent copper, monovalent copper, divalent ruthenium, divalent iron or divalent nickel. Is more preferable.
  • Examples of the compound having a ligand capable of coordinating with a transition metal include a ligand containing at least one nitrogen atom, oxygen atom, phosphorus atom or sulfur atom capable of coordinating with a transition metal via a ⁇ bond.
  • a compound having two or more carbon atoms capable of coordinating with a transition metal via a ⁇ bond, a compound having a ligand capable of coordinating with a transition metal via a ⁇ bond or ⁇ bond Is mentioned.
  • the compound having a ligand include, for example, when the central metal is copper, 2,2′-bipyridyl and its derivatives, 1,10-phenanthroline and its derivatives, tetramethylethylenediamine, pentamethyldiethylenetriamine, hexa And a complex with a ligand such as polyamine such as methyltris (2-aminoethyl) amine.
  • Examples of the divalent ruthenium complex include dichlorotris (triphenylphosphine) ruthenium, dichlorotris (tributylphosphine) ruthenium, dichloro (cyclooctadiene) ruthenium, dichlorobenzeneruthenium, dichlorop-cymenruthenium, dichloro (norbornadiene) ruthenium, Examples thereof include cis-dichlorobis (2,2′-bipyridine) ruthenium, dichlorotris (1,10-phenanthroline) ruthenium, and carbonylchlorohydridotris (triphenylphosphine) ruthenium.
  • examples of the divalent iron complex include a bistriphenylphosphine complex and a triazacyclononane complex.
  • a solvent in the production of the copolymer (P).
  • the solvent used include ester solvents such as ethyl acetate, butyl acetate, and propylene glycol monomethyl ether acetate; ether solvents such as diisopropyl ether, dimethoxyethane, and diethylene glycol dimethyl ether; halogen solvents such as dichloromethane and dichloroethane; toluene, Aromatic solvents such as xylene; ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; alcohol solvents such as methanol, ethanol, and isopropanol; aprotic polar solvents such as dimethylformamide and dimethyl sulfoxide.
  • said solvent can be used individually or can also be used together 2 or more types.
  • the polymerization temperature in the production of the copolymer (P), the polymer (Q1) or the polymer (Q2) is preferably in the range of room temperature to 100 ° C.
  • the said monomer (B) or the said single quantity is subjected to living radical polymerization in the presence of the compound (A), the transition metal compound, a compound having a ligand capable of coordination bond with the transition metal, and a solvent, and then the living radical It can be obtained by adding a monomer other than the polymerized monomer and further conducting living radical polymerization.
  • the polymerizable resin of the present invention a part or all of the reactive groups possessed by the copolymer (P), the polymer (Q1) and the polymer (Q2) produced by the above-described method, Using the compound (D) having a functional group (d1) and a polymerizable unsaturated group (d2) having reactivity to the functional group (c1), a polymerizable unsaturated group ( y) is introduced.
  • the functional group (d1) of the compound (D) include a hydroxyl group, an isocyanate group, an epoxy group, a carboxyl group, a carboxylic acid halide group, and a carboxylic anhydride group.
  • the functional group (d1) includes an isocyanate group, a carboxyl group, a carboxylic acid halide group, a carboxylic acid anhydride group, and an epoxy group.
  • the reactive functional group (c1) is an isocyanate group
  • a hydroxyl group is exemplified as the functional group (d1).
  • the reactive functional group (c1) is an epoxy group
  • the functional group (d1 ) include a carboxyl group and a hydroxyl group.
  • the functional group (d1) includes an epoxy group and a hydroxyl group.
  • the reactive functional group (c1) is a hydroxyl group and the functional group (d1) is an isocyanate group, the reactive functional group (c1) is an epoxy group, and the functional group (d1) is A combination of carboxyl groups is preferred.
  • the polymerizable unsaturated group (y) possessed by the monomer (D) is preferably a carbon-carbon unsaturated double bond having radical polymerizability, more specifically, a vinyl group, (meth) acryloyl. Group, maleimide group and the like.
  • the active energy ray curable resin (E) and the active energy ray curable monomer (F) described later are added.
  • (Meth) acryloyl group is preferable and allyloyl group is more preferable.
  • the compound (D) include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4 -Hydroxybutyl (meth) acrylate, 1,4-cyclohexanedimethanol mono (meth) acrylate, N- (2-hydroxyethyl) (meth) acrylamide, glycerin mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene Glycol mono (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 2- (meth) acryloyloxyethyl-2-hydroxyethyl phthalate, lactone modified with a hydroxyl group at the terminal Unsaturated monomers having a hydroxyl group such as (meth) acrylate; 2- (meth) acryloyloxyeth, 2-
  • 2-hydroxy-3-acryloyloxypropyl methacrylate, pentaerythritol triacrylate, dipentaerythritol pentaacrylate and the like can be used as those having a plurality of polymerizable unsaturated groups.
  • These compounds (D) can be used alone or in combination of two or more.
  • the method of reacting the compound (D) with the copolymer (P), the polymer (Q1) or the polymer (Q2) is performed under the condition that the polymerizable unsaturated group of the compound (D) or the like is not polymerized.
  • the reaction is preferably carried out by adjusting the temperature condition in the range of 30 to 120 ° C.
  • This reaction is preferably carried out in the presence of a catalyst or a polymerization inhibitor, and if necessary in the presence of an organic solvent.
  • the reactive functional group (c1) is a hydroxyl group and the functional group (d1) is an isocyanate group
  • p-methoxyphenol, hydroquinone, 2,6-di-t-butyl is used as a polymerization inhibitor.
  • 4-methylphenol, etc., and dibutyltin dilaurate, dibutyltin diacetate, tin octylate, zinc octylate, etc. as urethanation reaction catalyst, and react at reaction temperature 40-120 ° C, especially 60-90 ° C
  • the method of making it preferable is.
  • the reactive functional group (c1) is an epoxy group and the functional group (d1) is a carboxyl group, or the reactive functional group (c1) is a carboxyl group
  • the functional group When (d1) is an epoxy group, p-methoxyphenol, hydroquinone, 2,6-di-t-butyl-4-methylphenol or the like is used as a polymerization inhibitor, and triethylamine or the like is used as an esterification reaction catalyst.
  • tertiary amines Use tertiary amines, quaternary ammoniums such as tetramethylammonium chloride, tertiary phosphines such as triphenylphosphine, quaternary phosphoniums such as tetrabutylphosphonium chloride, etc., and a reaction temperature of 80 to 130 ° C. In particular, the reaction is preferably carried out at 100 to 120 ° C.
  • the organic solvent used in the above reaction is preferably ketones, esters, amides, sulfoxides, ethers, hydrocarbons, specifically, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ethyl acetate, butyl acetate,
  • Examples include propylene glycol monomethyl ether acetate, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, dimethyl sulfoxide, diethyl ether, diisopropyl ether, tetrahydrofuran, dioxane, toluene, xylene and the like. These may be appropriately selected in consideration of the boiling point and compatibility.
  • the polymerizable resin in the form of a random copolymer can prevent gelation during production and has excellent antifouling properties, so its number average molecular weight.
  • Mn is preferably in the range of 3,000 to 100,000, more preferably in the range of 10,000 to 50,000.
  • the weight average molecular weight (Mw) is preferably in the range of 3,000 to 150,000, more preferably in the range of 10,000 to 75,000.
  • the degree of dispersion of the polymerizable resin of the present invention (Mw / Mn) is preferably 1.0 to 1.5, more preferably 1.0 to 1.3, and most preferably 1.0 to 1.2.
  • the block copolymer-like polymerizable resin can prevent gelation during production and has excellent antifouling properties, so its number average molecular weight ( Mn) is preferably in the range of 3,000 to 100,000, more preferably in the range of 6,000 to 50,000, and even more preferably 8,000 to 25,000.
  • the weight average molecular weight (Mw) is preferably in the range of 3,000 to 150,000, more preferably in the range of 8,000 to 65,000, and even more preferably 10,000 to 35,000.
  • the degree of dispersion (Mw / Mn) of the polymerizable resin of the present invention is preferably 1.0 to 1.5, more preferably 1.0 to 1.4, and most preferably 1.0 to 1.3.
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) are values converted to polystyrene based on gel permeation chromatography (hereinafter abbreviated as “GPC”) measurement.
  • GPC gel permeation chromatography
  • the polymerizable unsaturated group equivalent in the polymerizable resin of the present invention is excellent in scratch resistance of the cured coating film, it is 200 to 3,500 g / eq. In the range of 250 to 2,500 g / eq. Is more preferable, and 250 to 2,000 g / eq. The range of 300 to 2,000 g / eq. The range of 300 to 1,500 g / eq. The range of 400 to 1,500 g / eq. The range of 400 to 1,000 g / eq. The range of is particularly preferable.
  • the ratio of the first polymer segment ( ⁇ ) and the second polymer segment ( ⁇ ) in the polymerizable resin is The mass ratio [( ⁇ ) / ( ⁇ )] in the range of 10/90 to 90/10 is excellent in compatibility with other resins, and also contributes to slipperiness and scratch resistance on the coating film surface.
  • the chain is preferably segregated well, more preferably in the range of 20/80 to 80/20, and still more preferably in the range of 30/70 to 70/30.
  • the polymerizable resin of the present invention can be used as a main component of the active energy ray-curable composition itself, but has an extremely excellent surface modification performance, so it is added to the active energy ray-curable composition. By using it as a surface modifier (surfactant), excellent scratch resistance can be imparted to the cured coating film.
  • the active energy ray-curable composition of the present invention is obtained by adding the polymerizable resin of the present invention.
  • the main component thereof is an active energy ray-curable resin (E) other than the polymerizable resin of the present invention.
  • the active energy ray-curable resin (E) and the active energy ray-curable monomer (F) may be used alone or in combination. It doesn't matter.
  • the polymerizable resin of the present invention is preferably used as a fluorosurfactant in the active energy ray-curable composition.
  • the active energy ray-curable resin (E) is a urethane (meth) acrylate resin, an unsaturated polyester resin, an epoxy (meth) acrylate resin, a polyester (meth) acrylate resin, an acrylic (meth) acrylate resin, or a resin having a maleimide group.
  • a urethane (meth) acrylate resin is particularly preferable from the viewpoint of transparency and low shrinkage.
  • the urethane (meth) acrylate resin used here is a resin having a urethane bond and a (meth) acryloyl group obtained by reacting an aliphatic polyisocyanate compound or an aromatic polyisocyanate compound with a (meth) acrylate compound having a hydroxyl group. Is mentioned.
  • Examples of the aliphatic polyisocyanate compound include tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, heptamethylene diisocyanate, octamethylene diisocyanate, decamethylene diisocyanate, 2-methyl-1,5-pentane diisocyanate, 3-methyl- 1,5-pentane diisocyanate, dodecamethylene diisocyanate, 2-methylpentamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, isophorone diisocyanate, norbornane diisocyanate, hydrogenated diphenylmethane diisocyanate , Hydrogenated tolylene diisocyanate, hydrogenated xylylene Diisocyanate, hydrogenated tetramethylxylylene diisocyanate, cyclohexyl diisocyanate
  • examples of the acrylate compound having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, Monohydric alcohol mono (meth) acrylates such as 5-pentanediol mono (meth) acrylate, 1,6-hexanediol mono (meth) acrylate, neopentyl glycol mono (meth) acrylate, hydroxypivalate neopentyl glycol mono (meth) acrylate (Meth) acrylate; trimethylolpropane di (meth) acrylate, ethoxylated trimethylolpropane (meth) acrylate, propoxylated trimethylolpropane di (meth) acrylate, glycerin di (meth) Mono- or di (meth) acrylates of trivalent alcohol
  • a compound having a group, or a polyfunctional (meth) acrylate having a hydroxyl group obtained by modifying the compound with ⁇ -caprolactone; dipropylene glycol mono (meth) acrylate, diethylene glycol mono (meth) acrylate, (Meth) acrylate compounds having an oxyalkylene chain such as propylene glycol mono (meth) acrylate and polyethylene glycol mono (meth) acrylate; polyethylene glycol-polypropylene glycol mono (meth) acrylate, polyoxybutylene-polyoxypropylene mono (meth) (Meth) acrylate compounds having block structure oxyalkylene chains such as acrylate; random structures such as poly (ethylene glycol-tetramethylene glycol) mono (meth) acrylate and poly (propylene glycol-tetramethylene glycol) mono (meth) acrylate And (meth) acrylate compounds having an oxyalkylene chain.
  • urethanization catalysts that can be used here include amines such as pyridine, pyrrole, triethylamine, diethylamine, and dibutylamine, phosphines such as triphenylphosphine and triethylphosphine, dibutyltin dilaurate, octyltin trilaurate, and octyl.
  • organotin compounds such as tin diacetate, dibutyltin diacetate, and tin octylate, and organometallic compounds such as zinc octylate.
  • urethane acrylate resins those obtained by reacting an aliphatic polyisocyanate compound with a (meth) acrylate compound having a hydroxyl group are excellent in transparency of the cured coating film and have good sensitivity to active energy rays. It is preferable from the viewpoint of excellent curability.
  • the unsaturated polyester resin is a curable resin obtained by polycondensation of ⁇ , ⁇ -unsaturated dibasic acid or its acid anhydride, aromatic saturated dibasic acid or its acid anhydride, and glycols.
  • ⁇ , ⁇ -unsaturated dibasic acid or its acid anhydride include maleic acid, maleic anhydride, fumaric acid, itaconic acid, citraconic acid, chloromaleic acid, and esters thereof.
  • aromatic saturated dibasic acid or acid anhydride thereof phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, nitrophthalic acid, tetrahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, halogenated phthalic anhydride and these Examples include esters.
  • the aliphatic or alicyclic saturated dibasic acid include oxalic acid, malonic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, glutaric acid, hexahydrophthalic anhydride, and esters thereof.
  • glycols include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, 2-methylpropane-1,3-diol, neopentyl glycol, triethylene glycol, Examples include tetraethylene glycol, 1,5-pentanediol, 1,6-hexanediol, bisphenol A, hydrogenated bisphenol A, ethylene glycol carbonate, 2,2-di- (4-hydroxypropoxydiphenyl) propane, etc.
  • oxides such as ethylene oxide and propylene oxide can be used in the same manner.
  • epoxy (meth) acrylate resin (meth) acrylic acid is reacted with an epoxy group of an epoxy resin such as a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a phenol novolac type epoxy resin, or a cresol novolak type epoxy resin. Can be obtained.
  • an epoxy resin such as a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a phenol novolac type epoxy resin, or a cresol novolak type epoxy resin.
  • the resin having a maleimide group includes a bifunctional maleimide urethane compound obtained by urethanizing N-hydroxyethylmaleimide and isophorone diisocyanate, and a bifunctional maleimide ester compound obtained by esterifying maleimide acetic acid and polytetramethylene glycol.
  • Examples thereof include tetrafunctional maleimide ester compounds obtained by esterification of maleimidocaproic acid and a tetraethylene oxide adduct of pentaerythritol, and polyfunctional maleimide ester compounds obtained by esterification of maleimide acetic acid and a polyhydric alcohol compound.
  • These active energy ray-curable resins (E) can be used alone or in combination of two or more.
  • Examples of the active energy ray-curable monomer (F) include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, and a number average molecular weight in the range of 150 to 1,000.
  • trimethylolpropane tri (meth) acrylate pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, pentaerythritol tetra
  • a trifunctional or higher polyfunctional (meth) acrylate such as (meth) acrylate is preferred.
  • active energy ray-curable monomers (E) can be used alone or in combination of two or more.
  • the polymerizable resin of the present invention is used in a total amount of 100 parts by mass of the active energy ray-curable resin (E) and the active energy ray-curable monomer (F).
  • the range of 0.001 to 20 parts by mass is preferable, the range of 0.01 to 15 parts by mass is more preferable, the range of 0.1 to 15 parts by mass is more preferable, and the range of 0.1 to 10 parts by mass is preferable.
  • the range is more preferable, and the range of 0.5 to 15 parts by mass is particularly preferable.
  • the use amount of the polymerizable resin of the present invention is within this range, leveling property, water / oil repellency and antifouling property can be made sufficient, and the hardness and transparency after curing of the composition are also sufficient. Can be.
  • the amount of the polymerizable resin of the present invention is set to be low, and in the case of a thin film, the amount of the polymerizable resin of the present invention is set to be high so that the polymerizable resin of the present invention is uniformly present on the coating film surface. It is preferable because high scratch resistance can be expected.
  • the polymerizable resin or active energy ray-curable composition of the present invention can be formed into a cured coating by irradiating active energy rays after being applied to a substrate.
  • the active energy rays refer to ionizing radiation such as ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, and ⁇ rays.
  • a photopolymerization initiator (G) may be added to the polymerizable resin or active energy ray curable composition to improve curability.
  • a photosensitizer can be further added to improve curability.
  • ionizing radiation such as electron beam, ⁇ -ray, ⁇ -ray, and ⁇ -ray
  • it cures quickly without using a photopolymerization initiator or photosensitizer. It is not necessary to add G) or a photosensitizer.
  • Examples of the photopolymerization initiator (G) include intramolecular cleavage type photopolymerization initiators and hydrogen abstraction type photopolymerization initiators.
  • Examples of the intramolecular cleavage type photopolymerization initiator include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy.
  • examples of the hydrogen abstraction type photopolymerization initiator include benzophenone, methyl 4-phenylbenzophenone o-benzoylbenzoate, 4,4′-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4′-methyl-diphenyl sulfide.
  • Benzophenone compounds such as acrylated benzophenone, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, 3,3′-dimethyl-4-methoxybenzophenone; 2-isopropylthioxanthone, 2,4 -Thioxanthone compounds such as dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone; Aminobenzophenone compounds such as Michler-ketone, 4,4'-diethylaminobenzophenone; -2-chloro acridone, 2-ethyl anthraquinone, 9,10-phenanthrenequinone, camphorquinone, and the like.
  • the compatibility with the active energy ray-curable resin (E) and the active energy ray-curable monomer (F) in the active energy ray-curable composition is excellent. Therefore, 1-hydroxycyclohexyl phenyl ketone and benzophenone are preferable, and 1-hydroxycyclohexyl phenyl ketone is particularly preferable.
  • These photopolymerization initiators (G) can be used alone or in combination of two or more.
  • the photosensitizer examples include amines such as aliphatic amines and aromatic amines, ureas such as o-tolylthiourea, sodium diethyldithiophosphate, s-benzylisothiouronium-p-toluenesulfonate, and the like. And sulfur compounds.
  • photopolymerization initiators and photosensitizers are preferably used in an amount of 0.01 to 20 parts by weight, preferably 0.1 to 15 parts by weight, per 100 parts by weight of the nonvolatile component in the active energy ray-curable composition. % Is more preferable, and 0.3 to 7 parts by mass is even more preferable.
  • the active energy ray-curable composition of the present invention is not limited to the effects of the present invention, depending on the purpose of use, characteristics, etc.
  • Various compounding materials for the purpose of adjusting coating properties and coating film properties such as various organic solvents, acrylic resins, phenol resins, polyester resins, polystyrene resins, urethane resins, urea resins, melamine resins, alkyd resins, epoxy resins,
  • Various resins such as polyamide resin, polycarbonate resin, petroleum resin, fluororesin, various organic or inorganic particles such as PTFE (polytetrafluoroethylene), polyethylene, polypropylene, carbon, titanium oxide, alumina, copper, silica fine particles, polymerization start Agent, polymerization inhibitor, antistatic agent, antifoaming agent, viscosity modifier, light stabilizer, weather stabilizer, Stabilizers, antioxidants, rust inhibitors, slip agents, waxes, gloss modifiers, mold release agents, compatibilizers, conduct
  • the organic solvent is useful for appropriately adjusting the solution viscosity of the active energy ray-curable composition of the present invention.
  • the film thickness can be adjusted. It becomes easy.
  • the organic solvent that can be used here include aromatic hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol, isopropanol and t-butanol; esters such as ethyl acetate and propylene glycol monomethyl ether acetate; methyl ethyl ketone, Examples thereof include ketones such as methyl isobutyl ketone and cyclohexanone. These solvents can be used alone or in combination of two or more.
  • the amount of the organic solvent to be used varies depending on the application and the target film thickness and viscosity, but is preferably in the range of 0.5 to 50 times the mass of the total mass of the curing component.
  • the active energy ray for curing the active energy ray-curable composition of the present invention is an ionizing radiation such as an ultraviolet ray, an electron beam, an ⁇ ray, a ⁇ ray, and a ⁇ ray.
  • an ionizing radiation such as an ultraviolet ray, an electron beam, an ⁇ ray, a ⁇ ray, and a ⁇ ray.
  • a curing device for example, a germicidal lamp, an ultraviolet fluorescent lamp, a carbon arc, a xenon lamp, a high-pressure mercury lamp for copying, a medium or high-pressure mercury lamp, an ultra-high pressure mercury lamp, an electrodeless lamp, a metal halide lamp, natural light, etc.
  • the electron beam include ultraviolet rays, a scanning type, and a curtain type electron beam accelerator.
  • ultraviolet rays are particularly preferable, and ultraviolet rays are preferably irradiated in an inert gas atmosphere such as nitrogen gas in order to avoid curing inhibition due to oxygen or the like. Further, if necessary, heat may be used as an energy source and heat treatment may be performed after curing with ultraviolet rays.
  • the application method of the active energy ray-curable composition of the present invention varies depending on the application.
  • the cured coating film of the polymerizable resin of the present invention has scratch resistance, it can be imparted to the surface of the article by coating and curing on the surface of the article. Moreover, since the polymerizable resin of the present invention can add leveling properties to the coating material by adding it to the coating material, the active energy ray curing agent composition of the present invention has high leveling properties. In addition, since the cured coating film of the polymerizable resin of the present invention is excellent in sliding property, it has an effect of improving the touch operation such as a touch panel. Furthermore, the cured coating film of the polymerizable resin of the present invention is also excellent in antifouling property. .
  • the cured coating film of the polymerizable resin or active energy ray-curable composition of the present invention has excellent scratch resistance and the like, it can be applied to the surface of the article and cured to provide scratch resistance or the like on the surface of the article. Can be granted.
  • Articles that can be prevented from being scratched using the polymerizable resin or active energy ray-curable composition of the present invention include a polarizing plate film for a liquid crystal display (LCD) such as a TAC film; a plasma display (PDP), an organic EL display Various display screens such as: Touch panel; Case or screen of electronic terminal such as mobile phone; Transparent protective film for color filter for liquid crystal display (hereinafter referred to as “CF”); Organic insulating film for liquid crystal TFT array; Electronic circuit formation Inkjet ink; optical recording media such as CD, DVD, Blu-ray disc; transfer film for insert mold (IMD, IMF); rubber roller for OA equipment such as copying machines and printers; reading unit of OA equipment such as copying machines and scanners Glass surface; Optics for cameras, video cameras, glasses, etc.
  • LCD liquid crystal display
  • PDP plasma display
  • organic EL display Various display screens such as: Touch panel; Case or screen of electronic terminal such as mobile phone; Transparent protective film for color filter for liquid crystal
  • Windshields of watches such as watches, glass surfaces; windows of various vehicles such as automobiles and railway vehicles; cover glasses or films for solar cells; various building materials such as decorative panels; window glass for houses; -Synthetic leather, various plastic molded products such as housings for home appliances, FRP bathtubs, etc.
  • active energy ray-curable composition of the present invention By applying the active energy ray-curable composition of the present invention to these article surfaces and irradiating active energy rays such as ultraviolet rays to form a cured coating film, it is possible to impart scratch resistance to the article surfaces. .
  • a hard coating material for an LCD polarizing plate such as a TAC film, an anti-glare (AG: anti-glare) coating material or an anti-reflection (LR) coating material; hard coating material for various display screens such as plasma display (PDP) and organic EL display; hard coating material for touch panel; color resist for forming each pixel of RGB used for CF, printing ink, Ink-jet ink or paint; Black resist for CF black matrix, printing ink, ink-jet ink or paint; Resin composition for pixel partition walls such as plasma display (PDP), organic EL display; For electronic terminal housing such as mobile phone Paint or hard coat material; hard coat for mobile phone screen Materials: Transparent protective film coating for protecting the CF surface; Organic insulating film coating for liquid crystal TFT array; Ink-jet ink for forming electronic circuits; Hard coating material for optical recording media such as CD, DVD, Blu-ray disc; Insert mold (AG: anti-glare) coating material or an anti-reflection (LR) coating material; hard coating material for various
  • examples of articles that can impart scratch resistance (scratch resistance) using the polymerizable resin or active energy ray-curable composition of the present invention include prism sheets or diffusion sheets that are backlight members of LCDs. . Further, by adding the polymerizable resin of the present invention to the prism sheet or the diffusion sheet coating material, the leveling property of the coating material is improved, and the coating film of the coating material is scratch-resistant (scratch resistance) and anti-proofing. Dirty can be imparted.
  • the cured coating film of the polymerizable resin of the present invention has a low refractive index
  • a coating material for a low refractive index layer in an antireflection layer for preventing reflection of fluorescent lamps on various display surfaces such as LCDs. Can also be used.
  • the fluorine-containing curable resin of the present invention to the coating material for the antireflection layer, particularly the coating material for the low refractive index layer in the antireflection layer, the coating material can be applied while maintaining the low refractive index of the coating film. Abrasion resistance can also be imparted to the film surface.
  • polymerizable resin or the active energy ray-curable composition of the present invention can be used include optical fiber cladding materials, waveguides, liquid crystal panel sealing materials, various optical sealing materials, and optical adhesives. Agents and the like.
  • inorganic or organic fine particles such as silica fine particles, acrylic resin fine particles, polystyrene resin fine particles, etc. Is preferably blended at a ratio of 0.1 to 0.5 times the total mass of the curing component in the active energy ray-curable composition of the present invention, since it has excellent antiglare properties.
  • the polymerizable resin or active energy ray-curable composition of the present invention when used as an antiglare coating material for a protective film of a polarizing plate for LCD, it is in contact with a mold having an uneven surface shape before the coating material is cured. Then, it can be applied to a transfer method in which an active energy ray is irradiated from the side opposite to the mold and cured, and the surface of the coat layer is embossed to impart antiglare properties.
  • Example 1 (Preparation of polymerizable resin) In a glass flask equipped with a stirrer, a thermometer, and a cooling tube, 26.4 g of isopropyl ether as a solvent, 25.2 g of a silicone compound having a hydroxyl group at one end represented by the following formula (a-1), a catalyst As a solution, 0.66 g of triethylamine was charged, and the mixture was stirred for 30 minutes while keeping the temperature in the flask at 5 ° C.
  • a nitrogen introducing tube, a stirrer, a thermometer, a cooling tube, and a dripping device were provided.
  • the mixture was charged with 4.3 g of hydroxyethyl methacrylate, heated to 35 ° C. with stirring under a nitrogen stream, and stirred for 2 hours.
  • 0.335 g of cuprous chloride and 0.937 g of 2,2-bipyridyl were charged, heated to 60 ° C. and stirred for 1 hour.
  • the number average molecular weight was 11,000
  • the weight average molecular weight was 12,000
  • the radical polymerizable unsaturated group equivalent was 904 g / eq. Met.
  • the IR spectrum chart of the polymerizable resin (1) is shown in FIG. 1, the 13 C-NMR spectrum chart is shown in FIG. 2, and the GPC chart is shown in FIG.
  • Example 2 (same as above) A nitrogen introducing tube, a stirrer, a thermometer, and a cooling tube are provided, and nitrogen-substituted glass flask is charged with 30.70 g of isopropyl alcohol, 30.70 g of methyl ethyl ketone, 10.93 g of tridecafluorohexyl ethyl methacrylate, and 0.5470 g of methoxybenzene. It stirred at 25 degreeC for 1 hour, stirring under airflow. Next, 0.4510 g of cuprous chloride, 0.1130 g of cupric bromide, and 1.581 g of 2,2-bipyridyl were charged and stirred for 30 minutes.
  • FIG. 4 is a chart of the IR spectrum of the polymerizable resin (2), FIG.
  • FIG. 5 is a chart of the 1 H-NMR spectrum (overall view), and a chart of the 1 H-NMR spectrum (25 times enlarged view).
  • FIG. 6 13 C-NMR chart of the spectrum (overall view) in FIG. 7, 13 C-NMR chart of the spectrum ( Figure 8 25-fold enlargement), 19 F-NMR spectrum chart of A diagram (overall view) is shown in FIG. 9, and a GPC chart is shown in FIG.
  • Example 3 (same as above) A nitrogen-introduced tube, a stirrer, a thermometer, and a cooling tube are provided. A nitrogen-substituted glass flask is charged with 54.88 g of isopropyl alcohol, 54.88 g of methyl ethyl ketone, 13.17 g of 2-hydroxyethyl methacrylate, and 1.094 g of methoxybenzene in a nitrogen stream. The mixture was stirred at 25 ° C. for 1 hour with stirring at the bottom. Next, 0.9017 g of cuprous chloride, 0.2261 g of cupric bromide and 3.162 g of 2,2-bipyridyl were charged and stirred for 30 minutes.
  • Example 4 (same as above) A nitrogen introduction tube, a stirrer, a thermometer, and a cooling tube were provided, and nitrogen-substituted glass flask was charged with 32.20 g of isopropyl alcohol, 32.20 g of methyl ethyl ketone, 12.97 g of tridecafluorohexyl ethyl methacrylate, and 0.6480 g of methoxybenzene. It stirred at 25 degreeC for 1 hour, stirring under airflow. Next, 0.5350 g of cuprous chloride, 0.1370 g of cupric bromide, and 1.874 g of 2,2-bipyridyl were charged and stirred for 30 minutes.
  • Example 5 (same as above) A nitrogen introducing tube, a stirrer, a thermometer, and a cooling tube are provided. A nitrogen-substituted glass flask is charged with 30.28 g of isopropyl alcohol, 30.28 g of methyl ethyl ketone, 10.37 g of tridecafluorohexyl ethyl methacrylate, and 0.6480 g of methoxybenzene. It stirred at 25 degreeC for 1 hour, stirring under airflow. Next, 0.5350 g of cuprous chloride, 0.1370 g of cupric bromide, and 1.874 g of 2,2-bipyridyl were charged and stirred for 30 minutes.
  • Example 6 (same as above) In a glass flask equipped with a stirrer, a thermometer, a condenser, and a dropping device, 134.05 g of n-heptane as a solvent and a silicone compound having a hydroxyl group at one end represented by the above formula (a-1) (wherein , N is 130 on average) and 7.03 g of triethylamine as a catalyst were charged, and the mixture was stirred for 30 minutes while maintaining the temperature in the flask at 40 ° C.
  • a-1 wherein , N is 130 on average
  • magnesium sulfate was added as a dehydrating agent, shaken and dehydrated, and then the dehydrating agent was filtered off. Thereafter, the solvent was distilled off under reduced pressure, and the resulting residue was dissolved in 303.25 g of isopropyl ether.
  • 303.25 g of 0.36% hydrochloric acid was mixed and stirred and allowed to stand, and the hydrochloric acid layer was separated and removed.
  • 303.25 g of 1% aqueous sodium hydroxide solution was mixed and stirred, and then allowed to stand. The 1% aqueous sodium hydroxide solution layer was separated and removed, and 300 g of ion-exchanged water was further stirred and left to stand.
  • Example 7 (same as above) A nitrogen-introduced glass flask equipped with a nitrogen introduction tube, a stirrer, a thermometer, and a condenser tube was charged with 69.37 g of isopropyl alcohol, 69.37 g of methyl ethyl ketone, 32.49 g of tridecafluorohexyl ethyl methacrylate, and 0.7387 g of methoxybenzene. It stirred at 25 degreeC for 1 hour, stirring under airflow. Next, 0.6089 g of cuprous chloride, 0.1527 g of cupric bromide, and 2.135 g of 2,2-bipyridyl were charged and stirred for 30 minutes.
  • Comparative Example 1 (Preparation of surfactant for comparison) A glass flask equipped with a stirrer, a thermometer, a condenser, and a dropping device was charged with 77.7 g of methyl isobutyl ketone as a solvent and heated to 105 ° C. while stirring under a nitrogen stream.
  • the mixture is stirred at 10 ° C. for 1 hour, heated to 30 ° C. for 1 hour, then heated to 50 ° C. and stirred for 10 hours, and acrylic acid is measured by gas chromatography. The disappearance of chloride was confirmed.
  • 80 g of ion-exchanged water was mixed and stirred, and then allowed to stand, and washing by a method of separating and removing the aqueous layer was repeated three times.
  • X is a perfluoromethylene group and a perfluoroethylene group, and an average of 7 perfluoromethylene groups and an average of 8 perfluoroethylene groups are present per molecule, and the number of fluorine atoms is (The average is 46. The number average molecular weight by GPC is 1,500.)
  • X is a perfluoromethylene group and a perfluoroethylene group, and an average of 7 perfluoromethylene groups and an average of 8 perfluoroethylene groups are present per molecule, and the number of fluorine atoms is (The average is 46.)
  • the polymer (P-3) was charged with 106.9 g of methyl ethyl ketone as a solvent, 0.1 g of p-methoxyphenol as a polymerization inhibitor, and 0.03 g of tin octylate as a urethanization catalyst, and stirring was started under an air stream. While maintaining the temperature at 60 ° C., 35.6 g of 2-acryloyloxyethyl isocyanate was added dropwise over 1 hour. After completion of the dropwise addition, the mixture was stirred at 60 ° C. for 1 hour, then heated to 80 ° C. and stirred for 10 hours. As a result, the disappearance of the isocyanate group was confirmed by IR spectrum measurement.
  • a substance insoluble in the solution was separated by filtration to obtain a methyl ethyl ketone solution containing 20% by mass of a polymerizable resin (2 ′) having an active energy ray-curable group.
  • the molecular weight of the polymerizable resin (2 ′) was measured by GPC (polystyrene equivalent molecular weight). As a result, the number average molecular weight was 3,200, the weight average molecular weight was 87,000, and the radical polymerizable unsaturated group equivalent was 423 g / eq. Met.
  • Comparative Example 3 (same as above) In a glass flask equipped with a stirrer, thermometer, condenser, and dropping device, 20 g of compound (X-1), 10 g of diisopropyl ether as a solvent, 0.006 g of p-methoxyphenol as a polymerization inhibitor, and triethylamine 3 as a neutralizing agent Then, stirring was started under an air stream, and 3.1 g of methacrylic acid chloride was dropped over 2 hours while maintaining the inside of the flask at 10 ° C. After completion of the dropwise addition, the mixture was stirred at 10 ° C. for 1 hour, heated to 30 ° C. for 1 hour, then heated to 50 ° C.
  • X is a perfluoromethylene group and a perfluoroethylene group, and an average of 7 perfluoromethylene groups and an average of 8 perfluoroethylene groups are present per molecule, and the number of fluorine atoms is (The average is 46.)
  • a glass flask equipped with a stirrer, thermometer, condenser, and dropping device was charged with 96.7 g of methyl isobutyl ketone as a solvent and heated to 105 ° C. while stirring under a nitrogen stream.
  • monomer (B-2) 37 g of monomer (A′-1) and 45.4 g of 2-hydroxyethyl methacrylate dissolved in 126 g of methyl isobutyl ketone, and t as a radical polymerization initiator -Three types of dripping liquid
  • a polymerization initiator solution prepared by dissolving 23.5 g of butylperoxy-2-ethylhexanoate in 67.8 g of methyl isobutyl ketone were set in separate dripping apparatuses, and the temperature in the flask was set to 105 ° C. While maintaining, it was added dropwise over 2 hours. After completion of the dropwise addition, the mixture was stirred at 105
  • a solution of the above polymer (P-4) was charged with 0.2 g of p-methoxyphenol as a polymerization inhibitor and 0.06 g of tin octylate as a urethanization catalyst, and stirring was started in an air stream at 60 ° C. While maintaining, 49.1 g of 2-acryloyloxyethyl isocyanate was added dropwise over 1 hour. After completion of the dropwise addition, the mixture was stirred at 60 ° C. for 1 hour, then heated to 80 ° C. and stirred for 10 hours, whereby disappearance of the isocyanate group was confirmed by IR spectrum measurement.
  • methyl isobutyl ketone was added to obtain a methyl isobutyl ketone solution containing 40% by mass of a polymerizable resin (3 ′) having an active energy ray-curable group.
  • the molecular weight of the obtained polymerizable resin (3 ′) was measured by GPC (polystyrene equivalent molecular weight). As a result, the number average molecular weight was 2,700, the weight average molecular weight was 8,000, and the radical polymerizable unsaturated group equivalent was 588 g / eq. Met.
  • Comparative Example 4 (same as above) A glass flask equipped with a stirrer, a thermometer, a condenser, and a dropping device was charged with 714 g of methyl isobutyl ketone as a solvent and heated to 105 ° C. while stirring under a nitrogen stream.
  • a methyl isobutyl ketone solution containing 30% by mass of a comparative polymerizable resin (4 ′) having a linear curable group was obtained.
  • GPC polystyrene equivalent molecular weight
  • Example 8 preparation of active energy ray-curable composition
  • a composition for an antireflection film located on the outermost surface of a protective film of a polarizing plate was prepared. Specifically, 15 parts of methyl isobutyl ketone dispersion containing 20% by mass of hollow silica fine particles (average particle size 50 nm), 1.6 parts of pentaerythritol triacrylate, and 2-hydroxy-1- ⁇ 4 as a photopolymerization initiator.
  • the active energy ray-curable composition (1) of the present invention [antireflection coating composition (1)] was prepared.
  • an antireflection layer was prepared on a film having an antireflection layer and a hard coat layer according to the following procedure.
  • ⁇ Preparation of coating composition for hard coat layer 50 parts of pentafunctional non-yellowing urethane acrylate, 50 parts of dipentaerythritol hexaacrylate, 25 parts of butyl acetate, 5 parts of 1-hydroxycyclohexyl phenyl ketone (“Irgacure 184” manufactured by Ciba Specialty Chemicals) as a photopolymerization initiator, As a solvent, 54 parts of toluene, 28 parts of 2-propanol, 28 parts of ethyl acetate, and 28 parts of propylene glycol monomethyl ether were mixed and dissolved to obtain a coating composition for a hard coat layer.
  • Irgacure 184 1-hydroxycyclohexyl phenyl ketone
  • ⁇ Preparation of a film having a hard coat layer> The obtained coating composition for a hard coat layer was applied to a bar coater no. 13 was applied to a TAC film having a thickness of 80 ⁇ m, and then put into a dryer at 60 ° C. for 5 minutes to volatilize the solvent, and an ultraviolet curing device (using a high-pressure mercury lamp in a nitrogen atmosphere, an ultraviolet irradiation amount of 2 kJ / m). 2 ), a hard coat film having a 10 ⁇ m thick hard coat layer on one side was prepared.
  • ⁇ Preparation of a film having an antireflection layer and a hard coat layer> The bar coater No. 1 was applied on the hard coat layer of the hard coat film obtained above so that the coating amount of the antireflection coating composition (1) was 2 g / m 2 . Then, the solvent is volatilized in a dryer at 60 ° C. for 5 minutes and cured with an ultraviolet curing device (in a nitrogen atmosphere, using a high pressure mercury lamp, an ultraviolet irradiation amount of 2 kJ / m 2 ). A film having an antireflection layer having a thickness of 0.1 ⁇ m and a hard coat layer on the hard coat layer was produced.
  • the cured film surface of the antireflection coating composition of the obtained film was evaluated for the following appearance, scratch resistance, and dirt wiping property. Moreover, the reflectance of the antireflection film was measured. These evaluations were performed before and after the alkali treatment shown below. The evaluation results are shown in Table 1.
  • X The number of scratches is 50 or more.
  • Fingerprints are attached to the surface of the cured coating film of the antireflective coating composition of the antireflective film obtained above, and the wiping condition when wiped 10 times with tissue paper is visually observed. The wiping property was evaluated.
  • the reflectance was measured using a spectrophotometer (“UV-3100PC” manufactured by Shimadzu Corporation) equipped with a 5 ° C. specular reflection measuring device.
  • the reflectivity was a value when the local minimum value (minimum reflectivity) was reached near the wavelength of 550 nm.
  • Comparative Example 5 (Preparation of active energy ray curable composition for comparison) Instead of the 50% containing solution of the polymerizable resin (1) used in Example 8, 0.4 parts by mass of a methyl isobutyl ketone solution containing 40% of the polymerizable resin (1 ′) as a resin component was added. By operating in the same manner as in Example 8, a comparative antireflection coating composition (1 ′) was obtained. Using this, evaluation was performed in the same manner as in Example 8. The evaluation results are shown in Table 1.
  • Comparative Example 6 (same as above) Instead of the 50% containing solution of the polymerizable resin (1) used in Example 8 and 0.4 parts by mass of a 20% containing solution of the polymerizable resin (2 ′) as a resin component, Example 8 and By operating in the same manner, a comparative antireflection coating composition (2 ′) was obtained. Using this, evaluation was performed in the same manner as in Example 8. The evaluation results are shown in Table 1.
  • Comparative Example 7 (same as above) Instead of the 50% -containing solution of the polymerizable resin (1) used in Example 8, 0.4 mass parts was added as a resin component of a 40% -containing solution of the polymerizable resin (3 ′), and Example 8 By operating in the same manner, a comparative antireflection coating composition (3 ′) was obtained. Using this, evaluation was performed in the same manner as in Example 8. The evaluation results are shown in Table 1.
  • Comparative Example 8 (same as above) Instead of the solution containing 50% of the polymerizable resin (1) used in Example 8, silicone oil ("Silane Plain FM-4421" manufactured by JNC Corporation, -C 3 H 6 OC at both ends of the polydimethylsiloxane chain was used. 0.8 parts by weight of methyl isobutyl ketone solution containing ones) having 2 H 4 OH 50 wt% (except for 0.4 part by weight) is added as a resin component in the same manner as in example 8, comparison An antireflective coating composition (4 ′) was obtained. Using this, evaluation was performed in the same manner as in Example 8. The evaluation results are shown in Table 1.
  • Comparative Example 10 Methyl isobutyl containing 50% by mass of a tetrafunctional acrylate having a dimethylsiloxane chain (“BYK-UV3570” manufactured by Big Chemie Japan KK) instead of the 50% containing solution of the polymerizable resin (1) used in Example 8
  • An antireflective coating composition for comparison (6 ′) was obtained in the same manner as in Example 8 except that 0.8 part by mass of the ketone solution (0.4 part by mass as the resin content) was added. Using this, evaluation was performed in the same manner as in Example 8. The evaluation results are shown in Table 2.
  • Comparative Example 11 (same as above) Evaluation was performed in the same manner as in Example 8 without adding anything to the base resin composition of the active energy ray-curable composition prepared in Example 8. The evaluation results are shown in Table 2.
  • Example 9 preparation of active energy ray-curable composition of the present invention
  • a composition for an antireflection film located on the outermost surface of a protective film of a polarizing plate was prepared. Specifically, 1.265 parts of methyl isobutyl ketone dispersion containing 20% by mass of hollow silica fine particles (average particle diameter 60 nm), 0.207 parts of pentaerythritol triacrylate, and 2-hydroxy-1- as a photopolymerization initiator.
  • a film having an antireflection layer and a hard coat layer was prepared using the obtained antireflection coating composition (2) according to the following procedure.
  • ⁇ Preparation of coating composition for hard coat layer 30 parts of urethane acrylate (“UV1700B” from Nippon Synthetic Chemical Industry Co., Ltd.), 25 parts of butyl acetate, 1.2 parts by mass of 1-hydroxycyclohexyl phenyl ketone (“Irgacure 184” manufactured by Ciba Specialty Chemicals) as a photopolymerization initiator Then, 11.78 parts of toluene, 5.892 parts of 2-propanol, 5.892 parts of ethyl acetate and 5.892 parts of propylene glycol monomethyl ether were mixed and dissolved as a solvent to obtain a coating composition for a hard coat layer.
  • UV1700B urethane acrylate
  • butyl acetate 1.2 parts by mass of 1-hydroxycyclohexyl phenyl ketone
  • Irgacure 184 1-hydroxycyclohexyl phenyl ketone manufactured by Ciba Specialty Chemicals
  • ⁇ Preparation of a film having a hard coat layer> The obtained coating composition for a hard coat layer was applied to a bar coater no. 13 was applied to a PET film having a thickness of 188 ⁇ m, and then put into a dryer at 70 ° C. for 1 minute to volatilize the solvent, and an ultraviolet curing device (in a nitrogen atmosphere, using a high-pressure mercury lamp, an ultraviolet irradiation amount of 0.5 kJ) / M 2 ) to prepare a hard coat film having a hard coat layer having a thickness of 8 ⁇ m on one side.
  • an ultraviolet curing device in a nitrogen atmosphere, using a high-pressure mercury lamp, an ultraviolet irradiation amount of 0.5 kJ) / M 2
  • An antireflection coating composition (2) was applied to the bar coater No. After coating at 2, the solvent is volatilized by putting in a dryer at 50 ° C. for 1 minute 30 seconds, and cured with an ultraviolet curing device (in a nitrogen atmosphere, using a high-pressure mercury lamp, an ultraviolet irradiation amount of 2 kJ / m 2 ).
  • a film (antireflection film) having an antireflection layer having a thickness of 0.1 ⁇ m and a hardcoat layer on an 8 ⁇ m hardcoat layer was produced.
  • About the cured coating film surface of the anti-reflective coating composition of the obtained film according to the following evaluation method, the external appearance, slip property, and scratch resistance were evaluated. These measurements were performed before and after the alkali treatment. The evaluation results are shown in Table 3.
  • the test was performed using # 0000 steel wool and subjected to 10 reciprocating wear at a load of 500 g.
  • the number of scratches on the coating surface after the test was counted, and the scratch resistance was evaluated according to the following criteria.
  • Example 10 (same as above) Instead of the 30% containing solution of the polymerizable resin (2) used in Example 9, a 0.04 part by mass of a 30% containing solution of the polymerizable resin (3) was added as a resin component, and the same as in Example 9. Were evaluated. The evaluation results are shown in Table 3.
  • Example 11 (same as above) Instead of the 30% containing solution of the polymerizable resin (2) used in Example 9, a 0.04 part by mass of a 30% containing solution of the polymerizable resin (4) was added as a resin component. Were evaluated. The evaluation results are shown in Table 3.
  • Example 12 (same as above) Instead of the 30% containing solution of the polymerizable resin (2) used in Example 9, a 0.04 part by mass of a 30% containing solution of the polymerizable resin (5) was added as a resin component, and the same as in Example 9. Were evaluated. The evaluation results are shown in Table 3.
  • Example 13 (same as above) Instead of the 30% containing solution of the polymerizable resin (2) used in Example 9, a 0.04 part by mass of a 30% containing solution of the polymerizable resin (6) was added as a resin component, and the same as in Example 9. Were evaluated. The evaluation results are shown in Table 3.
  • Example 14 (same as above) Instead of the 30% containing solution of the polymerizable resin (2) used in Example 9, a 0.04 part by mass of a 30% containing solution of the polymerizable resin (7) was added as a resin component, and the same as in Example 9. Were evaluated. The evaluation results are shown in Table 3.
  • Comparative Example 12 (Preparation of active energy ray-curable composition for comparison) Instead of the 30% containing solution of the polymerizable resin (2) used in Example 9, a 0.4% part by mass of a 30% containing solution of the comparative polymerizable resin (4 ′) was added as a resin component. The evaluation was performed in the same manner as in Example 9. The evaluation results are shown in Table 4.
  • Comparative Example 13 (same as above) Evaluation was performed by operating in the same manner as in Example 9 without adding anything to the base composition of the antireflection coating composition prepared in Example 9. The evaluation results are shown in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • General Chemical & Material Sciences (AREA)
  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 本発明は、活性エネルギー線硬化性組成物に添加することで、ケン化処理後であっても塗膜表面に優れた耐擦傷性を付与することができるフッ素原子含有重合性樹脂及びこれを用いた組成物を提供することを目的として、重合性不飽和単量体の重合で形成される主鎖を有し、該主鎖は、側鎖としてフッ素原子が結合した炭素原子の数が1~6であるフッ素化アルキル基(x)と重合性不飽和基(y)とを有する重合性樹脂であり、該主鎖は、更に、その片末端に分子量2,000以上のシリコーン鎖を含む構造を有する重合性樹脂、これを用いた活性エネルギー線硬化性組成物を提供する。

Description

重合性樹脂、活性エネルギー線硬化性組成物及び物品
 本発明は、活性エネルギー線硬化性組成物に添加することで、該組成物の硬化塗膜に優れた耐擦傷性を付与することができるフッ素原子含有重合性樹脂に関する。また、該フッ素原子含有重合性樹脂を用いた活性エネルギー線硬化性組成物、及び該組成物の硬化塗膜を有する物品に関する。
 液晶ディスプレイの画面最表面となる偏光板の表層には、AG、AG/LR、クリア/LRといった防眩性や反射防止性を有する塗工がされるが、最表層のため耐擦傷性が必要とされている。耐擦傷性を向上させる方法としては、多官能(メタ)アクリレートなどの多官能性単量体を用いて得られる架橋皮膜を基材表面に形成する方法(ハードコート剤)が知られており、耐擦傷性の良好な塗工材として、シリコーン系やフッ素系のレベリング剤を添加する方法や、二酸化ケイ素、酸化アルミニウム等の無機化合物粒子、炭素、又はポリウレタン樹脂、ポリスチレン樹脂、アクリル樹脂等の合成樹脂粒子を添加する方法などが提案されている。
 偏光板は偏光フィルムの両面あるいは片面に、光学的に透明で、かつ機械的強度を有する保護膜を貼り合わせることで得られる。上記保護膜としては、通常トリアセチルセロルース(TAC)フィルムが使用される。
 トリアセチルセルロース(TAC)フィルムを偏光フィルムに接着する為には、TACフィルムの表面を苛性アルカリ等によってケン化処理し、-OCOCH基の一部又は大部分を親水基である-OHに加水分解する必要がある。TACフィルムにベース層と防眩性や反射防止性を有する最表層を形成することと、ケン化処理を行うには、1.TACフィルムをケン化処理したのちフィルムの片面に前記の塗膜層を形成する、2.TACフィルムの片面に前記の塗膜層を形成したのちケン化処理する、等の方法があるが、通常は偏光板の生産効率の観点から、2.の方法が行われている。
 前記2.の方法において、ケン化処理する際は苛性アルカリ等のケン化剤から塗膜層を保護する為、塗膜層を保護フィルムで保護する方法が知られている。しかしながら、近年、生産効率の向上やコスト削減の為、保護フィルムで塗膜層を保護せずとも前記ケン化剤に曝露されても塗膜の性能が低下しない塗膜層が求められている。しかしながら、一般に、ケン化処理により硬化塗膜表面が大幅に劣化してしまう為、十分な耐擦傷性が得られない問題がある。
 耐擦傷性に優れる保護層を得る方法として、例えば、分子内にラジカル重合性不飽和基を有するシリコーン化合物を含む活性エネルギー線硬化性組成物を用いる方法が知られている(特許文献1参照。)。しかしながら、このシリコーン化合物を添加した活性エネルギー線硬化性組成物の硬化塗膜は、液晶ディスプレイの偏光板に用いられるTACフィルムのように、ケン化処理(強アルカリ処理)される用途においては、ケン化処理後に硬化塗膜表面の滑り性が大幅に低下し、十分な耐擦傷性が得られない問題があった。
 そこで、ケン化処理(強アルカリ処理)後も傷付きが防止できる優れた耐擦傷性を硬化塗膜表面に付与することができる材料が求められていた。
特開2004-182765号公報
 本発明が解決しようとする課題は、活性エネルギー線硬化性組成物に添加することで、ケン化処理後であっても塗膜表面に優れた耐擦傷性を付与することができるフッ素原子含有重合性樹脂を提供することである。また、該重合性樹脂を用いた活性エネルギー線硬化性組成物及び該組成物の硬化塗膜を有する物品を提供することである。
 本発明者等は、上記課題を解決すべく鋭意研究を重ねた結果、フッ素化アルキル基と重合性不飽和基を有するフッ素系重合性樹脂で、かつ、該樹脂の片末端に、シリコーン鎖を有するものが、界面活性剤として使用可能であること、この樹脂を含有する活性エネルギー線硬化性組成物は、ケン化処理後であってもその硬化塗膜表面に優れた耐擦傷性を付与できること等を見出し、本発明を完成するに至った。
 即ち、本発明は、重合性不飽和単量体の重合で形成される主鎖を有し、該主鎖は、側鎖としてフッ素原子が結合した炭素原子の数が1~6であるフッ素化アルキル基(x)と重合性不飽和基(y)とを有する重合性樹脂であり、該主鎖は、更に、その片末端に分子量2,000以上のシリコーン鎖を含む構造を有することを特徴とする重合性樹脂を提供するものである。
 また、本発明は、前記重合性樹脂と、該重合性樹脂以外の活性エネルギー線硬化性樹脂(E)または活性エネルギー線硬化性単量体(F)を含有することを特徴とする活性エネルギー線硬化性組成物を提供するものである。
 更に、本発明は、前記活性エネルギー線硬化性組成物の硬化塗膜を有することを特徴とする物品を提供するものである。
 本発明の重合性樹脂は、活性エネルギー線硬化性組成物に添加することで、その硬化塗膜表面に滑り性を付与して優れた耐擦傷性が得られる。また、この耐擦傷性は、ケン化処理(強アルカリ処理)された硬化塗膜でも発揮することができるため、液晶ディスプレイの偏光板に用いられるTACフィルムのハードコート材の材料としても有用である。
図1は、実施例1で得られた重合性樹脂(1)のIRスペクトルのチャート図である。 図2は、実施例1で得られた重合性樹脂(1)の13C-NMRスペクトルのチャート図である。 図3は、実施例1で得られた重合性樹脂(1)のGPCのチャート図である。 図4は、実施例2で得られた重合性樹脂(2)のIRスペクトルのチャート図である。 図5は、実施例2で得られた重合性樹脂(2)のH-NMRスペクトルのチャート図(全体図)である。 図6は、実施例2で得られた重合性樹脂(2)のH-NMRスペクトルのチャート図(25倍の拡大図)である。 図7は、実施例2で得られた重合性樹脂(2)の13C-NMRスペクトルのチャート図(全体図)である。 図8は、実施例2で得られた重合性樹脂(2)の13C-NMRスペクトルのチャート図(25倍の拡大図)である。 図9は、実施例2で得られた重合性樹脂(2)の19F-NMRスペクトルのチャート図(全体図)である。 図10は、実施例2で得られた重合性樹脂(2)のGPCのチャート図である。
 本発明の重合性樹脂は、重合性不飽和単量体の重合で形成される主鎖を有し、該主鎖は、側鎖としてフッ素原子が結合した炭素原子の数が1~6であるフッ素化アルキル基(x)と重合性不飽和基(y)とを有する重合性樹脂であり、該主鎖は、更に、その片末端に分子量2,000以上のシリコーン鎖を含む構造を有する。この片末端には、シリコーン鎖を単数有していても、複数有していても良いが、本発明においては、片末端にはシリコーン鎖を単数(1つ)有するものが耐摩耗性とフッ素原子の表面偏析性の点から好ましい。
 前記フッ素化アルキル基(x)としては、炭素原子数が4~6のものが表面偏析性と撥水撥油性と環境負荷低減のバランスが良好な事から好ましく、炭素原子数が6のものがより好ましい。
 また、本発明の重合性樹脂中の重合性不飽和基(y)の当量は、耐摩耗性に優れる硬化塗膜が得られることから200~3,500g/eq.の範囲が好ましく、250~2,000g/eq.の範囲がより好ましく、300~1,500g/eq.の範囲がさらに好ましく、400~1,000g/eq.の範囲が特に好ましい。
 前記シリコーン鎖の分子量は2,000以上であることが必要である、このような分子量のシリコーン鎖を有することにより、シリコーン鎖の持つすべり性を好適に発現でき、その結果、塗膜の表面の摩擦を低減することで優れた耐摩擦性を付与できる。シリコーン鎖の分子量としては、分子量2,000~20,000が好ましく、5,000~10,000がより好ましい。
 本発明において、原料を重合させるタイミングを変えることにより、種々の形態の重合性樹脂が得られる。例えば、後述するフッ素原子が結合した炭素原子の数が1~6であるフッ素化アルキル基を有する重合性不飽和単量体(B)と反応性官能基(c1)を有する重合性不飽和単量体(C)を同時に反応系に加えて反応させた場合は、いわゆるランダム共重合体状の重合性樹脂となる。また、重合性不飽和単量体(B)と重合性不飽和単量体(C)とを別個に反応させた場合は、いわゆるブロック共重合体状の重合性樹脂となる。特に、本発明の重合性樹脂の中でも、活性エネルギー線硬化性組成物に添加することで、膜厚が0.1μm程度と非常に薄い塗膜にも優れた耐擦傷性を付与することができる重合性樹脂となることからブロック共重合体が好ましい。
 本発明の重合性樹脂の中でも、ランダム重合体状の重合性樹脂は、例えば、分子量2,000以上のシリコーン鎖の片末端にラジカル生成能を有する官能基を有する化合物(A)とフッ素原子が結合した炭素原子の数が1~6であるフッ素化アルキル基を有する重合性不飽和単量体(B)と反応性官能基(c1)を有する重合性不飽和単量体(C)と前記官能基(c1)に対して反応性を有する官能基(d1)及び重合性不飽和基(d2)を有する化合物(D)とを用いて得ることが出来る。具体的には、前記化合物(A)からラジカルを生成させることにより前記重合性不飽和単量体(B)と前記重合性不飽和単量体(C)とを共重合させて得られる共重合体(P)に、前記化合物(D)を反応させることにより得られる。
 また、本発明の重合性樹脂の中でも、ブロック重合体状の重合性樹脂は、例えば、重合性不飽和単量体の重合で形成される主鎖と該主鎖の側鎖としてフッ素原子が結合した炭素原子の数が1~6であるフッ素化アルキル基(x)を有する第一の重合体セグメント(α)と、重合性不飽和単量体の重合で形成される主鎖と該主鎖の側鎖として重合性不飽和基(y)を有する第二の重合体セグメント(β)を有し、更に、片末端に分子量2,000以上のシリコーン鎖を含む構造を有する重合性樹脂を例示できる。
 このようなブロック重合体状の重合性樹脂は、例えば、以下の製造方法により好ましく得ることができる。
 方法1:分子量2,000以上のシリコーン鎖の片末端に、ラジカル生成能を有する官能基を有する化合物(A)と、フッ素原子が結合した炭素原子の数が1~6であるフッ素化アルキル基(x)を有する重合性不飽和単量体(B)とを反応系内に仕込み、前記化合物(A)からラジカルを生成させることにより、前記重合性不飽和単量体(B)由来の構造を含む重合体セグメント(p)を得る工程(1)と、
 該重合体セグメント(p)を含む反応系内に、反応性官能基(c1)を有する重合性不飽和単量体(C)を仕込み、該重合体セグメント(p)からラジカルを生成させることにより、重合体セグメント(p)および重合性不飽和単量体(C)由来の構造を含む重合体セグメント(q)を含む重合体(Q1)を得る工程(2)と、
 重合体(Q1)を含む反応系内に、重合体(Q1)が有する反応性官能基(c1)に対して反応性を有する官能基(d1)及び重合性不飽和基(d2)を有する化合物(D)を仕込み、反応性官能基(c1)と反応性を有する官能基(d1)とを反応させる工程(3)を含む製造方法。
 方法2:分子量2,000以上のシリコーン鎖の片末端に、ラジカル生成能を有する官能基を有する化合物(A)と、反応性官能基(c1)を有する重合性不飽和単量体(C)とを反応系内に仕込み、前記化合物(A)からラジカルを生成させることにより、重合性不飽和単量体(C)由来の構造を含む重合体セグメント(q)を得る工程(1-1)と、
 該重合体セグメント(q)を含む反応系内に、重合性不飽和単量体(B)を仕込み、該重合体セグメント(q)からラジカルを生成させることにより、重合体セグメント(q)および重合性不飽和単量体(B)由来の構造を含む重合体セグメントを含む重合体(Q2)を得る工程(2-1)と、
 重合体(Q2)を含む反応系内に、重合体(Q2)が有する反応性官能基(c1)に対して反応性を有する官能基(d1)及び重合性不飽和基(d2)を有する化合物(D)を仕込み、反応性官能基(c1)と反応性を有する官能基(d1)とを反応させる工程(3-1)を含む製造方法。
 前記化合物(A)が有するラジカル生成能を有する官能基としては、例えば、ハロゲン原子を有する有機基、アルキルテルル基を有する有機基、ジチオエステル基を有する有機基、パーオキシド基を有する有機基、アゾ基を有する有機基等が挙げられる。ここで、リビングラジカル重合によって、化合物(A)に、前記重合性不飽和単量体(B)及び重合性不飽和単量体(C)を共重合させる場合は、前記ラジカル生成能を有する官能基としてハロゲン原子を有する有機基、アルキルテルル基を有する有機基、ジチオエステル基を有する有機基が用いることができ、特に合成の容易さ、重合制御の容易さ、適用できる重合性不飽和単量体の多様性からハロゲン原子を有する有機基を用いることが好ましい。 
 前記ハロゲン原子を有する有機基としては、例えば、2-ブロモ-2-メチルプロピオニルオキシ基、2-ブロモ-プロピオニルオキシ基、パラクロロスルホニルベンゾイルオキシ基等が挙げられる。 
 前記ハロゲン原子を有する有機基を主鎖中に分子量2,000以上のシリコーン鎖を含む化合物の片末端に導入するには、例えば、分子量2,000以上のシリコーン鎖の片末端に反応により結合を形成し得る官能基を有する化合物(a1)と、この官能基と反応して結合を形成し得る官能基とハロゲン原子を有する有機基とを有する化合物(a2)とを反応させる方法が挙げられる。具体的には、前記化合物(a1)が有する片末端の官能基としては、例えば、水酸基、イソシアネート基、エポキシ基、カルボキシル基、カルボン酸ハライド基、カルボン酸無水物基等が挙げられる。これらの官能基を片末端に有する前記化合物(a1)の具体的な例としては、下記の式(a1-1)で表される化合物を好ましく例示できる。
Figure JPOXMLDOC01-appb-C000001
(式中Xは反応により結合を形成し得る官能基である、R~Rはそれぞれ独立に炭素原子数1~18のアルキル基又はフェニル基である。Rは2価の有機基又は単結合である。nは20~200である。)
 ここで、前記Rとしては、例えば、メチレン基、プロピレン基、イソプロピリデン基等の炭素原子数1以上のアルキレン基、2つ以上のアルキレン基がエーテル結合で連結されたアルキレンエーテル基が挙げられる。
 一方、前記化合物(a2)が有し、前記化合物(a1)が片末端に有する官能基と反応して結合を形成し得る官能基としては、下記のものが挙げられる。
 例えば、前記化合物(a1)が有する官能基が水酸基の場合は、前記化合物(a2)が有するハロゲン原子を有する有機基以外の官能基は、イソシアネート基、カルボン酸ハライド基、カルボン酸無水物基が好ましい。また、他の方法として、まず、前記化合物(a1)の水酸基に酸無水物を反応させることでカルボキシル基を生成させ、そのカルボキシル基に対し、エポキシ基とハロゲン原子を有する有機基とを有する化合物を前記化合物(a2)として、さらに反応させることによって前記化合物(a1)の片末端にハロゲン原子を有する有機基を導入することも可能である。
 前記化合物(a1)が有する官能基がイソシアネート基の場合は、前記化合物(a2)が有するハロゲン原子を有する有機基以外の官能基は、水酸基が好ましい。また、前記化合物(a1)が有する官能基がエポキシ基の場合は、前記化合物(a2)が有するハロゲン原子を有する有機基以外の官能基は、カルボキシル基が好ましい。 
 前記化合物(a1)が有する官能基がカルボキシル基の場合は、前記化合物(a2)が有するハロゲン原子を有する有機基以外の官能基は、エポキシ基が好ましい。また、前記化合物(a1)が有する官能基がカルボン酸無水物基の場合は、前記化合物(a2)が有するハロゲン原子を有する有機基以外の官能基は、水酸基が好ましい。
 上記の前記化合物(a1)が有する官能基と、前記化合物(a2)が有するハロゲン原子を有する有機基以外の官能基との組み合わせの中でも、前記化合物(a1)が有する官能基が水酸基であり、前記化合物(a2)が有するハロゲン原子を有する有機基以外の官能基がカルボン酸ハライド基である組み合わせが、反応が容易な点から好ましい。この組み合わせの場合の反応条件としては、下記の条件が挙げられる。 
 前記ハロゲン原子を有する有機基をシリコーン鎖の片末端に導入する具体的方法としては、前記化合物(a1)の片末端の官能基が水酸基であり、前記化合物(a2)がハロゲン基を有するカルボン酸の場合は、脱水エステル化条件下で反応を行うことで、主鎖中に分子量2,000以上のシリコーン鎖を含む化合物の片末端に重合開始能を有する官能基を有する化合物(A)を得ることができる。また、前記化合物(a1)の片末端の官能基が水酸基であり、前記化合物(a2)がハロゲン基を有するカルボン酸のハロゲン化物の場合は、トルエン、テトラヒドロフラン等の溶剤中、(a1)と(a2)とを反応させることにより同様に重合開始能を有する官能基を有する化合物(A)を得ることができる。なお、この反応においては必要に応じて塩基性触媒を用いることができる。
 また前記化合物(a1)の片末端にある官能基がイソシアネート基、前記化合物(a2)がハロゲン基と、該イソシアネート基と反応し得る官能基として水酸基を有する場合、オクチル酸スズのような触媒の存在下、(a1)と(a2)を反応させることにより重合開始能を有する官能基を有する化合物を得ることができる。
 さらに前記化合物(a1)の片末端の官能基がエポキシ基、前記化合物(a2)がハロゲン基と、該エポキシ基と反応し得る官能基としてカルボキシル基を有する場合、トリフェニルホスフィンや第3級アミンのような塩基性触媒の存在下、(a1)と(a2)を反応させることにより重合開始能を有する官能基を有する化合物を得ることができる。
 本発明で用いる主鎖中に分子量2,000以上のシリコーン鎖を含み、該主鎖の片末端にラジカル生成能を有する官能基を有する化合物(A)の具体例としては、例えば、以下の式で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 次に、本発明に用いる重合性不飽和単量体(B)について説明する。重合性不飽和単量体(B)はフッ素原子が直接結合した炭素原子の数が1~6であるフッ素化アルキル基を有する。本発明において、前記フッ素化アルキル基はフッ素化アルキル基の骨格中に1以上の炭素-炭素二重結合を有するものも含む。前記単量体(B)が有する重合性不飽和基としては、ラジカル重合性を有する炭素-炭素不飽和二重結合が好ましく、(メタ)アクリロイル基、ビニル基、マレイミド基等が挙げられる。これらの中でも、原料の入手容易性、後述する活性エネルギー線硬化性組成物中の各配合成分に対する相溶性を制御することの容易性、あるいは重合反応性が良好であることから、(メタ)アクリロイル基が好ましい。
 なお、本発明において、「(メタ)アクリレート」とは、メタクリレートとアクリレートの一方又は両方をいい、「(メタ)アクリロイル基」とは、メタクリロイル基とアクリロイル基の一方又は両方をいい、「(メタ)アクリル酸」とは、メタクリル酸とアクリル酸の一方又は両方をいう。
 前記フッ素化アルキル基を有する重合性不飽和単量体(B)としては、例えば、下記一般式(1)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000003
(上記一般式(1)中、Rは水素原子又はメチル基を表し、Lは、下記式(L-1)~(L-10)のいずれか1つの基を表し、Rfは下記式(Rf-1)~(Rf-7)のいずれか1つの基を表す。)
Figure JPOXMLDOC01-appb-C000004
 上記式(L-1)、(L-3)、(L-4)、(L-5)、(L-6)及び(L-7)中のnは1~8の整数を表す。上記式(L-8)、(L-9)及び(L-10)中のmは1~8の整数を表し、nは0~8の整数を表す。上記式(L-6)及び(L-7)中のRf’’は下記式(Rf-1)~(Rf-7)のいずれか1つの基を表す。
Figure JPOXMLDOC01-appb-C000005
 上記式(Rf-1)、(Rf-2)中のnは1~6の整数であり、(Rf-3)中のnは2~6の整数であり、(Rf-4)中のnは4~6の整数である。上記式(Rf-5)中のmは1~5の整数であり、nは0~4の整数であり、かつm及びnの合計は4~5である。上記式(Rf-6)中のmは0~4の整数であり、nは1~4の整数であり、pは0~4の整数であり、かつm、n及びpの合計は4~5である。
 また、前記単量体(B)の具体的な例として、下記の単量体(B-1)~(B-11)等が挙げられる。なお、これらの単量体(B)は、1種類のみで用いることも2種以上併用することもできる。
Figure JPOXMLDOC01-appb-C000006
 (式中のnは0~5の整数であり、好ましくは3~5の整数である。)
 次に、反応性官能基(c1)を有する重合性不飽和単量体(C)について説明する。前記単量体(C)が有する官能基(c1)としては、例えば、水酸基、イソシアネート基、エポキシ基、カルボキシル基、カルボン酸ハライド基、カルボン酸無水物基等が挙げられる。また、前記単量体(C)が有する重合性不飽和基は、ラジカル重合性を有する炭素-炭素不飽和二重結合が好ましく、より具体的には、ビニル基、(メタ)アクリロイル基、マレイミド基等が挙げられ、重合が容易な点から(メタ)アクリロイル基がより好ましい。
 前記単量体(C)の具体例としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、1,4-シクロヘキサンジメタノールモノ(メタ)アクリレート、N-(2-ヒドロキシエチル)(メタ)アクリルアミド、グリセリンモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチル-2-ヒドロキシエチルフタレート、末端に水酸基を有するラクトン変性(メタ)アクリレート等の水酸基を有する不飽和単量体;2-(メタ)アクリロイルオキシエチルイソシアネート、2-(2-(メタ)アクリロイルオキシエトキシ)エチルイソシアネート、1,1-ビス((メタ)アクリロイルオキシメチル)エチルイソシアネート等のイソシアネート基含有不飽和単量体;グリシジルメタクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル等のエポキシ基含有不飽和単量体;(メタ)アクリル酸、2-(メタ)アクリロイルオキシエチルコハク酸、2-(メタ)アクリロイルオキシエチルフタル酸、マレイン酸、イタコン酸等のカルボキシル基含有不飽和単量体;無水マレイン酸、無水イタコン酸等の不飽和二重結合を有するカルボン酸無水物などが挙げられる。これらの単量体(C)は、1種類のみで用いることも2種以上併用することもできる。
 また、本発明の重合性樹脂の中間体である前記共重合体(P)や重合体(Q1)や重合体(Q2)を製造する際に、前記化合物(A)、単量体(B)、単量体(C)の他に、これらと共重合し得るその他の重合性不飽和単量体を用いても構わない。このようなその他の重合性不飽和単量体としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-ヘプチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ポリオキシアルキレン鎖を有する(メタ)アクリレート等の(メタ)アクリル酸エステル類;スチレン、α-メチルスチレン、p-メチルスチレン、p-メトキシスチレン等の芳香族ビニル類;マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、フェニルマレイミド、シクロヘキシルマレイミド等のマレイミド類などが挙げられる。
 ここで、前記化合物(B)と単量体(C)との質量比〔(B)/(C)〕は、高い耐擦傷性を有する硬化物が得られることから、10/90~90/10の範囲が好ましく、20/80~80/20の範囲がより好ましい。
 本発明で用いる共重合体(P)や重合体(Q1)や重合体(Q2)の製造方法としては、前記化合物(A)をラジカル重合開始剤として、前記単量体(B)や前記単量体(C)を、リビングラジカル重合させる方法が挙げられる。一般にリビングラジカル重合においては、活性重合末端が原子又は原子団により保護されたドーマント種が可逆的にラジカルを発生させてモノマーと反応することにより、極めて分子量分布の狭い重合体を得ることができる。このようなリビングラジカル重合の例としては、原子移動ラジカル重合(ATRP)、可逆的付加-開裂型ラジカル重合(RAFT)、ニトロキシドを介するラジカル重合(NMP)、有機テルルを用いるラジカル重合(TERP)等が挙げられる。このリビングラジカル重合によって、前記共重合体(P)を製造すると、分子量分布が非常に狭い共重合体が得られるため好ましい。これらのうちどの方法を使用するかは特に制約はないが、制御の容易さなどから前記ATRPが好ましい。ATRPは、有機ハロゲン化物、又はハロゲン化スルホニル化合物等を開始剤、遷移金属化合物と配位子からなる金属錯体を触媒として重合される。 
 前記ATRPで使用する遷移金属化合物は、Mn+で表されるものである。遷移金属であるMn+は、Cu、Cu2+、Fe2+、Fe3+、Ru2+、Ru3+、Cr2+、Cr3+、Mo、Mo、Mo2+、Mo3+、W2+、W3+、Rh3+、Rh4+、Co、Co2+、Re2+、Re3+、Ni、Ni、Mn3+、Mn4+、V2+、V3+、Zn、Zn2+、Au、Au2+、Ag及びAg2+からなる群から選択することができる。また、Xは、ハロゲン原子、炭素原子数1~6のアルコキシル基、(SO1/2、(PO1/3、(HPO1/2、(HPO)、トリフラート、ヘキサフルオロホスフェート、メタンスルホネート、アリールスルホネート(好ましくはベンゼンスルホネート又はトルエンスルホネート)、SeR、CN及びRCOOからなる群から選択することができる。ここで、Rは、アリール、直鎖状又は分岐状の炭素原子数1~20(好ましくは炭素原子数1~10)のアルキル基を表し、R2は、水素原子、ハロゲンで1~5回(好適にはフッ素もしくは塩素で1~3回)置換されていてもよい直鎖状又は分岐状の炭素原子数1~6のアルキル基(好ましくはメチル基)を表す。さらに、nは、金属上の形式電荷を表し、0~7の整数である。
 前記遷移金属錯体としては、7、8、9、10、11族の遷移金属錯体が好ましく、0価の銅、1価の銅、2価のルテニウム、2価の鉄又は2価のニッケルの錯体がさらに好ましい。
 前記の遷移金属と配位結合可能な配位子を有する化合物としては、遷移金属とσ結合を介して配位できる1つ以上の窒素原子、酸素原子、リン原子又は硫黄原子を含む配位子を有する化合物、遷移金属とπ結合を介して配位できる2つ以上の炭素原子を含む配位子を有する化合物、遷移金属とμ結合又はη結合を介して配位できる配位子を有する化合物が挙げられる。 
 前記配位子を有する化合物の具体例としては、例えば、中心金属が銅の場合は2,2’-ビピリジル及びその誘導体、1,10-フェナントロリン及びその誘導体、テトラメチルエチレンジアミン、ペンタメチルジエチレントリアミン、ヘキサメチルトリス(2-アミノエチル)アミン等のポリアミン等の配位子との錯体が挙げられる。また2価のルテニウム錯体としては、ジクロロトリス(トリフェニルホスフィン)ルテニウム、ジクロロトリス(トリブチルホスフィン)ルテニウム、ジクロロ(シクロオクタジエン)ルテニウム、ジクロロベンゼンルテニウム、ジクロロp-シメンルテニウム、ジクロロ(ノルボルナジエン)ルテニウム、シス-ジクロロビス(2,2’-ビピリジン)ルテニウム、ジクロロトリス(1,10-フェナントロリン)ルテニウム、カルボニルクロロヒドリドトリス(トリフェニルホスフィン)ルテニウム等が挙げられる。さらに2価の鉄錯体としては、ビストリフェニルホスフィン錯体、トリアザシクロノナン錯体等が挙げられる。 
 また、前記共重合体(P)の製造では、溶媒を使用することが好ましい。使用する溶媒としては、例えば、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート等のエステル系溶媒;ジイソプロピルエーテル、ジメトキシエタン、ジエチレングリコールジメチルエーテル等のエーテル系溶媒;ジクロロメタン、ジクロロエタンなどのハロゲン系溶媒;トルエン、キシレン等の芳香族系溶媒;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系溶剤;メタノール、エタノール、イソプロパノール等のアルコール系溶剤;ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性極性溶媒などが挙げられる。また、上記の溶媒は、単独で用いることも2種以上併用することもできる。
 また、前記共重合体(P)や重合体(Q1)や重合体(Q2)の製造の際の重合温度は、室温から100℃の範囲が好ましい。
 前記共重合体(P)中の前記単量体(B)及び前記単量体(C)から構成される共重合部分をブロック状とする場合は、前記単量体(B)又は前記単量体(C)を単独で、前記化合物(A)、遷移金属化合物、該遷移金属と配位結合可能な配位子を有する化合物及び溶媒の存在下でリビングラジカル重合させた後、先にリビングラジカル重合した単量体とは別の単量体を加えて、さらにリビングラジカル重合させることで得ることができる。 
 本発明の重合性樹脂を得るためには、上記の方法で製造された共重合体(P)や重合体(Q1)や重合体(Q2)が有する前記反応性基の一部又は全部に、前記官能基(c1)に対して反応性を有する官能基(d1)及び重合性不飽和基(d2)を有する化合物(D)を用いて、共重合体(P)に重合性不飽和基(y)を導入する。前記化合物(D)が有する官能基(d1)としては、例えば、水酸基、イソシアネート基、エポキシ基、カルボキシル基、カルボン酸ハライド基、カルボン酸無水物基等が挙げられる。前記単量体(C)が有する反応性官能基(c1)が水酸基である場合には、官能基(d1)としてイソシアネート基、カルボキシル基、カルボン酸ハライド基、カルボン酸無水物基、エポキシ基が挙げられ、反応性官能基(c1)がイソシアネート基である場合には、官能基(d1)として水酸基が挙げられ、反応性官能基(c1)がエポキシ基である場合には、官能基(d1)としてカルボキシル基、水酸基が挙げられ、反応性官能基(c1)がカルボキシル基である場合には、官能基(d1)としてエポキシ基、水酸基が挙げられる。これらは、複数の官能基の組み合わせとしても構わない。また、これらの組み合わせの中でも、前記反応性官能基(c1)が水酸基で前記官能基(d1)がイソシアネート基の組み合わせ、前記反応性官能基(c1)がエポキシ基で前記官能基(d1)がカルボキシル基の組み合わせが好ましい。
 なお、前記単量体(D)が有する重合性不飽和基(y)は、ラジカル重合性を有する炭素-炭素不飽和二重結合が好ましく、より具体的には、ビニル基、(メタ)アクリロイル基、マレイミド基等が挙げられる。これらの中でも、活性エネルギー線硬化型組成物に本発明の含フッ素重合性重合体を添加した際に、後述する活性エネルギー線硬化性樹脂(E)、活性エネルギー線硬化性単量体(F)等との硬化性が高いことから、(メタ)アクリロイル基が好ましく、アルリロイル基がより好ましい。
 前記化合物(D)の具体的としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、1,4-シクロヘキサンジメタノールモノ(メタ)アクリレート、N-(2-ヒドロキシエチル)(メタ)アクリルアミド、グリセリンモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチル-2-ヒドロキシエチルフタレート、末端に水酸基を有するラクトン変性(メタ)アクリレート等の水酸基を有する不飽和単量体;2-(メタ)アクリロイルオキシエチルイソシアネート、2-(2-(メタ)アクリロイルオキシエトキシ)エチルイソシアネート、1,1-ビス((メタ)アクリロイルオキシメチル)エチルイソシアネート等のイソシアネート基を有する不飽和単量体;グリシジルメタクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル等のエポキシ基を有する不飽和単量体;(メタ)アクリル酸、2-(メタ)アクリロイルオキシエチルコハク酸、2-(メタ)アクリロイルオキシエチルフタル酸、マレイン酸、イタコン酸等のカルボキシル基含有不飽和単量体;無水マレイン酸、無水イタコン酸等の不飽和二重結合を有するカルボン酸無水物などが挙げられる。また、複数の重合性不飽和基を有するものとして、2-ヒドロキシ-3-アクリロイルオキシプロピルメタクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールペンタアクリレート等を用いることもできる。これらの化合物(D)は、1種類のみで用いることも2種以上併用することもできる。
 上記の化合物(D)の具体的の中でも特に紫外線照射での重合硬化性が好ましい点から、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、3-ヒドロキシプロピルアクリレート、2-ヒドロキシブチルアクリレート、4-ヒドロキシブチルアクリレート、1,4-シクロヘキサンジメタノールモノアクリレート、N-(2-ヒドロキシエチル)アクリルアミド、2-アクリロイルオキシエチルイソシアネート、1,1-ビス(アクリロイルオキシメチル)エチルイソシアネート4-ヒドロキシブチルアクリレートグリシジルエーテル、アクリル酸が好ましい。
 前記共重合体(P)や重合体(Q1)や重合体(Q2)に、前記化合物(D)を反応させる方法は、化合物(D)等が有する重合性不飽和基が重合しない条件で行えば良く、例えば、温度条件を30~120℃の範囲に調節して反応させることが好ましい。この反応は触媒や重合禁止剤の存在下、必要により有機溶剤の存在下に行うことが好ましい。
 例えば、前記反応性官能基(c1)が水酸基であって、前記官能基(d1)がイソシアネート基である場合は、重合禁止剤としてp-メトキシフェノール、ヒドロキノン、2,6-ジ-t-ブチル-4-メチルフェノール等を使用し、ウレタン化反応触媒としてジブチル錫ジラウレート、ジブチル錫ジアセテート、オクチル酸錫、オクチル酸亜鉛等を使用し、反応温度40~120℃、特に60~90℃で反応させる方法が好ましい。また、前記反応性官能基(c1)がエポキシ基であって、前記官能基(d1)がカルボキシル基である場合、又は、前記反応性官能基(c1)がカルボキシル基であって、前記官能基(d1)がエポキシ基である場合は、重合禁止剤としてp-メトキシフェノール、ヒドロキノン、2,6-ジ-t-ブチル-4-メチルフェノール等を使用し、エステル化反応触媒としてトリエチルアミン等の第3級アミン類、塩化テトラメチルアンモニウム等の第4級アンモニウム類、トリフェニルホスフィン等の第3級ホスフィン類、塩化テトラブチルホスホニウム等の第4級ホスホニウム類等を使用し、反応温度80~130℃、特に100~120℃で反応させることが好ましい。
 上記反応で用いられる有機溶媒はケトン類、エステル類、アミド類、スルホキシド類、エーテル類、炭化水素類が好ましく、具体的には、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、ジメチルスルホキシド、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン、トルエン、キシレン等が挙げられる。これらは、沸点、相溶性を考慮して適宜選択すればよい。
 上記のようにして得られる本発明の重合性樹脂のなかでも、ランダム共重合体状である重合性樹脂は、製造時のゲル化を防止でき、防汚性が優れることから、その数平均分子量(Mn)が3,000~100,000の範囲であることが好ましく、10,000~50,000の範囲であることがより好ましい。また、重量平均分子量(Mw)が3,000~150,000の範囲であることが好ましく、10,000~75,000の範囲であることがより好ましいまた、本発明の重合性樹脂の分散度(Mw/Mn)は1.0~1.5が好ましく、1.0~1.3がより好ましく、1.0~1.2が最も好ましい。
 上記のようにして得られる本発明の重合性樹脂のなかでも、ブロック共重合体状である重合性樹脂は製造時のゲル化を防止でき、防汚性が優れることから、その数平均分子量(Mn)が3,000~100,000の範囲であることが好ましく、6,000~50,000の範囲であることがより好ましく、8,000~25,000が更に好ましい。また、重量平均分子量(Mw)が3,000~150,000の範囲であることが好ましく、8,000~65,000の範囲であることがより好ましく、10,000~35,000が更に好ましい。また、本発明の重合性樹脂の分散度(Mw/Mn)は1.0~1.5が好ましく、1.0~1.4がより好ましく、1.0~1.3が最も好ましい。
 ここで、数平均分子量(Mn)及び重量平均分子量(Mw)はゲル浸透クロマトグラフィー(以下、「GPC」と略記する。)測定に基づきポリスチレン換算した値である。なお、GPCの測定条件は以下の通りである。
 [GPC測定条件]
 測定装置:東ソー株式会社製「HLC-8220 GPC」、
 カラム:東ソー株式会社製ガードカラム「HHR-H」(6.0mmI.D.×4cm)+東ソー株式会社製「TSK-GEL GMHHR-N」(7.8mmI.D.×30cm)+東ソー株式会社製「TSK-GEL GMHHR-N」(7.8mmI.D.×30cm)+東ソー株式会社製「TSK-GEL GMHHR-N」(7.8mmI.D.×30cm)+東ソー株式会社製「TSK-GEL GMHHR-N」(7.8mmI.D.×30cm)
 検出器:ELSD(オルテックジャパン株式会社製「ELSD2000」)
 データ処理:東ソー株式会社製「GPC-8020モデルIIデータ解析バージョン4.30」
 測定条件:カラム温度  40℃
      展開溶媒   テトラヒドロフラン(THF)
      流速     1.0ml/分
 試料:樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(5μl)。
 標準試料:前記「GPC-8020モデルIIデータ解析バージョン4.30」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
 (単分散ポリスチレン)
 東ソー株式会社製「A-500」
 東ソー株式会社製「A-1000」
 東ソー株式会社製「A-2500」
 東ソー株式会社製「A-5000」
 東ソー株式会社製「F-1」
 東ソー株式会社製「F-2」
 東ソー株式会社製「F-4」
 東ソー株式会社製「F-10」
 東ソー株式会社製「F-20」
 東ソー株式会社製「F-40」
 東ソー株式会社製「F-80」
 東ソー株式会社製「F-128」
 東ソー株式会社製「F-288」
 東ソー株式会社製「F-550」
 さらに、本発明の重合性樹脂中の重合性不飽和基当量は、硬化塗膜の耐擦傷性に優れることから、200~3,500g/eq.の範囲が好ましく、250~2,500g/eq.の範囲がより好ましく、250~2,000g/eq.の範囲がより好ましく、300~2,000g/eq.の範囲がより好ましく、300~1,500g/eq.の範囲が更に好ましく、400~1,500g/eq.の範囲が更に好ましく、400~1,000g/eq.の範囲が特に好ましい。
 また、本発明の重合性樹脂がブロック共重合体状の重合性樹脂である場合、重合性樹脂中の第一の重合体セグメント(α)と第二の重合体セグメント(β)との比率は、質量比〔(α)/(β)〕で10/90~90/10となる範囲が他の樹脂との相溶性に優れ、しかも、塗膜表面にすべり性と耐擦傷性に寄与するシリコン鎖を良好に偏析できることから好ましく、20/80~80/20となる範囲がより好ましく、30/70~70/30となる範囲が更に好ましい。
 本発明の重合性樹脂は、それ自体を活性エネルギー線硬化性組成物の主剤として用いることができるが、極めて優れた表面改質性能を有しているため、活性エネルギー線硬化性組成物に添加する表面改質剤(界面活性剤)として用いることで、硬化塗膜に優れた耐擦傷性を付与できる。
 本発明の活性エネルギー線硬化型組成物は、本発明の重合性樹脂を添加したものであるが、その主成分しては、本発明の重合性樹脂以外の活性エネルギー線硬化型樹脂(E)又は活性エネルギー線硬化性単量体(F)を含有する。なお、本発明の活性エネルギー線硬化型組成物において、活性エネルギー線硬化型樹脂(E)と活性エネルギー線硬化性単量体(F)とは、それぞれ単独で用いてもよいが、併用しても構わない。また、本発明の重合性樹脂は、当該活性エネルギー線硬化型組成物において、フッ素系界面活性剤として用いることが好ましい。
 前記活性エネルギー線硬化型樹脂(E)は、ウレタン(メタ)アクリレート樹脂、不飽和ポリエステル樹脂、エポキシ(メタ)アクリレート樹脂、ポリエステル(メタ)アクリレート樹脂、アクリル(メタ)アクリレート樹脂、マレイミド基を有する樹脂等が挙げられるが、本発明では、特に透明性や低収縮性等の点からウレタン(メタ)アクリレート樹脂が好ましい。
 ここで用いるウレタン(メタ)アクリレート樹脂は、脂肪族ポリイソシアネート化合物又は芳香族ポリイソシアネート化合物と水酸基を有する(メタ)アクリレート化合物とを反応させて得られるウレタン結合と(メタ)アクリロイル基とを有する樹脂が挙げられる。
 前記脂肪族ポリイソシアネート化合物としては、例えば、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘプタメチレンジイソシアネート、オクタメチレンジイソシアネート、デカメチレンジイソシアネート、2-メチル-1,5-ペンタンジイソシアネート、3-メチル-1,5-ペンタンジイソシアネート、ドデカメチレンジイソシアネート、2-メチルペンタメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネート、水素添加ジフェニルメタンジイソシアネート、水素添加トリレンジイソシアネート、水素添加キシリレンジイソシアネート、水素添加テトラメチルキシリレンジイソシアネート、シクロヘキシルジイソシアネート等が挙げられ、また、芳香族ポリイソシアネート化合物としては、トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、1,5-ナフタレンジイソシアネート、トリジンジイソシアネート、p-フェニレンジイソシアネート等が挙げられる。
 一方、水酸基を有するアクリレート化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、1,5-ペンタンジオールモノ(メタ)アクリレート、1,6-ヘキサンジオールモノ(メタ)アクリレート、ネオペンチルグリコールモノ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールモノ(メタ)アクリレート等の2価アルコールのモノ(メタ)アクリレート;トリメチロールプロパンジ(メタ)アクリレート、エトキシ化トリメチロールプロパン(メタ)アクリレート、プロポキシ化トリメチロールプロパンジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ビス(2-(メタ)アクリロイルオキシエチル)ヒドロキシエチルイソシアヌレート等の3価のアルコールのモノ又はジ(メタ)アクリレート、あるいは、これらのアルコール性水酸基の一部をε-カプロラクトンで変性した水酸基を有するモノ及びジ(メタ)アクリレート;ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等の1官能の水酸基と3官能以上の(メタ)アクリロイル基を有する化合物、あるいは、該化合物をさらにε-カプロラクトンで変性した水酸基を有する多官能(メタ)アクリレート;ジプロピレングリコールモノ(メタ)アクリレート、ジエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート等のオキシアルキレン鎖を有する(メタ)アクリレート化合物;ポリエチレングリコール-ポリプロピレングリコールモノ(メタ)アクリレート、ポリオキシブチレン-ポリオキシプロピレンモノ(メタ)アクリレート等のブロック構造のオキシアルキレン鎖を有する(メタ)アクリレート化合物;ポリ(エチレングリコール-テトラメチレングリコール)モノ(メタ)アクリレート、ポリ(プロピレングリコール-テトラメチレングリコール)モノ(メタ)アクリレート等のランダム構造のオキシアルキレン鎖を有する(メタ)アクリレート化合物等が挙げられる。
 上記した脂肪族ポリイソシアネート化合物又は芳香族ポリイソシアネート化合物と水酸基を有するアクリレート化合物との反応は、ウレタン化触媒の存在下、常法により行うことができる。ここで使用し得るウレタン化触媒は、具体的には、ピリジン、ピロール、トリエチルアミン、ジエチルアミン、ジブチルアミンなどのアミン類、トリフェニルホスフィン、トリエチルホスフィンなどのホフィン類、ジブチル錫ジラウレート、オクチル錫トリラウレート、オクチル錫ジアセテート、ジブチル錫ジアセテート、オクチル酸錫などの有機錫化合物、オクチル酸亜鉛などの有機金属化合物が挙げられる。
 これらのウレタンアクリレート樹脂の中でも特に脂肪族ポリイソシアネート化合物と水酸基を有する(メタ)アクリレート化合物とを反応させて得られるものが硬化塗膜の透明性に優れ、かつ、活性エネルギー線に対する感度が良好で硬化性に優れる点から好ましい。
 次に、不飽和ポリエステル樹脂は、α,β-不飽和二塩基酸又はその酸無水物、芳香族飽和二塩基酸又はその酸無水物、及び、グリコール類の重縮合によって得られる硬化性樹脂であり、α,β-不飽和二塩基酸又はその酸無水物としては、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、シトラコン酸、クロルマレイン酸、及びこれらのエステル等が挙げられる。芳香族飽和二塩基酸又はその酸無水物としては、フタル酸、無水フタル酸、イソフタル酸、テレフタル酸、ニトロフタル酸、テトラヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、ハロゲン化無水フタル酸及びこれらのエステル等が挙げられる。脂肪族あるいは脂環族飽和二塩基酸としては、シュウ酸、マロン酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸、グルタル酸、ヘキサヒドロ無水フタル酸及びこれらのエステル等が挙げられる。グリコール類としては、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、2-メチルプロパン-1,3-ジオール、ネオペンチルグリコール、トリエチレングリコール、テトラエチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ビスフェノールA、水素化ビスフェノールA、エチレングリコールカーボネート、2,2-ジ-(4-ヒドロキシプロポキシジフェニル)プロパン等が挙げられ、その他にエチレンオキサイド、プロピレンオキサイド等の酸化物も同様に使用できる。
 次に、エポキシ(メタ)アクリレート樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のエポキシ樹脂のエポキシ基に(メタ)アクリル酸を反応させて得られるものが挙げられる。
 また、マレイミド基を有する樹脂としては、N-ヒドロキシエチルマレイミドとイソホロンジイソシアネートとをウレタン化して得られる2官能マレイミドウレタン化合物、マレイミド酢酸とポリテトラメチレングリコールとをエステル化して得られる2官能マレイミドエステル化合物、マレイミドカプロン酸とペンタエリスリトールのテトラエチレンオキサイド付加物とをエステル化して得られる4官能マレイミドエステル化合物、マレイミド酢酸と多価アルコール化合物とをエステル化して得られる多官能マレイミドエステル化合物等が挙げられる。これらの活性エネルギー線硬化性樹脂(E)は、1種類のみで用いることも2種以上併用することもできる。
 前記活性エネルギー線硬化性単量体(F)としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、数平均分子量が150~1000の範囲にあるポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、数平均分子量が150~1000の範囲にあるポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ヒドロキシピバリン酸エステルネオペンチルグリコールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスルトールトリ(メタ)アクリレート、ジペンタエリスルトールヘキサ(メタ)アクリレート、ペンタエリスルトールテトラ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ジペンタエリスルトールペンタ(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、メチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート等の脂肪族アルキル(メタ)アクリレート、グリセロール(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、グリシジル(メタ)アクリレート、アリル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-(ジエチルアミノ)エチル(メタ)アクリレート、2-(ジメチルアミノ)エチル(メタ)アクリレート、γ-(メタ)アクリロキシプロピルトリメトキシシラン、2-メトキシエチル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリプロピレングリコール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジプロピレングルリコール(メタ)アクリレート、フェノキシポリプロピレングリコール(メタ)アクリレート、ポリブタジエン(メタ)アクリレート、ポリエチレングリコール-ポリプロピレングリコール(メタ)アクリレート、ポリエチレングリコール-ポリブチレングリコール(メタ)アクリレート、ポリスチリルエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メトキシ化シクロデカトリエン(メタ)アクリレート、フェニル(メタ)アクリレート;マレイミド、N-メチルマレイミド、N-エチルマレイミド、N-プロピルマレイミド、N-ブチルマレイミド、N-ヘキシルマレイミド、N-オクチルマレイミド、N-ドデシルマレイミド、N-ステアリルマレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド、2-マレイミドエチル-エチルカーボネート、2-マレイミドエチル-プロピルカーボネート、N-エチル-(2-マレイミドエチル)カーバメート、N,N-ヘキサメチレンビスマレイミド、ポリプロピレングリコール-ビス(3-マレイミドプロピル)エーテル、ビス(2-マレイミドエチル)カーボネート、1,4-ジマレイミドシクロヘキサン等のマレイミド類などが挙げられる。
 これらのなかでも特に硬化塗膜の硬度に優れる点からトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスルトールトリ(メタ)アクリレート、ジペンタエリスルトールヘキサ(メタ)アクリレート、ペンタエリスルトールテトラ(メタ)アクリレート等の3官能以上の多官能(メタ)アクリレートが好ましい。これらの活性エネルギー線硬化性単量体(E)は、1種類のみで用いることも2種以上併用することもできる。
 本発明の活性エネルギー線硬化型組成物において、本発明の重合性樹脂の使用量は、前記活性エネルギー線硬化型樹脂(E)及び活性エネルギー線硬化性単量体(F)の合計100質量部に対して、0.001~20質量部の範囲が好ましく、0.01~15質量部の範囲がより好ましく、0.1~15質量部の範囲がより好ましく、0.1~10質量部の範囲がさらに好ましく、0.5~15質量部の範囲が特に好ましい。本発明の重合性樹脂の使用量がこの範囲であれば、レベリング性、撥水撥油性、防汚性を十分なものにすることができ、該組成物の硬化後の硬度や透明性も十分なものとすることができる。また、本発明の活性エネルギー線硬化性組成物を塗膜にした際の膜厚により、塗膜の表層部分に占める本発明の重合性樹脂の割合が変化するため、厚膜の場合は、本発明の重合性樹脂の添加量を低めに設定し、薄膜の場合は、本発明の重合性樹脂の添加量を高めに設定することで、塗膜表面に本発明の重合性樹脂を満遍なく存在させることができ、高い耐擦傷性を期待できるため好ましい。
 本発明の重合性樹脂又は活性エネルギー線硬化型組成物は、基材に塗布後、活性エネルギー線を照射することで硬化塗膜とすることができる。この活性エネルギー線とは、紫外線、電子線、α線、β線、γ線のような電離放射線をいう。活性エネルギー線として紫外線を照射して硬化塗膜とする場合には、該重合性樹脂又は活性エネルギー線硬化型組成物中に光重合開始剤(G)を添加し、硬化性を向上することが好ましい。また、必要であればさらに光増感剤を添加して、硬化性を向上することもできる。一方、電子線、α線、β線、γ線のような電離放射線を用いる場合には、光重合開始剤や光増感剤を用いなくても速やかに硬化するので、特に光重合開始剤(G)や光増感剤を添加する必要はない。
 前記光重合開始剤(G)としては、分子内開裂型光重合開始剤及び水素引き抜き型光重合開始剤が挙げられる。分子内開裂型光重合開始剤としては、例えば、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン等のアセトフェノン系化合物;ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等のベンゾイン類;2,4,6-トリメチルベンゾインジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシド等のアシルホスフィンオキシド系化合物;ベンジル、メチルフェニルグリオキシエステル等が挙げられる。
 一方、水素引き抜き型光重合開始剤としては、例えば、ベンゾフェノン、o-ベンゾイル安息香酸メチル-4-フェニルベンゾフェノン、4,4’-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、アクリル化ベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’-ジメチル-4-メトキシベンゾフェノン等のベンゾフェノン系化合物;2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン等のチオキサントン系化合物;ミヒラ-ケトン、4,4’-ジエチルアミノベンゾフェノン等のアミノベンゾフェノン系化合物;10-ブチル-2-クロロアクリドン、2-エチルアンスラキノン、9,10-フェナンスレンキノン、カンファーキノン等が挙げられる。
 上記の光重合開始剤(G)の中でも、活性エネルギー線硬化型組成物中の前記活性エネルギー線硬化性樹脂(E)及び活性エネルギー線硬化性単量体(F)との相溶性に優れる点から、1-ヒドロキシシクロヘキシルフェニルケトン、及びベンゾフェノンが好ましく、特に、1-ヒドロキシシクロヘキシルフェニルケトンが好ましい。これらの光重合開始剤(G)は、単独で用いることも、2種以上を併用することもできる。
 また、前記光増感剤としては、例えば、脂肪族アミン、芳香族アミン等のアミン類、o-トリルチオ尿素等の尿素類、ナトリウムジエチルジチオホスフェート、s-ベンジルイソチウロニウム-p-トルエンスルホネート等の硫黄化合物などが挙げられる。
 これらの光重合開始剤及び光増感剤の使用量は、活性エネルギー線硬化性組成物中の不揮発成分100質量部に対し、各々0.01~20質量部が好ましく、0.1~15質量%がより好ましく、0.3~7質量部がさらに好ましい。
 さらに、本発明の活性エネルギー線硬化性組成物は、用途、特性等の目的に応じ、本発明の効果を損なわない範囲で、粘度や屈折率の調整、あるいは、塗膜の色調の調整やその他の塗料性状や塗膜物性の調整を目的に各種の配合材料、例えば、各種有機溶剤、アクリル樹脂、フェノール樹脂、ポリエステル樹脂、ポリスチレン樹脂、ウレタン樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリカーボネート樹脂、石油樹脂、フッ素樹脂等の各種樹脂、PTFE(ポリテトラフルオロエチレン)、ポリエチレン、ポリプロピレン、カーボン、酸化チタン、アルミナ、銅、シリカ微粒子等の各種の有機又は無機粒子、重合開始剤、重合禁止剤、帯電防止剤、消泡剤、粘度調整剤、耐光安定剤、耐候安定剤、耐熱安定剤、酸化防止剤、防錆剤、スリップ剤、ワックス、艶調整剤、離型剤、相溶化剤、導電調整剤、顔料、染料、分散剤、分散安定剤、シリコーン系、炭化水素系界面活性剤等を併用することができる。
 上記の各配合成分中、有機溶媒は、本発明の活性エネルギー線硬化性組成物の溶液粘度を適宜調整する上で有用であり、特に薄膜コーティングを行うためには、膜厚を調整することが容易となる。ここで使用できる有機溶媒としては、例えば、トルエン、キシレン等の芳香族炭化水素;メタノール、エタノール、イソプロパノール、t-ブタノール等のアルコール類;酢酸エチル、プロピレングリコールモノメチルエーテルアセテート等のエステル類;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類などが挙げられる。これらの溶剤は、単独で用いることも、2種以上を併用することもできる。
 ここで有機溶媒の使用量は、用途や目的とする膜厚や粘度によって異なるが、硬化成分の全質量に対して、質量基準で、0.5~50倍量の範囲であることが好ましい。
 本発明の活性エネルギー線硬化性組成物を硬化させる活性エネルギー線としては、上記の通り、紫外線、電子線、α線、β線、γ線のような電離放射線であるが、具体的なエネルギー源又は硬化装置としては、例えば、殺菌灯、紫外線用蛍光灯、カーボンアーク、キセノンランプ、複写用高圧水銀灯、中圧又は高圧水銀灯、超高圧水銀灯、無電極ランプ、メタルハライドランプ、自然光等を光源とする紫外線、又は走査型、カーテン型電子線加速器による電子線等が挙げられる。
 これらの中でも特に紫外線であることが好ましく、酸素等による硬化阻害を避けるため、窒素ガス等の不活性ガス雰囲気下で、紫外線を照射することが好ましい。また、必要に応じて熱をエネルギー源として併用し、紫外線にて硬化した後、熱処理を行ってもよい。
 本発明の活性エネルギー線硬化性組成物の塗工方法は用途により異なるが、例えば、グラビアコーター、ロールコーター、コンマコーター、ナイフコーター、エアナイフコーター、カーテンコーター、キスコーター、シャワーコーター、ホイーラーコーター、スピンコーター、ディッピング、スクリーン印刷、スプレー、アプリケーター、バーコーター等を用いた塗布方法、あるいは各種金型を用いた成形方法等が挙げられる。
 本発明の重合性樹脂の硬化塗膜は、耐擦傷性を有するため、物品の表面に塗布・硬化することで、物品の表面に耐擦傷性を付与することができる。また、本発明の重合性樹脂は、塗材に添加することで、その塗材にレベリング性を付与することもできるため、本発明の活性エネルギー線硬化料組成物は、高いレベリング性を有する。また、本発明の重合性樹脂の硬化塗膜はすべり性に優れることからタッチパネル等タッチ操作が良好となる効果も有する、更に、本発明の重合性樹脂の硬化塗膜は防汚性にも優れる。
 本発明の重合性樹脂又は活性エネルギー線硬化性組成物の硬化塗膜は、優れた耐擦傷性等を有するため、物品の表面に塗布・硬化することで、物品の表面に耐擦傷性等を付与することができる。
 本発明の重合性樹脂又は活性エネルギー線硬化性組成物を用いて傷付きを防止できる物品としては、TACフィルム等の液晶ディスプレイ(LCD)の偏光板用フィルム;プラズマディスプレイ(PDP)、有機ELディスプレイ等の各種ディスプレイ画面;タッチパネル;携帯電話等の電子端末の筐体又は画面;液晶ディスプレイ用カラーフィルター(以下、「CF」という。)用透明保護膜;液晶TFTアレイ用有機絶縁膜;電子回路形成用インクジェットインク;CD、DVD、ブルーレイディスク等の光学記録媒体;インサートモールド(IMD、IMF)用転写フィルム;コピー機、プリンター等のOA機器用ゴムローラー;コピー機、スキャナー等のOA機器の読み取り部のガラス面;カメラ、ビデオカメラ、メガネ等の光学レンズ;腕時計等の時計の風防、ガラス面;自動車、鉄道車輌等の各種車輌のウインドウ;太陽電池用カバーガラス又はフィルム;化粧板等の各種建材;住宅の窓ガラス;家具等の木工材料、人工・合成皮革、家電の筐体等の各種プラスチック成形品、FRP浴槽などが挙げられる。これらの物品表面に本発明の活性エネルギー線硬化性組成物を塗布し、紫外線等の活性エネルギー線を照射して硬化塗膜を形成することで、物品表面に耐擦傷性を付与することができる。
 また、本発明の重合性樹脂を添加し耐擦傷性を付与できる塗材としては、TACフィルム等のLCDの偏光板用フィルムのハードコート材、アンチグレア(AG:防眩)コート材又は反射防止(LR)コート材;プラズマディスプレイ(PDP)、有機ELディスプレイ等の各種ディスプレイ画面用ハードコート材;タッチパネル用ハードコート材;CFに使用されるRGBの各画素を形成するためのカラーレジスト、印刷インク、インクジェットインク又は塗料;CFのブラックマトリックス用のブラックレジスト、印刷インク、インクジェットインク又は塗料;プラズマディスプレイ(PDP)、有機ELディスプレイ等の画素隔壁用樹脂組成物;携帯電話の等の電子端末筐体用塗料又はハードコート材;携帯電話の画面用ハードコート材;CF表面を保護する透明保護膜用塗料;液晶TFTアレイの有機絶縁膜用塗料;電子回路形成用インクジェットインク;CD、DVD、ブルーレイディスク等の光学記録媒体用ハードコート材;インサートモールド(IMD、IMF)用転写フィルム用ハードコート材;コピー機、プリンター等のOA機器用ゴムローラー用コート材;コピー機、スキャナー等のOA機器の読み取り部のガラス用コート材;カメラ、ビデオカメラ、メガネ等の光学レンズ用コート材;腕時計等の時計の風防、ガラス用コート材;自動車、鉄道車輌等の各種車輌のウインドウ用コート材;太陽電池用カバーガラス又はフィルムの反射防止膜用塗料;化粧板等の各種建材用印刷インキ又は塗料;住宅の窓ガラス用コート材;家具等の木工用塗料;人工・合成皮革用コート材;家電の筐体等の各種プラスチック成形品用塗料又はコート材;FRP浴槽用塗料又はコート材などが挙げられる。
 さらに、本発明の重合性樹脂又は活性エネルギー線硬化性組成物を用いて耐擦傷性(耐スクラッチ性)を付与できる物品としては、LCDのバックライト部材であるプリズムシート又は拡散シート等が挙げられる。また、プリズムシート又は拡散シート用コート材に本発明の重合性樹脂を添加することで、該コート材のレベリング性を向上するとともに、コート材の塗膜に耐擦傷性(耐スクラッチ性)及び防汚性を付与することができる。
 また、本発明の重合性樹脂の硬化塗膜は低屈折率であるため、LCD等の各種ディスプレイ表面への蛍光灯等の映り込みを防止する反射防止層中の低屈折率層用塗材としても用いることができる。また、反射防止層用の塗材、特に反射防止層中の低屈折率層用塗材に本発明の含フッ素硬化性樹脂を添加することで、塗膜の低屈折率を維持しつつ、塗膜表面に耐擦傷性を付与することもできる。
 さらに、本発明の重合性樹脂又は活性エネルギー線硬化性組成物を用いることができるその他の用途として、光ファイバクラッド材、導波路、液晶パネルの封止材、各種光学用シール材、光学用接着剤等が挙げられる。
 特に、LCD用偏光板の保護フィルム用コート材用途のうち、アンチグレアコート材として本発明の活性エネルギー線硬化性組成物を用いる場合、シリカ微粒子、アクリル樹脂微粒子、ポリスチレン樹脂微粒子等の無機又は有機微粒子を、本発明の活性エネルギー線硬化性組成物中の硬化成分の全質量の0.1~0.5倍量となる割合で配合することで防眩性に優れたものとなるため好ましい。
 また、本発明の重合性樹脂の又は活性エネルギー線硬化性組成物を、LCD用偏光板の保護フィルム用アンチグレアコート材に用いる場合、コート材を硬化させる前に凹凸の表面形状の金型に接触させた後、金型と反対側から活性エネルギー線を照射して硬化し、コート層の表面をエンボス加工して防眩性を付与する転写法にも適用できる。
 以下に本発明を具体的な実施例を挙げてより詳細に説明する。例中、「部」、「%」は特に断りのない限り質量基準である。なお、得られた重合性樹脂のIRスペクトル、13C-NMRスペクトル及びGPCの測定条件は下記の通りである。
 [IRスペクトル測定条件]
 装置:サーモエレクトロン株式会社製「NICOLET380」
 測定方法:KBr法
 [13C-NMRスペクトル測定条件]
 装置:日本電子株式会社製「JNM-ECA500」
 溶媒:DMSO-d
 [GPC測定条件]
 測定装置:東ソー株式会社製「HLC-8220 GPC」、
 カラム:東ソー株式会社製ガードカラム「HHR-H」(6.0mmI.D.×4cm)+東ソー株式会社製「TSK-GEL GMHHR-N」(7.8mmI.D.×30cm)+東ソー株式会社製「TSK-GEL GMHHR-N」(7.8mmI.D.×30cm)+東ソー株式会社製「TSK-GEL GMHHR-N」(7.8mmI.D.×30cm)+東ソー株式会社製「TSK-GEL GMHHR-N」(7.8mmI.D.×30cm)
 検出器:ELSD(オルテックジャパン株式会社製「ELSD2000」)
 データ処理:東ソー株式会社製「GPC-8020モデルIIデータ解析バージョン4.30」
 測定条件:カラム温度  40℃
      展開溶媒   テトラヒドロフラン(THF)
      流速     1.0ml/分
 試料:樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(5μl)。
 標準試料:前記「GPC-8020モデルIIデータ解析バージョン4.30」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
 (単分散ポリスチレン)
 東ソー株式会社製「A-500」
 東ソー株式会社製「A-1000」
 東ソー株式会社製「A-2500」
 東ソー株式会社製「A-5000」
 東ソー株式会社製「F-1」
 東ソー株式会社製「F-2」
 東ソー株式会社製「F-4」
 東ソー株式会社製「F-10」
 東ソー株式会社製「F-20」
 東ソー株式会社製「F-40」
 東ソー株式会社製「F-80」
 東ソー株式会社製「F-128」
 東ソー株式会社製「F-288」
 東ソー株式会社製「F-550」
 実施例1(重合性樹脂の調製)
 撹拌装置、温度計、冷却管を備えたガラスフラスコに、溶媒としてイソプロピルエーテル26.4gと、下記式(a-1)で表される片末端に水酸基を有するシリコーン化合物を25.2gと、触媒としてトリエチルアミン0.66gを仕込み、フラスコ内温度を5℃に保ったまま、30分間攪拌した。
Figure JPOXMLDOC01-appb-C000007
(式中、nは平均65である。)
 次いで、2-ブロモイソ酪酸ブロミド1.50gを仕込んで3時間攪拌し、40℃に昇温して8時間攪拌した。反応終了後、イオン交換水80gを混合して攪拌してから静置し水層を分離させて取り除く方法による洗浄を3回繰り返した。次いで、脱水剤として硫酸マグネシウム8gを添加して1日間静置することで完全に脱水した後、脱水剤を濾別した。その後、減圧下で溶媒を留去することで、下記式(A-4)に示される本発明で用いるラジカル生成能を有する官能基と分子量2,000以上のシリコーン鎖を1本含む化合物を得た。
Figure JPOXMLDOC01-appb-C000008
(式中、nは平均65である。)
 次いで、窒素導入管、撹拌装置、温度計、冷却管、滴下装置を備え、窒素置換したガラスフラスコに、イソプロピルアルコール14.2g、メチルエチルケトン14.2g、トリデカフルオロヘキシルエチルメタクリレート6.0g、2-ヒドロキシエチルメタクリレート4.3gを仕込み、窒素気流下にて攪拌しながら35℃に昇温して2時間攪拌した。次いで、塩化第一銅0.335g、2,2-ビピリジル0.937gを仕込み、60℃に昇温して1時間攪拌した。次に、前記化合物(A-4)15.04gをイソプロピルアルコール5.0gとメチルエチルケトン5.0gに溶解させて加え、フラスコ内温度を60℃に保ったまま4時間攪拌し、その後80℃に昇温して7時間攪拌した。この反応混合物をメタノールに溶かし、水/メタノールで再沈殿精製してランダム共重合体(P-1)を得た。
 次いで、窒素導入管、撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、得られた共重合体(P-1)50.0g、メチルエチルケトン50.0gと、重合禁止剤としてp-メトキシフェノール0.1g、ウレタン化触媒としてオクチル酸錫0.03gを仕込み、空気気流下で攪拌を開始し、60℃を保ちながら、2-アクリロイルオキシエチルイソシアネート15.6gを1時間で滴下した。滴下終了後、60℃で1時間攪拌した後、80℃に昇温して10時間攪拌することにより、IRスペクトル測定でイソシアネート基の消失を確認し、メチルエチルケトン15.6gを加えることで活性エネルギー線硬化性基を有する本発明の重合性樹脂(1)を得た。
 得られた重合性樹脂(1)の分子量をGPC(ポリスチレン換算分子量)で測定した結果、数平均分子量11,000、重量平均分子量12,000、ラジカル重合性不飽和基当量は904g/eq.であった。なお、重合性樹脂(1)のIRスペクトルのチャート図を図1に、13C-NMRスペクトルのチャート図を図2に、GPCのチャート図を図3に示す。
 実施例2(同上)
 窒素導入管、撹拌装置、温度計、冷却管を備え、窒素置換したガラスフラスコに、イソプロピルアルコール30.70g、メチルエチルケトン30.70g、トリデカフルオロヘキシルエチルメタクリレート10.93g、メトキシベンゼン0.5470gを窒素気流下にて攪拌しながら25℃で1時間攪拌した。次いで、塩化第一銅0.4510g、臭化第二銅0.1130g、2,2-ビピリジル1.581gを仕込み、30分攪拌した。60℃に昇温した後に、前記化合物(A-4)30gを加え、フラスコ内温度を60℃に保ったまま4時間攪拌した。その後、2-ヒドロキシエチルメタクリレート6.585gを仕込み、1時間攪拌した。その後75℃に昇温して31時間攪拌した。空気下にて85%りん酸水溶液1.167gを加えて2時間攪拌し、析出した固形分を濾別した。イオン交換樹脂による触媒の除去を行い、イオン交換樹脂を濾別してブロック共重合体(Q1-1)を得た。
 次いで、窒素導入管、撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、得られた共重合体(Q1-1)32.54g、メチルイソブチルケトン36.70g、重合禁止剤としてp-メトキシフェノール0.0149質量部、ジブチルヒドロキシトルエン0.1116g及びウレタン化触媒としてオクチル酸錫0.0111gを仕込み、空気気流下で攪拌を開始し、60℃を保ちながら、2-アクリロイルオキシエチルイソシアネート4.67gを加えた。その後、60℃で1時間攪拌した後、80℃に昇温し4時間攪拌することにより、IRスペクトル測定でイソシアネート基の消失を確認し、メチルイソブチルケトン50.46gを加えることで活性エネルギー線硬化性基を有する本発明の重合性樹脂(2)を30質量%含有するメチルイソブチルケトン溶液を得た。得られた重合性樹脂(2)の分子量をGPC(ポリスチレン換算分子量)で測定した結果、数平均分子量10,500、重量平均分子量12,000であった。なお、重合性樹脂(2)のIRスペクトルのチャート図を図4に、H-NMRスペクトルのチャート図(全体図)を図5に、H-NMRスペクトルのチャート図(25倍の拡大図)を図6に、13C-NMRスペクトルのチャート図(全体図)を図7に、13C-NMRスペクトルのチャート図(25倍の拡大図)を図8に、19F-NMRスペクトルのチャート図(全体図)を図9に、GPCのチャート図を図10にそれぞれ示す。
 実施例3(同上)
 窒素導入管、撹拌装置、温度計、冷却管を備え、窒素置換したガラスフラスコに、イソプロピルアルコール54.88g、メチルエチルケトン54.88g、2-ヒドロキシエチルメタクリレート13.17g、メトキシベンゼン1.094gを窒素気流下にて攪拌しながら25℃で1時間攪拌した。次いで、塩化第一銅0.9017g、臭化第二銅0.2261g、2,2-ビピリジル3.162gを仕込み、30分攪拌した。60℃に昇温した後に、前記化合物(A-4)60gを加え、フラスコ内温度を60℃に保ったまま3時間攪拌した。その後、トリデカフルオロヘキシルエチルメタクリレート21.87gを仕込み、1時間攪拌した。その後75℃に昇温して37.5時間攪拌した。空気下にて85%りん酸水溶液2.334gを加えて2時間攪拌し、析出した固形分を濾別した。イオン交換樹脂による触媒の除去を行い、イオン交換樹脂を濾別してブロック共重合体(Q2-1)を得た。
 次いで、窒素導入管、撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、得られた共重合体(Q2-1)68.15g、メチルイソブチルケトン51.47g、重合禁止剤としてp-メトキシフェノール0.0311質量部、ジブチルヒドロキシトルエン0.2335g及びウレタン化触媒としてオクチル酸錫0.0234gを仕込み、空気気流下で攪拌を開始し、60℃を保ちながら、2-アクリロイルオキシエチルイソシアネート9.69gを加えた。その後、60℃で1時間攪拌した後、80℃に昇温し4時間攪拌することにより、IRスペクトル測定でイソシアネート基の消失を確認し、メチルイソブチルケトン86.00gを加えることで活性エネルギー線硬化性基を有する本発明の重合性樹脂(3)を30質量%含有するメチルイソブチルケトン溶液を得た。得られた重合性樹脂(3)の分子量をGPC(ポリスチレン換算分子量)で測定した結果、数平均分子量10,100、重量平均分子量14,000であった。
 実施例4(同上)
 窒素導入管、撹拌装置、温度計、冷却管を備え、窒素置換したガラスフラスコに、イソプロピルアルコール32.20g、メチルエチルケトン32.20g、トリデカフルオロヘキシルエチルメタクリレート12.97g、メトキシベンゼン0.6480gを窒素気流下にて攪拌しながら25℃で1時間攪拌した。次いで、塩化第一銅0.5350g、臭化第二銅0.1370g、2,2-ビピリジル1.874gを仕込み、30分攪拌した。60℃に昇温した後に、前記化合物(A-4)30.06gを加え、フラスコ内温度を60℃に保ったまま4.5時間攪拌した。その後、2-ヒドロキシエチルメタクリレート3.900gを仕込み、1時間攪拌した。その後75℃に昇温して31時間攪拌した。空気下にて36%塩酸1.370gを加えて2時間攪拌し、析出した固形分を濾別した。イオン交換樹脂による触媒の除去を行い、イオン交換樹脂を濾別してブロック共重合体(Q1-2)を得た。
 次いで、窒素導入管、撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、得られた共重合体(Q1-2)31.61g、メチルイソブチルケトン19.16g、重合禁止剤としてp-メトキシフェノール0.0137質量部、ジブチルヒドロキシトルエン0.1025g及びウレタン化触媒としてオクチル酸錫0.0103gを仕込み、空気気流下で攪拌を開始し、60℃を保ちながら、2-アクリロイルオキシエチルイソシアネート2.56gを加えた。その後、60℃で2時間攪拌した後、80℃に昇温し3時間攪拌することにより、IRスペクトル測定でイソシアネート基の消失を確認し、メチルイソブチルケトン56.44gを加えることで活性エネルギー線硬化性基を有する本発明の重合性樹脂(4)を30質量%含有するメチルイソブチルケトン溶液を得た。得られた重合性樹脂(4)の分子量をGPC(ポリスチレン換算分子量)で測定した結果、数平均分子量8,700、重量平均分子量10,000であった。
 実施例5(同上)
 窒素導入管、撹拌装置、温度計、冷却管を備え、窒素置換したガラスフラスコに、イソプロピルアルコール30.28g、メチルエチルケトン30.28g、トリデカフルオロヘキシルエチルメタクリレート10.37g、メトキシベンゼン0.6480gを窒素気流下にて攪拌しながら25℃で1時間攪拌した。次いで、塩化第一銅0.5350g、臭化第二銅0.1370g、2,2-ビピリジル1.874gを仕込み、30分攪拌した。60℃に昇温した後に、前記化合物(A-4)30.00gを加え、フラスコ内温度を60℃に保ったまま4時間攪拌した。その後、2-ヒドロキシエチルメタクリレート9.37gを仕込み、1時間攪拌した。その後75℃に昇温して30時間攪拌した。空気下にて85%りん酸1.383gを加えて2時間攪拌し、析出した固形分を濾別した。イオン交換樹脂による触媒の除去を行い、イオン交換樹脂を濾別してブロック共重合体(Q1-3)を得た。
 次いで、窒素導入管、撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、得られた共重合体(Q1-3)33.93g、メチルイソブチルケトン22.64g、重合禁止剤としてp-メトキシフェノール0.0162質量部、ジブチルヒドロキシトルエン0.1215g及びウレタン化触媒としてオクチル酸錫0.0122gを仕込み、空気気流下で攪拌を開始し、60℃を保ちながら、2-アクリロイルオキシエチルイソシアネート6.576gを加えた。その後、60℃で2時間攪拌した後、80℃に昇温し4時間攪拌することにより、IRスペクトル測定でイソシアネート基の消失を確認し、メチルイソブチルケトン71.85gを加えることで活性エネルギー線硬化性基を有する本発明の重合性樹脂(5)を30質量%含有するメチルイソブチルケトン溶液を得た。得られた重合性樹脂(5)の分子量をGPC(ポリスチレン換算分子量)で測定した結果、数平均分子量10,500、重量平均分子量13,400であった。
 実施例6(同上)
 撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、溶媒としてn-ヘプタン134.05gと、前記式(a-1)で表される片末端に水酸基を有するシリコーン化合物(式中、nは平均130である)を300gと、触媒としてトリエチルアミン7.03gを仕込み、フラスコ内温度を40℃に保ったまま、30分間攪拌した。
 次いで、2-ブロモイソ酪酸ブロミド12.79gを仕込んで40℃で3時間攪拌した。その後、n-ヘプタン335.15g、0.36%塩酸600.00gを混合し攪拌してから静置し、塩酸層を分離させて取り除いた。その後、飽和炭酸水素ナトリウム水溶液600gを混合して攪拌してから静置し、飽和炭酸水素ナトリウム水溶液層を分離させて取り除き、さらにイオン交換水600gを混合して攪拌してから静置し、イオン交換水層を分離させて取り除いた。次いで、脱水剤として硫酸マグネシウム25gを添加して振り混ぜて脱水した後、脱水剤を濾別した。その後、減圧下で溶媒を留去し、得られた残渣をイソプロピルエーテル303.25gに溶解した。0.36%塩酸303.25gを混合し攪拌してから静置し、塩酸層を分離させて取り除いた。その後、1%水酸化ナトリウム水溶液303.25gを混合し攪拌してから静置し、1%水酸化ナトリウム水溶液層を分離させて取り除き、さらにイオン交換水300gを混合して攪拌してから静置し、イオン交換水層を分離させて取り除いた。その後、再びイオン交換水300gを混合して攪拌してから静置し、イオン交換水層を分離させて取り除き、次いで、脱水剤として硫酸マグネシウム25gを添加して振り混ぜて脱水した後、脱水剤を濾別した。その後、減圧下で溶媒を留去することで、下記式で表される本発明で用いる化合物(A-4-1)を得た。
Figure JPOXMLDOC01-appb-C000009
(式中、nは平均130である。)
 次いで、窒素導入管、撹拌装置、温度計、冷却管を備え、窒素置換したガラスフラスコに、イソプロピルアルコール56.08g、メチルエチルケトン56.08g、トリデカフルオロヘキシルエチルメタクリレート14.77g、メトキシベンゼン0.7387gを窒素気流下にて攪拌しながら25℃で1時間攪拌した。次いで、塩化第一銅0.6089g、臭化第二銅0.1527g、2,2-ビピリジル2.135gを仕込み、30分攪拌した。60℃に昇温した後に、前記化合物(A-4-1)60.00gを加え、フラスコ内温度を60℃に保ったまま9時間攪拌した。その後、2-ヒドロキシエチルメタクリレート8.893gを仕込み、1時間攪拌した。その後75℃に昇温して48時間攪拌した。空気下にて85%りん酸水溶液1.576gを加えて2時間攪拌し、析出した固形分を濾別した。イオン交換樹脂による触媒の除去を行い、イオン交換樹脂を濾別してブロック共重合体(Q1-4)を得た。
 次いで、窒素導入管、撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、得られた共重合体(Q1-4)58.56g、メチルイソブチルケトン39.04g、重合禁止剤としてp-メトキシフェノール0.0260質量部、ジブチルヒドロキシトルエン0.1949g及びウレタン化触媒としてオクチル酸錫0.0195gを仕込み、空気気流下で攪拌を開始し、60℃を保ちながら、2-アクリロイルオキシエチルイソシアネート6.407gを加えた。その後、60℃で1時間攪拌した後、80℃に昇温し5時間攪拌することにより、IRスペクトル測定でイソシアネート基の消失を確認し、メチルイソブチルケトン112.54gを加えることで活性エネルギー線硬化性基を有する本発明の重合性樹脂(6)を30質量%含有するメチルイソブチルケトン溶液を得た。得られた重合性樹脂(6)の分子量をGPC(ポリスチレン換算分子量)で測定した結果、数平均分子量16,000、重量平均分子量19,000であった。
 実施例7(同上)
 窒素導入管、撹拌装置、温度計、冷却管を備え、窒素置換したガラスフラスコに、イソプロピルアルコール69.37g、メチルエチルケトン69.37g、トリデカフルオロヘキシルエチルメタクリレート32.49g、メトキシベンゼン0.7387gを窒素気流下にて攪拌しながら25℃で1時間攪拌した。次いで、塩化第一銅0.6089g、臭化第二銅0.1527g、2,2-ビピリジル2.135gを仕込み、30分攪拌した。60℃に昇温した後に、前記化合物(A-4-1)60.00gを加え、フラスコ内温度を60℃に保ったまま12時間攪拌した。その後、2-ヒドロキシエチルメタクリレート31.27gを仕込み、1時間攪拌した。その後75℃に昇温して81時間攪拌した。空気下にて85%りん酸水溶液1.576gを加えて2時間攪拌し、析出した固形分を濾別した。イオン交換樹脂による触媒の除去を行い、イオン交換樹脂を濾別してブロック共重合体(Q1-5)を得た。
 次いで、窒素導入管、撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、得られた共重合体(Q1-5)93.17g、メチルイソブチルケトン62.10g、重合禁止剤としてp-メトキシフェノール0.0470質量部、ジブチルヒドロキシトルエン0.3522g及びウレタン化触媒としてオクチル酸錫0.0352gを仕込み、空気気流下で攪拌を開始し、60℃を保ちながら、2-アクリロイルオキシエチルイソシアネート24.23gを加えた。その後、60℃で1時間攪拌した後、80℃に昇温し5.5時間攪拌することにより、IRスペクトル測定でイソシアネート基の消失を確認し、メチルイソブチルケトン211.8gを加えることで活性エネルギー線硬化性基を有する本発明の重合性樹脂(7)を30質量%含有するメチルイソブチルケトン溶液を得た。得られた重合性樹脂(7)の分子量をGPC(ポリスチレン換算分子量)で測定した結果、数平均分子量24,400、重量平均分子量31,300であった。
 比較例1(比較対照用界面活性剤の調製)
 撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、溶媒としてメチルイソブチルケトン77.7gを仕込み、窒素気流下にて攪拌しながら105℃に昇温した。次いで、トリデカフルオロヘキシルエチルメタクリレート23gと、下記式で表されるシリコーン基を有する重合性不飽和単量体〔以下、単量体(A´-1)と略記する〕10gと、グリシジルメタクリレート44.7gをメチルイソブチルケトン53.4gに溶解したモノマー溶液と、ラジカル重合開始剤としてt-ブチルペルオキシ-2-エチルヘキサノエート3.9gをメチルイソブチルケトン50.2gに溶解した重合開始剤溶液との2種類の滴下液をそれぞれ別々の滴下装置にセットし、フラスコ内を105℃に保ちながら同時に3時間かけて滴下した。
Figure JPOXMLDOC01-appb-C000010
(式中、nは平均65である。)
 滴下終了後、105℃で1.5時間攪拌した後、t-ブチルペルオキシ-2-エチルヘキサノエート1.17gをメチルイソブチルケトン11.7質量部に溶解した重合開始剤溶液を45分かけて滴下し、滴下終了後、105℃で8時間攪拌した。反応終了後、メチルイソブチルケトン164質量部を減圧留去することによって、重合体(P-2)溶液を得た。
 次いで、重合禁止剤としてp-メトキシフェノール0.1gを仕込み、フラスコ内温度を80℃に保ちながら、アクリル酸22.3g、開環反応触媒としてトリフェニルホスフィン0.5gを仕込み、空気気流下で40時間攪拌し、0.1[mol/l]水酸化カリウム溶液による滴定で固形分の酸価が1[mgKOH/g]以下に低下したことを確認した。その後メチルイソブチルケトン116.7gを加えることで、活性エネルギー線硬化性基を有する重合性樹脂(1´)を40%含有するメチルイソブチルケトン溶液を得た。得られた重合性樹脂(1´)の分子量をGPC(ポリスチレン換算分子量)で測定した結果、数平均分子量4,700、重量平均分子量8,600であり、ラジカル重合性不飽和基当量は323g/eq.であった。
 比較例2(同上)
 撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、下記式(X-1)で表される両末端に水酸基を有するパーフルオロポリエーテル化合物(以下、「化合物(X-1)」と略記する。)を20g、溶媒としてジイソプロピルエーテル20g、重合禁止剤としてp-メトキシフェノール0.02g、中和剤としてトリエチルアミン3.1gを仕込み、空気気流下にて攪拌を開始し、フラスコ内を10℃に保ちながらアクリル酸クロライド2.7gを1時間かけて滴下した。滴下終了後、10℃で1時間攪拌し、昇温して30℃で1時間攪拌した後、50℃に昇温して10時間攪拌することにより反応を行い、ガスクロマトグラフィー測定にてアクリル酸クロライドの消失が確認された。次いで、溶媒としてジイソプロピルエーテル40gを追加した後、イオン交換水80gを混合して攪拌してから静置し水層を分離させて取り除く方法による洗浄を3回繰り返した。次いで、重合禁止剤としてp-メトキシフェノール0.02質量部を添加し、脱水剤として硫酸マグネシウム8質量部を添加して1日間静置することで完全に脱水した後、脱水剤を濾別した。
(式中、Xはパーフルオロメチレン基及びパーフルオロエチレン基であり、1分子あたり、パーフルオロメチレン基が平均7個、パーフルオロエチレン基が平均8個存在するものであり、フッ素原子の数が平均46である。また、GPCによる数平均分子量は1,500である。)
 次いで、減圧下で溶媒を留去することによって、下記構造式(B-1)で表される単量体を得た。
Figure JPOXMLDOC01-appb-C000012
(式中、Xはパーフルオロメチレン基及びパーフルオロエチレン基であり、1分子あたり、パーフルオロメチレン基が平均7個、パーフルオロエチレン基が平均8個存在するものであり、フッ素原子の数が平均46である。)
 次いで、撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、溶媒としてメチルイソブチルケトン29.1gを仕込み、窒素気流下にて攪拌しながら105℃に昇温した。次いで単量体(B-1)38.5g、2-ヒドロキシエチルメタクリレート32.8g、ラジカル重合開始剤としてt-ブチルペルオキシ-2-エチルヘキサノエート10.7gと溶媒としてメチルイソブチルケトン58.1gを混合した開始剤溶液の3種類の滴下液をそれぞれ別々の滴下装置にセットし、フラスコ内を105℃に保ちながら同時に2時間かけて滴下した。滴下終了後、105℃で10時間攪拌した後、減圧下で溶媒を留去することによって、重合体(P-3)を得た。
 次いで、重合体(P-3)に、溶媒としてメチルエチルケトン106.9g、重合禁止剤としてp-メトキシフェノール0.1g、ウレタン化触媒としてオクチル酸錫0.03gを仕込み、空気気流下で攪拌を開始し、60℃を保ちながら2-アクリロイルオキシエチルイソシアネート35.6gを1時間で滴下した。滴下終了後、60℃で1時間攪拌した後、80℃に昇温して10時間攪拌することにより反応を行った結果、IRスペクトル測定によりイソシアネート基の消失が確認された。次いで、溶媒としてメチルエチルケトンで希釈した後に濾過によって溶液に不溶な物は濾別して、活性エネルギー線硬化性基を有する重合性樹脂(2´)20質量%含有のメチルエチルケトン溶液を得た。重合性樹脂(2´)の分子量をGPC(ポリスチレン換算分子量)で測定した結果、数平均分子量3,200、重量平均分子量87,000であり、ラジカル重合性不飽和基当量は423g/eq.であった。
 比較例3(同上)
 撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、化合物(X-1)20g、溶媒としてジイソプロピルエーテル10g、重合禁止剤としてp-メトキシフェノール0.006g及び中和剤としてトリエチルアミン3.3gを仕込み、空気気流下にて攪拌を開始し、フラスコ内を10℃に保ちながらメタクリル酸クロライド3.1gを2時間かけて滴下した。滴下終了後、10℃で1時間攪拌し、昇温して30℃で1時間攪拌した後、50℃に昇温して10時間攪拌することにより反応を行い、ガスクロマトグラフィー測定にてメタクリル酸クロライドの消失が確認された。次いで、溶媒としてジイソプロピルエーテル70gを追加した後、イオン交換水80gを混合して攪拌してから静置し水層を分離させて取り除く方法による洗浄を3回繰り返した。次いで、重合禁止剤としてp-メトキシフェノール0.02gを添加し、脱水剤として硫酸マグネシウム8gを添加して1日間静置することで完全に脱水した後、脱水剤を濾別した。
 次いで、減圧下で溶媒を留去することによって、下記構造式(B-2)で表される単量体を得た。
Figure JPOXMLDOC01-appb-C000013
(式中、Xはパーフルオロメチレン基及びパーフルオロエチレン基であり、1分子あたり、パーフルオロメチレン基が平均7個、パーフルオロエチレン基が平均8個存在するものであり、フッ素原子の数が平均46である。)
 撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、溶媒としてメチルイソブチルケトン96.7gを仕込み、窒素気流下にて攪拌しながら105℃に昇温した。次いで、単量体(B-2)74gと、単量体(A´-1)37g及び2-ヒドロキシエチルメタクリレート45.4gをメチルイソブチルケトン126gに溶解したモノマー溶液と、ラジカル重合開始剤としてt-ブチルペルオキシ-2-エチルヘキサノエート23.5gをメチルイソブチルケトン67.8gに溶解した重合開始剤溶液との3種類の滴下液をそれぞれ別々の滴下装置にセットし、フラスコ内を105℃に保ちながら同時に2時間かけて滴下した。滴下終了後、105℃で10時間攪拌して、重合体(P-4)の溶液を得た。
 上記の重合体(P-4)の溶液に、重合禁止剤としてp-メトキシフェノール0.2g、ウレタン化触媒としてオクチル酸錫0.06gを仕込み、空気気流下で攪拌を開始し、60℃を保ちながら、2-アクリロイルオキシエチルイソシアネート49.1gを1時間で滴下した。滴下終了後、60℃で1時間攪拌した後、80℃に昇温して10時間攪拌することにより、IRスペクトル測定でイソシアネート基の消失を確認された。次いで、メチルイソブチルケトンを加え、活性エネルギー線硬化性基を有する重合性樹脂(3´)を40質量%含有するメチルイソブチルケトン溶液を得た。得られた重合性樹脂(3´)の分子量をGPC(ポリスチレン換算分子量)で測定した結果、数平均分子量2,700、重量平均分子量8,000であり、ラジカル重合性不飽和基当量は588g/eq.であった。
 比較例4(同上)
 撹拌装置、温度計、冷却管、滴下装置を備えたガラスフラスコに、溶媒としてメチルイソブチルケトン714gを仕込み、窒素気流下にて攪拌しながら105℃に昇温した。次いで、トリデカフルオロヘキシルエチルメタクリレート90gと、前記単量体(A´-1)360gと、2-ヒドロキシエチルメタクリレート264gをメチルイソブチルケトン1106.4gに溶解したモノマー溶液と、ラジカル重合開始剤としてt-ブチルペルオキシ-2-エチルヘキサノエート107.2gをメチルイソブチルケトン321.6gに溶解した重合開始剤溶液との2種類の滴下液をそれぞれ別々の滴下装置にセットし、フラスコ内を105℃に保ちながらモノマー溶液を2時間、重合開始剤溶液を2時間20分かけて滴下した。
 滴下終了後、105℃で1.5時間攪拌した。反応終了後メチルイソブチルケトン1660gを減圧留去することによって、重合体(p´-1)溶液を得た。
 次いで、重合禁止剤としてp-メトキシフェノール0.399g、ジブチルヒドロキシトルエン2.993g、ウレタン化触媒としてオクチル酸錫0.299gを仕込み、空気気流下で攪拌を開始し、60℃を保ちながら、2-アクリロイルオキシエチルイソシアネート282.25gを1時間かけて滴下した。その後、60℃で2時間攪拌した後、80℃に昇温し2時間半攪拌することにより、IRスペクトル測定でイソシアネート基の消失を確認した後、メチルイソブチルケトン1942.83gを加えることで活性エネルギー線硬化性基を有する比較対照用重合性樹脂(4´)を30質量%含有するメチルイソブチルケトン溶液を得た。得られた重合性樹脂(4´)の分子量をGPC(ポリスチレン換算分子量)で測定した結果、数平均分子量2,335、重量平均分子量6,115であった。
 実施例8(活性エネルギー線硬化性組成物の調製)
 本発明の活性エネルギー線硬化性組成物の一例として偏光板の保護フィルムの最表面に位置する反射防止膜用の組成物を調製した。具体的には、中空シリカ微粒子(平均粒子径50nm)を20質量%含有するメチルイソブチルケトン分散液15部、ペンタエリスリトールトリアクリレート1.6部、光重合開始剤として2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]-フェニル}-2-メチル-プロパン-1-オン(チバ・ジャパン株式会社製「イルガキュア127」)0.1部、溶剤としてメチルイソブチルケトン81.8質量部を混合し溶解させて、反射防止塗料組成物のベース組成物を得た。
 上記で得られた反射防止塗料組成物のベース組成物99.2部に対し、重合性樹脂(1)の50%含有溶液を樹脂分として0.4部となるように添加し、均一に混合して本発明の活性エネルギー線硬化性組成物(1)〔反射防止塗料組成物(1)〕を調製した。
 得られた反射防止塗料組成物(1)を用いて以下の手順に従い反射防止層とハードコート層を有するフィルムに反射防止層を調製した。
 <ハードコート層用塗料組成物の調製>
 5官能の無黄変型ウレタンアクリレート50部、ジペンタエリスリトールヘキサアクリレート50部、酢酸ブチル25部、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(チバスペシャリティーケミカルズ社製「イルガキュア184」)5部、溶剤としてトルエン54部、2-プロパノール28部、酢酸エチル28部、プロピレングリコールモノメチルエーテル28部を混合し溶解させて、ハードコート層用塗料組成物を得た。
 <ハードコート層を有するフィルムの調製>
 得られたハードコート層用塗料組成物をバーコーターNo.13を使用して、厚さ80μmのTACフィルムに塗布した後、60℃の乾燥機に5分間入れて溶剤を揮発させ、紫外線硬化装置(窒素雰囲気下、高圧水銀灯使用、紫外線照射量2kJ/m)にて硬化させ、膜厚10μmのハードコート層を片面に有するハードコートフィルムを作製した。
 <反射防止層とハードコート層を有するフィルムの調製>
 反射防止塗料組成物(1)を2g/mの塗布量となるように、上記で得られたハードコートフィルムのハードコート層上にバーコーターNo.2で塗布した後、60℃の乾燥機に5分間入れて溶剤を揮発させ、紫外線硬化装置(窒素雰囲気下、高圧水銀灯使用、紫外線照射量2kJ/m)にて硬化させ、膜厚10μmのハードコート層上に膜厚0.1μmの反射防止層とハードコート層を有するフィルムを作製した。得られたフィルムの反射防止塗料組成物の硬化塗膜表面について、下記の外観、耐擦傷性、汚れ拭き取り性の評価を行った。また、反射防止フィルムの反射率を測定した。これらの評価は下記に示すアルカリ処理を行う前と行った後にそれぞれ行った。評価結果を第1表に示す。
 [外観の評価]
 黒色の板上に上記で得た反射防止フィルムを置き、反射防止塗料組成物の硬化塗膜の白化の有無を目視で観察し、下記の基準で外観を評価した。
 ○:白化が生じていないもの。
 ×:白化が生じているもの。
 [耐擦傷性の評価]
 トライボギア HEIDON 往復磨耗試験機 TYPE:30S(新東科学株式会社製)を用いて、直径27mmの円形の治具にボンスター No,0000(日本スチールウール株式会社製)を取り付けた磨耗試験機(500g/cm荷重)にて、30往復磨耗させて試験を行った。試験後の塗膜表面に付いた傷の本数を数えて、下記の基準によって耐擦傷性を評価した。
 ◎:傷の本数が5本未満である。
 ○:傷の本数が10本未満である。
 △:傷の本数が10本以上50本未満である。
 ×:傷の本数が50本以上である。
 [指紋汚れ拭き取り性の評価]
 上記で得た反射防止フィルムの反射防止塗料組成物の硬化塗膜の表面に指で指紋を付着させ、ティッシュペーパーで10往復拭き取ったときの拭き取り具合を目視で観察し、下記の基準で指紋汚れ拭き取り性を評価した。
 ◎:指紋が完全に拭き取れるもの。
 ○:指紋の付着跡、又は、拭き取り方向に沿って線状の跡が、付着時に比べわずかに残ったもの。
 ×:指紋の付着跡、又は、拭き取り方向に沿って線状の跡が、付着時の半分以上の濃さで残ったもの。
 [反射率の測定]
 5℃正反射測定装置を備えた分光光度計(株式会社島津製作所製「UV-3100PC」)を用いて反射率の測定を行った。なお、反射率は波長550nm付近で極小値(最低反射率)となったときの値とした。
 <硬化塗膜の強アルカリ(ケン化)処理方法>
 上記で得られた反射防止フィルムを、70℃に加温した2.0mol/Lの水酸化カリウム水溶液に1分間浸漬させ、水洗後、100℃で3分間乾燥させて、強アルカリ処理を行った。
 比較例5(比較対照用活性エネルギー線硬化性組成物の調製)
 実施例8で用いた重合性樹脂(1)の50%含有溶液に代えて、重合性樹脂(1´)を40%含有するメチルイソブチルケトン溶液を樹脂分として0.4質量部添加した以外は実施例8と同様に操作して、比較対照用反射防止塗料組成物(1´)を得た。これを用いて実施例8と同様にして評価を行った。評価結果を第1表に示す。
 比較例6(同上)
 実施例8で用いた重合性樹脂(1)の50%含有溶液に代えて、重合性樹脂(2´)の20%含有溶液を樹脂分として0.4質量部添加した以外は実施例8と同様に操作して、比較対照用反射防止塗料組成物(2´)を得た。これを用いて実施例8と同様にして評価を行った。評価結果を第1表に示す。
 比較例7(同上)
 実施例8で用いた重合性樹脂(1)の50%含有溶液に代えて、重合性樹脂(3´)の40%含有溶液を樹脂分として0.4質量部添加した以外は実施例8と同様に操作して、比較対照用反射防止塗料組成物(3´)を得た。これを用いて実施例8と同様にして評価を行った。評価結果を第1表に示す。
 比較例8(同上)
 実施例8で用いた重合性樹脂(1)の50%含有溶液に代えて、シリコーンオイル(JNC株式会社製「サイラプレーンFM-4421」、ポリジメチルシロキサン鎖の両末端に-COCOHを有するもの)を50質量%含有するメチルイソブチルケトン溶液を0.8質量部(樹脂分として0.4質量部)添加した以外は実施例8と同様に操作して、比較対照用反射防止塗料組成物(4´)を得た。これを用いて実施例8と同様にして評価を行った。評価結果を第1表に示す。
 比較例9(同上)
 実施例8で用いた重合性樹脂(1)の50%含有溶液に代えて、FM-0721K(JNC株式会社製のシリコーンオイル。重合性不飽和基を片末端に有している。)を50質量%含有するメチルイソブチルケトン溶液を0.8質量部(樹脂分として0.4質量部)添加した以外は実施例8と同様に操作して、比較対照用反射防止塗料組成物(5´)を得た。これを用いて実施例8と同様にして評価を行った。評価結果を第2表に示す。
 比較例10(同上)
 実施例8で用いた重合性樹脂(1)の50%含有溶液に代えて、ジメチルシロキサン鎖を有する4官能アクリレート(ビックケミー・ジャパン株式会社製「BYK-UV3570」)を50質量%含有するメチルイソブチルケトン溶液を0.8質量部(樹脂分として0.4質量部)添加した以外は実施例8と同様に操作して、比較対照用反射防止塗料組成物(6´)を得た。これを用いて実施例8と同様にして評価を行った。評価結果を第2表に示す。
 比較例11(同上)
 実施例8で調製した活性エネルギー線硬化性組成物のベース樹脂組成物に、何も添加せずに実施例8と同様に操作して、評価を行った。評価結果を第2表に示す。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 実施例9(本発明の活性エネルギー線硬化性組成物の調製)
 本発明の活性エネルギー線硬化性組成物の一例として偏光板の保護フィルムの最表面に位置する反射防止膜用の組成物を調製した。具体的には、中空シリカ微粒子(平均粒子径60nm)を20質量%含有するメチルイソブチルケトン分散液1.265部、ペンタエリスリトールトリアクリレート0.207部、光重合開始剤として2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]-フェニル}-2-メチル-プロパン-1-オン(チバ・ジャパン株式会社製「イルガキュア127」)0.0092部、溶剤としてメチルイソブチルケトン8.395部を混合し溶解させて、反射防止塗料組成物のベース組成物を得た。
 上記で得られた反射防止塗料組成物のベース組成物9.87部に対し、重合性樹脂(2)の30%含有溶液を樹脂分として0.04部となるように添加し、均一に混合して本発明の活性エネルギー線硬化性組成物(2)〔反射防止塗料組成物(2)〕を調製した。
 得られた反射防止塗料組成物(2)を用いて以下の手順に従い反射防止層とハードコート層を有するフィルムを調製した。
 <ハードコート層用塗料組成物の調製>
 ウレタンアクリレート(日本合成化学工業株式会社の「UV1700B」)30部、酢酸ブチル25部、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(チバスペシャリティーケミカルズ社製「イルガキュア184」)1.2質量部、溶剤としてトルエン11.78部、2-プロパノール5.892部、酢酸エチル5.892部及びプロピレングリコールモノメチルエーテル5.892部を混合し溶解させて、ハードコート層用塗料組成物を得た。
 <ハードコート層を有するフィルムの調製>
 得られたハードコート層用塗料組成物をバーコーターNo.13を使用して、厚さ188μmのPETフィルムに塗布した後、70℃の乾燥機に1分間入れて溶剤を揮発させ、紫外線硬化装置(窒素雰囲気下、高圧水銀灯使用、紫外線照射量0.5kJ/m)にて硬化させ、膜厚8μmのハードコート層を片面に有するハードコートフィルムを作製した。
 <反射防止層とハードコート層を有するフィルムの調製>
 反射防止塗料組成物(2)を上記で得られたハードコートフィルムのハードコート層上にバーコーターNo.2で塗布した後、50℃の乾燥機に1分30秒間入れて溶剤を揮発させ、紫外線硬化装置(窒素雰囲気下、高圧水銀灯使用、紫外線照射量2kJ/m)にて硬化させ、膜厚8μmのハードコート層上に膜厚0.1μmの反射防止層とハードコート層を有するフィルム(反射防止フィルム)を作製した。得られたフィルムの反射防止塗料組成物の硬化塗膜表面について、下記の評価方法に従い、外観、すべり性及び耐擦傷性の評価を行った。これらの測定は、前記アルカリ処理を行う前と行った後にそれぞれ行った。評価結果を第3表に示す。
 [外観の評価]
 上記で得たフィルムについて、反射防止塗料組成物の硬化塗膜上に形成される細かい油滴状のムラ(ハジキ)を目視で観察し、下記の基準で外観を評価した。評価結果を第1表に示す。
 ○:ハジキが全く見られない。
 △:点状のハジキが一部見られる
 ×:点状のハジキが全体的に見られる。
 [滑り性の評価]
 表面性測定機(新東科学株式会社製「HEIDON-14D」)を用いて、サンプル台に上記で得たフィルムを固定して水平を確認後、サンプル上にプローブをセットし、100g荷重にて、引っ張り速度0.3m/分の条件で測定を行い、動摩擦係数を求めた。動摩擦係数が小さいほど滑り性に優れる。
 [耐擦傷性の評価]
 #0000のスチールウールを用い、荷重500gで10往復磨耗させて試験を行った。試験後の塗膜表面に付いた傷の本数を数えて、下記の基準によって耐擦傷性を評価した。
 ◎:傷の本数が5本未満である。
 ○:傷の本数が5本以上10本未満である。
 △:傷の本数が10本以上30本未満である。
 ×:傷の本数が30本以上である。
 実施例10(同上)
 実施例9で用いた重合性樹脂(2)の30%含有溶液に代えて、重合性樹脂(3)の30%含有溶液を樹脂分として0.04質量部添加した以外は実施例9と同様に操作して、評価を行った。評価結果を第3表に示す。
 実施例11(同上)
 実施例9で用いた重合性樹脂(2)の30%含有溶液に代えて、重合性樹脂(4)の30%含有溶液を樹脂分として0.04質量部添加した以外は実施例2と同様に操作して、評価を行った。評価結果を第3表に示す。
 実施例12(同上)
 実施例9で用いた重合性樹脂(2)の30%含有溶液に代えて、重合性樹脂(5)の30%含有溶液を樹脂分として0.04質量部添加した以外は実施例9と同様に操作して、評価を行った。評価結果を第3表に示す。
 実施例13(同上)
 実施例9で用いた重合性樹脂(2)の30%含有溶液に代えて、重合性樹脂(6)の30%含有溶液を樹脂分として0.04質量部添加した以外は実施例9と同様に操作して、評価を行った。評価結果を第3表に示す。
 実施例14(同上)
 実施例9で用いた重合性樹脂(2)の30%含有溶液に代えて、重合性樹脂(7)の30%含有溶液を樹脂分として0.04質量部添加した以外は実施例9と同様に操作して、評価を行った。評価結果を第3表に示す。
 比較例12(比較対照用の活性エネルギー線硬化性組成物の調製)
 実施例9で用いた重合性樹脂(2)の30%含有溶液に代えて、比較対照用重合性樹脂(4´)の30%含有溶液を樹脂分として0.4質量部添加した以外は実施例9と同様に操作して、評価を行った。評価結果を第4表に示す。
 比較例13(同上)
 実施例9で調製した反射防止塗料組成物のベース組成物に、何も添加せずに実施例9と同様に操作して、評価を行った。評価結果を第3表に示す。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017

Claims (13)

  1.  重合性不飽和単量体の重合で形成される主鎖を有し、該主鎖は、側鎖としてフッ素原子が結合した炭素原子の数が1~6であるフッ素化アルキル基(x)と重合性不飽和基(y)とを有する重合性樹脂であり、該主鎖は、更に、その片末端に分子量2,000以上のシリコーン鎖を含む構造を有することを特徴とする重合性樹脂。
  2.  分子量2,000以上のシリコーン鎖の片末端にラジカル生成能を有する官能基を有する化合物(A)とフッ素原子が結合した炭素原子の数が1~6であるフッ素化アルキル基を有する重合性不飽和単量体(B)と反応性官能基(c1)を有する重合性不飽和単量体(C)と前記官能基(c1)に対して反応性を有する官能基(d1)及び重合性不飽和基(d2)を有する化合物(D)とを用いて得られる重合性樹脂であり、該重合性樹脂が前記化合物(A)からラジカルを生成させることにより前記重合性不飽和単量体(B)と前記重合性不飽和単量体(C)とを共重合させて得られる共重合体(P)に、前記化合物(D)を反応させて得られる請求項1記載の重合性樹脂。
  3.  重合性不飽和単量体の重合で形成される主鎖と該主鎖の側鎖としてフッ素原子が結合した炭素原子の数が1~6であるフッ素化アルキル基(x)を有する第一の重合体セグメント(α)と、重合性不飽和単量体の重合で形成される主鎖と該主鎖の側鎖として重合性不飽和基(y)を有する第二の重合体セグメント(β)を有し、更に、片末端に分子量2,000以上のシリコーン鎖を含む構造を有する請求項1記載の重合性樹脂。
  4.  分子量2,000以上のシリコーン鎖の片末端に、ラジカル生成能を有する官能基を有する化合物(A)と、フッ素原子が結合した炭素原子の数が1~6であるフッ素化アルキル基(x)を有する重合性不飽和単量体(B)とを反応系内に仕込み、前記化合物(A)からラジカルを生成させることにより、前記重合性不飽和単量体(B)由来の構造を含む重合体セグメント(p)を得る工程(1)と、
     該重合体セグメント(p)を含む反応系内に、反応性官能基(c1)を有する重合性不飽和単量体(C)を仕込み、該重合体セグメント(p)からラジカルを生成させることにより、重合体セグメント(p)および重合性不飽和単量体(C)由来の構造を含む重合体セグメント(q)を含む重合体(Q1)を得る工程(2)と、
     重合体(Q1)を含む反応系内に、重合体(Q1)が有する反応性官能基(c1)に対して反応性を有する官能基(d1)及び重合性不飽和基(d2)を有する化合物(D)を仕込み、反応性官能基(c1)と反応性を有する官能基(d1)とを反応させる工程(3)を含む製造方法により得られるものである、請求項3記載の重合性樹脂。
  5.  分子量2,000以上のシリコーン鎖の片末端に、ラジカル生成能を有する官能基を有する化合物(A)と、反応性官能基(c1)を有する重合性不飽和単量体(C)とを反応系内に仕込み、前記化合物(A)からラジカルを生成させることにより、重合性不飽和単量体(C)由来の構造を含む重合体セグメント(q)を得る工程(1-1)と、
     該重合体セグメント(q)を含む反応系内に、重合性不飽和単量体(B)を仕込み、該重合体セグメント(q)からラジカルを生成させることにより、重合体セグメント(q)および重合性不飽和単量体(B)由来の構造を含む重合体セグメントを含む重合体(Q2)を得る工程(2-1)と、
     重合体(Q2)を含む反応系内に、重合体(Q2)が有する反応性官能基(c1)に対して反応性を有する官能基(d1)及び重合性不飽和基(d2)を有する化合物(D)を仕込み、反応性官能基(c1)と反応性を有する官能基(d1)とを反応させる工程(3-1)を含む製造方法により得られるものである、請求項3記載の重合性樹脂。
  6.  前記第一の重合体セグメント(α)と第二の重合体セグメント(β)とを、質量比〔(α)/(β)〕で20/80~80/20となる範囲で有する請求項3~5のいずれか1項記載の重合性樹脂。
  7.  前記化合物(A)が有するラジカル生成能を有する官能基が、ハロゲン原子を有する有機基、アルキルテルル基を有する有機基、ジチオエステル基を有する有機基、パーオキシド基を有する有機基又はアゾ基を有する有機基からなる群から選ばれる1種以上の官能基である請求項2、4または5記載の重合性樹脂。
  8.  前記化合物(A)が有するシリコーン鎖が分子量2,000~20,000のシリコーン鎖である請求項2、4または5記載の重合性樹脂。
  9.  前記化合物(A)が有するラジカル生成能を有する官能基が、ハロゲン原子を有する有機基、アルキルテルル基を有する有機基又はジチオエステル基を有する有機基であり、かつ前記化合物(A)に前記重合性不飽和単量体(B)と重合性不飽和単量体(C)を共重合させる重合法が、リビングラジカル重合である請求項2、4または5記載の重合性樹脂。
  10.  前記リビングラジカル重合が、重合開始剤、遷移金属化合物及び該遷移金属と配位結合可能な配位子を有する化合物の存在下で行う原子移動型ラジカル重合である請求項9記載の重合性樹脂。
  11.  前記反応性官能基(c1)が水酸基、イソシアネート基、エポキシ基、カルボキシル基、カルボン酸ハライド基及びカルボン酸無水物基からなる群から選ばれる1種以上の官能基である請求項2、4または5記載の重合性樹脂。
  12.  請求項1~11のいずれか1項記載の重合性樹脂と、該重合性樹脂以外の活性エネルギー線硬化性樹脂(E)または活性エネルギー線硬化性単量体(F)を含有することを特徴とする活性エネルギー線硬化性組成物。
  13.  請求項12記載の活性エネルギー線硬化性組成物の硬化塗膜を有することを特徴とする物品。
PCT/JP2014/064244 2013-06-04 2014-05-29 重合性樹脂、活性エネルギー線硬化性組成物及び物品 WO2014196441A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157033090A KR102095263B1 (ko) 2013-06-04 2014-05-29 중합성 수지, 활성 에너지선 경화성 조성물 및 물품
JP2015521412A JP5854303B2 (ja) 2013-06-04 2014-05-29 重合性樹脂、活性エネルギー線硬化性組成物及び物品

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-117807 2013-06-04
JP2013117807 2013-06-04
JP2014-042738 2014-03-05
JP2014042738 2014-03-05

Publications (1)

Publication Number Publication Date
WO2014196441A1 true WO2014196441A1 (ja) 2014-12-11

Family

ID=52008088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064244 WO2014196441A1 (ja) 2013-06-04 2014-05-29 重合性樹脂、活性エネルギー線硬化性組成物及び物品

Country Status (4)

Country Link
JP (1) JP5854303B2 (ja)
KR (1) KR102095263B1 (ja)
TW (1) TWI609042B (ja)
WO (1) WO2014196441A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020017251A1 (ja) * 2018-07-19 2020-07-27 Dic株式会社 活性エネルギー線硬化性組成物、その硬化膜及び反射防止フィルム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3305840T3 (pl) * 2016-10-05 2021-05-04 Evonik Operations Gmbh Kompatybilizator dla uniwersalnych barwników w rozpuszczalnikowych farbach alkidowych
CN112313304B (zh) * 2018-06-15 2022-05-31 Dic株式会社 粘合剂组合物、及使用其的层叠薄膜

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002538236A (ja) * 1999-03-05 2002-11-12 ダウ・コーニング・コーポレイション 制御された重合反応用開始剤の使用方法
JP2004043804A (ja) * 2002-06-19 2004-02-12 Byk Chem Gmbh 塗料組成物用レベリング剤
WO2007069703A1 (ja) * 2005-12-15 2007-06-21 Asahi Glass Company, Limited 含フッ素重合体、ネガ型感光性組成物及び隔壁
JP2010196044A (ja) * 2009-01-30 2010-09-09 Dic Corp 含フッ素ラジカル重合性共重合体、それを用いた活性エネルギー線硬化型樹脂組成物及び含フッ素ラジカル重合性共重合体の製造方法
JP2011128177A (ja) * 2009-01-28 2011-06-30 Jsr Corp 感放射線性樹脂組成物ならびに液晶表示素子のスペーサーおよびその形成方法
JP2012058307A (ja) * 2010-09-06 2012-03-22 Jsr Corp 硬化性組成物および反射防止用積層体
JP2013155236A (ja) * 2012-01-27 2013-08-15 Dic Corp フッ素原子含有シリコーン系重合性樹脂、それを用いた活性エネルギー線硬化性組成物、その硬化物及び物品

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5200436A (en) * 1989-08-14 1993-04-06 Minnesota Mining And Manufacture Company Siloxane iniferter compounds, block copolymers made therewith and a method of making the block copolymers
JP4266623B2 (ja) 2002-11-29 2009-05-20 リンテック株式会社 ハードコートフィルム
JP2007262287A (ja) * 2006-03-29 2007-10-11 Dainippon Ink & Chem Inc コーティング組成物
EP2193159A1 (de) 2007-09-27 2010-06-09 Evonik Goldschmidt GmbH Polysiloxan blockcopolymere

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002538236A (ja) * 1999-03-05 2002-11-12 ダウ・コーニング・コーポレイション 制御された重合反応用開始剤の使用方法
JP2004043804A (ja) * 2002-06-19 2004-02-12 Byk Chem Gmbh 塗料組成物用レベリング剤
WO2007069703A1 (ja) * 2005-12-15 2007-06-21 Asahi Glass Company, Limited 含フッ素重合体、ネガ型感光性組成物及び隔壁
JP2011128177A (ja) * 2009-01-28 2011-06-30 Jsr Corp 感放射線性樹脂組成物ならびに液晶表示素子のスペーサーおよびその形成方法
JP2010196044A (ja) * 2009-01-30 2010-09-09 Dic Corp 含フッ素ラジカル重合性共重合体、それを用いた活性エネルギー線硬化型樹脂組成物及び含フッ素ラジカル重合性共重合体の製造方法
JP2012058307A (ja) * 2010-09-06 2012-03-22 Jsr Corp 硬化性組成物および反射防止用積層体
JP2013155236A (ja) * 2012-01-27 2013-08-15 Dic Corp フッ素原子含有シリコーン系重合性樹脂、それを用いた活性エネルギー線硬化性組成物、その硬化物及び物品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020017251A1 (ja) * 2018-07-19 2020-07-27 Dic株式会社 活性エネルギー線硬化性組成物、その硬化膜及び反射防止フィルム
JP7082146B2 (ja) 2018-07-19 2022-06-07 Dic株式会社 活性エネルギー線硬化性組成物、その硬化膜及び反射防止フィルム

Also Published As

Publication number Publication date
JP5854303B2 (ja) 2016-02-09
JPWO2014196441A1 (ja) 2017-02-23
KR102095263B1 (ko) 2020-04-01
KR20160015216A (ko) 2016-02-12
TWI609042B (zh) 2017-12-21
TW201512285A (zh) 2015-04-01

Similar Documents

Publication Publication Date Title
JP5794474B2 (ja) 含フッ素重合性樹脂、それを用いた活性エネルギー線硬化型組成物及びその硬化物
JP4873107B2 (ja) 含フッ素硬化性樹脂及びそれを用いた活性エネルギー線硬化性組成物
TWI464224B (zh) A fluoropolymerizable polymer and an active energy ray hardening type composition using the same
JP5187471B2 (ja) 含フッ素硬化性樹脂、活性エネルギー線硬化性組成物及びその硬化物
JP5397686B2 (ja) 含フッ素硬化性樹脂、活性エネルギー線硬化型塗料組成物及びその硬化物
JP5887834B2 (ja) 含フッ素重合性樹脂、それを用いた活性エネルギー線硬化性組成物及びその硬化物
JP5720921B2 (ja) 含フッ素多官能チオール、活性エネルギー線硬化型塗料組成物及びその硬化物
JP5962954B2 (ja) フッ素原子含有シリコーン系重合性樹脂、それを用いた活性エネルギー線硬化性組成物、その硬化物及び物品
JP5737582B2 (ja) シリコーン系重合性樹脂、それを用いた活性エネルギー線硬化性組成物及びその硬化物
JP2013095817A (ja) アルコキシシラン縮合物及びそれを用いた活性エネルギー線硬化型組成物
JP5854303B2 (ja) 重合性樹脂、活性エネルギー線硬化性組成物及び物品
JP5939419B2 (ja) フッ素原子含有シリコーン系重合性樹脂、それを用いた活性エネルギー線硬化性組成物、その硬化物及び物品
JP2011213818A (ja) 含フッ素硬化性樹脂及びそれを用いた活性エネルギー線硬化型塗料組成物
JP6112334B2 (ja) フッ素原子含有重合性樹脂、それを用いた活性エネルギー線硬化性組成物、その硬化物及び物品。
JP6405647B2 (ja) 重合性樹脂、活性エネルギー線硬化性組成物及び物品。
WO2011122392A1 (ja) 含フッ素スチレン化合物及びそれを用いた活性エネルギー線硬化性組成物
JP5605305B2 (ja) 重合性フッ素表面修飾シリカ粒子及びそれを用いた活性エネルギー線硬化性組成物
JP5516969B2 (ja) 含フッ素硬化性樹脂及びそれを用いた活性エネルギー線硬化型組成物
JP2011074247A (ja) 含フッ素硬化性樹脂、活性エネルギー線硬化型塗料組成物及びその硬化物
WO2021256131A1 (ja) 含フッ素重合性樹脂、活性エネルギー線硬化性組成物、硬化塗膜及び物品
JP2013040317A (ja) シリコーン系重合性樹脂、それを用いた活性エネルギー線硬化性組成物及びその硬化物
JP2023169574A (ja) 撥液剤、活性エネルギー線硬化性組成物、硬化物および表示装置
JP2013087213A (ja) 含フッ素重合性樹脂、それを用いた活性エネルギー線硬化性組成物及びその硬化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14808364

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015521412

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157033090

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14808364

Country of ref document: EP

Kind code of ref document: A1