WO2014196295A1 - 通信制御装置、通信制御方法、無線通信システム、基地局及び端末装置 - Google Patents

通信制御装置、通信制御方法、無線通信システム、基地局及び端末装置 Download PDF

Info

Publication number
WO2014196295A1
WO2014196295A1 PCT/JP2014/062109 JP2014062109W WO2014196295A1 WO 2014196295 A1 WO2014196295 A1 WO 2014196295A1 JP 2014062109 W JP2014062109 W JP 2014062109W WO 2014196295 A1 WO2014196295 A1 WO 2014196295A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal device
determination
handover
control
Prior art date
Application number
PCT/JP2014/062109
Other languages
English (en)
French (fr)
Inventor
亮太 木村
トマス ブルジョア
亮 澤井
博允 内山
匠 古市
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US14/895,127 priority Critical patent/US9918268B2/en
Priority to EP14807748.0A priority patent/EP3007490A4/en
Priority to CN201480030485.7A priority patent/CN105247927B/zh
Priority to JP2015521345A priority patent/JP6398972B2/ja
Publication of WO2014196295A1 publication Critical patent/WO2014196295A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/304Reselection being triggered by specific parameters by measured or perceived connection quality data due to measured or perceived resources with higher communication quality

Definitions

  • the present disclosure relates to a communication control device, a communication control method, a wireless communication system, a base station, and a terminal device.
  • a network configuration in which a plurality of cells that can include macro cells and small cells are arranged in an overlapping manner can be employed.
  • a heterogeneous network is a network formed by coexistence of various cells having different radio access technologies, cell sizes or frequency bands.
  • the terminal device switches a connection destination cell to another cell by executing a handover procedure.
  • the serving base station determines which cell the terminal apparatus should connect to based on an index included in the measurement report transmitted from the terminal apparatus.
  • the serving base station does not know the content of future control that has not yet been executed at the time of handover determination. For this reason, a situation may arise in which the serving base station does not select the optimum connection destination cell in consideration of the influence of future control.
  • an interference control unit that performs interference control for a wireless communication system including a plurality of base stations and a plurality of terminal devices, and a determination index based on a measurement report generated by the first terminal device.
  • the first terminal apparatus is corrected by including the influence of the interference control executed by the interference control unit after the measurement is performed by the first terminal apparatus, and the corrected determination index is used for the first terminal apparatus.
  • a communication control device is provided.
  • a communication control method executed by a communication control apparatus wherein interference control for a wireless communication system including a plurality of base stations and a plurality of terminal apparatuses is performed; Correcting the determination index based on the measurement report generated by the terminal device by adding the influence of the interference control executed after the measurement is performed by the first terminal device, and the corrected Performing a handover determination for the first terminal apparatus using a determination index is provided.
  • a wireless communication system including a plurality of base stations and a plurality of terminal devices, wherein the wireless communication system includes a control node that performs interference control for the wireless communication system, The control node corrects the determination index based on the measurement report generated by the first terminal device by including the influence of the interference control executed after the measurement is performed by the first terminal device.
  • the control node corrects the determination index based on the measurement report generated by the first terminal device by including the influence of the interference control executed after the measurement is performed by the first terminal device.
  • a wireless communication system for performing a handover determination for the first terminal apparatus using the corrected determination index.
  • a communication unit that communicates with a communication control apparatus that performs interference control for a wireless communication system including a plurality of base stations and a plurality of terminal apparatuses, and a handover generated by the first terminal apparatus
  • a base station comprising: a control unit that transfers a measurement report used for determination to the communication control unit that performs the handover determination for the first terminal device to the communication unit.
  • a radio communication unit that transmits or receives a radio signal using an antenna capable of beam steering, and a measurement report used for handover determination are generated, and after the measurement, the antenna
  • a control unit that includes a correction term representing an effect of an antenna beam assumed to be formed in the measurement report or transmitted from the radio communication unit to a serving base station separately from the measurement report.
  • a control unit that performs control of radio resources for a radio communication system including a plurality of base stations and a plurality of terminal devices, and a measurement report generated by the first terminal device
  • the determination index is corrected by taking into account the influence of the control of the radio resource executed by the control unit after the measurement is performed by the first terminal device, and the first determination is performed using the corrected determination index.
  • a communication control device comprising: a determination unit that performs handover determination for one terminal device.
  • FIG. 5 is a sequence diagram showing a first example of a flow of communication control processing related to the first arrangement scenario of FIG. 4.
  • FIG. 5 is a sequence diagram illustrating a second example of a flow of communication control processing related to the first arrangement scenario of FIG. 4. It is explanatory drawing for demonstrating the 2nd arrangement
  • FIG. 10 is a sequence diagram showing a third example of a flow of communication control processing related to the second arrangement scenario of FIG. 6. It is a sequence diagram which shows an example of the flow of a communication control process in case a target base station is out of control object. It is a sequence diagram which shows an example of the flow of a communication control process in case a source base station is out of control object. It is a sequence diagram which shows the 1st example of the flow of the communication control process relevant to control of a localized network.
  • FIG. 1 illustrates a wireless communication system 1 as an example to which the technology according to the present disclosure can be applied.
  • a wireless communication system 1 includes a plurality of base stations indicated by triangular marks and a plurality of terminal apparatuses indicated by round marks.
  • the base station 10a is a macro cell base station that provides a wireless communication service to terminal devices in the cell 11a.
  • the base station 10b is a macrocell base station that provides a wireless communication service to terminal devices in the cell 11b.
  • the base station 10c is a macro cell base station that provides a wireless communication service to terminal devices in the cell 11c.
  • Each of the base stations 10a, 10b, and 10c is connected to a core network (CN) 16.
  • CN core network
  • These macro cell base stations may be eNBs (evolved Node B) that operate according to the LTE (Long Term Evolution) system or LTE-A (LTE-Advanced) system, or base stations that operate according to other wireless communication systems ( For example, it may be a WiMAX base station, a wireless LAN (Local Area Network) access point, or the like.
  • eNBs evolved Node B
  • LTE-A Long Term Evolution-Advanced
  • base stations that operate according to other wireless communication systems
  • it may be a WiMAX base station, a wireless LAN (Local Area Network) access point, or the like.
  • the base station 12a is a small cell base station that provides a wireless communication service to terminal devices in the cell 13a.
  • the base station 12a is connected to the core network 16 via the base station 10a.
  • the small cell base station may be connected to the core network 16 via the packet data network (PDN) 17 instead of the macro cell base station.
  • PDN packet data network
  • the small cell is a concept including a femtocell, a nanocell, a picocell, a microcell, and the like.
  • a small cell base station may be a device dedicated to the base station (eg, a small femtocell base station). Instead, the small cell base station may be a terminal device having a mobile router function or a relay function.
  • a wireless network formed in a small cell is also referred to as a localized network.
  • a link for connecting a small cell base station to a macro cell base station or another control node is referred to as a backhaul link.
  • the terminal device 15 is located in the cell 11a and can be connected to the base station 10a.
  • the terminal device 15 may be a UE (User Equipment) that operates according to the LTE scheme or the LTE-A scheme, or may be a mobile terminal that operates according to another radio communication scheme.
  • the base station 10a is a serving base station of the terminal device 15
  • the cell 11a is a serving cell of the terminal device 15.
  • the serving base station performs various controls such as scheduling, transmission power control, beam control, and rate control for each terminal device.
  • the terminal device 15 is located in the cell 11b and can be connected to the base station 10b. Further, the terminal device 15 is located in the cell 13a and can be connected to the base station 12a.
  • the terminal device 15 measures the quality of the radio channel from the surrounding base stations periodically or in response to a request from the base station 10a, and performs a measurement report. And the generated measurement report is transmitted to the base station 10a.
  • the measurement report includes a determination index used for determining whether to switch the connection destination cell of the terminal device 15 to another cell, that is, for determining a handover.
  • a typical example of the determination index included in the measurement report is a reference signal received power (RSRP) measured for each cell.
  • RSRP reference signal received power
  • FIG. 2 shows an example of the configuration of time-frequency resources in the LTE system as an example.
  • one radio frame having a length of 10 msec is shown.
  • One radio frame is composed of 10 subframes each having a length of 1 msec.
  • One subframe includes two 0.5 ms slots.
  • One 0.5 ms slot typically includes 7 OFDM symbols in the time direction (6 when extended cyclic prefix is used).
  • a resource element refers to a time-frequency resource including one OFDM symbol and one subcarrier.
  • a resource block indicates a time-frequency resource configured by one 0.5 ms slot and 12 subcarriers. Communication resources are scheduled in units of one or more resource blocks.
  • the 0th symbol and the 4th symbol of each resource block have a cell-specific reference signal (CRS) at a frequency interval of 6 subcarriers. Is placed.
  • CRS cell-specific reference signal
  • MIMO Multi Input Multi Output
  • a CRS can be similarly arranged in a downlink subframe of a TDD (Time Division Duplex) system.
  • the measurement report indicates an indicator such as RSRP measured by receiving the CRS.
  • DMRS Demodulation Reference Signal
  • MBSFN reference signal Used in MBSFN (MBMS Single Frequency Network).
  • PRS Positioning Reference Signal
  • CSIRS Channel State Information Reference Signal
  • uplink reference signals may include the following: 1) DMRS (Demodulation Reference Signal) used for channel estimation when decoding uplink data. 2) SRS (Sounding Reference Signal): Mainly used to measure uplink channel conditions.
  • FIG. 3 is a sequence diagram showing an example of the flow of an existing handover procedure.
  • the terminal device 15, the base station 10a, and the base station 10b are involved in the sequence shown in FIG.
  • the serving base station before handover is called a source base station
  • the serving base station after handover is called a target base station.
  • the base station 10a is a source base station
  • the base station 10b is a target base station.
  • the terminal device 15 receives a reference signal transmitted from the base station 10a serving as a serving base station at this time, and a reference signal transmitted from one or more neighboring base stations including the base station 10b, and performs measurement. Execute (Step S2). And the terminal device 15 transmits the measurement report containing the determination parameter
  • the base station 10a that has received the measurement report executes handover determination (step S8).
  • handover determination determines that the terminal device 15 is the base of the i-th neighboring cell. It may be determined that a handover should be performed with the station as the target base station.
  • the value of the determination index may be a decibel value or a linear value.
  • the weight parameters a Ti and a S represent weights associated with cell types.
  • the terminal device can be preferentially connected to the small cell by setting the value of the weight parameter of the small cell to be larger than that of the macro cell.
  • the weight parameter b S represents a weight added to the determination index for the serving cell, and has a role of preventing an excessively frequent handover from occurring for a terminal device located near the cell edge.
  • These weight parameters usually have positive values. The greater the value of the weight parameter, the higher the possibility that the associated cell will be selected as the connection destination.
  • the base station 10a transmits a handover request (Handover Request) to the base station 10b (step S10).
  • the base station 10b determines whether or not the terminal device 15 should be accepted by executing inflow control (Admission Control) (step S12). For example, the base station 10b compares the number of already connected terminals with a capacity value (the number of connectable terminals), or compares the available throughput with the required throughput of the terminal apparatus 15, thereby It may be determined whether 15 should be accepted.
  • the base station 10b transmits a handover approval (Handover ACK) to the base station 10a (step S14).
  • a handover command or a RRC connection reconfiguration message may be transmitted.
  • the base station 10a When receiving the handover approval from the base station 10b, the base station 10a transmits a handover command to the terminal device 15 (step S16). Further, after transmitting the handover command, the base station 10a transfers untransmitted downlink traffic addressed to the terminal device 15 to the base station 10b which is the target base station (step S22). The base station 10b may buffer the forwarded downlink traffic (step S24). The downlink traffic buffered here is transmitted from the target base station to the terminal device after the completion of the handover, whereby a seamless handover can be realized.
  • the terminal device 15 When receiving the handover command from the base station 10a, the terminal device 15 searches for a synchronization signal that can be located in the center of the band of the downlink channel from the base station 10b that is the target base station, thereby synchronizing with the base station 10b. Obtain (step S26). Further, the terminal device 15 acquires system information included in MIB (Master Information Block), SIB (System Information Block), and the like. And the terminal device 15 identifies the arrangement
  • MIB Master Information Block
  • SIB System Information Block
  • the source base station performs handover determination and the target base station performs inflow control.
  • manage and control transmission parameters such as beam direction or transmission power used by individual base stations or terminal devices to prevent harmful interference between cells.
  • control nodes are introduced into the system.
  • a cooperation manager such a control node is referred to as a cooperation manager.
  • the quality of the radio channel is affected by interference control. For example, the gain may increase and the channel quality may improve where the antenna beam is directed, while the gain may decrease and the channel quality may decrease at other locations.
  • channel quality may be degraded in a cell in which transmission power from the base station is limited.
  • the source base station does not know what control is executed after the handover, for example, when the cooperation manager is introduced, the optimum connection destination cell for the terminal device is selected by the base station in the handover determination. It may not be.
  • the serving base station transfers a measurement report generated by the terminal device to the cooperation manager in order to cause the cooperation manager to execute the handover determination.
  • FIGS. 4 to 10C are used to illustrate some examples of coordination manager placement and the corresponding sequence of handover procedures.
  • FIG. 4 is an explanatory diagram for describing a first arrangement scenario of the cooperation manager.
  • the coordination manager is deployed on a different node than the base station.
  • the cooperation manager 100 is arranged in the core network 16 in the wireless communication system 1a.
  • the coordination manager 100 may be an MME (Mobility Management Entity), a P-GW (PDN-Gateway), or an S-GW (Serving-Gateway). It may be placed on any node in the EPC.
  • the cooperation manager 100 may be disposed on a node (for example, an interference control server) in the packet data network 17.
  • a node for example, an interference control server
  • FIG. 5A is a sequence diagram showing a first example of a flow of communication control processing related to the first arrangement scenario of FIG. It is assumed that the terminal apparatus 15, the base station 10a that is the source base station, the base station 10b that is the target base station, the cooperation manager 100, and other base stations 10c are involved in the communication control process described here.
  • the cooperation manager 100 collects interference control information used for interference control from a plurality of base stations to be controlled (step S110).
  • the interference control information collected here includes, for example, position information, antenna configuration information, maximum transmission power information, rate control information (modulation coding scheme, etc.) for each base station and terminal devices connected to each base station. ), One or more of channel quality information, resource allocation information, and communication history information.
  • Each base station may periodically transmit the interference control information to the cooperation manager 100, or may transmit the interference control information to the cooperation manager 100 in response to a request from the cooperation manager 100.
  • the interference control information may include identification information (for example, a cell ID) for identifying the cell or base station that is the transmission source of the interference control information.
  • identification information for identifying individual terminal devices may be deleted or masked from the viewpoint of protecting privacy.
  • the format of the interference control information can be predefined.
  • cooperation manager 100 performs interference control based on collected interference control information (Step S112). A specific example of the interference control executed here will be further described later.
  • the terminal device 15 receives the reference signal transmitted from the serving base station and one or more neighboring base stations, and executes the measurement (step S120). And the terminal device 15 transmits the measurement report containing the determination parameter
  • the base station 10a When the base station 10a receives the measurement report generated by the terminal device 15, the base station 10a transfers the received measurement report to the cooperation manager 100 that executes handover determination (step S126).
  • the cooperation manager 100 executes handover determination (step S128).
  • the cooperation manager 100 uses a determination index that is corrected by taking into account the influence of interference control, instead of using the determination index included in the measurement report as it is.
  • a specific example of the correction of the determination index here will be further described later.
  • the cooperation manager 100 selects the base station 10b as the target base station in the handover determination, the cooperation manager 100 transmits a handover request to the base station 10b (step S130).
  • the base station 10b determines whether or not the terminal device 15 should be accepted by executing inflow control (step S132).
  • the base station 10b transmits a handover approval to the cooperation manager 100 (step S134). If the base station 10b determines that the terminal device 15 is not accepted, the base station 10b may reply to the cooperation manager 100 that the handover is rejected (or nothing may be returned).
  • the coordination manager 100 Upon receiving the handover approval from the base station 10b, the coordination manager 100 transmits a handover command to the base station 10a (step S138). When receiving the handover command from the cooperation manager 100, the base station 10a further transmits a handover command to the terminal device 15 (step S140).
  • the subsequent processing may be the same as the processing after the handover command is transmitted to the terminal device in the handover procedure described with reference to FIG.
  • FIG. 5B is a sequence diagram showing a second example of the flow of communication control processing related to the first arrangement scenario of FIG.
  • the communication control process involves the terminal device 15, the base station 10a that is the source base station, the base station 10b that is the target base station, the cooperation manager 100, and other base stations 10c.
  • the cooperation manager 100 collects interference control information used for interference control from a plurality of base stations to be controlled (step S110). And cooperation manager 100 performs interference control based on collected interference control information (Step S112). A specific example of the interference control executed here will be further described later.
  • the terminal device 15 receives the reference signal transmitted from the serving base station and one or more neighboring base stations, and executes the measurement (step S120). And the terminal device 15 transmits the measurement report containing the determination parameter
  • the base station 10a When the base station 10a receives the measurement report generated by the terminal device 15, the base station 10a transfers the received measurement report to the cooperation manager 100 that executes handover determination (step S126).
  • the cooperation manager 100 executes handover determination (step S128).
  • the cooperation manager 100 uses a determination index that is corrected by taking into account the influence of interference control, instead of using the determination index included in the measurement report as it is.
  • a specific example of the correction of the determination index here will be further described later.
  • the cooperation manager 100 also performs inflow control instead of the target base station (step S129). Information necessary for inflow control can also be collected in step S110.
  • the coordination manager 100 transmits a handover request to the base station 10b that is the target base station selected as a result of the handover determination and the inflow control (step S133).
  • the base station 10b returns a handover approval to the cooperation manager 100 (step S134).
  • a handover command (Handover Order) may be transmitted instead of the handover request.
  • the handover command is a message that means that the base station that receives the handover command does not reject the decision of the cooperation manager 100.
  • the cooperation manager 100 transmits a handover command to the base station 10a (step S138).
  • the base station 10a further transmits a handover command to the terminal device 15 (step S140).
  • the subsequent processing may be the same as the processing after the handover command is transmitted to the terminal device in the handover procedure described with reference to FIG.
  • FIG. 6 is an explanatory diagram for describing a second arrangement scenario of the cooperation manager.
  • the coordination manager is deployed on the base station.
  • one of the plurality of macro cell base stations has a function as the cooperation manager 100.
  • the cooperation manager 100 may be arrange
  • FIG. 7A is a sequence diagram showing a first example of a flow of communication control processing related to the second arrangement scenario of FIG.
  • the communication control process involves the terminal device 15, the base station 10a that is the source base station, the base station 10b that is the target base station, and the other base station 10c in which the cooperation manager 100 is installed. .
  • the cooperation manager 100 collects interference control information used for interference control from a plurality of base stations to be controlled (step S110). And cooperation manager 100 performs interference control based on collected interference control information (Step S112). A specific example of the interference control executed here will be further described later.
  • the terminal device 15 receives the reference signal transmitted from the serving base station and one or more neighboring base stations, and executes the measurement (step S120). And the terminal device 15 transmits the measurement report containing the determination parameter
  • the base station 10a When the base station 10a receives the measurement report generated by the terminal device 15, the base station 10a transfers the received measurement report to the cooperation manager 100 that executes handover determination (step S126).
  • the cooperation manager 100 executes handover determination (step S128).
  • the cooperation manager 100 uses a determination index that is corrected by taking into account the influence of interference control, instead of using the determination index included in the measurement report as it is.
  • a specific example of the correction of the determination index here will be further described later.
  • the cooperation manager 100 also executes inflow control instead of the target base station (step S129). Information necessary for inflow control can also be collected in step S110. As described with reference to FIG. 5A, the inflow control may be performed by the target base station.
  • the coordination manager 100 transmits a handover request to the base station 10b that is the target base station selected as a result of the handover determination and the inflow control (step S133).
  • the base station 10b returns a handover approval to the cooperation manager 100 (step S134). Note that the processing in step S133 and step S134 may be omitted.
  • a handover command may be transmitted instead of the handover request.
  • the cooperation manager 100 transmits a handover command to the base station 10a (step S138).
  • the base station 10a further transmits a handover command to the terminal device 15 (step S140).
  • the subsequent processing may be the same as the processing after the handover command is transmitted to the terminal device in the handover procedure described with reference to FIG.
  • FIG. 7B is a sequence diagram showing a second example of the flow of communication control processing related to the second arrangement scenario of FIG.
  • the communication control process involves a terminal device 15, a base station 10a that is a source base station, a base station 10b that is a target base station and on which the cooperation manager 100 is mounted, and other base stations 10c. To do.
  • the cooperation manager 100 collects interference control information used for interference control from a plurality of base stations to be controlled (step S110). And cooperation manager 100 performs interference control based on collected interference control information (Step S112). A specific example of the interference control executed here will be further described later.
  • the terminal device 15 receives the reference signal transmitted from the serving base station and one or more neighboring base stations, and executes the measurement (step S120). And the terminal device 15 transmits the measurement report containing the determination parameter
  • the base station 10a When the base station 10a receives the measurement report generated by the terminal device 15, the base station 10a transfers the received measurement report to the cooperation manager 100 that executes handover determination (step S126).
  • the cooperation manager 100 executes handover determination (step S128).
  • the cooperation manager 100 uses a determination index that is corrected by taking into account the influence of interference control, instead of using the determination index included in the measurement report as it is.
  • a specific example of the correction of the determination index here will be further described later.
  • the base station 10b executes inflow control (step S129).
  • the base station 10b determines that the terminal device 15 should be accepted as a result of the inflow control
  • the base station 10b transmits a handover command to the base station 10a (step S138).
  • the base station 10a further transmits a handover command to the terminal device 15 (step S140).
  • the subsequent processing may be the same as the processing after the handover command is transmitted to the terminal device in the handover procedure described with reference to FIG.
  • FIG. 7C is a sequence diagram showing a third example of the flow of communication control processing related to the second arrangement scenario of FIG.
  • the communication control process involves the terminal device 15, the base station 10 a that is the source base station and the cooperation manager 100 is implemented, the base station 10 b that is the target base station, and the other base station 10 c. To do.
  • the cooperation manager 100 collects interference control information used for interference control from a plurality of base stations to be controlled (step S110). And cooperation manager 100 performs interference control based on collected interference control information (Step S112). A specific example of the interference control executed here will be further described later.
  • the terminal device 15 receives the reference signal transmitted from the serving base station and one or more neighboring base stations, and executes the measurement (step S120). And the terminal device 15 transmits the measurement report containing the determination parameter
  • the base station 10a When receiving the measurement report generated by the terminal device 15, the base station 10a, which is also the cooperation manager 100, executes handover determination (step S128).
  • the cooperation manager 100 uses a determination index that is corrected by taking into account the influence of interference control, instead of using the determination index included in the measurement report as it is. A specific example of the correction of the determination index here will be further described later.
  • the cooperation manager 100 also executes inflow control instead of the target base station (step S129). Information necessary for inflow control can also be collected in step S110. As described with reference to FIG. 5A, the inflow control may be performed by the target base station.
  • the coordination manager 100 transmits a handover request to the base station 10b that is the target base station selected as a result of the handover determination and the inflow control (step S133).
  • the base station 10b returns a handover approval to the cooperation manager 100 (step S134). Note that the processing in step S133 and step S134 may be omitted.
  • a handover command may be transmitted instead of the handover request.
  • the cooperation manager 100 transmits a handover command to the terminal device 15 (step S140).
  • the subsequent processing may be the same as the processing after the handover command is transmitted to the terminal device in the handover procedure described with reference to FIG.
  • a base station that is not included in the target of interference control serves as a handover procedure as a source base station or a target base station.
  • the communication control processing sequence is partially different from the above-described sequence.
  • FIG. 8A is a sequence diagram illustrating an example of the flow of communication control processing when the target base station is not controlled. It is assumed that the communication control process described here involves the terminal device 15, the base station 10a that is the source base station, the base station 10d that is the target base station, the cooperation manager 100, and other base stations 10c. The base station 10d is not included in the control target of the interference control by the cooperation manager 100.
  • the base station 10d may be a macro cell base station or a small cell base station.
  • the cooperation manager 100 collects interference control information used for interference control from a plurality of base stations to be controlled (step S110). And cooperation manager 100 performs interference control based on collected interference control information (Step S112). A specific example of the interference control executed here will be further described later.
  • the terminal device 15 receives the reference signal transmitted from the serving base station and one or more neighboring base stations, and executes the measurement (step S120). And the terminal device 15 transmits the measurement report containing the determination parameter
  • the base station 10a When the base station 10a receives the measurement report generated by the terminal device 15, the base station 10a transfers the received measurement report to the cooperation manager 100 that executes handover determination (step S126).
  • the cooperation manager 100 executes handover determination (step S128).
  • the cooperation manager 100 uses a determination index that is corrected by taking into account the influence of interference control, instead of using the determination index included in the measurement report as it is.
  • a specific example of the correction of the determination index here will be further described later.
  • the coordination manager 100 transmits a handover command to the base station 10a (step S131).
  • the handover command includes identification information that identifies the base station 10d as the target base station.
  • the base station 10a transmits a handover request to the base station 10d (step S135).
  • the base station 10d determines whether or not the terminal device 15 should be accepted by executing inflow control (step S136).
  • the base station 10d transmits a handover approval to the base station 10a (step S137). If the base station 10d determines not to accept the terminal device 15, the base station 10d can reply to the base station 10a that it rejects the handover.
  • the base station 10a Upon receiving the handover approval from the base station 10d, the base station 10a transmits a handover command to the terminal device 15 (step S140).
  • the subsequent processing may be the same as the processing after the handover command is transmitted to the terminal device in the handover procedure described with reference to FIG.
  • FIG. 8B is a sequence diagram showing an example of the flow of communication control processing when the source base station is not controlled. It is assumed that the communication control process described here involves the terminal device 15, the base station 10e that is the source base station, the base station 10b that is the target base station, the cooperation manager 100, and other base stations 10c. The base station 10e is not included in the control target of the interference control by the cooperation manager 100.
  • the base station 10e may be a macro cell base station or a small cell base station.
  • the cooperation manager 100 collects interference control information used for interference control from a plurality of base stations to be controlled (step S110). And cooperation manager 100 performs interference control based on collected interference control information (Step S112). A specific example of the interference control executed here will be further described later.
  • the terminal device 15 receives the reference signal transmitted from the serving base station and one or more neighboring base stations, and executes the measurement (step S120). And the terminal device 15 transmits the measurement report containing the determination parameter
  • the base station 10e executes handover determination (step S123).
  • the base station 10e uses a determination index included in the measurement report.
  • the base station 10e transmits a handover request to the base station 10b (step S124).
  • the base station 10b When receiving the handover request from the base station 10e, the base station 10b transmits an inflow control request to the cooperation manager 100 (step S125).
  • the cooperation manager When receiving the inflow control request from the base station 10b, the cooperation manager performs inflow control instead of the base station 10b selected as the target base station (step S129).
  • the cooperation manager 100 determines that the base station 10b should accept the terminal device 15 as a result of the inflow control, the cooperation manager 100 returns a handover command to the base station 10b (step S131).
  • the base station 10b When receiving the handover command from the cooperation manager 100, the base station 10b returns a handover approval to the base station 10e (step S137). When receiving the handover approval from the base station 10b, the base station 10e transmits a handover command to the terminal device 15 (step S140).
  • the subsequent processing may be the same as the processing after the handover command is transmitted to the terminal device in the handover procedure described with reference to FIG.
  • the exchange of messages between the cooperation manager 100 and the base station and the exchange of messages between the base stations may be performed via some intermediate node.
  • the exchange of messages between a small base station installed by a user and other base stations and the cooperation manager 100 may be performed via a gateway device (not shown) of the user's home network.
  • FIG. 9A is a sequence diagram showing a first example of a flow of communication control processing related to control of a localized network.
  • the communication control process involves the terminal device 15, the base station 10a that is the source base station, the master terminal 12b that is the target base station, the base station 10b that is the serving base station of the master terminal 12b, and the cooperation manager 100.
  • the cooperation manager 100 collects interference control information used for interference control from a plurality of base stations to be controlled (step S110).
  • the base station 10b relays the interference control information of the master terminal 12b to the cooperation manager 100.
  • cooperation manager 100 performs interference control based on collected interference control information (Step S112). A specific example of the interference control executed here will be further described later.
  • the terminal device 15 receives the reference signal transmitted from the serving base station and one or more neighboring base stations, and executes the measurement (step S120). And the terminal device 15 transmits the measurement report containing the determination parameter
  • the base station 10a When the base station 10a receives the measurement report generated by the terminal device 15, the base station 10a transfers the received measurement report to the cooperation manager 100 that executes handover determination (step S126).
  • the cooperation manager 100 executes handover determination (step S128).
  • the cooperation manager 100 uses a determination index that is corrected by taking into account the influence of interference control, instead of using the determination index included in the measurement report as it is.
  • a specific example of the correction of the determination index here will be further described later.
  • the cooperation manager 100 also executes inflow control instead of the target base station (step S129). Information necessary for inflow control can also be collected in step S110. The inflow control may be executed by the target base station.
  • the coordination manager 100 transmits a handover command addressed to the master terminal 12b, which is the target base station selected as a result of the handover determination and the inflow control, to the base station 10b (step S131a).
  • the base station 10b transfers the handover command received from the cooperation manager 100 to the master terminal 12b (step S131b).
  • the master terminal 12b returns a handover approval to the base station 10b (step S137). Note that the processing in steps S131a to S137 may be omitted, and a handover command or a handover command may be transmitted directly from the cooperation manager 100 to the base station 10a.
  • the base station 10b When receiving the handover approval from the master terminal 12b, the base station 10b transmits a handover command to the base station 10a (step S138). When receiving the handover command from the base station 10b, the base station 10a further transmits a handover command to the terminal device 15 (step S140).
  • the subsequent processing may be the same as the processing after the handover command is transmitted to the terminal device in the handover procedure described with reference to FIG.
  • FIG. 9B is a sequence diagram illustrating a second example of the flow of communication control processing related to the control of the localized network.
  • the terminal device 15, the master terminal 12a that is the source base station, the base station 10a that is the serving base station of the master terminal 12a, the base station 10b that is the target base station, and the cooperation manager 100 are involved in the communication control process.
  • the cooperation manager 100 are involved in the communication control process.
  • the cooperation manager 100 collects interference control information used for interference control from a plurality of base stations to be controlled (step S110).
  • the base station 10a relays the interference control information of the master terminal 12a to the cooperation manager 100.
  • cooperation manager 100 performs interference control based on collected interference control information (Step S112). A specific example of the interference control executed here will be further described later.
  • the terminal device 15 receives the reference signal transmitted from the serving base station and one or more neighboring base stations, and executes the measurement (step S120). And the terminal device 15 transmits the measurement report containing the determination parameter
  • the master terminal 12a transfers the measurement report generated by the terminal device 15 to the base station 10a (step S126a). Furthermore, when receiving the measurement report from the master terminal 12a, the base station 10a transfers the received measurement report to the cooperation manager 100 that executes the handover determination (step S126b).
  • the cooperation manager 100 executes handover determination (step S128).
  • the cooperation manager 100 uses a determination index that is corrected by taking into account the influence of interference control, instead of using the determination index included in the measurement report as it is.
  • a specific example of the correction of the determination index here will be further described later.
  • the cooperation manager 100 also executes inflow control instead of the target base station (step S129). Information necessary for inflow control can also be collected in step S110. The inflow control may be executed by the target base station.
  • the coordination manager 100 transmits a handover command to the base station 10b that is the target base station selected as a result of the handover determination and the inflow control (step S131).
  • the base station 10b When receiving the handover command from the cooperation manager 100, the base station 10b transmits a handover command addressed to the master terminal 12a to the base station 10a (step S138a).
  • the base station 10a transfers the handover command received from the cooperation manager 100 to the master terminal 12a (step S138b).
  • the master terminal 12a When receiving the handover command from the base station 10a, the master terminal 12a transmits the handover command to the terminal device 15 (step S140).
  • the subsequent processing may be the same as the processing after the handover command is transmitted to the terminal device in the handover procedure described with reference to FIG.
  • the master terminal 12a may have a function of transferring downlink traffic that arrives after the handover command to the target base station. Instead, the base station 10a serving as the serving base station of the master terminal 12a may transfer the downlink traffic to the target base station.
  • FIG. 9C is a sequence diagram showing a third example of the flow of communication control processing related to the control of the localized network.
  • the terminal device 15 the master terminal 12a that is the source base station, the base station 10a that is the serving base station of the master terminal 12a, the master terminal 12b that is the target base station, and the serving base station of the master terminal 12b It is assumed that the base station 10b and the cooperation manager 100 are involved.
  • the cooperation manager 100 collects interference control information used for interference control from a plurality of base stations to be controlled (step S110).
  • the base station 10a relays the interference control information of the master terminal 12a to the cooperation manager 100.
  • the base station 10b relays the interference control information of the master terminal 12b to the cooperation manager 100.
  • cooperation manager 100 performs interference control based on collected interference control information (Step S112). A specific example of the interference control executed here will be further described later.
  • the terminal device 15 receives the reference signal transmitted from the serving base station and one or more neighboring base stations, and executes the measurement (step S120). And the terminal device 15 transmits the measurement report containing the determination parameter
  • the master terminal 12a transfers the measurement report generated by the terminal device 15 to the base station 10a (step S126a). Furthermore, when receiving the measurement report from the master terminal 12a, the base station 10a transfers the received measurement report to the cooperation manager 100 that executes the handover determination (step S126b).
  • the cooperation manager 100 executes handover determination (step S128).
  • the cooperation manager 100 uses a determination index that is corrected by taking into account the influence of interference control, instead of using the determination index included in the measurement report as it is.
  • a specific example of the correction of the determination index here will be further described later.
  • the cooperation manager 100 also executes inflow control instead of the target base station (step S129). Information necessary for inflow control can also be collected in step S110. The inflow control may be executed by the target base station.
  • the coordination manager 100 transmits a handover command addressed to the master terminal 12b, which is the target base station selected as a result of the handover determination and the inflow control, to the base station 10b (step S131a).
  • the base station 10b transfers the handover command received from the cooperation manager 100 to the master terminal 12b (step S131b).
  • the master terminal 12b returns a handover approval to the base station 10b (step S137). Note that the processing in steps S131a to S137 may be omitted, and a handover command or a handover command addressed to the master terminal 12a may be transmitted from the cooperation manager 100 to the base station 10a.
  • the base station 10b When receiving the handover approval from the master terminal 12b, the base station 10b transmits a handover command addressed to the master terminal 12a to the base station 10a (step S138a).
  • the base station 10a transfers the handover command received from the base station 10b to the master terminal 12a (step S138b).
  • the master terminal 12a When receiving the handover command from the base station 10a, the master terminal 12a transmits the handover command to the terminal device 15 (step S140).
  • the subsequent processing may be the same as the processing after the handover command is transmitted to the terminal device in the handover procedure described with reference to FIG.
  • FIG. 8A to 9C show an example in which the cooperation manager is arranged on a node different from the base station as in the first arrangement scenario shown in FIG.
  • the present invention can also be applied to the second arrangement scenario arranged on the base station.
  • FIG. 10 is a block diagram illustrating an example of the configuration of the cooperation manager 100.
  • the cooperation manager 100 includes a network communication unit 110, a storage unit 120, and a control unit 130.
  • the cooperation manager 100 When the cooperation manager 100 is arranged on the base station, the cooperation manager 100 further includes a wireless communication unit that performs wireless communication with one or more terminal devices and a communication control unit that controls the wireless communication (both illustrated in FIG. Not shown).
  • the network communication unit 110 is a communication interface connected to a plurality of base stations to be controlled. For example, the network communication unit 110 receives the interference control information exemplified above from each of the control target base stations. Further, the network communication unit 110 transmits an interference control message for notifying a transmission parameter determined as a result of the interference control to each base station. Further, the network communication unit 110 receives a measurement report generated by the terminal device and transferred by the serving base station of the terminal device from the serving base station. Further, the network communication unit 110 transmits a handover control message such as a handover request or a handover command to the base station in the handover procedure.
  • a handover control message such as a handover request or a handover command to the base station in the handover procedure.
  • the storage unit 120 stores a program and data for the operation of the cooperation manager 100 using a storage medium such as a hard disk or a semiconductor memory.
  • the data stored by the storage unit 120 may include, for example, interference control information received from each of the control target base stations and transmission parameters determined as a result of the interference control. These data are referred to in the handover determination described later. Further, when the cooperation manager 100 also executes inflow control, the storage unit 120 can also store information for inflow control.
  • Control Unit 130 controls the overall operation of the cooperation manager 100 using a processor such as a CPU (Central Processing Unit) or a DSP (Digital Signal Processor).
  • a processor such as a CPU (Central Processing Unit) or a DSP (Digital Signal Processor).
  • the control unit 130 includes an interference control unit 132 and a determination unit 134.
  • the interference control unit 132 performs interference control for a wireless communication system including a plurality of base stations and a plurality of terminal devices.
  • the interference control unit 132 may avoid the occurrence of interference in the system by controlling the antenna beam of at least one base station or at least one terminal device. More specifically, for example, the interference control unit 132 collects interference control information from each of the control target base stations via the network communication unit 110.
  • the interference control information may include position information and antenna configuration information about each base station and a terminal device connected to each base station.
  • the antenna configuration information may include information identifying the number of antennas and available beam patterns.
  • the interference control unit 132 determines the antenna beam to be used by each base station based on the collected location information so that the antenna beam is not directed to a potential interfered node (for example, a terminal device connected to a neighboring cell). Determine the beam pattern. Then, the interference control unit 132 notifies the base station of the determined beam pattern to be used by transmitting an interference control message via the network communication unit 110.
  • a potential interfered node for example, a terminal device connected to a neighboring cell.
  • the interference control unit 132 may avoid the occurrence of interference in the system by controlling the transmission power of at least one base station or at least one terminal device. More specifically, for example, the interference control unit 132 collects interference control information from each of the control target base stations via the network communication unit 110.
  • the interference control information may include position information and maximum transmission power information for each base station and a terminal device connected to each base station.
  • the interference control unit 132 determines the transmission power to be used by each base station based on the collected position information so that the wireless signal to be transmitted is not received at a level exceeding the allowable level at a potential interfered node.
  • the interference control part 132 notifies the determined transmission power which should be used to each base station by transmitting an interference control message via the network communication part 110.
  • FIG. Note that the interference control unit 132 may perform both the antenna beam control and the transmission power control described above.
  • the determination unit 134 executes handover determination for the terminal device instead of the serving base station of each terminal device.
  • the determination unit 134 includes a determination index based on a measurement report generated by the terminal device by including the influence of interference control performed by the interference control unit 132 after the measurement is performed by the terminal device. Correct and use the corrected decision index.
  • the measurement report is typically transferred to the coordination manager 100 by the serving base station of each terminal device.
  • (3-2-1) Handover Determination Based on RSRP For example, when reference signal received power (RSRP) is used as a determination index, the determination unit 134 determines the determination index RSRP S for the serving cell and the i th neighboring cell.
  • the determination index RSRP Ti can be corrected as in the following formulas (2) and (3).
  • RSRP S ' is a modified reference signal received power of the serving cell
  • G S is the correction term for the serving cell
  • RSRP Ti ′ is a corrected reference signal reception power for the i-th neighboring cell
  • G Ti is a modified term for the i-th neighboring cell. Equations (2) and (3) indicate that these correction terms are offset values applied to RSRP.
  • a determination formula for determining that the handover should be executed with the base station of the i-th neighboring cell as the target base station can be expressed as follows.
  • the correction terms G S and G Ti may be terms representing the influence of assumed antenna beam control, for example, as in the following equations (5) and (6). .
  • Equation (5) and Equation (6) uses as arguments the azimuth and elevation angles in the direction from the base station to the terminal device, and the distance from the base station to the terminal device. This is a function with the amount of change in beam steering gain as a return value.
  • One or more arguments of the function dG may be omitted.
  • FIG. 11A and FIG. 11B are explanatory diagrams for explaining correction terms representing the influence of antenna beam control.
  • the beam steering gain for each azimuth is graphed for a set of beam patterns that can be used by a base station.
  • a beam pattern Bm11 indicated by a bold line is a beam pattern assumed to be used as a result of interference control.
  • the azimuth angle in the direction from the base station toward the terminal device that is the target of the handover determination is ⁇ 1 .
  • the beam steering gain for the base station and the terminal device pair is determined to be equal to G ( ⁇ 1 ) from the thick line graph of the beam pattern Bm11.
  • G ⁇ 1
  • the beam steering gain for each azimuth is graphed for another set of beam patterns available by a base station.
  • a beam pattern Bm21 indicated by a bold line is a beam pattern assumed to be used as a result of interference control.
  • the azimuth angle in the direction from the base station toward the terminal device that is the target of the handover determination is ⁇ 2 .
  • the beam steering gain for the base station and the terminal device pair is determined to be equal to G ( ⁇ 2 ) from the thick line graph of the beam pattern Bm21.
  • the storage unit 120 stores in advance a corresponding beam steering gain graph for each set of beam patterns that can be used by each base station.
  • the determination unit 134 identifies a graph of a beam pattern that is assumed to be used by the serving base station from among the stored graphs. And the determination part 134 can determine a beam steering gain based on the argument calculated from the positional information on a terminal device and a serving base station, and the specified said graph.
  • the value of the correction term G S is the beam steering gain may correspond to the amount of change from the time of measurement.
  • the determination unit 134 identifies a graph of a beam pattern that is assumed to be used by the i-th candidate of the target base station among the stored graphs.
  • the determination unit 134 can determine the beam steering gain based on the argument calculated from the position information of the i-th candidate of the terminal device and the target base station and the specified graph.
  • the value of the correction term G Ti can correspond to the amount of change of this beam steering gain from the time of measurement.
  • the correction term G S and the correction term G Ti represent the influence of the assumed transmission power control as in the following equations (7) and (8). It may be a term.
  • the parameter dP S of the right side of the equation (7) is the transmit power of the serving base station, indicating the amount of change from the time of measurement.
  • the parameter dP Ti on the right side of Equation (8) represents the amount of change in the transmission power of the i-th candidate of the target base station from the time of measurement.
  • the determination unit 134 calculates the value of the determination index described in the measurement report by including the correction term determined using the expressions (5) and (6) or the expressions (7) and (8). Correct the value and substitute the corrected value into the judgment formula (4). Then, when the determination formula (4) is satisfied, the determination unit 134 can determine the i-th candidate for the target base station as a new connection destination of the terminal device. Note that, when a plurality of target base station candidates satisfy the determination formula (4), the base station whose corrected determination index shows the best value can be selected as the target base station. If none of the candidates satisfies the determination formula (4), the determination unit 134 may determine not to execute the handover.
  • the determination unit 134 may use a reception quality index calculated based on the reference signal reception power as a determination index for handover determination.
  • An example of the reception quality indicator is reference signal received quality (RSRQ).
  • RSRQ may be calculated from RSRP according to the following equation:
  • the symbol X represents T i mean S, or i-th candidate target base station refers to the serving base station.
  • the determination unit 134 determines the determination index RSRQ S for the serving cell and the determination index RSRQ Ti for the i-th neighboring cell by the following equations (10) and (11). Can be modified as follows.
  • the determination formula for determining the handover can be expressed as follows.
  • the correction term is included in the calculation of the reception quality index RSRQ used as the determination index.
  • the parameters c Ti , c S and d S in the determination formula (12) are weight parameters corresponding to the weight parameters a Ti , a S and b S in the determination formulas (1) and (4).
  • a correction term may be included as in the following equation.
  • the correction term is included in the calculation of the reception quality index RSRQ used as the determination index. Note that, depending on the resource allocation status or communication history in each base station, the received power of a cell in which no traffic occurs may be excluded from the accumulated received power on the right side of Equation (13).
  • SINR Signal to Interference plus Noise Ratio
  • SINR S ′ which is a modified decision index for the serving cell
  • SINR Ti ′ which is a corrected determination index for the i-th neighboring cell
  • Equation (14) and Equation (15) represents thermal noise.
  • the received power of the cell in which no traffic occurs is excluded from the integration of the received power (interference power) on the right side of Equation (14) and Equation (15). Also good.
  • Equation (14) and Equation (15) can be rewritten as follows.
  • Equation (14 ′) and Equation (15 ′) represent a set of cells that are predicted not to generate traffic, respectively.
  • the set ⁇ s and the set ⁇ t may be determined by a device that performs handover determination.
  • a determination formula for determining a handover can be expressed as follows.
  • the correction term is included in the calculation of the reception quality index SINR used as the determination index.
  • the parameters e Ti , e S and f S in the determination formula (16) are weight parameters corresponding to the weight parameters a Ti , a S and b S in the determination formulas (1) and (4). It should be noted that as the reception quality indexes SINR S ′ and SINR Ti ′ in Equation (16), how are the indexes calculated according to Equation (14) or Equation (14 ′) and Equation (15) or Equation (15 ′)? They may be combined.
  • the determination index used for handover determination may represent a throughput calculated using an index included in the measurement report.
  • the determination unit 134 includes the influence of the interference control executed by the interference control unit 132 when calculating the estimated value of the throughput after the handover.
  • Throughput TP S of a terminal device for the serving cell may be calculated by reference to the communication history of the terminal device.
  • the throughput estimated value TP Ti for the i-th neighboring cell can be theoretically calculated according to Shannon-Hartley's theorem, for example, as in the following equation (17).
  • N RB Ti represents the total number of radio resources (for example, the number of resource blocks in the LTE scheme) that the i-th neighboring cell can allocate per unit time.
  • N UE Ti represents the number of terminal devices connected to the i-th neighboring cell at that time.
  • B RB represents the bandwidth of one allocation unit of radio resources.
  • SINR Ti ′ can be calculated by adding a correction term according to equation (15) above.
  • a determination formula for determining a handover can be expressed as follows.
  • the parameter g S in the determination formula (18) is a weight parameter corresponding to the weight parameter b S in the determination formulas (1) and (4).
  • Formula (17) is a calculation formula that handles Shannon capacity as an expected value of throughput.
  • the data size that can be transmitted on a radio resource allocated to a certain terminal device is a modulation and coding scheme (MCS: Modulation) that is selected according to the channel quality indicated by CQI (Channel Quality Indicator). and Coding Scheme). Therefore, instead of the equation (17), the throughput can be estimated as follows.
  • MCS Modulation
  • CQI Channel Quality Indicator
  • Coding Scheme Coding Scheme
  • DS Is a function having the channel quality SINR Ti and the estimated allocation amount of radio resources as arguments and the transmittable data size as a return value.
  • Equations (17) and (19) are based on the assumption that allocatable radio resources are evenly distributed to all users.
  • the equations (17) and (19) can be rewritten as the following equations (20) and (21), respectively.
  • the viewpoint of the amount of radio resource allocation can be added to the handover determination.
  • the index representing the data size that can be transmitted may be calculated by multiplying the index representing the throughput by the amount of resource time that can be allocated. Then, handover determination may be performed based on a comparison of transmittable data sizes between the serving cell and neighboring cells. Also, when calculating SINR values to derive throughput or data size, cells that do not generate traffic may or may not be excluded from the calculation.
  • the determination unit 134 selects a target base station for handover using a determination index to be corrected according to any of the determination formulas described above.
  • the determination unit 134 transmits a handover request to the selected target base station via the network communication unit 110.
  • the target base station that has received the handover request can execute admission control according to some criteria.
  • the determination unit 134 may further determine whether the selected target base station should accept the terminal device connection. That is, in this case, the cooperation manager 100 executes inflow control instead of the target base station.
  • the determination unit 134 may determine that the target base station should accept the connection of the terminal device when the following equation (22) is satisfied.
  • N UE, Ti represents the number of terminal devices connected to the target base station at that time.
  • N UE, MAX, Ti represent the maximum value (threshold value) of the number of terminal devices connectable to the target base station.
  • the determination unit 134 determines that the target base station should accept the connection of the terminal device when the identifier of the terminal device is included in the pre-stored whitelist. You may judge. Further, the determination unit 134 may determine that the target base station should accept the connection of the terminal device when the identifier of the terminal device is not included in the previously stored blacklist.
  • the terminal device identifier may be, for example, a telephone number, IMSI (International Mobile Subscriber Identity), or S-TMSI (SAE Temporary Mobile Subscriber Identity).
  • the white list or black list may be defined on a system basis or may be defined on a cell basis. For example, a closed-type small cell may maintain a list of identifiers of terminal devices that are allowed to be connected.
  • other information such as the terminal device type, contract type, or price plan may be used for determining whether or not connection is possible.
  • Information that can be used for inflow control may be collected from each base station by the cooperation manager 100 together with interference control information. Instead, some information may be registered with the cooperation manager 100 by an operator and distributed from the cooperation manager 100 to each base station.
  • the determination unit 134 may determine whether or not the terminal device can be connected to the target base station according to the following equation (23) instead of the above-described equation (22).
  • N UE_NORMAL Ti represents the number of non-M2M terminals currently connected to the target base station
  • N UE_M2M Ti represents the number of M2M terminals currently connected to the target base station.
  • the parameter w is a weight parameter that is multiplied by the number N UE_M2M, Ti of the number of M2M terminals.
  • An M2M (Machine To Machine) terminal refers to a wireless communication terminal of a type that is not carried by a user but is installed in a device such as a vending machine, a smart meter, or a cash register at a store.
  • the amount of traffic transmitted / received by the M2M terminal is generally smaller than the amount of traffic transmitted / received by the non-M2M terminal (for example, for video content or audio content). Therefore, as shown in Equation (23), the determination unit 134 calculates the number of accommodated terminals of the target base station using different weights depending on the type of the terminal, and uses the calculated accommodated number of terminals as a threshold value N UE, MAX, Ti. Compare with The weight parameter w is typically set to a value smaller than 1. According to such inflow control, the apparent number of accommodated terminals in a cell can be increased.
  • the determination unit 134 sets the number of accommodated terminals counted for each type of terminal device as the following formula (24) and formula (25), and a threshold value N defined separately for each type. By comparing with UE_NORMAL, MAX, Ti and NUE_M2M, MAX, Ti , it may be determined whether the terminal device can be connected to the target base station.
  • inflow control When inflow control is executed by the target base station, messages are exchanged between the cooperation manager 100 and the target base station. In particular, when the connection of the terminal device is rejected as a result of the inflow control, the exchange of messages causes a waste of resources and time. On the other hand, when the cooperation manager 100 also executes inflow control instead of the target base station, messages exchanged can be reduced, and waste of resources and time can be reduced.
  • the determination unit 134 may transmit a handover command to the target base station.
  • the handover command may be a compulsory message instructing acceptance of the handover, unlike a handover request that is an existing message. By transmitting a handover command that is distinguished from a handover request, the target base station can recognize that it is not necessary to execute inflow control again.
  • FIG. 12 is a flowchart illustrating an example of the flow of interference control processing that can be executed by the cooperation manager 100.
  • the interference control unit 132 collects interference control information from one or more base stations to be controlled via the network communication unit 110 (step S10).
  • the interference control unit 132 determines transmission parameters to be used by at least one base station or terminal device so that harmful interference is avoided in the system (step S20). ).
  • the transmission parameter determined here may be a beam pattern or transmission power of an antenna beam, for example.
  • the determined transmission parameter is stored in the storage unit 120.
  • the interference control unit 132 notifies the corresponding base station of the determined transmission parameter by transmitting an interference control message via the network communication unit 110 (step S30).
  • the determination unit 134 waits for reception of a measurement report generated by the terminal device and transferred by the serving base station of the terminal device (step S40).
  • the determination unit 134 executes a cooperative determination process described later (step S50). On the other hand, when the measurement report is not received, the process returns to step S10.
  • FIG. 13A is a flowchart illustrating a first example of the flow of the cooperation determination process that can be executed by the cooperation manager 100.
  • the cooperation manager 100 executes a handover determination.
  • Inflow control is performed by the target base station.
  • the determination unit 134 corrects the determination index based on the measurement report by including the influence of interference control executed after the measurement is performed (step S51).
  • the determination index here may be any one of RSRP, RSRQ, SINR, and throughput described above or a combination of two or more.
  • the determination unit 134 selects one candidate indicating the best determination index (step S53).
  • the determination unit 134 determines whether the corrected serving cell and target cell determination indexes satisfy the determination formula (step S55).
  • the determination formula here may be any one of the above-described determination formulas (4), (12), (16), and (18), or may be another determination formula.
  • the determination unit 134 determines not to execute the handover (step S57). On the other hand, when the corrected determination index satisfies the determination formula, the determination unit 134 transmits a handover request to the base station of the selected target cell (step S59).
  • the determination unit 134 transmits a handover command to the serving base station via the network communication unit 110 (step S63).
  • the determination unit 134 excludes the target cell selected in step S53 from the candidates (step S65). When there are remaining candidates for the target cell (step S67, the processing from step S53 onward is repeated for the remaining candidates. When there are no remaining candidates, the determination unit 134 executes the handover. It decides not to do (step S57).
  • FIG. 13B is a flowchart illustrating a second example of the flow of the cooperation determination process that can be executed by the cooperation manager 100.
  • the cooperation manager 100 performs handover determination and inflow control.
  • the determination unit 134 corrects the determination index based on the measurement report by including the influence of the interference control executed after the measurement is performed (step S51).
  • the determination index here may be any one of RSRP, RSRQ, SINR, and throughput described above or a combination of two or more.
  • the determination unit 134 selects one candidate indicating the best determination index (step S53).
  • the determination unit 134 determines whether the corrected serving cell and target cell determination indexes satisfy the determination formula (step S55).
  • the determination formula here may be any one of the above-described determination formulas (4), (12), (16), and (18), or may be another determination formula.
  • the determination unit 134 determines not to execute the handover (step S57).
  • the determination unit 134 performs the inflow control for the selected target cell (step S60). For example, the determination unit 134 may compare the number of terminal devices connected to the target base station with a threshold, as shown in the equations (22), (23), (24), or (25). Further, the determination unit 134 may collate the identifier of the terminal device with a list of allowed or rejected identifiers.
  • the determination unit 134 determines that the target cell should accept the terminal device as a result of the inflow control, the determination unit 134 transmits a handover command to the target base station or the serving base station via the network communication unit 110 (step S64).
  • the determining unit 134 excludes the target cell selected in step S53 from the candidates (step S65). When there are remaining candidates for the target cell (step S67), the processes after step S53 are repeated for the remaining candidates. If there are no remaining candidates, the determination unit 134 determines not to execute the handover (step S57).
  • Example of base station configuration> In this section, a configuration of a base station that is a control target by the cooperation manager 100 will be described.
  • the base station that delegates the handover determination to the cooperation manager 100 transfers the received measurement report to the cooperation manager 100 without executing the handover determination by itself. Then, the base station performs a handover procedure according to the determination of the cooperation manager 100.
  • FIG. 14 is a block diagram illustrating an example of the configuration of the base station 200 according to an embodiment.
  • the base station 200 includes a wireless communication unit 210, a network communication unit 220, a storage unit 230, and a communication control unit 240.
  • the wireless communication unit 210 is a wireless communication interface (or wireless transceiver) that performs wireless communication with one or more terminal devices.
  • the wireless communication unit 210 may typically include an antenna, an RF (Radio Frequency) circuit, and a baseband processor.
  • the wireless communication unit 210 encodes and modulates the transmission signal using a modulation and coding scheme selected according to the quality of the downlink channel.
  • Radio communication section 210 demodulates and decodes the received signal using a modulation and coding scheme selected according to the quality of the uplink channel.
  • the transmission power of the radio signal transmitted from the radio communication unit 210 is set by the communication control unit 240 described later.
  • the transmission power of the radio signal received by the radio communication unit 210 is instructed to the terminal device by the communication control unit 240.
  • the wireless communication unit 210 may have a plurality of antennas capable of beam steering. In that case, the beam pattern of the antenna beam of the wireless communication unit 210 can also be set by the communication control unit 240.
  • the network communication unit 220 is a communication interface connected to the core network 16 and other base stations illustrated in FIG.
  • the network communication unit 220 transfers uplink traffic received by the wireless communication unit 210 to the core network 16. Further, the network communication unit 220 receives downlink traffic to be transmitted to the terminal device from the core network 16.
  • the network communication unit 220 may also exchange messages with the cooperation manager 100 that may be implemented on a control node in the core network 16 or on another base station.
  • the cooperation manager 100 is a communication control device that performs interference control.
  • the storage unit 230 stores a program and data for the operation of the base station 200 using a storage medium such as a hard disk or a semiconductor memory.
  • the data stored in the storage unit 230 includes, for example, position information, antenna configuration information, maximum transmission power information, rate control information, channel quality information, resources for each of the base station 200 and each terminal device connected to the base station 200.
  • One or more of allocation information and communication history information may be included. At least a part of these pieces of information can be provided to the cooperation manager 100 as interference control information.
  • the communication control unit 240 controls the overall operation of the base station 200 using a processor such as a CPU or DSP. For example, the communication control unit 240 schedules communication resources for communication with a terminal device connected to the base station 200, and generates resource allocation information. Also, the communication control unit 240 selects a modulation and coding scheme according to the channel quality of the radio channel with the terminal device. In addition, the communication control unit 240 sets the downlink transmission power to be used by the wireless communication unit 210 and the uplink transmission power to be used by each terminal apparatus. The communication control unit 240 sets a beam pattern to be used when beam steering is possible in the wireless communication unit 210.
  • a processor such as a CPU or DSP.
  • the communication control unit 240 schedules communication resources for communication with a terminal device connected to the base station 200, and generates resource allocation information. Also, the communication control unit 240 selects a modulation and coding scheme according to the channel quality of the radio channel with the terminal device. In addition, the communication control unit 240 sets the downlink transmission power
  • the communication control unit 240 may set the transmission power described in the interference control message in the wireless communication unit 210. Good. Further, the communication control unit 240 may instruct the terminal device to use the transmission power described in the interference control message. Further, the communication control unit 240 may set the beam pattern described in the interference control message in the wireless communication unit 210 or instruct the terminal device. Thereby, cooperative interference control between cells can be realized.
  • the communication control unit 240 transfers the measurement report to the coordination manager 100 and causes the coordination manager 100 to execute the handover determination.
  • the measurement report transferred here may include a determination index used for handover determination.
  • the cooperation manager 100 corrects the determination index by including the influence of the interference control executed after the measurement is performed by the terminal device, and performs handover determination for the terminal device using the corrected determination index.
  • the communication control unit 240 may mask or delete identification information for identifying each terminal device from the viewpoint of privacy protection. In that case, the communication control unit 240 temporarily stores the association between the transferred report and the terminal device that generated the report in the storage unit 230, and uses this association to determine which terminal receives the handover command received thereafter. You may identify whether it is for the device.
  • the communication control unit 240 can execute the handover procedure as the source base station according to the determination of the cooperation manager 100 after transferring the measurement report to the cooperation manager 100. For example, after the handover command is transmitted to the terminal device, the communication control unit 240 transfers the downlink traffic addressed to the terminal device to the designated target base station.
  • the communication control unit 240 executes the inflow control in response to the reception of the handover request when the cooperation manager 100 does not execute the inflow control. May be. Further, when the cooperation manager 100 selects the base station 200 as the target base station and the inflow control has already been executed by the cooperation manager 100, the communication control unit 240 receives a handover command from the cooperation manager 100. Accordingly, the handover procedure as the target base station may be executed.
  • FIG. 15 is a flowchart illustrating an example of a flow of measurement report transfer processing executed by the base station 200 according to an embodiment.
  • the wireless communication unit 210 receives a measurement report from a terminal device connected to the base station 200 (step S210).
  • the communication control unit 240 transfers the measurement report received by the wireless communication unit 210 to the cooperation manager 100 via the network communication unit 220 (step S220).
  • the communication control unit 240 waits for reception of a handover command from the cooperation manager 100 or another base station (step S230).
  • the communication control part 240 will perform the hand-over procedure as a source base station, if a hand-over command is received (step S240).
  • FIG. 16 is a block diagram illustrating an example of a configuration of the terminal device 300 according to an embodiment.
  • the terminal device 300 includes a wireless communication unit 310, a storage unit 320, and a control unit 330.
  • the radio communication unit 310 is a radio communication interface (or radio transceiver) that performs radio communication with a base station.
  • the wireless communication unit 310 may typically include an antenna, an RF circuit, and a baseband processor.
  • Radio communication section 310 encodes and modulates a transmission signal with a modulation and coding scheme according to the quality of the uplink channel, and demodulates and decodes a received signal with a modulation and coding scheme according to the quality of the downlink channel. .
  • the transmission power of the radio signal transmitted from the radio communication unit 310 is set by the communication control unit 334 described later.
  • the wireless communication unit 310 may have a plurality of antennas capable of beam steering. In that case, the beam pattern of the antenna beam of the wireless communication unit 310 can also be set by the communication control unit 334.
  • the storage unit 320 stores a program and data for the operation of the terminal device 300 using a storage medium such as a hard disk or a semiconductor memory.
  • the data stored by the storage unit 320 may include, for example, one or more of identification information, position information, antenna configuration information, and maximum transmission power information of the terminal device 300.
  • Control Unit 330 controls the overall operation of the terminal device 300 using a processor such as a CPU or DSP.
  • the control unit 330 includes an application unit 332 and a communication control unit 334.
  • the application unit 332 mounts an upper layer application.
  • the application unit 332 generates data traffic to be transmitted to the base station, and outputs the generated data traffic to the wireless communication unit 310.
  • the application unit 332 processes data traffic received by the wireless communication unit 310 from the base station.
  • the communication control unit 334 controls wireless communication executed by the wireless communication unit 310. For example, the communication control unit 334 causes the radio communication unit 310 to transmit a radio signal or receive a radio signal according to the resource allocation information received from the base station. Further, the communication control unit 334 sets the modulation and coding scheme selected by the base station according to the channel quality of the radio channel in the radio communication unit 310. Further, the communication control unit 334 sets the uplink transmission power to be used by the wireless communication unit 310 according to the power control command received from the base station. The communication control unit 334 sets a beam pattern to be used when the radio communication unit 310 can perform beam steering.
  • the communication control unit 334 executes measurement periodically or in response to an instruction from the serving base station.
  • the wireless communication unit 310 receives a reference signal transmitted from the serving base station and a reference signal transmitted from one or more neighboring base stations, and measures received power.
  • the communication control unit 334 generates a measurement report based on the received power measurement value.
  • the measurement report includes, in addition to the identification information of the terminal device, an indicator for the serving cell and one or more neighboring cells used for handover determination. Then, the communication control unit 334 transmits the generated measurement report from the wireless communication unit 310 to the serving base station.
  • the communication control unit 334 executes a handover procedure when the wireless communication unit 310 receives a handover command from the serving base station. Specifically, the communication control unit 334 acquires synchronization with the target base station by searching for a synchronization signal from the target base station, and performs wireless communication on the random access channel identified by referring to system information. The communication unit 310 transmits a random access signal to the target base station. If this random access is successful, the target base station becomes a serving base station of the terminal device 300 anew.
  • the cooperation manager 100 corrects the determination index for handover determination.
  • a correction term may be generated in the terminal device 300.
  • the communication control unit 334 is assumed to be formed by the antenna of the wireless communication unit 310 after measurement (or after handover). A correction term representing the effect of the beam may be generated. Then, the communication control unit 334 may include the value of the determination index to which the correction term is added, for example, as in the following Expression (26) and Expression (27), in the measurement report used for handover determination. .
  • RSRP S_MEAS is the measured reference signal received power for the serving cell
  • RSRP S_REP is the modified reference signal received power for the serving cell
  • G UE and S are terminal-specific correction terms for the serving cell.
  • RSRP Ti_MEAS is the measured reference signal received power for the i th neighbor cell
  • RSRP Ti_REP is the modified reference signal received power for the i th neighbor cell
  • G UE, Ti is the i th This is a terminal-specific correction term for neighboring cells. The reason that the terminal-specific correction term differs for each cell is because the positional relationship between the terminal and each base station is different.
  • the terminal-specific modified terms G UE, S and G UE, Ti may be terms representing the influence of beam steering, for example, as in the following Equation (28) and Equation (29).
  • Equation (28) and Equation (29) uses the azimuth and elevation angles in the direction from the terminal device to the base station, and the distance from the terminal device to the base station as arguments. This is a function with the amount of change in beam steering gain as a return value.
  • One or more arguments of the function dG may be omitted.
  • the communication control unit 334 may include both the determination index before correction and the correction term in the measurement report instead of adding the correction term to the determination index as shown in Expression (26) and Expression (27). In addition to the measurement report, the communication control unit 334 may cause the wireless communication unit 310 to transmit a message notifying the correction item to the serving base station.
  • the terminal-specific correction term may be calculated by the cooperation manager 100.
  • an interference control parameter for example, a beam pattern to be used by the terminal device 300
  • the interference control parameter Can is signaled from the cooperation manager 100 to the terminal device 300 via the serving base station, and the interference control parameter Can be used by the terminal device 300.
  • the correction terms of the equations (2) and (3) and the correction terms of the equations (26) and (27) may be used together.
  • FIG. 17 is a flowchart illustrating an example of a flow of measurement report processing executed by the terminal device 300 according to an embodiment.
  • the wireless communication unit 310 receives a reference signal transmitted in the serving cell and a reference signal transmitted in one or more neighboring cells, and measures received power for each cell (step S310). ).
  • the communication control unit 334 generates a measurement report based on the value of the received power measured by the wireless communication unit 310 (step S320). Furthermore, the communication control unit 334 determines whether to use a terminal-specific correction term in the handover determination (step S330).
  • the communication control unit 334 causes the radio communication unit 310 to transmit the measurement report generated in step S310 to the serving base station (step S340).
  • the communication control unit 334 is assumed to be formed by the antenna of the wireless communication unit 310 after measurement (or after handover to each candidate of the target base station). Correction terms representing the influence of the beam are respectively calculated (step S350). Then, the communication control unit 334 causes the calculated correction term to be included in the measurement report or transmitted separately from the radio communication unit 310 to the serving base station (step S360).
  • the communication control unit 334 waits for reception of a handover command from the serving base station (step S370). Then, when the handover command is received, the communication control unit 334 executes a handover procedure to the designated target base station (step S380).
  • the measurement report generated by the terminal device is transferred to the cooperation manager by the serving base station of the terminal device. Therefore, the cooperation manager can execute the handover determination in consideration of the influence of the interference control in a timely manner at the timing when the handover determination is required.
  • the terminal device may transmit a measurement report to the serving base station as in the existing handover procedure. Therefore, it is not necessary to modify the terminal device in order to implement the technology according to the present disclosure, and the above-described new mechanism can be applied to a terminal device that already exists in the market.
  • the determination index for the handover determination is corrected by including the correction term indicating the influence of the assumed antenna beam control. Is done. Therefore, a change in gain due to beam control that is difficult to predict for each terminal device or base station can be taken into account in handover determination.
  • the determination index for the handover determination is corrected by including the correction term indicating the influence of the assumed transmission power control. Is done. Therefore, a change in received power caused by transmission power control that is difficult for an individual terminal device or base station to predict can be taken into account in handover determination.
  • the correction term may be an RSRP offset value.
  • the correction term can be included in the handover determination by slightly changing the determination formula for the handover determination, so that the technique according to the present disclosure can be realized at a low cost.
  • the correction term may be included in the calculation of a reception quality indicator such as RSRQ or SINR calculated based on RSRP. In this case, it is possible to connect each terminal apparatus to a cell having an optimum channel quality by executing a handover determination that is more advanced than the case of using RSRP itself.
  • the influence of interference control may be included when calculating an estimated value of throughput after handover. In this case, the communication capacity of the entire system can be optimized.
  • the cooperation manager can also execute inflow control instead of the target base station. According to such a configuration, messages exchanged between the cooperation manager and the target base station candidates are reduced, so that waste of resources and time required for message exchange can be reduced.
  • the terminal-specific correction term of the determination index related to the measurement report used for the handover determination is changed in the terminal device after the measurement. Calculated to represent the effect of the antenna beam assumed to be formed. Then, the calculated terminal-specific correction term is included in the measurement report or transmitted to the serving base station separately from the measurement report. Accordingly, the cooperation manager (or serving base station) can execute the handover determination in consideration of the influence of beam steering in the terminal device. Thereby, the possibility that the optimum connection destination cell is selected can be further increased.
  • the coordination manager controls radio resources (eg, time, frequency, code, or space resources) allocated to each base station and each terminal in order to improve performance such as system capacity or throughput. Then, the coordination manager modifies the determination index based on the measurement report transferred from the serving base station by including the influence of radio resource control performed after the measurement is performed by the terminal device, A handover determination for the terminal apparatus can be executed using the determination index.
  • radio resources eg, time, frequency, code, or space resources
  • the series of control processing by each device described in this specification may be realized using any of software, hardware, and a combination of software and hardware.
  • the program constituting the software is stored in advance in a storage medium (non-transitory medium) provided inside or outside each device.
  • Each program is read into a RAM (Random Access Memory) at the time of execution and executed by a processor such as a CPU.
  • processing described using the flowchart in this specification does not necessarily have to be executed in the order shown in the flowchart. Some processing steps may be performed in parallel. Further, additional processing steps may be employed, and some processing steps may be omitted.
  • An interference control unit for performing interference control for a wireless communication system including a plurality of base stations and a plurality of terminal devices;
  • the determination index based on the measurement report generated by the first terminal device is corrected by including the influence of the interference control executed by the interference control unit after the measurement is performed by the first terminal device.
  • a communication control device comprising: (2) The communication control device according to (1), wherein the measurement report is transferred to the communication control device by a serving base station of the first terminal device.
  • the interference control unit controls an antenna beam of at least one base station or at least one terminal device, The determination unit corrects the determination index by including a correction term representing an influence of the control of the antenna beam;
  • the communication control device according to (1) or (2).
  • the interference control unit controls transmission power of at least one base station or at least one terminal device, The determination unit corrects the determination index by including a correction term representing an influence of the control of the transmission power.
  • the communication control apparatus according to any one of (1) to (3).
  • the determination index includes reference signal received power (RSRP),
  • the correction term is an offset value of the RSRP.
  • the communication control device according to (3) or (4).
  • the determination index includes a reception quality index calculated based on a reference signal received power (RSRP), The correction term is included in the calculation of the reception quality indicator.
  • the communication control device according to (3) or (4).
  • the determination index represents a throughput calculated using an index included in the measurement report,
  • the determination unit includes the influence of the interference control when calculating the estimated value of the throughput after handover,
  • the communication control apparatus according to any one of (1) to (4).
  • the determination unit further determines whether the target base station selected using the corrected determination index should accept the connection of the first terminal device, any one of (1) to (7) The communication control device according to item.
  • the determination unit determines that the target base station should accept the connection of the first terminal device, the determination unit transmits a message instructing acceptance of the handover to the target base station, (8) The communication control device according to 1.
  • the determination unit determines whether to accept the connection of the first terminal device by comparing the number of accommodated terminals of the target base station calculated using different weights according to the type of the terminal with a threshold.
  • (11) The determination unit determines whether to accept the connection of the first terminal device by comparing the number of accommodated terminals of the target base station counted for each type of terminal with a different threshold for each type.
  • a communication control method executed by a communication control device Performing interference control for a wireless communication system including a plurality of base stations and a plurality of terminal devices; Correcting the determination index based on the measurement report generated by the first terminal device by including the influence of the interference control executed after the measurement is performed by the first terminal device; Performing a handover determination for the first terminal device using the corrected determination index; Including a communication control method.
  • Wireless communication system Performing a handover determination for the first terminal device using the corrected determination index, Wireless communication system.
  • the control node is a node different from the plurality of base stations.
  • the control node is a node mounted on any of the plurality of base stations.
  • a communication unit that communicates with a communication control device that performs interference control for a wireless communication system including a plurality of base stations and a plurality of terminal devices; A control unit that transfers a measurement report generated by the first terminal device and used for handover determination to the communication control unit that executes the handover determination for the first terminal device to the communication unit; A base station comprising: (17) A wireless communication unit that transmits or receives a wireless signal using an antenna capable of beam steering; and Generate a measurement report used for handover decision, and A correction term representing the influence of an antenna beam assumed to be formed by the antenna after measurement is included in the measurement report or separately from the measurement report, and transmitted from the wireless communication unit to the serving base station.
  • a terminal device comprising: (18) A control unit that performs control of radio resources for a radio communication system including a plurality of base stations and a plurality of terminal devices; The determination index based on the measurement report generated by the first terminal device is corrected by including the influence of the control of the radio resource executed by the control unit after the measurement is performed by the first terminal device.
  • a determination unit that performs a handover determination for the first terminal device using the corrected determination index;
  • a communication control device comprising:
  • Communication control device (cooperation manager) DESCRIPTION OF SYMBOLS 110 Network communication part 120 Storage part 132 Interference control part 134 Judgment part 200 Base station 210 Wireless communication part 220 Network communication part 230 Storage part 240 Communication control part 300 Terminal device 310 Wireless communication part 320 Storage part 334 Communication control part

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】将来の制御の影響を考慮して最適な接続先セルを選択することを可能とすること。 【解決手段】複数の基地局と複数の端末装置とを含む無線通信システムのための干渉制御を実行する干渉制御部と、第1の端末装置により生成されるメジャメントレポートに基づく判定指標を、前記第1の端末装置によりメジャメントが行われた後に前記干渉制御部により実行される前記干渉制御の影響を算入することにより修正し、修正された前記判定指標を用いて前記第1の端末装置についてのハンドオーバ判定を実行する判定部と、を備える通信制御装置を提供する。

Description

通信制御装置、通信制御方法、無線通信システム、基地局及び端末装置
 本開示は、通信制御装置、通信制御方法、無線通信システム、基地局及び端末装置に関する。
 近年の無線通信環境は、データトラフィックの急増を原因として、周波数リソースの枯渇化という問題に直面している。そこで、ネットワーク密度を高めてリソース効率を向上させるために、マクロセル及びスモールセルを含み得る複数のセルを重複させて配置するネットワーク構成が採用され得る。例えば、ヘテロジーニアス(Heterogeneous)ネットワークは、無線アクセス技術、セルサイズ又は周波数帯の異なる様々なセルが併存することにより形成されるネットワークである。
 しかし、複数のセルが重複する環境では、有害な干渉が発生し易い。そこで、有害な干渉を防止するために、個々の基地局又は端末装置により使用されるアンテナビームの方向又は送信電力などの送信パラメータを管理し及び制御する制御ノードを、システム内に配置する技術が提案されている(例えば、下記特許文献1参照)。こうした制御は、干渉の防止ではなく、システムのキャパシティ又はスループットなどの性能の向上のために行われることもある。
特開2011-091785号公報
 一般的に、端末装置が現在接続しているサービングセルにおいて無線チャネルの品質が悪化した場合、端末装置は、ハンドオーバ手続を実行することにより、接続先のセルを他のセルへ切り替える。端末装置がどのセルに接続すべきかは、端末装置から送信されるメジャメントレポートに含まれる指標に基づいて、サービング基地局が判定する。しかしながら、サービング基地局は、ハンドオーバ判定の時点で未だ実行されていない将来の制御の内容を知らない。そのため、将来の制御の影響までをも考慮した上での最適な接続先セルがサービング基地局により選択されない状況が生じ得る。
 従って、上述した不都合を解消し又は少なくとも緩和することのできる仕組みが提供されることが望ましい。
 本開示によれば、複数の基地局と複数の端末装置とを含む無線通信システムのための干渉制御を実行する干渉制御部と、第1の端末装置により生成されるメジャメントレポートに基づく判定指標を、前記第1の端末装置によりメジャメントが行われた後に前記干渉制御部により実行される前記干渉制御の影響を算入することにより修正し、修正された前記判定指標を用いて前記第1の端末装置についてのハンドオーバ判定を実行する判定部と、を備える通信制御装置が提供される。
 また、本開示によれば、通信制御装置により実行される通信制御方法であって、複数の基地局と複数の端末装置とを含む無線通信システムのための干渉制御を実行することと、第1の端末装置により生成されるメジャメントレポートに基づく判定指標を、前記第1の端末装置によりメジャメントが行われた後に実行される前記干渉制御の影響を算入することにより修正することと、修正された前記判定指標を用いて前記第1の端末装置についてのハンドオーバ判定を実行することと、を含む通信制御方法が提供される。
 また、本開示によれば、複数の基地局と複数の端末装置とを含む無線通信システムであって、前記無線通信システムは、前記無線通信システムのための干渉制御を実行する制御ノードを含み、前記制御ノードは、第1の端末装置により生成されるメジャメントレポートに基づく判定指標を、前記第1の端末装置によりメジャメントが行われた後に実行される前記干渉制御の影響を算入することにより修正し、修正された前記判定指標を用いて前記第1の端末装置についてのハンドオーバ判定を実行する、無線通信システムが提供される。
 また、本開示によれば、複数の基地局と複数の端末装置とを含む無線通信システムのために干渉制御を実行する通信制御装置と通信する通信部と、第1の端末装置により生成されハンドオーバ判定のために使用されるメジャメントレポートを、前記第1の端末装置について前記ハンドオーバ判定を実行する前記通信制御装置へ、前記通信部に転送させる制御部と、を備える基地局が提供される。
 また、本開示によれば、ビームステアリング可能なアンテナを用いて無線信号を送信し又は受信する無線通信部と、ハンドオーバ判定のために使用されるメジャメントレポートを生成し、及び、メジャメント後に前記アンテナにより形成されると想定されるアンテナビームの影響を表す修正項を、前記メジャメントレポートに含めて又は前記メジャメントレポートとは別に、前記無線通信部からサービング基地局へ送信させる、制御部と、を備える端末装置が提供される。
 また、本開示によれば、複数の基地局と複数の端末装置とを含む無線通信システムのための無線リソースの制御を実行する制御部と、第1の端末装置により生成されるメジャメントレポートに基づく判定指標を、前記第1の端末装置によりメジャメントが行われた後に前記制御部により実行される前記無線リソースの制御の影響を算入することにより修正し、修正された前記判定指標を用いて前記第1の端末装置についてのハンドオーバ判定を実行する判定部と、を備える通信制御装置が提供される。
 本開示に係る技術によれば、将来の制御の影響を考慮して最適な接続先セルを選択することが可能となる。
システムの概要について説明するための説明図である。 時間-周波数リソースの構成の一例について説明するための説明図である。 既存のハンドオーバ手続の流れの一例を示すシーケンス図である。 協調マネージャの第1の配置シナリオについて説明するための説明図である。 図4の第1の配置シナリオに関連する通信制御処理の流れの第1の例を示すシーケンス図である。 図4の第1の配置シナリオに関連する通信制御処理の流れの第2の例を示すシーケンス図である。 協調マネージャの第2の配置シナリオについて説明するための説明図である。 図6の第2の配置シナリオに関連する通信制御処理の流れの第1の例を示すシーケンス図である。 図6の第2の配置シナリオに関連する通信制御処理の流れの第2の例を示すシーケンス図である。 図6の第2の配置シナリオに関連する通信制御処理の流れの第3の例を示すシーケンス図である。 ターゲット基地局が制御対象外である場合の通信制御処理の流れの一例を示すシーケンス図である。 ソース基地局が制御対象外である場合の通信制御処理の流れの一例を示すシーケンス図である。 ローカライズドネットワークの制御に関連する通信制御処理の流れの第1の例を示すシーケンス図である。 ローカライズドネットワークの制御に関連する通信制御処理の流れの第2の例を示すシーケンス図である。 ローカライズドネットワークの制御に関連する通信制御処理の流れの第3の例を示すシーケンス図である。 一実施形態に係る協調マネージャの構成の一例を示すブロック図である。 アンテナビームの制御の影響を表す修正項について説明するための第1の説明図である。 アンテナビームの制御の影響を表す修正項について説明するための第2の説明図である。 一実施形態に係る干渉制御処理の流れの一例を示すフローチャートである。 一実施形態に係る協調判定処理の流れの第1の例を示すフローチャートである。 一実施形態に係る協調判定処理の流れの第2の例を示すフローチャートである。 一実施形態に係る基地局の構成の一例を示すブロック図である。 一実施形態に係るメジャメントレポート転送処理の流れの一例を示すフローチャートである。 一実施形態に係る端末装置の構成の一例を示すブロック図である。 一実施形態に係るメジャメントレポート処理の流れの一例を示すフローチャートである。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 また、以下の順序で説明を行う。
  1.システムの概要
  2.協調マネージャの導入
  3.協調マネージャの構成例
   3-1.装置の構成例
   3-2.処理の流れ
  4.基地局の構成例
   4-1.装置の構成例
   4-2.処理の流れ
  5.端末装置の構成例
   5-1.装置の構成例
   5-2.変形例
   5-3.処理の流れ
  6.まとめ
 <1.システムの概要>
 まず、図1~図3を用いて、システムの概要を説明する。図1は、本開示に係る技術が適用可能な一例としての無線通信システム1を示している。図1を参照すると、無線通信システム1は、三角形のマークで示される複数の基地局と、丸形のマークで示される複数の端末装置とを含む。
 例えば、基地局10aは、セル11a内の端末装置へ無線通信サービスを提供するマクロセル基地局である。基地局10bは、セル11b内の端末装置へ無線通信サービスを提供するマクロセル基地局である。基地局10cは、セル11c内の端末装置へ無線通信サービスを提供するマクロセル基地局である。基地局10a、10b及び10cは、それぞれコアネットワーク(CN)16と接続される。これらマクロセル基地局は、LTE(Long Term Evolution)方式又はLTE-A(LTE-Advanced)方式に従って動作するeNB(evolved Node B)であってもよく、又は他の無線通信方式に従って動作する基地局(例えば、WiMAX方式の基地局、無線LAN(Local Area Network)方式のアクセスポイントなど)であってもよい。
 基地局12aは、セル13a内の端末装置へ無線通信サービスを提供するスモールセル基地局である。基地局12aは、基地局10aを介してコアネットワーク16と接続される。なお、スモールセル基地局は、マクロセル基地局ではなくパケットデータネットワーク(PDN)17を介してコアネットワーク16と接続されてもよい。本明細書において、スモールセルは、フェムトセル、ナノセル、ピコセル及びマイクロセルなどを含む概念である。スモールセル基地局は、(例えば、小型のフェムトセル基地局のような)基地局専用の装置であってもよい。その代わりに、スモールセル基地局は、モバイルルータ機能又はリレー機能を有する端末装置であってもよい。スモールセルにおいて形成される無線ネットワークを、ローカライズドネットワークともいう。スモールセル基地局がマクロセル基地局又はその他の制御ノードと接続するためのリンクを、バックホールリンクという。
 端末装置15は、セル11a内に位置し、基地局10aに接続することができる。端末装置15は、LTE方式又はLTE-A方式に従って動作するUE(User Equipment)であってもよく、又は他の無線通信方式に従って動作する移動端末であってもよい。端末装置15が基地局10aに接続する場合、基地局10aは端末装置15のサービング基地局であり、セル11aは端末装置15のサービングセルである。サービング基地局は、個々の端末装置について、スケジューリング、送信電力制御、ビーム制御及びレート制御などの様々な制御を実行する。図1の例では、端末装置15は、セル11b内に位置し、基地局10bに接続することもできる。また、端末装置15は、セル13a内に位置し、基地局12aに接続することもできる。
 基地局10aが端末装置15のサービング基地局である場合、端末装置15は、周期的に又は基地局10aからの要求に応じて、周辺の基地局からの無線チャネルの品質を測定してメジャメントレポートを生成し、生成したメジャメントレポートを基地局10aへ送信する。メジャメントレポートは、端末装置15の接続先セルを他のセルへ切り替えるべきかの判定、即ちハンドオーバ判定のために使用される判定指標を含む。メジャメントレポートに含まれる判定指標の典型的な例は、セルごとに測定されるリファレンス信号受信電力(RSRP:Reference Signal Received Power)である。
 図2は、一例としてのLTEシステムにおける時間-周波数リソースの構成の一例を示している。図2の上部には、10msecの長さを有する1つの無線フレーム(radio frame)が示されている。1つの無線フレームは、それぞれ1msecの長さを有する10個のサブフレームから構成される。1つのサブフレームは、2つの0.5msスロットを含む。1つの0.5msスロットは、通常、時間方向に7個(拡張サイクリックプレフィクスが使用される場合には6個)のOFDMシンボルを含む。リソースエレメントは、1つのOFDMシンボルと1本のサブキャリアとを含む時間-周波数リソースを指す。また、リソースブロックは、1つの0.5msスロットと12本のサブキャリアとにより構成される時間-周波数リソースを指す。通信リソースは、1つ以上のリソースブロックの単位でスケジューリングされる。FDD(Frequency Division Duplex)システムのダウンリンクチャネルにおいて、各リソースブロックの0番目のシンボル及び4番目のシンボルには、6サブキャリア分の周波数間隔でセル固有リファレンス信号(CRS:Cell-specific Reference Signal)が配置される。MIMO(Multi Input Multi Output)送信が行われる場合には、CRSの配置はアンテナごとにオフセットされ得る(図示せず)。なお、TDD(Time Division Duplex)システムのダウンリンクサブフレームにも同様にCRSが配置され得る。
 通常、メジャメントレポートは、CRSを受信することにより測定されるRSRPなどの指標を示す。しかしながら、以下に示すようなダウンリンクの他の種類のリファレンス信号がメジャメントレポートを生成するために使用されてもよい:
  1)DMRS(Demodulation Reference Signal) … UE固有リファレンス信号とも呼ばれる、個々の端末装置に割り当てられたリソースブロック内に配置されるリファレンス信号。ダウンリンクデータを復号する際のチャネル推定のために使用される。
  2)MBSFNリファレンス信号 … MBSFN(MBMS Single Frequency Network)において使用される。
  3)PRS(Positioning Reference Signal) … UEの位置を推定するために使用される。
  4)CSIRS(Channel State Information Reference Signal) … 主にダウンリンクのチャネル状態情報(CSI)を生成するために使用される。
 なお、アップリンクのリファレンス信号は、以下に示すものを含み得る:
  1)DMRS(Demodulation Reference Signal) … アップリンクデータを復号する際のチャネル推定のために使用される。
  2)SRS(Sounding Reference Signal) … 主にアップリンクのチャネル状態を測定するために使用される。
 図3は、既存のハンドオーバ手続の流れの一例を示すシーケンス図である。図3に示したシーケンスには、端末装置15、基地局10a及び基地局10bが関与する。なお、ハンドオーバの文脈では、ハンドオーバ前のサービング基地局をソース基地局、ハンドオーバ後のサービング基地局をターゲット基地局という。図3の例では、基地局10aがソース基地局であり、基地局10bがターゲット基地局である。
 まず、端末装置15は、この時点のサービング基地局である基地局10aから送信されるリファレンス信号、及び基地局10bを含む1つ以上の周辺基地局から送信されるリファレンス信号を受信し、メジャメントを実行する(ステップS2)。そして、端末装置15は、メジャメント結果を示す判定指標を含むメジャメントレポートを基地局10aへ送信する(ステップS4)。
 メジャメントレポートを受信した基地局10aは、ハンドオーバ判定を実行する(ステップS8)。一例として、サービングセルについての判定指標RSRP及びi番目の周辺セルについての判定指標RSRPTiが次の判定式(1)を満たす場合、基地局10aは、端末装置15がi番目の周辺セルの基地局をターゲット基地局としてハンドオーバを実行すべきであると判定し得る。なお、判定指標の値は、デシベル値であってもリニア値であってもよい。
Figure JPOXMLDOC01-appb-M000001
 判定式(1)において、重みパラメータaTi及びaは、セル種別に関連付けられる重みを表す。例えば、ヘテロジーニアスネットワークにおいて、スモールセルの重みパラメータの値をマクロセルよりも大きく設定することにより、端末装置をスモールセルへ優先的に接続させることができる。重みパラメータbは、サービングセルについての判定指標に付加される重みを表し、セルエッジ近傍に位置する端末装置について過剰に頻繁なハンドオーバが発生することを防止する役割を有する。これら重みパラメータは、通常は正の値を有する。重みパラメータの値が大きいほど、関連付けられるセルが接続先として選択される可能性が高まる。
 ハンドオーバ判定において基地局10bがターゲット基地局として選択された場合、基地局10aは、ハンドオーバ要求(Handover Request)を基地局10bへ送信する(ステップS10)。基地局10bは、ハンドオーバ要求を受信すると、流入制御(Admission Control)を実行することにより、端末装置15を受け入れるべきかを判定する(ステップS12)。例えば、基地局10bは、既に接続済みの端末の数をキャパシティ値(接続可能な端末の数)と比較し、又は提供可能なスループットを端末装置15の要求スループットと比較することにより、端末装置15を受け入れるべきかを判定してもよい。基地局10bは、端末装置15を受け入れるべきであると判定すると、基地局10aへハンドオーバ承認(Handover ACK)を送信する(ステップS14)。ハンドオーバ承認メッセージに加えて(又はその代わりに)、ハンドオーバ命令(Handover Command)又はRRC接続再構成(RRC Connection Reconfiguration)メッセージが送信されてもよい。
 基地局10aは、基地局10bからハンドオーバ承認を受信すると、ハンドオーバ命令(Handover Command)を端末装置15へ送信する(ステップS16)。また、基地局10aは、ハンドオーバ命令を送信した後、端末装置15宛ての未送信のダウンリンクトラフィックをターゲット基地局である基地局10bへ転送する(ステップS22)。基地局10bは、転送されたダウンリンクトラフィックをバッファリングし得る(ステップS24)。ここでバッファリングされるダウンリンクトラフィックは、ハンドオーバ完了後にターゲット基地局から端末装置へ送信され、それによりシームレスハンドオーバが実現され得る。
 端末装置15は、基地局10aからハンドオーバ命令を受信すると、ターゲット基地局である基地局10bからのダウンリンクチャネルの帯域中央に位置し得る同期信号を探索することにより、基地局10bとの同期を獲得する(ステップS26)。また、端末装置15は、MIB(Master Information Block)及びSIB(System Information Block)などに含まれるシステム情報を取得する。そして、端末装置15は、例えばSIBから取得されるシステム情報を参照することによりランダムアクセスチャネルの配置を識別し、基地局10bへのランダムアクセスを試行する(ステップS28)。そして、ランダムアクセスが成功すると、ハンドオーバ完了(Handover Complete)及びそれに対する確認応答が端末装置15と基地局10bとの間で交換され(ステップS30)、ルート更新手続が実行される(ステップS32)。
 このように、既存のハンドオーバ手続においては、ソース基地局がハンドオーバ判定を実行し、ターゲット基地局が流入制御を実行する。一方で、複数のセルが重複する環境において、セル間の有害な干渉を防止するために、個々の基地局又は端末装置により使用されるビーム方向又は送信電力などの送信パラメータを管理し及び制御する制御ノードがシステムに導入されるケースが存在する。本明細書において、かかる制御ノードを、協調マネージャ(Cooperation Manager)という。協調マネージャが導入される場合、無線チャネルの品質は、干渉制御の影響を受ける。例えば、アンテナビームが向けられた場所ではゲインが増加してチャネル品質が向上する一方、他の場所ではゲインが減少してチャネル品質が低下し得る。また、基地局からの送信電力が制限されたセルではチャネル品質が低下し得る。しかし、ソース基地局は、例えばハンドオーバ後にどのような制御が実行されるかを知らないため、協調マネージャが導入される場合、端末装置のために最適な接続先セルがハンドオーバ判定において基地局により選択されない可能性がある。
 そこで、次節より詳細に説明する実施形態のように、ハンドオーバ判定を協調マネージャが実行することが有益である。サービング基地局は、協調マネージャにハンドオーバ判定を実行させるために、端末装置により生成されるメジャメントレポートを協調マネージャへ転送する。
 <2.協調マネージャの導入>
 本節では、図4~図10Cを用いて、協調マネージャの配置のいくつかの例及び対応するハンドオーバ手続のシーケンスを例示する。
   (1)第1の配置シナリオ
 図4は、協調マネージャの第1の配置シナリオについて説明するための説明図である。第1の配置シナリオにおいて、協調マネージャは、基地局とは異なるノード上に配置される。図4の例では、無線通信システム1aにおいて、コアネットワーク16内に協調マネージャ100が配置されている。一例として、コアネットワーク16がLTEにおけるEPC(Evolved Packet Core)である場合、協調マネージャ100は、MME(Mobility Management Entity)、P-GW(PDN-Gateway)又はS-GW(Serving-Gateway)などのEPC内の任意のノード上に配置されてよい。なお、協調マネージャ100は、パケットデータネットワーク17内のノード(例えば、干渉制御サーバ)上に配置されてもよい。
 図5Aは、図4の第1の配置シナリオに関連する通信制御処理の流れの第1の例を示すシーケンス図である。ここで説明する通信制御処理には、端末装置15、ソース基地局である基地局10a、ターゲット基地局である基地局10b、協調マネージャ100及びその他の基地局10cが関与するものとする。
 図5Aを参照すると、まず、協調マネージャ100は、制御対象の複数の基地局から、干渉制御のために使用される干渉制御情報を収集する(ステップS110)。ここで収集される干渉制御情報は、例えば、各基地局及び各基地局に接続している端末装置についての、位置情報、アンテナ構成情報、最大送信電力情報、レート制御情報(変調符号化方式など)、チャネル品質情報、リソース割当て情報及び通信履歴情報のうちの1つ以上を含み得る。各基地局は、干渉制御情報を周期的に協調マネージャ100へ送信してもよく、又は協調マネージャ100からの要求に応じて干渉制御情報を協調マネージャ100へ送信してもよい。干渉制御情報には、当該干渉制御情報の送信元のセル又は基地局を識別するための識別情報(例えば、セルID)が含められてもよい。また、干渉制御情報において、プライバシーの保護の観点から、個々の端末装置を識別する識別情報が削除され又はマスキングされてもよい。干渉制御情報のフォーマットは、予め定義され得る。そして、協調マネージャ100は、収集した干渉制御情報に基づいて、干渉制御を実行する(ステップS112)。ここで実行される干渉制御の具体的な例について、後にさらに説明する。
 一方、端末装置15は、サービング基地局及び1つ以上の周辺基地局から送信されるリファレンス信号を受信し、メジャメントを実行する(ステップS120)。そして、端末装置15は、メジャメント結果を示す判定指標を含むメジャメントレポートを、サービング基地局である基地局10aへ送信する(ステップS122)。
 基地局10aは、端末装置15により生成されたメジャメントレポートを受信すると、ハンドオーバ判定を実行する協調マネージャ100へ、受信した当該メジャメントレポートを転送する(ステップS126)。
 協調マネージャ100は、転送されたメジャメントレポートを受信すると、ハンドオーバ判定を実行する(ステップS128)。ここでのハンドオーバ判定において、協調マネージャ100は、メジャメントレポートに含まれる判定指標をそのまま使用する代わりに、干渉制御の影響を算入することにより修正される判定指標を使用する。ここでの判定指標の修正の具体的な例について、後にさらに説明する。
 協調マネージャ100は、ハンドオーバ判定において基地局10bをターゲット基地局として選択した場合、ハンドオーバ要求を基地局10bへ送信する(ステップS130)。基地局10bは、ハンドオーバ要求を受信すると、流入制御を実行することにより、端末装置15を受け入れるべきかを判定する(ステップS132)。そして、基地局10bは、端末装置15を受け入れるべきであると判定すると、協調マネージャ100へハンドオーバ承認を送信する(ステップS134)。なお、基地局10bは、端末装置15を受け入れないと判定した場合には、協調マネージャ100へハンドオーバを拒否することを返答し得る(又は何も返答しなくてもよい)。
 協調マネージャ100は、基地局10bからハンドオーバ承認を受信すると、基地局10aへハンドオーバ命令を送信する(ステップS138)。基地局10aは、協調マネージャ100からハンドオーバ命令を受信すると、さらにハンドオーバ命令を端末装置15へ送信する(ステップS140)。その後の処理は、図3を用いて説明したハンドオーバ手続においてハンドオーバ命令が端末装置へ送信された後の処理と同様であってよい。
 図5Bは、図4の第1の配置シナリオに関連する通信制御処理の流れの第2の例を示すシーケンス図である。ここでも、通信制御処理には、端末装置15、ソース基地局である基地局10a、ターゲット基地局である基地局10b、協調マネージャ100及びその他の基地局10cが関与するものとする。
 図5Bを参照すると、まず、協調マネージャ100は、制御対象の複数の基地局から、干渉制御のために使用される干渉制御情報を収集する(ステップS110)。そして、協調マネージャ100は、収集した干渉制御情報に基づいて、干渉制御を実行する(ステップS112)。ここで実行される干渉制御の具体的な例について、後にさらに説明する。
 一方、端末装置15は、サービング基地局及び1つ以上の周辺基地局から送信されるリファレンス信号を受信し、メジャメントを実行する(ステップS120)。そして、端末装置15は、メジャメント結果を示す判定指標を含むメジャメントレポートを、サービング基地局である基地局10aへ送信する(ステップS122)。
 基地局10aは、端末装置15により生成されたメジャメントレポートを受信すると、ハンドオーバ判定を実行する協調マネージャ100へ、受信した当該メジャメントレポートを転送する(ステップS126)。
 協調マネージャ100は、転送されたメジャメントレポートを受信すると、ハンドオーバ判定を実行する(ステップS128)。ここでのハンドオーバ判定において、協調マネージャ100は、メジャメントレポートに含まれる判定指標をそのまま使用する代わりに、干渉制御の影響を算入することにより修正される判定指標を使用する。ここでの判定指標の修正の具体的な例について、後にさらに説明する。
 また、図5Bの例において、協調マネージャ100は、ターゲット基地局の代わりに流入制御をも実行する(ステップS129)。流入制御のために必要な情報もまた、ステップS110において収集され得る。
 そして、協調マネージャ100は、ハンドオーバ判定及び流入制御の結果として選択されるターゲット基地局である基地局10bへ、ハンドオーバ要求を送信する(ステップS133)。基地局10bは、協調マネージャ100へハンドオーバ承認を返送する(ステップS134)。なお、ステップS133及びステップS134の処理は、省略されてもよい。また、ステップS133において、ハンドオーバ要求の代わりにハンドオーバ指令(Handover Order)が送信されてもよい。本明細書において、ハンドオーバ指令は、当該ハンドオーバ指令を受信する基地局が協調マネージャ100の決定を拒否しないことを意味するメッセージである。
 その後、協調マネージャ100は、基地局10aへハンドオーバ命令を送信する(ステップS138)。基地局10aは、協調マネージャ100からハンドオーバ命令を受信すると、さらにハンドオーバ命令を端末装置15へ送信する(ステップS140)。その後の処理は、図3を用いて説明したハンドオーバ手続においてハンドオーバ命令が端末装置へ送信された後の処理と同様であってよい。
   (2)第2の配置シナリオ
 図6は、協調マネージャの第2の配置シナリオについて説明するための説明図である。第2の配置シナリオにおいて、協調マネージャは、基地局上に配置される。図6の例では、無線通信システム1bにおいて、複数のマクロセル基地局のうちの1つが、協調マネージャ100としての機能を有する。なお、協調マネージャ100は、スモールセル基地局上に配置されてもよい。
 図7Aは、図6の第2の配置シナリオに関連する通信制御処理の流れの第1の例を示すシーケンス図である。ここでは、通信制御処理には、端末装置15、ソース基地局である基地局10a、ターゲット基地局である基地局10b、及び協調マネージャ100が実装されるその他の基地局10cが関与するものとする。
 図7Aを参照すると、まず、協調マネージャ100は、制御対象の複数の基地局から、干渉制御のために使用される干渉制御情報を収集する(ステップS110)。そして、協調マネージャ100は、収集した干渉制御情報に基づいて、干渉制御を実行する(ステップS112)。ここで実行される干渉制御の具体的な例について、後にさらに説明する。
 一方、端末装置15は、サービング基地局及び1つ以上の周辺基地局から送信されるリファレンス信号を受信し、メジャメントを実行する(ステップS120)。そして、端末装置15は、メジャメント結果を示す判定指標を含むメジャメントレポートを、サービング基地局である基地局10aへ送信する(ステップS122)。
 基地局10aは、端末装置15により生成されたメジャメントレポートを受信すると、ハンドオーバ判定を実行する協調マネージャ100へ、受信した当該メジャメントレポートを転送する(ステップS126)。
 協調マネージャ100は、転送されたメジャメントレポートを受信すると、ハンドオーバ判定を実行する(ステップS128)。ここでのハンドオーバ判定において、協調マネージャ100は、メジャメントレポートに含まれる判定指標をそのまま使用する代わりに、干渉制御の影響を算入することにより修正される判定指標を使用する。ここでの判定指標の修正の具体的な例について、後にさらに説明する。
 また、図7Aの例において、協調マネージャ100は、ターゲット基地局の代わりに流入制御をも実行する(ステップS129)。流入制御のために必要な情報もまた、ステップS110において収集され得る。なお、図5Aを用いて説明したように、流入制御は、ターゲット基地局により実行されてもよい。
 そして、協調マネージャ100は、ハンドオーバ判定及び流入制御の結果として選択されるターゲット基地局である基地局10bへ、ハンドオーバ要求を送信する(ステップS133)。基地局10bは、協調マネージャ100へハンドオーバ承認を返送する(ステップS134)。なお、ステップS133及びステップS134の処理は、省略されてもよい。また、ステップS133において、ハンドオーバ要求の代わりにハンドオーバ指令が送信されてもよい。
 その後、協調マネージャ100は、基地局10aへハンドオーバ命令を送信する(ステップS138)。基地局10aは、協調マネージャ100からハンドオーバ命令を受信すると、さらにハンドオーバ命令を端末装置15へ送信する(ステップS140)。その後の処理は、図3を用いて説明したハンドオーバ手続においてハンドオーバ命令が端末装置へ送信された後の処理と同様であってよい。
 図7Bは、図6の第2の配置シナリオに関連する通信制御処理の流れの第2の例を示すシーケンス図である。ここでは、通信制御処理には、端末装置15、ソース基地局である基地局10a、ターゲット基地局であって協調マネージャ100が実装される基地局10b、及びその他の基地局10cが関与するものとする。
 図7Bを参照すると、まず、協調マネージャ100は、制御対象の複数の基地局から、干渉制御のために使用される干渉制御情報を収集する(ステップS110)。そして、協調マネージャ100は、収集した干渉制御情報に基づいて、干渉制御を実行する(ステップS112)。ここで実行される干渉制御の具体的な例について、後にさらに説明する。
 一方、端末装置15は、サービング基地局及び1つ以上の周辺基地局から送信されるリファレンス信号を受信し、メジャメントを実行する(ステップS120)。そして、端末装置15は、メジャメント結果を示す判定指標を含むメジャメントレポートを、サービング基地局である基地局10aへ送信する(ステップS122)。
 基地局10aは、端末装置15により生成されたメジャメントレポートを受信すると、ハンドオーバ判定を実行する協調マネージャ100へ、受信した当該メジャメントレポートを転送する(ステップS126)。
 協調マネージャ100は、転送されたメジャメントレポートを受信すると、ハンドオーバ判定を実行する(ステップS128)。ここでのハンドオーバ判定において、協調マネージャ100は、メジャメントレポートに含まれる判定指標をそのまま使用する代わりに、干渉制御の影響を算入することにより修正される判定指標を使用する。ここでの判定指標の修正の具体的な例について、後にさらに説明する。
 次に、協調マネージャ100でもある基地局10bがターゲット基地局として選択された場合、基地局10bは、流入制御を実行する(ステップS129)。そして、基地局10bは、流入制御の結果として端末装置15を受け入れるべきであると判定すると、基地局10aへハンドオーバ命令を送信する(ステップS138)。基地局10aは、協調マネージャ100からハンドオーバ命令を受信すると、さらにハンドオーバ命令を端末装置15へ送信する(ステップS140)。その後の処理は、図3を用いて説明したハンドオーバ手続においてハンドオーバ命令が端末装置へ送信された後の処理と同様であってよい。
 図7Cは、図6の第2の配置シナリオに関連する通信制御処理の流れの第3の例を示すシーケンス図である。ここでは、通信制御処理には、端末装置15、ソース基地局であって協調マネージャ100が実装される基地局10a、ターゲット基地局である基地局10b、及びその他の基地局10cが関与するものとする。
 図7Cを参照すると、まず、協調マネージャ100は、制御対象の複数の基地局から、干渉制御のために使用される干渉制御情報を収集する(ステップS110)。そして、協調マネージャ100は、収集した干渉制御情報に基づいて、干渉制御を実行する(ステップS112)。ここで実行される干渉制御の具体的な例について、後にさらに説明する。
 一方、端末装置15は、サービング基地局及び1つ以上の周辺基地局から送信されるリファレンス信号を受信し、メジャメントを実行する(ステップS120)。そして、端末装置15は、メジャメント結果を示す判定指標を含むメジャメントレポートを、サービング基地局である基地局10aへ送信する(ステップS122)。
 協調マネージャ100でもある基地局10aは、端末装置15により生成されたメジャメントレポートを受信すると、ハンドオーバ判定を実行する(ステップS128)。ここでのハンドオーバ判定において、協調マネージャ100は、メジャメントレポートに含まれる判定指標をそのまま使用する代わりに、干渉制御の影響を算入することにより修正される判定指標を使用する。ここでの判定指標の修正の具体的な例について、後にさらに説明する。
 また、図7Cの例において、協調マネージャ100は、ターゲット基地局の代わりに流入制御をも実行する(ステップS129)。流入制御のために必要な情報もまた、ステップS110において収集され得る。なお、図5Aを用いて説明したように、流入制御は、ターゲット基地局により実行されてもよい。
 そして、協調マネージャ100は、ハンドオーバ判定及び流入制御の結果として選択されるターゲット基地局である基地局10bへ、ハンドオーバ要求を送信する(ステップS133)。基地局10bは、協調マネージャ100へハンドオーバ承認を返送する(ステップS134)。なお、ステップS133及びステップS134の処理は、省略されてもよい。また、ステップS133において、ハンドオーバ要求の代わりにハンドオーバ指令が送信されてもよい。
 その後、協調マネージャ100は、ハンドオーバ命令を端末装置15へ送信する(ステップS140)。その後の処理は、図3を用いて説明したハンドオーバ手続においてハンドオーバ命令が端末装置へ送信された後の処理と同様であってよい。
   (3)制御対象外の基地局の関与
 協調マネージャの第1の配置シナリオ及び第2の配置シナリオの双方において、干渉制御の対象に含まれない基地局がソース基地局又はターゲット基地局としてハンドオーバ手続に関与する場合には、通信制御処理のシーケンスは上述したシーケンスとは部分的に異なる。
 図8Aは、ターゲット基地局が制御対象外である場合の通信制御処理の流れの一例を示すシーケンス図である。ここで説明する通信制御処理には、端末装置15、ソース基地局である基地局10a、ターゲット基地局である基地局10d、協調マネージャ100及びその他の基地局10cが関与するものとする。基地局10dは、協調マネージャ100による干渉制御の制御対象に含まれない。基地局10dは、マクロセル基地局であってもよく、又はスモールセル基地局であってもよい。
 図8Aを参照すると、まず、協調マネージャ100は、制御対象の複数の基地局から、干渉制御のために使用される干渉制御情報を収集する(ステップS110)。そして、協調マネージャ100は、収集した干渉制御情報に基づいて、干渉制御を実行する(ステップS112)。ここで実行される干渉制御の具体的な例について、後にさらに説明する。
 一方、端末装置15は、サービング基地局及び1つ以上の周辺基地局から送信されるリファレンス信号を受信し、メジャメントを実行する(ステップS120)。そして、端末装置15は、メジャメント結果を示す判定指標を含むメジャメントレポートを、サービング基地局である基地局10aへ送信する(ステップS122)。
 基地局10aは、端末装置15により生成されたメジャメントレポートを受信すると、ハンドオーバ判定を実行する協調マネージャ100へ、受信した当該メジャメントレポートを転送する(ステップS126)。
 協調マネージャ100は、転送されたメジャメントレポートを受信すると、ハンドオーバ判定を実行する(ステップS128)。ここでのハンドオーバ判定において、協調マネージャ100は、メジャメントレポートに含まれる判定指標をそのまま使用する代わりに、干渉制御の影響を算入することにより修正される判定指標を使用する。ここでの判定指標の修正の具体的な例について、後にさらに説明する。
 協調マネージャ100は、ハンドオーバ判定において基地局10dをターゲット基地局として選択した場合、ハンドオーバ指令を基地局10aへ送信する(ステップS131)。ハンドオーバ指令は、基地局10dをターゲット基地局として識別する識別情報を含む。基地局10aは、ハンドオーバ指令を受信すると、ハンドオーバ要求を基地局10dへ送信する(ステップS135)。基地局10dは、ハンドオーバ要求を受信すると、流入制御を実行することにより、端末装置15を受け入れるべきかを判定する(ステップS136)。そして、基地局10dは、端末装置15を受け入れるべきであると判定すると、基地局10aへハンドオーバ承認を送信する(ステップS137)。なお、基地局10dは、端末装置15を受け入れないと判定した場合には、基地局10aへハンドオーバを拒否することを返答し得る。
 基地局10aは、基地局10dからハンドオーバ承認を受信すると、ハンドオーバ命令を端末装置15へ送信する(ステップS140)。その後の処理は、図3を用いて説明したハンドオーバ手続においてハンドオーバ命令が端末装置へ送信された後の処理と同様であってよい。
 図8Bは、ソース基地局が制御対象外である場合の通信制御処理の流れの一例を示すシーケンス図である。ここで説明する通信制御処理には、端末装置15、ソース基地局である基地局10e、ターゲット基地局である基地局10b、協調マネージャ100及びその他の基地局10cが関与するものとする。基地局10eは、協調マネージャ100による干渉制御の制御対象に含まれない。基地局10eは、マクロセル基地局であってもよく、又はスモールセル基地局であってもよい。
 図8Bを参照すると、まず、協調マネージャ100は、制御対象の複数の基地局から、干渉制御のために使用される干渉制御情報を収集する(ステップS110)。そして、協調マネージャ100は、収集した干渉制御情報に基づいて、干渉制御を実行する(ステップS112)。ここで実行される干渉制御の具体的な例について、後にさらに説明する。
 一方、端末装置15は、サービング基地局及び1つ以上の周辺基地局から送信されるリファレンス信号を受信し、メジャメントを実行する(ステップS120)。そして、端末装置15は、メジャメント結果を示す判定指標を含むメジャメントレポートを、サービング基地局である基地局10eへ送信する(ステップS122)。
 基地局10eは、端末装置15により生成されたメジャメントレポートを受信すると、ハンドオーバ判定を実行する(ステップS123)。ここでのハンドオーバ判定において、基地局10eは、メジャメントレポートに含まれる判定指標を使用する。ハンドオーバ判定において基地局10bがターゲット基地局として選択された場合、基地局10eは、ハンドオーバ要求を基地局10bへ送信する(ステップS124)。
 基地局10bは、基地局10eからハンドオーバ要求を受信すると、流入制御要求を協調マネージャ100へ送信する(ステップS125)。協調マネージャは、基地局10bから流入制御要求を受信すると、ターゲット基地局として選択された基地局10bの代わりに、流入制御を実行する(ステップS129)。そして、協調マネージャ100は、流入制御の結果として基地局10bが端末装置15を受け入れるべきであると判定すると、基地局10bへハンドオーバ指令を返送する(ステップS131)。
 基地局10bは、協調マネージャ100からハンドオーバ指令を受信すると、基地局10eへハンドオーバ承認を返送する(ステップS137)。基地局10eは、基地局10bからハンドオーバ承認を受信すると、ハンドオーバ命令を端末装置15へ送信する(ステップS140)。その後の処理は、図3を用いて説明したハンドオーバ手続においてハンドオーバ命令が端末装置へ送信された後の処理と同様であってよい。
 なお、協調マネージャ100と基地局との間のメッセージの交換及び基地局間のメッセージの交換は、何らかの中間的なノードを介して行われてもよい。例えば、ユーザが設置する小型基地局と他の基地局及び協調マネージャ100との間のメッセージの交換は、ユーザのホームネットワークのゲートウェイ装置(図示せず)を介して行われ得る。
   (4)ローカライズドネットワークの制御
 ローカライズドネットワークを形成するマスタ端末に接続するスレーブ端末のハンドオーバ手続については、通信制御処理のシーケンスは上述したシーケンスとは部分的に異なる。
 図9Aは、ローカライズドネットワークの制御に関連する通信制御処理の流れの第1の例を示すシーケンス図である。ここでは、通信制御処理に、端末装置15、ソース基地局である基地局10a、ターゲット基地局であるマスタ端末12b、マスタ端末12bのサービング基地局である基地局10b及び協調マネージャ100が関与するものとする。
 図9Aを参照すると、まず、協調マネージャ100は、制御対象の複数の基地局から、干渉制御のために使用される干渉制御情報を収集する(ステップS110)。基地局10bは、マスタ端末12bの干渉制御情報を協調マネージャ100へ中継する。そして、協調マネージャ100は、収集した干渉制御情報に基づいて、干渉制御を実行する(ステップS112)。ここで実行される干渉制御の具体的な例について、後にさらに説明する。
 一方、端末装置15は、サービング基地局及び1つ以上の周辺基地局から送信されるリファレンス信号を受信し、メジャメントを実行する(ステップS120)。そして、端末装置15は、メジャメント結果を示す判定指標を含むメジャメントレポートを、サービング基地局である基地局10aへ送信する(ステップS122)。
 基地局10aは、端末装置15により生成されたメジャメントレポートを受信すると、ハンドオーバ判定を実行する協調マネージャ100へ、受信した当該メジャメントレポートを転送する(ステップS126)。
 協調マネージャ100は、転送されたメジャメントレポートを受信すると、ハンドオーバ判定を実行する(ステップS128)。ここでのハンドオーバ判定において、協調マネージャ100は、メジャメントレポートに含まれる判定指標をそのまま使用する代わりに、干渉制御の影響を算入することにより修正される判定指標を使用する。ここでの判定指標の修正の具体的な例について、後にさらに説明する。
 また、図9Aの例において、協調マネージャ100は、ターゲット基地局の代わりに流入制御をも実行する(ステップS129)。流入制御のために必要な情報もまた、ステップS110において収集され得る。なお、流入制御は、ターゲット基地局により実行されてもよい。
 そして、協調マネージャ100は、ハンドオーバ判定及び流入制御の結果として選択されるターゲット基地局であるマスタ端末12b宛てのハンドオーバ指令を、基地局10bへ送信する(ステップS131a)。基地局10bは、協調マネージャ100から受信したハンドオーバ指令を、マスタ端末12bへ転送する(ステップS131b)。マスタ端末12bは、転送されたハンドオーバ指令を受信すると、基地局10bへハンドオーバ承認を返送する(ステップS137)。なお、ステップS131a~ステップS137の処理が省略され、協調マネージャ100から基地局10aへ直接的にハンドオーバ命令又はハンドオーバ指令が送信されてもよい。
 基地局10bは、マスタ端末12bからハンドオーバ承認を受信すると、基地局10aへハンドオーバ命令を送信する(ステップS138)。基地局10aは、基地局10bからハンドオーバ命令を受信すると、さらにハンドオーバ命令を端末装置15へ送信する(ステップS140)。その後の処理は、図3を用いて説明したハンドオーバ手続においてハンドオーバ命令が端末装置へ送信された後の処理と同様であってよい。
 図9Bは、ローカライズドネットワークの制御に関連する通信制御処理の流れの第2の例を示すシーケンス図である。ここでは、通信制御処理に、端末装置15、ソース基地局であるマスタ端末12a、マスタ端末12aのサービング基地局である基地局10a、ターゲット基地局である基地局10b、及び協調マネージャ100が関与するものとする。
 図9Bを参照すると、まず、協調マネージャ100は、制御対象の複数の基地局から、干渉制御のために使用される干渉制御情報を収集する(ステップS110)。基地局10aは、マスタ端末12aの干渉制御情報を協調マネージャ100へ中継する。そして、協調マネージャ100は、収集した干渉制御情報に基づいて、干渉制御を実行する(ステップS112)。ここで実行される干渉制御の具体的な例について、後にさらに説明する。
 一方、端末装置15は、サービング基地局及び1つ以上の周辺基地局から送信されるリファレンス信号を受信し、メジャメントを実行する(ステップS120)。そして、端末装置15は、メジャメント結果を示す判定指標を含むメジャメントレポートを、サービング基地局であるマスタ端末12aへ送信する(ステップS122)。
 マスタ端末12aは、端末装置15により生成されたメジャメントレポートを基地局10aへ転送する(ステップS126a)。さらに、基地局10aは、マスタ端末12aからメジャメントレポートを受信すると、ハンドオーバ判定を実行する協調マネージャ100へ、受信した当該メジャメントレポートを転送する(ステップS126b)。
 協調マネージャ100は、転送されたメジャメントレポートを受信すると、ハンドオーバ判定を実行する(ステップS128)。ここでのハンドオーバ判定において、協調マネージャ100は、メジャメントレポートに含まれる判定指標をそのまま使用する代わりに、干渉制御の影響を算入することにより修正される判定指標を使用する。ここでの判定指標の修正の具体的な例について、後にさらに説明する。
 また、図9Bの例において、協調マネージャ100は、ターゲット基地局の代わりに流入制御をも実行する(ステップS129)。流入制御のために必要な情報もまた、ステップS110において収集され得る。なお、流入制御は、ターゲット基地局により実行されてもよい。
 そして、協調マネージャ100は、ハンドオーバ判定及び流入制御の結果として選択されるターゲット基地局である基地局10bへ、ハンドオーバ指令を送信する(ステップS131)。
 基地局10bは、協調マネージャ100からハンドオーバ指令を受信すると、マスタ端末12a宛てのハンドオーバ命令を基地局10aへ送信する(ステップS138a)。基地局10aは、協調マネージャ100から受信したハンドオーバ命令を、マスタ端末12aへ転送する(ステップS138b)。マスタ端末12aは、基地局10aからハンドオーバ命令を受信すると、ハンドオーバ命令を端末装置15へ送信する(ステップS140)。その後の処理は、図3を用いて説明したハンドオーバ手続においてハンドオーバ命令が端末装置へ送信された後の処理と同様であってよい。なお、マスタ端末12aは、ハンドオーバ命令後に到着するダウンリンクトラフィックをターゲット基地局へ転送する機能を有していてもよい。その代わりに、マスタ端末12aのサービング基地局である基地局10aが当該ダウンリンクトラフィックをターゲット基地局へ転送してもよい。
 図9Cは、ローカライズドネットワークの制御に関連する通信制御処理の流れの第3の例を示すシーケンス図である。ここでは、通信制御処理に、端末装置15、ソース基地局であるマスタ端末12a、マスタ端末12aのサービング基地局である基地局10a、ターゲット基地局であるマスタ端末12b、マスタ端末12bのサービング基地局である基地局10b、及び協調マネージャ100が関与するものとする。
 図9Cを参照すると、まず、協調マネージャ100は、制御対象の複数の基地局から、干渉制御のために使用される干渉制御情報を収集する(ステップS110)。基地局10aは、マスタ端末12aの干渉制御情報を協調マネージャ100へ中継する。基地局10bは、マスタ端末12bの干渉制御情報を協調マネージャ100へ中継する。そして、協調マネージャ100は、収集した干渉制御情報に基づいて、干渉制御を実行する(ステップS112)。ここで実行される干渉制御の具体的な例について、後にさらに説明する。
 一方、端末装置15は、サービング基地局及び1つ以上の周辺基地局から送信されるリファレンス信号を受信し、メジャメントを実行する(ステップS120)。そして、端末装置15は、メジャメント結果を示す判定指標を含むメジャメントレポートを、サービング基地局であるマスタ端末12aへ送信する(ステップS122)。
 マスタ端末12aは、端末装置15により生成されたメジャメントレポートを基地局10aへ転送する(ステップS126a)。さらに、基地局10aは、マスタ端末12aからメジャメントレポートを受信すると、ハンドオーバ判定を実行する協調マネージャ100へ、受信した当該メジャメントレポートを転送する(ステップS126b)。
 協調マネージャ100は、転送されたメジャメントレポートを受信すると、ハンドオーバ判定を実行する(ステップS128)。ここでのハンドオーバ判定において、協調マネージャ100は、メジャメントレポートに含まれる判定指標をそのまま使用する代わりに、干渉制御の影響を算入することにより修正される判定指標を使用する。ここでの判定指標の修正の具体的な例について、後にさらに説明する。
 また、図9Cの例において、協調マネージャ100は、ターゲット基地局の代わりに流入制御をも実行する(ステップS129)。流入制御のために必要な情報もまた、ステップS110において収集され得る。なお、流入制御は、ターゲット基地局により実行されてもよい。
 そして、協調マネージャ100は、ハンドオーバ判定及び流入制御の結果として選択されるターゲット基地局であるマスタ端末12b宛てのハンドオーバ指令を、基地局10bへ送信する(ステップS131a)。基地局10bは、協調マネージャ100から受信したハンドオーバ指令を、マスタ端末12bへ転送する(ステップS131b)。マスタ端末12bは、転送されたハンドオーバ指令を受信すると、基地局10bへハンドオーバ承認を返送する(ステップS137)。なお、ステップS131a~ステップS137の処理が省略され、協調マネージャ100から基地局10aへマスタ端末12a宛てのハンドオーバ命令又はハンドオーバ指令が送信されてもよい。
 基地局10bは、マスタ端末12bからハンドオーバ承認を受信すると、マスタ端末12a宛てのハンドオーバ命令を基地局10aへ送信する(ステップS138a)。基地局10aは、基地局10bから受信したハンドオーバ命令を、マスタ端末12aへ転送する(ステップS138b)。マスタ端末12aは、基地局10aからハンドオーバ命令を受信すると、ハンドオーバ命令を端末装置15へ送信する(ステップS140)。その後の処理は、図3を用いて説明したハンドオーバ手続においてハンドオーバ命令が端末装置へ送信された後の処理と同様であってよい。
 図8A~図9Cでは、図4に示した第1の配置シナリオのように協調マネージャが基地局とは異なるノード上に配置される例を示したが、各図のシーケンスは、協調マネージャがいずれかの基地局上に配置される第2の配置シナリオにも適用可能である。
 次節では、ここまでに例示した通信制御処理を実行する協調マネージャ100の詳細な構成の一例を説明する。
 <3.協調マネージャの構成例>
  [3-1.装置の構成例]
 図10は、協調マネージャ100の構成の一例を示すブロック図である。図10を参照すると、協調マネージャ100は、ネットワーク通信部110、記憶部120及び制御部130を備える。協調マネージャ100が基地局上に配置される場合には、協調マネージャ100は、さらに1つ以上の端末装置との無線通信を実行する無線通信部及び当該無線通信を制御する通信制御部(共に図示せず)を備え得る。
   (1)ネットワーク通信部
 ネットワーク通信部110は、制御対象の複数の基地局と接続される通信インタフェースである。例えば、ネットワーク通信部110は、制御対象の基地局の各々から、上で例示した干渉制御情報を受信する。また、ネットワーク通信部110は、干渉制御の結果として決定される送信パラメータを通知するための干渉制御メッセージを、各基地局へ送信する。また、ネットワーク通信部110は、端末装置により生成され当該端末装置のサービング基地局により転送されるメジャメントレポートを、当該サービング基地局から受信する。また、ネットワーク通信部110は、ハンドオーバ手続において、ハンドオーバ要求又はハンドオーバ指令などのハンドオーバ制御メッセージを基地局へ送信する。
   (2)記憶部
 記憶部120は、ハードディスク又は半導体メモリなどの記憶媒体を用いて、協調マネージャ100の動作のためのプログラム及びデータを記憶する。記憶部120により記憶されるデータは、例えば、制御対象の基地局の各々から受信される干渉制御情報及び干渉制御の結果として決定される送信パラメータを含み得る。これらデータは、後に説明するハンドオーバ判定の際に参照される。また、協調マネージャ100が流入制御をも実行する場合には、記憶部120は、流入制御のための情報をも記憶し得る。
   (3)制御部
 制御部130は、CPU(Central Processing Unit)又はDSP(Digital Signal Processor)などのプロセッサを用いて、協調マネージャ100の動作全般を制御する。図10の例において、制御部130は、干渉制御部132及び判定部134を含む。
   (3-1)干渉制御部
 干渉制御部132は、複数の基地局と複数の端末装置とを含む無線通信システムのための干渉制御を実行する。一例として、干渉制御部132は、少なくとも1つの基地局又は少なくとも1つの端末装置のアンテナビームを制御することにより、システム内で干渉が生じることを回避してもよい。より具体的には、例えば、干渉制御部132は、ネットワーク通信部110を介して、制御対象の基地局の各々から干渉制御情報を収集する。干渉制御情報は、各基地局及び各基地局に接続している端末装置についての、位置情報及びアンテナ構成情報を含み得る。アンテナ構成情報は、アンテナ本数及び利用可能なビームパターンを識別する情報を含み得る。干渉制御部132は、アンテナビームが潜在的な被干渉ノード(例えば、周辺セルに接続する端末装置)へ向けられないように、収集した位置情報に基づいて各基地局が使用すべきアンテナビームのビームパターンを決定する。そして、干渉制御部132は、ネットワーク通信部110を介して干渉制御メッセージを送信することにより、使用すべき決定したビームパターンを各基地局に通知する。
 他の例として、干渉制御部132は、少なくとも1つの基地局又は少なくとも1つの端末装置の送信電力を制御することにより、システム内で干渉が生じることを回避してもよい。より具体的には、例えば、干渉制御部132は、ネットワーク通信部110を介して、制御対象の基地局の各々から干渉制御情報を収集する。干渉制御情報は、各基地局及び各基地局に接続している端末装置についての、位置情報及び最大送信電力情報を含み得る。干渉制御部132は、送信される無線信号が潜在的な被干渉ノードにおいて許容レベルを上回るレベルで受信されないように、収集した位置情報に基づいて各基地局が使用すべき送信電力を決定する。そして、干渉制御部132は、ネットワーク通信部110を介して干渉制御メッセージを送信することにより、使用すべき決定した送信電力を各基地局に通知する。なお、干渉制御部132は、上述したアンテナビーム制御及び送信電力制御の双方を行ってもよい。
   (3-2)判定部
 判定部134は、各端末装置のサービング基地局の代わりに、当該端末装置についてのハンドオーバ判定を実行する。ハンドオーバ判定に際して、判定部134は、端末装置により生成されるメジャメントレポートに基づく判定指標を、当該端末装置によりメジャメントが行われた後に干渉制御部132により実行される干渉制御の影響を算入することにより修正し、修正された判定指標を用いる。メジャメントレポートは、典型的には、各端末装置のサービング基地局により協調マネージャ100へ転送される。
   (3-2-1)RSRPに基づくハンドオーバ判定
 例えば、判定指標としてリファレンス信号受信電力(RSRP)が使用される場合、判定部134は、サービングセルについての判定指標RSRP及びi番目の周辺セルについての判定指標RSRPTiを、次の式(2)及び式(3)のように修正し得る。
Figure JPOXMLDOC01-appb-M000002
 式(2)において、RSRP´はサービングセルについての修正されたリファレンス信号受信電力であり、Gはサービングセルについての修正項である。式(3)において、RSRPTi´はi番目の周辺セルについての修正されたリファレンス信号受信電力であり、GTiはi番目の周辺セルについての修正項である。式(2)及び式(3)は、これら修正項がRSRPに適用されるオフセット値であることを示している。そして、i番目の周辺セルの基地局をターゲット基地局としてハンドオーバを実行すべきであると判定するための判定式は、次のように表現され得る。
Figure JPOXMLDOC01-appb-M000003
 j番目のユーザUについて、修正項G及びGTiは、例えば、次の式(5)及び式(6)のように、想定されるアンテナビームの制御の影響を表す項であってよい。
Figure JPOXMLDOC01-appb-M000004
 ここで、式(5)及び式(6)の右辺の関数dG(…)は、基地局から端末装置へ向かう方向の方位角、仰俯角、及び基地局から端末装置までの距離を引数とし、ビームステアリングゲインの変化量を戻り値とする関数である。関数dGの1つ以上の引数が省略されてもよい。
 図11A及び図11Bは、アンテナビームの制御の影響を表す修正項について説明するための説明図である。図11Aを参照すると、ある基地局により利用可能なビームパターンのセットについて、方位角ごとのビームステアリングゲインがグラフ化されている。太線で示されているビームパターンBm11は、干渉制御の結果として使用されると想定されるビームパターンである。ここで、この基地局からハンドオーバ判定の対象である端末装置へ向かう方向の方位角がθであるとする。すると、当該基地局と当該端末装置のペアについてのビームステアリングゲインは、ビームパターンBm11の太線のグラフから、G(θ)に等しいと決定される。同様に、図11Bを参照すると、ある基地局により利用可能なビームパターンの他のセットについて、方位角ごとのビームステアリングゲインがグラフ化されている。太線で示されているビームパターンBm21は、干渉制御の結果として使用されると想定されるビームパターンである。ここで、この基地局からハンドオーバ判定の対象である端末装置へ向かう方向の方位角がθであるとする。すると、当該基地局と当該端末装置のペアについてのビームステアリングゲインは、ビームパターンBm21の太線のグラフから、G(θ)に等しいと決定される。
 記憶部120は、各基地局により利用可能なビームパターンのセットごとに、対応するビームステアリングゲインのグラフを予め記憶する。判定部134は、記憶されているグラフのうち、サービング基地局により使用されると想定されるビームパターンのグラフを特定する。そして、判定部134は、端末装置及びサービング基地局の位置情報から算出される引数と特定した当該グラフとに基づいて、ビームステアリングゲインを決定することができる。修正項Gの値は、このビームステアリングゲインの、メジャメント時からの変化量に相当し得る。同様に、判定部134は、記憶されているグラフのうち、ターゲット基地局のi番目の候補により使用されると想定されるビームパターンのグラフを特定する。そして、判定部134は、端末装置及びターゲット基地局のi番目の候補の位置情報から算出される引数と特定した当該グラフとに基づいて、ビームステアリングゲインを決定することができる。修正項GTiの値は、このビームステアリングゲインの、メジャメント時からの変化量に相当し得る。
 式(5)及び式(6)の代わりに、修正項G及び修正項GTiは、次の式(7)及び式(8)のように、想定される送信電力の制御の影響を表す項であってもよい。
Figure JPOXMLDOC01-appb-M000005
 ここで、式(7)の右辺のパラメータdPは、サービング基地局の送信電力の、メジャメント時からの変化量を表す。式(8)の右辺のパラメータdPTiは、ターゲット基地局のi番目の候補の送信電力の、メジャメント時からの変化量を表す。
 判定部134は、式(5)及び式(6)、又は式(7)及び式(8)を用いて決定される修正項を算入することにより、メジャメントレポートに記述された判定指標の値を修正し、修正した値を判定式(4)に代入する。そして、判定部134は、判定式(4)が満たされる場合に、ターゲット基地局のi番目の候補を端末装置の新たな接続先として決定し得る。なお、複数のターゲット基地局の候補が判定式(4)を満たす場合、修正された判定指標が最も良好な値を示す基地局がターゲット基地局として選択され得る。また、いずれの候補も判定式(4)を満たさない場合、判定部134は、ハンドオーバを実行しないことを決定し得る。
   (3-2-2)RSRQに基づくハンドオーバ判定
 判定部134は、ハンドオーバ判定のための判定指標として、リファレンス信号受信電力に基づいて計算される受信品質指標を使用してもよい。受信品質指標の一例は、リファレンス信号受信品質(RSRQ:Reference Signal Received Quality)である。
 通常、RSRQは、次式に従ってRSRPから計算され得る。なお、記号Xは、サービング基地局を意味するS、又はターゲット基地局のi番目の候補を意味するTを表す。
Figure JPOXMLDOC01-appb-M000006
 例えば、判定指標としてRSRQが使用される場合、判定部134は、サービングセルについての判定指標RSRQ及びi番目の周辺セルについての判定指標RSRQTiを、次の式(10)及び式(11)のように修正し得る。
Figure JPOXMLDOC01-appb-M000007
 そして、ハンドオーバ判定のための判定式は、次のように表現され得る。
Figure JPOXMLDOC01-appb-M000008
 即ち、この場合、修正項は、判定指標として使用される受信品質指標RSRQの計算に算入される。なお、判定式(12)におけるパラメータcTi、c及びdは、判定式(1)及び(4)の重みパラメータaTi、a及びbに対応する重みパラメータである。なお、式(9)に含まれる受信信号強度インジケータ(RSSI:Received Signal Strength Indicator)の計算において、次式のように修正項が算入されてもよい。
Figure JPOXMLDOC01-appb-M000009
 この場合にも、修正項は、判定指標として使用される受信品質指標RSRQの計算に算入される。なお、各基地局におけるリソース割当ての状況又は通信履歴に依存して、式(13)の右辺の受信電力の積算から、トラフィックの発生しないセルの受信電力が除外されてもよい。
   (3-2-3)SINRに基づくハンドオーバ判定
 リファレンス信号受信電力に基づいて計算される受信品質指標の他の例は、信号対干渉及び雑音比(SINR:Signal to Interference plus Noise Ratio)である。
 サービングセルについての修正された判定指標であるSINR´は、次の式(14)に従って計算され得る。また、i番目の周辺セルについての修正された判定指標であるSINRTi´は次の式(15)に従って計算され得る。
Figure JPOXMLDOC01-appb-M000010
 なお、式(14)及び式(15)におけるパラメータNは、熱雑音を表す。各基地局におけるリソース割当ての状況又は通信履歴に依存して、式(14)及び式(15)の右辺の受信電力(干渉電力)の積算から、トラフィックの発生しないセルの受信電力が除外されてもよい。一例として、トラフィックの発生しないセルの受信電力が除外される場合には、式(14)及び式(15)は次のように書き換えられ得る。
Figure JPOXMLDOC01-appb-M000011
 式(14´)及び式(15´)において、Ω及びΩは、トラフィックが発生しないとそれぞれ予測されるセルの集合を表す。集合Ω及び集合Ωは、ハンドオーバ判定を実行する装置により決定されてもよい。そして、ハンドオーバ判定のための判定式は、次のように表現され得る。
Figure JPOXMLDOC01-appb-M000012
 即ち、この場合にも、修正項は、判定指標として使用される受信品質指標SINRの計算に算入される。なお、判定式(16)におけるパラメータeTi、e及びfは、判定式(1)及び(4)の重みパラメータaTi、a及びbに対応する重みパラメータである。なお、式(16)における受信品質指標SINR´及びSINRTi´として、式(14)又は式(14´)、及び式(15)又は式(15´)に従って計算される指標がどのように組み合わされてもよい。
   (3-2-4)スループットに基づくハンドオーバ判定
 一変形例において、ハンドオーバ判定のために使用される判定指標は、メジャメントレポートに含まれる指標を用いて計算されるスループットを表してもよい。この場合、判定部134は、ハンドオーバ後のスループットの推定値を計算する際に、干渉制御部132により実行される干渉制御の影響を算入する。
 サービングセルについてのある端末装置のスループットTPは、当該端末装置の通信履歴を参照することにより計算され得る。i番目の周辺セルについてのスループットの推定値TPTiは、例えば、次の式(17)のように、シャノン・ハートレーの定理に従って理論的に計算され得る。
Figure JPOXMLDOC01-appb-M000013
 式(17)において、NRB,Tiは、i番目の周辺セルが単位時間当たり割当て可能な無線リソースの総数(例えば、LTE方式におけるリソースブロック数)を表す。NUE,Tiは、その時点でi番目の周辺セルに接続している端末装置の数を表す。BRBは、無線リソースの1つの割当て単位の帯域幅を表す。SINRTi´は上述した式(15)に従って、修正項を算入することにより計算され得る。そして、ハンドオーバ判定のための判定式は、次のように表現され得る。
Figure JPOXMLDOC01-appb-M000014
 なお、判定式(18)におけるパラメータgは、判定式(1)及び(4)の重みパラメータbに対応する重みパラメータである。
 式(17)は、シャノン容量をスループットの期待値として扱う計算式である。実際の無線通信においては、ある端末装置に割当てられた無線リソース上で送信可能なデータサイズは、CQI(Channel Quality Indicator)により示されるチャネル品質に応じて選択される変調符号化方式(MCS:Modulation and Coding Scheme)に依存する。そこで、式(17)の代わりに、次のようにスループットを推定することもできる。
Figure JPOXMLDOC01-appb-M000015
 式(19)において、DS(…)は、チャネル品質SINRTi、及び無線リソースの推定割当て量を引数とし、送信可能なデータサイズを戻り値とする関数である。
 式(17)及び式(19)は、割当て可能な無線リソースを全てのユーザに均等に配分するという仮定に基づいている。無線リソースの割当て量NRB,ASSIGN,Tiを特定することが可能な場合、式(17)及び式(19)をそれぞれ次の式(20)及び式(21)ように書き換えることができる。
Figure JPOXMLDOC01-appb-M000016
 このように、干渉制御の影響が算入されるスループットの推定値を判定指標として使用することにより、無線リソースの割当て量の観点をもハンドオーバ判定に加えることができる。なお、スループットを表す指標に割当て可能なリソースの時間量を乗算することにより、送信可能なデータサイズを表す指標が計算されてもよい。そして、サービングセルと周辺セルとの間の送信可能なデータサイズの比較に基づいて、ハンドオーバ判定が行われてもよい。また、スループット又はデータサイズを導き出すためにSINRの値を計算する際、トラフィックの発生しないセルは、計算から除外されてもされなくてもよい。
   (3-2-5)流入制御
 判定部134は、上述したいずれかの判定式に従い、修正される判定指標を用いてハンドオーバのターゲット基地局を選択する。ある実施例において、判定部134は、ネットワーク通信部110を介して、選択したターゲット基地局へハンドオーバ要求を送信する。ハンドオーバ要求を受信したターゲット基地局は、何らかの基準に従って流入制御(Admission Control)を実行し得る。他の実施例において、判定部134は、選択したターゲット基地局が端末装置の接続を受け入れるべきかをさらに判定してもよい。即ち、この場合、ターゲット基地局の代わりに協調マネージャ100が流入制御を実行する。
 一例として、判定部134は、次の式(22)が満たされる場合に、ターゲット基地局が端末装置の接続を受け入れるべきであると判定してもよい。
Figure JPOXMLDOC01-appb-M000017
 式(22)において、NUE,Tiは、その時点でターゲット基地局に接続している端末装置の数を表す。NUE,MAX,Tiは、ターゲット基地局に接続可能な端末装置の数の最大値(閾値)を表す。式(22)の代わりに(又はそれに加えて)、判定部134は、端末装置の識別子が予め記憶されるホワイトリストに含まれる場合に、ターゲット基地局が端末装置の接続を受け入れるべきであると判定してもよい。また、判定部134は、端末装置の識別子が予め記憶されるブラックリストに含まれない場合に、ターゲット基地局が端末装置の接続を受け入れるべきであると判定してもよい。端末装置の識別子は、例えば、電話番号、IMSI(International Mobile Subscriber Identity)又はS-TMSI(SAE Temporary Mobile Subscriber Identity)などであってよい。ホワイトリスト又はブラックリストは、システム単位で定義されてもよく、又はセル単位で定義されてもよい。例えば、クローズドタイプのスモールセルは、接続を許容する端末装置の識別子のリストを保持し得る。また、端末装置のタイプ、契約種別又は料金プランなどの他の情報が、接続可否の判定のために使用されてもよい。
 流入制御のために使用され得る情報は、協調マネージャ100によって、干渉制御情報と共に各基地局から収集されてもよい。その代わりに、いくつかの情報は、オペレータによって協調マネージャ100に登録され、協調マネージャ100から各基地局へ配信されてもよい。
 一変形例として、判定部134は、上述した式(22)の代わりに次の式(23)に従って、ターゲット基地局への端末装置の接続の可否を判定してもよい。
Figure JPOXMLDOC01-appb-M000018
 式(23)において、NUE_NORMAL,Tiはその時点でターゲット基地局に接続している非M2M端末の数を、NUE_M2M,Tiはその時点でターゲット基地局に接続しているM2M端末の数をそれぞれ表す。パラメータwは、M2M端末の数NUE_M2M,Tiに乗算される重みパラメータである。M2M(Machine To Machine)端末とは、ユーザが携帯するのではなく、自動販売機、スマートメータ又は店頭のキャッシュレジスタなどの機器に搭載されるタイプの無線通信端末を指す。M2M端末により送受信されるトラフィック量は、一般的には、非M2M端末により送受信される(例えば、映像コンテンツ又は音声コンテンツの)トラフィック量よりも少ない。そこで、判定部134は、式(23)のように、端末のタイプに応じて異なる重みを用いてターゲット基地局の収容端末数を計算し、計算した収容端末数を閾値NUE,MAX,Tiと比較する。重みパラメータwは、典型的には、1よりも小さい値に設定される。このような流入制御によれば、セルの見かけ上の収容端末数を増やすことができる。
 他の変形例として、判定部134は、次の式(24)及び式(25)のように、端末装置のタイプごとにカウントされる収容端末数を、タイプごとに別々に定義される閾値NUE_NORMAL,MAX,Ti及びNUE_M2M,MAX,Tiと比較することにより、ターゲット基地局への端末装置の接続の可否を判定してもよい。
Figure JPOXMLDOC01-appb-M000019
 流入制御がターゲット基地局により実行される場合、協調マネージャ100とターゲット基地局との間でメッセージの交換が行われる。特に、流入制御の結果として端末装置の接続が拒否される場合には、メッセージの交換はリソース及び時間の無駄を生じさせる。これに対し、ターゲット基地局の代わりに協調マネージャ100が流入制御をも実行することにより、交換されるメッセージを削減し、リソース及び時間の無駄を低減することができる。
 判定部134は、いずれかの基準に従ってターゲット基地局が端末装置の接続を受け入れるべきであると判定した場合に、当該ターゲット基地局へハンドオーバ指令を送信し得る。ハンドオーバ指令は、既存のメッセージであるハンドオーバ要求とは異なり、ハンドオーバを受け入れることを指示する強制力のあるメッセージであってよい。ハンドオーバ要求とは区別されるハンドオーバ指令を送信することにより、ターゲット基地局は、自らがあらためて流入制御を実行する必要が無いことを認識することができる。
  [3-2.処理の流れ]
   (1)干渉制御処理
 図12は、協調マネージャ100により実行され得る干渉制御処理の流れの一例を示すフローチャートである。
 図12を参照すると、まず、干渉制御部132は、ネットワーク通信部110を介して、制御対象の1つ以上の基地局から干渉制御情報を収集する(ステップS10)。
 次に、干渉制御部132は、収集した干渉制御情報に基づき、システム内で有害な干渉が回避されるように、少なくとも1つの基地局又は端末装置が使用すべき送信パラメータを決定する(ステップS20)。ここで決定される送信パラメータは、例えば、アンテナビームのビームパターン又は送信電力であってよい。決定された送信パラメータは、記憶部120により記憶される。
 次に、干渉制御部132は、ネットワーク通信部110を介して干渉制御メッセージを送信することにより、決定した送信パラメータを対応する基地局へ通知する(ステップS30)。
 また、判定部134は、端末装置により生成され当該端末装置のサービング基地局により転送されるメジャメントレポートの受信を待ち受ける(ステップS40)。ネットワーク通信部110によりメジャメントレポートが受信された場合には、判定部134は、後述する協調判定処理を実行する(ステップS50)。一方、メジャメントレポートが受信されない場合には、処理はステップS10へ戻る。
   (2-1)協調判定処理-第1の例
 図13Aは、協調マネージャ100により実行され得る協調判定処理の流れの第1の例を示すフローチャートである。第1の例では、協調マネージャ100は、ハンドオーバ判定を実行する。流入制御は、ターゲット基地局により実行される。
 図13Aを参照すると、まず、判定部134は、メジャメントレポートに基づく判定指標を、メジャメントが行われた後に実行される干渉制御の影響を算入することにより修正する(ステップS51)。ここでの判定指標は、上述したRSRP、RSRQ、SINR及びスループットのいずれか1つ又は2つ以上の組合せであってよい。
 次に、判定部134は、ターゲットセルの複数の候補が存在する場合には、最も良好な判定指標を示す1つの候補を選択する(ステップS53)。次に、判定部134は、修正されたサービングセル及びターゲットセルの判定指標が判定式を満たすかを判定する(ステップS55)。ここでの判定式は、上述した判定式(4)、(12)、(16)及び(18)のいずれかであってもよく、他の判定式であってもよい。
 修正された判定指標が判定式を満たさない場合、判定部134は、ハンドオーバを実行しないことを決定する(ステップS57)。一方、修正された判定指標が判定式を満たす場合には、判定部134は、選択されたターゲットセルの基地局へ、ハンドオーバ要求を送信する(ステップS59)。
 その後、流入制御の結果としてハンドオーバ要求がターゲット基地局により承認されると(ステップS61)、判定部134は、ネットワーク通信部110を介してサービング基地局へハンドオーバ命令を送信する(ステップS63)。
 一方、ハンドオーバ要求がターゲット基地局により承認されなかった場合には、判定部134は、ステップS53において選択したターゲットセルを、候補から除外する(ステップS65)。そして、ターゲットセルの残りの候補が存在する場合には(ステップS67、当該残りの候補についてステップS53以降の処理が繰り返される。残りの候補が存在しない場合には、判定部134は、ハンドオーバを実行しないことを決定する(ステップS57)。
   (2-2)協調判定処理-第2の例
 図13Bは、協調マネージャ100により実行され得る協調判定処理の流れの第2の例を示すフローチャートである。第2の例では、協調マネージャ100は、ハンドオーバ判定及び流入制御を実行する。
 図13Bを参照すると、まず、判定部134は、メジャメントレポートに基づく判定指標を、メジャメントが行われた後に実行される干渉制御の影響を算入することにより修正する(ステップS51)。ここでの判定指標は、上述したRSRP、RSRQ、SINR及びスループットのいずれか1つ又は2つ以上の組合せであってよい。
 次に、判定部134は、ターゲットセルの複数の候補が存在する場合には、最も良好な判定指標を示す1つの候補を選択する(ステップS53)。次に、判定部134は、修正されたサービングセル及びターゲットセルの判定指標が判定式を満たすかを判定する(ステップS55)。ここでの判定式は、上述した判定式(4)、(12)、(16)及び(18)のいずれかであってもよく、他の判定式であってもよい。
 修正された判定指標が判定式を満たさない場合、判定部134は、ハンドオーバを実行しないことを決定する(ステップS57)。一方、修正された判定指標が判定式を満たす場合には、判定部134は、選択されたターゲットセルについて流入制御を実行する(ステップS60)。例えば、判定部134は、式(22)、(23)、(24)又は(25)に示したように、ターゲット基地局に接続している端末装置の数を閾値と比較してもよい。また、判定部134は、端末装置の識別子を、許容され又は拒否される識別子のリストと照合してもよい。
 判定部134は、流入制御の結果としてターゲットセルが端末装置を受け入れるべきであると判定した場合、ネットワーク通信部110を介してターゲット基地局又はサービング基地局へハンドオーバ指令を送信する(ステップS64)。
 一方、判定部134は、流入制御の結果としてターゲットセルが端末装置を受け入れるべきでないと判定した場合、ステップS53において選択したターゲットセルを、候補から除外する(ステップS65)。そして、ターゲットセルの残りの候補が存在する場合には(ステップS67)、当該残りの候補についてステップS53以降の処理が繰り返される。残りの候補が存在しない場合には、判定部134は、ハンドオーバを実行しないことを決定する(ステップS57)。
 <4.基地局の構成例>
 本節では、協調マネージャ100による制御対象である基地局の構成について説明する。ハンドオーバ判定を協調マネージャ100に委任する基地局は、端末装置からメジャメントレポートが受信されると、自らハンドオーバ判定を実行することなく、受信したメジャメントレポートを協調マネージャ100へ転送する。そして、当該基地局は、協調マネージャ100の判定に従って、ハンドオーバ手続を遂行する。
  [4-1.装置の構成例]
 図14は、一実施形態に係る基地局200の構成の一例を示すブロック図である。図14を参照すると、基地局200は、無線通信部210、ネットワーク通信部220、記憶部230及び通信制御部240を備える。
   (1)無線通信部
 無線通信部210は、1つ以上の端末装置との無線通信を実行する無線通信インタフェース(あるいは、無線送受信機)である。無線通信部210は、典型的には、アンテナ、RF(Radio Frequency)回路及びベースバンドプロセッサを含み得る。無線通信部210は、ダウンリンクチャネルの品質に応じて選択される変調符号化方式で、送信信号を符号化し及び変調する。また、無線通信部210は、アップリンクチャネルの品質に応じて選択される変調符号化方式で、受信信号を復調し及び復号する。無線通信部210から送信される無線信号の送信電力は、後述する通信制御部240により設定される。無線通信部210により受信される無線信号の送信電力は、通信制御部240により端末装置へ指示される。無線通信部210は、ビームステアリング可能な複数のアンテナを有していてもよい。その場合、無線通信部210のアンテナビームのビームパターンもまた、通信制御部240により設定され得る。
   (2)ネットワーク通信部
 ネットワーク通信部220は、図1に例示したコアネットワーク16及び他の基地局と接続される通信インタフェースである。ネットワーク通信部220は、無線通信部210により受信されるアップリンクトラフィックを、コアネットワーク16へ転送する。また、ネットワーク通信部220は、端末装置へ送信されるべきダウンリンクトラフィックを、コアネットワーク16から受信する。また、ネットワーク通信部220は、コアネットワーク16内の制御ノード上に又は他の基地局上に実装され得る協調マネージャ100との間で、メッセージを交換し得る。協調マネージャ100は、干渉制御を実行する通信制御装置である。
   (3)記憶部
 記憶部230は、ハードディスク又は半導体メモリなどの記憶媒体を用いて、基地局200の動作のためのプログラム及びデータを記憶する。記憶部230により記憶されるデータは、例えば、基地局200及び基地局200と接続する端末装置の各々についての、位置情報、アンテナ構成情報、最大送信電力情報、レート制御情報、チャネル品質情報、リソース割当て情報及び通信履歴情報のうちの1つ以上を含み得る。これら情報のうちの少なくとも一部は、干渉制御情報として協調マネージャ100へ提供され得る。
   (4)通信制御部
 通信制御部240は、CPU又はDSPなどのプロセッサを用いて、基地局200の動作全般を制御する。例えば、通信制御部240は、基地局200と接続する端末装置との通信のために通信リソースをスケジューリングし、リソース割当て情報を生成する。また、通信制御部240は、端末装置との間の無線チャネルのチャネル品質に応じて変調符号化方式を選択する。また、通信制御部240は、無線通信部210が使用すべきダウンリンクの送信電力、及び各端末装置が使用すべきアップリンクの送信電力を設定する。また、通信制御部240は、無線通信部210においてビームステアリングが可能な場合、使用すべきビームパターンを設定する。
 通信制御部240は、例えば、協調マネージャ100からネットワーク通信部220を介して干渉制御メッセージが受信された場合に、当該干渉制御メッセージに記述される送信電力を、無線通信部210に設定してもよい。また、通信制御部240は、干渉制御メッセージに記述される送信電力を使用することを、端末装置へ指示してもよい。また、通信制御部240は、干渉制御メッセージに記述されるビームパターンを、無線通信部210に設定し又は端末装置へ指示してもよい。それにより、セル間の協調的な干渉制御を実現することができる。
 また、通信制御部240は、端末装置により生成されたメジャメントレポートが無線通信部210により受信された場合に、当該メジャメントレポートを協調マネージャ100へ転送し、ハンドオーバ判定を協調マネージャ100に実行させる。ここで転送されるメジャメントレポートは、ハンドオーバ判定のために使用される判定指標を含み得る。協調マネージャ100は、端末装置によりメジャメントが行われた後に実行される干渉制御の影響を算入することにより判定指標を修正し、修正した判定指標を用いて端末装置のためにハンドオーバ判定を実行する。通信制御部240は、メジャメントレポートを協調マネージャ100へ転送する際に、プライバシーの保護の観点から、個々の端末装置を識別する識別情報をマスキングし又は削除してもよい。その場合、通信制御部240は、転送したレポートと当該レポートを生成した端末装置との関連付けを記憶部230に一時的に記憶させ、この関連付けを使用して、その後受信されるハンドオーバ命令がどの端末装置のためのものであるかを識別してもよい。
 通信制御部240は、協調マネージャ100へメジャメントレポートを転送した後、協調マネージャ100の判定に従って、ソース基地局としてのハンドオーバ手続を実行し得る。例えば、通信制御部240は、端末装置へハンドオーバ命令が送信された後、当該端末装置宛てのダウンリンクトラフィックを指定されるターゲット基地局へ転送する。
 また、通信制御部240は、協調マネージャ100により基地局200がターゲット基地局として選択された場合において、協調マネージャ100が流入制御を実行しないときは、ハンドオーバ要求の受信に応じて流入制御を実行してもよい。また、通信制御部240は、協調マネージャ100により基地局200がターゲット基地局として選択された場合において、協調マネージャ100により既に流入制御が実行されたときは、協調マネージャ100からのハンドオーバ指令の受信に応じて、ターゲット基地局としてのハンドオーバ手続を実行してもよい。
  [4-2.処理の流れ]
 図15は、一実施形態に係る基地局200により実行されるメジャメントレポート転送処理の流れの一例を示すフローチャートである。
 図15を参照すると、まず、無線通信部210は、基地局200に接続している端末装置からメジャメントレポートを受信する(ステップS210)。
 次に、通信制御部240は、無線通信部210により受信されたメジャメントレポートを、ネットワーク通信部220を介して協調マネージャ100へ転送する(ステップS220)。
 その後、通信制御部240は、協調マネージャ100又は他の基地局からのハンドオーバ命令の受信を待ち受ける(ステップS230)。
 そして、通信制御部240は、ハンドオーバ命令が受信されると、ソース基地局としてのハンドオーバ手続を実行する(ステップS240)。
 <5.端末装置の構成例>
  [5-1.装置の構成例]
 図16は、一実施形態に係る端末装置300の構成の一例を示すブロック図である。図16を参照すると、端末装置300は、無線通信部310、記憶部320及び制御部330を備える。
   (1)無線通信部
 無線通信部310は、基地局との無線通信を実行する無線通信インタフェース(あるいは、無線送受信機)である。無線通信部310は、典型的には、アンテナ、RF回路及びベースバンドプロセッサを含み得る。無線通信部310は、アップリンクチャネルの品質に応じた変調符号化方式で送信信号を符号化し及び変調し、並びにダウンリンクチャネルの品質に応じた変調符号化方式で受信信号を復調し及び復号する。無線通信部310から送信される無線信号の送信電力は、後述する通信制御部334により設定される。無線通信部310は、ビームステアリング可能な複数のアンテナを有していてもよい。その場合、無線通信部310のアンテナビームのビームパターンもまた、通信制御部334により設定され得る。
   (2)記憶部
 記憶部320は、ハードディスク又は半導体メモリなどの記憶媒体を用いて、端末装置300の動作のためのプログラム及びデータを記憶する。記憶部320により記憶されるデータは、例えば、端末装置300の識別情報、位置情報、アンテナ構成情報及び最大送信電力情報のうちの1つ以上を含み得る。
   (3)制御部
 制御部330は、CPU又はDSPなどのプロセッサを用いて、端末装置300の動作全般を制御する。図16の例において、制御部330は、アプリケーション部332及び通信制御部334を含む。
   (3-1)アプリケーション部
 アプリケーション部332は、上位レイヤのアプリケーションを実装する。アプリケーション部332は、基地局へ送信されるべきデータトラフィックを生成し、生成したデータトラフィックを無線通信部310へ出力する。また、アプリケーション部332は、基地局から無線通信部310により受信されるデータトラフィックを処理する。
   (3-2)通信制御部
 通信制御部334は、無線通信部310により実行される無線通信を制御する。例えば、通信制御部334は、基地局から受信されるリソース割当て情報に従って、無線通信部310に無線信号を送信させ又は無線信号を受信させる。また、通信制御部334は、無線チャネルのチャネル品質に応じて基地局により選択される変調符号化方式を、無線通信部310に設定する。また、通信制御部334は、基地局から受信される電力制御コマンドに従って、無線通信部310が使用すべきアップリンクの送信電力を設定する。また、通信制御部334は、無線通信部310においてビームステアリングが可能な場合、使用すべきビームパターンを設定する。
 また、通信制御部334は、周期的に又はサービング基地局からの指示に応じて、メジャメントを実行する。メジャメントにおいて、無線通信部310は、サービング基地局から送信されるリファレンス信号、及び1つ以上の周辺基地局から送信されるリファレンス信号を受信し、受信電力を測定する。通信制御部334は、受信電力の測定値に基づいて、メジャメントレポートを生成する。メジャメントレポートは、端末装置の識別情報に加えて、ハンドオーバ判定のために使用されるサービングセル及び1つ以上の周辺セルについての指標を含む。そして、通信制御部334は、生成したメジャメントレポートを無線通信部310からサービング基地局へ送信させる。
 また、通信制御部334は、サービング基地局からハンドオーバ命令が無線通信部310により受信された場合に、ハンドオーバ手続を実行する。具体的には、通信制御部334は、ターゲット基地局からの同期信号を探索することによりターゲット基地局との同期を獲得し、システム情報を参照することにより識別されるランダムアクセスチャネル上で、無線通信部310にターゲット基地局へランダムアクセス信号を送信させる。このランダムアクセスが成功すると、ターゲット基地局が新たに端末装置300のサービング基地局となる。
  [5-2.変形例]
 ここまでに説明した例では、協調マネージャ100が、ハンドオーバ判定のための判定指標を修正する。しかしながら、一変形例として、端末装置300において修正項が生成されてもよい。
 例えば、無線通信部310がビームステアリング可能な複数のアンテナを有している場合に、通信制御部334は、メジャメント後に(又はハンドオーバ後に)無線通信部310のアンテナにより形成されると想定されるアンテナビームの影響を表す修正項を生成してもよい。そして、通信制御部334は、ハンドオーバ判定のために使用されるメジャメントレポートに、例えば次の式(26)及び式(27)のように修正項の加算された判定指標の値を含めてもよい。
Figure JPOXMLDOC01-appb-M000020
 式(26)において、RSRPS_MEASはサービングセルについての測定されたリファレンス信号受信電力、RSRPS_REPはサービングセルについての修正されたリファレンス信号受信電力、GUE,Sはサービングセルについての端末固有の修正項である。式(27)において、RSRPTi_MEASはi番目の周辺セルについての測定されたリファレンス信号受信電力、RSRPTi_REPはi番目の周辺セルについての修正されたリファレンス信号受信電力、GUE,Tiはi番目の周辺セルについての端末固有の修正項である。端末固有の修正項がセルごとに異なるのは、端末と各基地局との間の位置関係がそれぞれ異なるためである。
 端末固有の修正項GUE,S及びGUE,Tiは、例えば、次の式(28)及び式(29)のように、ビームステアリングの影響を表す項であってよい。
Figure JPOXMLDOC01-appb-M000021
 ここで、式(28)及び式(29)の右辺の関数dG(…)は、端末装置から基地局へ向かう方向の方位角、仰俯角、及び端末装置から基地局までの距離を引数とし、ビームステアリングゲインの変化量を戻り値とする関数である。関数dGの1つ以上の引数が省略されてもよい。
 通信制御部334は、式(26)及び式(27)のように修正項を判定指標に加算する代わりに、修正前の判定指標と修正項とを共にメジャメントレポートに含めてもよい。また、通信制御部334は、メジャメントレポートとは別に、修正項を通知するメッセージを無線通信部310からサービング基地局へ送信させてもよい。
 なお、端末固有の修正項は、協調マネージャ100において計算されてもよい。その場合、計算された修正項に対応する干渉制御パラメータ(例えば、端末装置300が使用すべきビームパターン)が、協調マネージャ100からサービング基地局を介して端末装置300へシグナリングされ、当該干渉制御パラメータが端末装置300により使用され得る。ハンドオーバ判定において、例えば式(2)及び式(3)の修正項と式(26)及び式(27)の修正項とが共に使用されてもよい。
  [5-3.処理の流れ]
 図17は、一実施形態に係る端末装置300により実行されるメジャメントレポート処理の流れの一例を示すフローチャートである。
 図17を参照すると、まず、無線通信部310は、サービングセルにおいて送信されるリファレンス信号、及び1つ以上の周辺セルにおいて送信されるリファレンス信号を受信し、セルごとの受信電力を測定する(ステップS310)。
 次に、通信制御部334は、無線通信部310により測定された受信電力の値に基づいて、メジャメントレポートを生成する(ステップS320)。さらに、通信制御部334は、ハンドオーバ判定において端末固有の修正項を使用するかを判定する(ステップS330)。
 端末固有の修正項が使用されない場合には、通信制御部334は、ステップS310において生成したメジャメントレポートを、無線通信部310からサービング基地局へ送信させる(ステップS340)。
 端末固有の修正項が使用される場合には、通信制御部334は、メジャメント後(又はターゲット基地局の各候補へのハンドオーバ後)に無線通信部310のアンテナにより形成されると想定されるアンテナビームの影響を表す修正項を、それぞれ計算する(ステップS350)。そして、通信制御部334は、計算した修正項を、メジャメントレポートに含めて又はメジャメントレポートとは別に、無線通信部310からサービング基地局へ送信させる(ステップS360)。
 その後、通信制御部334は、サービング基地局からのハンドオーバ命令の受信を待ち受ける(ステップS370)。そして、通信制御部334は、ハンドオーバ命令が受信されると、指定されるターゲット基地局へのハンドオーバ手続を実行する(ステップS380)。
 <6.まとめ>
 ここまで、図1~図17を用いて、本開示に係る技術の実施形態について詳細に説明した。上述した実施形態によれば、複数の基地局と複数の端末装置とを含む無線通信システムのための干渉制御を実行する協調マネージャ(通信制御装置)において、端末装置により生成されるメジャメントレポートに基づく判定指標が当該端末装置によりメジャメントが行われた後に実行される干渉制御の影響を算入することにより修正され、修正された判定指標を用いて当該端末装置についてのハンドオーバ判定が実行される。従って、協調的な干渉制御が行われる状況下でのハンドオーバ判定に際して、最適な接続先セルを確実に選択することが可能となる。その結果、システム全体としてのリソースの利用効率が向上される。
 また、上述した実施形態によれば、端末装置により生成されるメジャメントレポートが、当該端末装置のサービング基地局により協調マネージャへ転送される。従って、協調マネージャは、ハンドオーバ判定が必要とされるタイミングで、干渉制御の影響を考慮したハンドオーバ判定をタイムリーに実行することができる。端末装置は、既存のハンドオーバ手続と同様にメジャメントレポートをサービング基地局へ送信すればよい。そのため、本開示に係る技術を実装するために端末装置の改変は不要であり、既に市場に存在する端末装置にも上述した新たな仕組みを適用することができる。
 また、上述した実施形態によれば、協調マネージャによりアンテナビームが制御される場合に、想定されるアンテナビームの制御の影響を表す修正項を算入することにより、ハンドオーバ判定のための判定指標が修正される。従って、個々の端末装置又は基地局にとって予測することの難しいビーム制御に起因するゲインの変化を、ハンドオーバ判定において考慮することができる。
 また、上述した実施形態によれば、協調マネージャにより送信電力が制御される場合に、想定される送信電力の制御の影響を表す修正項を算入することにより、ハンドオーバ判定のための判定指標が修正される。従って、個々の端末装置又は基地局が予測することの難しい送信電力制御に起因する受信電力の変化を、ハンドオーバ判定において考慮することができる。
 一例として、修正項は、RSRPのオフセット値であってよい。この場合、ハンドオーバ判定の判定式をわずかに変更するのみでハンドオーバ判定に修正項を算入することができるため、本開示に係る技術を少ないコストで実現することができる。他の例として、修正項は、RSRPに基づいて計算されるRSRQ又はSINRなどの受信品質指標の計算に算入されてもよい。この場合、RSRPそのものを用いるケースよりも高度なハンドオーバ判定を実行することにより、各端末装置を最適なチャネル品質を有するセルに接続させることが可能となる。また別の例として、ハンドオーバ後のスループットの推定値を計算する際に干渉制御の影響が算入されてもよい。この場合、システム全体の通信容量を最適化することが可能となる。
 また、上述した実施形態によれば、協調マネージャは、ターゲット基地局の代わりに流入制御をも実行し得る。かかる構成によれば、協調マネージャとターゲット基地局の候補との間で交換されるメッセージが削減されるため、メッセージ交換に要するリソース及び時間の無駄を低減することができる。
 また、ある変形例によれば、端末装置がビームステアリング可能なアンテナを有する場合に、ハンドオーバ判定のために使用されるメジャメントレポートに関連する判定指標の端末固有の修正項が、メジャメント後に端末装置において形成されると想定されるアンテナビームの影響を表すように計算される。そして、計算された端末固有の修正項が、メジャメントレポートに含めて又はメジャメントレポートとは別にサービング基地局へ送信される。従って、協調マネージャ(又はサービング基地局)は、端末装置におけるビームステアリングの影響をも考慮に入れて、ハンドオーバ判定を実行することができる。それにより、最適な接続先セルが選択される可能性を一層高めることができる。
 なお、本開示に係る技術は、協調マネージャが干渉制御以外の制御を実行するケースにも適用可能である。例えば、協調マネージャは、システムのキャパシティ又はスループットなどの性能を向上させるために、各基地局及び各端末に割当てられる無線リソース(例えば、時間、周波数、符号又は空間リソース)を制御する。そして、協調マネージャは、サービング基地局から転送されるメジャメントレポートに基づく判定指標を、端末装置によりメジャメントが行われた後に実行される無線リソースの制御の影響を算入することにより修正し、修正された判定指標を用いて当該端末装置についてのハンドオーバ判定を実行し得る。
 また、本明細書において説明した各装置による一連の制御処理は、ソフトウェア、ハードウェア、及びソフトウェアとハードウェアとの組合せのいずれを用いて実現されてもよい。ソフトウェアを構成するプログラムは、例えば、各装置の内部又は外部に設けられる記憶媒体(非一時的な媒体:non-transitory media)に予め格納される。そして、各プログラムは、例えば、実行時にRAM(Random Access Memory)に読み込まれ、CPUなどのプロセッサにより実行される。
 また、本明細書においてフローチャートを用いて説明した処理は、必ずしもフローチャートに示された順序で実行されなくてもよい。いくつかの処理ステップは、並列的に実行されてもよい。また、追加的な処理ステップが採用されてもよく、一部の処理ステップが省略されてもよい。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 複数の基地局と複数の端末装置とを含む無線通信システムのための干渉制御を実行する干渉制御部と、
 第1の端末装置により生成されるメジャメントレポートに基づく判定指標を、前記第1の端末装置によりメジャメントが行われた後に前記干渉制御部により実行される前記干渉制御の影響を算入することにより修正し、修正された前記判定指標を用いて前記第1の端末装置についてのハンドオーバ判定を実行する判定部と、
 を備える通信制御装置。
(2)
 前記メジャメントレポートは、前記第1の端末装置のサービング基地局により前記通信制御装置へ転送される、前記(1)に記載の通信制御装置。
(3)
 前記干渉制御部は、少なくとも1つの基地局又は少なくとも1つの端末装置のアンテナビームを制御し、
 前記判定部は、前記アンテナビームの制御の影響を表す修正項を算入することにより、前記判定指標を修正する、
 前記(1)又は前記(2)に記載の通信制御装置。
(4)
 前記干渉制御部は、少なくとも1つの基地局又は少なくとも1つの端末装置の送信電力を制御し、
 前記判定部は、前記送信電力の制御の影響を表す修正項を算入することにより、前記判定指標を修正する、
 前記(1)~(3)のいずれか1項に記載の通信制御装置。
(5)
 前記判定指標は、リファレンス信号受信電力(RSRP)を含み、
 前記修正項は、前記RSRPのオフセット値である、
 前記(3)又は前記(4)に記載の通信制御装置。
(6)
 前記判定指標は、リファレンス信号受信電力(RSRP)に基づいて計算される受信品質指標を含み、
 前記修正項は、前記受信品質指標の計算に算入される、
 前記(3)又は前記(4)に記載の通信制御装置。
(7)
 前記判定指標は、前記メジャメントレポートに含まれる指標を用いて計算されるスループットを表し、
 前記判定部は、ハンドオーバ後の前記スループットの推定値を計算する際に前記干渉制御の影響を算入する、
 前記(1)~(4)のいずれか1項に記載の通信制御装置。
(8)
 前記判定部は、修正された前記判定指標を用いて選択されるターゲット基地局が前記第1の端末装置の接続を受け入れるべきかをさらに判定する、前記(1)~(7)のいずれか1項に記載の通信制御装置。
(9)
 前記判定部は、前記ターゲット基地局が前記第1の端末装置の接続を受け入れるべきであると判定した場合に、前記ターゲット基地局へハンドオーバを受け入れることを指示するメッセージを送信する、前記(8)に記載の通信制御装置。
(10)
 前記判定部は、端末のタイプに応じて異なる重みを用いて計算される前記ターゲット基地局の収容端末数を閾値と比較することにより、前記第1の端末装置の接続を受け入れるべきかを判定する、前記(8)又は前記(9)に記載の通信制御装置。
(11)
 前記判定部は、端末のタイプごとにカウントされる前記ターゲット基地局の収容端末数を、前記タイプごとに異なる閾値と比較することにより、前記第1の端末装置の接続を受け入れるべきかを判定する、前記(8)又は前記(9)に記載の通信制御装置。
(12)
 通信制御装置により実行される通信制御方法であって、
 複数の基地局と複数の端末装置とを含む無線通信システムのための干渉制御を実行することと、
 第1の端末装置により生成されるメジャメントレポートに基づく判定指標を、前記第1の端末装置によりメジャメントが行われた後に実行される前記干渉制御の影響を算入することにより修正することと、
 修正された前記判定指標を用いて前記第1の端末装置についてのハンドオーバ判定を実行することと、
 を含む通信制御方法。
(13)
 複数の基地局と複数の端末装置とを含む無線通信システムであって、
 前記無線通信システムは、前記無線通信システムのための干渉制御を実行する制御ノードを含み、
 前記制御ノードは、第1の端末装置により生成されるメジャメントレポートに基づく判定指標を、前記第1の端末装置によりメジャメントが行われた後に実行される前記干渉制御の影響を算入することにより修正し、修正された前記判定指標を用いて前記第1の端末装置についてのハンドオーバ判定を実行する、
 無線通信システム。
(14)
 前記制御ノードは、前記複数の基地局とは異なるノードである、前記(13)に記載の無線通信システム。
(15)
 前記制御ノードは、前記複数の基地局のいずれかに実装されるノードである、前記(13)に記載の無線通信システム。
(16)
 複数の基地局と複数の端末装置とを含む無線通信システムのために干渉制御を実行する通信制御装置と通信する通信部と、
 第1の端末装置により生成されハンドオーバ判定のために使用されるメジャメントレポートを、前記第1の端末装置について前記ハンドオーバ判定を実行する前記通信制御装置へ、前記通信部に転送させる制御部と、
 を備える基地局。
(17)
 ビームステアリング可能なアンテナを用いて無線信号を送信し又は受信する無線通信部と、
 ハンドオーバ判定のために使用されるメジャメントレポートを生成し、及び、
 メジャメント後に前記アンテナにより形成されると想定されるアンテナビームの影響を表す修正項を、前記メジャメントレポートに含めて又は前記メジャメントレポートとは別に、前記無線通信部からサービング基地局へ送信させる、
 制御部と、
 を備える端末装置。
(18)
 複数の基地局と複数の端末装置とを含む無線通信システムのための無線リソースの制御を実行する制御部と、
 第1の端末装置により生成されるメジャメントレポートに基づく判定指標を、前記第1の端末装置によりメジャメントが行われた後に前記制御部により実行される前記無線リソースの制御の影響を算入することにより修正し、修正された前記判定指標を用いて前記第1の端末装置についてのハンドオーバ判定を実行する判定部と、
 を備える通信制御装置。
 100  通信制御装置(協調マネージャ)
 110  ネットワーク通信部
 120  記憶部
 132  干渉制御部
 134  判定部
 200  基地局
 210  無線通信部
 220  ネットワーク通信部
 230  記憶部
 240  通信制御部
 300  端末装置
 310  無線通信部
 320  記憶部
 334  通信制御部

Claims (18)

  1.  複数の基地局と複数の端末装置とを含む無線通信システムのための干渉制御を実行する干渉制御部と、
     第1の端末装置により生成されるメジャメントレポートに基づく判定指標を、前記第1の端末装置によりメジャメントが行われた後に前記干渉制御部により実行される前記干渉制御の影響を算入することにより修正し、修正された前記判定指標を用いて前記第1の端末装置についてのハンドオーバ判定を実行する判定部と、
     を備える通信制御装置。
  2.  前記メジャメントレポートは、前記第1の端末装置のサービング基地局により前記通信制御装置へ転送される、請求項1に記載の通信制御装置。
  3.  前記干渉制御部は、少なくとも1つの基地局又は少なくとも1つの端末装置のアンテナビームを制御し、
     前記判定部は、前記アンテナビームの制御の影響を表す修正項を算入することにより、前記判定指標を修正する、
     請求項1に記載の通信制御装置。
  4.  前記干渉制御部は、少なくとも1つの基地局又は少なくとも1つの端末装置の送信電力を制御し、
     前記判定部は、前記送信電力の制御の影響を表す修正項を算入することにより、前記判定指標を修正する、
     請求項1に記載の通信制御装置。
  5.  前記判定指標は、リファレンス信号受信電力(RSRP)を含み、
     前記修正項は、前記RSRPのオフセット値である、
     請求項3に記載の通信制御装置。
  6.  前記判定指標は、リファレンス信号受信電力(RSRP)に基づいて計算される受信品質指標を含み、
     前記修正項は、前記受信品質指標の計算に算入される、
     請求項3に記載の通信制御装置。
  7.  前記判定指標は、前記メジャメントレポートに含まれる指標を用いて計算されるスループットを表し、
     前記判定部は、ハンドオーバ後の前記スループットの推定値を計算する際に前記干渉制御の影響を算入する、
     請求項1に記載の通信制御装置。
  8.  前記判定部は、修正された前記判定指標を用いて選択されるターゲット基地局が前記第1の端末装置の接続を受け入れるべきかをさらに判定する、請求項1に記載の通信制御装置。
  9.  前記判定部は、前記ターゲット基地局が前記第1の端末装置の接続を受け入れるべきであると判定した場合に、前記ターゲット基地局へハンドオーバを受け入れることを指示するメッセージを送信する、請求項8に記載の通信制御装置。
  10.  前記判定部は、端末のタイプに応じて異なる重みを用いて計算される前記ターゲット基地局の収容端末数を閾値と比較することにより、前記第1の端末装置の接続を受け入れるべきかを判定する、請求項8に記載の通信制御装置。
  11.  前記判定部は、端末のタイプごとにカウントされる前記ターゲット基地局の収容端末数を、前記タイプごとに異なる閾値と比較することにより、前記第1の端末装置の接続を受け入れるべきかを判定する、請求項8に記載の通信制御装置。
  12.  通信制御装置により実行される通信制御方法であって、
     複数の基地局と複数の端末装置とを含む無線通信システムのための干渉制御を実行することと、
     第1の端末装置により生成されるメジャメントレポートに基づく判定指標を、前記第1の端末装置によりメジャメントが行われた後に実行される前記干渉制御の影響を算入することにより修正することと、
     修正された前記判定指標を用いて前記第1の端末装置についてのハンドオーバ判定を実行することと、
     を含む通信制御方法。
  13.  複数の基地局と複数の端末装置とを含む無線通信システムであって、
     前記無線通信システムは、前記無線通信システムのための干渉制御を実行する制御ノードを含み、
     前記制御ノードは、第1の端末装置により生成されるメジャメントレポートに基づく判定指標を、前記第1の端末装置によりメジャメントが行われた後に実行される前記干渉制御の影響を算入することにより修正し、修正された前記判定指標を用いて前記第1の端末装置についてのハンドオーバ判定を実行する、
     無線通信システム。
  14.  前記制御ノードは、前記複数の基地局とは異なるノードである、請求項13に記載の無線通信システム。
  15.  前記制御ノードは、前記複数の基地局のいずれかに実装されるノードである、請求項13に記載の無線通信システム。
  16.  複数の基地局と複数の端末装置とを含む無線通信システムのために干渉制御を実行する通信制御装置と通信する通信部と、
     第1の端末装置により生成されハンドオーバ判定のために使用されるメジャメントレポートを、前記第1の端末装置について前記ハンドオーバ判定を実行する前記通信制御装置へ、前記通信部に転送させる制御部と、
     を備える基地局。
  17.  ビームステアリング可能なアンテナを用いて無線信号を送信し又は受信する無線通信部と、
     ハンドオーバ判定のために使用されるメジャメントレポートを生成し、及び、
     メジャメント後に前記アンテナにより形成されると想定されるアンテナビームの影響を表す修正項を、前記メジャメントレポートに含めて又は前記メジャメントレポートとは別に、前記無線通信部からサービング基地局へ送信させる、
     制御部と、
     を備える端末装置。
  18.  複数の基地局と複数の端末装置とを含む無線通信システムのための無線リソースの制御を実行する制御部と、
     第1の端末装置により生成されるメジャメントレポートに基づく判定指標を、前記第1の端末装置によりメジャメントが行われた後に前記制御部により実行される前記無線リソースの制御の影響を算入することにより修正し、修正された前記判定指標を用いて前記第1の端末装置についてのハンドオーバ判定を実行する判定部と、
     を備える通信制御装置。
PCT/JP2014/062109 2013-06-05 2014-05-01 通信制御装置、通信制御方法、無線通信システム、基地局及び端末装置 WO2014196295A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/895,127 US9918268B2 (en) 2013-06-05 2014-05-01 Communication control device, communication control method, radio communication system, base station, and terminal device
EP14807748.0A EP3007490A4 (en) 2013-06-05 2014-05-01 Communications control device, communications control method, wireless communications system, base station, and terminal device
CN201480030485.7A CN105247927B (zh) 2013-06-05 2014-05-01 通信控制装置、通信控制方法、无线电通信系统、基站和终端装置
JP2015521345A JP6398972B2 (ja) 2013-06-05 2014-05-01 通信制御装置、通信制御方法、無線通信システム、基地局及び端末装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-118764 2013-06-05
JP2013118764 2013-06-05

Publications (1)

Publication Number Publication Date
WO2014196295A1 true WO2014196295A1 (ja) 2014-12-11

Family

ID=52007948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062109 WO2014196295A1 (ja) 2013-06-05 2014-05-01 通信制御装置、通信制御方法、無線通信システム、基地局及び端末装置

Country Status (5)

Country Link
US (1) US9918268B2 (ja)
EP (1) EP3007490A4 (ja)
JP (1) JP6398972B2 (ja)
CN (1) CN105247927B (ja)
WO (1) WO2014196295A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121196A1 (ja) * 2015-01-29 2016-08-04 ソニー株式会社 装置
EP3345430A4 (en) * 2015-09-02 2018-07-11 Telefonaktiebolaget LM Ericsson (publ) First and second radio network nodes and methods performed therein
JP2018139339A (ja) * 2017-02-24 2018-09-06 日本電信電話株式会社 無線通信システムとそのハンドオーバ制御方法およびプログラム
JP2019532570A (ja) * 2016-09-17 2019-11-07 クアルコム,インコーポレイテッド 指向性ワイヤレスビームが存在する場合のハンドオーバのための技法
JP2020535707A (ja) * 2017-09-28 2020-12-03 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ハンドオーバ実行におけるマルチビームランダムアクセス手続き
US11678308B2 (en) 2016-08-11 2023-06-13 Qualcomm Incorporated Link establishment in a wireless backhaul network using radio access technology

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10091674B2 (en) * 2014-09-11 2018-10-02 Ewha University-Industry Collaboration Foundation Location determination method and location determination system for sensor apparatus placements in building
CN106162687B (zh) * 2015-04-01 2021-06-11 索尼公司 用于无线通信的用户设备侧和基站侧的装置和方法
US9497680B1 (en) * 2015-06-18 2016-11-15 Amazon Technologies, Inc. Frequency acquisition during roaming
TWI720052B (zh) * 2015-11-10 2021-03-01 美商Idac控股公司 無線傳輸/接收單元和無線通訊方法
WO2018030243A1 (ja) * 2016-08-10 2018-02-15 株式会社Nttドコモ ユーザ端末及び無線通信方法
WO2018030684A1 (ko) * 2016-08-11 2018-02-15 한국전자통신연구원 통신 시스템에서 이동성 지원 방법 및 장치
CN108076490B (zh) * 2016-11-18 2020-07-03 展讯通信(上海)有限公司 单射频语音呼叫连续性的实现方法、装置及移动终端
EP3556131A4 (en) * 2016-12-19 2020-07-15 Bandwidthx Inc. OPTIMIZED DOWNLOAD FROM WIRELESS DEVICES TO ALTERNATIVE WIRELESS NETWORKS
US10194382B2 (en) 2016-12-27 2019-01-29 Bandwidthx Inc. Auto-discovery of amenities
US10856151B2 (en) 2016-12-27 2020-12-01 Bandwidthx Inc. Radio management based on user intervention
KR102310719B1 (ko) 2017-03-20 2021-10-08 삼성전자 주식회사 차세대 이동통신에서 대기 모드 동작을 효과적으로 하는 방법 및 장치
EP3741045A4 (en) * 2018-01-19 2021-10-20 Photonic Systems, Inc. SYSTEM FOR CAPTURING CHANNEL STATUS INFORMATION FOR SYSTEMS WITH MULTIPLE INPUTS AND MULTIPLE OUTPUTS
IT201800020509A1 (it) * 2018-12-20 2020-06-20 Telecom Italia Spa Allocazione di risorse per collegamenti di comunicazione non gestiti
US11683823B2 (en) * 2020-03-02 2023-06-20 Fujitsu Limited Control device and control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006004463A1 (en) * 2004-06-30 2006-01-12 Telefonaktiebolaget Lm Ericsson (Publ) Antenna beam shape optimization
WO2009093314A1 (ja) * 2008-01-23 2009-07-30 Fujitsu Limited 移動通信システム
JP2011091785A (ja) 2009-09-25 2011-05-06 Sony Corp 管理サーバ、通信システム、通信端末、および中継装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1633159A4 (en) * 2003-06-12 2011-02-23 Fujitsu Ltd BASIC STATION EQUIPMENT AND MOBILE COMMUNICATION SYSTEM
JP4427415B2 (ja) * 2004-08-05 2010-03-10 株式会社日立コミュニケーションテクノロジー ハンドオフ制御方法、無線制御局及び無線基地局
CN101411239B (zh) * 2006-04-06 2010-12-22 株式会社日立制作所 无线通信系统、无线基站装置和无线终端装置
KR100818766B1 (ko) * 2006-10-02 2008-04-01 포스데이타 주식회사 무선통신 시스템에서의 핸드오버 수행 방법 및 장치
CN101052014B (zh) * 2007-05-21 2010-08-18 华为技术有限公司 一种ip承载呼叫接入控制方法及其装置
CN101119253A (zh) * 2007-06-12 2008-02-06 西安西电捷通无线网络通信有限公司 一种利用用户分级控制用户接入wlan的方法及其系统
US8977311B2 (en) * 2008-04-04 2015-03-10 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for reducing interference in a wireless communication network
US8200286B2 (en) * 2008-10-31 2012-06-12 Telefonaktiebolaget L M Ericsson (Publ) Base station and method for improving coverage in a wireless communication system using antenna beam-jitter and CQI correction
US9781656B2 (en) * 2011-08-26 2017-10-03 Alcatel Lucent Method and apparatus for modifying call admission control thresholds
WO2013095034A1 (ko) * 2011-12-22 2013-06-27 엘지전자 주식회사 무선 접속 시스템에서 무선 통신 상태 측정 방법 및 이를 위한 장치
JP5783271B2 (ja) * 2012-02-10 2015-09-24 日本電気株式会社 無線通信システム、基地局、通信方法
JP2013197828A (ja) * 2012-03-19 2013-09-30 Fujitsu Ltd 無線通信システム、無線基地局装置、無線通信システムにおけるハンドオーバ方法
WO2014098685A1 (en) * 2012-12-21 2014-06-26 Telefonaktiebolaget L M Ericsson (Publ) Method and device for transmission scheduling
US9319996B2 (en) * 2013-03-15 2016-04-19 Qualcomm Incorporated System and method for dynamic power regulation in small cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006004463A1 (en) * 2004-06-30 2006-01-12 Telefonaktiebolaget Lm Ericsson (Publ) Antenna beam shape optimization
WO2009093314A1 (ja) * 2008-01-23 2009-07-30 Fujitsu Limited 移動通信システム
JP2011091785A (ja) 2009-09-25 2011-05-06 Sony Corp 管理サーバ、通信システム、通信端末、および中継装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3007490A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121196A1 (ja) * 2015-01-29 2016-08-04 ソニー株式会社 装置
CN107211288A (zh) * 2015-01-29 2017-09-26 索尼公司 一种设备
AU2015380923B2 (en) * 2015-01-29 2019-01-24 Sony Corporation Device
US10383050B2 (en) 2015-01-29 2019-08-13 Sony Corporation Apparatus for selecting a cell in a directional beam network
EP3345430A4 (en) * 2015-09-02 2018-07-11 Telefonaktiebolaget LM Ericsson (publ) First and second radio network nodes and methods performed therein
US11678308B2 (en) 2016-08-11 2023-06-13 Qualcomm Incorporated Link establishment in a wireless backhaul network using radio access technology
JP7034144B2 (ja) 2016-09-17 2022-03-11 クアルコム,インコーポレイテッド 指向性ワイヤレスビームが存在する場合のハンドオーバのための技法
JP2019532570A (ja) * 2016-09-17 2019-11-07 クアルコム,インコーポレイテッド 指向性ワイヤレスビームが存在する場合のハンドオーバのための技法
US11968570B2 (en) 2016-09-17 2024-04-23 Qualcomm Incorporated Techniques for handovers in the presence of directional wireless beams
JP2018139339A (ja) * 2017-02-24 2018-09-06 日本電信電話株式会社 無線通信システムとそのハンドオーバ制御方法およびプログラム
JP2020535707A (ja) * 2017-09-28 2020-12-03 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ハンドオーバ実行におけるマルチビームランダムアクセス手続き
JP7004807B2 (ja) 2017-09-28 2022-01-21 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ハンドオーバ実行におけるマルチビームランダムアクセス手続き
US11576095B2 (en) 2017-09-28 2023-02-07 Telefonaktiebolaget Lm Ericsson (Publ) Multi-beam random access procedure in handover execution
US11864041B2 (en) 2017-09-28 2024-01-02 Telefonaktiebolaget Lm Ericsson (Publ) Multi-beam random access procedure in handover execution

Also Published As

Publication number Publication date
US9918268B2 (en) 2018-03-13
JPWO2014196295A1 (ja) 2017-02-23
JP6398972B2 (ja) 2018-10-03
EP3007490A4 (en) 2017-01-18
EP3007490A1 (en) 2016-04-13
US20160119850A1 (en) 2016-04-28
CN105247927A (zh) 2016-01-13
CN105247927B (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
JP6398972B2 (ja) 通信制御装置、通信制御方法、無線通信システム、基地局及び端末装置
US10506577B2 (en) Systems and methods for adaptive transmissions in a wireless network
KR101574491B1 (ko) 고속 이용자들을 위한 셀 분할
EP2238779B1 (en) Backhaul signaling for interference avoidance
US10327282B2 (en) Network node, a wireless device and methods therein for selecting a communication mode in a wireless communications network
US8401562B2 (en) Apparatus and method employing scheduler behavior aware predictive resource selection in a communication system
EP2708061B1 (en) Access point for mobile station-assisted interference mitigation
US9113339B2 (en) Apparatus and method for allocating communication resources in a communication system
EP2708054B1 (en) Mobile station-assisted interference mitigation
US9144059B2 (en) Super scheduling control channel
US11871439B2 (en) Inter-cell fractional frequency reuse scheduler
EP2708055B1 (en) System and method for mobile station-assisted interference mitigation
US20140119319A1 (en) Apparatus and Method for Reactive Inter-Cell Interference Coordination
WO2015194276A1 (ja) 装置及び方法
EP2878164B1 (en) Wireless communication network with noise metric based optimization for cellular capacity improvement
EP2824958B1 (en) Wireless telecommunications network nodes and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807748

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015521345

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014807748

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14895127

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE