WO2014196093A1 - クラッシュボックス - Google Patents
クラッシュボックス Download PDFInfo
- Publication number
- WO2014196093A1 WO2014196093A1 PCT/JP2013/075583 JP2013075583W WO2014196093A1 WO 2014196093 A1 WO2014196093 A1 WO 2014196093A1 JP 2013075583 W JP2013075583 W JP 2013075583W WO 2014196093 A1 WO2014196093 A1 WO 2014196093A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cylindrical body
- pair
- vehicle width
- width direction
- vehicle
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R19/00—Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
- B60R19/02—Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
- B60R19/24—Arrangements for mounting bumpers on vehicles
- B60R19/26—Arrangements for mounting bumpers on vehicles comprising yieldable mounting means
- B60R19/34—Arrangements for mounting bumpers on vehicles comprising yieldable mounting means destroyed upon impact, e.g. one-shot type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R19/00—Wheel guards; Radiator guards, e.g. grilles; Obstruction removers; Fittings damping bouncing force in collisions
- B60R19/02—Bumpers, i.e. impact receiving or absorbing members for protecting vehicles or fending off blows from other vehicles or objects
- B60R19/023—Details
Definitions
- the present invention relates to a crash box, and more particularly, to a technique for improving impact energy absorption performance when an impact load is applied from diagonally forward or diagonally rear of a vehicle.
- a cross section having a plurality of flat side walls is provided with a cylindrical body having a polygonal shape, and the cylindrical body is disposed in a posture in which the axial direction is the front-rear direction of the vehicle, and receives a compressive load in the axial direction. Therefore, a crash box is known that is crushed in a bellows shape in the axial direction and absorbs impact energy.
- the apparatus described in Patent Document 1 is an example, and a plurality of flanges are provided on the outer peripheral surface of the cylindrical body in the axial direction of the cylindrical body.
- FIG. 9 and FIG. 10 are explanatory diagrams of the input load in a plan view when the crash box is viewed from above.
- Point a is a support point on the outer side in the vehicle width direction on the base end side of the crash box, and point b is in the vehicle width direction. It is an inner support point, and loads F1 and F2 are input loads in front of the support points a and b in the axial direction.
- the support point a as shown in FIG. 9, the input loads F1 and F2 both act counterclockwise, and a moment load Ma in the counterclockwise direction is generated.
- the axial component force f1a of the input load F1 is not related to the moment load Ma, but the other component forces f1p, f2a, and f2p all act counterclockwise.
- the input load F2 acts counterclockwise, but the input load F1 acts clockwise, and the moment load Mb is determined by the resultant force.
- the axial component force f2a of the input load F2 is not related to the moment load Mb, but the axial component force f1a of the input load F1 acts in the clockwise direction, and the component forces f1p and f2p perpendicular to the axial direction are both counterclockwise. Acts on direction.
- the moment load Mb may act clockwise depending on the distance between the support points a and b and the barrier angle ⁇ (Mb ⁇ 0), but the magnitude is sufficiently smaller than the moment load Ma.
- the entire moment load acting on the crash box including the support points a and b acts counterclockwise.
- a plurality of flanges are provided on the outside of the cylindrical body. However, since the flanges are provided substantially symmetrically on both the left and right sides in the vehicle width direction, the rigidity in the axial direction is simply increased. The effect of reducing the moment load due to the impact load F cannot be obtained.
- the present invention has been made against the background of the above circumstances, and its purpose is to improve the anti-falling performance when an impact load is applied from an oblique lateral direction of the vehicle, and to absorb excellent impact energy.
- the purpose is to obtain stable performance.
- the first invention includes a cylindrical body having a polygonal cross section having a plurality of flat side walls, and the attitude in which the axial direction of the cylindrical body is the longitudinal direction of the vehicle.
- the cylindrical body In the crash box that is disposed and is crushed in a bellows shape in the axial direction by receiving a compressive load in the axial direction and absorbs impact energy, the cylindrical body is located at a boundary of the plurality of side walls.
- a plurality of flanges protruding outside the cylindrical body are provided over the entire length in the axial direction of the cylindrical body only on the plurality of outer ridge lines located outside in the vehicle width direction among the plurality of ridge lines.
- a second aspect of the present invention is the crash box according to the first aspect, wherein: (a) the cylindrical body is a pair of upper and lower ridge lines positioned above and below the vehicle width direction among the plurality of ridge lines positioned at the boundaries of the plurality of side walls. And a pair of halves divided by the outer and lower ridge lines, and (b) both sides of the pair of halves positioned at the pair of outer upper and lower ridge lines.
- the end portions are provided with joint portions that are overlapped with each other and integrally joined to each other, and that protrude to the outside of the cylindrical body, and a pair of upper and lower flanges that function as the plurality of flanges by the joint portions.
- a flange is formed.
- the pair of cylindrical bodies are positioned above and below the vehicle width direction among the plurality of ridge lines positioned at the boundaries of the plurality of side walls.
- a pair of upper and lower flanges functioning as the plurality of flanges are provided on the outer upper ridge line portion and the outer lower ridge line portion, and (b) the upper flange is perpendicular to the axial direction of the cylindrical body.
- both are provided at an angle exceeding 60 ° with respect to a pair of side walls adjacent to each other across the outer upper ridge line portion so as to protrude obliquely upward on the outer side in the vehicle width direction.
- the lower flange protrudes obliquely downward on the outer side in the vehicle width direction in a cross section perpendicular to the axial direction of the cylindrical body. Adjacent across the lower ridge Each of the pair of side walls is provided at an angle exceeding 60 °, and is inclined 15 ° or more outward in the vehicle width direction from a vertical line in the vehicle vertical direction.
- the plurality of flanges are provided with a certain projecting dimension over the entire axial length of the cylindrical body.
- the crash box according to any one of the first to fourth aspects, wherein: (a) the cylindrical body has a flat octagonal shape in which a cross section perpendicular to the axial direction of the cylindrical body is long in the vehicle vertical direction.
- the pair of wide side walls are provided with a pair of wide side walls parallel to each other on both the left and right sides in the vehicle width direction, and the pair of wide side walls are provided with concave grooves recessed inwardly in the cylindrical body in the axial direction of the tubular body.
- the plurality of flanges are a pair of outer side in the vehicle width direction of each of a pair of narrow side walls parallel to each other located at both upper and lower ends of the cylindrical body having an octagonal cross section. It is provided in an outer upper ridge line part and an outer lower ridge line part.
- the flange is provided over the entire length in the axial direction of the cylindrical body only on the outer ridge line portion on the outer side in the vehicle width direction among the plurality of ridge lines of the cylindrical body.
- the rigidity of the outer portion in the vehicle width direction against the compressive load is increased.
- the input load F1 is relatively larger than F2, and particularly the axial direction of the input load F1.
- the component force f1a increases. Since the axial component force f1a acts as a clockwise moment on the support point b on the inner side in the vehicle width direction, the counterclockwise moment load Mb of the support point b becomes small or becomes negative. Acting clockwise. Although the counterclockwise moment load Ma of the support point a on the outer side in the vehicle width direction is slightly increased by increasing the component force f1p in the direction perpendicular to the axial direction, the change in the component force f1p is the change in the axial component force f1a.
- the cylindrical body is constituted by a pair of halves, and a pair of upper flanges functioning as the plurality of flanges by joint portions provided at both end portions of the pair of halves And the lower flange is constructed.
- a cylindrical body having a plurality of flanges can be easily and inexpensively manufactured by pressing or welding, and there are fewer restrictions on materials and shapes compared to the case of manufacturing by extrusion molding. The yield of the material is higher than when fixed by welding or the like.
- each of the pair of upper flange and lower flange is provided with an angle exceeding 60 ° with respect to the pair of adjacent side walls sandwiching the ridge line portion, and 15 from the vertical line in the vehicle vertical direction. Since the vehicle body is inclined outward in the vehicle width direction by more than 0 °, it is possible to improve the fall-resistant performance while appropriately securing the impact energy absorption performance due to the collapse of the cylindrical body. That is, the provision of the pair of upper and lower flanges may hinder the crushing of the cylindrical body and impair the impact energy absorption performance. The effect on the body's crush characteristics can be suppressed.
- the rigidity of the outer portion in the vehicle width direction is increased, and the side-to-side performance is appropriately improved. Can be improved.
- 5th invention is a case where it has a cylindrical body in which the cross section has a flat octagonal shape and a pair of wide side walls on both the left and right sides are provided with concave grooves.
- the cross section has a flat octagonal shape and a pair of wide side walls on both the left and right sides are provided with concave grooves.
- They are provided on the pair of outer upper and lower ridge lines on the outer side in the vehicle width direction of each of the pair of narrow side walls.
- the fall performance can be improved. That is, by providing a plurality of flanges, the crushing of the cylindrical body may be hindered and the impact energy absorption performance may be impaired, but the flanges are formed on the ridge lines at both the upper and lower ends away from the concave grooves involved in the crushing. Since it is provided, it is possible to suppress the influence of the concave groove on the crushing characteristic of the cylindrical body.
- FIG. 9 it is a figure explaining the moment load Mb around the support point b inside the vehicle width direction.
- FIG. 6 is a diagram for explaining another test result of the offset collision test, and is a diagram showing test results of six types of test products No1 to No6 having different angles ⁇ and ⁇ in FIG.
- FIG. 12 is a diagram showing an axial load change characteristic with respect to a compression stroke obtained by performing an offset collision test using six types of test products No. 1 to No. 6 in FIG. 11 and obtained by FEM analysis. It is the figure which showed the characteristic of the absorbed energy calculated
- the crash box of the present invention can be applied to either a bumper member attachment portion attached to the front side of the vehicle or a bumper member attachment portion attached to the rear side of the vehicle, but it may be applied to only one of them.
- the crash box is arranged in a posture in which the axial direction of the cylindrical body is the front-rear direction of the vehicle, but it is not necessarily strictly in the front-rear direction, and the posture is inclined left and right or up and down depending on the shape of the bumper member, etc. It can also be arranged.
- the crush box has a pair of mounting plates that are integrally fixed to both ends of the cylindrical body in addition to the cylindrical body, for example. It is desirable that a plurality of flanges are also integrally fixed to these mounting plates.
- the cylindrical body for example, an octagonal shape with a flat cross section is preferably used, but a polygonal cylindrical body other than an octagonal shape such as a quadrangular shape or a hexagonal shape can also be adopted.
- the cylindrical body having a polygonal cross section is provided with concave grooves recessed inward of the cylindrical body as necessary in parallel with the axial direction. The number of the concave grooves is appropriately determined, and a plurality of concave grooves are provided on one side wall.
- the concave grooves are provided symmetrically in the left-right direction.
- the concave grooves can be provided asymmetrically, or the concave grooves can be provided on the upper and lower side walls.
- the concave groove can have various modes such as a V-shaped cross-section, a U-shape, a semicircular arc shape, a rectangular shape, and a trapezoidal shape.
- the ridge line portion is not necessarily strictly square, and the corner portion (ridge line portion) may be a curved portion such as an arc as long as the cross section has a polygonal shape as a whole.
- Such a cylindrical body can be constituted by a pair of halves divided into two as in the second invention.
- a cylindrical shaft is formed using a soft metal material such as aluminum or an aluminum alloy.
- a soft metal material such as aluminum or an aluminum alloy.
- the edges on both sides are overlapped and joined together, or the pipe material is molded into a predetermined shape
- Various modes are possible, such as a flange being integrally fixed to such a cylindrical body by welding or the like. You may comprise using materials other than metal materials, such as a fiber reinforced plastic.
- the second invention constituted by a pair of halves, a pair of upper flanges and lower flanges are provided.
- three or more flanges are provided at three or more outer ridge lines.
- spot welding is suitable as a means for overlapping and joining both end portions of a pair of halves, but other welding means such as arc welding can be adopted, and rivets and the like can be used.
- the projecting directions of the upper flange and the lower flange are desirably set as in the third invention, for example, but can be appropriately determined depending on the basic shape of the cylindrical body, the location of the ridge line portion where the flange is provided, and the like.
- the cylindrical body has a pair of upper flange and lower flange, for example, in a cross section perpendicular to the axial direction of the cylindrical body, the upper body and the lower flange are configured to form a vertically symmetrical shape. However, it may be an asymmetrical shape. Only the upper flange and the lower flange can be provided asymmetrically in the vertical direction.
- the plurality of flanges are provided with a certain protruding dimension over the entire axial length of the cylindrical body, but the protruding dimension may change in the axial direction of the cylindrical body.
- the projecting dimension can be continuously changed linearly or nonlinearly so that the projecting dimension is large at the base end part on the vehicle body side and the projecting dimension is small at the tip part on the bumper member side.
- the cylindrical body of the fifth invention has an octagonal shape with a flat cross section, and a pair of outer upper ridge line portions and outer lower ridge line portions on the outer side in the vehicle width direction of each of the pair of narrow side walls located at the upper and lower ends.
- the upper flange and the lower flange are provided on the ridge line portions at the upper and lower ends of the wide side wall located on the outer side in the vehicle width direction in addition to or in place of the flanges. It is also possible to provide a flange.
- FIG. 1 is a schematic plan view of the vicinity of a bumper beam 14 on the front side of the vehicle as viewed from above the vehicle.
- the crash box 10 is used by being disposed between the side member 12R and the right end portion of the bumper beam 14, and FIG. 1 is a plan view showing the right half of the vehicle, and the left half sandwiches the center line. It is composed symmetrically.
- the crash box 10 is integrally welded and fixed to both ends of the hollow cylindrical body 22 having a polygonal cross section having a plurality of flat side walls and the axial direction (direction of the axis S) of the cylindrical body 22.
- the side member 12R is a vehicle body side member
- the bumper beam 14 is a bumper member.
- Both end edges of the cylindrical body 22 in the axial direction are brought into close contact with the mounting plates 24 and 26 over the entire circumference of the end edges, and are integrally fixed by arc welding or the like.
- both the mounting plates 24 and 26 are mounted in a posture that is substantially perpendicular to the axis S of the cylindrical body 22.
- the edge of the cylindrical body 22 can be tilted with respect to the axis S, and the mounting plate 26 can be fixed in an inclined position so as to be in close contact with the inclined edge.
- FIG. 2 is a diagram showing a cross-sectional shape perpendicular to the axial direction of the crash box 10, and is an enlarged cross-sectional view taken along the line II-II in FIG.
- FIG. 3 is a perspective view showing the crash box 10 alone.
- the cylindrical body 22 has a basic shape of a flat polygonal shape in which a cross section perpendicular to the axial direction is long in the vertical direction, specifically, an octagonal shape in which four corners of a rectangular shape that is long in the vertical direction are chamfered.
- the cross-sectional shape is an 8-shaped or hook-shaped cross section.
- the pair of wide side walls 30 and 31 that are substantially vertical and parallel to each other constituting the long side of the basic shape, and are provided so as to be inclined obliquely inward from the upper and lower ends of the wide side walls 30 and 31, respectively.
- the four inclined sidewalls 34 and 35 are provided at both ends in the longitudinal direction (long axis A direction) at right angles to the longitudinal direction so as to constitute the short side of the basic shape, and the left and right inclined sidewalls 34 and 35 are connected.
- a pair of narrow side walls 36 and 37 that are substantially horizontal and parallel to each other.
- a pair of concave grooves 32 and 33 that are recessed inward of the cylindrical shape are provided.
- the concave grooves 32, 33 are trapezoidal cross-sections whose width dimension becomes narrower toward the tip, that is, the groove bottom side, and are provided in parallel with the axis S over the entire axial length of the cylindrical body 22.
- the major axis A and the minor axis B are both determined based on the cross-sectional shape shown in FIG. 2, and are parallel to the wide side walls 30, 31 that are a pair of long sides on the left and right sides, and of the wide side walls 30, 31.
- the center line between them is the major axis A, and the center line parallel to the narrow side walls 36 and 37 which are a pair of short sides at the upper and lower ends and the center line between these narrow side walls 36 and 37 is the minor axis B. .
- the axis S is an intersection of the major axis A and the minor axis B.
- the axis S is formed in a constant cross-sectional shape shown in FIG. 2 over the entire length in the direction of the axis S (axial direction). ing.
- the cylindrical body 22 is composed of a pair of outer upper ridge line portions 40 and outer lower ridge line portions 42 on the outer sides in the vehicle width direction of the pair of narrow side walls 36 and 37 parallel to each other located at both upper and lower ends of an octagonal cross section. It is divided into two parts, each of which is constituted by a pair of halves 44 and 46 formed by pressing. That is, the inner half body 44 located on the inner side in the vehicle width direction has a wide side wall 30 provided with the concave groove 32, and a pair of inclined side walls 34 extending obliquely outward from the upper and lower ends of the wide side wall 30 in the vehicle width direction.
- a pair of narrow side walls 36 and 37 extending horizontally from the end portions of the pair of inclined side walls 34 are integrally provided.
- the outer half body 46 positioned on the outer side in the vehicle width direction includes a wide side wall 31 provided with the concave groove 33 and a pair of inclined side walls 35 extending obliquely inward in the vehicle width direction from the upper and lower ends of the wide side wall 31. Is integrated.
- the inner half body 44 and the outer half body 46 are also joined to each other at their end portions, that is, the portions constituting the ridge portions 40 and 42, and are joined together by spot welding, arc welding, or the like.
- a pair of upper flange 48 and lower flange 50 projecting to the outside of the cylindrical body 22 are formed by the joint portion.
- the upper flange 48 and the lower flange 50 are flat rib-like protrusions that protrude symmetrically with respect to the short axis B, that is, have a vertically symmetrical shape, and have a certain protrusion dimension t in the axial direction. Are provided continuously over the entire length.
- Both ends of the upper flange 48 and the lower flange 50 in the axial direction are abutted against the mounting plates 24 and 26, respectively, and are integrally fixed to the mounting plates 24 and 26 by welding or the like. Yes.
- the outer upper ridge line portion 40 and the outer lower ridge line portion 42 correspond to a plurality of outer ridge line portions
- the upper flange 48 and the lower flange 50 correspond to a plurality of flanges.
- the upper flange 48 has an angle exceeding 60 ° with respect to a pair of side walls 35 and 36 adjacent to each other with the ridge line portion 40 in the cross section shown in FIG. It is inclined 15 ° or more outward in the vehicle width direction and provided so as to protrude obliquely upward on the outer side in the vehicle width direction. That is, the crossing angle ⁇ between the upper flange 48 and the inclined side wall 35 is larger than 60 °, and the inclination angle ⁇ from the vertical line in the vertical direction is 15 ° or more. In this embodiment, the inner angle ⁇ 135 ° of the outer upper ridge portion 40, the crossing angle ⁇ 105 °, and the inclination angle ⁇ 30 °.
- the protrusion dimension t is suitably 8 mm or more, and is about 12 mm in this embodiment.
- the lower flange 50 has a symmetrical shape with the upper flange 48, and the angle and size of each part are the same as those of the upper flange 48.
- the cylindrical body 22 has a height H of about 100 mm, a width W of about 60 mm, and an axial length of about 140 mm.
- the pair of halves 44 and 46 have a plate thickness of about 1.0 mm.
- the plate thickness of the plates 24 and 26 is about 2.0 mm.
- the dimensions, angles, and ratios of the parts in FIGS. 1 to 3 are not necessarily accurate.
- an offset collision test is performed in which the right front portion of the vehicle collides with the collision barrier 60 having the collision surface 62 inclined at the barrier angle ⁇ at the vehicle speed V ⁇ b> 1.
- the results of examining the axial load change characteristic and the absorbed energy characteristic with respect to the compression stroke will be described.
- the test was also performed under the same conditions for the comparative product 72 in which the flanges 48 and 50 were provided on the inner side in the vehicle width direction.
- the comparative product 72 in FIG. 6 can be regarded as a product of the present invention when used as a front left crash box.
- FIG. 7 and FIG. 8 are diagrams comparing the characteristics of the axial load and the absorbed energy with respect to the compression stroke for the product of the present invention, the comparative product, and the conventional product.
- the absorbed energy corresponds to the integral value of the axial load.
- the axial load of the present invention product is relatively stable at a high level until the end of the crushing process, and the absorbed energy is larger than that of the conventional product and the comparative product, resulting in excellent impact. Energy absorption performance is obtained.
- a lateral collapse occurs in the vicinity of the compression stroke ST1 of the middle crush, and the axial load is reduced, so that sufficient impact energy absorption performance cannot be obtained.
- FIGS. 9 and 10 are explanatory views of the load in a plan view when the crash box is viewed from above.
- Point a is a support point on the vehicle width direction outer side on the base end side of the crash box, and point b is on the inner side in the vehicle width direction. It is a support point, and loads F1 and F2 are input loads in front of the vehicle front side of the support points a and b. Based on these input loads F1 and F2, moment loads Ma and Mb are generated around the support points a and b, respectively, and a moment load in the counterclockwise direction (inward in the vehicle width direction) is generated as a whole.
- the pair of flanges 48 and 50 are provided on the upper and lower ridge lines 40 and 42 on the outer side in the vehicle width direction, so that the rigidity of the outer portion in the vehicle width direction is increased, and the right input load F1 is increased. Is relatively larger than the left input load F2.
- the axial component force f1a of the input load F1 increases. Since the axial component force f1a acts as a clockwise moment on the support point b on the inner side in the vehicle width direction, the counterclockwise moment load Mb of the support point b becomes small or becomes negative. Acting clockwise.
- the counterclockwise moment load Ma of the support point a on the outer side in the vehicle width direction is slightly increased by increasing the component force f1p in the direction perpendicular to the axial direction
- the change in the component force f1p is the change in the axial component force f1a.
- the influence of the axial component force f1a increases toward the support point b, so that the counterclockwise moment load is reduced as a whole, and the crash box falls sideways. Is considered to be suppressed.
- the rigidity in the inner portion in the vehicle width direction becomes higher, and the left input load F2 is relatively smaller than the right input load F1. Since it becomes larger, the moment load in the counterclockwise direction is increased, and it is considered that the lateral fall is more likely to occur than the conventional product.
- test products product of the present invention
- No1 to No6 having different crossing angles ⁇ and inclination angles ⁇
- an offset collision test is performed under the same conditions as described above, and FEM analysis is performed.
- the load change characteristic and the absorbed energy characteristic were examined, the results shown in FIGS. 12 and 13 were obtained.
- All the test pieces No1 to No6 have relatively stable load change characteristics and excellent impact energy absorption performance.
- the test piece No6 thin broken line
- ⁇ intersection angle
- ⁇ 60 °
- a side-down occurred near the compression stroke ST2.
- the test product No. 1 thin solid line
- the test product No. 1 with an inclination angle ⁇ of 15 °
- the axial load and impact energy absorption performance slightly decreased at the end of the crushing.
- the flanges 48 and 50 are only in the pair of ridge lines 40 and 42 on the outer side in the vehicle width direction among the plurality of ridge lines of the cylindrical body 22 in the axial direction of the cylindrical body 22. Therefore, the rigidity with respect to the compressive load of the outer portion of the cylindrical body 22 in the vehicle width direction is increased. As a result, even in the case of an offset collision in which an impact load F is applied from an obliquely outer side of the vehicle, the moment load toward the inner side of the vehicle is reduced, the lateral collapse is suppressed, and excellent impact energy absorption performance can be stably obtained. become.
- the cylindrical body 22 is composed of a pair of halves 44, 46, and is overlapped and integrally joined to both side ends of the pair of halves 44, 46.
- a pair of upper flange 48 and lower flange 50 projecting to the outside of the cylindrical body 22 are provided.
- the cylindrical body 22 having a plurality of flanges 48 and 50 can be easily and inexpensively manufactured by pressing or welding, and there are fewer restrictions on the material and shape compared to the case of manufacturing by extrusion molding. , 50 later, the yield of the material is higher than when fixed by welding or the like.
- the upper and lower flanges 48 and 50 are provided with an angle exceeding 60 ° with respect to the pair of side walls 35 and 36 adjacent to each other with the ridge line portions 40 and 42 interposed therebetween, or 35 and 37, Since it is inclined 15 ° or more outward in the vehicle width direction from the vertical line in the vertical direction of the vehicle, it is possible to improve the anti-falling performance while appropriately securing the impact energy absorption performance due to the collapse of the cylindrical body 22. That is, by providing the pair of the upper flange 48 and the lower flange 50, the crushing of the cylindrical body 22 may be hindered and the impact energy absorption performance may be impaired. Thus, the influence on the crushing characteristics of the cylindrical body 22 can be suppressed.
- the plurality of flanges 48 and 50 are provided with a certain protruding dimension t over the entire length of the cylindrical body 22 in the axial direction, the rigidity of the outer portion in the vehicle width direction is increased, and the side-to-side performance is improved. It can be improved appropriately.
- the cylindrical body 22 of the present embodiment has an octagonal shape with a flat cross section, and a pair of wide side walls 30 and 31 on both the left and right sides are provided with concave grooves 32 and 33, and a plurality of Since the flanges 48 and 50 are provided on the pair of ridge lines 40 and 42 on the outer side in the vehicle width direction of the pair of narrow side walls 36 and 37 located at the upper and lower ends, the impact energy due to the collapse of the cylindrical body 22. It is possible to improve the fall-resistant performance while appropriately securing the absorption performance. That is, the provision of the plurality of flanges 48 and 50 may hinder the crushing of the cylindrical body 22 and impair the impact energy absorption performance.
- the upper and lower parts separated from the concave grooves 32 and 33 involved in the crushing may be impaired. Since the flanges 48 and 50 are provided at the ridge portions 40 and 42 at both ends, the influence of the concave grooves 32 and 33 on the crushing characteristics of the cylindrical body 22 can be suppressed.
- Crash box 22 Cylindrical body 30, 31: Wide side wall 32, 33: Groove 34, 35: Inclined side wall 36, 37: Narrow side wall 40: Outer upper ridge line part (outer ridge line part) 42: Outer lower ridge line Part (outer ridge) 44: inner half 46: outer half 48: upper flange (joined part) 50: lower flange (joined part) S: axial center (axial direction) ⁇ : crossing angle ⁇ : inclination angle t: Projection dimension
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Vibration Dampers (AREA)
- Body Structure For Vehicles (AREA)
Abstract
車両の斜め横方向から衝撃荷重が加えられた場合の耐横倒れ性能を向上させて、衝撃エネルギー吸収性能が一層安定して得られるようにする。 筒状体22の複数の稜線のうち車幅方向外側の上下の稜線部40、42のみにフランジ48、50が筒状体22の軸方向の全長に亘って設けられているため、その筒状体22の車幅方向外側部分の圧縮荷重に対する剛性が高くなる。これにより、車両の斜め外側から衝撃荷重が加えられるオフセット衝突の場合でも、車両内側方向へ向かうモーメント荷重が低減されて横倒れが抑制され、優れた衝撃エネルギー吸収性能が安定して得られるようになる。
Description
本発明はクラッシュボックスに係り、特に、車両の斜め前方或いは斜め後方から衝撃荷重を受けた場合の衝撃エネルギー吸収性能を向上させる技術に関するものである。
平板状の複数の側壁を有する断面が多角形状の筒状体を備えており、その筒状体の軸方向が車両の前後方向となる姿勢で配設され、その軸方向に圧縮荷重を受けることによりその軸方向に蛇腹状に圧壊させられて衝撃エネルギーを吸収するクラッシュボックスが知られている。特許文献1に記載の装置はその一例で、筒状体の外周面には複数のフランジが筒状体の軸方向に設けられている。
しかしながら、このようなフランジを有するクラッシュボックスにおいても、例えば図4に示すオフセット衝突では横倒れが生じ易くなり、衝撃エネルギー吸収性能が損なわれる場合があった。すなわち、図4の例では、車両右側のクラッシュボックスには斜め右前方から衝撃荷重が加えられるため、例えば図9、図10に示すように衝撃荷重Fに基づいてモーメント荷重Ma、Mbが発生し、車両の内側(図9、図10における左方向)へ横倒れする可能性がある。
図9および図10は、クラッシュボックスを上方から見た平面視の状態の入力荷重の説明図で、点aはクラッシュボックスの基端側の車幅方向外側の支持点、点bは車幅方向内側の支持点であり、荷重F1、F2は各支持点a、bの軸方向正面の入力荷重である。そして、支持点aについては、図9に示すように入力荷重F1、F2が何れも左回り方向に作用し、左回り方向のモーメント荷重Maが生じる。入力荷重F1の軸方向分力f1aはモーメント荷重Maに関与しないが、他の分力f1p、f2a、f2pは何れも左回り方向に作用する。支持点bについては、図10に示すように入力荷重F2は左回り方向に作用するものの、入力荷重F1は右回り方向に作用し、それ等の合力でモーメント荷重Mbが定まる。入力荷重F2の軸方向分力f2aはモーメント荷重Mbに関与しないが、入力荷重F1の軸方向分力f1aは右回り方向に作用し、軸方向と直角な分力f1p、f2pは何れも左回り方向に作用する。すなわち、モーメント荷重Mbは、支持点a、b間の距離やバリア角度γによって右回り方向に作用する場合もあるが(Mb<0)、その大きさはモーメント荷重Maに比べて十分に小さく、支持点a、bを含めてクラッシュボックスに作用する全体のモーメント荷重は左回り方向に作用する。特許文献1では筒状体の外側に複数のフランジが設けられているが、車幅方向の左右両側に略対称的に設けられるため、単に軸方向の剛性が高くなるだけで、斜め方向からの衝撃荷重Fに起因する上記モーメント荷重を低減する作用は得られない。
本発明は以上の事情を背景として為されたもので、その目的とするところは、車両の斜め横方向から衝撃荷重が加えられた場合の耐横倒れ性能を向上させて、優れた衝撃エネルギー吸収性能が安定して得られるようにすることにある。
かかる目的を達成するために、第1発明は、平板状の複数の側壁を有する断面が多角形状の筒状体を備えており、その筒状体の軸方向が車両の前後方向となる姿勢で配設され、その軸方向に圧縮荷重を受けることによりその軸方向に蛇腹状に圧壊させられて衝撃エネルギーを吸収するクラッシュボックスにおいて、前記筒状体には、前記複数の側壁の境界に位置する複数の稜線のうち車幅方向外側に位置する複数の外側稜線部のみに、その筒状体の外側へ突き出す複数のフランジがその筒状体の軸方向の全長に亘って設けられていることを特徴とする。
第2発明は、第1発明のクラッシュボックスにおいて、(a) 前記筒状体は、前記複数の側壁の境界に位置する複数の稜線のうち車幅方向外側の上下に位置する一対の外上稜線部および外下稜線部で分割された一対の半割体にて構成されているとともに、(b) その一対の半割体のうち前記一対の外上稜線部および外下稜線部に位置する両側端部には、それぞれ互いに重ね合わされて一体的に接合されるとともに前記筒状体の外側へ突き出す接合部が設けられており、その接合部によって前記複数のフランジとして機能する一対の上フランジおよび下フランジが構成されていることを特徴とする。
第3発明は、第1発明または第2発明のクラッシュボックスにおいて、(a) 前記筒状体は、前記複数の側壁の境界に位置する複数の稜線のうち車幅方向外側の上下に位置する一対の外上稜線部および外下稜線部に、前記複数のフランジとして機能する一対の上フランジおよび下フランジが設けられており、(b) 前記上フランジは、前記筒状体の軸方向と直角な断面において、車幅方向外側の斜め上方へ突き出すように、前記外上稜線部を挟んで隣接する一対の側壁に対して何れも60°を超える角度で設けられているとともに、車両上下方向の垂線から15°以上車幅方向外側へ傾斜させられており、(b) 前記下フランジは、前記筒状体の軸方向と直角な断面において、車幅方向外側の斜め下方へ突き出すように、前記外下稜線部を挟んで隣接する一対の側壁に対して何れも60°を超える角度で設けられているとともに、車両上下方向の垂線から15°以上車幅方向外側へ傾斜させられていることを特徴とする。
第4発明は、第1発明~第3発明の何れかのクラッシュボックスにおいて、前記複数のフランジは、前記筒状体の軸方向の全長に亘ってそれぞれ一定の突出寸法で設けられていることを特徴とする。
第5発明は、第1発明~第4発明の何れかのクラッシュボックスにおいて、(a) 前記筒状体は、その筒状体の軸方向と直角な断面が車両上下方向に長い扁平な八角形状で、車幅方向の左右両側に互いに平行に一対の幅広側壁を備えているとともに、その一対の幅広側壁には左右対称にその筒状体の内側へ凹む凹溝がその筒状体の軸方向と平行に設けられており、(b) 前記複数のフランジは、断面八角形状の前記筒状体の上下両端部に位置する互いに平行な一対の幅狭側壁の各々の車幅方向外側の一対の外上稜線部および外下稜線部に設けられていることを特徴とする。
このようなクラッシュボックスにおいては、筒状体の複数の稜線のうち車幅方向外側の外側稜線部のみにフランジが筒状体の軸方向の全長に亘って設けられているため、その筒状体の車幅方向外側部分の圧縮荷重に対する剛性が高くなる。これにより、車両の斜め外側から衝撃荷重が加えられるオフセット衝突の場合でも、車両内側方向へ向かうモーメント荷重が低減されて横倒れが抑制され、優れた衝撃エネルギー吸収性能が安定して得られるようになる。
前記図9、図10を参照して具体的に説明すると、車幅方向外側部分の剛性が高くなることから入力荷重F1がF2に比較して相対的に大きくなり、特に入力荷重F1の軸方向分力f1aが大きくなる。この軸方向分力f1aは、車幅方向内側の支持点bに対しては右回り方向のモーメントとして作用するため、その支持点bの左回り方向のモーメント荷重Mbが小さくなり、或いはマイナスになって右回り方向に作用する。車幅方向外側の支持点aの左回り方向のモーメント荷重Maは、軸方向と直角な方向の分力f1pの増加で多少大きくなるものの、分力f1pの変化は軸方向分力f1aの変化に比べて小さいとともに、支持点aと支持点bの間では支持点bに向かうに従って軸方向分力f1aの影響が大きくなるため、全体として左回り方向のモーメント荷重が低減され、クラッシュボックスの横倒れが抑制される。
第2発明では、筒状体が一対の半割体にて構成されているとともに、その一対の半割体の両側端部に設けられた接合部によって上記複数のフランジとして機能する一対の上フランジおよび下フランジが構成されている。この場合には、複数のフランジを有する筒状体をプレス加工や溶接などで簡単且つ安価に製造できるとともに、押出し成形で製造する場合に比較して材料や形状の制約が少なく、フランジを後から溶接等で固設する場合に比較して材料の歩留りが高くなる。
第3発明では、一対の上フランジおよび下フランジが何れも稜線部を挟んで隣接する一対の側壁に対して60°を超える角度を有して設けられているとともに、車両上下方向の垂線から15°以上車幅方向外側へ傾斜させられているため、筒状体の圧壊による衝撃エネルギー吸収性能を適切に確保しつつ耐横倒れ性能を向上させることができる。すなわち、一対の上フランジおよび下フランジが設けられることにより、筒状体の圧壊が阻害されて衝撃エネルギー吸収性能が損なわれる可能性があるが、それ等のフランジを上記角度で設けることにより筒状体の圧壊特性に対する影響を抑制できるのである。
第4発明では、複数のフランジが筒状体の軸方向の全長に亘ってそれぞれ一定の突出寸法で設けられているため、車幅方向外側部分の剛性を高くして耐横倒れ性能を適切に向上させることができる。
第5発明は、断面が扁平な八角形状を成しているとともに、左右両側の一対の幅広側壁に凹溝が設けられている筒状体を有する場合で、複数のフランジは上下両端部に位置する一対の幅狭側壁の各々の車幅方向外側の一対の外上稜線部および外下稜線部に設けられているため、筒状体の圧壊による衝撃エネルギー吸収性能を適切に確保しつつ耐横倒れ性能を向上させることができる。すなわち、複数のフランジが設けられることにより、筒状体の圧壊が阻害されて衝撃エネルギー吸収性能が損なわれる可能性があるが、圧壊に関与する凹溝から離れた上下両端の稜線部分にフランジが設けられているため、凹溝による筒状体の圧壊特性に対する影響を抑制できるのである。
本発明のクラッシュボックスは、車両前側に取り付けられるバンパー部材の取付部にも車両後側に取り付けられるバンパー部材の取付部にも適用され得るが、何れか一方のみに適用するだけでも差し支えない。クラッシュボックスは、筒状体の軸方向が車両の前後方向となる姿勢で配設されるが、必ずしも厳密に前後方向である必要はなく、バンパー部材の形状等により左右或いは上下方向へ傾斜する姿勢で配設することもできる。
クラッシュボックスは、筒状体の他に例えば筒状体の軸方向の両端に一体的に固設される一対の取付プレートを有して構成される。複数のフランジも、これ等の取付プレートに一体的に固設することが望ましい。筒状体は、例えば断面が扁平な八角形状のものが好適に用いられるが、断面が四角形状や六角形状等の八角形以外の多角形状の筒状体を採用することもできる。この断面多角形状の筒状体には、必要に応じて筒状体の内側へ凹む凹溝が軸方向と平行に設けられるが、この凹溝の数は適宜定められ、一つの側壁に複数の凹溝を設けることも可能である。第5発明では左右対称に凹溝が設けられるが、非対称に設けることもできるし、上下の側壁に凹溝を設けることも可能である。凹溝は、断面V字状やU字状、半円弧状、矩形状、台形状など種々の態様が可能である。稜線部は必ずしも厳密に角張っている必要はなく、断面が全体として多角形状を成していれば、その角部(稜線部)が円弧等の湾曲部であっても良い。
このような筒状体は、第2発明のように2分割した一対の半割体にて構成することができるが、例えばアルミニウムやアルミニウム合金等の軟質の金属材料を用いて、筒形状の軸方向に押出し成形することにより、複数のフランジを含めて一体に成形することも可能である。また、1枚の薄板材を所定の断面多角形状となるように曲げ加工して、その両側端縁部を互いに重ね合わせて一体的に接合したり、パイプ材を所定形状に成形したりした後、それ等の筒状体にフランジを溶接等により一体的に固設しても良いなど、種々の態様が可能である。繊維強化プラスチックなどの金属材料以外の材料を用いて構成しても良い。
一対の半割体にて構成される第2発明では一対の上フランジおよび下フランジが設けられるが、第1発明の実施に際しては、3箇所以上の外側稜線部に3つ以上のフランジを設けることも可能である。第2発明で一対の半割体の両側端部を重ね合わせて接合する手段としては、スポット溶接が適当であるが、アーク溶接等の他の溶接手段を採用することもできるし、リベット等の接合部材を用いて接合することも可能である。軸方向において所定の間隔を隔てて断続的に接合しても良いが、アーク溶接などでは軸方向に連続して接合することも可能である。上フランジおよび下フランジの突出方向は、例えば第3発明のように設定することが望ましいが、筒状体の基本形状やフランジが設けられる稜線部の場所等により適宜定めることができる。また、筒状体が一対の上フランジおよび下フランジを有する場合、例えばその筒状体の軸方向と直角な断面において、それ等の上フランジおよび下フランジを含めて上下対称形状を成すように構成されるが、上下非対称形状であっても良い。上フランジおよび下フランジのみ、上下非対称に設けることもできる。
第4発明では、複数のフランジが筒状体の軸方向の全長に亘ってそれぞれ一定の突出寸法で設けられるが、筒状体の軸方向において突出寸法が変化していても良い。例えば、車体側の基端部では突出寸法が大きく、バンパー部材側の先端部では突出寸法が小さくなるように、線形または非線形に突出寸法を連続的に変化させることもできる。
第5発明の筒状体は断面が扁平な八角形状を成しており、上下両端部に位置する一対の幅狭側壁の各々の車幅方向外側の一対の外上稜線部および外下稜線部に上フランジおよび下フランジが設けられるが、それ等のフランジに加えて、或いはそれ等のフランジの代わりに、車幅方向外側に位置する幅広側壁の上下の両端の稜線部分に、上フランジおよび下フランジを設けることも可能である。
以下、本発明の実施例を、図面を参照しつつ詳細に説明する。
図1は、車両のフロント側のバンパービーム14の近傍を車両の上方から見た概略平面図である。クラッシュボックス10は、サイドメンバー12Rとバンパービーム14の右端部との間に配設されて使用されるもので、図1は車両の右側半分を示す平面図であり、左側半分は中心線を挟んで対称的に構成される。クラッシュボックス10は、平板状の複数の側壁を有する断面多角形状の中空の筒状体22と、その筒状体22の軸方向(軸心Sの方向)の両端部にそれぞれ一体的に溶接固定された一対の取付プレート24、26とを備えており、筒状体22の軸心Sが車両の前後方向と略平行になる姿勢でサイドメンバー12Rとバンパービーム14との間に配設され、取付プレート24、26を介して図示しないボルト等によりそれ等のサイドメンバー12R、バンパービーム14に一体的に固定される。サイドメンバー12Rは車体側部材で、バンパービーム14はバンパー部材である。
図1は、車両のフロント側のバンパービーム14の近傍を車両の上方から見た概略平面図である。クラッシュボックス10は、サイドメンバー12Rとバンパービーム14の右端部との間に配設されて使用されるもので、図1は車両の右側半分を示す平面図であり、左側半分は中心線を挟んで対称的に構成される。クラッシュボックス10は、平板状の複数の側壁を有する断面多角形状の中空の筒状体22と、その筒状体22の軸方向(軸心Sの方向)の両端部にそれぞれ一体的に溶接固定された一対の取付プレート24、26とを備えており、筒状体22の軸心Sが車両の前後方向と略平行になる姿勢でサイドメンバー12Rとバンパービーム14との間に配設され、取付プレート24、26を介して図示しないボルト等によりそれ等のサイドメンバー12R、バンパービーム14に一体的に固定される。サイドメンバー12Rは車体側部材で、バンパービーム14はバンパー部材である。
上記筒状体22の軸方向の両端縁は、それぞれその端縁の全周に亘って取付プレート24、26に密着させられ、アーク溶接等により一体的に固設されている。図1では、取付プレート24、26共に筒状体22の軸心Sに対して略直角になる姿勢で取り付けられているが、例えばバンパービーム14の取付部分が傾斜している場合には、筒状体22の端縁を軸心Sに対して傾斜させ、その傾斜端縁に密着するように取付プレート26を傾斜させた姿勢で固設することもできる。このようなクラッシュボックス10は、車両前方から衝撃が加えられて軸圧縮荷重を受けると、筒状体22が蛇腹状に圧壊させられ、その変形で衝撃エネルギーを吸収し、サイドメンバー12R等の車両の構造部材に加えられる衝撃を緩和する。この蛇腹状の圧壊は、筒状体22が軸方向の多数箇所で連続的に座屈(V字状の折れ曲がり)することによって生じる現象で、通常はバンパービーム14側すなわち入力側から座屈が開始し、時間の経過と共に車体側へ進行する。バンパービーム14は、バンパーのリインフォースメント(補強部材)および取付部材として機能するもので、図示しない、合成樹脂等から成るバンパーフェイシアが一体的に取り付けられるようになっている。
図2は、クラッシュボックス10の軸方向と直角な断面形状を示す図で、図1におけるII-II矢視部分の拡大断面図である。また、図3は、クラッシュボックス10を単独で示す斜視図である。筒状体22は、軸方向に対して直角な断面が上下方向に長い扁平な多角形状、具体的には上下に長い長方形の4つの角部に平面取りを施した八角形状を基本形状としており、全体として8の字形状乃至瓢箪形状の断面形状を成している。すなわち、その基本形状の長辺を構成している略垂直で互いに平行な一対の幅広側壁30、31と、その幅広側壁30、31の上下の両端からそれぞれ内側へ斜めに傾斜するように設けられた4箇所の傾斜側壁34、35と、基本形状の短辺を構成するように長手方向(長軸A方向)の両端に長手方向と直角に設けられて左右の傾斜側壁34、35を接続している略水平で互いに平行な一対の幅狭側壁36、37とを備えている。そして、幅広側壁30、31の幅方向の中央部分、すなわち図2における上下方向の中央の略水平な短軸B部分には、長軸Aに対して対称的すなわち左右対称形状となるように、それぞれ筒形状の内側へ凹む一対の凹溝32、33が設けられている。凹溝32、33は、先端部すなわち溝底側へ向かうに従って幅寸法が狭くなる台形形状の断面で、軸心Sと平行に筒状体22の軸方向の全長に亘って設けられている。長軸Aおよび短軸Bは、何れも図2に示す断面形状に基づいて定められ、左右両側の一対の長辺である幅広側壁30、31と平行で且つそれ等の幅広側壁30、31の間の中心線が長軸Aであり、上下両端の一対の短辺である幅狭側壁36、37と平行で且つそれ等の幅狭側壁36、37の間の中心線が短軸Bである。軸心Sは、これ等の長軸Aと短軸Bとの交点であり、本実施例ではこの軸心S方向(軸方向)の全長に亘って図2に示す一定の断面形状で構成されている。
上記筒状体22は、断面八角形の上下両端部に位置する互いに平行な一対の幅狭側壁36、37の各々の車幅方向外側の一対の外上稜線部40および外下稜線部42で2つに分割されており、それぞれプレス加工によって成形された一対の半割体44、46によって構成されている。すなわち、車幅方向内側に位置する内側半割体44は、凹溝32が設けられた幅広側壁30、その幅広側壁30の上下両端から斜めに車幅方向外側へ延び出す一対の傾斜側壁34、およびその一対の傾斜側壁34の端部から水平に延び出す一対の幅狭側壁36、37を一体に備えている。また、車幅方向外側に位置する外側半割体46は、凹溝33が設けられた幅広側壁31、およびその幅広側壁31の上下両端から車幅方向内側へ斜めに延び出す一対の傾斜側壁35を一体に備えている。
上記内側半割体44、外側半割体46はまた、その両側端部、すなわち稜線部40、42を構成する部分に、互いに重ね合わされてスポット溶接、アーク溶接等により一体的に接合される接合部を有し、その接合部によって筒状体22の外側へ突き出す一対の上フランジ48および下フランジ50が形成される。上フランジ48、下フランジ50は平板状のリブ状突出部で、短軸Bに対して対称的すなわち上下対称形状となるように突き出しており、一定の突出寸法tで筒状体22の軸方向の全長に亘って連続して設けられている。この上フランジ48および下フランジ50の軸方向の両端縁は、それぞれ前記取付プレート24、26に密着するように突き当てられ、溶接等によりそれ等の取付プレート24、26に一体的に固定されている。外上稜線部40および外下稜線部42は複数の外側稜線部に相当し、上フランジ48および下フランジ50は複数のフランジに相当する。
上フランジ48について具体的に説明すると、図2に示す断面において稜線部40を挟んで隣接する一対の側壁35、36に対して何れも60°を超える角度を有するとともに、車両上下方向の垂線から15°以上車幅方向外側へ傾斜させられ、車幅方向外側の斜め上方へ突き出すように設けられている。すなわち、上フランジ48と傾斜側壁35との間の交差角度αが60°より大きく、上下方向の垂線からの傾斜角度βが15°以上である。本実施例では、外上稜線部40の内角θ≒135°で、交差角度α≒105°、傾斜角度β≒30°である。また、突出寸法tは8mm以上が適当で、本実施例では約12mmである。下フランジ50は上フランジ48と対称形状を成しており、各部の角度や寸法は上フランジ48と同じである。なお、筒状体22の高さ寸法Hは約100mm、幅寸法Wは約60mm、軸方向長さは約140mmであり、一対の半割体44、46の板厚は約1.0mm、取付プレート24、26の板厚は約2.0mmである。図1~図3における各部の寸法や角度、寸法比は、必ずしも正確なものではない。
ここで、図4に示すようにバリア角度γで傾斜した衝突面62を有する衝突バリア60に対して車速V1で車両の右側前部を衝突させるオフセット衝突試験を行い、FEM解析によりクラッシュボックス10の圧縮ストロークに対する軸方向の荷重変化特性および吸収エネルギー特性を調べた結果を説明する。今回の衝突試験では、バリア角度γ≒15°で、車速V1≒16km/hである。また、本発明品(クラッシュボックス10)の他に、図5に示すように前記フランジ48、50を備えていない従来品70、および図6に示すように本発明のクラッシュボックス10と左右反対でフランジ48、50が車幅方向内側に設けられた比較品72についても同じ条件で試験を行った。図6の比較品72は、フロント左側のクラッシュボックスとして用いる場合、本発明品と見做すことができる。
図7および図8は、圧縮ストロークに対する軸方向荷重および吸収エネルギーの特性を、本発明品、比較品、および従来品について比較して示した図である。吸収エネルギーは、軸方向荷重の積分値に対応する。これ等の図から明らかなように、本発明品では軸方向荷重が圧壊過程の終盤まで高いレベルで比較的安定しており、従来品や比較品に比べて吸収エネルギーが大きくなり、優れた衝撃エネルギー吸収性能が得られる。比較品は、圧壊中盤の圧縮ストロークST1付近で横倒れが生じ、軸方向荷重が低下して十分な衝撃エネルギー吸収性能が得られない。
上記試験結果について、図9、図10を参照して検討する。図9および図10は、クラッシュボックスを上方から見た平面視の状態の荷重説明図で、点aはクラッシュボックスの基端側の車幅方向外側の支持点、点bは車幅方向内側の支持点であり、荷重F1、F2は各支持点a、bの車両前側の真正面の入力荷重である。そして、これ等の入力荷重F1、F2に基づいて、支持点a、bまわりにそれぞれモーメント荷重Ma、Mbが生じ、全体として左回り方向(車幅方向内側向き)のモーメント荷重が発生する。その場合に、本発明品では車幅方向外側の上下の稜線部40、42に一対のフランジ48、50が設けられているため、車幅方向外側部分の剛性が高くなり、右側の入力荷重F1が左側の入力荷重F2に比較して相対的に大きくなる。特に入力荷重F1の軸方向分力f1aが大きくなる。この軸方向分力f1aは、車幅方向内側の支持点bに対しては右回り方向のモーメントとして作用するため、その支持点bの左回り方向のモーメント荷重Mbが小さくなり、或いはマイナスになって右回り方向に作用する。車幅方向外側の支持点aの左回り方向のモーメント荷重Maは、軸方向と直角な方向の分力f1pの増加で多少大きくなるものの、分力f1pの変化は軸方向分力f1aの変化に比べて小さいとともに、支持点aと支持点bの間では支持点bに向かうに従って軸方向分力f1aの影響が大きくなるため、全体として左回り方向のモーメント荷重が低減され、クラッシュボックスの横倒れが抑制されると考えられる。これに対し、車幅方向内側にフランジ48、50が設けられた比較品は、車幅方向内側部分の剛性が高くなり、左側の入力荷重F2が右側の入力荷重F1に比較して相対的に大きくなるため、左回り方向のモーメント荷重が大きくなり、従来品よりも更に横倒れが生じ易くなったと考えられる。
また、図11に示すように前記交差角度αおよび傾斜角度βが異なる6種類の試験品(本発明品)No1~No6を用意し、上記と同じ条件でオフセット衝突試験を行って、FEM解析により荷重変化特性および吸収エネルギー特性を調べたところ、図12および図13に示す結果が得られた。何れの試験品No1~No6も荷重変化特性が比較的安定しており、優れた衝撃エネルギー吸収性能が得られるが、交差角度αが60°の試験品No6(細い破線)については、圧壊終盤の圧縮ストロークST2付近で横倒れが発生した。また、傾斜角度βが15°の試験品No1(太い実線)については、明確な横倒れは認められなかったものの、圧壊終盤で軸方向荷重や衝撃エネルギー吸収性能が若干低下した。
このように、本実施例のクラッシュボックス10においては、筒状体22の複数の稜線のうち車幅方向外側の一対の稜線部40、42のみにフランジ48、50が筒状体22の軸方向の全長に亘って設けられているため、その筒状体22の車幅方向外側部分の圧縮荷重に対する剛性が高くなる。これにより、車両の斜め外側から衝撃荷重Fが加えられるオフセット衝突の場合でも、車両内側方向へ向かうモーメント荷重が低減されて横倒れが抑制され、優れた衝撃エネルギー吸収性能が安定して得られるようになる。
また、筒状体22が一対の半割体44、46にて構成されているとともに、その一対の半割体44、46の両側端部に、互いに重ね合わされて一体的に接合されることにより筒状体22の外側へ突き出す一対の上フランジ48および下フランジ50が設けられる。このため、複数のフランジ48、50を有する筒状体22をプレス加工や溶接などで簡単且つ安価に製造できるとともに、押出し成形で製造する場合に比較して材料や形状の制約が少なく、フランジ48、50を後から溶接等で固設する場合に比較して材料の歩留りが高くなる。
また、上下のフランジ48、50が何れも稜線部40、42を挟んで隣接する一対の側壁35および36、或いは35および37に対して60°を超える角度を有して設けられているとともに、車両上下方向の垂線から15°以上車幅方向外側へ傾斜させられているため、筒状体22の圧壊による衝撃エネルギー吸収性能を適切に確保しつつ耐横倒れ性能を向上させることができる。すなわち、一対の上フランジ48および下フランジ50が設けられることにより、筒状体22の圧壊が阻害されて衝撃エネルギー吸収性能が損なわれる可能性があるが、それ等のフランジ48、50を上記角度で設けることにより筒状体22の圧壊特性に対する影響を抑制できるのである。
また、複数のフランジ48、50が筒状体22の軸方向の全長に亘ってそれぞれ一定の突出寸法tで設けられているため、車幅方向外側部分の剛性を高くして耐横倒れ性能を適切に向上させることができる。
また、本実施例の筒状体22は断面が扁平な八角形状を成しているとともに、左右両側の一対の幅広側壁30、31に凹溝32、33が設けられている場合で、複数のフランジ48、50は上下両端部に位置する一対の幅狭側壁36、37の各々の車幅方向外側の一対の稜線部40、42に設けられているため、筒状体22の圧壊による衝撃エネルギー吸収性能を適切に確保しつつ耐横倒れ性能を向上させることができる。すなわち、複数のフランジ48、50が設けられることにより、筒状体22の圧壊が阻害されて衝撃エネルギー吸収性能が損なわれる可能性があるが、圧壊に関与する凹溝32、33から離れた上下両端の稜線部40、42にフランジ48、50が設けられているため、凹溝32、33による筒状体22の圧壊特性に対する影響を抑制できるのである。
以上、本発明の実施例を図面に基づいて詳細に説明したが、これ等はあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
10:クラッシュボックス 22:筒状体 30、31:幅広側壁 32、33:凹溝 34、35:傾斜側壁 36、37:幅狭側壁 40:外上稜線部(外側稜線部) 42:外下稜線部(外側稜線部) 44:内側半割体 46:外側半割体 48:上フランジ(接合部) 50:下フランジ(接合部) S:軸心(軸方向) α:交差角度 β:傾斜角度 t:突出寸法
Claims (5)
- 平板状の複数の側壁を有する断面が多角形状の筒状体を備えており、該筒状体の軸方向が車両の前後方向となる姿勢で配設され、該軸方向に圧縮荷重を受けることにより該軸方向に蛇腹状に圧壊させられて衝撃エネルギーを吸収するクラッシュボックスにおいて、
前記筒状体には、前記複数の側壁の境界に位置する複数の稜線のうち車幅方向外側に位置する複数の外側稜線部のみに、該筒状体の外側へ突き出す複数のフランジが該筒状体の軸方向の全長に亘って設けられている
ことを特徴とするクラッシュボックス。 - 前記筒状体は、前記複数の側壁の境界に位置する複数の稜線のうち車幅方向外側の上下に位置する一対の外上稜線部および外下稜線部で分割された一対の半割体にて構成されているとともに、
該一対の半割体のうち前記一対の外上稜線部および外下稜線部に位置する両側端部には、それぞれ互いに重ね合わされて一体的に接合されるとともに前記筒状体の外側へ突き出す接合部が設けられており、該接合部によって前記複数のフランジとして機能する一対の上フランジおよび下フランジが構成されている
ことを特徴とする請求項1に記載のクラッシュボックス。 - 前記筒状体は、前記複数の側壁の境界に位置する複数の稜線のうち車幅方向外側の上下に位置する一対の外上稜線部および外下稜線部に、前記複数のフランジとして機能する一対の上フランジおよび下フランジが設けられており、
前記上フランジは、前記筒状体の軸方向と直角な断面において、車幅方向外側の斜め上方へ突き出すように、前記外上稜線部を挟んで隣接する一対の側壁に対して何れも60°を超える角度で設けられているとともに、車両上下方向の垂線から15°以上車幅方向外側へ傾斜させられており、
前記下フランジは、前記筒状体の軸方向と直角な断面において、車幅方向外側の斜め下方へ突き出すように、前記外下稜線部を挟んで隣接する一対の側壁に対して何れも60°を超える角度で設けられているとともに、車両上下方向の垂線から15°以上車幅方向外側へ傾斜させられている
ことを特徴とする請求項1または2に記載のクラッシュボックス。 - 前記複数のフランジは、前記筒状体の軸方向の全長に亘ってそれぞれ一定の突出寸法で設けられている
ことを特徴とする請求項1~3の何れか1項に記載のクラッシュボックス。 - 前記筒状体は、該筒状体の軸方向と直角な断面が車両上下方向に長い扁平な八角形状で、車幅方向の左右両側に互いに平行に一対の幅広側壁を備えているとともに、該一対の幅広側壁には左右対称に該筒状体の内側へ凹む凹溝が該筒状体の軸方向と平行に設けられており、
前記複数のフランジは、断面八角形状の前記筒状体の上下両端部に位置する互いに平行な一対の幅狭側壁の各々の車幅方向外側の一対の外上稜線部および外下稜線部に設けられている
ことを特徴とする請求項1~4の何れか1項に記載のクラッシュボックス。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/896,227 US9469265B2 (en) | 2013-06-06 | 2013-09-20 | Crush box |
CN201380077186.4A CN105263761B (zh) | 2013-06-06 | 2013-09-20 | 碰撞箱 |
EP13886371.7A EP3006271B1 (en) | 2013-06-06 | 2013-09-20 | Crush box |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-119474 | 2013-06-06 | ||
JP2013119474A JP5926875B2 (ja) | 2013-06-06 | 2013-06-06 | クラッシュボックス |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014196093A1 true WO2014196093A1 (ja) | 2014-12-11 |
Family
ID=52007762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/075583 WO2014196093A1 (ja) | 2013-06-06 | 2013-09-20 | クラッシュボックス |
Country Status (5)
Country | Link |
---|---|
US (1) | US9469265B2 (ja) |
EP (1) | EP3006271B1 (ja) |
JP (1) | JP5926875B2 (ja) |
CN (1) | CN105263761B (ja) |
WO (1) | WO2014196093A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019049536A1 (ja) * | 2017-09-05 | 2019-03-14 | 株式会社神戸製鋼所 | バンパーシステム |
CN109906174A (zh) * | 2016-11-08 | 2019-06-18 | 马自达汽车株式会社 | 车辆的冲击吸收构造 |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8539737B2 (en) | 2008-09-19 | 2013-09-24 | Ford Global Technologies, Llc | Twelve-cornered strengthening member |
JP5926875B2 (ja) * | 2013-06-06 | 2016-05-25 | 豊田鉄工株式会社 | クラッシュボックス |
US10315698B2 (en) | 2015-06-24 | 2019-06-11 | Ford Global Technologies, Llc | Sixteen-cornered strengthening member for vehicles |
DE102015117005A1 (de) * | 2015-10-06 | 2017-04-06 | Benteler Automobiltechnik Gmbh | Crashbox |
JP6215891B2 (ja) * | 2015-10-15 | 2017-10-18 | 本田技研工業株式会社 | 衝撃吸収部材付き車体構造 |
US9944323B2 (en) | 2015-10-27 | 2018-04-17 | Ford Global Technologies, Llc | Twenty-four-cornered strengthening member for vehicles |
US9889887B2 (en) | 2016-01-20 | 2018-02-13 | Ford Global Technologies, Llc | Twelve-cornered strengthening member for a vehicle with straight and curved sides and an optimized straight side length to curved side radius ratio |
US9789906B1 (en) * | 2016-03-23 | 2017-10-17 | Ford Global Technologies, Llc | Twenty-eight-cornered strengthening member for vehicles |
US10704638B2 (en) | 2016-04-26 | 2020-07-07 | Ford Global Technologies, Llc | Cellular structures with twelve-cornered cells |
US10393315B2 (en) | 2016-04-26 | 2019-08-27 | Ford Global Technologies, Llc | Cellular structures with twelve-cornered cells |
US10473177B2 (en) | 2016-08-23 | 2019-11-12 | Ford Global Technologies, Llc | Cellular structures with sixteen-cornered cells |
US10220881B2 (en) | 2016-08-26 | 2019-03-05 | Ford Global Technologies, Llc | Cellular structures with fourteen-cornered cells |
US10300947B2 (en) | 2016-08-30 | 2019-05-28 | Ford Global Technologies, Llc | Twenty-eight-cornered strengthening member for vehicles |
US10279842B2 (en) | 2016-08-30 | 2019-05-07 | Ford Global Technologies, Llc | Twenty-eight-cornered strengthening member for vehicles |
US10429006B2 (en) | 2016-10-12 | 2019-10-01 | Ford Global Technologies, Llc | Cellular structures with twelve-cornered cells |
SE541585C2 (en) * | 2016-11-22 | 2019-11-12 | Gestamp Hardtech Ab | Bumper beam |
JP6562064B2 (ja) * | 2017-12-14 | 2019-08-28 | マツダ株式会社 | 車両の衝撃吸収構造 |
CN111670138A (zh) * | 2018-01-31 | 2020-09-15 | 日本制铁株式会社 | 摇臂部件以及车辆 |
US10618483B2 (en) * | 2018-01-31 | 2020-04-14 | GM Global Technology Operations LLC | Multi-component composite energy-absorbing structure having a corrugated joint |
EP3546295B1 (de) * | 2018-03-30 | 2021-02-24 | voestalpine Krems GmbH | Energieabsorberelement für ein kraftfahrzeug |
US11104283B2 (en) * | 2018-11-16 | 2021-08-31 | Aisin Seiki Kabushiki Kaisha | Vehicular energy absorbing member and manufacturing method thereof |
FR3090212B1 (fr) * | 2018-12-17 | 2022-01-07 | Valeo Systemes Thermiques | Unité d’absorption d’énergie de choc pour dispositif de stockage d'énergie électrique |
EP3786000A1 (en) * | 2019-08-26 | 2021-03-03 | Volvo Car Corporation | A connection device for connecting a vehicle crash absorbing member to a vehicle body component |
US11292522B2 (en) | 2019-12-04 | 2022-04-05 | Ford Global Technologies, Llc | Splayed front horns for vehicle frames |
CN112158158A (zh) * | 2020-09-28 | 2021-01-01 | 广东东箭汽车科技股份有限公司 | 一种汽车保险杠 |
JP7419327B2 (ja) | 2021-12-03 | 2024-01-22 | 豊田鉄工株式会社 | クラッシュボックス |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19540787A1 (de) * | 1995-11-02 | 1997-05-07 | Ymos Ag Ind Produkte | Längsträger, Aufpralldämpfer o.dgl. für Kraftfahrzeuge sowie Verfahren zur Herstellung derartiger Profilteile |
JP2002155981A (ja) | 2000-11-21 | 2002-05-31 | Aisin Seiki Co Ltd | 衝撃吸収部材及びバンパ |
JP2006327463A (ja) * | 2005-05-27 | 2006-12-07 | Toyota Motor Corp | 車体構造 |
JP2010149771A (ja) * | 2008-12-26 | 2010-07-08 | Toyoda Iron Works Co Ltd | 車両用衝撃吸収部材 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005199523A (ja) * | 2004-01-14 | 2005-07-28 | Brother Ind Ltd | インクジェット記録装置 |
JP4371059B2 (ja) * | 2005-01-28 | 2009-11-25 | 住友金属工業株式会社 | 衝撃吸収部材 |
EP1923273B1 (en) * | 2005-09-09 | 2010-12-01 | Toyoda Iron Works Co., Ltd. | Impact absorption member for vehicle |
US8287013B2 (en) * | 2007-11-05 | 2012-10-16 | Toyoda Iron Works Co., Ltd. | Impact absorbing member for vehicle |
CN201240339Y (zh) * | 2007-11-30 | 2009-05-20 | 北京理工大学 | 一种车用碰撞吸能部件 |
JP5587696B2 (ja) * | 2010-07-28 | 2014-09-10 | アイシン精機株式会社 | 車両用衝撃吸収具及び車両用バンパ装置 |
US8573683B2 (en) * | 2011-01-07 | 2013-11-05 | Tesla Motors, Inc. | Front rail reinforcement system |
JP5852403B2 (ja) * | 2011-10-21 | 2016-02-03 | アイシン精機株式会社 | 車両用バンパ装置及び該車両用バンパ装置に適用されるクラッシュボックス |
DE102013202607A1 (de) * | 2013-02-19 | 2014-08-21 | Magna International Inc. | Aufprallabsorptionselement |
JP5988893B2 (ja) * | 2013-02-25 | 2016-09-07 | 豊田鉄工株式会社 | 車両用衝撃吸収部材 |
JP5926875B2 (ja) * | 2013-06-06 | 2016-05-25 | 豊田鉄工株式会社 | クラッシュボックス |
US20150021940A1 (en) * | 2013-07-22 | 2015-01-22 | GM Global Technology Operations LLC | Energy absorbing vehicle component |
JP6137118B2 (ja) * | 2014-10-29 | 2017-05-31 | トヨタ自動車株式会社 | 車両用接続部材及び車両前部構造 |
-
2013
- 2013-06-06 JP JP2013119474A patent/JP5926875B2/ja not_active Expired - Fee Related
- 2013-09-20 WO PCT/JP2013/075583 patent/WO2014196093A1/ja active Application Filing
- 2013-09-20 US US14/896,227 patent/US9469265B2/en active Active
- 2013-09-20 EP EP13886371.7A patent/EP3006271B1/en not_active Not-in-force
- 2013-09-20 CN CN201380077186.4A patent/CN105263761B/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19540787A1 (de) * | 1995-11-02 | 1997-05-07 | Ymos Ag Ind Produkte | Längsträger, Aufpralldämpfer o.dgl. für Kraftfahrzeuge sowie Verfahren zur Herstellung derartiger Profilteile |
JP2002155981A (ja) | 2000-11-21 | 2002-05-31 | Aisin Seiki Co Ltd | 衝撃吸収部材及びバンパ |
JP2006327463A (ja) * | 2005-05-27 | 2006-12-07 | Toyota Motor Corp | 車体構造 |
JP2010149771A (ja) * | 2008-12-26 | 2010-07-08 | Toyoda Iron Works Co Ltd | 車両用衝撃吸収部材 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109906174A (zh) * | 2016-11-08 | 2019-06-18 | 马自达汽车株式会社 | 车辆的冲击吸收构造 |
CN109906174B (zh) * | 2016-11-08 | 2022-09-20 | 马自达汽车株式会社 | 车辆的冲击吸收构造 |
WO2019049536A1 (ja) * | 2017-09-05 | 2019-03-14 | 株式会社神戸製鋼所 | バンパーシステム |
US11148719B2 (en) | 2017-09-05 | 2021-10-19 | Kobe Steel, Ltd. | Bumper system |
Also Published As
Publication number | Publication date |
---|---|
EP3006271A4 (en) | 2017-01-18 |
JP5926875B2 (ja) | 2016-05-25 |
CN105263761A (zh) | 2016-01-20 |
EP3006271A1 (en) | 2016-04-13 |
US9469265B2 (en) | 2016-10-18 |
EP3006271B1 (en) | 2018-02-28 |
CN105263761B (zh) | 2017-06-06 |
JP2014238103A (ja) | 2014-12-18 |
US20160129866A1 (en) | 2016-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5926875B2 (ja) | クラッシュボックス | |
US9566924B2 (en) | Vehicular impact absorbing member | |
JP5330674B2 (ja) | クラッシュボックス | |
JP4792036B2 (ja) | 車両用衝撃吸収部材 | |
JP4738474B2 (ja) | 車両用衝撃吸収部材 | |
JP5659185B2 (ja) | 車両用衝撃吸収部材 | |
JP4350731B2 (ja) | 車両用衝撃吸収部材 | |
JP2015080998A (ja) | クラッシュボックス | |
JP5027851B2 (ja) | 車両用衝撃吸収部材 | |
WO2017111105A1 (ja) | エネルギー吸収部材 | |
CN107107849B (zh) | 车身前部构造 | |
WO2015145835A1 (ja) | 車両用バンパーリインフォースメント | |
JP5486251B2 (ja) | 車両用衝撃吸収具及び車両用バンパ装置 | |
CN109923001B (zh) | 车辆的冲击吸收构造 | |
JP5053762B2 (ja) | 車両用バンパ装置 | |
JP6399073B2 (ja) | 車両の衝撃吸収構造 | |
WO2018088099A1 (ja) | 車両の衝撃吸収構造 | |
WO2022149504A1 (ja) | 構造部材 | |
JP2018052467A (ja) | 衝撃吸収部材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201380077186.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13886371 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 14896227 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013886371 Country of ref document: EP |