WO2014194989A1 - Teleskopierbare antriebswelle - Google Patents
Teleskopierbare antriebswelle Download PDFInfo
- Publication number
- WO2014194989A1 WO2014194989A1 PCT/EP2014/001397 EP2014001397W WO2014194989A1 WO 2014194989 A1 WO2014194989 A1 WO 2014194989A1 EP 2014001397 W EP2014001397 W EP 2014001397W WO 2014194989 A1 WO2014194989 A1 WO 2014194989A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shaft portion
- shaft
- section
- outer shaft
- drive shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C3/00—Shafts; Axles; Cranks; Eccentrics
- F16C3/02—Shafts; Axles
- F16C3/023—Shafts; Axles made of several parts, e.g. by welding
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C3/00—Shafts; Axles; Cranks; Eccentrics
- F16C3/02—Shafts; Axles
- F16C3/026—Shafts made of fibre reinforced resin
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C3/00—Shafts; Axles; Cranks; Eccentrics
- F16C3/02—Shafts; Axles
- F16C3/03—Shafts; Axles telescopic
Definitions
- Resilience as used herein means total bond strength of the adhesive bond which results in failure thereof
- the inner cross section of the hollow cylindrical end portion of the outer shaft portion along the first insertion depth should correspond to the outer cross section of the inner shaft portion while the gap width on the used
- Additive of the cohesive connection is adaptable.
- the operating torque is ultimately transmitted via the additive in the annular gap between the inner shaft portion and the outer shaft portion.
- cohesive connection can be determined simply by changing the immersion depth, the strength of the additive and the gap width between the inner and the outer shaft portion.
- the torque to be transmitted is also included in the dimensioning of the integral connection.
- the force that causes failure should only be as high as the force that would cause buckling of the slimmer shaft section.
- an almost constant (or predefined, for example path-dependent) force level is set over the entire sliding path, which provides the optimum characteristic curve in the entire vehicle for the relevant crash load cases.
- the force for pushing the shaft together is preferably set in a range of 40 to 80 kN
- drive shaft according to the invention therefore does not buckle in a crash, but leaves Collapse under the axial thrust load occurring during the crash, whereby the risk of injury to vehicle occupants and crash opponents can be reduced.
- the drive shaft can be produced more cheaply than known
- the cross section of the shaft sections may advantageously be circular, since this results in a homogeneous stress distribution and a good torsional load
- one or both shaft sections can consist of a fiber-reinforced material at least along a longitudinal axis section, wherein a fiber-reinforced plastic, in particular CFK or GFK, are advantageous.
- the drive shaft is made of the fiber-reinforced material, known advantages in terms of increased torsional rigidity with reduced weight and in the vehicle overall system of increased driving dynamics can be achieved because a smaller mass must be accelerated.
- the integral connection may be a fiber-free connection, wherein an adhesive connection or a connection formed by a matrix material of the at least one shaft section of the fiber-reinforced material is advantageous.
- Failure mechanism of a fiber-free connection another; For example, after the failure, there are no sharp break edges and open fiber ends, which can also reduce the risk of injury, especially when recycling.
- fiber-reinforced material to show a fiber orientation, in which the fibers come to lie at an angle in the range of 25 ° to 70 ° with respect to the longitudinal axis;
- An angle in a range of 35 ° to 55 ° is also considered to be advantageous, and a range of 40 ° to 50 ° is considered to be particularly advantageous.
- Adjustment parameters must be used in terms of setting load level and running behavior, the predetermined breaking surface and stepped between the individual fiber layers can be realized.
- fiber-free adhesive surfaces or fiber-free matrix regions arranged in each case between them.
- a controlled increase in the load level takes place at the end. It is important that the PTO shaft yields to a constant and well-defined force level.
- the level of this force is preferably at a value in the range of 40 to 80 kN, particularly preferably 50 or 80 kN.
- the cohesive connection has a longitudinal axial
- Embodiment simply by "stacking” and then laminating individual shaft blanks are made.
- Shaft portion and the second outer shaft portion a predetermined number be guided further inner shaft sections and / or outer shaft sections.
- n-th inner shaft portion and a (n-1) -th outer shaft portion there is respectively an n-th circumferential gap having a predetermined longitudinal axial extent.
- the axial force which leads to the "triggering" of the integral connections can also be dimensioned by including the insertion depths of the n-th inner into the n-th outer shaft sections as well as the strength of the integral connections into the design be provided that the shaft portion of highest "order" is an inner shaft portion which is not performed in an outer shaft portion of the same order, that is, virtually forms a compensation sleeve.
- the outer cross section of this compensating sleeve can particularly advantageously correspond to the outer cross section of the longitudinal axial outer shaft section arranged opposite, since such a
- Fig. 2 is a longitudinal section of another collapsible drive shaft.
- FIG. 1 A simple design of a drive shaft 1 according to the invention is shown in FIG.
- the inner shaft portion 12 is along the insertion depth in the outer
- the size of the transmittable operating torque can be adjusted while maintaining the dimensions of the two shaft sections 1 1, 12 solely by changing the immersion depth L-, and by the strength of the cohesive connection in the annular gap 12 '.
- the cohesive connection can be realized using an additive, such as an adhesive. If the shaft sections 11, 12 are FRP pipes, then the additive may also be the matrix plastic of the FRP pipes, since it is known from this that it bonds well with the shaft sections 11, 12.
- the cohesive connection in the annular gap 12 will fail if a limit force is exceeded.
- the limit force can be dimensioned via the possibilities described above and should only be chosen so large that it is ensured that none of the shaft sections 11, 12 fails by buckling, as this represents an increased risk of injury.
- Shaft portion 12 penetrate into the outer shaft portion 11; When it comes to pipes, the penetration path is basically unlimited. However, it is also conceivable that only the end portion of the outer shaft portion 11, the inner
- Shaft portion 12 receives, is hollow and the rest of a full wave; then that is
- the shaft sections made of FRP can be produced by pultrusion, wherein the fibers can be arranged, for example, at a load flow rate approximately at a ⁇ 45 ° angle, which, however, can not be deduced from FIG.
- FIG. 2 another embodiment of the drive shaft 1 is shown in longitudinal section.
- the basic structure with inner shaft portion 12 and outer shaft portion 11 corresponds to the drive shaft 1, which is shown in Fig. 1.
- a second outer shaft portion 15 is connected to the first outer shaft portion 11, along the predetermined insertion depth L 2 on the inner
- the circumferential gap 18 extends with the length L 4 along the longitudinal axis and is located between opposite end faces of the second outer shaft portion 15 and a sleeve 16 as the second inner shaft portion 14 striped third inner shaft portion 16.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Ocean & Marine Engineering (AREA)
- Mechanical Engineering (AREA)
- Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201480032058.2A CN105308335A (zh) | 2013-06-05 | 2014-05-23 | 可伸缩的驱动轴 |
| US14/896,349 US20160123376A1 (en) | 2013-06-05 | 2014-05-23 | Telescopic drive shaft |
| EP14727163.9A EP3004668A1 (de) | 2013-06-05 | 2014-05-23 | Teleskopierbare antriebswelle |
| JP2016517182A JP2016520184A (ja) | 2013-06-05 | 2014-05-23 | 入れ子式ドライブシャフト |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102013009497.6 | 2013-06-05 | ||
| DE102013009497.6A DE102013009497A1 (de) | 2013-06-05 | 2013-06-05 | Teleskopierbare Antriebswelle |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2014194989A1 true WO2014194989A1 (de) | 2014-12-11 |
Family
ID=50842231
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2014/001397 Ceased WO2014194989A1 (de) | 2013-06-05 | 2014-05-23 | Teleskopierbare antriebswelle |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US20160123376A1 (enExample) |
| EP (1) | EP3004668A1 (enExample) |
| JP (1) | JP2016520184A (enExample) |
| CN (1) | CN105308335A (enExample) |
| DE (1) | DE102013009497A1 (enExample) |
| WO (1) | WO2014194989A1 (enExample) |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102015115913A1 (de) * | 2015-09-21 | 2017-03-23 | Horiba Europe Gmbh | Welleneinrichtung aus einem Faser-Kunststoff-Verbund |
| DE102015015728A1 (de) | 2015-12-01 | 2016-05-25 | Daimler Ag | Antriebswelle für ein Kraftfahrzeug |
| US11384797B2 (en) * | 2017-04-25 | 2022-07-12 | Gkn Driveline Deutschland Gmbh | Drive shaft connection |
| US10597062B2 (en) | 2017-10-09 | 2020-03-24 | Thyssenkrupp Presta Ag | Steering column assembly with crash bracket rotation dampening mechanism and methods of making and using same |
| US10532761B2 (en) | 2017-12-06 | 2020-01-14 | Thyssenkrupp Presta Ag | Spindle and steering column assembly having same |
| DE102017223304B4 (de) * | 2017-12-19 | 2023-08-24 | Bayerische Motoren Werke Aktiengesellschaft | Kraftfahrzeugantriebswelle und Verfahren zu deren Herstellung |
| CN108223598B (zh) * | 2018-01-11 | 2019-08-23 | 新沂经济开发区建设发展有限公司 | 一种插入深度可调节式联轴器 |
| CN108397473B (zh) * | 2018-05-07 | 2024-03-19 | 珠海市凯菱机械科技有限公司 | 一种单旋翼无人机的主旋翼轴及其加工工艺 |
| US11761852B2 (en) * | 2021-10-28 | 2023-09-19 | Fca Us Llc | Rotary torque input fixture for testing a solid axle in a road simulation test |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3725959A1 (de) | 1987-08-05 | 1989-02-16 | Loehr & Bromkamp Gmbh | Verbindung zwischen fvw-rohr und stahlzapfen |
| DE10104547A1 (de) | 2000-02-03 | 2001-08-09 | Dana Corp | Axial zusammenschiebbare Antriebswellenanordnung |
| JP2001355626A (ja) * | 2000-06-09 | 2001-12-26 | Fuji Heavy Ind Ltd | 複合材製駆動軸 |
| WO2007140859A2 (de) * | 2006-06-09 | 2007-12-13 | SGF SüDDEUTSCHE GELENKSCHEIBENFABRIK GMBH & CO. KG | Drehmomentübertragungseinrichtung zum schwingungsreduzierten übertragen von drehmomenten über wenigstens eine welle |
| DE102009009682A1 (de) | 2009-02-19 | 2010-08-26 | Bayerische Motoren Werke Aktiengesellschaft | Antriebswelle, insbesondere Gelenkwelle, insbesondere für Automobile und Motorräder |
Family Cites Families (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4380443A (en) * | 1979-11-17 | 1983-04-19 | Felten & Guilleaume Carlswerk Aktiengesellschaft | Fiber-reinforced drive shaft |
| DE3520252A1 (de) * | 1985-06-05 | 1986-12-11 | Metzeler Kautschuk GmbH, 8000 München | Antriebswelle |
| US4722717A (en) * | 1986-03-31 | 1988-02-02 | General Signal Corp. | End connection for composite shafts |
| DE3920793C2 (de) * | 1989-06-24 | 1994-10-27 | Gkn Automotive Ag | Verbindungsanordnung |
| TW206182B (enExample) * | 1991-04-30 | 1993-05-21 | Sumitomo Chemical Co | |
| US5115691A (en) * | 1991-09-03 | 1992-05-26 | General Motors Corporation | Collapsible shaft assembly |
| US5230658A (en) * | 1992-04-06 | 1993-07-27 | Burton Robert A | Driveshaft with slip joint seal |
| CN1046018C (zh) * | 1993-05-03 | 1999-10-27 | 托林顿公司 | 长度可变的转向轴联轴节 |
| DE19504036C1 (de) * | 1995-02-08 | 1996-06-27 | Lemfoerder Metallwaren Ag | Sicherheitslenkwelle |
| JP3323400B2 (ja) * | 1996-07-19 | 2002-09-09 | 株式会社山田製作所 | ステアリングの中間シャフト装置 |
| US6241616B1 (en) * | 1999-05-20 | 2001-06-05 | Neapco Inc. | Variable length double telescoping drive shaft assembly |
| JP2002067981A (ja) * | 2000-09-05 | 2002-03-08 | Fuji Kiko Co Ltd | 車両用ステアリングコラム |
| JP3913017B2 (ja) * | 2001-09-10 | 2007-05-09 | 株式会社日立製作所 | 動力伝達部材の連結構造 |
| US7784830B2 (en) * | 2003-10-23 | 2010-08-31 | Chrysler Group Llc | Axially adjustable steering column assembly with flexible bearing sleeve |
| US20050137020A1 (en) * | 2003-12-17 | 2005-06-23 | Beechie Brian E. | Controlled collapsible drive line arrangement |
| DE102004043621A1 (de) * | 2004-09-07 | 2006-03-23 | Volkswagen Ag | Wellenanordnung |
| JP2006220187A (ja) * | 2005-02-09 | 2006-08-24 | Honda Motor Co Ltd | プロペラシャフト |
| DE102006026946B4 (de) * | 2006-06-09 | 2020-06-18 | Süddeutsche Gelenkscheibenfabrik Gesellschaft mit beschränkter Haftung & Co. KG | Drehmomentübertragungseinrichtung zum Ankoppeln von Wellen |
| DE102008056018A1 (de) * | 2008-11-05 | 2010-05-06 | Rolls-Royce Deutschland Ltd & Co Kg | Triebwerkswelle für ein Gasturbinentriebwerk |
| JP5683798B2 (ja) * | 2009-08-31 | 2015-03-11 | 藤倉ゴム工業株式会社 | Frp製駆動シャフト |
| CN102235326B (zh) * | 2010-04-30 | 2013-12-25 | 住友重机械工业株式会社 | 动力传递装置及动力传递装置的联轴器单元 |
| JP5408194B2 (ja) * | 2010-10-11 | 2014-02-05 | 日本精工株式会社 | 伸縮軸の製造方法、及び、この製造方法によって製造した伸縮軸 |
| JP2012102820A (ja) * | 2010-11-11 | 2012-05-31 | Aisin Seiki Co Ltd | ステアリング装置の伸縮軸機構 |
| DE202010017747U1 (de) * | 2010-12-21 | 2012-07-10 | Thyssenkrupp Presta Aktiengesellschaft | Gleithülse |
-
2013
- 2013-06-05 DE DE102013009497.6A patent/DE102013009497A1/de not_active Withdrawn
-
2014
- 2014-05-23 CN CN201480032058.2A patent/CN105308335A/zh active Pending
- 2014-05-23 EP EP14727163.9A patent/EP3004668A1/de not_active Withdrawn
- 2014-05-23 JP JP2016517182A patent/JP2016520184A/ja active Pending
- 2014-05-23 US US14/896,349 patent/US20160123376A1/en not_active Abandoned
- 2014-05-23 WO PCT/EP2014/001397 patent/WO2014194989A1/de not_active Ceased
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3725959A1 (de) | 1987-08-05 | 1989-02-16 | Loehr & Bromkamp Gmbh | Verbindung zwischen fvw-rohr und stahlzapfen |
| DE10104547A1 (de) | 2000-02-03 | 2001-08-09 | Dana Corp | Axial zusammenschiebbare Antriebswellenanordnung |
| JP2001355626A (ja) * | 2000-06-09 | 2001-12-26 | Fuji Heavy Ind Ltd | 複合材製駆動軸 |
| WO2007140859A2 (de) * | 2006-06-09 | 2007-12-13 | SGF SüDDEUTSCHE GELENKSCHEIBENFABRIK GMBH & CO. KG | Drehmomentübertragungseinrichtung zum schwingungsreduzierten übertragen von drehmomenten über wenigstens eine welle |
| DE102009009682A1 (de) | 2009-02-19 | 2010-08-26 | Bayerische Motoren Werke Aktiengesellschaft | Antriebswelle, insbesondere Gelenkwelle, insbesondere für Automobile und Motorräder |
Also Published As
| Publication number | Publication date |
|---|---|
| US20160123376A1 (en) | 2016-05-05 |
| CN105308335A (zh) | 2016-02-03 |
| DE102013009497A1 (de) | 2014-12-11 |
| EP3004668A1 (de) | 2016-04-13 |
| JP2016520184A (ja) | 2016-07-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP3004668A1 (de) | Teleskopierbare antriebswelle | |
| DE4119359C2 (de) | Antriebswelle | |
| EP2663781B1 (de) | Kupplung zum dämpfenden verbinden zweier wellenabschnitte insbesondere einer lenkwelle, sowie lenkwelle und verfahren zur herstellung einer entsprechenden kupplung | |
| DE10136707B4 (de) | Kardanwelle und Verfahren zum Herstellen derselben | |
| DE10240192B4 (de) | VL-Gelenk mit langem Verschiebeweg | |
| EP3631219A1 (de) | Lenkwelle für ein kraftfahrzeug | |
| DE2132918A1 (de) | Elastisches Verbindungsglied fuer eine Kupplung,insbesondere eine drehfedernde Kupplung | |
| EP3305501A1 (de) | Schnecke zum einsatz in einem extruder und extruder | |
| EP3253644B1 (de) | Vorrichtung zur einbringung eines hilfsdrehmoments in eine lenkwelle und elektro-mechanische hilfskraftlenkung | |
| WO2015007447A1 (de) | Drehmomentübertragungseinrichtung sowie fahrzeug mit einer gelenkwelle | |
| DE102013203230A1 (de) | Antriebswellen und Antriebswellenanordnungen und Verfahren zur Herstellung von Antriebswellen | |
| DE102006045768A1 (de) | Verschiebeeinheit und Gelenkwelle mit einer Verschiebeeinheit | |
| EP3568603B1 (de) | Wellenverbindung | |
| EP2230147B1 (de) | Energieverzehrelement und Stoßsicherung mit einem Energieverzehrelement | |
| DE102015100797B4 (de) | Plastiklenksäule | |
| DE112008000697T5 (de) | Form zum Herstellen einer Verbundantriebswelle und unter Verwendung der Form hergestellte Verbundantriebswelle | |
| EP2706276B1 (de) | Innenwandig verstärktes rohr und verfahren zu dessen herstellung | |
| DE102013000984B3 (de) | Homokinetisches Festgelenk mit Crashfunktion | |
| EP3353439A1 (de) | Welleneinrichtung aus einem faser-kunststoff-verbund | |
| DE102013004950A1 (de) | Lastübertragungsbauteil | |
| DE102005046301A1 (de) | Verschiebeeinheit und Gelenkwelle mit einer Verschiebeeinheit | |
| DE102009012472A1 (de) | Zug-Druckstange mit definiertem Lastversagen | |
| WO2018196960A1 (de) | Wellenverbindung und antriebswelle mit einer solchen wellenverbindung | |
| DE102013200287A1 (de) | Verfahren für die Herstellung eines Strukturbauteils eines Fahrzeugs | |
| DE102012001057A1 (de) | Bauteil |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 201480032058.2 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14727163 Country of ref document: EP Kind code of ref document: A1 |
|
| REEP | Request for entry into the european phase |
Ref document number: 2014727163 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2014727163 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2016517182 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 14896349 Country of ref document: US |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |