WO2019208658A1 - 接合体、レーザ発振器、レーザ増幅器及び接合体の製造方法 - Google Patents

接合体、レーザ発振器、レーザ増幅器及び接合体の製造方法 Download PDF

Info

Publication number
WO2019208658A1
WO2019208658A1 PCT/JP2019/017503 JP2019017503W WO2019208658A1 WO 2019208658 A1 WO2019208658 A1 WO 2019208658A1 JP 2019017503 W JP2019017503 W JP 2019017503W WO 2019208658 A1 WO2019208658 A1 WO 2019208658A1
Authority
WO
WIPO (PCT)
Prior art keywords
joined body
laser
light
joined
yag
Prior art date
Application number
PCT/JP2019/017503
Other languages
English (en)
French (fr)
Inventor
裕章 古瀬
悠貴 小池
亮 安原
Original Assignee
国立大学法人北見工業大学
大学共同利用機関法人自然科学研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北見工業大学, 大学共同利用機関法人自然科学研究機構 filed Critical 国立大学法人北見工業大学
Priority to EP19791851.9A priority Critical patent/EP3787133B1/en
Priority to US17/050,433 priority patent/US20210296840A1/en
Priority to JP2020515541A priority patent/JP6933349B2/ja
Publication of WO2019208658A1 publication Critical patent/WO2019208658A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0401Arrangements for thermal management of optical elements being part of laser resonator, e.g. windows, mirrors, lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0405Conductive cooling, e.g. by heat sinks or thermo-electric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/002Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising natural stone or artificial stone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/28Complex oxides with formula A3Me5O12 wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co or Al, e.g. garnets
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/06Joining of crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0612Non-homogeneous structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1685Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/02ASE (amplified spontaneous emission), noise; Reduction thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0604Crystal lasers or glass lasers in the form of a plate or disc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/061Crystal lasers or glass lasers with elliptical or circular cross-section and elongated shape, e.g. rod
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0617Crystal lasers or glass lasers having a varying composition or cross-section in a specific direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094049Guiding of the pump light
    • H01S3/094053Fibre coupled pump, e.g. delivering pump light using a fibre or a fibre bundle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1611Solid materials characterised by an active (lasing) ion rare earth neodymium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/164Solid materials characterised by a crystal matrix garnet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/164Solid materials characterised by a crystal matrix garnet
    • H01S3/1643YAG

Definitions

  • the present invention relates to a bonded body, a laser oscillator, a laser amplifier, and a manufacturing method of the bonded body.
  • Non-Patent Document 1 discloses an adhesive body in which transparent sapphire (cooling material) having good thermal conductivity is bonded to both end faces of Yb: YAG (optical material).
  • Non-Patent Document 1 has a problem that loss due to Fresnel reflection is large when light is transmitted because the optical material and the cooling material are bonded. Such a problem exists not only when light is transmitted through an adhesive body in which Yb: YAG and sapphire are bonded, but also when light is transmitted through a composite material in which materials capable of transmitting light are combined. ing.
  • the present invention has been made based on such a background, and provides a joined body, a laser oscillator, a laser amplifier, and a joined body manufacturing method that can obtain sufficient optical quality even when materials capable of transmitting light are combined.
  • the purpose is to provide.
  • the joined body according to the first aspect of the present invention comprises: A joined body in which a first material capable of transmitting light and a second material are joined, At the bonding interface between the first material and the second material, the bonded body can transmit light, and atoms contained in the first material to such an extent that no interference fringes are generated in the bonded body. Has diffused and penetrated into the second material.
  • the diffusion penetration length of atoms contained in the first material into the second material may be in the range of about 1.0 nm to about 10 ⁇ m.
  • the transmitted wavefront accuracy of the first material and the second material may be about ⁇ or less. Good.
  • the first material may be polycrystalline, and the second material may be single crystal.
  • the polycrystal is YAG to which YAG or rare earth ions are added,
  • the single crystal may be sapphire, aluminum nitride, gallium nitride, silicon carbide or diamond.
  • the first material may be a phosphor or a magneto-optical material
  • the second material may be a material having higher thermal conductivity than the first material
  • a method of manufacturing a joined body includes: A method of manufacturing a joined body in which a first material capable of transmitting light and a second material are joined, Superimposing the first material and the second material; Pressurizing at a predetermined pressure so that the first material and the second material are in close contact with each other; Heating the first material and the second material to a predetermined temperature by supplying a pulsed current to the pressurized first material and the second material; Maintaining a pressure applied to the first material and the second material at a predetermined pressure for a predetermined time, and maintaining a temperature of the first material and the second material at a predetermined temperature; , Gradually reducing the pressure applied to the first material and the second material and the temperature of the first material and the second material; including.
  • the predetermined pressure may be within a range of about 1 MPa to about 10 GP.
  • the predetermined temperature may be in the range of about 900 ° C. to about 1500 ° C.
  • the predetermined time may be in the range of about 5 minutes to about 20 hours.
  • a bonded body a laser oscillator, a laser amplifier, and a method for manufacturing the bonded body that can obtain sufficient optical quality even when materials capable of transmitting light are combined.
  • FIG. 3 is a diagram showing experimental conditions in Example 1.
  • 3 is a graph for explaining success or failure of a joined body for each experimental condition in Example 1.
  • FIG. It is a graph which shows the relationship between the wavelength of the incident light in Example 2, and the transmittance
  • 6 is a diagram showing an SEM image including a bonding interface in Example 3.
  • FIG. It is a graph which shows the relationship between the distance from the conjugate
  • FIG. 10 is a diagram showing the configuration of an experimental system for laser oscillation in Example 4. It is a graph which shows the relationship between LD electric current in Example 4, and a laser output. 10 is a graph showing a one-dimensional concentration distribution of yttrium element obtained by electron microscope observation in Example 5.
  • FIG. It is a perspective view which shows the conjugate
  • FIG. 1 is a perspective view illustrating a configuration of a joined body 10 according to the first embodiment.
  • the joined body 10 includes an optical material 11 (first material) and a pair of cooling materials 12 (second material) respectively joined to both end faces of the optical material 11.
  • the optical material 11 and the cooling material 12 are both made of a material that can transmit light, more specifically, a transparent material.
  • the optical material 11 and the cooling material 12 are joined to each other without interposing means for adhering materials such as an adhesive.
  • “Bonding” means bonding of materials by intrusion so that atoms diffuse from at least one of the materials in contact with each other into the other material.
  • the “joining” does not include a case where the materials are bonded together through a means for bonding the materials such as an adhesive.
  • some of the atoms of the optical material 11 penetrate so as to diffuse into the cooling material 12, or some of the atoms of the cooling material 12 penetrate so as to diffuse into the optical material 11. is doing. Thereby, the optical material 11 and the cooling material 12 are firmly joined.
  • an intermediate layer derived from the atoms constituting the material is formed between the materials in contact with each other. This includes the case where materials are bonded via
  • an intermediate layer for example, a layer of SiO 2 ) that causes diffusion and penetration of atoms with one material and also causes diffusion and penetration of atoms with the other material is used as one material and the other material. And a case where materials are bonded to each other through the intermediate layer.
  • the optical material 11 and the cooling material 12 each have a disk shape and have the same outer diameter.
  • the outer diameter of the joined body 10 may be about 10 mm or more, for example, about 0.5 mm to about 300 mm, and preferably about 10 mm to about 100 mm. Further, when the size of the bonded body 10 is defined by the area, it may be within a range of about 100 mm 2 to 1.0 m 2 , for example.
  • the optical material 11 is a laser medium of a laser oscillator.
  • the laser medium amplifies the light by absorbing the light emitted from the excitation light source and causing stimulated emission.
  • the laser medium is formed of a phosphor that absorbs light of a specific wavelength and emits light at another wavelength based on the specific wavelength.
  • the optical material 11 is a polycrystal such as YAG (Yttrium (Aluminum Garnet) or Nd: YAG.
  • Nd: YAG has the same kind of material as YAG, and YAG is doped with neodymium (Nd) to replace a part of yttrium (Y). Since polycrystals such as YAG and Nd: YAG have good light absorption, high output of the laser oscillator can be realized by using these polycrystals.
  • the thickness of the optical material 11 is, for example, about 0.1 mm to about 100 mm.
  • the polycrystalline of the optical material 11, YAG, LuAG (Lutetium Aluminum Garnet ), the Y 2 O 3, Lu 2 O 3, CaF 2 , etc. preform, Ce, Pr, Nd, Sm , Eu, Tb , Dy, Ho, Er, Tm, Yb, or other rare earth ions may be added.
  • a plurality of types of rare earth ions may be co-added to the base material.
  • the cooling material 12 is a material that can transmit light, and transfers heat generated in the optical material 11 to be released to the outside.
  • the cooling material 12 is formed of a material having a higher thermal conductivity than the optical material 11 in order to efficiently absorb the heat generated in the optical material 11.
  • the cooling material 12 is, for example, a single crystal such as sapphire, aluminum nitride, gallium nitride, silicon carbide, or diamond.
  • the thickness of the cooling material 12 is, for example, about 0.1 mm to about 100 mm.
  • the damage threshold is a threshold of the amount of energy per unit area that can be supplied without damaging the material.
  • the degree of diffusion and penetration of atoms at the bonding interface of the bonded body 10 is evaluated by an index “diffusion penetration length” including the case where an intermediate layer is provided between one material and the other material.
  • the diffusion penetration depth is, for example, when fitting a one-dimensional concentration distribution of atoms obtained when the atoms contained in one material of the joined body 10 diffuse so as to diffuse into the other material by the following equation (1): ⁇ Dt.
  • C x is the concentration of the atom at a distance x (arbitrary unit)
  • x is the distance (m)
  • x 0 is the atom.
  • D is the diffusion coefficient (m 2 / sec)
  • t is the time (sec).
  • the diffusion and penetration length of atoms in the joined body 10 is set to such an extent that the optical material 11 and the cooling material 12 are firmly joined, and the transmittance and absorbance of the optical material 11 and the cooling material 12 are not affected. .
  • the diffusion penetration length of the atoms of the bonded body 10 that satisfies the above conditions is, for example, in the range of about 1.0 nm to about 10 ⁇ m, and preferably in the range of about 1.0 nm to about 1.0 ⁇ m.
  • the diffusion penetration length of atoms in the bonded body 10 may be in the range of about 1.0 nm to about 100 nm, and may be in the range of about 1.0 nm to about 10 nm.
  • the temperature of the central portion of the optical material 11 becomes high, so that a temperature gradient is generated in the radial direction.
  • the temperature gradient generated in the optical material 11 causes thermal expansion, a refractive index gradient, and the like, thereby causing deterioration in beam quality and laser output.
  • the joined body 10 is configured such that the cooling material 12 arranged side by side in the laser light oscillation direction sandwiches the optical material 11, the heat generated at the center of the optical material 11 can be efficiently discharged. .
  • the cooling material 12 is joined to both end faces of the optical material 11, and therefore the thermal resistance at the interface is smaller than when both are bonded. For this reason, the heat generated in the optical material 11 can be conducted to the cooling material 12 and efficiently discharged outside.
  • the optical material 11 and the cooling material 12 are joined without interposing air or an adhesive, the Fresnel loss is suppressed and sufficient optical quality is obtained. And sufficient strength can be secured.
  • the optical material 11 is formed of polycrystal, and the cooling material 12 is formed of single crystal. For this reason, even if the optical material 11 is a polycrystal, the damage to the joined body 10 can be prevented by being sandwiched by the cooling material 12 formed of a single crystal.
  • FIG. 2 is a diagram showing a configuration of the laser oscillator 1 according to the first embodiment.
  • the laser oscillator 1 supplies a joined body 10 including a laser medium, a resonator 20 arranged so as to sandwich the joined body 10, and excitation light to the joined body 10, and resonates laser light in the resonator 20. And an excitation light source 30.
  • the resonator 20 includes a reflecting mirror 21 that reflects all light and an output mirror 22 that can extract a part of the light to the outside.
  • the reflecting mirror 21 and the output mirror 22 are disposed so as to face each other with the joined body 10 interposed therebetween.
  • the excitation light source 30 is disposed so as to face the radial direction of the bonded body 10 with the bonded body 10 interposed therebetween.
  • the laser oscillator 1 repeatedly reflects the laser light between the reflecting mirror 21 and the output mirror 22 to amplify the laser light by stimulated emission every time the laser light passes through the bonded body 10, and the laser is transmitted through the output mirror 22. Part of the light is emitted.
  • the laser oscillator 1 includes the joined body 10, the heat generated at the center of the optical material 11 can be efficiently discharged through the cooling material 12 in the propagation direction of the laser light. For this reason, since the heat can be effectively exhausted even if the laser oscillator 1 is downsized, a small laser device such as a microchip laser can be realized.
  • PECS Pulse Electric Current Sintering
  • PECS pressurization and heating of the materials to be joined together are performed simultaneously, causing atoms to diffuse between the materials and joining the materials together.
  • a punch and a die that pressurize the material are heated, and the material is heated by heat conduction. Therefore, heating can be performed more quickly than when an electric furnace or the like is used. For this reason, it is possible to suppress structural changes such as grain growth caused by exposing the material to a high temperature environment for a long time.
  • FIG. 3 is a diagram illustrating a configuration of a manufacturing apparatus 100 that manufactures the joined body 10.
  • the manufacturing apparatus 100 is an apparatus that is installed in a vacuum or an inert gas, pressurizes materials to be bonded, supplies a pulsed current to the materials, and heats the materials to manufacture the bonded body 10.
  • the manufacturing apparatus 100 includes a pair of spacers 110 arranged on the upper and lower sides, a pair of punches 120 that are fixed to the distal ends of the spacers 110 and pressurize the materials to be joined to each other, and the pair of punches 120 and the material are accommodated therein.
  • a die 130 and a pulse current source 140 that supplies a pulse current from one spacer 110 to the other spacer 110 are provided.
  • the spacer 110 grips the punch 120 and presses the material from above and below through the punch 120.
  • Each spacer 110 is electrically connected to a pulse current source 140 and supplies a pulse current from one punch 120 to the other punch 120.
  • the lower spacer 110 is installed on the base of the manufacturing apparatus 100.
  • the upper spacer 110 is fixed to a moving mechanism (not shown) of the manufacturing apparatus 100 and is configured to be movable in the vertical direction with respect to the lower spacer 110.
  • the punch 120 is a member that directly contacts the material to press the material and supplies a pulse current from the spacer 110 to the material.
  • the punch 120 is a cylindrical member, for example, and is formed of a conductive material such as graphite.
  • the diameter of the punch 120 corresponds to the diameter of the joined body 10 and is, for example, about 0.5 mm to about 300 mm, and preferably about 10 mm to about 100 mm.
  • the die 130 is a member that accommodates a material therein and supplies a pulse current supplied from the punch 120 to the outer peripheral surface of the material.
  • the die 130 is a cylindrical member that can accommodate a material and has a through-hole through which the punch 120 can be inserted.
  • the die 130 is made of a conductive material such as graphite, for example.
  • the inner diameter of the die 130 is set so that the outer peripheral surface of the material and the outer peripheral surface of the punch 120 are in contact with the inner peripheral surface of the die 130.
  • FIG. 4 is a flowchart showing the flow of the manufacturing process of the joined body 10 manufactured using the manufacturing apparatus 100.
  • the flow of the manufacturing process of the joined body 10 will be described with reference to FIG.
  • the optical material 11 and the cooling material 12 are assembled so as to be integrated (step S1).
  • the cooling material 12 is arrange
  • the optical material 11 and the cooling material 12 that are assembled together are formed to have a predetermined transmitted wavefront accuracy.
  • the transmitted wavefront accuracy is, for example, about ⁇ or less, preferably about ⁇ / 2 or less, more preferably , About ⁇ / 4 or less.
  • the lower limit of the transmitted wavefront accuracy may be about ⁇ / 8 or less, for example.
  • step S2 the material assembled in step S1 is arranged at a predetermined position of the manufacturing apparatus 100 (step S2). More specifically, first, the material is arranged inside the through hole of the die 130 so that the direction in which the optical material 11 and the cooling material 12 are overlapped with the axial direction of the through hole of the die 130. Then, a material is arrange
  • the material is pressurized at a predetermined pressure by moving the upper spacer 110 downward (step S3).
  • the material is pressed in the direction in which the optical material 11 and the cooling material 12 are overlapped.
  • the predetermined pressure is, for example, in the range of about 1.0 MPa to about 10 GPa, preferably in the range of about 5.0 MPa to about 1.0 GPa, and more preferably about 5.0 MPa to about 0.1 GPa. Is within the range.
  • the pressurized material is heated to a predetermined temperature by supplying a pulse current to the material (step S4). More specifically, a pulse current is supplied to the punch 120 to cause the punch 120 to generate heat, the heat is conducted to the material, and the material is rapidly heated. As a result, the temperatures of the optical material 11 and the cooling material 12 in a state of being pressurized with each other increase, so that atomic diffusion occurs at the bonding interface and the bonding of the optical material 11 and the cooling material 12 proceeds.
  • the manufacturing apparatus 100 can increase the temperature of the material at, for example, 500 ° C./min.
  • the predetermined temperature and the heating rate are set in consideration of the types, shapes, dimensions, contact surface states, and the like of the optical material 11 and the cooling material 12.
  • the predetermined temperature is, for example, in the range of about 900 ° C. to about 1500 ° C., preferably in the range of about 1000 ° C. to about 1400 ° C., and more preferably in the range of about 1100 ° C. to about 1200 ° C. is there.
  • the material After the material has been heated to a predetermined temperature, the material is pressurized at a predetermined pressure and the state of being heated at the predetermined temperature is continued for a predetermined time.
  • the predetermined time is set so as to obtain a desired diffusion penetration length in consideration of the types, shapes, dimensions, contact surface states, and the like of the optical material 11 and the cooling material 12.
  • the predetermined time is, for example, in the range of about 5 minutes to about 20 hours, and preferably in the range of about 1 hour to about 2 hours.
  • step S5 it is determined whether or not a predetermined time has elapsed since the material reached the predetermined temperature.
  • a predetermined time has elapsed from the time when the material reaches the predetermined temperature (step S5; Yes)
  • the pressure on the material is gradually reduced and the temperature of the material is gradually decreased (step S6).
  • step S6 it is preferable to gradually reduce the pressure while gradually cooling the material at a predetermined temperature drop rate and a predetermined pressure reduction rate.
  • the temperature lowering speed and the pressure reducing speed are set in consideration of the types, shapes, dimensions, contact surface states, and the like of the optical material 11 and the cooling material 12.
  • step S5 when the predetermined time has not elapsed since the time when the material reached the predetermined temperature (step S5; No), pressurization to the material at the predetermined pressure and application to the material at the predetermined temperature until the predetermined period elapses. Continue heating.
  • step S6 the material cooled in step S6 is removed from the manufacturing apparatus 100 (step S7), and optical polishing is performed on the reflective surface of the material (step S8), thereby completing the manufacture of the joined body 10.
  • step S8 optical polishing is performed on the reflective surface of the material
  • thermal diffusion bonding method As a method for bonding materials, a thermal diffusion bonding method and a room temperature bonding method are also known, and these methods may be applied to the manufacturing process of the bonded body 10.
  • thermal diffusion bonding method since the material is heated using an electric furnace or the like, long-time high-temperature heat treatment is required, and it is difficult to make the diffusion and penetration length of atoms at the bonding interface about 10 ⁇ m or less.
  • thermal expansion occurs in the clamp that pressurizes the material at a high temperature, so that it is difficult to control the pressure actually applied to the material.
  • thermal expansion occurs in the material itself at a high temperature, so that it is difficult to bond dissimilar materials having different thermal expansion coefficients.
  • the room temperature bonding method extremely high surface accuracy is required for bonding between interfaces. More specifically, when the wavelength of laser light emitted from a laser interferometer used for measurement of transmitted wavefront accuracy is ⁇ , the transmitted wavefront accuracy required for the material is about ⁇ / 8 or less. Is required. Since it is difficult to form a material having a large area with high surface accuracy, it is difficult to increase the size of the joined body (for example, about 100 mm 2 or more) by the room temperature bonding method. In the room temperature bonding method, since the material is not heated, it is difficult to set the diffusion penetration depth at the bonding interface to about 1.0 nm or more. Furthermore, the room temperature bonding method requires a high degree of vacuum, and thus the manufacturing cost is high.
  • the manufacturing method according to Embodiment 1 it is possible to heat the materials in a short time using a pulse current, and thus the materials can be easily joined in a short time.
  • the pulse current is used for heating the material, the punch 120 and the die 130 do not undergo thermal expansion, and the pressure applied to the material can be accurately adjusted even at high temperatures. Can be controlled.
  • the diffusion penetration length of atoms at the bonding interface of the material is within a desired range (for example, about 1.0 nm to about 10 ⁇ m), and it is possible to suppress structural changes such as grain growth in the polycrystal during the heat treatment.
  • the size of the joined body 10 (for example, the area is about 100 mm 2 or more) can be increased. This can be realized, and since a high degree of vacuum is not required, the manufacturing cost can be suppressed.
  • the joined body 10 according to the second embodiment is different from the joined body 10 according to the first embodiment in that the saturable absorber 13 (second material) is joined to the optical material 11 (first material). ing.
  • the joined body 10 includes an optical material 11 that is a laser medium, and a supersaturated absorber 13 joined to one surface of the optical material 11.
  • the supersaturated absorber 13 acts as an absorber for incident light having a low intensity, and acts as a transparent body by saturating the ability as an absorber for incident light having a high intensity.
  • the supersaturated absorber 13 is made of, for example, YAG doped with Cr (Cr: YAG) or the like.
  • the laser oscillator 1 is disposed on the optical material 11 side of the joined body 10 and is disposed on the opposite side of the reflecting mirror 21 with the joined body 10 interposed between the reflecting mirror 21 that totally reflects the laser light, and partially reflects the laser light.
  • the reflecting mirror 21 and the output mirror 22 constitute a resonator 20 that resonates the laser beam stimulated and emitted by the joined body 10.
  • the central portion of the pulse having a high intensity passes through the supersaturated absorber 13, while the skirt portion of the pulse having a low intensity is absorbed by the supersaturated absorber 13. . Therefore, in the laser oscillator 1, the pulse width (time width) of the laser light is shortened, and, for example, an optical pulse having a picosecond to nanosecond width is emitted.
  • the laser oscillator 1 according to Embodiment 2 includes the saturable absorber 13 bonded to the optical material 11. For this reason, it is possible to obtain a sufficient optical quality by suppressing the Fresnel loss, and to realize a shorter pulse of the laser light.
  • the bonded body 10 according to the third embodiment is the first embodiment in that the spontaneous emission light absorber 14 (second material) is bonded so as to surround the outer periphery of the optical material 11 (first material). 2 and the joined body 10 according to FIG.
  • the joined body 10 includes an optical material 11 that is a laser medium, and a spontaneous emission light absorber 14 that is joined around the optical material 11 and absorbs light from the laser medium.
  • the spontaneous emission light absorber 14 is made of, for example, Sm: YAG, Cr: YAG or the like.
  • spontaneous emission amplified light (Amplified Spontaneous Emission: ASE) may be generated.
  • ASE is light generated by the spontaneous emission light generated in the laser medium propagating in the laser medium. Further, when excitation energy is supplied, the ASE may cause resonance (parasitic oscillation) in a direction other than the oscillation direction of the laser light. When this ASE or parasitic oscillation occurs, the energy used for light amplification is wasted, and the laser output of the laser oscillator 1 is reduced.
  • the spontaneous emission absorber 14 is joined so as to surround the outer periphery of the optical material 11, the spontaneous emission light is absorbed by the spontaneous emission absorber 14, and as a result, ASE. And parasitic oscillation is suppressed. Further, since the spontaneous emission light absorber 14 is a material that does not generate heat itself, it can absorb the heat generated in the optical material 11 and discharge it to the outside.
  • the laser oscillator 1 according to Embodiment 3 includes the spontaneous emission light absorber 14 that is joined so as to surround the outer periphery of the optical material 11. For this reason, even if ASE occurs and light enters the spontaneous emission light absorber 14 from the optical material 11, parasitic oscillation can be suppressed and the optical material 11 can be cooled. As a result, a decrease in laser output in the laser oscillator 1 can be suppressed.
  • the laser amplifier 2 is a device that amplifies laser light incident from the outside with a laser medium and radiates the laser light to the outside. Unlike the laser oscillator 1 according to the first to third embodiments, the laser amplifier 2 does not include the resonator 20.
  • the laser amplifier 2 includes a joined body 10, an excitation light source 30, and an amplified light source 40.
  • the excitation light source 30 emits light to the joined body 10 so as to excite the joined body 10.
  • the light source 40 to be amplified introduces light into the joined body 10 so as to be amplified by the joined body 10.
  • the light emitted from the light source 40 to be amplified is amplified by the optical material 11 of the joined body 10 excited by the excitation light source 30 and is emitted from the joined body 10.
  • the cooling material 12 is bonded to both sides of the optical material 11, the heat generated at the center of the optical material 11 can be efficiently discharged in the propagation direction of the laser light through the cooling material 12.
  • the laser amplifier 2 since the laser amplifier 2 includes the joined body 10 in which the optical material 11 and the cooling material 12 are joined, the optical material 11 excited by the excitation light source 30 can be effectively cooled. For this reason, even when the laser amplifier 2 is downsized, the heat can be effectively exhausted, so that the laser amplifier 2 can be downsized.
  • Example 1 With reference to FIG.8 and FIG.9, the experiment implemented in order to evaluate the success or failure of joining of a conjugate
  • 1% Nd: YAG polycrystal and sapphire single crystal were processed into a disk shape having the same outer diameter.
  • 1% Nd: YAG polycrystal is a YAG doped with 1% neodymium.
  • the processed Nd: YAG polycrystal and the sapphire single crystal were superposed and an adhesive was applied to the outer peripheral portion to obtain an adhesive.
  • FIG. 8 shows temperature and pressure conditions during PECS for each sample of the joined body.
  • the bonded body integrated with the adhesive was processed under the conditions shown in FIG. 8 to prepare a bonded body sample (hereinafter sometimes referred to as an Nd: YAG / sapphire bonded body).
  • Nd YAG / sapphire bonded body
  • FIG. 9 is a graph for explaining the success or failure of bonding in the sample manufactured under the conditions of FIG.
  • the vertical axis in FIG. 9 is the pressure (MPa) during PECS, and the horizontal axis is the temperature (° C.) during PECS.
  • the symbol x in FIG. 9 indicates sample 1 (1100 ° C., 36 MPa), the symbol ⁇ indicates sample 2 (1200 ° C., 12 MPa), the symbol ⁇ indicates sample 3 (1100 ° C., 62 MPa), and the symbol ⁇ Indicates Sample 4 (1200 ° C., 36 MPa).
  • interference fringes were observed as a whole.
  • interference fringes were observed at the peripheral edge thereof, and the sample 2 was slightly blackish.
  • Sample 3 did not have any interference fringes and showed the best results.
  • Sample 4 was slightly blackish although no interference fringes were present.
  • Example 2 Next, with reference to FIG. 10, an experiment for measuring a transmission spectrum in each sample of Nd: YAG polycrystal, an adhesive body, and a bonded body and the result thereof will be described.
  • an adhesive body is what laminated
  • the transmission spectrum indicates the transmittance of the sample for each wavelength of incident light incident on the sample, and the transmittance is the ratio of incident light having a specific wavelength transmitted through the sample. A part of the incident light incident on the sample is reflected by the surface of the sample, the bonding interface between the materials, or the like. For this reason, the intensity of the transmitted light transmitted through the sample is lower than that of incident light incident on the sample.
  • the transmission spectrum of each sample is created by measuring the radiant divergence of the transmitted light that has passed through each sample for each wavelength of the incident light and calculating the ratio of the radiant divergence of the transmitted light and the incident light. did.
  • the radiant divergence is a radiant flux per unit area radiated from the radiation source.
  • FIG. 10 is a graph showing transmission spectra of Nd: YAG polycrystal, an adhesive body, and a bonded body.
  • the vertical axis in FIG. 10 is the transmittance (%), and the horizontal axis is the wavelength (nm) of the incident light.
  • the solid line in FIG. 10 indicates the actually measured transmittance, and the dotted line indicates the theoretical value of the transmittance.
  • the transmittance of the bonded body was about 13% higher than that of the bonded body in all wavelength regions, and higher than that of the Nd: YAG polycrystal.
  • the reason why the transmittance of the bonded body is higher than the transmittance of the bonded body and the Nd: YAG polycrystal is that the sapphire single crystal and the Nd: YAG polycrystal are bonded to each other, thereby suppressing the Fresnel loss.
  • the transmittance (experimental value) of the bonded body is 84.1%, whereas the transmittance (experimental value) of the bonded body is 71.6%.
  • YAG polycrystal transmittance (experimental value) was 83.9%.
  • the transmittance (theoretical value) of the joined body is 84.7%
  • the transmittance (theoretical value) of the adhesive is 71.8%
  • the transmittance (theoretical value) of the Nd: YAG polycrystal is Since it is 83.9%, it can confirm that the experimental result regarding a transmission spectrum was appropriate.
  • Example 3 Next, with reference to FIG.11 and FIG.12, the experiment implemented in order to observe the internal structure
  • a bonding interface of an Nd: YAG / sapphire bonded body manufactured under conditions of 1100 ° C. and 62 MPa was photographed with a scanning electron microscope (SEM), and the bonding interface of the SEM image was observed.
  • the elemental analysis of the Nd: YAG / sapphire joined body was performed by performing fluorescent X-ray analysis using a fluorescent X-ray analyzer.
  • FIG. 11 is a diagram showing an SEM image including the bonding interface of the bonded body.
  • the left side of FIG. 11 is an Nd: YAG polycrystal, and the right side is a sapphire single crystal.
  • FIG. 12 is a graph showing the results of elemental analysis of the joined body.
  • the vertical axis of FIG. 12 is the intensity (arbitrary unit) of characteristic X-rays, and the horizontal axis is the distance (nm) from the surface of the Nd: YAG polycrystal.
  • the left side of FIG. 12 is an Nd: YAG region, the central part is an Nd: YAG / sapphire interface region, and the right side is a sapphire single crystal region.
  • the solid line indicating the intensity of the characteristic X-ray relating to yttrium (Y) is inclined from the upper left to the lower right in the interface region. This indicates that yttrium contained in the Nd: YAG polycrystal has entered so as to diffuse into the sapphire single crystal.
  • Example 4 Next, with reference to FIG. 13 and FIG. 14, a description will be given of a laser oscillation experiment performed using each sample of Nd: YAG polycrystal, an adhesive body, and a bonded body, and its result.
  • the adhesive body and the joined body are the same as those in the second embodiment.
  • a laser oscillation experimental system incorporating each sample was operated, and the laser output in each case was measured.
  • FIG. 13 shows an example of an experimental system for laser oscillation when a joined body is incorporated.
  • the experimental system includes an excitation semiconductor laser (LD), an optical fiber, a lens system, an Nd: YAG / sapphire bonded body, a dichroic mirror (DM), an output mirror (OC), and a thermal sensor.
  • the LD emits continuous light (CW) having a wavelength ⁇ of 808 nm and a laser output of 18 W.
  • the optical fiber has a diameter of about 100 ⁇ m and transmits the laser light from the LD toward the lens system.
  • the lens system focuses the laser beam supplied from the optical fiber toward Nd: YAG.
  • the thermal sensor receives laser light emitted from the OC and measures the laser output.
  • FIG. 14 is a graph showing input / output characteristics of an experimental system for laser oscillation.
  • the vertical axis in FIG. 14 is the laser output (W) output from the experimental system, and the horizontal axis is the current (A) applied to the LD.
  • the symbol ⁇ in FIG. 14 indicates the measured value when using Nd: YAG polycrystal, the symbol ⁇ indicates the measured value when using an adhesive, and the symbol ⁇ is measured when using a bonded body. Indicates the value.
  • the laser output when the Nd: YAG polycrystal is incorporated into the laser oscillation experimental system is 3.56 W
  • the laser output when the joined body is incorporated into the laser oscillation experimental system is 4.62 W. there were.
  • the laser output could be increased by about 30% compared to the case of Nd: YAG polycrystal.
  • the maximum excitation current when Nd: YAG polycrystal was used was 3.6 A
  • the maximum excitation current when the joined body was used was 4.0 A
  • the maximum excitation current when using the adhesive was 4.0 A. This indicates that the maximum excitation current is increased by the effect of conduction cooling by sapphire included in the bonded body and the bonded body. Further, it can be understood that when the joined body is used in the laser oscillation system, the laser output is increased as the maximum excitation current is increased.
  • the maximum excitation current that can be applied to the excitation light source can be increased by incorporating the Nd: YAG polycrystal / sapphire single crystal assembly into the laser oscillator, and as a result, the laser output can be increased. I was able to confirm that I could do it.
  • Example 5 Next, with reference to FIG. 15, an experiment for grasping the lower limit of the diffusion penetration depth of the yttrium element at the joint interface of the Nd: YAG / sapphire joint and the result thereof will be described.
  • this verification by irradiating an electron beam with an electron microscope to the bonding interface of the Nd: YAG / sapphire bonded body manufactured under the same conditions as in Example 3, and measuring fluorescent X-rays generated from the yttrium element The one-dimensional concentration distribution of the yttrium element was obtained. Thereafter, the diffusion penetration length of the yttrium element was calculated based on the one-dimensional concentration distribution of the yttrium element.
  • FIG. 15 is a graph showing a one-dimensional concentration distribution of the yttrium element obtained by observation with an electron microscope.
  • the vertical axis in FIG. 15 is the yttrium element concentration (arbitrary unit), and the horizontal axis is the distance (nm) from a predetermined position of Nd: YAG that is not affected by the junction.
  • the concentration of the yttrium element is standardized so as to be 1 at a portion of Nd: YAG that is not affected by the junction.
  • the left part divided by the vertical dotted line is an Nd: YAG region, and the right part is a sapphire single crystal region.
  • the solid line in FIG. 15 indicates the one-dimensional concentration distribution of the yttrium element, and the wavy line is obtained by fitting the one-dimensional concentration distribution of the yttrium element indicated by the solid line by the equation (1).
  • C 0 1.
  • the diffusion penetration length ⁇ Dt is 1.6 nm because the diffusion penetration length is defined by ⁇ Dt in Expression (1).
  • the diffusion penetration length of the yttrium element in the Nd: YAG / sapphire bonded body is approximately 1.0 nm or more. Note that the calculation of the diffusion penetration length using the formula (1) is not limited to the case of the Nd: YAG / sapphire junction, and can also be applied to the case of calculating the diffusion penetration length of other junctions.
  • the optical material 11 is sandwiched between the pair of cooling materials 12, but the present invention is not limited to this.
  • the cooling material 12 may be bonded to one surface of the optical material 11, and the cooling material 12 may be bonded to the outer peripheral surface of the optical material 11. Further, the cooling material 12 may be bonded to the front surface of the optical material 11.
  • the optical material 11 and the cooling material 12 have a disk shape having the same outer diameter, but the present invention is not limited to this.
  • the optical material 11 and the cooling material 12 may be disk-shaped members having different outer diameters.
  • the optical material 11 and the cooling material 12 may be, for example, rectangular or polygonal plate members.
  • the optical material 11 and the cooling material 12 may have different shapes. For example, as shown in FIG. 16, a plurality of optical materials 11 having an elongated cylindrical shape are joined so as to be sandwiched between a pair of cooling materials 12. May be.
  • the optical material 11 is formed of polycrystal and the cooling material 12 is formed of single crystal, but the present invention is not limited to this.
  • the optical material 11 and the cooling material 12 may be any of single crystal, polycrystal, and glass body as long as they can transmit light.
  • the cooling material 12 may be formed of polycrystal such as aluminum nitride.
  • the joined body 10 is formed in a cylindrical shape, but the present invention is not limited to this.
  • the joined body 10 may be cut so that the end face has a Brewster angle.
  • the resonator 20 of the laser oscillator 1 includes the reflecting mirror 21 and the output mirror 22, and the excitation light source 30 of the laser oscillator 1 and the laser amplifier 2 is configured to cause side excitation.
  • the invention is not limited to this.
  • an AR (Anti-Reflection) coat or an HR (High-Reflection) coat may be applied to both end faces of the joined body 10 of the laser oscillator 1 to form a resonator in the joined body 10.
  • the excitation light source 30 of the laser oscillator 1 and the laser amplifier 2 may be arranged to cause end face excitation.
  • the optical material 11 and the cooling material 12 are combined and then mounted on the manufacturing apparatus 100, but the present invention is not limited to this.
  • the optical material 11 and the cooling material 12 may be stacked in order on a predetermined position of the manufacturing apparatus 100 without being combined in advance.
  • the optical material 11 and the cooling material 12 are gradually depressurized and cooled after a predetermined time has passed, but the present invention is not limited to this.
  • pressurization and heating to the optical material 11 and the cooling material 12 may be stopped after a predetermined time has elapsed.
  • the material may be cooled by natural air cooling, or the material may be cooled by blowing air.
  • the optical material 11 is a laser medium, but the present invention is not limited to this.
  • the optical material 11 may be a magneto-optical material.
  • the magneto-optical material may be a material that rotates the plane of polarization by the Faraday effect, for example, for use in an optical isolator or a Faraday rotator.
  • the magneto-optical material may be one in which reflected light is elliptically polarized by the magneto-optical Kerr effect in order to be used for a polarizing glass or the like.
  • the optical material 11 may be a phosphor that changes the color tone of the laser light emitted from the laser oscillator.
  • the phosphor absorbs energy of light from the outside and enters an excited state, and then emits light having different energy in the process of returning to the ground state.
  • the phosphor may be doped with an active element.
  • the phosphor may be used to adjust the color tone of an LED (Light-Emitting-Diode) lamp.
  • the manufacturing apparatus 100 is operated in a vacuum, but the present invention is not limited to this.
  • the manufacturing apparatus 100 may be operated in an atmosphere of an inert gas such as argon or nitrogen.
  • the spontaneous emission light absorber 14 is used.
  • the present invention is not limited to this.
  • a scatterer that scatters oscillation light may be bonded around the optical material 11 in order to suppress parasitic oscillation.
  • the bonded body 10 is applied to the laser oscillator 1 and the laser amplifier 2 has been described as an example, but the present invention is not limited to this.
  • the joined body 10 may be applied to a laser amplifier, an optical isolator, a Faraday rotator, or the like.
  • the joined body, laser oscillator, laser amplifier, and joined body manufacturing method of the present invention are useful because sufficient optical quality can be obtained even by combining materials capable of transmitting light.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Lasers (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

接合体(10)は、光を透過可能な光学材料(11)と冷却材料(12)とが接合されている。光学材料(11)と冷却材料(12)との接合界面では、接合体(10)が光を透過可能であると共に、接合体(10)に干渉縞が発生しない程度に、光学材料(11)に含まれる原子が冷却材料(12)へ拡散侵入している。光学材料(11)に含まれる原子の冷却材料(12)への拡散侵入長は、約1.0nm~約10μmの範囲内であってもよい。

Description

接合体、レーザ発振器、レーザ増幅器及び接合体の製造方法
 本発明は、接合体、レーザ発振器、レーザ増幅器及び接合体の製造方法に関する。
 近年、レーザ発振器の高出力化に伴い、レーザ発振器に使用される光学材料の冷却が問題となっている。光学材料内で発生した温度勾配は、熱レンズ効果、熱収差、熱複屈折等を引き起こしてレーザ光の品質を悪化させるため、光学材料内の温度勾配をなるべく緩やかにすることが要望されている。このため、レーザ発振器において光学材料を効率的に冷却するための手法の開発が進められている。例えば、非特許文献1には、Yb:YAG(光学材料)の両端面に、熱伝導性が良好であって透明なサファイア(冷却材料)を接着した接着体が開示されている。
S.TOKITA、APPL.PHYS.B:LASERS AND OPTICS、80、635、2005
 異なる屈折率を有する物質同士が接触する境界面に光が入射した場合、その光の一部が境界面で反射することが知られている(フレネル反射)。非特許文献1の接着体は、光学材料と冷却材料とを接着しているため、光を透過させた場合にフレネル反射による損失が大きいという問題がある。このような問題は、Yb:YAGとサファイアとを接着させた接着体に光を透過させる場合のみならず、光を透過可能な材料同士を組み合わせた複合材料に光を透過させる場合にも存在している。
 本発明は、このような背景に基づいてなされたものであり、光を透過可能な材料同士を組み合わせても十分な光学品質が得られる接合体、レーザ発振器、レーザ増幅器及び接合体の製造方法を提供することを目的とする。
 上記目的を達成するために、本発明の第1の観点に係る接合体は、
 光を透過可能な第1の材料と第2の材料とが接合された接合体であって、
 前記第1の材料と前記第2の材料との接合界面では、前記接合体が光を透過可能であると共に、前記接合体に干渉縞が発生しない程度に、前記第1の材料に含まれる原子が前記第2の材料へ拡散侵入している。
 前記第1の材料に含まれる原子の前記第2の材料への拡散侵入長は、約1.0nm~約10μmの範囲内であってもよい。
 透過波面精度の測定に用いられるレーザ干渉計から放射されるレーザ光の波長λを633nmとした場合、前記第1の材料及び前記第2の材料の透過波面精度は、約λ以下であってもよい。
 前記第1の材料は、多結晶であり、前記第2の材料は、単結晶であってもよい。
 前記多結晶は、YAG又は希土類イオンが添加されたYAGであり、
 前記単結晶は、サファイア、窒化アルミニウム、窒化ガリウム、シリコンカーバイト又はダイヤモンドであってもよい。
 前記第1の材料は、蛍光体又は磁気光学材料であり、前記第2の材料は、前記第1の材料よりも熱伝導性が高い材料であってもよい。
 上記目的を達成するために、本発明の第2の観点に係るレーザ発振器は、
 前記接合体と、
 前記接合体を挟み込んで配置され、前記接合体で励起された光を共振させる共振器と、
 前記接合体を励起させるように前記接合体に光を放射する励起用光源と、
 を備える。
 上記目的を達成するために、本発明の第3の観点に係るレーザ増幅器は、
 前記接合体と、
 前記接合体を励起させるように前記接合体に光を放射する励起用光源と、
 前記接合体で増幅されるように前記接合体に光を導入する被増幅光源と、
 を備える。
 上記目的を達成するために、本発明の第4の観点に係る接合体の製造方法は、
 光を透過可能な第1の材料と第2の材料とが接合された接合体の製造方法であって、
 前記第1の材料と前記第2の材料とを重ね合わせるステップと、
 前記第1の材料と前記第2の材料とが密着するように所定圧力で加圧するステップと、
 加圧された前記第1の材料及び前記第2の材料にパルス電流を供給することで、前記第1の材料及び前記第2の材料を所定温度に加熱するステップと、
 所定時間の間、前記第1の材料及び前記第2の材料に印加される圧力を所定圧力に維持すると共に、前記第1の材料及び前記第2の材料の温度を所定温度に維持するステップと、
 前記第1の材料及び前記第2の材料に印加される圧力と前記第1の材料及び前記第2の材料の温度とを徐々に低下させるステップと、
 を含む。
 前記所定圧力は、約1MPa~約10GPの範囲内であってもよい。
 前記所定温度は、約900℃~約1500℃の範囲内であってもよい。
 前記所定時間は、約5分~約20時間の範囲内であってもよい。
 本発明によれば、光を透過可能な材料同士を組み合わせても十分な光学品質が得られる接合体、レーザ発振器、レーザ増幅器及び接合体の製造方法を提供できる。
本発明の実施の形態1に係る接合体を示す斜視図である。 本発明の実施の形態1に係るレーザ発振器の構成を示す図である。 本発明の実施の形態1に係る接合体の製造装置を示す図である。 接合体の製造工程の流れを示すフローチャートである。 本発明の実施の形態2に係るレーザ発振器の構成を示す図である。 本発明の実施の形態3に係るレーザ発振器の構成を示す図である。 本発明の実施の形態4に係るレーザ増幅器の構成を示す図である。 実施例1における実験条件を示す図である。 実施例1における実験条件毎の接合体の成否を説明するためのグラフである。 実施例2における入射光の波長と透過率との関係を示すグラフである。 実施例3における接合界面を含むSEM画像を示す図である。 実施例3における接合体表面からの距離と特定X線の強度との関係を示すグラフである。 実施例4におけるレーザ発振の実験系の構成を示す図である。 実施例4におけるLD電流とレーザ出力との関係を示すグラフである。 実施例5における電子顕微鏡観察により取得されたイットリウム元素の一次元濃度分布を示すグラフである。 本発明の変形例に係る接合体を示す斜視図である。
 以下、本発明に係る接合体、レーザ発振器、レーザ増幅器及び接合体の製造方法の実施の形態を、図面を参照しながら詳細に説明する。各図面では、同一又は同等の部分に同一の符号を付す。
(実施の形態1)
 図1は、実施の形態1に係る接合体10の構成を示す斜視図である。接合体10は、光学材料11(第1の材料)と、光学材料11の両端面にそれぞれ接合された一対の冷却材料12(第2の材料)と、を備える。光学材料11と冷却材料12とは、いずれも光を透過可能な材料、より具体的には透明材料で形成されている。光学材料11と冷却材料12とは、接着剤等の材料同士を接着させるための手段を介在させることなく互いに接合している。
 「接合」は、互いに当接する材料のうち少なくとも一方の材料から他方の材料に原子が拡散するように侵入することで、材料同士を結合することを意味する。「接合」は、接着剤等の材料同士を接着させるための手段を介在して材料同士を結合する場合を含まない。接合体10の接合界面では、光学材料11の原子の一部が冷却材料12内に拡散するように侵入し、又は、冷却材料12の原子の一部が光学材料11内に拡散するように侵入している。これにより光学材料11と冷却材料12とが強固に接合されている。
 なお、「接合」は、一方の材料から他方の材料に原子を拡散するように侵入させた場合に、互いに当接する材料の間に材料を構成する原子に由来する中間層が形成され、中間層を介して材料同士が結合される場合を含む。また、一方の材料との間で原子の拡散及び侵入を引き起こすと共に、他方の材料との間でも原子の拡散及び侵入を引き起こす中間層(例えば、SiOの層)を一方の材料と他方の材料との間に配置し、当該中間層を介して材料同士を結合させる場合をも含む。
 光学材料11と冷却材料12とは、例えば、いずれも円盤形状であり、同一の外径で形成されている。後述する接合体10の製造方法を用いることで、従来にない大型の接合体10を作製することができる。接合体10の外径は、約10mm以上であってもよく、例えば、約0.5mm~約300mmであり、好ましくは約10mm~約100mmであってもよい。また、接合体10の大きさを面積で規定すると、例えば、約100mm~1.0mの範囲内であってもよい。
 光学材料11は、レーザ発振器のレーザ媒質である。レーザ媒質は、励起用光源から放射された光を吸収して誘導放出を起こすことで光を増幅する。レーザ媒質は、特定の波長の光を吸収し、当該特定の波長に基づいた他の波長で発光する蛍光体から形成されている。
 光学材料11は、例えば、YAG(Yttrium Aluminum Garnet)、Nd:YAG等の多結晶である。Nd:YAGは、YAGと同種材料の関係にあり、YAGにネオジム(Nd)をドープしてイットリウム(Y)の一部を置き換えたものである。YAG、Nd:YAG等の多結晶は、光の吸収性が良好であるため、これらの多結晶を用いることでレーザ発振器の高出力化を実現できる。光学材料11の厚さは、例えば、約0.1mm~約100mmである。
 なお、光学材料11を構成する多結晶は、YAG、LuAG(Lutetium Aluminum Garnet)、Y、Lu、CaF等の母材に、Ce、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、Tm、Yb等の希土類イオンが添加された材料であってもよい。母材には、複数の種類の希土類イオンが共添加されてもよい。
 冷却材料12は、光を透過可能な材料であって、光学材料11で発生した熱を伝熱して外部に放出する。冷却材料12は、光学材料11で発生した熱を効率的に吸収するため、光学材料11よりも熱伝導率の高い材料で形成されている。冷却材料12は、例えば、サファイア、窒化アルミニウム、窒化ガリウム、シリコンカーバイト、ダイヤモンド等の単結晶である。冷却材料12の厚さは、例えば、約0.1mm~約100mmである。
 サファイアは、YAGと比べてダメージ閾値が高いという性質を有する。ダメージ閾値は、材料に損傷を与えることなく供給可能な単位面積当たりのエネルギー量の閾値である。YAGで形成される光学材料11をサファイアで形成される冷却材料12で挟み込むことで、光学材料11がYAGで形成される場合であっても、エネルギーの印加による接合体10の損傷を効果的に防止できる。
 接合体10の接合界面における原子の拡散侵入の程度は、一方の材料と他方の材料との間に中間層を備える場合を含めて「拡散侵入長」という指標で評価される。拡散侵入長は、例えば、接合体10の一方の材料に含まれる原子が他方の材料へ拡散するように侵入した場合に得られる原子の一次元濃度分布を以下の式(1)でフィッティングした場合の√Dtで示される。
Figure JPOXMLDOC01-appb-M000001
 ただし、Cは、距離xにおける当該原子の濃度(任意単位)、Cは、距離x=0における当該原子の濃度(任意単位)、xは、距離(m)、xは、当該原子の濃度がC/2になる位置の距離(m)、Dは、拡散係数(m/sec)、tは、時間(sec)である。
 接合体10の原子の拡散侵入長は、光学材料11と冷却材料12とが強固に接合すると共に、光学材料11及び冷却材料12の透過性や吸光性に影響を与えない程度に設定されている。上記の条件を満たす接合体10の原子の拡散侵入長は、例えば、約1.0nm~約10μmの範囲内であり、好ましくは、約1.0nm~約1.0μmの範囲内である。接合体10の原子の拡散侵入長は、約1.0nm~約100nmの範囲内であってもよく、約1.0nm~約10nmの範囲内であってもよい。
 レーザ発振器が高出力で動作する場合、光学材料11の中心部が高温になるため、径方向に温度勾配が発生する。光学材料11で発生する温度勾配は、熱膨張、屈折率勾配等を引き起こし、ビーム品質の劣化やレーザ出力の低下を引き起こす。しかし、接合体10は、レーザ光の発振方向に並べて配置された冷却材料12が光学材料11を挟み込むように構成されているため、光学材料11の中心部で発生した熱を効率的に排出できる。
 以上説明したように、実施の形態1に係る接合体10は、冷却材料12が光学材料11の両端面に接合されているため、両者を接着させた場合に比べて界面における熱抵抗が小さい。このため、光学材料11で発生した熱を冷却材料12に伝導させ、外部に効率的に排出できる。
 また、実施の形態1に係る接合体10は、光学材料11と冷却材料12とが空気や接着剤等を介在することなく接合しているため、フレネル損失を抑制して十分な光学品質を得ることができると共に、強度も十分に確保できる。
 さらに、実施の形態1に係る接合体10は、光学材料11が多結晶で形成され、冷却材料12が単結晶で形成されている。このため、光学材料11が多結晶であっても単結晶で形成された冷却材料12で挟まれることで、接合体10への損傷を防止できる。
 図2は、実施の形態1に係るレーザ発振器1の構成を示す図である。レーザ発振器1は、レーザ媒質を含む接合体10と、接合体10を挟み込むように配置される共振器20と、接合体10に励起用の光を供給し、共振器20内でレーザ光を共振させる励起用光源30と、を備える。
 共振器20は、光を全て反射する反射鏡21と、光の一部を外部に取り出すことができる出力鏡22と、を備える。反射鏡21と出力鏡22とは、接合体10を挟んで互いに対向するように配置されている。また、励起用光源30は、接合体10を挟んで、接合体10の径方向に対向して配置されている。レーザ発振器1は、反射鏡21と出力鏡22との間でレーザ光を繰り返し反射させることで、レーザ光が接合体10を通過するたびに誘導放出によりレーザ光を増幅させ、出力鏡22を通じてレーザ光の一部を放出する。
 レーザ発振器1は、接合体10を備えるため、光学材料11の中心部で発生した熱を、冷却材料12を介してレーザ光の伝搬方向に効率的に排出できる。このため、レーザ発振器1を小型化しても効果的に排熱できるため、マイクロチップレーザーのような小型レーザ装置を実現できる。
 次に、図3及び図4を参照して、接合体10の製造方法を説明する。接合体10は、パルス通電加圧焼結法(Pulse Electric Current Sintering:PECS)を用いて製造される。PECSは、互いに接合させる材料同士を機械的に加圧しつつ、直流のON/OFFで生成したパルス電流を供給して材料を加熱することで、材料同士を接合する方法である。
 PECSでは、互いに接合させる材料の加圧及び加熱を同時に行うことで、材料間の原子の拡散を引き起こして材料同士を接合させる。PECSでは、材料を加圧するパンチ及びダイスを発熱させ、その熱伝導によって材料を加熱するため、電気炉等を用いた場合よりも迅速な加熱が可能である。このため、長時間、高温環境下に材料を晒すことで発生する粒成長等の組織変化を抑制できる。
 図3は、接合体10を製造する製造装置100の構成を示す図である。製造装置100は、真空中又は不活性ガス中に設置され、接合される材料同士を加圧すると共に、材料にパルス電流を供給して加熱することで、接合体10を製造する装置である。
 製造装置100は、上下に配置した一対のスペーサー110と、スペーサー110の先端部にそれぞれ固定され、互いに接合される材料を加圧する一対のパンチ120と、一対のパンチ120及び材料を内部に収容するダイス130と、一方のスペーサー110から他方のスペーサー110に向けてパルス電流を供給するパルス電流源140と、を備える。
 スペーサー110は、パンチ120を把持し、パンチ120を介して材料を上下方向から押圧する。また、スペーサー110は、それぞれパルス電流源140と電気的に接続され、一方のパンチ120から他方のパンチ120に向けてパルス電流を供給する。下部のスペーサー110は、製造装置100の土台に設置されている。上部のスペーサー110は、製造装置100の移動機構(図示せず)に固定され、下部のスペーサー110に対して上下方向に移動可能に構成されている。
 パンチ120は、材料に直接接触して材料を押圧すると共に、材料にスペーサー110からのパルス電流を供給する部材である。パンチ120は、例えば円柱形状の部材であって、例えば、グラファイトのような導電性材料で形成されている。パンチ120の直径は、接合体10の直径に対応しており、例えば、約0.5mm~約300mmであり、好ましくは約10mm~約100mmである。
 ダイス130は、内部に材料を収容すると共に、パンチ120から供給されるパルス電流を材料の外周面に供給する部材である。ダイス130は、材料を収容可能であってパンチ120を挿通可能な貫通孔を備える円筒形状の部材である。ダイス130は、例えば、グラファイトのような導電性材料で形成されている。ダイス130の内径は、材料の外周面とパンチ120の外周面とがダイス130の内周面に接触するように設定される。
 図4は、製造装置100を用いて製造される接合体10の製造工程の流れを示すフローチャートである。以下、図4を参照して、接合体10の製造工程の流れを説明する。
 まず、光学材料11と冷却材料12とが一体となるように組み立てる(ステップS1)。光学材料11の両端面にそれぞれ冷却材料12を配置し、光学材料11と冷却材料12とが接触している部分の外周面に接着剤を塗布することで、光学材料11と冷却材料12とが一体になるように組み立ててもよい。また、光学材料11及び冷却材料12の表面を活性化させた状態で貼り合わせることで、両者を接着してもよい。
 一体に組み立てられる光学材料11及び冷却材料12は、所定の透過波面精度を有するように形成されている。透過波面精度の測定に用いられるレーザ干渉計から放射されるレーザ光の波長をλ=633nmとした場合、透過波面精度は、例えば、約λ以下、好ましくは、約λ/2以下、さらに好ましくは、約λ/4以下である。透過波面精度の下限は、例えば、約λ/8以下であってもよい。
 次に、ステップS1で組み立てられた材料を製造装置100の所定の位置に配置する(ステップS2)。より詳細に説明すると、まず、光学材料11と冷却材料12とを重ね合わせた方向がダイス130の貫通孔の軸方向と一致するように、材料をダイス130の貫通孔の内部に配置する。その後、ダイス130の貫通孔に一対のパンチ120を挿通して配置することで、材料を製造装置100に配置する。
 次に、上部のスペーサー110を下方に移動させることで、所定圧力で材料を加圧する(ステップS3)。材料は、光学材料11と冷却材料12とを重ね合わせた方向に加圧される。所定圧力は、例えば、約1.0MPa~約10GPaの範囲内であり、好ましくは、約5.0MPa~約1.0GPaの範囲内であり、さらに好ましくは、約5.0MPa~約0.1GPaの範囲内である。
 次に、材料にパルス電流を供給することで、加圧された状態の材料を所定温度まで加熱する(ステップS4)。より詳細に説明すると、パンチ120にパルス電流を供給してパンチ120を発熱させ、その熱を材料に伝導させ、材料を急速に加熱する。その結果、互いに加圧された状態の光学材料11及び冷却材料12の温度が上昇するため、接合界面で原子の拡散が発生し、光学材料11及び冷却材料12の接合が進行する。
 製造装置100は、材料の温度を、例えば、500℃/minで上昇させることができる。所定温度及び昇温速度は、光学材料11及び冷却材料12の種類、形状、寸法、接触面の状態等を考慮して設定される。所定温度は、例えば、約900℃~約1500℃の範囲内であり、好ましくは、約1000℃~約1400℃の範囲内であり、さらに好ましくは、約1100℃~約1200℃の範囲内である。
 材料が所定温度まで加熱された後、材料が所定圧力で加圧されると共に所定温度で加熱された状態を所定時間だけ継続させる。所定時間は、光学材料11及び冷却材料12の種類、形状、寸法、接触面の状態等を考慮して、所望の拡散侵入長が得られるように設定される。所定時間は、例えば、約5分~約20時間の範囲内であり、好ましくは、約1時間~約2時間の範囲内である。
 次に、材料が所定温度に到達した時点から所定時間が経過したかどうかを判定する(ステップS5)。材料が所定温度に到達した時点から所定時間が経過した場合(ステップS5;Yes)、材料への圧力を徐々に減圧させると共に、材料の温度を徐々に降温させる(ステップS6)。ステップS6では、所定の降温速度及び所定の減圧速度で、材料を徐々に冷却すると共に、徐々に減圧することが好ましい。降温速度及び減圧速度は、光学材料11及び冷却材料12の種類、形状、寸法、接触面の状態等を考慮して設定される。
 他方、材料が所定温度に到達した時点から所定時間が経過していない場合(ステップS5;No)、所定期間が経過するまで、所定圧力での材料への加圧及び所定温度での材料への加熱を継続する。
 次に、ステップS6で冷却された材料を製造装置100から取り外し(ステップS7)、材料の反射面への光学研磨を行うことで(ステップS8)、接合体10の製造が終了する。以上が、製造装置100を用いた接合体10の製造工程の流れである。
 材料同士を接合する方法としては、熱拡散接合法や常温接合法も知られており、これらの手法を接合体10の製造工程に適用することも考えられる。しかし、熱拡散接合法では、電気炉等を用いて材料を加熱するため、長時間の高温熱処理が必要となり、接合界面での原子の拡散浸透長を約10μm以下とすることは困難である。また、熱拡散接合法では、高温時において材料を加圧するクランプに熱膨張が発生するため、材料に実際に印加される圧力の制御が困難である。さらに、熱拡散接合法では、高温時において材料自体にも熱膨張が発生するため、熱膨張係数の異なる異種材料同士の接合が困難である。
 常温接合法では、界面同士の接合のために極めて高い面精度が要求される。より詳細に説明すると、透過波面精度の測定に使用されるレーザ干渉計から放射されるレーザ光の波長をλとした場合、材料に要求される透過波面精度は、約λ/8以下であることが要求される。広い面積を有する材料を高い面精度で形成することは困難であるため、常温接合法では、接合体の大型化(例えば、約100mm以上)は困難である。また、常温接合法では、材料を加熱しないため、接合界面での拡散侵入長を約1.0nm以上とすることは困難である。さらに、常温接合法では、高い真空度が要求されるため、製造コストが高い。
 他方、実施の形態1に係る製造方法では、パルス電流を用いて短時間で材料に加熱処理を施すことが可能であるため、材料同士を短時間で簡単に接合できる。また、実施の形態1に係る製造方法では、材料の加熱のためにパルス電流を用いているため、パンチ120及びダイス130に熱膨張が発生せず、高温時でも材料に印加される圧力を正確に制御できる。
 さらに、実施の形態1に係る製造方法では、所定圧力、所定温度及び所定時間を調整することで、材料の接合界面における原子の拡散侵入長を所望の範囲内(例えば、約1.0nm~約10μm)に制御できると共に、加熱処理中の多結晶における粒成長等の組織変化を抑制できる。しかも、実施の形態1に係る製造方法では、接合界面の透過波面精度が約λ以下であっても材料同士を接合できるため、接合体10の大型化(例えば、面積が約100mm以上)を実現できると共に、高い真空度が要求されないため、製造コストも抑制できる。
(実施の形態2)
 図5を参照して、本発明の実施の形態2に係る接合体10及びレーザ発振器1の構成を説明する。実施の形態2に係る接合体10は、光学材料11(第1の材料)に過飽和吸収体13(第2の材料)を接合している点で、実施の形態1に係る接合体10と異なっている。
 接合体10は、レーザ媒質である光学材料11と、光学材料11の一方の面に接合された過飽和吸収体13と、を備える。過飽和吸収体13は、強度が低い入射光に対して吸収体として作用し、強度が高い入射光に対して吸収体としての能力が飽和することで透明体として作用する。過飽和吸収体13は、例えば、CrをドープさせたYAG(Cr:YAG)等で形成されている。
 レーザ発振器1は、接合体10の光学材料11側に配置され、レーザ光を全反射する反射鏡21と、接合体10を挟んで反射鏡21と反対側に配置され、レーザ光を一部反射する出力鏡22と、を備える。反射鏡21及び出力鏡22は、接合体10で誘導放出されたレーザ光を共振させる共振器20を構成する。
 過飽和吸収体13に光パルスを照射させた場合、強度の強いパルスの中心部分は、過飽和吸収体13を通過するのに対し、強度の弱いパルスの裾野部分は、過飽和吸収体13で吸収される。このため、レーザ発振器1では、レーザ光のパルスの幅(時間幅)が短くなり、例えば、ピコ秒~ナノ秒幅の光パルスが放出される。
 以上説明したように、実施の形態2に係るレーザ発振器1は、光学材料11に接合された過飽和吸収体13を備える。このため、フレネル損失を抑制して十分な光学品質を得ることができると共に、レーザ光の短パルス化を実現できる。
(実施の形態3)
 図6を参照して、本発明の実施の形態3に係る接合体10及びレーザ発振器1の構成を説明する。実施の形態3に係る接合体10は、光学材料11(第1の材料)の外周を取り囲むように自然放出光吸収体14(第2の材料)を接合している点で、実施の形態1、2に係る接合体10と異なっている。
 接合体10は、レーザ媒質である光学材料11と、光学材料11の周囲に接合され、レーザ媒質からの光を吸収する自然放出光吸収体14と、を備える。自然放出光吸収体14は、例えば、Sm:YAG、Cr:YAG等で形成されている。
 光学材料11に励起用エネルギーを供給した場合、自然放射増幅光(Amplified Spontaneous Emission:ASE)が発生することがある。ASEは、レーザ媒質内で生じた自然放出光がレーザ媒質内を伝播することで発生した光である。さらに励起用エネルギーを供給した場合、ASEがレーザ光の発振方向以外の方向に共振(寄生発振)を引き起こすことがある。このASEや寄生発振が生じた場合、光の増幅に使われるエネルギーが無駄に消費されるため、レーザ発振器1のレーザ出力が低下する。
 実施の形態3に係る接合体10は、光学材料11の外周を囲むように自然放出光吸収体14が接合されているため、自然放出光吸収体14により自然放出光が吸収され、結果としてASEや寄生発振が抑制される。また、自然放出光吸収体14は、それ自体が発熱しない材料であるため、光学材料11で発生した熱を吸収して、外部に排出できる。
 以上説明したように、実施の形態3に係るレーザ発振器1は、光学材料11の外周を取り囲むようにして接合する自然放出光吸収体14を備える。このため、ASEが発生して光学材料11から自然放出光吸収体14へ光が入射したとしても寄生発振を抑制できると共に、光学材料11を冷却できる。その結果として、レーザ発振器1におけるレーザ出力の低下を抑制できる。
(実施の形態4)
 図7を参照して、本発明の実施の形態4に係る接合体10及びレーザ増幅器2の構成を説明する。レーザ増幅器2は、外部から入射したレーザ光をレーザ媒質で増幅して外部に放射する装置である。レーザ増幅器2は、実施の形態1~3に係るレーザ発振器1とは異なり共振器20を備えていない。
 レーザ増幅器2は、接合体10と、励起用光源30と、被増幅光源40と、を備える。励起用光源30は、接合体10を励起させるように接合体10に光を放射する。被増幅光源40は、接合体10で増幅されるように接合体10に光を導入する。被増幅光源40から放射された光は、励起用光源30により励起された接合体10の光学材料11で増幅され、接合体10から放射される。このとき、光学材料11の両側に冷却材料12が接合されているため、光学材料11の中心部で発生した熱を、冷却材料12を介してレーザ光の伝搬方向に効率的に排出できる。
 以上説明したように、レーザ増幅器2は、光学材料11と冷却材料12とが接合された接合体10を備えるため、励起用光源30により励起された光学材料11を効果的に冷却できる。このため、レーザ増幅器2を小型化した場合でも効果的に排熱できるため、レーザ増幅器2の小型化を実現できる。
 以下、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらの実施例に限定されるものではない。
(実施例1)
 図8及び図9を参照して、接合体の接合の成否を評価するために実施した実験とその結果について説明する。
 本検証では、まず、1%Nd:YAG多結晶とサファイア単結晶とを同一の外径を有する円盤形状に加工した。1%Nd:YAG多結晶は、1%のネオジムをYAGにドープしたものである。次に、加工されたNd:YAG多結晶とサファイア単結晶とを重ね合わせ、外周部に接着剤を塗布することで接着体を得た。
 図8は、接合体の試料毎におけるPECS時の温度及び圧力の条件を示す。接着剤で一体化された接着体を図8の条件で処理して接合体(以下、Nd:YAG/サファイア接合体と称することがある。)の試料を作製した。次に、作製された試料毎に干渉縞の有無の確認と透過スペクトルを測定することで、試料毎の接合の成否を判定した。
 図9は、図8の条件で作製された試料における接合の成否を説明するためのグラフである。図9の縦軸は、PECS時の圧力(MPa)、横軸は、PECS時の温度(℃)である。図9の記号×は、試料1(1100℃、36MPa)を示し、記号△は、試料2(1200℃、12MPa)を示し、記号◎は、試料3(1100℃、62MPa)を示し、記号○は、試料4(1200℃、36MPa)を示す。試料1では、全体的に干渉縞が観察された。また、試料2では、その周縁部に干渉縞が観察されると共に、少し黒みを帯びていた。他方、試料3では、干渉縞が全く存在せず、最も良好な結果を示した。また、試料4では、干渉縞が全く存在しないものの、少し黒みを帯びていた。
 このため、圧力及び温度が図9の「接合良好」の領域にある場合、干渉縞のない接合状態の良好な接合体を得られると理解できる。図9の試料3を示す点と試料4を示す点をと含む直線の傾きは、(36-62)/(1200-1100)=-0.26であるため、干渉縞の存在しない接合体を得るための圧力P及び温度Tの条件は、温度T=1100℃~1200℃の範囲内で、以下の式(2)で表される。
  P≧-0.26*(T-1100)+62 …(2)
 以上より、本検証では、PECS時の温度及び圧力を調整することで、干渉縞のない接合状態の良好な接合体を得られる接合体が得られることを確認できた。
(実施例2)
 次に、図10を参照して、Nd:YAG多結晶、接着体、接合体の各試料における透過スペクトルを測定する実験とその結果について説明する。なお、接着体は、サファイア単結晶及びNd:YAG多結晶を重ね合わせて外周面に接着剤を塗布したものであり、接合体は、実施例1で最も良好な結果が得られた1100℃、62MPaの条件で得られたNd:YAG/サファイア接合体である。
 透過スペクトルは、試料に入射される入射光の波長毎における試料の透過率を示したものであり、透過率は、特定の波長の入射光が試料を透過する割合である。試料に入射した入射光は、その一部が試料の表面や材料同士の接合界面等で反射する。このため、試料を透過する透過光は、試料に入射する入射光よりも強度が低下する。本検証では、入射光の波長毎に、各試料を透過した透過光の放射発散度を測定し、透過光及び入射光の放射発散度の比を算出することで、各試料の透過スペクトルを作成した。なお、放射発散度は、放射源から放射された単位面積あたりの放射束である。
 図10は、Nd:YAG多結晶、接着体、接合体における透過スペクトルを示すグラフである。図10の縦軸は、透過率(%)であり、横軸は、入射光の波長(nm)である。また、図10の実線は、実際に測定された透過率を示し、点線は、透過率の理論値を示す。図10に示すように、接合体の透過率は、全ての波長域において接着体よりも約13%高い値であると共に、Nd:YAG多結晶の透過率よりも高い値であった。接合体の透過率が接着体及びNd:YAG多結晶の透過率よりも高いのは、サファイア単結晶とNd:YAG多結晶とが接合されることで、フレネル損失が抑制されたためである。
 例えば、1064nmの波長を照射した場合、接合体の透過率(実験値)は、84.1%であるのに対し、接着体の透過率(実験値)は、71.6%であり、Nd:YAG多結晶の透過率(実験値)は、83.9%であった。接合体の透過率(理論値)は、84.7%であり、接着体の透過率(理論値)は、71.8%であり、Nd:YAG多結晶の透過率(理論値)は、83.9%であることから、透過スペクトルに関する実験結果が妥当であったことを確認できる。
 以上より、本検証では、PECSにより作製された接合体は、PECSを施す前の接着体に比べて透過率が高く、光学品質が良好であることを確認できた。
(実施例3)
 次に、図11及び図12を参照して、接合体の内部組織を観察するために実施した実験とその結果について説明する。本検証では、1100℃、62MPaの条件で作製されたNd:YAG/サファイア接合体の接合界面を走査型電子顕微鏡(Scanning Electron Microscope:SEM)で撮影し、SEM画像の接合界面を観察した。また、蛍光X線分析装置を用いて蛍光X線分析を実行することで、Nd:YAG/サファイア接合体の元素分析を行った。
 図11は、接合体の接合界面を含むSEM画像を示す図である。図11の左側は、Nd:YAG多結晶、右側は、サファイア単結晶である。図11に示すように、サファイア単結晶及びNd:YAG多結晶の接合界面には隙間がなく、ミクロレベルでも両者が良好に接合していることが確認できた。
 図12は、接合体における元素分析の結果を示すグラフである。図12の縦軸は、特性X線の強度(任意単位)であり、横軸は、Nd:YAG多結晶の表面からの距離(nm)である。図12の左側は、Nd:YAGの領域であり、中心部は、Nd:YAG及びサファイアの界面の領域であり、右側は、サファイア単結晶の領域である。図12では、イットリウム(Y)に関する特性X線の強度を示す実線が、界面領域で左上から右下に向かって傾斜している様子が見て取れる。このことは、Nd:YAG多結晶に含まれるイットリウムがサファイア単結晶内に拡散するように侵入したことを示している。
 以上より、本検証では、PECSにより得られた接合体の接合界面において、Nd:YAG多結晶からサファイア単結晶へイットリウムの拡散及び侵入が発生していると共に、サファイア単結晶とNd:YAG多結晶とが接合界面で隙間を有することなく良好に接合していることを確認できた。
(実施例4)
 次に、図13及び図14を参照して、Nd:YAG多結晶、接着体、接合体の各試料を用いて実施したレーザ発振実験とその結果について説明する。接着体及び接合体は、実施例2の場合と同様である。本検証では、各試料を組み込んだレーザ発振の実験系を動作させ、それぞれの場合のレーザ出力を測定した。
 図13は、接合体を組み込んだ場合のレーザ発振の実験系の一例を示す。実験系は、励起用半導体レーザ(LD)と、光ファイバと、レンズ系と、Nd:YAG/サファイア接合体と、ダイクロイックミラー(DM)と、出力鏡(OC)と、サーマルセンサと、を備える。LDは、波長λが808nmであってレーザ出力が18Wの連続光(CW)を放射する。光ファイバは、直径が約100μmであり、LDからのレーザ光をレンズ系に向けて伝送する。レンズ系は、光ファイバから供給されたレーザ光をNd:YAGに向けて集束させる。サーマルセンサは、OCから放射されたレーザ光を受光してレーザ出力を測定する。
 図14は、レーザ発振の実験系の入出力特性を示すグラフである。図14の縦軸は、実験系から出力されるレーザ出力(W)であり、横軸は、LDに印加される電流(A)である。図14の記号○は、Nd:YAG多結晶を用いた場合の測定値を示し、記号△は、接着体を用いた場合の測定値を示し、記号□は、接合体を用いた場合の測定値を示す。Nd:YAG多結晶をレーザ発振の実験系に組み込んだ場合のレーザ出力は、3.56Wであるのに対し、接合体をレーザ発振の実験系に組み込んだ場合のレーザ出力は、4.62Wであった。接合体をレーザ発振の実験系に組み込むことで、Nd:YAG多結晶の場合に比べて約30%レーザ出力を高めることができた。
 また、Nd:YAG多結晶を用いた場合の最大励起電流は、3.6Aであるのに対し、接合体を用いた場合の最大励起電流は、4.0Aであった。また、接着体を用いた場合の最大励起電流も4.0Aであった。このことは、接合体及び接着体が有するサファイアによる伝導冷却の効果により、最大励起電流が増大したことを示している。また、レーザ発振系に接合体を用いた場合、最大励起電流が増大したことに伴いレーザ出力も増大したことが理解できる。
 以上より、本検証では、Nd:YAG多結晶/サファイア単結晶の接合体をレーザ発振器に組み込むことで、励起用光源へ印加可能な最大励起電流を増大させ、結果としてレーザ出力を増大させることができることを確認できた。
(実施例5)
 次に、図15を参照して、Nd:YAG/サファイア接合体の接合界面におけるイットリウム元素の拡散侵入長の下限を把握するための実験とその結果について説明する。本検証では、実施例3と同一の条件で作製されたNd:YAG/サファイア接合体の接合界面に対して電子顕微鏡で電子ビームを照射し、イットリウム元素から発生する蛍光X線を計測することで、イットリウム元素の一次元濃度分布を取得した。その後、イットリウム元素の一次元濃度分布に基づいて、イットリウム元素の拡散侵入長を算出した。
 図15は、電子顕微鏡観察により取得されたイットリウム元素の一次元濃度分布を示すグラフである。図15の縦軸は、イットリウム元素の濃度(任意単位)であり、横軸は、Nd:YAGのうち接合の影響を受けていない所定の位置からの距離(nm)である。イットリウム元素の濃度は、Nd:YAGのうち接合の影響を受けていない部分で1となるように規格化されている。縦方向の点線で区切られた左側の部分は、Nd:YAGの領域であり、右側の部分は、サファイア単結晶の領域である。
 図15の実線は、イットリウム元素の一次元濃度分布を示し、波線は、実線で示されるイットリウム元素の一次元濃度分布を式(1)でフィッティングすることで得られたものである。図15の場合、イットリウム元素の濃度Cが規格化されているため、C=1である。拡散侵入長は、例えば、式(1)の√Dtで定義されるため、図15の場合、拡散侵入長√Dtは、1.6nmである。
 以上から、Nd:YAG/サファイア接合体におけるイットリウム元素の拡散侵入長は、概ね1.0nm以上であることが理解できる。なお、式(1)を用いた拡散侵入長の算出は、Nd:YAG/サファイア接合体の場合に限られず、他の接合体の拡散侵入長を算出する場合にも適用可能である。
 本発明は上記実施の形態に限られず、以下に述べる変形も可能である。
(変形例)
 上記実施の形態では、異なる種類の材料(異種材料)を接合する場合を例に説明してきたが、本発明はこれに限られない。同種材料同士を接合して接合体10を構成してもよい。同種材料は、例えば、YAGに対するNd:YAGのように、基本となる材料に活性元素をドープしたものを含む。
 上記実施の形態では、光学材料11を一対の冷却材料12で挟み込んで構成していたが、本発明はこれに限られない。例えば、光学材料11の一方の面に冷却材料12を接合してもよく、光学材料11の外周面に冷却材料12を接合してもよい。また、光学材料11の前面に冷却材料12を接合してもよい。
 上記実施の形態では、光学材料11及び冷却材料12が同一の外径を有する円盤形状であったが、本発明はこれに限られない。光学材料11及び冷却材料12は、異なる外径を有する円盤形状の部材であってもよい。また、光学材料11及び冷却材料12は、例えば、矩形状又は多角形の板状部材であってもよい。さらに、光学材料11及び冷却材料12は、互いに異なる形状であってもよく、例えば、図16に示すように、細長い円柱形状を有する複数の光学材料11を一対の冷却材料12で挟み込むように接合してもよい。
 上記実施の形態では、光学材料11が多結晶で形成され、冷却材料12が単結晶で形成されていたが、本発明はこれに限られない。光学材料11及び冷却材料12は、光を透過可能な材料であれば、単結晶、多結晶、ガラス体のいずれであってもよい。例えば、冷却材料12を窒化アルミニウム等の多結晶で形成してもよい。
 上記実施の形態では、接合体10は、円柱形状に形成されていたが、本発明はこれに限られない。例えば、接合体10は端面がブリュースター角になるように切断加工されていてもよい。
 上記実施の形態では、レーザ発振器1の共振器20が反射鏡21及び出力鏡22を備え、レーザ発振器1及びレーザ増幅器2の励起用光源30が側面励起を引き起こすように構成されていたが、本発明はこれに限られない。例えば、レーザ発振器1の接合体10の両端面にAR(Anti-Reflection)コート又はHR(High-Reflection)コートを施し、接合体10内で共振器を構成してもよい。また、レーザ発振器1及びレーザ増幅器2の励起用光源30が端面励起を引き起こすように配置されてもよい。
 上記実施の形態では、光学材料11及び冷却材料12を組み合わせてから、製造装置100に装着していたが、本発明はこれに限られない。例えば、光学材料11及び冷却材料12を事前に組み合わせることなく、製造装置100の所定の位置に順番に重ねて装着してもよい。
 上記実施の形態では、所定時間経過後に、光学材料11及び冷却材料12を徐々に減圧及び降温させていたが、本発明はこれに限られない。例えば、所定時間経過後に、光学材料11及び冷却材料12への加圧及び加熱を停止させてもよい。この場合、自然空冷によって材料を冷却してもよく、空気を吹き付けることで材料を冷却してもよい。
 上記実施の形態では、光学材料11はレーザ媒質であったが、本発明はこれに限られない。例えば、光学材料11は磁気光学材料であってもよい。磁気光学材料は、例えば、光アイソレータやファラデー回転子に利用するために、ファラデー効果により偏光面を回転させるものであってもよい。また、磁気光学材料は、偏極子ガラス等に利用するために、磁気光学カー効果により反射光を楕円偏光させるものであってもよい。
 また、光学材料11は、レーザ発振器から放射されたレーザ光の色調を変化させる蛍光体であってもよい。蛍光体は、外部からの光のエネルギーを吸収して励起状態となった後、基底状態に戻る過程でエネルギーの異なる光を放出する。蛍光体は、活性元素をドープしたものであってもよい。蛍光体は、LED(Light Emitting Diode)ランプの色調を調整するために用いられてもよい。
 上記実施の形態では、製造装置100を真空中で動作させていたが、本発明はこれに限られない。例えば、製造装置100を、アルゴン、窒素等の不活性ガスの雰囲気中で動作させてもよい。
 なお、上記実施の形態3では、自然放出光吸収体14を用いていたが、本発明はこれに限られない。例えば、寄生発振を抑制するために、光学材料11の周囲に発振光を散乱する散乱体を接合してもよい。
 上記実施の形態においては、接合体10をレーザ発振器1及びレーザ増幅器2に適用する場合を例に説明してきたが、本発明はこれに限られない。例えば、接合体10をレーザ増幅器、光アイソレータ、ファラデー回転子等に適用してもよい。
 上記実施の形態は例示であり、本発明はこれらに限定されるものではなく、請求の範囲に記載した発明の趣旨を逸脱しない範囲でさまざまな実施の形態が可能である。各実施の形態や変形例で記載した構成要素は自由に組み合わせることが可能である。また、請求の範囲に記載した発明と均等な発明も本発明に含まれる。
 本出願は、2018年4月25日に出願された日本国特許出願2018-83878号に基づくものであり、その明細書、特許請求の範囲、図面及び要約書を含むものである。上記日本国特許出願における開示は、その全体が本明細書中に参照として含まれる。
 本発明の接合体、レーザ発振器、レーザ増幅器及び接合体の製造方法は、光を透過可能な材料同士を組み合わせても十分な光学品質が得られるため、有用である。
1   レーザ発振器
2   レーザ増幅器
10  接合体
11  光学材料
12  冷却材料
13  過飽和吸収体
14  自然放出光吸収体 
20  共振器
21  反射鏡
22  出力鏡
30  励起用光源
40  被増幅光源
100 製造装置
110 スペーサー
120 パンチ
130 ダイス
140 パルス電流源

 

Claims (12)

  1.  光を透過可能な第1の材料と第2の材料とが接合された接合体であって、
     前記第1の材料と前記第2の材料との接合界面では、前記接合体が光を透過可能であると共に、前記接合体に干渉縞が発生しない程度に、前記第1の材料に含まれる原子が前記第2の材料へ拡散侵入している接合体。
  2.  前記第1の材料に含まれる原子の前記第2の材料への拡散侵入長は、約1.0nm~約10μmの範囲内である、
     請求項1に記載の接合体。
  3.  透過波面精度の測定に用いられるレーザ干渉計から放射されるレーザ光の波長λを633nmとした場合、前記第1の材料及び前記第2の材料の透過波面精度は、約λ以下である、
     請求項1又は2に記載の接合体。
  4.  前記第1の材料は、多結晶であり、前記第2の材料は、単結晶である、
     請求項1から3のいずれか1項に記載の接合体。
  5.  前記多結晶は、YAG又は希土類イオンが添加されたYAGであり、
     前記単結晶は、サファイア、窒化アルミニウム、窒化ガリウム、シリコンカーバイト又はダイヤモンドである、
     請求項4に記載の接合体。
  6.  前記第1の材料は、蛍光体又は磁気光学材料であり、前記第2の材料は、前記第1の材料よりも熱伝導性が高い材料である、
     請求項1から5のいずれか1項に記載の接合体。
  7.  請求項1から6のいずれか1項に記載の接合体と、
     前記接合体を挟み込んで配置され、前記接合体で励起された光を共振させる共振器と、
     前記接合体を励起させるように前記接合体に光を放射する励起用光源と、
     を備えるレーザ発振器。
  8.  請求項1から6のいずれか1項に記載の接合体と、
     前記接合体を励起させるように前記接合体に光を放射する励起用光源と、
     前記接合体で増幅されるように前記接合体に光を導入する被増幅光源と、
     を備えるレーザ増幅器。
  9.  光を透過可能な第1の材料と第2の材料とが接合された接合体の製造方法であって、
     前記第1の材料と前記第2の材料とを重ね合わせるステップと、
     前記第1の材料と前記第2の材料とが密着するように所定圧力で加圧するステップと、
     加圧された前記第1の材料及び前記第2の材料にパルス電流を供給することで、前記第1の材料及び前記第2の材料を所定温度に加熱するステップと、
     所定時間の間、前記第1の材料及び前記第2の材料に印加される圧力を所定圧力に維持すると共に、前記第1の材料及び前記第2の材料の温度を所定温度に維持するステップと、
     前記第1の材料及び前記第2の材料に印加される圧力と前記第1の材料及び前記第2の材料の温度とを徐々に低下させるステップと、
     を含む接合体の製造方法。
  10.  前記所定圧力は、約1MPa~約10GPの範囲内である、
     請求項9に記載の接合体の製造方法。
  11.  前記所定温度は、約900℃~約1500℃の範囲内である、
     請求項9又は10に記載の接合体の製造方法。
  12.  前記所定時間は、約5分~約20時間の範囲内である、
     請求項9から11のいずれか1項に記載の接合体の製造方法。

     
PCT/JP2019/017503 2018-04-25 2019-04-24 接合体、レーザ発振器、レーザ増幅器及び接合体の製造方法 WO2019208658A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19791851.9A EP3787133B1 (en) 2018-04-25 2019-04-24 Bonded body, laser oscillator, laser amplifier, and method for producing bonded body
US17/050,433 US20210296840A1 (en) 2018-04-25 2019-04-24 Bonded body, laser oscillator, laser amplifier, and method for producing bonded body
JP2020515541A JP6933349B2 (ja) 2018-04-25 2019-04-24 接合体、レーザ発振器、レーザ増幅器及び接合体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018083878 2018-04-25
JP2018-083878 2018-04-25

Publications (1)

Publication Number Publication Date
WO2019208658A1 true WO2019208658A1 (ja) 2019-10-31

Family

ID=68294684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017503 WO2019208658A1 (ja) 2018-04-25 2019-04-24 接合体、レーザ発振器、レーザ増幅器及び接合体の製造方法

Country Status (4)

Country Link
US (1) US20210296840A1 (ja)
EP (1) EP3787133B1 (ja)
JP (1) JP6933349B2 (ja)
WO (1) WO2019208658A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005011075A1 (ja) * 2003-07-29 2005-02-03 Mitsubishi Denki Kabushiki Kaisha 固体レーザ励起モジュール及びレーザ発振器
JP2005262244A (ja) * 2004-03-17 2005-09-29 Suwa Netsukogyo Kk パルス通電による金属部材の接合方法
JP2010272712A (ja) * 2009-05-22 2010-12-02 Koa Corp シャント抵抗器の製造方法
WO2014196062A1 (ja) * 2013-06-06 2014-12-11 三菱電機株式会社 導波路型レーザ装置
JP2016100359A (ja) * 2014-11-18 2016-05-30 浜松ホトニクス株式会社 レーザ増幅装置、レーザ装置及びレーザ核融合炉
JP2017220652A (ja) * 2016-06-10 2017-12-14 大学共同利用機関法人自然科学研究機構 レーザ装置とその製造方法
JP2018083878A (ja) 2016-11-22 2018-05-31 積水化学工業株式会社 タッチパネル用層間充填材料及びタッチパネル積層体
WO2018110316A1 (ja) * 2016-12-13 2018-06-21 日本碍子株式会社 光学部品

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5441803A (en) * 1988-08-30 1995-08-15 Onyx Optics Composites made from single crystal substances
US5846638A (en) * 1988-08-30 1998-12-08 Onyx Optics, Inc. Composite optical and electro-optical devices
WO2003061082A1 (en) * 2002-01-10 2003-07-24 Hrl Laboratories, Llc Laser pump cavity and method of making same
JP2005327997A (ja) * 2004-05-17 2005-11-24 Akio Ikesue 複合レーザー素子及びその素子を用いたレーザー発振器
US20050276300A1 (en) * 2004-05-25 2005-12-15 Nat'l Inst Of Info & Comm Tech Inc Admin Agency Laser device using two laser media
US7630423B2 (en) * 2005-04-12 2009-12-08 Raytheon Company Glaze soldered laser components and method of manufacturing
JP2013041051A (ja) * 2011-08-12 2013-02-28 Gigaphoton Inc 波長変換装置、固体レーザ装置およびレーザシステム
JP2016157905A (ja) * 2015-02-26 2016-09-01 日本碍子株式会社 光学部品

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005011075A1 (ja) * 2003-07-29 2005-02-03 Mitsubishi Denki Kabushiki Kaisha 固体レーザ励起モジュール及びレーザ発振器
JP2005262244A (ja) * 2004-03-17 2005-09-29 Suwa Netsukogyo Kk パルス通電による金属部材の接合方法
JP2010272712A (ja) * 2009-05-22 2010-12-02 Koa Corp シャント抵抗器の製造方法
WO2014196062A1 (ja) * 2013-06-06 2014-12-11 三菱電機株式会社 導波路型レーザ装置
JP2016100359A (ja) * 2014-11-18 2016-05-30 浜松ホトニクス株式会社 レーザ増幅装置、レーザ装置及びレーザ核融合炉
JP2017220652A (ja) * 2016-06-10 2017-12-14 大学共同利用機関法人自然科学研究機構 レーザ装置とその製造方法
JP2018083878A (ja) 2016-11-22 2018-05-31 積水化学工業株式会社 タッチパネル用層間充填材料及びタッチパネル積層体
WO2018110316A1 (ja) * 2016-12-13 2018-06-21 日本碍子株式会社 光学部品

Also Published As

Publication number Publication date
JP6933349B2 (ja) 2021-09-08
US20210296840A1 (en) 2021-09-23
EP3787133B1 (en) 2024-10-23
EP3787133A4 (en) 2022-01-26
EP3787133A1 (en) 2021-03-03
JPWO2019208658A1 (ja) 2021-08-05

Similar Documents

Publication Publication Date Title
JP4332350B2 (ja) 高出力用側面励起アクティブミラー固体レーザ
Tsunekane et al. Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry
US10367324B2 (en) Laser component
KR20170140100A (ko) 레이저 장치와 그 제조 방법
US9203210B2 (en) Q-switched laser device
JP2019129252A (ja) 光学素子の製造方法及び光学素子
US9209598B1 (en) Cooling system for high average power laser
JP3234805B2 (ja) 3レベルのレーザシステム
US7463667B2 (en) Solid-state laser and multi-pass resonator
US9490604B2 (en) Solid-state laser with multi-pass beam delivery optics
JP6456080B2 (ja) レーザ発振装置
WO2019208658A1 (ja) 接合体、レーザ発振器、レーザ増幅器及び接合体の製造方法
JP7511902B2 (ja) レーザ加工装置及びレーザ加工方法
JP6362026B2 (ja) レーザ装置、レーザ加工機及び表示装置
Sato et al. Laser oscillation of Nd-doped silica glass with high thermal shock parameter
JP6955302B2 (ja) 光学素子の製造方法及び光学素子
EP4418472A1 (en) Optical element, laser device and method for manufacturing optical element
Hogenboom et al. Good beam quality from a diamond-cooled Er: YAG laser
KR20160093801A (ko) 편광변환기를 포함한 고휘도 극초단 빔 발생 펨토초 레이저 장치
Volkov et al. Thermally diffusion bonded Yb: YAG/Sapphire composite active elements for thin disk lasers
CN112771735A (zh) 光振荡器
Jabczyński et al. Side-pumped neodymium slab lasers Q-switched by V: YAG on 1.3 μm
Nie et al. Conference 9342: Solid State Lasers XXIV: Technology and Devices
Stäblein et al. Conference 8080A: Diode-Pumped High Energy and High Power Lasers
Šulc et al. Influence of undoped YAG cap on diode-pumped composite YAG/Er: Yb: glass laser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19791851

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020515541

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019791851

Country of ref document: EP

Effective date: 20201125