WO2018110316A1 - 光学部品 - Google Patents

光学部品 Download PDF

Info

Publication number
WO2018110316A1
WO2018110316A1 PCT/JP2017/043249 JP2017043249W WO2018110316A1 WO 2018110316 A1 WO2018110316 A1 WO 2018110316A1 JP 2017043249 W JP2017043249 W JP 2017043249W WO 2018110316 A1 WO2018110316 A1 WO 2018110316A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
phosphor
bonding layer
supported
intermediate layer
Prior art date
Application number
PCT/JP2017/043249
Other languages
English (en)
French (fr)
Inventor
近藤 順悟
直剛 岡田
浅井 圭一郎
周平 東原
山口 省一郎
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to EP17880840.8A priority Critical patent/EP3557293A4/en
Priority to JP2018556571A priority patent/JPWO2018110316A1/ja
Publication of WO2018110316A1 publication Critical patent/WO2018110316A1/ja
Priority to US16/437,720 priority patent/US20190309936A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/85Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/08Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing coloured light, e.g. monochromatic; for reducing intensity of light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/414Translucent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/422Luminescent, fluorescent, phosphorescent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • C04B2237/064Oxidic interlayers based on alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers

Definitions

  • the present invention relates to an optical component, and more particularly to an optical component having a phosphor substrate.
  • Patent Document 1 discloses a vehicle headlight module having a support that supports a phosphor and a radiation source that performs electromagnetic radiation to the phosphor.
  • the support include polycrystalline alumina ceramics or sapphire. Any of these materials has high heat resistance and high thermal conductivity, and is suitable for application to a headlight that is an illuminating device in which a rise in temperature and uneven temperature distribution are likely to occur.
  • the phosphor include yttrium aluminum garnet (YAG) doped with cerium (Ce).
  • YAG yttrium aluminum garnet
  • Ce cerium
  • a blue emitting laser is exemplified as the radiation source. Blue laser light is converted into white light by the phosphor. Accordingly, the headlight module can emit white light.
  • Patent Document 2 an optical component having a translucent support and a phosphor single crystal is disclosed.
  • the translucent support and the phosphor single crystal can be bonded to each other by direct bonding.
  • the present invention has been made to solve the above-described problems, and its purpose is to further increase the thermal conductivity between a supported substrate containing a phosphor and a supporting substrate that supports the phosphor. It is to provide an optical component that can be used.
  • the optical component of the present invention has a first substrate, a second substrate, and a bonding layer.
  • the first substrate includes a phosphor substrate.
  • the second substrate supports the first substrate and includes a translucent substrate.
  • the bonding layer is provided between the first substrate and the second substrate, and includes at least one element included in the surface of the first substrate facing the second substrate, and the first substrate of the second substrate. And at least one element included in the surface to be processed.
  • the bonding layer contains 2 wt% or more and 45 wt% or less of at least one kind of metal element that is not included in either the first substrate or the second substrate.
  • the bonding layer includes at least one element included in the surface of the first substrate facing the second substrate and at least one element included in the surface of the second substrate facing the first substrate. And at least one metal element not contained in either the first substrate or the second substrate is contained in an amount of 2 wt% to 45 wt%. Due to the presence of the metal element, the thermal conductivity between the first substrate including the phosphor substrate and the second substrate supporting the phosphor substrate is enhanced.
  • FIG. 2 is a partially enlarged view of FIG. 1 and is a partial cross-sectional view schematically showing the vicinity of a bonding layer between a supported substrate and a support substrate in an optical component. It is sectional drawing which shows schematically the structure of the optical component in Embodiment 2 of this invention.
  • FIG. 4 is a partial enlarged view of FIG. 3, and is a partial cross-sectional view schematically showing the vicinity of a bonding layer between a supported substrate and a supporting substrate. It is sectional drawing which shows schematically the 1st process of the manufacturing method of the optical component of FIG.
  • the illuminating device 100 has the light source 90 and the wavelength conversion member 50 (optical component).
  • the light source 90 is, for example, a semiconductor laser.
  • the wavelength conversion member 50 converts the wavelength of light by using a phosphor.
  • Excitation light 91 from the light source is converted into illumination light 92 by passing through the wavelength conversion member 50.
  • the excitation light 91 is blue light or ultraviolet light
  • the illumination light 92 is white light.
  • the wavelength conversion member 50 includes a supported substrate 10 (first substrate) and a support substrate 20 (second substrate) that supports the supported substrate 10.
  • a supported substrate 10 first substrate
  • a support substrate 20 second substrate
  • the supported substrate 10 includes a phosphor substrate 11.
  • the supported substrate 10 is the phosphor substrate 11.
  • the support substrate 20 includes a translucent substrate 21, and the support substrate 20 is the translucent substrate 21 in the present embodiment.
  • the phosphor substrate 11 is a substrate containing a phosphor.
  • the phosphor substrate 11 contains, for example, doped YAG.
  • the phosphor substrate 11 may be, for example, a phosphor single crystal substrate or a phosphor polycrystalline substrate.
  • the phosphor polycrystalline substrate may be a substrate substantially composed of only phosphor crystal grains, or may be a substrate formed by firing a ceramic slurry in which phosphor particles are dispersed.
  • the phosphor substrate 11 may have a binder such as glass or resin and a phosphor dispersed in the binder. That is, the phosphor substrate 11 may be a substrate in which a large number of phosphor particles are bonded by a binder.
  • the translucent substrate 21 is a translucent substrate, and is preferably a substantially transparent substrate.
  • the translucent substrate 21 may be, for example, a single crystal substrate or a polycrystalline substrate.
  • the polycrystalline substrate can be formed as a ceramic (sintered body).
  • the single crystal substrate is, for example, a sapphire substrate.
  • the linear transmittance of the translucent substrate 21 is preferably about 70% or more per 0.5 mm thickness from the viewpoint of suppressing loss in the wavelength range used by the lighting device 100. On the other hand, from the viewpoint of suppressing color unevenness, it is preferable that the translucent substrate 21 has a low linear transmittance.
  • a single crystal substrate when used as the phosphor substrate 11, it is preferably less than 80%, but when a polycrystalline substrate is used as the phosphor substrate 11, it may be 80% or more.
  • a polycrystalline substrate when used as the phosphor substrate 11, excitation light is easily scattered in the phosphor substrate 11, and the scattered light and fluorescence are sufficiently overlapped to suppress color unevenness.
  • the thermal conductivity of the translucent substrate 21 is higher than the thermal conductivity of the phosphor substrate 11.
  • the thickness of the translucent substrate 21 is, for example, about 1 mm.
  • the translucent substrate 21 preferably has a substantially constant refractive index in the horizontal direction (lateral direction in the figure).
  • the translucent substrate 21 preferably has substantially no pores. The observation of the pores is performed, for example, by microscopic observation of about 5000 times. In order to avoid degranulation when the observed surface is prepared, the observed surface is preferably finished by polishing using ion milling.
  • the translucent substrate 21 preferably contains alumina (Al 2 O 3 ) or aluminum nitride as a main component.
  • the proportion of the main component in the components of the translucent substrate 21 is preferably 99% or more, and more preferably 99.99% or more.
  • the linear expansion coefficient of the translucent substrate 21 is within ⁇ 30% of the linear expansion coefficient of the phosphor substrate 11.
  • the linear expansion coefficient is in the in-plane direction (lateral direction in the figure).
  • the wavelength conversion member 50 has a bonding layer 30 between the supported substrate 10 and the support substrate 20 when microscopically observed with an electron microscope or the like.
  • the bonding layer 30 is an interface layer formed by direct bonding between the supported substrate 10 and the support substrate 20. Since atomic diffusion occurs during direct bonding, the bonding layer 30 includes at least one element included in the surface of the supported substrate 10 facing the support substrate 20 (the lower surface in the drawing) and the support substrate 20. And at least one element included in the surface (upper surface in the drawing) facing the supported substrate 10. Particularly in the present embodiment, the bonding layer 30 is an interface layer formed by direct bonding between the phosphor substrate 11 and the translucent substrate 21.
  • the bonding layer 30 includes at least one element included in the phosphor substrate 11 and at least one element included in the translucent substrate 21.
  • the thickness of the bonding layer 30 is preferably about 1 nm to 100 nm, and more preferably 1 nm to 10 nm. Since the bonding layer 30 is present, strictly speaking, it can be said that the phosphor substrate 11 is supported by the translucent substrate 21 via the bonding layer 30.
  • the bonding layer 30 contains 2 wt% or more and 45 wt% or less of at least one metal element that is not included in either the supported substrate 10 or the support substrate 20.
  • “at least one kind of metal element not included in any of the supported substrate 10 and the support substrate 20” means at least one type not included as a main component in any of the supported substrate 10 and the support substrate 20.
  • it is at least one kind of metal element that is not contained in the supported substrate 10 and the support substrate 20 by 1% by weight or more.
  • the value of the weight percentage is the sum of the weight percentages of these metal elements.
  • the metal element is at least one of the surface of the supported substrate 10 and the surface of the supporting substrate 20 that are to be directly bonded to each other, preferably both , Added to. Since direct bonding is performed after this addition, the bonding layer 30 contains the metal element.
  • the bonding layer 30 is included in at least one element included in the surface of the supported substrate 10 facing the support substrate 20 and in the surface of the support substrate 20 facing the supported substrate 10. And at least one element.
  • Such a bonding layer 30 can be formed by direct bonding as described above. By using the direct bonding, it is possible to suppress the heat conduction from the supported substrate 10 to the supporting substrate 20 from being hindered at the bonding portion.
  • the bonding layer 30 contains 2 wt% or more and 45 wt% or less of at least one kind of metal element that is not included in either the supported substrate 10 or the support substrate 20.
  • the presence of this metal element significantly enhances the metal bonding properties in the bonding layer 30. Thereby, the thermal conductivity between the supported substrate 10 and the support substrate 20 is enhanced.
  • heat dissipation from the supported substrate 10 to the support substrate 20 can be promoted while maintaining the optical characteristics of the wavelength conversion member 50.
  • the thermal conductivity of the translucent substrate 21 is higher than the thermal conductivity of the phosphor substrate 11.
  • heat dissipation from the phosphor substrate 11 can be promoted. Therefore, it is possible to suppress performance degradation due to an increase in the temperature of the phosphor substrate 11.
  • the linear expansion coefficient of the translucent substrate 21 is within ⁇ 30% of the linear expansion coefficient of the phosphor substrate 11.
  • production of the crack of the fluorescent substance substrate 11 resulting from the difference in thermal expansion can be prevented.
  • the thickness of the phosphor substrate 11 is about 100 ⁇ m or less and the thickness of the translucent substrate 21 is 1 mm or more, the difference between the thicknesses is large.
  • the wavelength conversion member 50a (optical component) of the present embodiment has a supported substrate 10a (first substrate) instead of the supported substrate 10 (FIG. 1).
  • the supported substrate 10 a includes an intermediate layer 13 that faces the support substrate 20. Therefore, the phosphor substrate 11 is supported by the translucent substrate 21 via the intermediate layer 13.
  • the intermediate layer 13 is made of a material different from the material of the phosphor substrate 11.
  • the intermediate layer 13 is a layer having translucency, and is preferably substantially transparent.
  • the thickness of the intermediate layer 13 is 1 ⁇ m or less.
  • the thermal conductivity of the intermediate layer 13 is higher than the thermal conductivity of the phosphor substrate 11.
  • the material of the intermediate layer 13 is preferably an oxide, for example, alumina (Al 2 O 3 ), but may be tantalum oxide (Ta 2 O 5 ) from the viewpoint of facilitating direct bonding.
  • the refractive index of the intermediate layer 13 is preferably smaller than the refractive index of the phosphor substrate 11.
  • the wavelength conversion member 50a of the present embodiment has a bonding layer 30a instead of the bonding layer 30 (FIG. 2).
  • the bonding layer 30 a is an interface layer formed by direct bonding between the supported substrate 10 a and the support substrate 20. Therefore, the bonding layer 30a includes at least one element included in the surface (the lower surface in the figure) facing the support substrate 20 of the supported substrate 10a and the surface (the illustrated surface) facing the supported substrate 10a. And at least one element included in the upper surface).
  • the bonding layer 30 a is an interface layer formed by direct bonding between the intermediate layer 13 and the translucent substrate 21.
  • the bonding layer 30 a includes at least one element included in the intermediate layer 13 and at least one element included in the translucent substrate 21. Strictly speaking, since the bonding layer 30a exists, it can be said that the phosphor substrate 11 is supported by the translucent substrate 21 via the intermediate layer 13 and the bonding layer 30a. Except for the above, the bonding layer 30 a is similar to the bonding layer 30 (FIG. 2) and contains a metal element as in the case of the bonding layer 30.
  • intermediate layer 13 is formed on phosphor substrate 11 (on the lower surface in the figure).
  • the supported substrate 10a having the phosphor substrate 11 and the intermediate layer 13 is obtained.
  • substrate 21 as the support substrate 20 is prepared.
  • the supported substrate 10 a and the supporting substrate 20 are transferred into the vacuum chamber 40.
  • the particle beam generating device 41 irradiates the surface of the intermediate layer 13 of the supported substrate 10a and the surface of the support substrate 20 with each other. This makes both surfaces suitable for direct bonding.
  • the particle beam generator 41 is an ion gun
  • the particle beam 42 is an ion beam.
  • the particle beam generation apparatus 41 is a fast atom beam (FAB) gun
  • the particle beam 42 is an FAB.
  • the particle beam 42 includes a metal ion beam or a metal atom beam. An example of such a beam generation method will be described below.
  • an ion beam or an atom beam of a rare gas is generated.
  • This beam collides with a metal grid attached in an opening as an emission part of the particle beam generator 41.
  • metal is emitted from the metal grid as ions or atoms. That is, a metal ion beam or atom beam is mixed with a rare gas ion beam or atom beam.
  • a metal element is added to each of the surface of the intermediate layer 13 of the supported substrate 10 a and the surface of the support substrate 20.
  • the amount of addition can be adjusted by the type of beam, energy, irradiation time, and the like. In addition, it is easier to increase the addition amount by using FAB than by ion beam.
  • the pair of surfaces are brought into contact with each other. Then, the supported substrate 10 a and the support substrate 20 are pressed against each other by the load 44. As a result, the supported substrate 10a and the support substrate 20 are bonded to each other by direct bonding.
  • the temperature at the time of joining may be normal temperature or higher than normal temperature. When high temperatures are used, especially about 800 ° C. or higher, the diffusion of the substance is particularly significantly promoted. For this reason, the smoothness of the surfaces to be joined is not required more strictly than at normal temperature. For this reason, if a high bonding temperature is allowed, it is possible to reduce the cost and increase the yield.
  • the linear expansion coefficient of the translucent substrate 21 is ⁇ 30% of the linear expansion coefficient of the phosphor substrate 11.
  • the thickness of phosphor substrate 11 is reduced by polishing 46 as necessary.
  • one or more wavelength conversion members 50 a are cut out along the dicing line 48 from the stacked body of the supported substrate 10 a and the support substrate 20 obtained by the bonding. Thereafter, a reflective film can be formed on the dicing cut surface so that fluorescence can be extracted with high efficiency in the direction of the illumination light 92 (FIG. 1) in the same manner as the excitation light.
  • the reflective film include silver, copper, gold, aluminum, and mixed crystal films containing these.
  • the wavelength conversion member 50a (FIG. 3) is obtained.
  • the wavelength conversion member 50 (FIG. 1: Embodiment 1) will be obtained.
  • the supported substrate 10 a includes the intermediate layer 13 facing the support substrate 20, and the intermediate layer 13 is made of a material different from the material of the phosphor substrate 11.
  • the material of the surface of the supported substrate 10a facing the support substrate 20 can be made a material suitable for bonding to the support substrate 20.
  • This facilitates the joining of the supported substrate 10a and the supporting substrate 20, and particularly facilitates the direct joining, which is a joining in which the combination of materials is important.
  • the material of the intermediate layer 13 may be the same as the material of the translucent substrate 21, and in this case, direct bonding becomes easier.
  • the wavelength conversion member 50b (optical component) of the modification has a support substrate 20a (second substrate) instead of the support substrate 20 (FIG. 3).
  • the support substrate 20a includes an intermediate layer 23 facing the supported substrate 10a. Therefore, the phosphor substrate 11 is supported by the translucent substrate 21 via the intermediate layer 13 and the intermediate layer 23.
  • the intermediate layer 23 is made of a material different from the material of the translucent substrate 21.
  • the intermediate layer 23 is a layer having translucency, and is preferably substantially transparent.
  • the thickness of the intermediate layer 23 is 1 ⁇ m or less.
  • the thermal conductivity of the intermediate layer 23 is higher than the thermal conductivity of the phosphor substrate 11.
  • the material of the intermediate layer 23 is preferably an oxide, for example, alumina or tantalum oxide.
  • the wavelength conversion member 50b has a bonding layer 30b instead of the bonding layer 30a (FIG. 4).
  • the bonding layer 30b is an interface layer formed by direct bonding between the supported substrate 10a and the supporting substrate 20a.
  • the bonding layer 30b includes at least one element included in a surface (lower surface in the figure) facing the support substrate 20a of the supported substrate 10a and a surface (in the figure) facing the supported substrate 10a of the support substrate 20a. And at least one element included in the upper surface).
  • the bonding layer 30 b is an interface layer formed by direct bonding between the intermediate layer 13 and the intermediate layer 23.
  • the bonding layer 30 b includes at least one element included in the intermediate layer 13 and at least one element included in the intermediate layer 23. Strictly speaking, since the bonding layer 30b exists, it can be said that the phosphor substrate 11 is supported by the translucent substrate 21 through the intermediate layer 13, the intermediate layer 23, and the bonding layer 30b. Except for the above, the bonding layer 30b is similar to the bonding layer 30a (FIG. 4) and contains a metal element as in the case of the bonding layer 30a.
  • the material of the intermediate layer 23 may be the same as the material of the intermediate layer 13, and in this case, direct bonding is easier.
  • Example A A single crystal YAG substrate doped with Ce atoms was prepared as the phosphor substrate 11 (FIG. 5). On the phosphor substrate 11, an alumina layer having a thickness of 0.5 ⁇ m was formed as the intermediate layer 13 (FIG. 5) by sputtering. The resulting layer had a surface roughness Ra of 0.5 nm.
  • a sapphire substrate having a thickness of 1 mm was prepared as the support substrate 20 (FIG. 5). The alumina layer and the sapphire substrate were directly bonded. Specifically, first, the ion beam as described in the second embodiment was irradiated on both surfaces as a particle beam 42 (FIG. 5). An ion gun manufactured by Mitsubishi Heavy Industries, Ltd. was used.
  • polishing 46 (FIG. 7)
  • the thickness of the phosphor substrate 11 was reduced to 200 ⁇ m within an error of ⁇ 0.25 ⁇ m. Polishing 46 was performed with optical polishing accuracy. Specifically, grinder grinding, lapping, and chemical mechanical polishing (CMP) were sequentially performed. Next, the wavelength conversion member was cut out with a size of 3 mm square using a dicing apparatus.
  • a composite substrate using direct bonding was manufactured under the same conditions as described above. Then, the bonding layer was observed with a transmission electron microscope (Transmission Electron Microscope: TEM). As a result, the thickness of the bonding layer was about 5 nm. In addition, the composition of the bonding layer was evaluated by energy dispersive X-ray spectroscopy (EDX). As a result, Fe, Cr, and Ni were observed as metal elements, but particularly Fe was observed mainly. For this reason, when the weight percent of the metal element is evaluated, the value of Fe is used ignoring the values of Cr and Ni.
  • EDX energy dispersive X-ray spectroscopy
  • the amount of the metal element in the bonding layer was controlled by adjusting the irradiation intensity and irradiation time of an ion gun that generates an ion beam. Accordingly, the six wavelength conversion members each having 0 wt%, 2 wt%, 10 wt%, 30 wt%, 45 wt%, 50 wt%, and 60 wt% as the weight percentage (wt%) of the Fe element in the bonding layer, Prepared as a sample.
  • the light source 90 (FIG. 1), a GaN blue laser device having an output of 10 W and a wavelength of 450 nm was prepared. Excitation light 91 (FIG. 1) generated using this was irradiated to each wavelength conversion member. The output of the illumination light 92 (FIG. 1) obtained by passing this light through the wavelength conversion member was evaluated. The results are shown in Table 1 below.
  • the measurement of the output of the illumination light 92 was performed in accordance with the provisions of “JIS C 7801” in the Japanese Industrial Standards (JIS). Specifically, it was measured by the time average of the total luminous flux from the wavelength conversion member. The total luminous flux was measured using an integrating sphere (spherical photometer). The light source to be measured and the standard light source in which the total luminous flux was valued were turned on at the same position, and the measurement was performed by comparing the two.
  • the color unevenness of the illumination light 92 (FIG. 1) was also evaluated. As a result, any wavelength conversion member was evaluated as having no color unevenness.
  • the color unevenness was evaluated by a chromaticity diagram obtained using a luminance distribution measuring apparatus. In the chromaticity diagram, when the measurement results are in the range of median x: 0.3447 ⁇ 0.005 and y: 0.3553 ⁇ 0.005, it was determined that there was no color unevenness.
  • Example B A polycrystalline YAG substrate doped with Ce atoms was prepared as the phosphor substrate 11 (FIG. 5). On the phosphor substrate 11, an alumina layer having a thickness of 0.5 ⁇ m was formed as the intermediate layer 13 (FIG. 5) by sputtering. The resulting layer had a surface roughness Ra of 0.5 nm. A sapphire substrate having a thickness of 1 mm was prepared as the support substrate 20 (FIG. 5). The alumina layer and the sapphire substrate were directly joined as in Experiment A above. Next, by polishing 46 (FIG.
  • the thickness of the phosphor substrate 11 was reduced to 100 ⁇ m within an error of ⁇ 0.25 ⁇ m by the same method as in Experiment A above.
  • the wavelength conversion member was cut out with a size of 3 mm square using a dicing apparatus.
  • a composite substrate using direct bonding was manufactured under the same conditions as described above.
  • the bonding layer was observed with TEM.
  • the thickness of the bonding layer was about 5 nm.
  • the composition of the bonding layer was evaluated by EDX, Fe, Cr and Ni were observed as metal elements as in Experiment A, and Fe was observed mainly.
  • the amount of the metal element in the bonding layer was controlled by adjusting the irradiation intensity and irradiation time of an ion gun that generates an ion beam.
  • six wavelength conversion members having 0 wt%, 2 wt%, 10 wt%, 30 wt%, 45 wt%, 50 wt% and 60 wt%, respectively, as the weight concentration of Fe element in the bonding layer are prepared as samples. It was.
  • As the light source 90 (FIG. 1) a GaN blue laser device having an output of 10 W and a wavelength of 450 nm was prepared. Excitation light 91 (FIG. 1) generated using this was irradiated to each wavelength conversion member.
  • the output of the illumination light 92 (FIG. 1) obtained by passing this light through the wavelength conversion member was evaluated by the same method as in Experiment A above. The results are shown in Table 2 below.
  • the color unevenness of the illumination light 92 (FIG. 1) of each wavelength conversion member was also evaluated by the same method as in the case of Experiment A. As a result, any wavelength conversion member was evaluated as having no color unevenness.

Abstract

光学部品(50)は、蛍光体基板(11)を含む第1基板(10)と、第1基板(10)を支持し透光性基板(21)を含む第2基板(20)とを有している。接合層(30)は、第1基板(10)と第2基板(20)との間に設けられており、第1基板(10)の第2基板(20)に面する面に含まれる少なくとも1種類の元素と、第2基板(20)の第1基板(10)に面する面に含まれる少なくとも1種類の元素とを含む。接合層(30)は、第1基板(10)および第2基板(20)のいずれにも含まれない少なくとも1種類の金属元素を2重量%以上45重量%以下含む。

Description

光学部品
 本発明は、光学部品に関し、特に、蛍光体基板を有する光学部品に関するものである。
 国際公開第2011/141377号(特許文献1)によれば、蛍光体を支持する支持体と、蛍光体への電磁放射を行う放射源とを有する車両用ヘッドライトモジュールが開示されている。支持体としては、多結晶アルミナセラミックスまたはサファイアが例示されている。いずれの材料も、高い耐熱性と高い熱伝導性とを有する点で、温度の上昇および温度分布のむらが生じやすい照明装置であるヘッドライトへの適用に適している。蛍光体としては、セリウム(Ce)でドーピングされたイットリウムアルミニウムガーネット(YAG)が例示されている。放射源として青色発光レーザが例示されている。青色レーザ光は蛍光体によって白色光に変換される。これによりヘッドライトモジュールは白色光を放射することができる。
 特開2016-157905号公報(特許文献2)によれば、透光性支持体および蛍光体単結晶とを有する光学部品が開示されている。透光性支持体および蛍光体単結晶は、直接接合によって互いに接合され得る。
国際公開第2011/141377号 特開2016-157905号公報
 蛍光体の温度の上昇および温度分布のむらを抑制するためには、蛍光体から支持体への熱伝導性を高くすることが求められる。よって、支持基板と、蛍光体を含む被支持基板とを有する光学部品が製造される際は、支持基板と被支持基板との間の熱伝導性を大きく妨げないように、これらを互いに接合することが求められる。この点で、直接接合は好適な接合方法である。しかしながら、直接接合が用いられる場合であっても、無視できない熱抵抗が存在し得る。このため、支持基板と被支持基板との間の熱伝導性をより高めることができる技術が求められている。
 本発明は以上のような課題を解決するためになされたものであり、その目的は、蛍光体を含む被支持基板と、それを支持する支持基板との間の熱伝導性をより高めることができる光学部品を提供することである。
 本発明の光学部品は、第1基板と、第2基板と、接合層とを有している。第1基板は蛍光体基板を含む。第2基板は、第1基板を支持しており、透光性基板を含む。接合層は、第1基板と第2基板との間に設けられており、第1基板の第2基板に面する面に含まれる少なくとも1種類の元素と、第2基板の第1基板に面する面に含まれる少なくとも1種類の元素とを含む。接合層は、第1基板および第2基板のいずれにも含まれない少なくとも1種類の金属元素を2重量%以上45重量%以下含む。
 本発明によれば、接合層は、第1基板の第2基板に面する面に含まれる少なくとも1種類の元素と、第2基板の第1基板に面する面に含まれる少なくとも1種類の元素とに加えてさらに、第1基板および第2基板のいずれにも含まれない少なくとも1種類の金属元素を2重量%以上45重量%以下含む。この金属元素の存在によって、蛍光体基板を含む第1基板と、これを支持する第2基板との間の熱伝導性が高められる。
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
本発明の実施の形態1における光学部品を有する照明装置の構成を概略的に示す断面図である。 図1の一部拡大図であって、光学部品における被支持基板と支持基板との間の接合層の近傍を概略的に示す部分断面図である。 本発明の実施の形態2における光学部品の構成を概略的に示す断面図である。 図3の一部拡大図であって、被支持基板と支持基板との間の接合層の近傍を概略的に示す部分断面図である。 図3の光学部品の製造方法の第1工程を概略的に示す断面図である。 図3の光学部品の製造方法の第2工程を概略的に示す断面図である。 図3の光学部品の製造方法の第3工程を概略的に示す断面図である。 図3の光学部品の製造方法の第4工程を概略的に示す断面図である。 図4の変形例である。
 以下、図面に基づいて本発明の実施の形態について説明する。
 <実施の形態1>
 (構成)
 図1を参照して、照明装置100は、光源90と、波長変換部材50(光学部品)とを有している。光源90は、例えば半導体レーザである。波長変換部材50は、蛍光体を用いることによって、光の波長を変換するものである。光源からの励起光91は、波長変換部材50を通過することによって、照明光92に変換される。例えば、励起光91は青色光または紫外光であり、照明光92は白色光である。
 波長変換部材50は、被支持基板10(第1基板)と、被支持基板10を支持する支持基板20(第2基板)とを有している。照明装置100が使用される際は、被支持基板10および支持基板20の両方を通過する光が、光源90によって供される。図中では光の進行方向が支持基板20から被支持基板10へ向かっているが、光の進行方向は逆でもよい。また変形例として、光源から、被支持基板10のみを通過する光が供されてもよい。被支持基板10は蛍光体基板11を含み、本実施の形態においては被支持基板10は蛍光体基板11である。支持基板20は透光性基板21を含み、本実施の形態においては支持基板20は透光性基板21である。
 蛍光体基板11は、蛍光体を含む基板である。蛍光体基板11は、例えば、ドーピングされたYAGを含有している。
 蛍光体基板11は、例えば、蛍光体単結晶基板または蛍光体多結晶基板であってよい。蛍光体多結晶基板は、実質的に蛍光体結晶粒のみからなる基板であってもよく、あるいは、蛍光体粒子が分散されたセラミックスラリーを焼成することによって形成された基板であってもよい。あるいは、蛍光体基板11は、ガラスまたは樹脂などのバインダと、このバインダ中に分散された蛍光体とを有するものであってよい。すなわち、蛍光体基板11は、多数の蛍光体粒子がバインダによって結合されたものであってよい。
 透光性基板21は、透光性を有する基板であり、好ましくは実質的に透明な基板である。透光性基板21は、例えば、単結晶基板または多結晶基板であってよい。多結晶基板は、セラミックス(焼結体)として形成され得る。単結晶基板は、例えばサファイア基板である。透光性基板21の直線透過率は、照明装置100が利用する波長範囲において、損失の抑制の観点では、厚み0.5mm当たり70%程度以上が好ましい。一方、色むらの抑制の観点では、透光性基板21の直線透過率は低い方が好ましい。具体的には、蛍光体基板11として単結晶基板が用いられる場合は80%未満が好ましいが、蛍光体基板11として多結晶基板が用いられる場合は80%以上であってもよい。蛍光体基板11として多結晶基板が用いられる場合、励起光が蛍光体基板11中で散乱されやすく、この散乱光と蛍光とが十分に重なることによって、色むらが抑制される。
 好ましくは、透光性基板21の熱伝導率は、蛍光体基板11の熱伝導率よりも高い。透光性基板21の厚みは、例えば1mm程度である。透光性基板21は、水平方向(図中、横方向)において、実質的に一定の屈折率を有していることが好ましい。透光性基板21は、実質的に気孔を有しないことが好ましい。気孔の観察は、例えば、5000倍程度の顕微鏡観察によって行われる。観察される面が準備される際に脱粒が生じることを避けるために、観察される面は、イオンミリングを用いた研磨によって仕上げられることが好ましい。
 透光性基板21は、主成分としてアルミナ(Al)または窒化アルミニウムを含むことが好ましい。透光性基板21の成分中、主成分が占める割合は、99%以上が好ましく、99.99%以上がより好ましい。好ましくは、透光性基板21の線膨張係数は、蛍光体基板11の線膨張係数の±30%以内である。ここで線膨張係数は面内方向(図中、横方向)のものである。
 図2を参照して、波長変換部材50は、電子顕微鏡などによって微視的に観察されると、被支持基板10と支持基板20との間に接合層30を有している。接合層30は、被支持基板10と支持基板20との間の直接接合によって形成された界面層である。直接接合の際に原子の拡散が生じることから、接合層30は、被支持基板10の支持基板20に面する面(図中、下面)に含まれる少なくとも1種類の元素と、支持基板20の被支持基板10に面する面(図中、上面)に含まれる少なくとも1種類の元素とを含む。特に本実施の形態においては、接合層30は、蛍光体基板11と透光性基板21との間の直接接合によって形成された界面層である。このため接合層30は、蛍光体基板11に含まれる少なくとも1種類の元素と、透光性基板21に含まれる少なくとも1種類の元素とを含む。接合層30の厚みは、1nm程度以上100nm程度以下が好ましく、1nm以上10nm以下がより好ましい。なお、接合層30が存在していることから、厳密にいえば、蛍光体基板11は、透光性基板21によって接合層30を介して支持されているといえる。
 接合層30は、被支持基板10および支持基板20のいずれにも含まれない少なくとも1種類の金属元素を2重量%以上45重量%以下含む。ここで、「被支持基板10および支持基板20のいずれにも含まれない少なくとも1種類の金属元素」とは、被支持基板10および支持基板20のいずれにも主成分として含まれない少なくとも1種類の金属元素のことであり、例えば、被支持基板10および支持基板20のいずれにも1重量%以上含まれない少なくとも1種類の金属元素のことである。条件を満たす金属元素が接合層30中に複数存在する場合、重量パーセントの値は、これらの金属元素の重量パーセントの総計である。好ましくは、金属元素としては、鉄(Fe)、クロム(Cr)およびニッケル(Ni)の少なくともいずれかが用いられる。詳しくは実施の形態2において述べるが、波長変換部材50の製造時に、金属元素は、互いに直接接合されることになる被支持基板10の表面および支持基板20の表面の少なくともいずれか、好ましくは両方、へ添加される。この添加後に直接接合が行われるため、接合層30は上記金属元素を含む。
 (効果)
 本実施の形態によれば、接合層30は、被支持基板10の支持基板20に面する面に含まれる少なくとも1種類の元素と、支持基板20の被支持基板10に面する面に含まれる少なくとも1種類の元素とを含む。このような接合層30は、前述したように、直接接合によって形成することができる。直接接合が用いられることにより、被支持基板10から支持基板20への熱伝導が接合部において阻害されることが抑制される。
 さらに、接合層30は、被支持基板10および支持基板20のいずれにも含まれない少なくとも1種類の金属元素を2重量%以上45重量%以下含む。第1に、この金属元素が有意に存在することによって、接合層30中の金属結合的性質が高められる。これにより、被支持基板10と支持基板20との間の熱伝導性が高められる。第2に、この金属元素の存在が過多でないことによって、この金属元素に起因しての光の吸収および散乱が大きくなり過ぎることが避けられる。これにより、接合層30中の上記金属元素の存在に起因して波長変換部材50の光学特性が大きく乱されることが避けられる。以上のように、本実施の形態によれば、波長変換部材50の光学特性を維持しつつ、被支持基板10から支持基板20への熱放散を促進することができる。
 好ましくは、透光性基板21の熱伝導率は、蛍光体基板11の熱伝導率よりも高い。これにより、蛍光体基板11からの放熱を促進することができる。よって、蛍光体基板11の温度が上昇することによる性能の劣化を抑制することができる。
 好ましくは、透光性基板21の線膨張係数は、蛍光体基板11の線膨張係数の±30%以内である。これにより、熱膨張の差異に起因した蛍光体基板11の割れの発生を防止することができる。特に、蛍光体基板11の厚みが100μm程度以下かつ透光性基板21の厚みが1mm以上のように両者の厚みの相異が大きい場合、顕著な効果が得られる。
 <実施の形態2>
 (構成)
 図3を参照して、本実施の形態の波長変換部材50a(光学部品)は、被支持基板10(図1)に代わり、被支持基板10a(第1基板)を有している。被支持基板10aは、支持基板20に面する中間層13を含む。よって蛍光体基板11は、透光性基板21によって中間層13を介して支持されている。中間層13は、蛍光体基板11の材料とは異なる材料からなる。中間層13は、透光性を有する層であり、好ましくは実質的に透明である。好ましくは、中間層13の厚みは、1μm以下である。好ましくは、中間層13の熱伝導率は、蛍光体基板11の熱伝導率よりも高い。中間層13の材料は、好ましくは酸化物であり、例えば、アルミナ(Al)であるが、直接接合を容易にするという観点で酸化タンタル(Ta)であってもよい。なお波長変換部材50aが導波路型蛍光体などの用途に用いられる場合は、中間層13の屈折率は蛍光体基板11の屈折率よりも小さいことが好ましい。
 図4を参照して、本実施の形態の波長変換部材50aは、接合層30(図2)に代わり接合層30aを有している。接合層30aは、被支持基板10aと支持基板20との間の直接接合によって形成された界面層である。このため接合層30aは、被支持基板10aの支持基板20に面する面(図中、下面)に含まれる少なくとも1種類の元素と、支持基板20の被支持基板10aに面する面(図中、上面)に含まれる少なくとも1種類の元素とを含む。特に本実施の形態においては、接合層30aは、中間層13と透光性基板21との間の直接接合によって形成された界面層である。このため接合層30aは、中間層13に含まれる少なくとも1種類の元素と、透光性基板21に含まれる少なくとも1種類の元素とを含む。接合層30aが存在していることから、厳密にいえば、蛍光体基板11は、透光性基板21によって中間層13および接合層30aを介して支持されているといえる。上記以外については、接合層30aは、接合層30(図2)に類したものであり、接合層30の場合と同様に金属元素を含む。
 なお、上記以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。
 (製造方法)
 波長変換部材50aの製造方法について、図5~図8を参照しつつ、以下に説明する。
 図5を参照して、蛍光体基板11上(図中、下面上)に中間層13が形成される。これにより、蛍光体基板11および中間層13を有する被支持基板10aが得られる。また、支持基板20としての透光性基板21が準備される。被支持基板10aおよび支持基板20が真空チャンバ40中へ搬送される。
 被支持基板10aの中間層13の表面と、支持基板20の表面との各々へ、粒子線生成装置41から粒子線42が照射される。これにより、両表面が、直接接合に適したものとなる。例えば、粒子線生成装置41はイオンガンであり、粒子線42はイオンビームである。あるいは、粒子線生成装置41は高速原子ビーム(Fast Atom Beam:FAB)ガンであり、粒子線42はFABである。粒子線42は、金属イオンビームまたは金属原子ビームを含む。このようなビームの生成方法の例について、以下に説明する。
 粒子線生成装置41中で、まず、希ガスのイオンビームまたは原子ビームが生成される。このビームが、粒子線生成装置41の射出部としての開口部内に取り付けられた金属グリッドに衝突する。これにより金属グリッドから金属が、イオンまたは原子として放射される。すなわち、希ガスのイオンビームまたは原子ビームに、金属のイオンビームまたは原子ビームが混合される。これにより、被支持基板10aの中間層13の表面と、支持基板20の表面との各々へ、金属元素が添加される。この添加の量は、ビームの種類、エネルギーおよび照射時間などによって調整することができる。なお、イオンビームよりはFABを用いた方が、添加量を高くしやすい。
 さらに図6を参照して、上記1対の表面が互いに接触させられる。そして、被支持基板10aと支持基板20とが荷重44によって互いに押し付けられる。これにより被支持基板10aと支持基板20とが直接接合によって互いに接合される。接合時の温度は、常温であってもよく、常温より高い温度であってもよい。高温、特に800℃程度以上の温度、が用いられると、物質の拡散が特に有意に促進される。このため、接合されることになる表面の平滑性が、常温の場合よりは、厳しく求められない。このため、高い接合温度が許容されるならば、それを用いることで、コストを低減したり、歩留まりを高めたりすることができる。接合温度が高い場合は特に、透光性基板21の線膨張係数が蛍光体基板11の線膨張係数の±30%であることが好ましい。これにより、接合後の温度降下の際の熱収縮による応力によってどちらかの基板が破断することを防止できる。
 図7を参照して、必要に応じて、蛍光体基板11の厚みが研磨46によって低減される。図8を参照して、上記接合によって得られた被支持基板10aおよび支持基板20の積層体から、ダイシングライン48に沿って、1つ以上の波長変換部材50aが切り出される。この後に、照明光92(図1)の方向へ、励起光と同様に蛍光を高効率に取り出すことができるように、ダイシング切断面に反射膜を形成することができる。反射膜としては、銀、銅、金、アルミ、および、これらを含む混晶膜が例示できる。
 以上により、波長変換部材50a(図3)が得られる。なお中間層13を形成することなく上記製造方法が行われれば、波長変換部材50(図1:実施の形態1)が得られる。
 (効果)
 本実施の形態によっても、前述した実施の形態1とほぼ同様の効果が得られる。
 さらに、本実施の形態によれば、被支持基板10aは、支持基板20に面する中間層13を含み、この中間層13は、蛍光体基板11の材料とは異なる材料からなる。これにより、被支持基板10aの支持基板20に面する面の材料を、支持基板20との接合に適した材料とすることができる。これにより、被支持基板10aと支持基板20との接合が容易となり、特に、材料の組み合わせが重要な接合である直接接合が容易となる。なお中間層13の材料は透光性基板21の材料と同じであってもよく、その場合、直接接合がより容易となる。
 (変形例)
 図9を参照して、変形例の波長変換部材50b(光学部品)は、支持基板20(図3)に代わり支持基板20a(第2基板)を有している。支持基板20aは、被支持基板10aに面する中間層23を含む。よって蛍光体基板11は、透光性基板21によって中間層13および中間層23を介して支持されている。中間層23は、透光性基板21の材料とは異なる材料からなる。中間層23は、透光性を有する層であり、好ましくは実質的に透明である。好ましくは、中間層23の厚みは、1μm以下である。好ましくは、中間層23の熱伝導率は、蛍光体基板11の熱伝導率よりも高い。中間層23の材料は、好ましくは酸化物であり、例えば、アルミナまたは酸化タンタルである。
 また波長変換部材50bは、接合層30a(図4)に代わり、接合層30bを有している。接合層30bは、被支持基板10aと支持基板20aとの間の直接接合によって形成された界面層である。このため接合層30bは、被支持基板10aの支持基板20aに面する面(図中、下面)に含まれる少なくとも1種類の元素と、支持基板20aの被支持基板10aに面する面(図中、上面)に含まれる少なくとも1種類の元素とを含む。特に本実施の形態においては、接合層30bは、中間層13と中間層23との間の直接接合によって形成された界面層である。このため接合層30bは、中間層13に含まれる少なくとも1種類の元素と、中間層23に含まれる少なくとも1種類の元素とを含む。接合層30bが存在していることから、厳密にいえば、蛍光体基板11は、透光性基板21によって中間層13と中間層23と接合層30bとを介して支持されているといえる。上記以外については、接合層30bは接合層30a(図4)に類したものであり、接合層30aの場合と同様に金属元素を含む。
 本変形例によっても、実施の形態2とほぼ同様の効果が得られる。なお中間層23の材料は中間層13の材料と同じであってもよく、その場合、直接接合がより容易となる。
 (実験A)
 蛍光体基板11(図5)として、Ce原子がドーピングされた単結晶YAG基板が準備された。蛍光体基板11上に、中間層13(図5)として、厚み0.5μmのアルミナ層がスパッタ法によって成膜された。得られた層は、表面粗さRa0.5nmを有していた。また支持基板20(図5)として、厚み1mmを有するサファイア基板が準備された。アルミナ層とサファイア基板とが直接接合された。具体的には、まず、両者の表面に、粒子線42(図5)として、実施の形態2で説明したようなイオンビームが照射された。そのためのイオンガンとしては、三菱重工業株式会社製のものを用いた。次に、真空中、常温下で、両者が接触させられ、そして荷重44(図6)が加えられた。すなわち、直接接合が行われた。次に、研磨46(図7)によって、蛍光体基板11の厚みが、誤差±0.25μm以内で200μmまで低減された。研磨46は、光学研磨の精度で行われた。具体的には、グラインダー研削、ラップおよび化学機械研磨(Chemical Mechanical Polishing:CMP)が順に行われた。次に、ダイシング装置を用いて3mm角のサイズで波長変換部材が切り出された。
 また上記と同様の条件で、直接接合を用いた複合基板を作製した。そしてその接合層を透過型電子顕微鏡(Transmission Electron Microscope:TEM)にて観察した。その結果、接合層の厚みは5nm程度であった。またエネルギー分散X線分光(Energy Dispersive X-ray spectrometry:EDX)によって接合層の組成を評価した。その結果、金属元素としてFe、CrおよびNiが観測されたが、特にFeが主に観測された。このため、金属元素の重量パーセントが評価される際は、CrおよびNiの値を無視してFeの値を用いることとした。
 上述した波長変換部材の作製に際しては、イオンビームを発生するイオンガンの照射強度および照射時間を調整することによって、接合層中の金属元素の量が制御された。これにより、接合層中のFe元素の重量パーセント(wt%)として、0wt%、2wt%、10wt%、30wt%、45wt%、50wt%および60wt%のそれぞれを有する、6つの波長変換部材が、サンプルとして準備された。光源90(図1)として、出力10W、波長450nmのGaN系青色レーザ装置が準備された。これを用いて生成された励起光91(図1)が各波長変換部材へ照射された。この光が波長変換部材を通過することによって得られた照明光92(図1)について、その出力を評価した。その結果を下記の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 なお、照明光92の出力の測定は、日本工業規格 (JIS:Japanese Industrial Standards)における「JIS C 7801」の規定に沿って行われた。具体的には、波長変換部材からの全光束の時間平均によって測定された。全光束の測定は、積分球(球形光束計)を用いて行われた。被測定光源と、全光束が値づけられた標準光源とが、同じ位置で点灯され、両者の比較によって測定が行われた。
 また、上記の表の波長変換部材の各々について、その照明光92(図1)の色むらも評価された。その結果、いずれの波長変換部材についても、色むらはないと評価された。なお、色むらは、輝度分布測定装置を用いて得られた色度図によって評価された。色度図において、測定結果が、中央値x:0.3447±0.005、y:0.3553±0.005の範囲にある場合は色むらがないと判定されるものとされた。
 (実験B)
 蛍光体基板11(図5)として、Ce原子がドーピングされた多結晶YAG基板が準備された。蛍光体基板11上に、中間層13(図5)として、厚み0.5μmのアルミナ層がスパッタ法によって成膜された。得られた層は、表面粗さRa0.5nmを有していた。また支持基板20(図5)として、厚み1mmを有するサファイア基板が準備された。アルミナ層とサファイア基板とが、上記実験Aと同様に直接接合された。次に、研磨46(図7)によって、蛍光体基板11の厚みが、上記実験Aと同様の方法によって、誤差±0.25μm以内で100μmまで低減された。次に、ダイシング装置を用いて3mm角のサイズで波長変換部材が切り出された。
 また上記と同様の条件で、直接接合を用いた複合基板を作製した。そしてその接合層をTEMにて観察した。その結果、接合層の厚みは5nm程度であった。またEDXによって接合層の組成を評価したところ、上記実験Aと同様、金属元素としてFe、CrおよびNiが観測され、特にFeが主に観測された。
 上述した波長変換部材の作製に際しては、イオンビームを発生するイオンガンの照射強度および照射時間を調整することによって、接合層中の金属元素の量が制御された。これにより、接合層中のFe元素の重量濃度として、0wt%、2wt%、10wt%、30wt%、45wt%、50wt%および60wt%のそれぞれを有する、6つの波長変換部材が、サンプルとして準備された。光源90(図1)として、出力10W、波長450nmのGaN系青色レーザ装置が準備された。これを用いて生成された励起光91(図1)が各波長変換部材へ照射された。この光が波長変換部材を通過することによって得られた照明光92(図1)について、上記実験Aと同様の方法によって、その出力が評価された。その結果を下記の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 また、各波長変換部材の照明光92(図1)の色むらも、上記実験Aの場合と同様の方法によって評価された。その結果、いずれの波長変換部材についても、色むらはないと評価された。
 (実験AおよびBにおけるサンプル間の比較)
 実験Aの結果(表1)を参照して、Fe原子の重量濃度(すなわち金属元素の濃度)が0wt%の場合、照明光92の出力は300lmであった。これよりも高い出力が、重量濃度2wt%以上45wt%以下の範囲で得られた。実験Bの結果(表2)も同様であった。これらの結果から、接合層中にFe原子が2wt%以上45wt%以下の範囲で含まれると、接合層中に金属元素が実質的に含まれない場合に比して、照明光の出力が高められることがわかった。この理由は、Fe原子が接合層中に有意に含まれることによって、接合層中の熱抵抗が低下し、よって蛍光体基板11からの熱放散が促進されたためと考えられる。一方、Fe原子の重量濃度が過度に高い場合は、Fe原子によって光が吸収または反射されることによって、接合層中で光の損失が大きく発生し、よって照明光の出力が低下したと考えられる。
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 10,10a 被支持基板(第1基板)
 11 蛍光体基板
 13 中間層(第1の中間層)
 23 中間層(第2の中間層)
 20,20a 支持基板(第2基板)
 21 透光性基板
 30,30a,30b 接合層
 40 真空チャンバ
 41 粒子線生成装置
 50,50a,50b 波長変換部材(光学部品)
 90 光源
 91 励起光
 92 照明光
 100 照明装置

Claims (6)

  1.  蛍光体基板(11)を含む第1基板(10,10a)と、
     前記第1基板(10,10a)を支持し、透光性基板(21)を含む第2基板(20,20a)と、
     前記第1基板(10,10a)と前記第2基板(20,20a)との間に設けられ、前記第1基板(10,10a)の前記第2基板(20,20a)に面する面に含まれる少なくとも1種類の元素と、前記第2基板(20,20a)の前記第1基板(10,10a)に面する面に含まれる少なくとも1種類の元素とを含む接合層と、
    を備え、
     前記接合層は、前記第1基板(10,10a)および前記第2基板(20,20a)のいずれにも含まれない少なくとも1種類の金属元素を2重量%以上45重量%以下含む、光学部品(50,50a,50b)。
  2.  前記少なくとも1種類の元素は、鉄、クロムおよびニッケルの少なくともいずれかを含む、請求項1に記載の光学部品(50,50a,50b)。
  3.  前記接合層の厚みは、1nm以上100nm以下である、請求項1または2に記載の光学部品(50,50a,50b)。
  4.  前記透光性基板(21)は、アルミナまたは窒化アルミニウムを含む、請求項1から3のいずれか1項に記載の光学部品(50,50a,50b)。
  5.  前記第1基板(10a)は、前記第2基板(20,20a)に面する第1の中間層(13)を含み、前記第1の中間層(13)は、前記蛍光体基板(11)の材料とは異なる材料からなる、請求項1から4のいずれか1項に記載の光学部品(50a,50b)。
  6.  前記第2基板(20a)は、前記第1基板(10a)に面する第2の中間層(23)を含み、前記第2の中間層(23)は、前記透光性基板(21)の材料とは異なる材料からなる、請求項5に記載の光学部品(50b)。
PCT/JP2017/043249 2016-12-13 2017-12-01 光学部品 WO2018110316A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17880840.8A EP3557293A4 (en) 2016-12-13 2017-12-01 OPTICAL COMPONENT
JP2018556571A JPWO2018110316A1 (ja) 2016-12-13 2017-12-01 光学部品
US16/437,720 US20190309936A1 (en) 2016-12-13 2019-06-11 Optical component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016241036 2016-12-13
JP2016-241036 2016-12-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/437,720 Continuation US20190309936A1 (en) 2016-12-13 2019-06-11 Optical component

Publications (1)

Publication Number Publication Date
WO2018110316A1 true WO2018110316A1 (ja) 2018-06-21

Family

ID=62559759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043249 WO2018110316A1 (ja) 2016-12-13 2017-12-01 光学部品

Country Status (4)

Country Link
US (1) US20190309936A1 (ja)
EP (1) EP3557293A4 (ja)
JP (1) JPWO2018110316A1 (ja)
WO (1) WO2018110316A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208658A1 (ja) * 2018-04-25 2019-10-31 国立大学法人北見工業大学 接合体、レーザ発振器、レーザ増幅器及び接合体の製造方法
JP2020205325A (ja) * 2019-06-17 2020-12-24 日亜化学工業株式会社 発光装置の製造方法
WO2023153241A1 (ja) * 2022-02-09 2023-08-17 日亜化学工業株式会社 波長変換モジュール、発光装置および、波長変換モジュールの製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6928621B2 (ja) * 2017-01-18 2021-09-01 日本碍子株式会社 光学部品および照明装置
US10629577B2 (en) 2017-03-16 2020-04-21 Invensas Corporation Direct-bonded LED arrays and applications
US11169326B2 (en) 2018-02-26 2021-11-09 Invensas Bonding Technologies, Inc. Integrated optical waveguides, direct-bonded waveguide interface joints, optical routing and interconnects
US11256004B2 (en) * 2018-03-20 2022-02-22 Invensas Bonding Technologies, Inc. Direct-bonded lamination for improved image clarity in optical devices
US11762200B2 (en) 2019-12-17 2023-09-19 Adeia Semiconductor Bonding Technologies Inc. Bonded optical devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004337927A (ja) * 2003-05-15 2004-12-02 Tadatomo Suga 基板接合方法および基板接合装置
JP2007324195A (ja) * 2006-05-30 2007-12-13 Mitsubishi Heavy Ind Ltd 常温接合によるデバイス、デバイス製造方法ならびに常温接合装置
WO2011141377A1 (de) 2010-05-12 2011-11-17 Osram Gesellschaft mit beschränkter Haftung Scheinwerfermodul
JP2015029079A (ja) * 2013-06-26 2015-02-12 日亜化学工業株式会社 発光装置およびその製造方法
JP2016157905A (ja) 2015-02-26 2016-09-01 日本碍子株式会社 光学部品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004337927A (ja) * 2003-05-15 2004-12-02 Tadatomo Suga 基板接合方法および基板接合装置
JP2007324195A (ja) * 2006-05-30 2007-12-13 Mitsubishi Heavy Ind Ltd 常温接合によるデバイス、デバイス製造方法ならびに常温接合装置
WO2011141377A1 (de) 2010-05-12 2011-11-17 Osram Gesellschaft mit beschränkter Haftung Scheinwerfermodul
JP2015029079A (ja) * 2013-06-26 2015-02-12 日亜化学工業株式会社 発光装置およびその製造方法
JP2016157905A (ja) 2015-02-26 2016-09-01 日本碍子株式会社 光学部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3557293A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208658A1 (ja) * 2018-04-25 2019-10-31 国立大学法人北見工業大学 接合体、レーザ発振器、レーザ増幅器及び接合体の製造方法
JP2020205325A (ja) * 2019-06-17 2020-12-24 日亜化学工業株式会社 発光装置の製造方法
JP7022284B2 (ja) 2019-06-17 2022-02-18 日亜化学工業株式会社 発光装置の製造方法
WO2023153241A1 (ja) * 2022-02-09 2023-08-17 日亜化学工業株式会社 波長変換モジュール、発光装置および、波長変換モジュールの製造方法

Also Published As

Publication number Publication date
EP3557293A4 (en) 2020-08-05
EP3557293A1 (en) 2019-10-23
JPWO2018110316A1 (ja) 2019-10-24
US20190309936A1 (en) 2019-10-10

Similar Documents

Publication Publication Date Title
WO2018110316A1 (ja) 光学部品
JP6253392B2 (ja) 発光装置及びそれを用いたプロジェクター用光源
JP5530165B2 (ja) 光源装置および照明装置
JP2012104267A (ja) 光源装置および照明装置
KR20150103637A (ko) 파장 변환 소성체
JP6845372B2 (ja) 光波長変換装置
JP2012129135A (ja) 光源装置、照明装置、蛍光体層作製方法
WO2017217486A1 (ja) 蛍光体素子および照明装置
US11105486B2 (en) Optic and illumination device
JP5781367B2 (ja) 光源装置および照明装置
JP7188893B2 (ja) 光波長変換部材及び光波長変換装置
JP5695887B2 (ja) 光源装置および照明装置
JP6928621B2 (ja) 光学部品および照明装置
KR102318473B1 (ko) 광 파장 변환 부재의 제조 방법, 광 파장 변환 부재, 광 파장 변환 부품, 및 발광 장치
TWI648242B (zh) Manufacturing method of optical wavelength conversion member, optical wavelength conversion member, optical wavelength conversion component, and light-emitting device
JP7244297B2 (ja) 光波長変換部品
WO2021132212A1 (ja) 波長変換部材、発光素子及び発光装置
JP6486441B2 (ja) 光波長変換部材の製造方法、光波長変換部材、光波長変換部品、及び発光装置
JP2019003090A (ja) 蛍光体素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880840

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018556571

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017880840

Country of ref document: EP

Effective date: 20190715