WO2014196062A1 - 導波路型レーザ装置 - Google Patents
導波路型レーザ装置 Download PDFInfo
- Publication number
- WO2014196062A1 WO2014196062A1 PCT/JP2013/065714 JP2013065714W WO2014196062A1 WO 2014196062 A1 WO2014196062 A1 WO 2014196062A1 JP 2013065714 W JP2013065714 W JP 2013065714W WO 2014196062 A1 WO2014196062 A1 WO 2014196062A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser
- wavelength conversion
- wavelength
- waveguide
- conversion element
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
- H01S3/108—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
- H01S3/109—Frequency multiplication, e.g. harmonic generation
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/355—Non-linear optics characterised by the materials used
- G02F1/3558—Poled materials, e.g. with periodic poling; Fabrication of domain inverted structures, e.g. for quasi-phase-matching [QPM]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08004—Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
- H01S3/08009—Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection using a diffraction grating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08086—Multiple-wavelength emission
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/0941—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
- H01S3/09415—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0619—Coatings, e.g. AR, HR, passivation layer
- H01S3/0621—Coatings on the end-faces, e.g. input/output surfaces of the laser light
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/0619—Coatings, e.g. AR, HR, passivation layer
- H01S3/0621—Coatings on the end-faces, e.g. input/output surfaces of the laser light
- H01S3/0623—Antireflective [AR]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08059—Constructional details of the reflector, e.g. shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/023—Mount members, e.g. sub-mount members
- H01S5/02325—Mechanically integrated components on mount members or optical micro-benches
- H01S5/02326—Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
Definitions
- the present invention relates to a waveguide type laser apparatus that performs wavelength conversion of laser light in a planar waveguide.
- a device that displays a color image such as a printer or a projection television
- light sources of three colors R (red), G (green), and B (blue) are required as light sources.
- laser light in the 900 nm band, 1 ⁇ m band, and 1.3 ⁇ m band is used as fundamental wave laser light, and the fundamental laser light is converted to a second harmonic of half wavelength (double frequency) using a nonlinear material.
- a wavelength conversion laser device laser oscillator
- SHG Second Harmonic Generation
- the phase matching condition is a condition for correcting a phase shift between the fundamental laser beam and the second harmonic laser beam in the wavelength conversion element.
- a quasi phase matching (QPM (Quasi Phase Matching)) wavelength conversion element using a periodic structure As an element that performs wavelength conversion while satisfying the phase matching condition, for example, a quasi phase matching (QPM (Quasi Phase Matching)) wavelength conversion element using a periodic structure is known.
- QPM wavelength conversion element an optical waveguide is formed on a periodically poled lithium niobate (PPLN) which is a nonlinear optical crystal, and the polarization is periodically inverted along the waveguide direction.
- PPLN periodically poled lithium niobate
- a fundamental wave of a laser beam is propagated in a plurality of laser oscillation modes in a direction perpendicular to a plate-like main surface, which is a direction perpendicular to the optical axis, while having a plate-like nonlinear optical material.
- the nonlinear optical material has a phase matching bandwidth including phase matching conditions of at least two laser oscillation modes among the plurality of laser oscillation modes.
- a wavelength conversion element and a wavelength conversion laser device have been proposed in which the polarization inversion period is changed to form a non-polarization inversion region and a polarization inversion region.
- the wavelength conversion element in Patent Document 1 changes the polarization inversion period of the nonlinear optical material so as to have a phase matching bandwidth including the phase matching conditions of at least two laser oscillation modes, the two laser oscillation modes In contrast, the fundamental wavelength can be converted.
- the fundamental wavelength band subjected to wavelength conversion can be widened by gradually changing the pitch of the polarization inversion period of the wavelength conversion element.
- the conversion efficiency of the wavelength conversion element in which the pitch of the polarization inversion period is gradually changed is lower than that in which the polarization inversion period is constant. Therefore, there is a problem that it is difficult to realize both a wide fundamental wave conversion wavelength band and high conversion efficiency.
- the present invention has been made to solve the above-described problems.
- a material having a wide gain band is used as a laser medium, a waveguide laser that realizes highly efficient wavelength conversion at a plurality of wavelengths.
- the object is to obtain a device.
- the present invention when a material having a wide gain band is used as the laser medium of the solid-state laser element, there is an effect that wavelength conversion can be performed with high efficiency at a plurality of wavelengths in the gain band.
- FIG. 1 is a cross-sectional view of the configuration of a waveguide laser device according to Embodiment 1 of the present invention viewed from the side
- FIG. 2 is a top view showing the configuration of the waveguide laser device. 1 and 2 show the optical axis R representing the laser oscillation direction.
- the waveguide laser device includes a semiconductor laser 11, a solid-state laser element 12, a wavelength conversion element 13, and a wavelength selection element 14.
- the semiconductor laser 11 outputs one to a plurality of LD (Laser Diode) lights from one to a plurality of active layers.
- LD Laser Diode
- the semiconductor laser 11 emits the LD lights in an array, and causes the solid-state laser element 12 to perform multi-emitter oscillation.
- the solid-state laser element 12 is an element that oscillates fundamental wave laser light, and includes a laser medium 121 and a clad (low refractive index portion) 122.
- the wavelength conversion element 13 is an element that converts the oscillated fundamental laser light into second harmonic laser light and emits the converted second harmonic laser light.
- the wavelength conversion element 13 has a slab type waveguide structure, and includes a nonlinear optical material 131 and a clad 132.
- the wavelength selection element 14 has a slab-type waveguide structure, and has a VBG (Volume Bragg Grating) 141 and a clad 142 as a volume phase grating having a Bragg grating structure formed therein. Yes.
- VBG Volume Bragg Grating
- the optical axis R is the z-axis direction
- the direction perpendicular to the main surface of the waveguide laser device is the y-axis direction
- the direction perpendicular to both the y-axis and the z-axis (the wavelength conversion element 13).
- Width direction) is described as the x-axis direction.
- Each of the semiconductor laser 11, the laser medium 121, the nonlinear optical material 131, and the VBG 141 has a substantially rectangular flat plate shape, and each flat plate main surface is arranged in parallel with the xz plane (one plane). In parallel).
- the laser medium 121 is close to the semiconductor laser 11 on one side surface (end surface 123a perpendicular to the z-axis), and close to the nonlinear optical material 131 on the side surface opposite to this side surface (end surface 123b perpendicular to the z-axis).
- one side surface (end surface 133a perpendicular to the z axis) is close to the end surface 123b of the laser medium 121, and the side surface opposite to this side surface (end surface 133b perpendicular to the z axis) is close to VBG 141. Yes.
- one side surface (end surface 143a perpendicular to the z-axis) is close to the end surface 133b of the nonlinear optical material 131, and second harmonic laser light is emitted from the side surface (end surface 143b perpendicular to the z-axis) facing this side surface.
- the proximity surface where the semiconductor laser 11 and the laser medium 121 are close to each other has substantially the same surface shape (generally rectangular shape) between the semiconductor laser 11 and the laser medium 121, and the proximity where the laser medium 121 and the nonlinear optical material 131 are close to each other.
- the surface has substantially the same surface shape (substantially rectangular shape) in the laser medium 121 and the nonlinear optical material 131, and the proximity surface where the nonlinear optical material 131 and the VBG 141 are close to each other is substantially the same in the nonlinear optical material 131 and the VBG 141. It has a surface shape (generally rectangular shape).
- the semiconductor laser 11, the end faces 123 a and 123 b of the laser medium 121, the end faces 133 a and 133 b of the nonlinear optical material 131, and the end faces 143 a and 143 b of the VBG 141 are parallel to each other.
- a laser 11, a solid-state laser element 12, a wavelength conversion element 13, and a wavelength selection element 14 are provided.
- a cooling heat sink (not shown) may be bonded to the semiconductor laser 11 as necessary.
- the width of the semiconductor laser 11 in the x-axis direction is substantially equal to the width of the laser medium 121 in the x-axis direction, and the semiconductor laser 11 outputs the excitation light substantially uniformly in the x-axis direction.
- the semiconductor laser 11 is, for example, a multi-emitter semiconductor laser in which a plurality of active layers that output LD light are arranged.
- the active layers are arranged in the semiconductor laser 11 so that the active layers are arranged in the x-axis direction of the laser light emission surface.
- the solid-state laser element 12 can obtain each laser output light from each of the active layers arranged in the x-axis direction.
- the LD light output from the semiconductor laser 11 is incident on the xz plane direction of the laser medium 121 from the end face 123a (the optical axis R direction perpendicular to the xy plane) and is absorbed by the laser medium 121.
- the end face 123a of the laser medium 121 is a total reflection film that reflects the fundamental laser light
- the end face 123b of the laser medium 121 is an antireflection film that transmits the fundamental laser light.
- the end surface 133a of the nonlinear optical material 131 is an optical film that transmits the fundamental laser beam and reflects the second harmonic laser beam.
- the end surface 133b of the nonlinear optical material 131 transmits the fundamental laser beam and the second laser beam. It is an optical film that transmits harmonic laser light.
- the end surface 143a of the VBG 141 is an optical film that transmits the fundamental laser beam and the second harmonic laser beam
- the end surface 143b of the VBG reflects the fundamental laser beam and transmits the second harmonic laser beam. It is a film (partial reflection film).
- total reflection film, antireflection film, and optical film are produced, for example, by laminating dielectric thin films.
- the total reflection film on the end face 123a becomes an optical film that transmits the excitation light and reflects the fundamental laser light. .
- the laser medium 121 has a thickness of several to several tens of ⁇ m in the y-axis direction and a width of several hundred ⁇ m to several mm in the x-axis direction.
- the laser medium 121 one having a wide gain band is suitable, but is not limited to this, and a general solid-state laser material can be used.
- the laser medium 121 is, for example, Nd: YAG, Nd: YLF, Nd: Glass, Nd: YVO4, Nd: GdVO4, Yb: YAG, Yb: YLF, Yb: KGW, Yb: KYW, Er: Glass, Er: YAG Tm: YAG, Tm: YLF, Ho: YAG, Ho: YLF, Tm, Ho: YAG, Tm, Ho: YLF, Ti: Sapphire, Cr: LiSAF.
- the clad 122 has a refractive index smaller than that of the laser medium 121 and is bonded to the main surface of the laser medium 121 at planes parallel to the xz plane of the laser medium 121 (the upper surface of the clad 122 and the lower surface of the clad 122). Yes.
- the clad 122 is produced, for example, by a method of depositing a film made of an optical material as a raw material on the laser medium 121, or a method of optically bonding the optical material to the laser medium 121 by optical contact or diffusion bonding.
- a cooling heat sink (not shown) may be bonded to the lower surface side of the clad 122.
- the nonlinear optical material 131 converts the wavelength of the fundamental laser beam incident from the laser medium 121 side and outputs a second harmonic laser beam.
- the nonlinear optical material 131 has a thickness of several to several tens of ⁇ m in the y-axis direction and a width of several hundreds of ⁇ m to several mm in the x-axis direction.
- a general wavelength conversion material can be used as the nonlinear optical material 131.
- the nonlinear optical material 131 is, for example, KTP, KN, BBO, LBO, CLBO, LiNbO3, LiTaO3, or the like.
- the non-linear optical material 131 if the MgO-added LiNbO3, MgO-added LiTaO3, stoichiometric LiNbO3, and stoichiometric LiTaO3 that are resistant to optical damage are used as the non-linear optical material 131, the power density of the incident fundamental wave laser beam can be increased. Wavelength conversion is possible. Further, if the MgO-added LiNbO3, MgO-added LiTaO3, stoichiometric LiNbO3, stoichiometric LiTaO3, and KTP having a periodically reversal polarization structure are used as the nonlinear optical material 131, the nonlinear constant is large. Wavelength conversion becomes possible.
- the clad 132 has a refractive index smaller than that of the nonlinear optical material 131, and is a main surface of the nonlinear optical material 131 at a plane parallel to the xz plane of the nonlinear optical material 131 (the upper surface of the cladding 132 and the lower surface of the cladding 132). It is joined.
- the clad 132 is produced by, for example, a method of depositing a film made of an optical material as a raw material on the nonlinear optical material 131, or a method of optically joining the optical material to the nonlinear optical material 131 by optical contact or diffusion bonding.
- the VBG 141 reflects only a specific wavelength of the fundamental laser beam incident from the nonlinear optical material 131 side.
- the VBG 141 has a thickness of several to several tens of ⁇ m in the y-axis direction and a width of several hundreds of ⁇ m to several mm in the x-axis direction.
- it is made of an inorganic material mainly composed of silica glass, and a periodic refractive index change is made on the optical axis by ultraviolet irradiation and heat treatment. In this way, by adopting a periodic refractive index changing structure, a specific wavelength is strongly reflected by Bragg reflection.
- the clad 142 has a refractive index smaller than that of the VBG 141, and is joined to the main surface of the VBG 141 at planes parallel to the xz plane of the VBG 141 (the upper surface of the clad 142 and the lower surface of the clad 142).
- the clad 142 is produced by, for example, a method of depositing a film made of an optical material as a raw material on the VBG 141, or a method of optically bonding the optical material to the nonlinear optical material 1 by optical contact or diffusion bonding.
- the wavelength ⁇ within the oscillation wavelength band of the fundamental laser light that can be generated by the solid-state laser element 12 and having a different laser oscillation mode among the fundamental-wave oscillation wavelengths output from the solid-state laser element 12. ⁇ 0 , ⁇ 1 , ⁇ 2 ,..., ⁇ n (n ⁇ 2) is selectively reflected by the wavelength selection element 14 and is incident on the wavelength conversion element 13.
- the wavelength conversion element 13 uses a QPM wavelength conversion element (pseudo phase matching wavelength conversion element) in order to perform conversion with high conversion efficiency.
- FIG. 3 shows the wavelength dependence of the Nd: Glass stimulated absorption cross section as an example of the wavelength dependence of the stimulated absorption cross section of the laser medium 121.
- the laser medium 121 desirably has a wide gain band.
- ⁇ is limited to three wavelengths, lambda 0, lambda 1, as lambda 2, these 2 Baihahikari ( ⁇ 0/2, ⁇ 1 /2, ⁇ 2/2) explaining a case of obtaining.
- the laser medium 121 forms an inversion distribution state by the excitation light from the semiconductor laser 11 and is amplified by the excitation light by stimulated emission.
- This laser beam reciprocates between the end face 123a of the laser medium 121 and the VBG 141 of the wavelength selection element 14, but the gain due to amplification when making one round with this optical resonator makes one round with the optical resonator.
- the fundamental wave laser light oscillates in proportion to the loss received by the laser.
- FIG. 4 is a perspective view showing the configuration of the wavelength selection element 14.
- the VBG 141 of the wavelength selection element 14 has a plurality of Bragg layers 144.
- the Bragg layer 144 has a substantially flat plate shape and is sandwiched by the clad 142 so that the flat plate-like main surface is parallel to the x-axis direction and the y-axis direction.
- the fundamental wave (fundamental laser beam) from the laser medium 12 passes through the wavelength conversion element 13, and then is input from the end face 143a side, and within the oscillation wavelength band, the wavelength ⁇ 0 ,
- a black lattice structure is defined so as to reflect the laser beams of ⁇ 1 and ⁇ 2 .
- the reflected fundamental laser beams having wavelengths ⁇ 0 , ⁇ 1 , and ⁇ 2 are incident on the nonlinear optical element 131 from the end face 133b.
- a waveguide structure having the VBG 141 as a core is described as the wavelength selection element 14, but the present invention is not limited to this, and the wavelengths ⁇ 0 , ⁇ 1 , and ⁇ 2 of the fundamental wave are changed.
- a reflecting mirror may be used as long as it can be reflected.
- FIG. 5 is a perspective view showing the configuration of the wavelength conversion element 13.
- the nonlinear optical material 131 of the wavelength conversion element 13 has a plurality of polarization inversion layers 134.
- the polarization inversion layer 134 is obtained by inverting the polarization direction of a single crystal dielectric material polarized in a certain direction.
- non-polarization inversion regions and polarization inversion regions are alternately formed.
- the polarization inversion layer 134 is periodically formed in the nonlinear optical material 131.
- Each polarization inversion layer 134 has a substantially flat plate shape, and is sandwiched between clads 132 so that the flat plate-like main surface is parallel to the x-axis direction and the y-axis direction.
- the laser beams having the wavelengths ⁇ 0 , ⁇ 1 , and ⁇ 2 reflected by the VBG 141 are further reflected by the VBG 141 from the end face 133b side. Thereafter, laser light reflected by the end face 123a of the laser medium 121 is input from the end face 133a and propagates in turn in the non-polarized inversion regions and the polarization inversion regions.
- the nonlinear optical material 131 converts the fundamental laser light into the second harmonic laser light due to the nonlinear effect. Convert.
- the crystal axis angle, the temperature, the period of inversion polarization, etc. are set in advance so that the fundamental laser beams of wavelengths ⁇ 0 , ⁇ 1 , ⁇ 2 reflected by the VBG 141 are converted into second harmonic laser beams. Optimize it. Part of the fundamental laser light incident on the nonlinear optical material 131 is converted into second harmonic laser light, propagates through the VBG 141, and is output to the outside from the end face 143b.
- the fundamental laser beam remaining in the nonlinear optical material 131 or the VBG 141 without being converted into the second harmonic laser beam is reflected in the VBG 141, passes through the nonlinear optical material 131 again, and is second harmonic. Converted to laser light.
- the second harmonic laser beam generated by converting a part of the remaining fundamental laser beam is totally reflected by the end face 133a and outputted to the outside from the end face 143b.
- FIG. 6 is a diagram for explaining a polarization inversion pattern of the wavelength conversion element 13.
- FIG. 6 shows a polarization inversion pattern when the nonlinear optical material 131 is viewed from the upper surface (y-axis direction).
- the polarization inversion pattern of the nonlinear optical material 131 includes a pair of polarization layers including a plus (+) polarization layer (non-polarization inversion region) and a minus ( ⁇ ) polarization layer (polarization inversion region: polarization inversion layer 134).
- a plurality of sets are arranged in the z-axis direction.
- the non-polarization inversion regions and the polarization inversion regions are alternately arranged in the z-axis direction.
- Each polarization layer is arranged with a polarization inversion period ⁇ from the end face 133a to the end face 133b.
- the pitch of polarization inversion is configured with a constant polarization inversion period ⁇ in order to realize high conversion efficiency to the second harmonic.
- the present invention can be applied to the present invention. In that case, another new effect is produced. This will be described later.
- FIG. 7 is a diagram for explaining the transfer of the laser oscillation mode to the higher order mode.
- the wavelength conversion element 13 when wavelength conversion is performed in the phase matching band by wavelength conversion, the loss at the phase matching band peak increases.
- the waveguide nonlinear optical material 131
- the laser oscillation mode is transferred from the 0th-order mode to the primary mode, and further, the laser oscillation mode is transferred from the primary mode to the secondary mode.
- a laser oscillation mode is formed.
- the PPLN pitch polarization inversion period
- n 1 ( ⁇ ) is a refractive index with respect to the wavelength ⁇ of the core material (nonlinear optical material 131) forming the waveguide, and n 2 ( ⁇ ) forms the waveguide.
- N eff ( ⁇ , m) is an effective refractive index (m is the waveguide mode order) with respect to the wavelength ⁇ , and t is the thickness of the core forming the waveguide.
- the polarization inversion period ⁇ of the waveguide type wavelength conversion element 13 is expressed by the following relational expression using the effective refractive index n eff ( ⁇ , m) of the waveguide with respect to the fundamental wave laser beam of the mth mode and the second harmonic. (Expression (3))
- ⁇ is the fundamental wavelength
- ⁇ / 2 is the second harmonic wavelength
- the wavelength conversion efficiency ⁇ can be calculated by the following equation (4) when the polarization inversion period ⁇ is constant.
- I F is the fundamental wave input power
- I SH is the harmonic output power
- D eff is an effective nonlinear optical constant
- n F is a refractive index with respect to the fundamental wave
- n SH is the refractive index with respect to the harmonics
- c is the speed of light in vacuum.
- ⁇ 0 is the dielectric constant in vacuum
- L is the element length.
- K 0 2 ⁇ / ⁇ .
- the positive region including the first peak is in the range of ⁇ ⁇ x ⁇ .
- FIG. 8 is a diagram showing the relationship between the laser oscillation modes of wavelengths ⁇ 0 , ⁇ 1 , and ⁇ 2 in the wavelength conversion element 13 and the polarization inversion period (PPLN pitch). From equations (1), (2), and (3), the polarization inversion period is determined by the thickness of the core forming the waveguide and the refractive index of the cladding material. In other words, it depends on the specifications of the material constituting the waveguide.
- the following equation (5) shows a relational expression. ⁇ ( ⁇ 0 , 0), ⁇ ( ⁇ 1 , 1) and ⁇ ( ⁇ 2 , 2) need only exist in the phase matching band. Note that ⁇ ( ⁇ 0 , 0), ⁇ ( ⁇ 1 , 1), and ⁇ ( ⁇ 2 , 2) may be completely matched.
- the zero-order mode of wavelength lambda 0, the wavelength lambda 1 of the first-order mode to selectively reflect a second-order mode of wavelength lambda 2.
- the primary mode and secondary mode wavelength lambda 0 the wavelength lambda 1 of the zero-order mode and a second mode, that the zero-order and first order modes of the wavelength lambda 2 is incident on the wavelength conversion element 13 .
- Order mode with respect to the wavelength lambda 0 in the phase matching band, the first mode with respect to the wavelength lambda 1, 2-order mode with respect to the wavelength lambda 2 is wavelength-converted into the second harmonic, the wavelength lambda 0/2, lambda 1/2 , laser light of ⁇ 2/2 is generated.
- FIG. 9 schematically shows the wavelength conversion efficiency of the fundamental wave in the wavelength conversion element 13 having the structure according to the first embodiment and the conventional structure so that the relationship with the laser oscillation mode can be understood.
- the wavelength conversion element 13 in this Embodiment 1 the case where it was a uniform polarization inversion period was illustrated.
- the characteristics of the wavelength conversion efficiency at this time are shown in FIG.
- the wavelength conversion efficiency is normalized as a peak and expressed as 1.
- a mountain region including a peak is defined as a phase matching band.
- the phase matching band is expressed as ⁇ ⁇ L / 2 ( ⁇ k ⁇ K 0 ) ⁇ , and ⁇ ( ⁇ 0 , 0), ⁇ ( ⁇ 1 ,
- the wavelength conversion element 13 is configured so that 1) and ⁇ ( ⁇ 2 , 2) exist. Therefore, each laser oscillation mode is in a close state.
- the wavelength conversion efficiency characteristic of the conventional structure is shown in FIG. 9B. Since the respective laser oscillation modes are not approaching, the polarization inversion pitch must be gradually changed to include these laser oscillation modes. However, although the bandwidth can be broadened with respect to the polarization inversion period, the absolute value of the wavelength conversion efficiency is lowered even at the peak value. Note that the conventional conversion efficiency characteristics are also normalized and shown with peaks in the case of having a uniform polarization inversion period.
- each of the modes from the 0th order to the 2nd order is included in the phase matching bandwidth, and the wavelength is set so that each mode has a polarization inversion period that is close or coincident as shown in the equation (4). Since the waveguide structure of the conversion element 13 is optimized, as shown in FIG. 9 (A), the polarization inversion period difference of each mode from the 0th order to the second order is small, and the conversion efficiency of each mode has a large value. can get. On the other hand, as shown in FIG. 9B, the conventional structure has different values as the polarization inversion period of each mode from the 0th order to the second order, and the conversion efficiency felt by each mode is the same as that of the first embodiment. It becomes a small value compared with the structure of.
- the wavelength conversion element 13 is configured with a constant polarization inversion period, but a structure in which the inversion period is gradually changed may be employed.
- the wavelength conversion element 13 is configured with a constant polarization inversion period, the light of the wavelengths ⁇ 0 , ⁇ 1 , and ⁇ 2 reflected by the wavelength selection element 13 is incident on the wavelength conversion element 13 and is within the phase matching band.
- the waveguide In order to enter ⁇ ( ⁇ 0 , 0), ⁇ ( ⁇ 1 , 1), and ⁇ ( ⁇ 2 , 2), the waveguide must be configured to be close to ⁇ 02 .
- ⁇ ( ⁇ 0 , 0), ⁇ ( ⁇ 1 , 1), and ⁇ ( ⁇ 2 , 2) are the polarizations of ⁇ 02 It is sufficient to make it fall within the period change amount of the inversion period.
- FIG. 10 shows the laser oscillation modes and polarization inversion periods (PPLN pitch) of the wavelengths ⁇ 0 , ⁇ 1 , ⁇ 2 in the wavelength conversion element 13 when the wavelength conversion element 13 has a structure in which the inversion period is gradually changed. It is a figure which shows the relationship.
- the polarization inversion period is gradually increased from ( ⁇ 02 ⁇ / 2) to ( ⁇ 02 + ⁇ / 2) from the end face 133a toward the end face 133b.
- it may be configured to gradually shorten from ( ⁇ 02 + ⁇ / 2) to ( ⁇ 02 ⁇ / 2).
- ⁇ n (n ⁇ 2) is not limited to three wavelengths, and can be applied to any number of wavelengths of two or more wavelengths.
- the wavelength selection element 14 has a waveguide structure including a volume type phase grating in which a Bragg grating structure is formed, and is fundamentally output from the solid-state laser element 12.
- the structure of both the case where the wavelength conversion element 13 has a constant polarization inversion period and the structure where the wavelength conversion element 13 is gradually changed has been described.
- the polarization inversion period is constant, a large value can be obtained as the conversion efficiency felt by each mode.
- restrictions on the waveguide structure can be relaxed.
- the waveguide laser device according to the present invention is suitable for wavelength conversion of laser light in a planar waveguide.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Lasers (AREA)
Abstract
Description
近年、これらの光源として、900nm帯、1μm帯、1.3μm帯のレーザ光を基本波レーザ光とし、非線形材料を用いて基本波レーザ光を半分の波長(2倍の周波数)の第2高調波に変換(SHG(Second Harmonic Generation))する波長変換レーザ装置(レーザ発振器)が開発されている。
波長変換素子内で基本波レーザ光から第2高調波レーザ光へ変換するためには、変換前の基本波レーザ光と変換後の第2高調波レーザ光との間で、位相整合条件を満足させなければならない。
位相整合条件は、波長変換素子において基本波レーザ光と第2高調波レーザ光の位相ずれを補正する条件である。
このQPM波長変換素子では、非線形光学結晶である周期分極ニオブ酸リチウム(PPLN(Periodically Poled Lithium Niobate))などに光導波路を形成し、導波方向に沿って分極を周期的に反転させている。
しかしながら、分極反転周期のピッチを徐々に変化させた波長変換素子の変換効率は、分極反転周期が一定なものと比べて低くなる。
したがって、広い基本波変換波長帯域と高い変換効率の両方を実現することは困難であるという課題があった。
以降では、各図中、同一符号は同一または相当部分を示す。
なお、この実施の形態により、この発明が限定されるものではない。
実施の形態1.
図1は、この発明の実施の形態1による導波路型レーザ装置の構成を側面方向から見た断面図であり、図2は、導波路型レーザ装置の構成を示す上面図である。
なお、図1および図2では、レーザ発振方向を表す光軸Rを示している。
導波路型レーザ装置は、半導体レーザ11と、固体レーザ素子12と、波長変換素子13と、波長選択素子14と、を含んで構成されている。
半導体レーザ11は、複数のLD光を出力する場合には、LD光をアレー状に出射し、固体レーザ素子12にマルチエミッタ発振を行なわせる。
固体レーザ素子12は、基本波レーザ光を発振させる素子であり、レーザ媒質121とクラッド(低屈折率部)122を有している。
波長変換素子13は、スラブ型の導波路構造を有しており、非線形光学材料131とクラッド132を有している。
波長選択素子14は、スラブ型の導波路構造を有しており、ブラッグ格子構造が内部に形成された体積型位相格子としてVBG(Volume Bragg Grating:体積ブラッググレーティング)141とクラッド142を有している。
非線形光学材料131は、1つの側面(z軸に垂直な端面133a)がレーザ媒質121の端面123bに近接し、この側面と対向する側面(z軸に垂直な端面133b)でVBG141と近接している。
VBG141は、1つの側面(z軸に垂直な端面143a)が非線形光学材料131の端面133bに近接し、この側面と対向する側面(z軸に垂直な端面143b)から第2高調波レーザ光を出射する。
半導体レーザ11には、必要に応じて冷却用のヒートシンク(図示せず)を接合してもよい。
半導体レーザ11は、例えば、LD光を出力する活性層を複数配置したマルチエミッタ半導体レーザなどである。
半導体レーザ11がマルチエミッタ半導体レーザである場合、半導体レーザ11では、レーザ光出射面のx軸方向に活性層が並ぶよう各活性層を配置しておく。
この場合、半導体レーザ11は、複数の活性層から複数のLD光を出力するので、固体レーザ素子12は、x軸方向に複数並んだ各活性層からそれぞれのレーザ出力光を得ることができる。
半導体レーザ11から出力されたLD光は、端面123aからレーザ媒質121のxz平面方向(xy平面に垂直な光軸R方向)に入射して、レーザ媒質121に吸収される。
非線形光学材料131の端面133aは、基本波レーザ光を透過させるとともに第2高調波レーザ光を反射する光学膜であり、非線形光学材料131の端面133bは、基本波レーザ光を透過させるとともに第2高調波レーザ光を透過させる光学膜である。
VBG141の端面143aは、基本波レーザ光と第2高調波レーザ光を透過させる光学膜であり、VBGの端面143bは、基本波レーザ光を反射させるとともに、第2高調波レーザ光を透過させる光学膜(部分反射膜)である。
なお、半導体レーザ11から出力される励起光を、レーザ媒質121の端面123aから入射する場合には、端面123aの全反射膜は、励起光を透過し基本波レーザ光を反射する光学膜となる。
レーザ媒質121としては、利得帯域の広いものが適当であるが、これに限定されるものではなく、一般的な固体レーザ材料を使用することができる。
レーザ媒質121は、例えば、Nd:YAG、Nd:YLF、Nd:Glass、Nd:YVO4、Nd:GdVO4、Yb:YAG、Yb:YLF、Yb:KGW、Yb:KYW、Er:Glass、Er:YAG、Tm:YAG、Tm:YLF、Ho:YAG、Ho:YLF、Tm,Ho:YAG、Tm,Ho:YLF、Ti:Sapphire、Cr:LiSAFなどである。
クラッド122は、例えば、光学材料を原料とした膜をレーザ媒質121に蒸着する方法、光学材料をオプティカルコンタクトまたは拡散接合などによってレーザ媒質121と光学的に接合する方法によって作製されている。
クラッド122の下面側には、冷却用のヒートシンク(図示せず)を接合してもよい。
非線形光学材料131は、例えば、y軸方向の厚さが数~数十μm、x軸方向の幅が数百μm~数mmの大きさを有している。
非線形光学材料131としては、一般的な波長変換用材料を用いることができる。
非線形光学材料131は、例えば、KTP、KN、BBO、LBO、CLBO、LiNbO3、LiTaO3などである。
さらに、非線形光学材料131として、周期反転分極構造を持つMgO添加LiNbO3、MgO添加LiTaO3、定比LiNbO3、定比LiTaO3、KTPを用いれば、非線形定数が大きいので、MgO添加LiNbO3などよりもさらに高効率な波長変換が可能となる。
クラッド132は、例えば、光学材料を原料とした膜を非線形光学材料131に蒸着する方法、光学材料をオプティカルコンタクトまたは拡散接合などによって非線形光学材料131と光学的に接合する方法によって作製されている。
VBG141は、例えば、y軸方向の厚さが数~数十μm、x軸方向の幅が数百μm~数mmの大きさを有している。
例えば、シリカ系ガラスを主原料とした無機材料により形成されており、紫外線照射および熱処理により、光軸上に周期的な屈折率変化が作られている。
このように、周期的屈折率変化構造とすることで、ブラッグ反射により特定の波長を強く反射する構成とする。
その反射波長は、基本波レーザ光の発振波長のうちの、レーザ発振モードの異なる波長λ=λ0,λ1,λ2,・・・,λn(n≧2)のレーザ光であり、それぞれ0.1nmの波長幅で安定化される。
クラッド142は、例えば、光学材料を原料とした膜をVBG141に蒸着する方法、光学材料をオプティカルコンタクトまたは拡散接合などによって非線形光学材料1と光学的に接合する方法によって作製されている。
波長変換素子13では、高い変換効率にて変換するために、QPM波長変換素子(擬似位相整合波長変換素子)を用いる。
波長変換素子13に入射するレーザ発振モードの異なる波長λ=λ0,λ1,λ2,・・・,λn(n≧2)のレーザ光は、それぞれ位相整合帯域幅内にあるよう分極反転周期を定めた波長変換素子および導波路構造で構成している。
レーザ媒質121は、利得帯域が広いことが望ましく、基本波レーザ光の発振波長帯域内のλ=λ0,λ1,λ2,・・・,λn(n≧2)の光を、例えば、3波長に限定して、λ0,λ1,λ2として、これらの2倍波光(λ0/2,λ1/2,λ2/2)を得る場合を説明する。
このレーザ光は、レーザ媒質121の端面123aと、波長選択素子14のVBG141との間で往復するが、この光共振器で1周する際の増幅による利得が、光共振器で1周する際に受ける損失と釣り合うと、基本波レーザ光がレーザ発振する。
同図に示すように、波長選択素子14のVBG141は、複数のブラッグ層144を有している。
ブラッグ層144は、概略平板状を成すとともに、平板状の主面がx軸方向およびy軸方向と平行になるよう、クラッド142で挟持されている。
反射した波長λ0,λ1,λ2の基本波レーザ光は、端面133bより非線形光学素子131に入射する。
ただし、狭帯域なVBG141をコアとする導波路構造を用いた場合、各波長におけるレーザ発振モードを選択することができる。
すなわち、波長選択素子14では、波長λ=λ0,λ1,λ2,・・・,λn(n≧2)のレーザ光を選択する役割に加え、各波長の特定のモードを選択して反射するモード選択の役割をもたせることができる。
同図に示すように、波長変換素子13の非線形光学材料131は、複数の分極反転層134を有している。
分極反転層134は、一定方向に分極した単結晶誘電体材料の分極の方向を反転させたものである。
非線形光学材料131内では、非分極反転領域と分極反転領域(分極反転層134)が交互に形成されている。
これにより、非線形光学材料131内には、周期的に分極反転層134が形成されている。
各分極反転層134は、概略平板状を成すとともに、平板状の主面がx軸方向およびy軸方向と平行になるよう、クラッド132で挟持されている。
非線形光学材料131では、VBG141で反射した波長λ0,λ1,λ2の基本波レーザ光が第2高調波レーザ光に変換されるよう、予め結晶軸角度、温度、反転分極の周期などを最適化しておく。
非線形光学材料131に入射した基本波レーザ光は、一部が第2高調波レーザ光に変換されてVBG141を伝搬し、端面143bから外部にレーザ出力される。
この残留した基本波レーザ光の一部が変換されて発生した第2高調波レーザ光は、端面133aで全反射して端面143bより外部にレーザ出力される。
図6では、非線形光学材料131を上面(y軸方向)から見た場合の、分極反転パターンを示している。
非線形光学材料131の分極反転パターンは、プラス(+)の分極層(非分極反転領域)とマイナス(-)の分極層(分極反転領域:分極反転層134)からなる1組の分極層を、z軸方向に複数組配設した構成となっている。
各分極層を端面133aから端面133bまで分極反転周期Λで配置している。
第2高調波への高効率な変換効率を実現するため、分極反転のピッチを一定の分極反転周期Λにて構成した場合について説明する。
なお、分極反転のピッチを徐々に変化させた場合であっても本発明には適用可能であり、その場合は別の新たな効果を奏する。
これについては後述する。
波長変換素子13では、波長変換によって位相整合帯域で波長変換を行なうと、位相整合帯域ピークでの損失が増加する。
これにより、導波路(非線形光学材料131)では、例えば、0次モードから1次モードへレーザ発振モードが移乗し、さらに、1次モードから2次モードへレーザ発振モードが移乗して、複数のレーザ発振モードを形成する。
レーザ発振モードでは、一般的に、モード毎に波長変換に適した波長変換素子の温度が異なるので、各モードに対する位相整合条件も異なる。
このため、一般的には、モード毎にPPLNピッチ(分極反転周期)が異なる。
波長λに対する導波路の、TM(Transverse Magnetic)m(mは自然数)次モード、または、TE(Transverse Electric)m次モードの実効屈折率をneff(λ,m)とすると、以下の関係式(式(1)、式(2))が成り立つ。
式(1)と式(2)では、導波路上部と導波路下部のクラッド材料屈折率が等しい対称3層平板導波路である場合の関係式を示している。
TEm次モードの場合:
式(1)や式(2)のn1(λ)は、導波路を形成するコア材料(非線形光学材料131)の波長λに対する屈折率であり、n2(λ)は導波路を形成するクラッド132の波長λに対する屈折率である。
また、neff(λ,m)は、波長λに対する実効屈折率(mは導波路モード次数)であり、tは導波路を形成するコアの厚さである。
導波路型の波長変換素子13の分極反転周期Λは、m次モードの基本波レーザ光および第2高調波に対する導波路の実効屈折率neff(λ,m)を用いて、以下の関係式(式(3))で表せる。
波長変換効率ηは、一定の分極反転周期Λのとき、以下の式(4)によって算出できる。
また、deffは、有効非線形光学定数であり、nFは、基本波に対する屈折率である。
さらに、nSHは高調波に対する屈折率であり、cは真空中の光速である。
さらに、ε0は、真空中の誘電率であり、Lは素子長である。
さらに、Δkは、基本波の波数kω、高調波の波数k2ωとするとき、これらの差であり、Δk=kω-k2ωと表され、位相不整合量を表す。
さらに、K0=2π/Λで表される。
さらに、Sinc関数(Sinc(x)=Sin(x)/x)を含んでいる。
Sinc関数で、第一ピークを含む正の領域は-π<x<πの範囲である。
式(1)、(2)、(3)より分極反転周期は、導波路を形成するコアの厚さ、クラッド材の屈折率で決まる。
換言すると、導波路を構成する材料の仕様により決まる。
波長λ0の0次モードに対応する分極反転周期Λ(λ0,0)、波長λ1の1次モードに対応する分極反転周期Λ(λ1,1)、波長λ2の2次モードに対応する分極反転周期のΛ(λ2,2)とするとき、これらが近づくようにクラッド132、コア厚を選択し、導波路を構成し、このときの分極反転周期をΛ02とする。
以下の式(5)に関係式を示す。
Λ(λ0,0)、Λ(λ1,1)およびΛ(λ2,2)は位相整合帯域内に存在すれば良い。
なお、Λ(λ0,0)、Λ(λ1,1)、およびΛ(λ2,2)は完全に一致させた構成としても良い。
換言すれば、波長λ0の1次モードおよび2次モード、波長λ1の0次モードおよび2次モード、波長λ2の0次モードおよび1次モードが波長変換素子13に入射するのを防ぐ。
位相整合帯域内にある波長λ0に対する0次モード、波長λ1に対する1次モード、波長λ2に対する2次モードは、第2高調波に波長変換され、波長λ0/2,λ1/2,λ2/2のレーザ光が発生する。
この実施の形態1における波長変換素子13では、一様な分極反転周期である場合について例示した。
このときの波長変換効率の特性を図9(a)に示す。
波長変換効率は、ピークで規格化して1として表す。
ピークを含む山の領域を位相整合帯域として規定する。
前述するSinc関数の性質によれば、位相整合帯域は、-π<L/2(Δk-K0)<πと表され、この領域内にΛ(λ0,0)、Λ(λ1,1)、およびΛ(λ2,2)は存在するよう波長変換素子13を構成している。
よって、それぞれのレーザ発振モードは近い状態にある。
なお、従来の変換効率特性についても、一様な分極反転周期を持つ場合の、ピークで規格化して示している。
この実施の形態1では、0次から2次の各モードが位相整合帯域幅内に含まれ、前記式(4)に示すように、各モードが近いまたは一致した分極反転周期を有するように波長変換素子13の導波路構造を最適化しているため、図9(A)に示すように、0次から2次の各モードの分極反転周期差は小さく、各モードの変換効率は、大きな値を得られる。
その一方で従来の構造では、図9(B)に示すように、0次から2次の各モードの分極反転周期として異なる値を有し、各モードの感じる変換効率は、この実施の形態1の構造と比べて小さな値となる。
波長変換素子13を一定の分極反転周期にて構成した場合、波長選択素子13で反射される波長λ0,λ1、λ2の光が波長変換素子13に入射するときに、位相整合帯域内に入るようにするため、Λ(λ0,0)、Λ(λ1,1)、およびΛ(λ2,2)は、Λ02に近い値となるよう導波路を構成しなければならない。
しかし、波長変換素子13の分極反転周期を徐々に変化させて構成した場合、Λ(λ0,0)、Λ(λ1,1)、およびΛ(λ2,2)は、Λ02の分極反転周期の周期変化量内に収まるようにすれば良くなる。
波長変換素子13は、中心ピッチをΛ02として、分極反転周期の周期変化量を、例えば、ΔΛとする。
逆に、(Λ02+ΔΛ/2)~(Λ02-ΔΛ/2)と徐々に短くなるように構成してもよい。
波長変換素子13内では、波長選択素子14によって反射された波長λ0,λ1,λ2の波長変換周期Λ(λ0,0)、Λ(λ1,1)、およびΛ(λ2,2)が(Λ02-ΔΛ/2)~(Λ02+ΔΛ/2)内に収まるようにすれば良くなる。
換言すれば、分極反転周期が一様な時と比べて、導波路構造に対する制約を緩和できる。
よって、固体レーザ素子12のレーザ媒質121として利得帯域の広い材料を用いる場合に、その利得帯域のうちの複数波長で高効率に波長変換できる。
よって、波長選択素子14では、波長λ=λ0,λ1,λ2,・・・,λn(n≧2)のレーザ光を選択するとともに、各波長の特定のモードを選択して反射するモード選択を行なうことができる。
よって、波長λ=λ0,λ1,λ2,・・・,λn(n≧2)のレーザ光は、高効率な波長変換効率を得ることができる。
分極反転周期が一定な場合には、各モードが感じる変換効率として、大きな値が得ることができる。一方、分極反転周期を徐々に変化させた構造の場合には、導波路構造に対する制約を緩和することができる。
Claims (5)
- 励起光の吸収により発生した利得によりレーザ光を増幅する固体レーザ素子と、
前記固体レーザ素子から出力されるレーザ光の基本波の一部を高調波に変換する波長変換素子と、
前記波長変換素子を通過したレーザ光の基本波発振波長のうちの、レーザ発振モードの異なる波長λ=λ0,λ1,λ2,・・・,λn(n≧2)のレーザ光を選択的に反射するとともに、該波長変換素子により変換された高調波を出力する波長選択素子とを備え、
基本波を、前記固体レーザ素子、前記波長変換素子および前記波長選択素子を含む光共振器構造で共振させる導波路型レーザ装置であって、
前記波長変換素子は、
前記波長選択素子により反射されたレーザ発振モードの異なる波長λ=λ0,λ1,λ2,・・・,λn(n≧2)のレーザ光を高調波に変換することを特徴とする導波路型レーザ装置。 - 前記波長選択素子は、
ブラッグ格子構造が内部に形成された体積型位相格子を含む導波路構造を有するであって、前記固体レーザ素子から出力される基本波発振波長のうち、レーザ発振モードの異なる波長λ=λ0,λ1,λ2,・・・,λn(n≧2)のレーザ光を選択的に反射するようブラッグ格子構造および導波路構造を定めたことを特徴とする請求項1記載の導波路型レーザ装置。 - 前記波長変換素子は、
非分極反転領域と分極反転領域とが形成された擬似位相整合波長変換素子であり、前記レーザ発振モードの異なる波長λ=λ0,λ1,λ2,・・・,λn(n≧2)のレーザ光がそれぞれ位相整合帯域内にあるように分極反転周期および導波路構造を定めたことを特徴とする請求項1記載の導波路型レーザ装置。 - 前記擬似位相整合波長変換素子は、
分極反転周期のピッチを徐々に変化させたことを特徴とする請求項3記載の導波路型レーザ装置。 - 前記擬似位相整合波長変換素子は、
分極反転されたLiNbO3、または、LiTaO3であることを特徴とする請求項3記載の導波路型レーザ装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13886190.1A EP3007288B1 (en) | 2013-06-06 | 2013-06-06 | Waveguide-type laser device |
JP2015521238A JP6104376B2 (ja) | 2013-06-06 | 2013-06-06 | 導波路型レーザ装置 |
PCT/JP2013/065714 WO2014196062A1 (ja) | 2013-06-06 | 2013-06-06 | 導波路型レーザ装置 |
CN201380077142.1A CN105264726B (zh) | 2013-06-06 | 2013-06-06 | 波导型激光装置 |
US14/891,027 US9531152B2 (en) | 2013-06-06 | 2013-06-06 | Waveguide laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/065714 WO2014196062A1 (ja) | 2013-06-06 | 2013-06-06 | 導波路型レーザ装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014196062A1 true WO2014196062A1 (ja) | 2014-12-11 |
Family
ID=52007736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/065714 WO2014196062A1 (ja) | 2013-06-06 | 2013-06-06 | 導波路型レーザ装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9531152B2 (ja) |
EP (1) | EP3007288B1 (ja) |
JP (1) | JP6104376B2 (ja) |
CN (1) | CN105264726B (ja) |
WO (1) | WO2014196062A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019208658A1 (ja) * | 2018-04-25 | 2019-10-31 | 国立大学法人北見工業大学 | 接合体、レーザ発振器、レーザ増幅器及び接合体の製造方法 |
JP7006989B2 (ja) | 2019-04-30 | 2022-02-10 | 山東大学 | 可視から紫外にわたる周波数帯の光周波数変換器 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6411120B2 (ja) * | 2014-08-04 | 2018-10-24 | 株式会社アマダミヤチ | レーザ装置 |
US10985521B2 (en) * | 2016-08-17 | 2021-04-20 | Mitsubishi Electric Corporation | Ridge waveguide laser device |
JP7161411B2 (ja) | 2019-01-15 | 2022-10-26 | 株式会社ディスコ | 乾燥機構 |
JP7161412B2 (ja) | 2019-01-15 | 2022-10-26 | 株式会社ディスコ | 洗浄ユニット |
CN116724470A (zh) * | 2021-08-24 | 2023-09-08 | 维林光电有限公司 | 使用分层非线性光学器件的腔内谐波产生 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04107536A (ja) * | 1990-08-29 | 1992-04-09 | Oki Electric Ind Co Ltd | 第2高調波発生装置 |
JPH07318996A (ja) * | 1994-03-28 | 1995-12-08 | Matsushita Electron Corp | 波長変換導波路型レーザ装置 |
JP2007173769A (ja) * | 2005-11-28 | 2007-07-05 | Nichia Chem Ind Ltd | レーザ装置 |
WO2009034625A1 (ja) * | 2007-09-12 | 2009-03-19 | Mitsubishi Electric Corporation | 波長変換素子および波長変換レーザ装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2824884B2 (ja) * | 1992-10-16 | 1998-11-18 | 富士写真フイルム株式会社 | 偏光制御素子および固体レーザー装置 |
KR0174775B1 (ko) * | 1994-03-28 | 1999-04-01 | 스기야마 가즈히꼬 | 파장변환 도파로형 레이저 장치 |
JP3741108B2 (ja) * | 2003-03-18 | 2006-02-01 | ソニー株式会社 | レーザー発光モジュール |
JP2007165562A (ja) | 2005-12-13 | 2007-06-28 | Seiko Epson Corp | 光源装置、および光源装置を備えたプロジェクタ |
US7742510B2 (en) * | 2006-04-27 | 2010-06-22 | Spectralus Corporation | Compact solid-state laser with nonlinear frequency conversion using periodically poled materials |
JP2010204197A (ja) * | 2009-02-27 | 2010-09-16 | Sony Corp | レーザ装置、レーザディスプレイ装置、レーザ照射装置及び非線形光学素子 |
WO2012034563A1 (en) * | 2010-09-14 | 2012-03-22 | Danmarks Tekniske Universitet | Laser system with wavelength converter |
JP2012098495A (ja) | 2010-11-02 | 2012-05-24 | Ushio Inc | レーザ光波長変換装置 |
-
2013
- 2013-06-06 JP JP2015521238A patent/JP6104376B2/ja active Active
- 2013-06-06 CN CN201380077142.1A patent/CN105264726B/zh active Active
- 2013-06-06 EP EP13886190.1A patent/EP3007288B1/en active Active
- 2013-06-06 WO PCT/JP2013/065714 patent/WO2014196062A1/ja active Application Filing
- 2013-06-06 US US14/891,027 patent/US9531152B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04107536A (ja) * | 1990-08-29 | 1992-04-09 | Oki Electric Ind Co Ltd | 第2高調波発生装置 |
JPH07318996A (ja) * | 1994-03-28 | 1995-12-08 | Matsushita Electron Corp | 波長変換導波路型レーザ装置 |
JP2007173769A (ja) * | 2005-11-28 | 2007-07-05 | Nichia Chem Ind Ltd | レーザ装置 |
WO2009034625A1 (ja) * | 2007-09-12 | 2009-03-19 | Mitsubishi Electric Corporation | 波長変換素子および波長変換レーザ装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019208658A1 (ja) * | 2018-04-25 | 2019-10-31 | 国立大学法人北見工業大学 | 接合体、レーザ発振器、レーザ増幅器及び接合体の製造方法 |
JPWO2019208658A1 (ja) * | 2018-04-25 | 2021-08-05 | 国立大学法人北見工業大学 | 接合体、レーザ発振器、レーザ増幅器及び接合体の製造方法 |
JP7006989B2 (ja) | 2019-04-30 | 2022-02-10 | 山東大学 | 可視から紫外にわたる周波数帯の光周波数変換器 |
Also Published As
Publication number | Publication date |
---|---|
EP3007288A1 (en) | 2016-04-13 |
EP3007288A4 (en) | 2017-04-19 |
EP3007288B1 (en) | 2021-07-21 |
JP6104376B2 (ja) | 2017-03-29 |
US20160087396A1 (en) | 2016-03-24 |
JPWO2014196062A1 (ja) | 2017-02-23 |
CN105264726B (zh) | 2018-01-23 |
US9531152B2 (en) | 2016-12-27 |
CN105264726A (zh) | 2016-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6104376B2 (ja) | 導波路型レーザ装置 | |
JPH07507882A (ja) | 広い位相整合領域を有する空洞内高調波副共振器 | |
JP6141452B2 (ja) | 多波長レーザ装置 | |
Laurell | Periodically poled materials for miniature light sources | |
JP5159783B2 (ja) | 波長変換素子および波長変換レーザ装置 | |
JP4993309B2 (ja) | 光導波路素子および波長変換素子および高調波レーザ光源装置 | |
JP6131552B2 (ja) | 波長変換素子及びその製造方法 | |
Shi et al. | Review of advanced progress of χ 2-based all-optical devices on thin-film lithium niobate | |
JPH0933962A (ja) | 波長変換装置および波長変換方法 | |
JP2004239959A (ja) | 擬似位相整合器の製造方法、擬似位相整合器、及び固体レーザ装置 | |
US20120163403A1 (en) | Compact and efficient visible laser source with high speed modulation | |
JP5855229B2 (ja) | レーザ装置 | |
JP6107397B2 (ja) | 波長変換素子および波長変換レーザ装置 | |
JP2718259B2 (ja) | 短波長レーザ光源 | |
WO2023105663A1 (ja) | 光デバイス | |
JPH04254835A (ja) | 光波長変換素子およびそれを用いたレーザ光源 | |
US20120087383A1 (en) | Bonded periodically poled optical nonlinear crystals | |
WO2014097370A1 (ja) | 導波路型レーザ装置 | |
Tovstonog et al. | Violet light generation in quasi-phase-matched adhered ridge waveguide | |
JP2010107822A (ja) | 波長変換素子及びその製造方法 | |
JPH04296731A (ja) | 短波長レーザ光源 | |
JP5194882B2 (ja) | 波長変換素子 | |
Durak | Nanosecond Optical Parametric Oscillators Generating Eye-Safe Radiation | |
JP2005156635A (ja) | マルチグレーティングを有する波長変換素子およびそれを用いた光発生装置 | |
JP2011033727A (ja) | 波長変換素子及び波長変換光源 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201380077142.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13886190 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015521238 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14891027 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013886190 Country of ref document: EP |