WO2014192774A1 - 太陽電池用バックシート、及び太陽電池モジュール - Google Patents

太陽電池用バックシート、及び太陽電池モジュール Download PDF

Info

Publication number
WO2014192774A1
WO2014192774A1 PCT/JP2014/064031 JP2014064031W WO2014192774A1 WO 2014192774 A1 WO2014192774 A1 WO 2014192774A1 JP 2014064031 W JP2014064031 W JP 2014064031W WO 2014192774 A1 WO2014192774 A1 WO 2014192774A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
solar cell
layer
coating layer
polymer
Prior art date
Application number
PCT/JP2014/064031
Other languages
English (en)
French (fr)
Inventor
冨澤 秀樹
直裕 松永
直希 小糸
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201480028998.4A priority Critical patent/CN105229798B/zh
Publication of WO2014192774A1 publication Critical patent/WO2014192774A1/ja
Priority to US14/938,856 priority patent/US20160064586A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell backsheet and a solar cell module.
  • Solar cells are a power generation system that emits no carbon dioxide during power generation and has a low environmental load, and have been rapidly spreading in recent years.
  • the solar cell module is generally between a front base material that is disposed on the front surface side on which sunlight is incident and a so-called back sheet that is disposed on the opposite side (back surface side) to the front surface side on which sunlight is incident.
  • the solar battery element has a structure in which solar cells sealed with a sealing material are sandwiched, and between the front base material and the solar battery cell and between the solar battery cell and the back sheet, Each is sealed with a sealing material such as EVA (ethylene-vinyl acetate copolymer) resin. Since the environment in which the solar cell module is generally used is an environment that is constantly exposed to wind and rain such as outdoors, the durability of the solar cell backsheet is one of the important issues.
  • EVA ethylene-vinyl acetate copolymer
  • the durability of the back sheet for solar cells under such a humid heat environment is that the sealing material adjacent to the back sheet for solar cells and the back sheet for solar cells peel or the back sheet for solar cells has a laminated structure. When it has, it is important that peeling
  • a back sheet for a solar cell having excellent durability As a back sheet for a solar cell having excellent durability, a back sheet having a three-layer structure having a cured layer of a curable composition containing a vinyl-based monomer or the like on both surfaces of a base film (see, for example, JP 2012-227382 A) Or a solar cell backsheet (see, for example, JP-A-2012-142349) using, as an adhesive layer, a urethane resin obtained by a reaction between an acrylic polyol having specific physical properties and an isocyanate compound. ing.
  • the support has a coating layer (B) containing a polymer having a yield point on at least one surface side of the support, and a coating layer (C) in this order.
  • the coating layer (C) is in direct contact with the encapsulant of the solar cell module to which the solar cell backsheet is applied, and has a weather resistance that maintains high adhesion to the encapsulant for a long time even under severe conditions of high temperature and high humidity.
  • a solar cell backsheet excellent in durability and durability, and a solar cell module including the same are provided.
  • the solar cell backsheets of Patent Documents 1 and 2 are excellent in weather resistance, and peeling on the appearance of the backsheet after time is suppressed to some extent, but according to the study by the present inventors, the backsheet is bent. In some cases, the peeling at the interface between the back sheet and the sealing material is not sufficiently suppressed, the adhesion between the sealing material and the back sheet is insufficient, and further improvement is desired. is the current situation.
  • the problem of the present invention made in consideration of the above-mentioned problems of the prior art is that even if the coating layer for adhesion is a thin layer, the adhesion with the sealing material for sealing the solar cell element, particularly high temperature and high
  • An object of the present invention is to provide a solar cell backsheet excellent in durability that maintains excellent adhesion for a long time even in a severe environment under humidity, and a solar cell module including the solar cell backsheet.
  • a support and a coating layer (B) containing a polymer having a yield point on at least one surface side of the support, and a coating layer (C) are provided in this order, and the coating layer (C) A solar cell backsheet in direct contact with a solar cell module sealing material to which the solar cell backsheet is applied.
  • the film thickness of ⁇ 2> coating layer (B) is a solar cell backsheet as described in ⁇ 1> larger than the film thickness of a coating layer (C).
  • ⁇ 4> The solar cell backsheet according to any one of ⁇ 1> to ⁇ 3>, wherein the coating layer (B) further contains inorganic particles.
  • ⁇ 5> The solar cell backsheet according to ⁇ 4>, wherein the content of the inorganic particles in the coating layer (B) is in the range of 10% by volume to 35% by volume.
  • ⁇ 6> The solar cell backsheet according to ⁇ 4> or ⁇ 5>, wherein the average particle diameter of the inorganic particles contained in the coating layer (B) is not more than the thickness of the coating layer (B).
  • ⁇ 7> The average particle diameter of the inorganic particles contained in the coating layer (B) is 1 ⁇ 2 or less of the film thickness of the coating layer (B), according to any one of ⁇ 4> to ⁇ 6>.
  • Back sheet for solar cells is 1 ⁇ 2 or less of the film thickness of the coating layer (B), according to any one of ⁇ 4> to ⁇ 6>.
  • the solar cell backsheet according to any one of ⁇ 4> to ⁇ 7>, wherein the average particle size of the inorganic particles contained in the coating layer (B) is 1.0 ⁇ m or less.
  • the inorganic particles contained in the coating layer (B) are at least one particle selected from colloidal silica, titanium oxide, aluminum oxide, and zirconium oxide, and any one of ⁇ 4> to ⁇ 8> The back sheet for solar cells as described in 2.
  • ⁇ 10> The solar cell backsheet according to any one of ⁇ 4> to ⁇ 9>, wherein the inorganic particles contained in the coating layer (B) contain at least a black pigment.
  • the black pigment contains at least carbon black.
  • ⁇ 16> or ⁇ 15 ⁇ 12> further comprising a coating layer (E) containing a silicone resin or a fluorine-based polymer and inorganic particles on the surface of the coating layer (D) opposite to the support side.
  • the coating layer (C) further comprises an antistatic agent
  • the coating layer (B) further comprises a crosslinking agent component crosslinked with the polymer in the coating layer (B).
  • the back sheet for solar cells as described in 2. ⁇ 13> The solar cell backsheet according to ⁇ 12>, wherein the crosslinking agent is an oxazoline-based crosslinking agent.
  • the coating layer (D) On the surface of the support opposite to the coating layer (B) side, the coating layer (D) further containing a silicone resin or a fluoropolymer and inorganic particles is further provided on ⁇ 12> or ⁇ 13>.
  • the coating layer (E) further comprises a nonionic surfactant and a component of a crosslinking agent crosslinked with a silicone resin or a fluoropolymer.
  • a transparent base material on which sunlight is incident an element structure portion provided on the base material and having a solar cell element and a sealing material for sealing the solar cell element, and a base material for the element structure portion
  • a solar cell module comprising: the solar cell backsheet according to any one of ⁇ 1> to ⁇ 17>, which is disposed on the opposite side to the side where the is located.
  • a solar cell backsheet having a support, a coating layer (B) containing a polymer having a yield point, and a coating layer (C) in this order on at least one surface side of the support.
  • the coating layer for adhesion is a thin layer, it has excellent adhesion with a sealing material for sealing a solar cell element, particularly in a severe environment under high temperature and high humidity.
  • the solar cell backsheet excellent in durability maintained for a long period of time, and a solar cell module provided with the same can be provided.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • “having the coating layer (B) and the coating layer (C) in this order” on at least one surface side of the support means that the coating layer is formed on at least one surface side of the support from the support side. This means that (B) and the coating layer (C) are provided in this order, and there is no denying the existence of other layers that are arbitrarily provided.
  • the back surface which does not have (B) layer etc. of a support body may have a weather resistance layer, a gas barrier layer, etc.
  • the solar cell backsheet of the present invention includes a support and a coating layer (B) containing a polymer having a yield point on at least one surface side of the support ( Hereinafter, it is appropriately referred to as “(B) layer”) and a coating layer (C) (hereinafter, appropriately referred to as “(C) layer”) in this order.
  • the battery back sheet is provided at a position in direct contact with the sealing material of the solar cell module to which the battery back sheet is applied.
  • the backsheet of the present invention includes a polymer having a yield point between the support (C) and the support (C) which is an easy-adhesion layer in direct contact with the sealing material (B).
  • the film formed by the polymer having the yield point which is the main component of the (B) layer has excellent strength and dimensional stability under high temperature and high humidity. Even if the coating layer comprising at least two layers (B) and (C) is a thin layer, the adhesiveness between the back sheet and the sealing material is maintained at a good level under severe conditions. It is considered that the decrease in property is suppressed over a long period of time.
  • a coating layer (hereinafter referred to as “inline coating layer” as appropriate) formed by containing an acid-modified polyolefin aqueous dispersion on one side of a support, a polymer having a yield point (B) layer containing (C) and the (C) layer which is an easily bonding layer excellent in adhesiveness with a sealing material.
  • a weather-resistant layer, a gas barrier layer, or the like is provided as necessary.
  • a (D) layer containing inorganic particles and a silicone resin, and a (E) layer containing a fluorine-containing resin, which are weather resistant layers, are provided on the back side of the support. Prepare in this order.
  • the in-line coat layer, the (D) layer, and the (E) layer are all optional layers provided on the back sheet.
  • the back sheet of the present invention has a support and a (B) layer and a (C) layer on at least one surface side of the support.
  • the (C) layer is an outermost layer of the back sheet and functions as an easily adhesive layer.
  • the backsheet of the present invention may be provided with other well-known functional layers such as a colored layer, a weather-resistant layer, an ultraviolet absorption layer, and a gas barrier layer, if necessary.
  • an in-line coat layer or an intermediate layer may be provided between the support and the (B) layer.
  • These arbitrary layers may be provided either on the surface side on which the (B) layer of the support is provided, or on the surface side (back surface side) opposite to the surface.
  • an undercoat layer may be provided between the support and the (B) layer or functional layer provided adjacent to the support.
  • the layer (B) may be a layer that also serves as a functional layer such as a colored layer.
  • the support includes a resin (hereinafter referred to as “raw resin”).
  • the raw material resin examples include polyester, polystyrene, polyphenylene ether, polyphenylene sulfide, and the like, but polyester is preferable from the viewpoints of cost, mechanical stability, and durability.
  • the polyester include a linear saturated polyester synthesized from an aromatic dibasic acid or an ester-forming derivative thereof and a diol or an ester-forming derivative thereof.
  • Specific examples of the linear saturated polyester include polyethylene terephthalate, polyethylene isophthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), polyethylene-2,6-naphthalate, and the like. Of these, polyethylene terephthalate, polyethylene-2,6-naphthalate, and poly (1,4-cyclohexylenedimethylene terephthalate) are particularly preferable from the viewpoint of the balance between mechanical properties and cost.
  • the polyester may be a homopolymer or a copolymer. Further, polyester may be blended with a small amount of other types of resins such as polyimide.
  • polyester is not limited to the above, and a known polyester may be used.
  • a known polyester may be used.
  • a dicarboxylic acid component and (b) a diol component can be obtained by performing at least one of an esterification reaction and a transesterification reaction by a known method.
  • the dicarboxylic acid component for example, malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosandioic acid, pimelic acid, azelaic acid, methylmalonic acid
  • Aliphatic dicarboxylic acids such as ethyl malonic acid; alicyclic dicarboxylic acids such as adamantane dicarboxylic acid, norbornene dicarboxylic acid, cyclohexane dicarboxylic acid, decalin dicarboxylic acid; terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid
  • diol component examples include fats such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, and 1,3-butanediol.
  • Aromatic diols such as fluorene; diol compounds such as;
  • the dicarboxylic acid component contains an aromatic dicarboxylic acid as a main component.
  • the “main component” means that the proportion of aromatic dicarboxylic acid in the dicarboxylic acid component is 80% by mass or more.
  • a dicarboxylic acid component other than the aromatic dicarboxylic acid may be included. Examples of such a dicarboxylic acid component include ester derivatives such as aromatic dicarboxylic acids.
  • the aliphatic diol can contain ethylene glycol, and preferably contains ethylene glycol as a main component.
  • the main component means that the proportion of ethylene glycol in the diol component is 80% by mass or more.
  • the amount of the aliphatic diol (for example, ethylene glycol) used is in the range of 1.015 to 1.50 moles per mole of the aromatic dicarboxylic acid (for example, terephthalic acid) and, if necessary, its ester derivative. preferable.
  • the amount of the aliphatic diol used is more preferably in the range of 1.02 to 1.30 mol, and still more preferably in the range of 1.025 to 1.10 mol. When the amount of the aliphatic diol is in the range of 1.015 or more, the esterification reaction proceeds favorably.
  • the amount of the aliphatic diol is in the range of 1.50 mol or less, for example, by-production of diethylene glycol by dimerization of ethylene glycol occurs.
  • Many properties such as melting point, glass transition temperature, crystallinity, heat resistance, hydrolysis resistance, and weather resistance can be kept good.
  • reaction catalysts For the esterification reaction or transesterification reaction, conventionally known reaction catalysts can be used.
  • the reaction catalyst include alkali metal compounds, alkaline earth metal compounds, zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, and phosphorus compounds.
  • an antimony compound, a germanium compound, or a titanium compound as a polymerization catalyst at an arbitrary stage before the polyester production method is completed.
  • a germanium compound is taken as an example, it is preferable to add the germanium compound powder as it is.
  • an aromatic dicarboxylic acid and an aliphatic diol are polymerized in the presence of a catalyst containing a titanium compound.
  • an organic chelate titanium complex having an organic acid as a ligand is used as a catalyst titanium compound, and at least an organic chelate titanium complex, a magnesium compound, and an aromatic ring as a substituent are used in the process. It is preferable to provide a process of adding a pentavalent phosphate ester which is not included in this order.
  • an aromatic dicarboxylic acid and an aliphatic diol are added to a catalyst containing an organic chelate titanium complex that is a titanium compound prior to the addition of the magnesium compound and the phosphorus compound.
  • a catalyst containing an organic chelate titanium complex that is a titanium compound prior to the addition of the magnesium compound and the phosphorus compound.
  • Titanium compounds such as organic chelate titanium complexes have high catalytic activity for esterification reactions, so that esterification reactions can be performed satisfactorily.
  • the titanium compound may be added to the mixture of the aromatic dicarboxylic acid component and the aliphatic diol component, or the aliphatic diol after mixing the aromatic dicarboxylic acid component (or aliphatic diol component) and the titanium compound.
  • a component or aromatic dicarboxylic acid component. Moreover, you may make it mix an aromatic dicarboxylic acid component, an aliphatic diol component, and a titanium compound simultaneously.
  • the mixing is not particularly limited, and can be performed by a conventionally known method.
  • the pentavalent phosphorus compound at least one pentavalent phosphate having no aromatic ring as a substituent is used.
  • phosphoric acid ester having a lower alkyl group having 2 or less carbon atoms as a substituent [(OR) 3 —P ⁇ O; R alkyl group having 1 or 2 carbon atoms]
  • R alkyl group having 1 or 2 carbon atoms
  • trimethyl phosphate and triethyl phosphate are particularly preferable.
  • an amount in which the P element conversion value is in the range of 50 ppm to 90 ppm is preferable.
  • the amount of the phosphorus compound is more preferably 60 ppm to 80 ppm, and still more preferably 60 ppm to 75 ppm.
  • the electrostatic applicability of the polyester is improved.
  • the magnesium compound include magnesium salts such as magnesium oxide, magnesium hydroxide, magnesium alkoxide, magnesium acetate, and magnesium carbonate.
  • magnesium acetate is most preferable from the viewpoint of solubility in ethylene glycol.
  • the amount of magnesium compound added is preferably such that the Mg element conversion value is 50 ppm or more, more preferably in the range of 50 ppm to 100 ppm, in order to impart high electrostatic applicability.
  • the addition amount of the magnesium compound is preferably an amount in the range of 60 ppm to 90 ppm, more preferably an amount in the range of 70 ppm to 80 ppm, from the viewpoint of imparting electrostatic applicability.
  • the titanium compound as the catalyst component and the magnesium compound and phosphorus compound as the additive are so calculated that the value Z calculated from the following formula (i) satisfies the following relational expression (ii). Particularly preferred is the case of adding and melt polymerizing.
  • the P content is the amount of phosphorus derived from the entire phosphorus compound including the pentavalent phosphate ester having no aromatic ring
  • the Ti content is the amount of titanium derived from the entire Ti compound including the organic chelate titanium complex. It is.
  • Formula (i) expresses the amount of phosphorus that can act on titanium by excluding the phosphorus content that acts on magnesium from the total amount of phosphorus that can be reacted.
  • Z When the value Z is positive, it can be said that there is an excess of phosphorus that inhibits titanium, and conversely, when it is negative, there is a shortage of phosphorus necessary to inhibit titanium.
  • each mole number in the formula is weighted by multiplying by a valence.
  • Polyester synthesis does not require special synthesis, etc., and is inexpensive and easily available using titanium compounds, such phosphorus compounds, and magnesium compounds, while having the reaction activity required for the reaction.
  • a polyester excellent in color tone and coloration resistance to heat can be obtained.
  • a chelated titanium complex having 1 ppm to 30 ppm of citric acid or citrate as a ligand is added to the aromatic dicarboxylic acid and the aliphatic diol before the esterification reaction is completed. It is good to add.
  • 60 ppm to 90 ppm (more preferably 70 ppm to 80 ppm) of a weak acid magnesium salt is added, and after the addition, 60 ppm to 80 ppm (more preferably 65 ppm to 75 ppm), It is preferable to add a pentavalent phosphate having no aromatic ring as a substituent.
  • the esterification reaction step should be carried out using a multistage apparatus in which at least two reactors are connected in series under conditions where ethylene glycol is refluxed while removing water or alcohol produced by the reaction out of the system. Can do.
  • the esterification reaction process may be performed in one stage or may be performed in multiple stages.
  • the esterification reaction temperature is preferably 230 to 260 ° C, more preferably 240 to 250 ° C.
  • the temperature of the esterification reaction in the first reaction tank is preferably 230 ° C. to 260 ° C., more preferably 240 ° C. to 250 ° C.
  • the pressure is 1.0 kg / cm. It is preferably 2 to 5.0 kg / cm 2 , more preferably 2.0 kg / cm 2 to 3.0 kg / cm 2 .
  • the temperature of the esterification reaction in the second reaction tank is preferably 230 ° C.
  • the reaction temperature and pressure is 0.5 kg / cm 2 to 5.0 kg / cm 2 , more preferably 1 0.0 kg / cm 2 to 3.0 kg / cm 2 . Furthermore, when carrying out by dividing into three or more stages, it is preferable to set the reaction temperature and pressure as the conditions for the intermediate stage esterification reaction between the first reaction tank and the final reaction tank.
  • esterification reaction product produced by the esterification reaction is subjected to a polycondensation reaction to produce a polycondensate.
  • the polycondensation reaction may be performed in one stage or may be performed in multiple stages.
  • the esterification reaction product such as an oligomer generated by the esterification reaction is subsequently subjected to a polycondensation reaction.
  • This polycondensation reaction can be suitably performed by supplying it to a multistage polycondensation reaction tank.
  • the polycondensation reaction conditions in the case of performing in a three-stage reaction tank are as follows: the first reaction tank has a reaction temperature of 255 ° C. to 280 ° C., more preferably 265 ° C. to 275 ° C., and a pressure of 100 to 10 torr (13 3 ⁇ 10 ⁇ 3 MPa to 1.3 ⁇ 10 ⁇ 3 MPa), more preferably 50 to 20 torr (6.67 ⁇ 10 ⁇ 3 MPa to 2.67 ⁇ 10 ⁇ 3 MPa), and the second reaction The tank has a reaction temperature of 265 ° C. to 285 ° C., more preferably 270 ° C.
  • a 10 torr ⁇ 3 torr is (1.33 ⁇ 10 -3 MPa ⁇ 4.0 ⁇ 10 -4 MPa)
  • a third reaction vessel in the final reaction tank the reaction temperature is 270 ° C. ⁇ 290 , More preferably from 275 ° C. ⁇ 285 ° C.
  • the pressure is 10torr ⁇ 0.1torr (1.33 ⁇ 10 -3 MPa ⁇ 1.33 ⁇ 10 -5 MPa), more preferably 5torr ⁇ 0.5torr (6.
  • An aspect of 67 ⁇ 10 ⁇ 4 MPa to 6.67 ⁇ 10 ⁇ 5 MPa) is preferable.
  • Additives such as light stabilizers, antioxidants, UV absorbers, flame retardants, lubricants (fine particles), nucleating agents (crystallization agents), crystallization inhibitors, etc. to the polyester synthesized as described above May further be included.
  • inorganic particles such as barium sulfate, calcium phosphate, silica particles and titanium oxide, and organic particles such as polymethylpentene.
  • white particles such as silica particles and titanium oxide are preferable, and titanium oxide is particularly preferably used.
  • Titanium oxide having an average primary particle size of 0.1 ⁇ m to 1.0 ⁇ m is preferably used, and the average primary particle size is most preferably in the range of 0.1 ⁇ m to 0.3 ⁇ m.
  • the average primary particle size is a value measured by Microtrac FRA manufactured by Honeywell.
  • inorganic particles are preferable, and the inorganic particles are preferably subjected to alumina treatment, silica treatment, ZrO 2 treatment, etc. from the viewpoint of light resistance and dispersibility, and hydrolysis resistance of polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the one subjected only to the alumina treatment is most preferable.
  • organic surface treatment such as polyol and organic polysiloxane are preferable.
  • the surface-treated titanium oxide for example, PF-739 manufactured by Ishihara Sangyo Co., Ltd. (a product obtained by subjecting it to an alumina treatment and a polyol treatment) can be cited.
  • the amount of titanium oxide added is preferably 0.5% by mass to 10% by mass with respect to the polyester, and 0.5% by mass to 5% by mass from the viewpoint of hydrolysis resistance and transition probability. preferable.
  • the ethylene glycol (EG) gas concentration at the start of solid phase polymerization is preferably higher in the range of 200 ppm to 1000 ppm than the EG gas concentration at the end of solid phase polymerization, more preferably 250 ppm to 800 ppm, and even more preferably 300 ppm. It is preferable to carry out solid phase polymerization at a high level in the range of -700 ppm.
  • AV terminal COOH concentration
  • EG average EG gas concentration (average gas concentration at the start and end of solid-phase polymerization). That is, AV can be reduced by reaction with terminal COOH by adding EG.
  • the amount of EG added is preferably 100 ppm to 500 ppm, more preferably 150 ppm to 450 ppm, and still more preferably 200 ppm to 400 ppm.
  • the temperature of the solid phase polymerization is preferably 180 ° C. to 230 ° C., more preferably 190 ° C. to 215 ° C., and further preferably 195 ° C. to 209 ° C.
  • the solid phase polymerization time is preferably 10 hours to 40 hours, more preferably 14 hours to 35 hours, and further preferably 18 hours to 30 hours.
  • the polyester preferably has high hydrolysis resistance.
  • the carboxyl group content in the polyester is preferably 50 equivalent / t or less (where t means ton and ton means 1000 kg), more preferably 35 equivalent / t or less, and still more preferably 20 equivalent / t or less.
  • the carboxyl group content is 50 equivalents / t or less, hydrolysis resistance can be maintained, and a decrease in strength when subjected to wet heat aging can be suppressed to be small.
  • the lower limit of the carboxyl group content is 2 equivalents / t, more preferably 3 equivalents / t, and even more preferably 3 equivalents / t in that the adhesion between the layer formed on the polyester (for example, a colored layer) is maintained. Is desirable.
  • the carboxyl group content in the polyester can be adjusted by polymerization catalyst species, film forming conditions (film forming temperature and time), solid phase polymerization, and additives (end-capping agent, etc.).
  • the support may contain at least one selected from carbodiimide compounds, ketene imine compounds, and imino ether compounds.
  • a carbodiimide compound, a ketene imine compound, and an imino ether compound may be used alone or in combination of two or more. This is effective for suppressing deterioration of the polyester after thermostat and maintaining high insulation after thermostat.
  • the carbodiimide compound, ketene imine compound or imino ether compound is preferably contained in an amount of 0.1 to 10% by weight, more preferably 0.1 to 4% by weight, based on the polyester. More preferably, the content is 1 to 2% by mass.
  • the carbodiimide compound will be described.
  • the carbodiimide compound include compounds having one or more carbodiimide groups in the molecule (including polycarbodiimide compounds).
  • the monocarbodiimide compound dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide
  • Examples include dioctylcarbodiimide, t-butylisopropylcarbodiimide, diphenylcarbodiimide, di-t-butylcarbodiimide, di- ⁇ -naphthylcarbodiimide, N, N′-di-2,6-diisopropylphenylcarbodiimide.
  • polycarbodiimide compound those having a degree of polymerization of usually 2 or more, preferably 4 or more and an upper limit of usually 40 or less, preferably 30 or less, are used, U.S. Pat. No. 2,941,956, Japanese Examined Patent Publication No. 47-33279, J. Pat. Org. Chem. 28, p2069-2075 (1963), and Chemical Review 1981, 81, No. 4, p. And those produced by the method described in 619-621 and the like.
  • organic diisocyanates that are raw materials for producing polycarbodiimide compounds include aromatic diisocyanates, aliphatic diisocyanates, alicyclic diisocyanates, and mixtures thereof. Specifically, 1,5-naphthalene diisocyanate, 4 , 4'-diphenylmethane diisocyanate, 4,4'-diphenyldimethylmethane diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 2,4 -A mixture of tolylene diisocyanate and 2,6-tolylene diisocyanate, hexamethylene diisocyanate, cyclohexane-1,4-diisocyanate, xylylene diisocyanate, isophorone diisocyanate Sulfonate, 4,4'-dicyclohexylmethane diis
  • polycarbodiimide compounds include Carbodilite HMV-8CA (Nisshinbo), Carbodilite LA-1 (Nisshinbo), Starbazole P (Rhein Chemie), Starbazole P100 (Rhein Chemie), Starbazole Examples include P400 (manufactured by Rhein Chemie), stabilizer 9000 (manufactured by Rashihi Chemi), and the like.
  • the carbodiimide compound can be used alone, or a plurality of compounds can be mixed and used.
  • a cyclic carbodiimide compound containing one carbodiimide group in the ring skeleton and having at least one cyclic structure in which the first nitrogen and the second nitrogen are bonded by a bonding group functions as a cyclic sealant.
  • a cyclic carbodiimide compound can be prepared by the method described in International Publication 2011/093478 pamphlet.
  • the cyclic carbodiimide compound has a cyclic structure.
  • the cyclic carbodiimide compound may have a plurality of cyclic structures.
  • the cyclic structure has one carbodiimide group (—N ⁇ C ⁇ N—), and the first nitrogen and the second nitrogen are bonded by a bonding group.
  • One cyclic structure has only one carbodiimide group.
  • the compound may have a plurality of carbodiimide groups.
  • the number of atoms in the cyclic structure is preferably 8 to 50, more preferably 10 to 30, further preferably 10 to 20, and particularly preferably 10 to 15.
  • the number of atoms in the ring structure means the number of atoms directly constituting the ring structure, for example, 8 for a 8-membered ring and 50 for a 50-membered ring. This is because if the number of atoms in the cyclic structure is smaller than 8, the stability of the cyclic carbodiimide compound is lowered, and it may be difficult to store and use. From the viewpoint of reactivity, there is no particular restriction on the upper limit of the number of ring members, but cyclic carbodiimide compounds having more than 50 atoms are difficult to synthesize, and the cost may increase significantly. From this viewpoint, the number of atoms in the cyclic structure is preferably selected in the range of 10 to 30, more preferably 10 to 20, and particularly preferably 10 to 15.
  • a cyclic carbodiimide compound represented by the following general formula (OA) or general formula (OB) is preferably used.
  • OA general formula
  • OB general formula
  • a preferable structure of the cyclic carbodiimide compound of the present invention will be described in the order of the following general formula (OA) and general formula (OB).
  • R 1 and R 5 each independently represents an alkyl group, an aryl group, or an alkoxy group.
  • R 2 to R 4 and R 6 to R 8 each independently represents a hydrogen atom, an alkyl group, an aryl group or an alkoxy group.
  • R 1 to R 8 may be bonded to each other to form a ring.
  • X 1 and X 2 each independently represents a single bond, —O—, —CO—, —S—, —SO 2 —, —NH— or —CH 2 —.
  • L 1 represents a divalent linking group.
  • R 1 and R 5 each independently represents an alkyl group, an aryl group or an alkoxy group, preferably an alkyl group or an aryl group, and preferably a secondary or tertiary alkyl group or aryl. It is more preferable to represent the group from the viewpoint of suppressing the reaction of the isocyanate linked to the terminal of the polyester and the hydroxyl terminal of the polyester and suppressing the thickening, and it is particularly preferable to represent the secondary alkyl group.
  • the alkyl group represented by R 1 and R 5 is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 12 carbon atoms, Particularly preferred is an alkyl group of 2-6.
  • the alkyl group represented by R 1 and R 5 may be linear, branched or cyclic, but it is branched or cyclic, the isocyanate connected to the terminal of the polyester and the hydroxyl group of the polyester. It is preferable from the viewpoint of suppressing the terminal reaction and suppressing the thickening.
  • the alkyl group represented by R 1 and R 5 is preferably a secondary or tertiary alkyl group, and more preferably a secondary alkyl group.
  • the alkyl groups represented by R 1 and R 5 are methyl group, ethyl group, n-propyl group, sec-propyl group, iso-propyl group, n-butyl group, tert-butyl group, sec-butyl group, iso-butyl.
  • the alkyl group represented by R 1 and R 5 may further have a substituent, and the substituent is not particularly limited. However, the alkyl group represented by R 1 and R 5 preferably has no further substituent from the viewpoint of reactivity with the carboxylic acid.
  • the aryl group represented by R 1 and R 5 is preferably an aryl group having 6 to 20 carbon atoms, more preferably an aryl group having 6 to 12 carbon atoms, Particularly preferred is an aryl group of formula 6.
  • the aryl group represented by R 1 and R 5 may be an aryl group formed by condensing R 1 and R 2 or R 5 and R 6, but R 1 and R 5 are each represented by R 2 And R 6 is preferably not condensed to form a ring.
  • Examples of the aryl group represented by R 1 and R 5 include a phenyl group and a naphthyl group, and among them, a phenyl group is more preferable.
  • the aryl group represented by R 1 and R 5 may further have a substituent, and the substituent is not particularly limited. However, the aryl group represented by R 1 and R 5 preferably has no further substituent from the viewpoint of reactivity with the carboxylic acid.
  • the alkoxy group represented by R 1 and R 5 is preferably an alkoxy group having 1 to 20 carbon atoms, more preferably an alkoxy group having 1 to 12 carbon atoms, Particularly preferred is an alkoxy group of 2-6.
  • the alkoxy group represented by R 1 and R 5 may be linear, branched or cyclic, but it is branched or cyclic, the isocyanate connected to the terminal of the polyester and the hydroxyl group of the polyester. It is preferable from the viewpoint of suppressing the terminal reaction and suppressing the thickening.
  • Preferable examples of the alkoxy group represented by R 1 and R 5 may include a group in which —O— is linked to the terminal of the alkyl group represented by R 1 and R 5, and the preferred range is the same for R 1 and R 5.
  • the preferred alkyl group represented is a group in which —O— is linked to the terminal.
  • the alkoxy group represented by R 1 and R 5 may further have a substituent, and the substituent is not particularly limited. However, an alkoxy group represented by R 1 and R 5, in view of reactivity with carboxylic acid, it preferably has no substituent.
  • R 1 and R 5 may be the same or different, but are preferably the same from the viewpoint of cost.
  • R 2 to R 4 and R 6 to R 8 each independently represents a hydrogen atom, an alkyl group, an aryl group or an alkoxy group, and a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
  • An alkoxy group having 1 to 20 carbon atoms is preferable, a hydrogen atom, an alkyl group having 1 to 6 carbon atoms is more preferable, and a hydrogen atom is particularly preferable.
  • the alkyl group, aryl group or alkoxy group represented by R 2 to R 4 and R 6 to R 8 may further have a substituent, and the substituent is not particularly limited. It is not something.
  • R 2 and R 6 are both hydrogen atoms from the viewpoint of easy introduction of bulky substituents into R 1 and R 5 .
  • WO2010 / 072111 exemplifies compounds in which an alkyl group or an aryl group is substituted at a site corresponding to R 2 and R 6 in the general formula (OA) (meta position with respect to the carbodiimide group).
  • these compounds cannot suppress the reaction between the isocyanate linked to the terminal of the polyester and the hydroxyl terminal of the polyester, and in the general formula (OA), the sites corresponding to R 2 and R 6 ( It is difficult to introduce a substituent at the ortho position relative to the carbodiimide group.
  • R 1 to R 8 may be bonded to each other to form a ring.
  • the ring formed at this time is not particularly limited, but is preferably an aromatic ring.
  • two or more of R 1 to R 4 may be bonded to each other to form a condensed ring, and an arylene group or heteroarylene group having 10 or more carbon atoms is formed with a benzene ring substituted by R 1 to R 4 May be.
  • the arylene group having 10 or more carbon atoms formed at this time include aromatic groups having 10 to 15 carbon atoms such as naphthalenediyl group.
  • R 5 to R 8 may be bonded to each other to form a condensed ring, and carbon together with the benzene ring substituted by R 5 to R 8
  • An arylene group or heteroarylene group having several tens or more may be formed, and a preferable range at that time forms an arylene group or heteroarylene group having ten or more carbon atoms together with a benzene ring substituted by R 1 to R 4. This is the same as the preferred range.
  • R 1 to R 8 are preferably not bonded to each other to form a ring.
  • X 1 and X 2 are each independently selected from a single bond, —O—, —CO—, —S—, —SO 2 —, —NH— and —CH 2 —.
  • —O—, —CO—, —S—, —SO 2 —, —NH— is preferable, and —O—, —S— is preferable for easy synthesis. More preferable from the viewpoint.
  • L 1 represents a divalent linking group, each of which may contain a heteroatom and a substituent, a divalent aliphatic group having 1 to 20 carbon atoms, and a divalent carbon. It is preferably an alicyclic group having 3 to 20 carbon atoms, an aromatic group having 5 to 15 carbon atoms, or a combination thereof, and more preferably an aliphatic group having 1 to 20 carbon atoms. preferable.
  • examples of the divalent aliphatic group represented by L 1 include an alkylene group having 1 to 20 carbon atoms.
  • the alkylene group having 1 to 20 carbon atoms include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, a dodecylene group, and a hexadecylene group.
  • a methylene group, an ethylene group and a propylene group are more preferred, and an ethylene group is particularly preferred.
  • These aliphatic groups may be substituted.
  • substituents include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, an ester group, an ether group, and an aldehyde group.
  • examples of the divalent alicyclic group represented by L 1 include a cycloalkylene group having 3 to 20 carbon atoms.
  • examples of the cycloalkylene group having 3 to 20 carbon atoms include cyclopropylene group, cyclobutylene group, cyclopentylene group, cyclohexylene group, cycloheptylene group, cyclooctylene group, cyclononylene group, cyclodecylene group, cyclododecylene group, and cyclohexadecylene. Group and the like. These alicyclic groups may be substituted.
  • substituents examples include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, an ester group, an ether group, and an aldehyde group.
  • examples of the divalent aromatic group represented by L 1 include an arylene group having 5 to 15 carbon atoms which may include a hetero atom and have a heterocyclic structure.
  • examples of the arylene group having 5 to 15 carbon atoms include a phenylene group and a naphthalenediyl group. These aromatic groups may be substituted.
  • the substituent include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, an ester group, an ether group, and an aldehyde group.
  • the number of atoms in the cyclic structure containing a carbodiimide group in the general formula (OA) is preferably 8 to 50, more preferably 10 to 30, still more preferably 10 to 20, and particularly preferably 10 to 15.
  • the number of atoms in the cyclic structure containing a carbodiimide group means the number of atoms that directly constitute the cyclic structure containing a carbodiimide group. For example, if it is an 8-membered ring, it is 50; It is. When the number of atoms in the cyclic structure is smaller than 8, the stability of the cyclic carbodiimide compound is lowered, and it may be difficult to store and use. From the standpoint of reactivity, the upper limit of the number of ring members is not particularly limited, but cyclic carbodiimide compounds having more than 50 atoms are difficult to synthesize, and the cost may increase significantly. From this viewpoint, in the general formula (OA), the number of atoms in the cyclic structure is preferably 10 to 30, more preferably 10 to 20, and particularly preferably 10 to 15.
  • R 11 , R 15 , R 21 and R 25 each independently represents an alkyl group, an aryl group or an alkoxy group.
  • R 12 to R 14 , R 16 to R 18 , R 22 to R 24 and R 26 to R 28 each independently represent a hydrogen atom, an alkyl group, an aryl group or an alkoxy group.
  • R 11 to R 28 may combine with each other to form a ring.
  • X 11 , X 12 , X 21 and X 22 each independently represent a single bond, —O—, —CO—, —S—, —SO 2 —, —NH— or —CH 2 —.
  • L 2 represents a tetravalent linking group.
  • R 11 , R 15 , R 21 and R 25 are the same as the preferred ranges of R 1 and R 5 in the general formula (OA).
  • R 11 and R 12 are condensed, R 15 and R 16 are condensed, R 21 and R 22 are condensed, or R 25 and R 26 are condensed.
  • R 11 , R 15 , R 21 and R 25 do not form a ring by condensing with R 12 , R 16 , R 22 and R 26 , respectively.
  • R 11 , R 15 , R 21 and R 25 may be the same or different, but are preferably the same from the viewpoint of cost.
  • R 12 to R 14 , R 16 to R 18 , R 22 to R 24 and R 26 to R 28 are R 2 to R in the general formula (OA). This is the same as the preferred range of R 4 and R 6 to R 8 .
  • R 12 ⁇ R 14, R 16 ⁇ R 18, R 22 ⁇ R 24 and R 26 ⁇ R 28, can R 12, R 16, R 22 and R 26 are both hydrogen atoms, R 11, R 15 , R 21 and R 25 are preferable from the viewpoint of easy introduction of bulky substituents.
  • a carbodiimide group is introduced by introducing a bulky group such as an alkyl group, an aryl group or an alkoxy group in the vicinity of the carbodiimide group. It is possible to suppress the reaction between the isocyanate group generated after the reaction between the polyester and the terminal carboxylic acid of the polyester and the terminal hydroxyl group of the polyester. As a result, high molecular weight of the polyester can be suppressed, and generation of chips due to the increase in the viscosity of the polyester as described above can be suppressed.
  • R 11 to R 28 may be bonded to each other to form a ring.
  • a preferable range of the ring is the above general formula (OA) in which R 1 to R 8 are bonded to each other. This is the same as the range of the ring formed.
  • the preferred ranges of X 11 , X 12 , X 21 and X 22 are the same as the preferred ranges of X 1 and X 2 in the general formula (OA).
  • L 2 represents a tetravalent linking group, each of which may contain a heteroatom and a substituent, a tetravalent aliphatic group having 1 to 20 carbon atoms, and a tetravalent carbon. It is preferably an alicyclic group having 3 to 20 carbon atoms, an aromatic group having 5 to 15 carbon atoms, or a combination thereof, and more preferably an aliphatic group having 1 to 20 carbon atoms. preferable.
  • examples of the tetravalent aliphatic group represented by L 2 include an alkanetetrayl group having 1 to 20 carbon atoms.
  • an alkanetetrayl group having 1 to 20 carbon atoms methanetetrayl group, ethanetetrayl group, propanetetrayl group, butanetetrayl group, pentanetetrayl group, hexanetetrayl group, heptanetetrayl group, octanetetrayl group Group, nonanetetrayl group, decanetetrayl group, dodecanetetrayl group, hexadecanetetrayl group and the like, methanetetrayl group, ethanetetrayl group, propanetetrayl group are more preferable, and ethanetetrayl group is particularly preferable preferable.
  • These aliphatic groups may contain a substituent.
  • substituents include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, an ester group, an ether group, and an aldehyde group.
  • examples of the tetravalent alicyclic group represented by L 2 include a cycloalkanetetrayl group having 3 to 20 carbon atoms.
  • a cycloalkanetetrayl group having 3 to 20 carbon atoms examples include cyclopropanetetrayl group, cyclobutanetetrayl group, cyclopentanetetrayl group, cyclohexanetetrayl group, cycloheptanetetrayl group, cyclooctanetetrayl group, cyclononanetetrayl group Yl group, cyclodecanetetrayl group, cyclododecanetetrayl group, cyclohexadecanetetrayl group and the like.
  • These alicyclic groups may contain a substituent.
  • substituents include an alkyl group having 1 to 20 carbon atoms, an arylene group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, an ester group, an ether group, and an aldehyde group.
  • examples of the tetravalent aromatic group represented by L 2 include an arenetetrayl group having 5 to 15 carbon atoms that may include a hetero atom and have a heterocyclic structure.
  • examples of the arenetetrayl group (tetravalent) having 5 to 15 carbon atoms include a benzenetetrayl group and a naphthalenetetrayl group. These aromatic groups may be substituted.
  • substituents examples include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, an ester group, an ether group, and an aldehyde group.
  • L 2 which is a tetravalent linking group.
  • the preferred range of the number of atoms in the cyclic structure containing each carbodiimide group in the general formula (OB) is respectively the preferred range of the number of atoms in the cyclic structure containing the carbodiimide group in the general formula (OA). It is the same.
  • the cyclic carbodiimide compound is an aromatic carbodiimide having no ring structure in which the first nitrogen and the second nitrogen of two or more carbodiimide groups are bonded by a linking group in the molecule, that is, the cyclic carbodiimide compound is It is preferably a monocyclic ring and represented by the above general formula (OA) from the viewpoint of being hard to thicken.
  • the cyclic carbodiimide compound of the present invention preferably has a plurality of cyclic structures and is represented by the above general formula (OB). .
  • the molecular weight of the cyclic carbodiimide compound is preferably 400 to 1500 in terms of weight average molecular weight.
  • the molecular weight of the cyclic carbodiimide compound is preferably 400 or more because the volatility is small and generation of isocyanate gas during production can be suppressed.
  • the upper limit of the molecular weight of the cyclic carbodiimide compound is not particularly limited, but is preferably 1500 or less from the viewpoint of reactivity with the carboxylic acid.
  • the molecular weight of the cyclic carbodiimide compound is more preferably 500 to 1200.
  • cyclic carbodiimide compound represented by the general formula (OA) or the general formula (OB) include the following compounds. However, the present invention is not limited to the following specific examples.
  • the cyclic carbodiimide compound is preferably a compound having at least one structure (carbodiimide group) represented by —N ⁇ C ⁇ N— adjacent to the aromatic ring.
  • the organic isocyanate can be heated and produced by a decarboxylation reaction.
  • the cyclic carbodiimide compound of the present invention can be synthesized with reference to the method described in JP 2011-256337 A.
  • cyclic carbodiimide compound there is no particular limitation on the method for introducing a specific bulky substituent at the ortho position of the arylene group adjacent to the first nitrogen and the second nitrogen of the carbodiimide group.
  • nitrobenzene substituted with an alkyl group can be synthesized, and based on this, cyclic carbodiimide can be synthesized by the method described in WO2011 / 158958.
  • the ketene imine compound will be described.
  • As the ketene imine compound it is preferable to use a ketene imine compound represented by the following general formula (KA).
  • R 1 and R 2 each independently represents an alkyl group, an aryl group, an alkoxy group, an alkoxycarbonyl group, an aminocarbonyl group, an aryloxy group, an acyl group, or an aryloxycarbonyl group
  • R 3 represents an alkyl group or an aryl group.
  • the molecular weight of the portion excluding the nitrogen atom of the ketene imine compound and the substituent bonded to the nitrogen atom is preferably 320 or more. That is, in the general formula (KA), the molecular weight of the R 1 —C ( ⁇ C) —R 2 group is preferably 320 or more.
  • the molecular weight of the portion excluding the nitrogen atom of the ketene imine compound and the substituent bonded to the nitrogen atom is preferably 320 or more, more preferably 500 to 1500, and still more preferably 600 to 1000. .
  • connects it can be improved by making the molecular weight of the part except a nitrogen atom and the substituent couple
  • the portion excluding the nitrogen atom and the substituent bonded to the nitrogen atom has a molecular weight within a certain range, so that the polyester terminal having a certain bulkiness diffuses into the layer in contact with the support and has an anchoring effect. It is to demonstrate.
  • the alkyl group represented by R 1 and R 2 is preferably an alkyl group having 1 to 20 carbon atoms, and more preferably an alkyl group having 1 to 12 carbon atoms. .
  • the alkyl group represented by R 1 and R 2 may be linear, branched or cyclic.
  • Examples of the alkyl group represented by R 1 and R 2 include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, tert-butyl group, sec-butyl group, iso-butyl group, n- A pentyl group, a sec-pentyl group, an iso-pentyl group, an n-hexyl group, a sec-hexyl group, an iso-hexyl group, a cyclohexyl group, and the like can be given.
  • a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an iso-butyl group, and a cyclohexyl group are more preferable.
  • the alkyl group represented by R 1 and R 2 may further have a substituent.
  • the substituent is not particularly limited as long as the reactivity between the ketene imine group and the carboxyl group is not reduced.
  • Examples of the substituent include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 15 carbon atoms, and a halogen atom. , Nitro group, amide group, hydroxyl group, ester group, ether group, aldehyde group and the like.
  • the number of carbon atoms of the alkyl group represented by R 1 and R 2 indicate the number of carbon that does not contain a substituent group.
  • the aryl group represented by R 1 and R 2 is preferably an aryl group having 6 to 20 carbon atoms, and more preferably an aryl group having 6 to 12 carbon atoms.
  • Examples of the aryl group represented by R 1 and R 2 include a phenyl group and a naphthyl group, and among them, a phenyl group is particularly preferable.
  • the aryl group represented by R 1 and R 2 includes a heteroaryl group.
  • the heteroaryl group refers to a group in which at least one of the ring-constituting atoms of a 5-membered, 6-membered or 7-membered ring exhibiting aromaticity or its condensed ring is substituted with a heteroatom.
  • Examples of the heteroaryl group include imidazolyl group, pyridyl group, quinolyl group, furyl group, thienyl group, benzoxazolyl group, indolyl group, benzimidazolyl group, benzthiazolyl group, carbazolyl group, and azepinyl group.
  • the hetero atom contained in the heteroaryl group is preferably an oxygen atom, a sulfur atom, or a nitrogen atom, and particularly preferably an oxygen atom or a nitrogen atom.
  • the aryl group or heteroaryl group represented by R 1 and R 2 may further have a substituent, so long as the reactivity between the ketene imine group and the carboxyl group is not lowered.
  • the substituent include the same substituents for the above alkyl group. Note that the number of carbon atoms of the aryl or heteroaryl group represented by R 1 and R 2 indicate the number of carbon that does not contain a substituent group.
  • the alkoxy group represented by R 1 and R 2 is preferably an alkoxy group having 1 to 20 carbon atoms, more preferably an alkoxy group having 1 to 12 carbon atoms, Particularly preferred is an alkoxy group of 2-6.
  • the alkoxy group represented by R 1 and R 2 may be linear, branched or cyclic.
  • Preferable examples of the alkoxy group represented by R 1 and R 2 include a group in which —O— is linked to the terminal of the alkyl group represented by R 1 and R 2 .
  • the alkoxy group represented by R 1 and R 2 may further have a substituent, and the substituent is not particularly limited as long as the reactivity between the ketene imine group and the carboxyl group is not lowered. Examples of the substituent include the same substituents for the above alkyl group.
  • the number of carbon atoms of the alkoxy group represented by R 1 and R 2 may indicate the number of carbon that does not contain a substituent group.
  • the alkoxycarbonyl group represented by R 1 and R 2 is preferably an alkoxycarbonyl group having 2 to 20 carbon atoms, and more preferably an alkoxycarbonyl group having 2 to 12 carbon atoms.
  • An alkoxycarbonyl group having 2 to 6 carbon atoms is particularly preferable.
  • Examples of the alkoxy moiety of the alkoxycarbonyl group represented by R 1 and R 2 include the examples of the alkoxy group described above.
  • the aminocarbonyl group represented by R 1 and R 2 is preferably an alkylaminocarbonyl group having 1 to 20 carbon atoms or an arylaminocarbonyl group having 6 to 20 carbon atoms.
  • the alkylamino part of the alkylaminocarbonyl group include a group in which —NH— is linked to the terminal of the alkyl group represented by R 1 and R 2 .
  • the alkylaminocarbonyl group represented by R 1 and R 2 may further have a substituent, and the substituent is not particularly limited as long as the reactivity between the ketene imine group and the carboxyl group is not lowered. Examples of the substituent include the same substituents for the above alkyl group.
  • the arylamino moiety of the arylaminocarbonyl group having 6 to 20 carbon atoms include a group in which —NH— is linked to the terminal of the aryl group represented by R 1 and R 2 .
  • the arylaminocarbonyl group represented by R 1 and R 2 may further have a substituent, and the substituent is not particularly limited as long as the reactivity between the ketene imine group and the carboxyl group is not lowered.
  • the substituent include the same substituents for the above alkyl group.
  • the number of carbon atoms in the alkyl amino group represented by R 1 and R 2 indicate the number of carbon that does not contain a substituent group.
  • the aryloxy group represented by R 1 and R 2 is preferably an aryloxy group having 6 to 20 carbon atoms, and more preferably an aryloxy group having 6 to 12 carbon atoms. preferable.
  • Examples of the aryl moiety of the aryloxy group represented by R 1 and R 2 include the examples of the aryl group described above.
  • the acyl group represented by R 1 and R 2 is preferably an acyl group having 2 to 20 carbon atoms, more preferably an acyl group having 2 to 12 carbon atoms, An acyl group having a number of 2 to 6 is particularly preferred.
  • the acyl group represented by R 1 and R 2 may further have a substituent, and the substituent is not particularly limited as long as the reactivity between the ketene imine group and the carboxyl group is not lowered. Examples of the substituent include the same substituents for the above alkyl group.
  • the number of carbon atoms in the acyl group represented by R 1 and R 2 may indicate the number of carbon that does not contain a substituent group.
  • the aryloxycarbonyl group represented by R 1 and R 2 is preferably an aryloxycarbonyl group having 7 to 20 carbon atoms, and is an aryloxycarbonyl group having 7 to 12 carbon atoms. More preferable examples of the aryl moiety of the aryloxycarbonyl group represented by R 1 and R 2 include the above-described aryl groups.
  • R 3 represents an alkyl group or an aryl group.
  • the alkyl group is preferably an alkyl group having 1 to 20 carbon atoms, and more preferably an alkyl group having 1 to 12 carbon atoms.
  • the alkyl group represented by R 3 may be linear, branched or cyclic.
  • Examples of the alkyl group represented by R 3 include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, tert-butyl group, sec-butyl group, iso-butyl group, n-pentyl group, Examples thereof include a sec-pentyl group, an iso-pentyl group, an n-hexyl group, a sec-hexyl group, an iso-hexyl group, and a cyclohexyl group.
  • a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, and a cyclohexyl group are more preferable.
  • the alkyl group represented by R 3 may further have a substituent.
  • the substituent is not particularly limited, and examples of the substituent include the substituents for the above alkyl group.
  • the aryl group represented by R 3 is preferably an aryl group having 6 to 20 carbon atoms, and more preferably an aryl group having 6 to 12 carbon atoms.
  • Examples of the aryl group represented by R 3 include a phenyl group and a naphthyl group, and among them, a phenyl group is particularly preferable.
  • the aryl group represented by R 3 includes a heteroaryl group.
  • the heteroaryl group refers to a group in which at least one of the ring-constituting atoms of a 5-membered, 6-membered or 7-membered ring exhibiting aromaticity or its condensed ring is substituted with a heteroatom.
  • Examples of the heteroaryl group include imidazolyl group, pyridyl group, quinolyl group, furyl group, thienyl group, benzoxazolyl group, indolyl group, benzimidazolyl group, benzthiazolyl group, carbazolyl group, and azepinyl group.
  • the hetero atom contained in the heteroaryl group is preferably an oxygen atom, a sulfur atom, or a nitrogen atom, and particularly preferably an oxygen atom or a nitrogen atom.
  • the aryl group or heteroaryl group represented by R 3 may further have a substituent, and the substituent is not particularly limited as long as the reactivity between the ketene imine group and the carboxyl group is not lowered. Not. Examples of the substituent include the same substituents for the above alkyl group.
  • the general formula (KA) may include a repeating unit.
  • at least one of R 1 and R 3 is a repeating unit, and this repeating unit preferably includes a ketene imine moiety.
  • ketene imine compound As the ketene imine compound, it is also preferable to use a ketene imine compound represented by the following general formula (KB).
  • R 1 represents an alkyl group, an aryl group, an alkoxy group, an alkoxycarbonyl group, an aminocarbonyl group, an aryloxy group, an acyl group, or an aryloxycarbonyl group.
  • R 2 represents an alkyl group, aryl group, alkoxy group, alkoxycarbonyl group, aminocarbonyl group, aryloxy group, acyl group or aryloxycarbonyl group having L 1 as a substituent.
  • R 3 represents an alkyl group or an aryl group.
  • n represents an integer of 1 to 4, and L 1 represents an n-valent linking group.
  • the molecular weight of the (R 1 -C ( ⁇ C) —R 2 —) n -L 1 group is preferably 320 or more.
  • R 1 is the same as that in general formula (KA), and the preferred range is also the same.
  • R 2 represents an alkyl group, aryl group, alkoxy group, alkoxycarbonyl group, aminocarbonyl group, aryloxy group, acyl group or aryloxy group having L 1 which is an n-valent linking group. Represents a carbonyl group.
  • the alkyl group, aryl group, alkoxy group, alkoxycarbonyl group, aminocarbonyl group, aryloxy group, acyl group or aryloxycarbonyl group has the same meaning as that in formula (KA), and the preferred range is also the same. .
  • R 3 is the same as that in general formula (KA), and the preferred range is also the same.
  • L 1 represents an n-valent linking group, where n represents an integer of 1 to 4. Among these, n is preferably 2 to 4.
  • specific examples of the divalent linking group represented by L 1 include, for example, —NR 8 — (R 8 represents a hydrogen atom, an alkyl group which may have a substituent, or a substituent.
  • R 8 represents a hydrogen atom, an alkyl group which may have a substituent, or a substituent.
  • Examples of the substituent include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, an ester group, an ether group, and an aldehyde group.
  • specific examples of the trivalent linking group represented by L 1 include, for example, one hydrogen atom from those having a substituent among the linking groups listed as examples of the divalent linking group. The group which removed is mentioned.
  • specific examples of the tetravalent linking group represented by L 1 include, for example, two of the linking groups listed as examples of the divalent linking group and those having a substituent. Examples include a group in which a hydrogen atom has been removed.
  • n is more preferably 3 or 4.
  • n is more preferably 3 or 4.
  • KC ketene imine compound
  • R 1 and R 5 each represents an alkyl group, an aryl group, an alkoxy group, an alkoxycarbonyl group, an aminocarbonyl group, an aryloxy group, an acyl group, or an aryloxycarbonyl group.
  • R 2 and R 4 represent an alkyl group, aryl group, alkoxy group, alkoxycarbonyl group, aminocarbonyl group, aryloxy group, acyl group or aryloxycarbonyl group having L 2 as a substituent.
  • R 3 and R 6 represent an alkyl group or an aryl group.
  • L 2 represents a single bond or a divalent linking group.
  • the molecular weight of the R 1 —C ( ⁇ C) —R 2 —L 2 —R 4 —C ( ⁇ C) —R 5 group is preferably 320 or more.
  • R 1 is the same as that in general formula (KA), and the preferred range is also the same.
  • R 5 is the same as R 1 in formula (KA), and the preferred range is also the same.
  • R 2 is the same as that in the general formula (KB), and the preferred range is also the same.
  • R 4 is the same as R 2 in formula (KB), and the preferred range is also the same.
  • R 3 is the same as that in general formula (KA), and the preferred range is also the same.
  • R 6 has the same meaning as R 3 in formula (KA), and the preferred range is also the same.
  • L 2 represents a single bond or a divalent linking group.
  • divalent linking group include the linking groups exemplified as L 1 in formula (KB).
  • the molecular weight of the portion excluding the nitrogen atom of the ketene imine compound and the substituent bonded to the nitrogen atom is preferably 320 or more.
  • the molecular weight of the portion excluding the nitrogen atom of the ketene imine compound and the substituent bonded to the nitrogen atom may be 320 or more, preferably 400 or more, and more preferably 500 or more.
  • the molar molecular weight of the ketene imine compound relative to the number of ketene imine moieties in one molecule is preferably 1000 or less, more preferably 500 or less, and preferably 400 or less. Further preferred.
  • ketene imine compounds having at least one ketene imine group include those described in J. Org. Am. Chem. Soc. , 1953, 75 (3), pp 657-660, and the like.
  • ketene imine compounds represented by the general formulas (KA) to (KC) are shown, but the present invention is not limited thereto.
  • the ketene imine compound is more preferably trifunctional or tetrafunctional.
  • the terminal sealing effect of raw material resin, such as polyester can be improved more, and volatilization of a ketene imine compound or a ketene compound can be suppressed effectively.
  • R 1 and R 3 in the general formulas (KA) to (KC) are linked to form a cyclic structure.
  • R 3 is composed of an alkylene group or an arylene group of a ring skeleton.
  • R 1 has a linking group containing a ketene imine moiety.
  • Illustrative compound (K-10) represents a repeating unit of the general formula (KA) to (KC) having a repeating number n, and n represents an integer of 3 or more.
  • the left end is a hydrogen atom
  • the right end is a phenyl group.
  • the support may be, for example, melt-extruded the above polyester into a film and then cooled and solidified with a casting drum to form an unstretched film.
  • This unstretched film is once in the longitudinal direction at Tg to (Tg + 60) ° C. It is a biaxially stretched film that has been stretched twice or more so that the total magnification is 3 to 6 times, and then stretched so that the magnification is 3 to 5 times in the width direction at Tg to (Tg + 60) ° C. preferable. Further, heat treatment may be performed at 180 ° C. to 230 ° C. for 1 second to 60 seconds as necessary. Tg represents a glass transition temperature and can be measured based on JIS K7121 or ASTM D3418-82.
  • measurement is performed using a differential scanning calorimeter (DSC) manufactured by Shimadzu Corporation. Specifically, 10 mg of a polymer such as polyester is weighed as a sample, set in an aluminum pan, and heated at a rate of temperature increase of 10 ° C./min from room temperature to a final temperature of 300 ° C., with a DSC apparatus, the amount of heat with respect to temperature was measured as the glass transition temperature.
  • DSC differential scanning calorimeter
  • Polyester film forming process In the polyester film forming step, that is, in the step of forming a polyester film, a melt obtained by melting the polyester contained in the resin composition and at least one of a ketene imine compound, a carbodiimide compound, and an imino ether compound is used as a gear pump or a filter. Then, it is extruded to a cooling roll through a die, and this is cooled and solidified. Thereby, a (unstretched) film can be formed. Melting is performed using an extruder, but a single screw extruder or a twin screw extruder may be used.
  • a carbodiimide compound, a ketene imine compound, and an imino ether compound may be directly added to these extruders, but it is preferable from the viewpoint of extrusion stability that a polyester and a master batch are formed in advance and charged into the extruder.
  • a polyester and a master batch are formed in advance and charged into the extruder.
  • Extrusion is preferably performed in an evacuated or inert gas atmosphere. Thereby, decomposition
  • the temperature of the extruder is preferably from the melting point of the polyester used to the melting point + 80 ° C. or less, more preferably the melting point + 10 ° C. or more, the melting point + 70 ° C. or less, more preferably the melting point + 20 ° C. or more and the melting point + 60 ° C. or less. If it is less than melting
  • terminal sealing materials such as polyester, ketene imine compound, carbodiimide compound, and imino ether compound are decomposed, which is not preferable.
  • a masterbatch such as an end-capping material such as polyester, ketene imine compound, carbodiimide compound, and imino ether compound
  • a preferable water content is preferably 10 ppm to 300 ppm. More preferably, it is 20 ppm to 150 ppm.
  • the extruded melt is fluted on the cast drum through a gear pump, a filter and a multilayer die.
  • a multilayer die system both a multi-manifold die and a feed block die can be preferably used.
  • the shape of the die may be a T-die, a hanger coat die, or a fish tail. It is preferable to give such a temperature fluctuation to the tip (die lip) of such a die.
  • the molten resin (melt) can be brought into close contact with the cooling roll using an electrostatic application method. At this time, it is preferable to give the above fluctuation to the driving speed of the cast drum.
  • the surface temperature of the cast drum can be approximately 10 ° C. to 40 ° C.
  • the diameter of the cast drum is preferably 0.5 m or more and 5 m or less, more preferably 1 m or more and 4 m or less.
  • the driving speed of the cast drum (the linear speed in the outermost week) is preferably 1 m / min to 50 m / min, more preferably 3 m / min to 30 m / min.
  • the (unstretched) film formed by the film forming step can be subjected to a stretching treatment in the stretching step. Stretching is preferably performed in at least one of the machine direction (MD) and the transverse direction (TD), and more preferably, both MD and TD are stretched to balance the physical properties of the film. Such bi-directional stretching may be performed sequentially in the vertical and horizontal directions, or may be performed simultaneously.
  • the film that has been cooled and solidified with a cooling roll is preferably stretched in one or two directions, and more preferably stretched in two directions.
  • Stretching in two directions includes stretching in the longitudinal direction (MD: Machine Direction) (hereinafter also referred to as “longitudinal stretching”) and stretching in the width direction (TD: Transverse Direction) (hereinafter referred to as “lateral stretching”). It is also preferred that The longitudinal stretching and lateral stretching may each be performed once, or may be performed a plurality of times, and may be simultaneously performed longitudinally and laterally.
  • the stretching treatment is preferably performed at a glass temperature (Tg) ° C. to (Tg + 60) ° C. of the film, more preferably (Tg + 3) ° C. to (Tg + 40) ° C., and further preferably (Tg + 5) ° C. to (Tg + 30) ° C. . At this time, it is preferable to provide a temperature distribution as described above.
  • a preferred draw ratio is 280% to 500%, more preferably 300% to 480%, and still more preferably 320% to 460% on at least one side.
  • the film may be stretched uniformly in the vertical and horizontal directions, but it is more preferable to stretch one of the stretch ratios more than the other and unevenly stretch. Either vertical (MD) or horizontal (TD) may be increased.
  • the biaxial stretching treatment is performed, for example, at (Tg 1 ) ° C. to (Tg 1 +60) ° C., which is the glass transition temperature of the film, once or twice in the longitudinal direction so that the total magnification becomes 3 to 6 times.
  • the film is stretched and then applied at (Tg 1 ) ° C. to (Tg + 60) ° C. so that the magnification is 3 to 5 times in the width direction.
  • two or more pairs of nip rolls with increased peripheral speed on the outlet side can be used to stretch in the longitudinal direction (longitudinal stretching). You may extend
  • the transverse stretching can be performed by holding both ends of the film with a chuck and spreading the film in the orthogonal direction (perpendicular to the longitudinal direction) (lateral stretching). Simultaneous stretching can be carried out by combining an operation of expanding the chuck interval in the longitudinal direction and an operation of increasing the chuck interval in the width direction after being gripped by the chuck.
  • the undercoat layer is preferably formed on the surface of the polyester film by coating before the stretching step or during the stretching step. That is, in the present invention, it is preferable to stretch the polyester film substrate at least once.
  • the stretching process and the coating process can be performed in the following combinations.
  • (A) Longitudinal stretching ⁇ Coating ⁇ Horizontal stretching (b) Coating ⁇ Longitudinal stretching ⁇ Horizontal stretching (c) Coating ⁇ Vertical and transverse simultaneous stretching (d) Longitudinal stretching ⁇ Horizontal stretching ⁇ Coating ⁇ Vertical stretching (e) Longitudinal stretching ⁇ Horizontal Stretching ⁇ Application ⁇ Transverse stretching
  • the film in the stretching step, can be heat-treated before or after the stretching treatment, preferably after the stretching treatment.
  • heat treatment By performing heat treatment, microcrystals can be generated, and mechanical properties and durability can be improved.
  • the film may be subjected to heat treatment at about 180 ° C. to 225 ° C. (more preferably 185 ° C. to 210 ° C.) for 1 second to 60 seconds (more preferably 2 seconds to 30 seconds).
  • a thermal relaxation treatment can be performed after the heat treatment.
  • the thermal relaxation treatment is a treatment for shrinking the film by applying heat to the film for stress relaxation.
  • the thermal relaxation treatment is preferably performed in both the MD and TD directions of the film.
  • the various conditions in the thermal relaxation treatment are preferably treatment at a temperature lower than the heat treatment temperature, and preferably 130 ° C. to 220 ° C.
  • the thermal shrinkage (150 ° C.) of the film is preferably 1% to 12% for MD and TD, more preferably 1% to 10%.
  • the white polyester film contains at least a polyester resin and white particles.
  • the white polyester film can be formed by providing a polyester film forming step.
  • the polyester film forming step includes a step in which a polyester resin and white particles are mixed, melt-kneaded with an extruder, extruded into a sheet, and cooled and solidified. Thereby, an unstretched film is formed.
  • extrusion for example, an extrusion pressure of 0.5 to 30 MPa is applied.
  • the white particles can be mixed in the range of 0.3 to 5.0% by mass with respect to the polyester resin.
  • a polymer layer (average film thickness of 0.03 to 0.5 ⁇ m) is formed on one surface, and a functional layer (average film thickness of 4.0 to 8.0 ⁇ m) is formed on the other surface. May be.
  • a master pellet obtained by mixing a polyester resin, white particles, and other additives as necessary, and melt-kneading with an extruder in producing a white polyester.
  • white particles white particles selected from the inorganic particles described above can be used.
  • the polyester resin used for preparing the master pellets a diol component and a dicarboxylic acid component can be polycondensed according to a conventional method and then processed into pellets. Further, particles other than the white particles, and end-capping agents such as a carbodiimide compound, a ketene imine compound, and an imino ether compound contained in the polyester film are also mixed into the master pellet as necessary.
  • End-capping agents such as carbodiimide compounds, ketene imine compounds, and imino ether compounds may be added directly to the extruder, but they are mixed with polyester in advance and melt-kneaded to prepare a master batch. It is preferable to put into an extruder from the viewpoint of extrusion stability.
  • the composition such as the particles or the end-capping agent and the polyester resin is dried in a vacuum or hot air.
  • the water content in these compositions is preferably 100 ppm or less, more preferably 80 ppm or less, and even more preferably 60 ppm or less.
  • the drying temperature at this time is preferably 80 to 200 ° C., more preferably 100 to 180 ° C., and further preferably 110 to 170 ° C. The drying time can be appropriately adjusted so as to achieve the above moisture content.
  • the additive concentration of the white particles or end-capping agent in the master pellet is preferably 1.5 to 20 times, more preferably 2 to 15 times, still more preferably 3 to 10 times the concentration used in the film.
  • the reason why the additive concentration is made higher than the target concentration is that the target concentration is obtained by diluting with the polyester pellets in the next film forming step.
  • kneading For kneading, various kneaders such as a single screw extruder, a twin screw extruder, a Banbury mixer, and a Brabender can be used. Among these, it is preferable to use a twin screw extruder.
  • the kneading temperature is preferably from the crystal melting temperature (Tm) of the polyester resin to Tm + 80 ° C., more preferably Tm + 10 to Tm + 70 ° C., and further preferably Tm + 20 to Tm + 60 ° C.
  • the kneading atmosphere may be any of air, vacuum, and inert gas flow, but more preferably vacuum and inert gas flow.
  • the kneading time is preferably 1 to 20 minutes, more preferably 2 to 18 minutes, and further preferably 3 to 15 minutes.
  • the kneaded resin is extruded into a strand shape, cooled and solidified in air or water, then cut and pelletized.
  • the master pellets are heated and melted together with the polyester resin added together with the star pellets so that the maximum resin temperature reaches about 300 ° C. Thereafter, the molten resin (melt) is extruded into a film shape on a cooling roll through a die (extrusion process). The molten resin is solidified on a cooling roll to form a film. The film thus formed becomes a cast film (unstretched original fabric).
  • the molten resin is preferably passed through a melt pipe, a gear pump, and a filter. It is also preferable to provide a static mixer in the melt pipe to promote mixing of the resin and the additive. In addition, in order to suppress decomposition
  • the thickness of the support is preferably from 30 ⁇ m to 350 ⁇ m, more preferably from 160 ⁇ m to 300 ⁇ m, and even more preferably from 180 ⁇ m to 280 ⁇ m from the viewpoint of withstand voltage.
  • the support preferably has a elongation at break after storage for 50 hours at 120 ° C. and a relative humidity of 100% of 50% or more with respect to the elongation at break before storage (hereinafter referred to as a support subjected to wet heat treatment under the conditions).
  • the retention of elongation at break before and after the treatment of the body is also simply referred to as “breaking elongation retention”).
  • breaking elongation retention When the elongation at break is 50% or more, the change accompanying hydrolysis is suppressed, and the adhesive state at the adhesive interface with the coating layer is stably maintained during long-term use. Separation is prevented.
  • the time to reach 50% is preferably 75 hours or more and 200 hours or less, more preferably 100 hours or more and 180 hours or less.
  • the support preferably has a breaking strength after heat treatment at 180 ° C. for 50 hours of 50% or more of the breaking strength before the heat treatment. More preferably, the breaking strength after heat treatment at 180 ° C. for 80 hours is 50% or more of the breaking strength before heat treatment, and more preferably, the breaking strength after heat treatment at 180 ° C. for 100 hours is 50% of the breaking strength before heat treatment. That's it. Thereby, the heat resistance when exposed to high temperatures can be improved.
  • the support preferably has a thermal shrinkage of 1% or less, more preferably 0.5% or less for both MD and TD when heat-treated at 150 ° C. for 30 minutes. By maintaining the heat shrinkage at 1% or less, it is possible to prevent warping when the solar cell module is formed.
  • the support may be subjected to surface treatment such as corona discharge treatment, flame treatment, and glow discharge treatment as necessary.
  • surface treatment such as corona discharge treatment, flame treatment, and glow discharge treatment as necessary.
  • the corona discharge treatment is a preferable surface treatment method that can be performed at low cost.
  • Corona discharge treatment is usually performed by applying high frequency and high voltage between a metal roll (dielectric roll) coated with a derivative and an insulated electrode to cause dielectric breakdown of the air between the electrodes. Is ionized to generate a corona discharge between the electrodes. And it performs by passing a support body between this corona discharge.
  • Preferred treatment conditions used in the present invention are preferably a gap clearance of 1 to 3 mm between the electrode and the dielectric roll, a frequency of 1 to 100 kHz, and an applied energy of about 0.2 to 5 kV ⁇ A ⁇ min / m 2 .
  • the glow discharge treatment is a method called vacuum plasma treatment or glow discharge treatment, in which plasma is generated by discharge in a gas (plasma gas) in a low-pressure atmosphere to treat the substrate surface.
  • the low-pressure plasma used in the process of the present invention is a non-equilibrium plasma generated under conditions where the plasma gas pressure is low.
  • the treatment of the present invention is performed by placing a film to be treated in this low-pressure plasma atmosphere.
  • the power source used for discharging may be direct current or alternating current.
  • alternating current a range of about 30 Hz to 20 MHz is preferable.
  • alternating current a commercial frequency of 50 or 60 Hz may be used, or a high frequency of about 10 to 50 kHz may be used.
  • a method using a high frequency of 13.56 MHz is also preferable.
  • an inorganic gas such as oxygen gas, nitrogen gas, water vapor gas, argon gas, and helium gas can be used.
  • oxygen gas or a mixed gas of oxygen gas and argon gas can be used. Is preferred.
  • a method is also preferable in which a gas such as the air entering the processing container due to a leak or water vapor coming out of the object to be processed is used as the plasma gas without introducing the gas into the processing container.
  • the pressure of the plasma gas needs to be low enough to achieve non-equilibrium plasma conditions.
  • the specific plasma gas pressure is preferably in the range of about 0.005 Torr to 10 Torr, more preferably about 0.008 Torr to 3 Torr.
  • the pressure of the plasma gas is less than 0.005 Torr, the effect of improving the adhesiveness may be insufficient.
  • the pressure exceeds 10 Torr the current may increase and the discharge may become unstable.
  • the plasma output cannot be generally specified depending on the shape and size of the processing container and the shape of the electrode, but is preferably about 100 W to 2500 W, more preferably about 500 W to 1500 W.
  • the treatment time of the glow discharge treatment is preferably 0.05 seconds to 100 seconds, more preferably about 0.5 seconds to 30 seconds. If the treatment time is less than 0.05 seconds, the effect of improving the adhesiveness may be insufficient. Conversely, if the treatment time exceeds 100 seconds, problems such as deformation and coloring of the film to be treated may occur.
  • the discharge treatment intensity of the glow discharge treatment depends on the plasma output and the treatment time, but is preferably in the range of 0.01 to 10 kV ⁇ A ⁇ min / m 2 , more preferably 0.1 to 7 kV ⁇ A ⁇ min / m 2 .
  • Discharge treatment intensity that is sufficient adhesion improving effect of the 0.01 kV ⁇ A ⁇ min / m 2 or more is obtained, and such deformation and coloration of the processed film by a 10 kV ⁇ A ⁇ min / m 2 or less You can avoid problems.
  • the heating temperature is preferably in the range of 40 ° C. to the softening temperature of the film to be treated + 20 ° C., more preferably in the range of 70 ° C. to the softening temperature of the film to be processed. By setting the heating temperature to 40 ° C. or higher, sufficient adhesive improvement effect can be obtained. Moreover, the handleability of a favorable film can be ensured during a process by making heating temperature below into the softening temperature of a to-be-processed film. Specific methods for raising the temperature of the film to be treated in vacuum include heating with an infrared heater, heating by contacting with a hot roll, and the like.
  • the (B) layer containing a polymer having a yield point is provided on at least one surface of the support.
  • (B) Whether the polymer contained in the layer has a yield point and the yield point of the polymer are measured by the following method.
  • Measurement method of polymer yield point First, a polymer for measuring the yield point is applied to a therapy (manufactured by Toray Industries Inc.) so that the film thickness after drying is 15 ⁇ m, and dried at 170 ° C. for 2 minutes to form a polymer film on the surface of the therapy.
  • the polymer film formed on the surface of the therapy is stored in a high-temperature and high-humidity environment at 121 ° C. and 100% for 30 hours, and then cut into a size of 3 cm ⁇ 5 mm to peel the polymer film from the therapy.
  • the obtained polymer film was subjected to a tensile test with a tensile tester (Tensilon: manufactured by A & D Company) at 23.0 ° C. and 50.0% at a speed of 50 mm / min. Measure. In this tensile test, the polymer film increases in elongation according to the tensile stress, but when a certain stress is exceeded, a phenomenon occurs in which the tensile stress decreases while strain (elongation) increases.
  • the polymer having a yield point that can be used for the layer (B) is not particularly limited, and is selected from acrylic resins, olefin resins, urethane resins, polyester resins, and the like. Therefore, it is necessary that the polymer film has a yield point.
  • a polymer film is formed by solvent film formation or latex film formation, and the yield point is measured by the above measurement method.
  • the polymer having a yield point may be used by dissolving the polymer in an organic solvent, or may be used as a dispersion in which polymer particles are dispersed in water. In consideration of the environment, it is preferable to use those dispersed in water. Polymers having a yield point are also available as commercial products.
  • the polymer to be mixed is a polymer having a yield point, more preferably 70% by mass or more of the polymer to be mixed, particularly preferably all the polymers to be mixed have a yield point.
  • the (B) layer is formed by dissolving a polymer having a yield point in an appropriate solvent or applying a polymer particle dispersed in a dispersion medium and drying.
  • the layer formation composition may contain the other additive as needed.
  • additives for example, inorganic particles for improving the film strength, a crosslinking agent, a surfactant for improving the uniformity of the coating film, a colorant, examples include ultraviolet absorbers, antioxidants, and preservatives.
  • the coating layer (B) preferably contains inorganic particles.
  • inorganic particles include silica particles such as colloidal silica, metal oxide particles such as titanium oxide, aluminum oxide, zirconium oxide, magnesium oxide, and tin oxide, inorganic carbonate particles such as calcium carbonate and magnesium carbonate, barium sulfate, and the like.
  • Metal pigment particles, black pigment particles such as carbon black, among others, white pigments preferably include colloidal silica, titanium oxide particles, aluminum oxide particles, zirconium oxide, etc., and black pigments such as carbon black Is preferred.
  • the layer (B) may contain only one type of inorganic particles, or two or more types may be used in combination. When using 2 or more types together, only 2 or more types of white pigments may be used, 2 or more types of black pigments may be used, and a white pigment and a black pigment may be used together.
  • the solar cell backsheet can be concealed.
  • the wiring to the power generation element and the like are not visible from the outside, and it is a preferable embodiment that the solar cell backsheet has high concealability.
  • a polyester film obtained by adding carbon black which is a black pigment directly to polyester is known.
  • carbon black becomes the core of crystallization and the crystallization speed of polyester increases, making it difficult to form by stretching, or film using polyester in a humid heat atmosphere.
  • the film When placed underneath, there has been a problem that the rate of increase in crystallinity of the film is high, the film becomes brittle early, and the heat-and-moisture resistance of the film decreases.
  • a black pigment such as carbon black
  • the layer (B) not only the strength improvement effect as inorganic particles but also the decrease in wet heat resistance of the polyester film as a support is suppressed, and the solar cell This also has the advantage that high concealability can be imparted to the back sheet for use.
  • the colloidal silica that can be used in the layer (B) is one in which particles mainly composed of silicon oxide exist in a colloidal form using water, alcohols, diols, or the like, or a mixture thereof as a dispersion medium.
  • the colloidal silica particles have an average primary particle size of about several nm to 100 nm.
  • the average particle size can be measured from an electron micrograph obtained by a scanning electron microscope (SEM) or the like, or can be measured by a particle size distribution meter using a dynamic light scattering method or a static light scattering method.
  • the shape of the colloidal silica particles may be spherical, or may be one in which these are connected in a bead shape.
  • Colloidal silica particles are commercially available, and examples thereof include the Snowtex series manufactured by Nissan Chemical Industries, the Cataloid-S series manufactured by Catalytic Chemical Industries, and the Rebacil series manufactured by Bayer. Specifically, for example, Snowtex ST-20, ST-30, ST-40, ST-C, ST-N, ST-20L, ST-O, ST-OL, ST-S, manufactured by Nissan Chemical Industries, Ltd. ST-XS, ST-XL, ST-YL, ST-ZL, ST-OZL, ST-AK, Snowtex-AK series, Snowtex-PS series, Snowtex-UP series, etc. can be mentioned.
  • Carbon black known as a black pigment can be selected suitably, and can be used.
  • carbon black particles are preferably used as carbon black in order to obtain high coloring power in a small amount, more preferably carbon black particles having a primary particle diameter of 1 ⁇ m or less, and the primary particle diameter is Carbon black particles of 0.1 ⁇ m to 0.8 ⁇ m are particularly preferable.
  • carbon black particles dispersed in water together with a dispersant Carbon black that can be obtained commercially may be used.
  • MF-5630 black (trade name: manufactured by Dainichi Seika Co., Ltd.) or JP 2009-132877 A Those described in paragraph [0035] can be used.
  • the average particle size of the inorganic particles contained in the coating layer (B) is not particularly limited, but from the viewpoint of improving the film strength and maintaining good adhesion, the average primary particle size is determined by the coating layer.
  • the film thickness is preferably equal to or less than the film thickness of (B), more preferably equal to or less than 1/2 of the film thickness of the coating layer (B), and 1/3 or less of the film thickness of the coating layer (B). Further preferred.
  • the average primary particle diameter of the inorganic particles is preferably 1.0 ⁇ m or less, more preferably 10 nm to 700 nm, and further preferably 15 nm to 300 nm.
  • the average primary particle diameter of the inorganic particles in the present specification a value measured by a microtrack FRA manufactured by Honeywell is used.
  • the content of inorganic particles in the coating layer (B) is preferably in the range of 10% by volume to 35% by volume, and more preferably in the range of 20% by volume to 30% by volume.
  • the layer forming composition preferably contains a crosslinking agent.
  • a crosslinked structure is formed in the binder (polymer having a yield point) film contained in the composition for layer formation (B), and the adhesiveness and strength are increased. A more improved layer is formed.
  • crosslinking agent examples include epoxy-based, isocyanate-based, melamine-based, carbodiimide-based, and oxazoline-based crosslinking agents.
  • an oxazoline-based cross-linking agent is particularly preferable from the viewpoint of securing adhesion between the layer (B) and the inline coat layer or between the layer (B) and the polyester base material after the lapse of wet heat.
  • oxazoline-based crosslinking agent examples include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline.
  • oxazoline-based crosslinking agent a commercially available product may be used as the oxazoline-based crosslinking agent, and for example, Epocross K2010E, K2020E, K2030E, WS500, WS700 [all manufactured by Nippon Shokubai Chemical Industry Co., Ltd.] and the like can be used.
  • a crosslinking agent catalyst may be used in combination with the crosslinking agent.
  • the crosslinking reaction between the binder (resin) and the crosslinking agent is promoted, and the solvent resistance is improved.
  • the strength and dimensional stability of the layer (B) can be further improved by the good progress of crosslinking.
  • a crosslinking agent having an oxazoline group oxazoline-based crosslinking agent
  • Examples of the crosslinking agent catalyst include onium compounds.
  • Preferred examples of the onium compound include ammonium salts, sulfonium salts, oxonium salts, iodonium salts, phosphonium salts, nitronium salts, nitrosonium salts, diazonium salts and the like.
  • the onium compound examples include monoammonium phosphate, diammonium phosphate, ammonium chloride, ammonium sulfate, ammonium nitrate, ammonium p-toluenesulfonate, ammonium sulfamate, ammonium imidodisulfonate, tetrabutylammonium chloride, benzyltrimethylammonium chloride.
  • Ammonium salts such as triethylbenzylammonium chloride, tetrabutylammonium tetrafluoride, tetrabutylammonium hexafluoride, tetrabutylammonium perchlorate, tetrabutylammonium sulfate; Trimethylsulfonium iodide, boron trifluoride trimethylsulfonium, boron tetrafluoride diphenylmethylsulfonium, boron tetrafluoride benzyltetramethylenesulfonium, antimony hexafluoride 2-butenyltetramethylenesulfonium, antimony hexafluoride 3-methyl-2 -Sulfonium salts such as butenyltetramethylenesulfonium; Oxonium salts such as boron tetrafluoride trimethyloxonium; Iodonium salt
  • an onium compound is more preferably an ammonium salt, a sulfonium salt, an iodonium salt, or a phosphonium salt from the viewpoint of shortening the curing time, and among these, an ammonium salt is more preferable, and from the viewpoints of safety, pH, and cost.
  • an ammonium salt is more preferable, and from the viewpoints of safety, pH, and cost.
  • the onium compound is dibasic ammonium phosphate.
  • the catalyst for the crosslinking agent may be only one type, or two or more types may be used in combination.
  • the addition amount of the crosslinking agent catalyst is preferably in the range of 0.1% by mass or more and 15% by mass or less, more preferably in the range of 0.5% by mass or more and 12% by mass or less, and more preferably 1% by mass or more with respect to the crosslinking agent.
  • the range of 10% by mass or less is particularly preferable, and 2% by mass or more and 7% by mass or less is more preferable.
  • the addition amount of the crosslinking agent catalyst with respect to the crosslinking agent being 0.1% by mass or more means that the crosslinking agent catalyst is actively contained, and the inclusion of the crosslinking agent catalyst is a yield that is a binder.
  • the cross-linking reaction between the polymer having a point and the cross-linking agent proceeds better, and better durability is obtained. Moreover, it is advantageous at the point of solubility, the filterability of a coating liquid, and adhesiveness with each adjacent layer because content of the catalyst of a crosslinking agent is 15 mass% or less.
  • the thickness of the (B) layer is preferably thicker than the thickness of the (C) layer, which is an easy-adhesion layer described later, from the viewpoint of improving adhesion. That is, when the thickness of the (B) layer is (b) and the thickness of the (C) layer is (c), the relationship of (b)> (c) is preferable, and (b): (C) is in the range of 2: 1 to 15: 1. Further, the thickness of the layer (B) is preferably 0.5 ⁇ m or more, and more preferably 0.7 ⁇ m or more. Moreover, it is preferable that it is 5.0 micrometers or less, More preferably, it is 1.5 micrometers or less.
  • the thickness of the layer, and the balance between the thickness of the (B) layer and the thickness of the (C) layer is within the above range, and the characteristics of the polymer film constituting the (B) layer are well expressed. Adhesiveness and durability with the sealing material are further improved.
  • the method by coating is preferable in that it can be formed with a simple and highly uniform thin film.
  • a coating method for example, a known method such as a gravure coater or a bar coater can be used.
  • the solvent (or dispersion medium) of the coating solution used for coating may be water or an organic solvent such as toluene or methyl ethyl ketone.
  • a solvent may be used individually by 1 type and may be used in mixture of 2 or more types.
  • a drying process is a process of supplying dry air to a coating film.
  • the average wind speed of the drying air is preferably 5 m / sec to 30 m / sec, more preferably 7 m / sec to 25 m / sec, and further preferably 9 m / sec to 20 m / sec.
  • the support surface prefferably subjected to surface treatment such as corona discharge treatment, glow treatment, atmospheric pressure plasma treatment, flame treatment, and UV treatment before applying the (B) layer on the support. It is also preferable to provide an in-line coat layer formed containing an acid-modified polyolefin.
  • the in-line coat layer is formed on the surface of the polyester film by coating before or during the stretching process of the polyester film used for the support.
  • the in-line coat layer contains an acid-modified polyolefin.
  • an aqueous solution or an aqueous dispersion (latex) Since the acid-modified polyolefin is water-insoluble, a basic compound having a boiling point of 200 ° C. or less is mixed with the aqueous solution or aqueous dispersion (latex) as a neutralizing agent that imparts dispersion stability.
  • an acid-modified polyolefin is prepared.
  • a glass container equipped with a stirrer and a heater is charged with a copolymer resin of ethylene and methacrylic acid, an organic solvent (for example, n-propanol), a basic compound and distilled water as raw materials, sealed and mixed with stirring. To do. After stirring and mixing, it is confirmed that no precipitation of resin particles is observed at the bottom of the container, and that it is in a floating state. Thereafter, the entire glass container is covered with a heat insulating material, the heater is turned on, and stirring is continued for 30 minutes to 120 minutes while maintaining the system temperature at 50 ° C.
  • a crosslinking agent and distilled water are added to the obtained acid-modified polyolefin aqueous dispersion to obtain a composition for forming an inline coat layer.
  • a surfactant such as a nonionic surfactant or an anionic surfactant may be further added to the composition according to the purpose.
  • the coating layer (C) is provided on the surface of the coating layer (B) opposite to the support.
  • the coating layer (C) is a layer that is directly in contact with the sealing material of the solar cell module to which the solar cell backsheet of the present invention is applied, that is, the outermost layer and functions as an easy adhesion layer.
  • the coating layer (C) contains at least a binder and may contain various additives as desired.
  • -binder- Examples of the binder include one or more polymers selected from polyolefin resins, acrylic resins, polyester resins, and polyurethane resins. These resins are preferably used because they easily obtain adhesion. Specific examples include the following resins.
  • acrylic resin for example, a polymer containing polymethyl methacrylate, polyethyl acrylate, or the like is preferable.
  • acrylic resin a composite resin of acrylic and silicone is also preferable.
  • Commercially available products may be used as the acrylic resin.
  • AS-563A manufactured by Daicel Einchem Co., Ltd.
  • Jurimer ET-410 Jurimer ET-410
  • SEK-301 both Nippon Pure Chemical Industries, Ltd.
  • the composite resin of acrylic and silicone include Ceranate WSA1060 and WSA1070 (both manufactured by DIC Corporation), and H7620, H7630, and H7650 (both manufactured by Asahi Kasei Chemicals Corporation).
  • polyester resin for example, polyethylene terephthalate (PET), polyethylene-2,6-naphthalate (PEN) and the like are preferable.
  • PET polyethylene terephthalate
  • PEN polyethylene-2,6-naphthalate
  • the polyester resin a commercially available product may be used.
  • Vylonal MD-1245 manufactured by Toyobo Co., Ltd.
  • the polyurethane resin for example, a carbonate-based urethane resin is preferable, and for example, Superflex 460 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) can be preferably used.
  • polyolefin resin for example, a modified polyolefin copolymer is preferable.
  • Commercially available products may be used as the polyolefin resin.
  • Arrow Base SE-1013N, SD-1010, TC-4010, TD-4010 both manufactured by Unitika Ltd.
  • Hitech S3148, S3121, S8512 Both manufactured by Toho Chemical Co., Ltd.
  • Chemipearl S-120, S-75N, V100, EV210H both manufactured by Mitsui Chemicals, Inc.
  • Arrow Base SE-1013N manufactured by Unitika Co., Ltd., which is a terpolymer of low density polyethylene, acrylic acid ester, and maleic anhydride.
  • polyolefin resins may be used alone or in combination of two or more.
  • a combination of acrylic resin and polyolefin resin a combination of polyester resin and polyolefin resin, a urethane resin and polyolefin resin.
  • a combination of acrylic resin and polyolefin resin is more preferable.
  • the content of the acrylic resin with respect to the total of the polyolefin resin and the acrylic resin in the layer (C) is preferably 3% by mass to 50% by mass, and 5% by mass to 40%. More preferably, the content is 7% by mass, and particularly preferably 7% by mass to 25% by mass.
  • a polyester resin for example, Vylonal MD-1245 (manufactured by Toyobo Co., Ltd.)
  • a polyurethane resin to the polyolefin resin.
  • Superflex 460 Densiichi Kogyo Seiyaku Co., Ltd.
  • Superflex 460 can be preferably used.
  • the binder (resin) contained in the (C) layer may be crosslinked by a crosslinking agent. It is preferable to form a crosslinked structure in the layer (C), since the adhesion can be further improved.
  • a crosslinking agent such as an epoxy type, an isocyanate type, a melamine type, a carbodiimide type, an oxazoline type, can be mentioned similarly.
  • the crosslinking agent is preferably an oxazoline-based crosslinking agent.
  • cross-linking agent having an oxazoline group Epocros K2010E, K2020E, K2030E, WS-500, WS-700 (all manufactured by Nippon Shokubai Chemical Industry Co., Ltd.) and the like can be used.
  • the addition amount of the crosslinking agent is preferably 0.5% by mass to 50% by mass, more preferably 3% by mass to 40% by mass, and particularly preferably 5% by mass or more and 30% by mass with respect to the binder contained in the layer (C). It is less than mass%.
  • the addition amount of the crosslinking agent is 0.5% by mass or more, a sufficient crosslinking effect can be obtained while maintaining the strength and adhesiveness of the layer (C). If the pot life is kept long and the amount is less than 40% by mass, the coated surface can be improved.
  • a catalyst for the crosslinking agent may be further used in combination.
  • the crosslinking reaction between the binder (resin) and the crosslinking agent is promoted, and the solvent resistance is improved.
  • adhesiveness of (C) layer and a sealing material is improved more by bridge
  • a crosslinking agent having an oxazoline group oxazoline-based crosslinking agent
  • crosslinking agent catalyst examples include onium compounds.
  • Preferred examples of the onium compound include ammonium salts, sulfonium salts, oxonium salts, iodonium salts, phosphonium salts, nitronium salts, nitrosonium salts, diazonium salts and the like.
  • the compounds mentioned in the layer (B) are used in the same manner, and preferred examples are also the same.
  • the catalyst of the crosslinking agent contained in a layer may be only 1 type, and may use 2 or more types together.
  • the addition amount of the crosslinking agent catalyst is preferably in the range of 0.1% by mass or more and 15% by mass or less, more preferably in the range of 0.5% by mass or more and 12% by mass or less, and more preferably 1% by mass or more with respect to the crosslinking agent.
  • the range of 10% by mass or less is particularly preferable, and 2% by mass or more and 7% by mass or less is more preferable.
  • the addition amount of the crosslinking agent catalyst with respect to the crosslinking agent being 0.1% by mass or more means that the crosslinking agent catalyst is positively contained, and the binder and the crosslinking agent are contained by the inclusion of the crosslinking agent catalyst.
  • the cross-linking reaction progresses better, and better solvent resistance is obtained.
  • the (C) layer may contain various additives as long as the effects of the present invention are not impaired.
  • the additive include an antistatic agent, an ultraviolet absorber, a colorant, and a preservative.
  • the antistatic agent include surfactants such as nonionic surfactants, organic conductive materials, inorganic conductive materials, and organic / inorganic composite conductive materials.
  • surfactant used in the antistatic agent that can be contained in the layer (C) nonionic surfactants, anionic surfactants, and the like are preferable.
  • nonionic surfactants are preferable, and ethylene glycol chains (polyoxy Nonionic surfactants having an ethylene chain; — (CH 2 —CH 2 —O) n —) and not having a carbon-carbon triple bond (alkyne bond) are preferred. Further, those having an ethylene glycol chain of 7 to 30 are particularly preferred. More specifically, hexaethylene glycol monododecyl ether, 3,6,9,12,15-pentaoxahexadecan-1-ol, polyoxyethylene phenyl ether, polyoxyethylene methyl phenyl ether, polyoxyethylene naphthyl ether, Examples thereof include polyoxyethylene methyl naphthyl ether, but are not limited thereto.
  • the content is preferably 2.5% by mass to 40% by mass, more preferably 5.0% by mass to 35% by mass, and more preferably The amount is preferably 10% by mass to 30% by mass.
  • the sealing material for example, EVA: ethylene-vinyl acetate copolymer
  • organic conductive materials include cationic conductive compounds having cationic substituents such as ammonium groups, amine bases, and quaternary ammonium groups in the molecule; sulfonate groups, phosphate groups, carboxylate groups, and the like.
  • the inorganic conductive material examples include gold, silver, copper, platinum, silicon, boron, palladium, rhenium, vanadium, osmium, cobalt, iron, zinc, ruthenium, praseodymium, chromium, nickel, aluminum, tin, zinc, Oxidation, sub-oxidation, hypo-sub-oxidation of an inorganic group such as titanium, tantalum, zirconium, antimony, indium, yttrium, lanthanium, magnesium, calcium, cerium, hafnium, barium, etc .; the above-mentioned inorganic group And a mixture of those obtained by oxidizing, sub-oxidizing and hypo-sub-oxidizing the inorganic substance group (hereinafter referred to as “inorganic oxides”); nitriding, sub-nitriding and hypo-sub-nitriding those having the above-mentioned inorganic substance group as the main component A mixture of the inorganic group and a
  • Inorganic halogen A mixture of the inorganic substance group and the inorganic substance group sulfided, subsulfurized or hyposulfurized (hereinafter referred to as inorganic). Inorganic group doped with different elements; Graphite carbon, diamond-like carbon, carbon fiber, carbon nanotube, fullerene and other carbon-based compounds (hereinafter referred to as carbon-based compounds); A mixture etc. are mentioned.
  • the solar cell backsheet of the present invention comprises at least the coating layer (B) and the coating layer (C) in this order on a support.
  • seat of this invention becomes the thing excellent in adhesiveness with a sealing material, its durability, and a weather resistance.
  • the coating layer (D) and the coating layer (E) will be described in detail as examples of the weather resistant layer suitably used in the present invention.
  • the weather-resistant layer includes a layer [coating layer (D)] containing a binder, a colorant, and scattering particles.
  • a weather-resistant layer is appropriately referred to as a (D) layer.
  • a back surface protective layer arranged on the opposite side to the side in contact with the battery side substrate of the support in the solar cell backsheet.
  • the layer may be a single layer structure or a laminated structure composed of a plurality of layers.
  • a single layer an embodiment in which a layer containing a binder, a colorant and scattering particles is arranged on a polymer support is preferable.
  • a laminated structure an embodiment in which two layers containing the binder, colorant and scattering particles are laminated on the polymer support, and a layer containing the binder, colorant and scattering particles on the polymer support.
  • a layer of another composition such as a weather-resistant layer (for example, coating layer (E) described in detail below) which further contains an optional fluoropolymer and does not contain any colorant or scattering particles. ) May be laminated.
  • the binder used for the layer (D) may be any of an organic polymer, an inorganic polymer or a binder composed of an organic / inorganic composite polymer. Adhesion between layers in the case of taking a laminated structure composed of two or more layers is improved, and deterioration resistance in a moist heat environment is obtained.
  • an inorganic polymer A well-known inorganic polymer can be used.
  • the organic polymer or organic / inorganic composite polymer is not particularly limited, but preferably contains at least one of a fluorine-based polymer and a silicone-based polymer, and includes at least one of a fluorine-based organic polymer and a silicone-acrylic organic / inorganic composite resin. More preferably, it includes a silicone-acrylic organic / inorganic composite resin.
  • the silicone-based polymer is a polymer having a (poly) siloxane structure in the molecular chain, and the (D) layer contains the silicone-based polymer, so that the support for the solar cell backsheet and the coating layer (E) described later are used. It is excellent in adhesion with adjacent materials such as, and durability in a wet heat environment.
  • the silicone polymer is not particularly limited as long as it has a (poly) siloxane structure in the molecular chain, and may be a homopolymer of a compound having a (poly) siloxane structural unit. And a copolymer containing a (poly) siloxane structural unit and another structural unit.
  • the other structural unit copolymerized with the siloxane structural unit is a non-siloxane structural unit.
  • the silicone polymer preferably has a siloxane structural unit represented by the following general formula (1) as a (poly) siloxane structure.
  • R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, or a monovalent organic group.
  • R 1 and R 2 may be the same or different, and a plurality of R 1 and R 2 may be the same or different from each other.
  • n represents an integer of 1 or more.
  • R 1 and R 2 represent a halogen atom
  • examples of the halogen atom include a fluorine atom, a chlorine atom, and an iodine atom.
  • the monovalent organic group may be any group that can be covalently bonded to an Si atom, such as an alkyl group (eg, methyl group, ethyl group).
  • aryl groups eg: phenyl groups, etc.
  • aralkyl groups eg: benzyl groups, phenylethyl etc.
  • alkoxy groups eg: methoxy groups, ethoxy groups, propoxy groups etc.
  • aryloxy groups eg: phenoxy groups
  • Etc. mercapto group
  • amino group eg, amino group, diethylamino group, etc.
  • examples of the substituent include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, and an ester.
  • substituent include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, and an ester.
  • R 1 and R 2 are each independently a hydrogen atom, a chlorine atom, a bromine atom, an unsubstituted or substituted, in terms of adhesion to adjacent materials such as a polymer substrate and durability in a wet and heat environment.
  • Alkyl groups having 1 to 4 carbon atoms particularly methyl group, ethyl group
  • unsubstituted or substituted phenyl group unsubstituted or substituted alkoxy group
  • mercapto group unsubstituted amino group
  • amide group More preferably an unsubstituted or substituted alkoxy group (preferably an alkoxy group having 1 to 4 carbon atoms) from the viewpoint of durability in a moist heat environment.
  • the n is preferably 1 to 5000, and more preferably 1 to 1000.
  • the ratio of “— (Si (R 1 ) (R 2 ) —O) n —” in the polymer is based on the total mass of the polymer.
  • the content of the polymer layer is preferably 15 to 85% by mass.
  • the strength of the polymer layer surface is improved, the occurrence of scratches due to scratching or abrasion is prevented, and adhesion to adjacent materials such as a polymer base material and wet heat environment From the viewpoint of superior durability, the range of 20% by mass to 80% by mass is more preferable.
  • the ratio of the (poly) siloxane structural unit is 15% by mass or more, the strength of the surface of the polymer layer is improved, and scratches caused by scratches, scratches, collisions of flying pebbles, etc. are prevented, and the support can be Excellent adhesion to adjacent materials such as polymer substrates. Suppression of the occurrence of scratches improves weather resistance, and effectively enhances peeling resistance, shape stability, and adhesion durability when exposed to a moist heat environment, which are easily deteriorated by heat and moisture. Moreover, a liquid can be kept stable as the ratio of a (poly) siloxane structural unit is 85 mass% or less.
  • the polymer in the present invention is a copolymer polymer having a (poly) siloxane structural unit and another structural unit
  • the (poly) siloxane structural unit represented by the general formula (1) in the molecular chain is represented by a mass ratio. It preferably contains 15% by mass to 85% by mass and a non-siloxane structural unit in a mass ratio of 85% by mass to 15% by mass.
  • a siloxane compound including polysiloxane
  • a compound selected from a non-siloxane monomer or a non-siloxane polymer are copolymerized, and the (poly) siloxane represented by the general formula (1)
  • a block copolymer having a structural unit and a non-siloxane structural unit is preferred.
  • the siloxane compound and the non-siloxane monomer or non-siloxane polymer to be copolymerized may be one kind alone or two or more kinds.
  • the non-siloxane structural unit (derived from the non-siloxane monomer or non-siloxane polymer) copolymerized with the (poly) siloxane structural unit is not particularly limited except that it does not have a siloxane structure, and is arbitrary. Any of the polymer segments derived from the polymer may be used. Examples of the polymer (precursor polymer) that is a precursor of the polymer segment include various polymers such as a vinyl polymer, a polyester polymer, and a polyurethane polymer. Among these, vinyl polymers and polyurethane polymers are preferable, and vinyl polymers are particularly preferable because they are easy to prepare and have excellent hydrolysis resistance.
  • the vinyl polymer include various polymers such as an acrylic polymer, a carboxylic acid vinyl ester polymer, an aromatic vinyl polymer, and a fluoroolefin polymer.
  • acrylic polymers are particularly preferable from the viewpoint of design freedom.
  • the polymer which comprises a non-siloxane type structural unit may be single 1 type, and 2 or more types of combined use may be sufficient as it.
  • the precursor polymer capable of forming a non-siloxane structural unit is preferably one containing at least one of an acid group and a neutralized acid group and / or a hydrolyzable silyl group.
  • the vinyl polymer includes, for example, (a) a vinyl monomer containing an acid group and a vinyl monomer containing a hydrolyzable silyl group and / or a silanol group.
  • the precursor polymer can be produced and obtained using, for example, the method described in paragraph Nos. 0021 to 0078 of JP-A-2009-52011.
  • the polymer layer in the present invention may be used alone or in combination with other polymers as a binder.
  • the content ratio of the polymer containing the (poly) siloxane structure in the present invention is preferably 30% by mass or more, more preferably 60% by mass or more of the total binder amount.
  • the content ratio of the polymer containing the (poly) siloxane structure is 30% by mass or more, thereby improving the strength of the surface of the layer, preventing the occurrence of scratches due to scratching or scratching, and adhesion to the polymer substrate. In addition, it is more excellent in durability under humid heat environment.
  • the molecular weight of the polymer is preferably 5,000 to 100,000, and more preferably 10,000 to 50,000.
  • a method of reacting the precursor polymer with the polysiloxane having the structural unit represented by the general formula (1), (ii) the R 1 and / or the above in the presence of the precursor polymer (i) a method of reacting the precursor polymer with the polysiloxane having the structural unit represented by the general formula (1), (ii) the R 1 and / or the above in the presence of the precursor polymer.
  • a method such as a method of hydrolyzing and condensing a silane compound having the structural unit represented by the general formula (1) in which R 2 is a hydrolyzable group can be used.
  • the silane compound used in the method (ii) include various silane compounds, and alkoxysilane compounds are particularly preferable.
  • the temperature is about 20 ° C. to 150 ° C. for about 30 minutes to 30 hours ( (The reaction is preferably performed at 50 ° C. to 130 ° C. for 1 hour to 20 hours).
  • various silanol condensation catalysts such as an acidic compound, a basic compound, and a metal containing compound, can be added.
  • water and a silanol condensation catalyst are added to a mixture of a precursor polymer and an alkoxysilane compound, and the temperature is about 20 ° C. to 150 ° C. for 30 minutes to 30 minutes. It can be prepared by carrying out hydrolysis condensation for about an hour (preferably at 50 to 130 ° C. for 1 to 20 hours).
  • the polymer having a (poly) siloxane structure may be used as the polymer having a (poly) siloxane structure.
  • DIC Corporation's Ceranate series for example, Ceranate WSA1070, WSA1060, etc.
  • Asahi Kasei Chemicals Corporation H7600 series H7650, H7630, H7620, etc.
  • JSR Co., Ltd. inorganic / acrylic composite emulsion manufactured by JSR Corporation, and the like
  • the coating amount of the polymer having the (poly) siloxane structure in the (D) layer is preferably in the range of more than 0.2 g / m 2 and not more than 15 g / m 2 .
  • the amount of the polymer applied is within the above range, generation of scratches caused by external force is suppressed, and sufficient curing of the (D) layer is achieved.
  • a range of 0.5 g / m 2 to 10.0 g / m 2 is preferable, and a range of 1.0 g / m 2 to 5.0 g / m 2 . Is more preferable.
  • the (D) layer in the present invention is preferably in the form of a DIC Corporation Ceranate series and JSR Corporation inorganic / acrylic composite emulsion as the polymer.
  • the layer (D) may be composed of a fluorine-based polymer (fluorinated polymer) as a main binder.
  • the main binder is a binder having the largest content in the layer.
  • the fluorine-based polymer that can be used here is not particularly limited as long as it is a polymer having a repeating unit represented by-(CFX 1 -CX 2 X 3 )-(however, X 1 , X 2 , and X 3 are each Independently, it represents a hydrogen atom, a fluorine atom, a chlorine atom, or a fluoroalkyl group having 1 to 3 carbon atoms.
  • polystyrene resin examples include polytetrafluoroethylene (hereinafter sometimes referred to as PTFE), polyvinyl fluoride (hereinafter sometimes referred to as PVF), and polyvinylidene fluoride (hereinafter referred to as PVDF). ), Polychlorotrifluoroethylene (hereinafter sometimes referred to as PCTFE), polytetrafluoropropylene (hereinafter sometimes referred to as HFP), and the like.
  • PTFE polytetrafluoroethylene
  • PVF polyvinyl fluoride
  • PVDF polyvinylidene fluoride
  • PCTFE Polychlorotrifluoroethylene
  • HFP polytetrafluoropropylene
  • the fluorine-based polymer may be a homopolymer obtained by polymerizing a single monomer, or may be a copolymer obtained by copolymerizing two or more types. Examples thereof include a copolymer of tetrafluoroethylene and tetrafluoropropylene (abbreviated as P (TFE / HFP)), a copolymer of tetrafluoroethylene and vinylidene fluoride (abbreviated as P (TFE / VDF)), etc. Can be mentioned.
  • the polymer used for the (D) layer containing the fluorine-based polymer may be a polymer obtained by copolymerizing a fluorine-based structural unit represented by-(CFX 1 -CX 2 X 3 )-and other structural units. Good.
  • copolymers of tetrafluoroethylene and ethylene hereinafter abbreviated as P (TFE / E)
  • copolymers of tetrafluoroethylene and propylene abbreviated as P (TFE / P)
  • tetrafluoroethylene and Copolymer of vinyl ether abbreviated as P (TFE / VE)
  • copolymer of tetrafluoroethylene and perfluorovinyl ether abbreviated as P (TFE / FVE)
  • copolymer of chlorotrifluoroethylene and vinyl ether P (Abbreviated as CTFE / VE)
  • a copolymer of chlorotrifluoroethylene and perfluorovinyl ether abbreviated as P (CTFE / FVE)
  • fluoropolymers may be used by dissolving the polymer in an organic solvent or by dispersing polymer fine particles in water. The latter is preferred because of its low environmental impact.
  • aqueous dispersions of fluoropolymers are described in, for example, JP-A Nos. 2003-231722, 2002-20409, and No. 9-194538, and the polymers described herein are applied to the present invention. Yes.
  • the above-mentioned fluorine-based polymers may be used alone or in combination of two or more.
  • resin other than fluorine-type polymers such as an acrylic resin, a polyester resin, a polyurethane resin, a polyolefin resin, and a silicone resin, in the range which does not exceed 50 mass% of all the binders.
  • the resin other than the fluorine-based polymer exceeds 50% by mass, the intended effect of improving weather resistance may not be obtained.
  • the thickness of the layer is preferably in the range of 0.8 ⁇ m to 12 ⁇ m. In this thickness range, the durability and weather resistance improving effects are sufficiently obtained, the deterioration of the surface condition is suppressed, and the adhesive force between the adjacent layers is sufficient.
  • a more preferable film thickness is in the range of about 1.0 ⁇ m to 10 ⁇ m.
  • the colorant is preferably a black colorant, a green colorant, a blue colorant, or a red colorant.
  • the color pigment used in the layer (D) is not particularly limited except that it preferably contains at least one selected from carbon black, titanium black, black composite metal oxide, cyanine color and quinacridone color, The selection may be made according to the required optical density.
  • the black composite metal oxide is preferably a composite metal oxide containing at least one of iron, manganese, cobalt, chromium, copper, and nickel, and includes cobalt, chromium, iron, manganese, copper, and nickel. Among them, it is more preferable to include two or more, and at least one pigment selected from PBk26, PBk27, PBk28, and PBr34 is more particularly preferable.
  • the PBk26 pigment is a complex oxide of iron, manganese and copper
  • the PBk27 pigment is a complex oxide of iron, cobalt and chromium
  • the PBk-28 is a complex oxide of copper, chromium and manganese.
  • PBr34 is a composite oxide of nickel and iron. Examples of the cyanine color and quinacridone color include cyanine green, cyanine blue, quinacridone red, phthalocyanine blue, and phthalocyanine green.
  • carbon black is preferably carbon black fine particles having a particle diameter of 0.1 ⁇ m to 0.8 ⁇ m. Furthermore, it is preferable to use the carbon black fine particles dispersed in water together with a dispersant.
  • Carbon black that can be obtained commercially can be used, for example, MF-5630 black (manufactured by Dainichi Seika Co., Ltd. or described in paragraph [0035] of JP2009-132877A). Can be used.
  • -Scattered particles- (D) There is no restriction
  • the scattering particle means a particle that hardly absorbs light in the particle itself, and does not contain the colorant.
  • white pigments that can be used as scattering particles include inorganic pigments such as titanium dioxide, barium sulfate, silicon oxide, aluminum oxide, magnesium oxide, calcium carbonate, kaolin, talc, and colloidal silica, and organic pigments such as hollow particles. Of these, titanium dioxide is preferable.
  • titanium dioxide used in the present invention
  • the rutile type is preferred.
  • the titanium dioxide used in the present invention may be surface-treated with aluminum oxide (Al 2 O 3 ), silicon dioxide (SiO 2 ), alkanolamine compound, silicon compound or the like, if necessary.
  • Al 2 O 3 aluminum oxide
  • SiO 2 silicon dioxide
  • alkanolamine compound silicon compound or the like
  • titanium dioxide having a bulk specific gravity of 0.50 g / cm 3 or more titanium dioxide is densely packed and the weather-resistant layer becomes tough.
  • titanium dioxide having a bulk specific gravity exceeding 0.85 g / cm 3 is used, the dispersibility of titanium dioxide is deteriorated and the surface state of the coating layer is deteriorated.
  • the bulk specific gravity of titanium dioxide used for the weather resistant layer is particularly preferably 0.60 g / cm 3 or more and 0.80 g / cm 3 or less.
  • the layer can contain a white pigment as scattering particles in addition to a base polymer such as a silicone-based or fluorine-based polymer, so that the reflectance of the (D) layer can be increased, and a long-term high-temperature high-humidity test (85 ° C., Yellowing under a relative humidity of 85% for 2000 to 3000 hours) and a UV irradiation test (according to the UV test of IEC61215, the total irradiation amount is 45 Kwh / m 2 ) can be reduced. Furthermore, by adding a white pigment such as scattering particles to the layer (D), the adhesion with other adjacent layers is further improved.
  • a white pigment such as scattering particles
  • the coating amount of the case of using the scattering particles (D) layer is preferably (D) layer per layer 1.0g / m 2 ⁇ 15g / m 2.
  • the white pigment is 1.0 g / m 2 or more, reflectance and UV resistance (light resistance) can be effectively provided.
  • the coating amount of the white pigment in the weather resistant layer is 15 g / m 2 or less, the surface state of the colored layer is easily maintained, and the film strength is excellent.
  • the coating amount of the scattering particles contained in the layer (D) is more preferably in the range of 2.5 g / m 2 to 10 g / m 2 , and 4.5 g / m 2 to 8.5 g / m. A range of 2 is particularly preferred.
  • the average particle diameter of the white pigment as the scattering particles is preferably 0.03 ⁇ m to 0.8 ⁇ m in volume average particle diameter, more preferably about 0.15 ⁇ m to 0.5 ⁇ m. When the average particle size is within the above range, the light reflection efficiency is high.
  • the average particle diameter is a value measured by a laser analysis / scattering particle size distribution measuring apparatus LA950 (manufactured by Horiba, Ltd.).
  • the content of the binder component (including the silicone-based polymer) in the layer (D) is preferably in the range of 15 to 200 parts by weight, with respect to 100 parts by weight of the white pigment as the scattering particles, The range of 100 parts by mass is more preferable.
  • the content of the binder is 15 parts by mass or more, the strength of the colored layer is sufficiently obtained, and when it is 200 parts by mass or less, the reflectance and decorativeness can be kept good.
  • the polymer sheet of the present invention has a (D) layer containing a binder such as a silicone-based polymer, a colorant, and scattering particles, other components such as various additives, for example, a crosslinking agent, an interface, etc.
  • a crosslinking agent for example, a crosslinking agent, an interface, etc.
  • An activator, a filler, etc. may be included.
  • a crosslinking agent to the binder (binder resin) to form a crosslinked structure derived from the crosslinking agent in the (D) layer, further improving the strength and durability of the (D) layer. preferable.
  • crosslinking agent As a crosslinking agent which a layer can contain, crosslinking agents, such as an epoxy type, an isocyanate type, a melamine type, a carbodiimide type, an oxazoline type, can be mentioned. Among these, at least one kind of crosslinking agent selected from carbodiimide crosslinking agents, oxazoline crosslinking agents, and isocyanate crosslinking agents is preferable.
  • crosslinking agent what was demonstrated in the (B) layer is applied similarly in the (D) layer, and its preferable example is also the same.
  • the addition amount is preferably 0.5 to 30 parts by mass, more preferably 3 parts by mass or more and 15 parts by mass with respect to 100 parts by mass of the binder contained in the layer (D). Less than part.
  • the addition amount of the crosslinking agent is 0.5% by mass or more, a sufficient crosslinking effect can be obtained while maintaining the strength and adhesiveness of the weather-resistant layer.
  • the life is kept long and the content is less than 15% by mass, the coated surface can be improved.
  • the surfactant that can be used in the layer (D) examples include known anionic and nonionic surfactants.
  • the coating amount is preferably 0.1 mg / m 2 to 10 mg / m 2 , more preferably 0.5 mg / m 2 to 3 mg / m 2 .
  • the coating amount of the surfactant is 0.1 mg / m 2 or more, the formation of a good layer is obtained while suppressing the occurrence of repellency, and when it is 10 mg / m 2 or less, adhesion to a polymer support or the like is achieved. It can be performed well.
  • a filler may be added to the layer.
  • a known filler such as colloidal silica can be used as the filler.
  • a layer can be formed by apply
  • the (D) layer is preferably a coating layer formed by applying the (D) layer-forming aqueous composition containing at least one of the fluorine-based polymer and the silicone-based polymer.
  • an aqueous dispersion in which these silicone-based or fluorine-based resins and other components used in combination as desired are dispersed and contained in water is prepared, and this aqueous dispersion is used as an aqueous coating liquid.
  • An embodiment in which it is coated on a desired polymer support is preferred.
  • a coating method for example, a gravure coater or a bar coater can be used.
  • the solvent used for the coating solution may be water or an organic solvent such as toluene or methyl ethyl ketone. From the viewpoint of environmental burden, it is preferable to prepare an aqueous coating solution using water as a coating solvent.
  • a coating solvent may be used individually by 1 type, and may mix and use 2 or more types.
  • a method in which an aqueous coating solution in which a binder is dispersed in water is formed and applied is preferable. In this case, the proportion of water in the solvent is preferably 60% by mass or more, and more preferably 80% by mass or more.
  • a drying process for drying the coating film under desired conditions may be provided. What is necessary is just to select suitably about the drying temperature at the time of drying according to cases, such as a composition of a coating liquid, a coating amount.
  • the coating film may be dried after applying a coating solution for forming the weatherable layer on the polymer support after biaxial stretching.
  • a method may be used in which the coating liquid is applied to the polymer support after uniaxial stretching and the coating film is dried, and then stretched in a direction different from the initial stretching. Furthermore, you may extend
  • the thickness of the coating layer (D) [(D) layer] is usually preferably from 0.3 ⁇ m to 22 ⁇ m, more preferably from 0.5 ⁇ m to 15 ⁇ m, still more preferably from 0.8 ⁇ m to 12 ⁇ m, and from 1.0 ⁇ m to The range of 8 ⁇ m is particularly preferable, and the range of 2 ⁇ m to 6 ⁇ m is most preferable.
  • the polymer sheet of the present invention comprises a coating layer (E) further containing a fluorine-based polymer on the surface of the (D) layer containing the silicone-based or fluorine-based binder resin, the colorant, and the scattering particles.
  • (E) may be referred to as a layer).
  • the (E) layer is preferably provided directly on the surface of the (D) layer optionally provided on the support.
  • the (E) layer is preferably located in the outermost layer of the polymer sheet of the present invention.
  • the coating layer (E) containing a fluorine polymer is composed of a fluorine polymer (fluorine-containing polymer) as a main binder.
  • the main binder means a binder having the largest content in the (E) layer.
  • the (E) layer and the fluoropolymer contained therein will be specifically described.
  • the fluoropolymer used in the weather resistant layer containing the fluoropolymer is not particularly limited as long as it is a polymer having a repeating unit represented by-(CFX 1 -CX 2 X 3 )-(in the formula, , X 1 , X 2 , and X 3 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, or a fluoroalkyl group having 1 to 3 carbon atoms.
  • Examples of the fluorine-based polymer used in the layer (E) include the same polymers as the fluorine-based polymer used in the coating layer (D), and specific examples and preferred examples thereof are also the same.
  • the fluorine-based polymer When forming the coating layer (E), the fluorine-based polymer may be dissolved in an organic solvent, or the fluorine-based polymer particles may be dispersed in an appropriate dispersion medium such as water. From the viewpoint that the environmental load is small, it is preferably used as a polymer particle dispersion using water or an aqueous solvent as a dispersion medium.
  • the aqueous dispersions of fluoropolymers are described in, for example, JP-A-2003-231722, JP-A-2002-20409, JP-A-9-194538, etc., and these are described in the coating layer (E). You may use for formation.
  • the fluoropolymer may be used alone or in combination of two or more. Moreover, you may use together resin other than fluorine-type polymers, such as an acrylic resin, a polyester resin, a polyurethane resin, a polyolefin resin, and a silicone resin, in the range which does not exceed 50 mass% of all the binders. However, when the fluorine-based polymer is contained in an amount exceeding 50% by mass, the effect of improving weather resistance is more favorably expressed when used for the back sheet.
  • resin other than fluorine-type polymers such as an acrylic resin, a polyester resin, a polyurethane resin, a polyolefin resin, and a silicone resin
  • the coating layer (E) preferably contains at least one lubricant.
  • a lubricant By containing a lubricant, it is possible to suppress slippage deterioration (that is, increase in the dynamic friction coefficient) that is likely to occur when using a fluorine-containing polymer, so it is easy to be damaged by external forces such as scratches, scratches, and collisions with pebbles. Is relieved dramatically. Further, it is possible to improve the surface repellency of the coating liquid that is likely to occur when a fluorine-containing polymer is used, and it is possible to form a weather-resistant layer containing a fluorine-based polymer having a good surface shape.
  • the lubricant is contained in the coating layer (E) in the range of 0.2 mg / m 2 to 200 mg / m 2 .
  • the coating amount of the lubricant is less than 0.2 mg / m 2, the amount of lubricant is too small, and the effect of reducing the dynamic friction coefficient due to the inclusion of the lubricant is small.
  • the coating amount of the lubricant exceeds 200 mg / m 2 , coating unevenness or agglomerates or repelling failures are likely to occur when the polymer layer is applied and formed.
  • Examples of the lubricant include synthetic wax compounds, natural wax compounds, surfactant compounds, inorganic compounds, and organic resin compounds. Among these, from the viewpoint of the surface strength of the polymer layer, a compound selected from synthetic wax compounds, natural wax compounds, and surfactant compounds is preferable.
  • Examples of the synthetic wax compounds include olefin waxes such as polyethylene wax and polypropylene wax, esters such as stearic acid, oleic acid, erucic acid, lauric acid, behenic acid, palmitic acid, and adipic acid, amides, bisamides, and ketones. , Metal salts and derivatives thereof, synthetic hydrocarbon waxes such as Fischer-Tropsch wax, phosphate esters, hydrogenated castor oil, hydrogenated waxes of hydrogenated castor oil derivatives, and the like.
  • natural wax compounds examples include plant waxes such as carnauba wax, candelilla wax and wood wax, petroleum waxes such as paraffin wax and microcrystalline wax, mineral waxes such as montan wax, animals such as beeswax and lanolin. And waxes.
  • the surfactant compound examples include a cationic surfactant such as an alkylamine salt, an anionic surfactant such as an alkyl sulfate ester salt, a nonionic surfactant such as polyoxyethylene alkyl ether, and an alkylbetaine.
  • a cationic surfactant such as an alkylamine salt
  • an anionic surfactant such as an alkyl sulfate ester salt
  • a nonionic surfactant such as polyoxyethylene alkyl ether
  • an alkylbetaine examples include a cationic surfactant such as an alkylamine salt, an anionic surfactant such as an alkyl sulfate ester salt, a nonionic surfactant such as polyoxyethylene alkyl ether, and an alkylbetaine.
  • Amphoteric surfactants, fluorosurfactants and the like are examples of the surfactant compound.
  • Synthetic wax-based lubricants include, for example, Chemipearl series (for example, Chemipearl W700, W900, W950, etc.) manufactured by Mitsui Chemicals, Polylon P-502, High Micron L-271 manufactured by Chukyo Yushi Co., Ltd. , Hydrin L-536, etc.
  • Examples of natural wax-based lubricants include Hydrin L-703-35, Cellozol 524, Cellozol R-586 manufactured by Chukyo Yushi Co., Ltd.
  • surfactant-based lubricant examples include NIKKOL series (for example, NIKKOL SCS, etc.) manufactured by Nikko Chemicals Co., Ltd., and Emar series (for example, EMAL 40, etc.) manufactured by Kao Corporation.
  • NIKKOL series for example, NIKKOL SCS, etc.
  • Emar series for example, EMAL 40, etc.
  • the coating layer (E) in the present invention includes, as the polymer, the DIC Corporation Ceranate Series, JSR Corporation inorganic / acrylic composite emulsion, and the lubricant, Mitsui Chemicals, Inc.
  • the form comprised using the manufactured Chemipearl series is preferable.
  • colloidal silica a silane coupling agent, a crosslinking agent, surfactant, etc.
  • the content when the layer (E) contains colloidal silica for surface improvement is preferably 0.3% by mass to 1.0% by mass in the total solid content of the layer (E). More preferably, the content is 0.5% by mass to 0.8% by mass.
  • the addition amount is 0.3% by mass or more, a surface improvement effect is obtained, and when the addition amount is 1.0% by mass or less, aggregation of the coating liquid is more effectively prevented.
  • the colloidal silica is contained in the layer (E), it is preferable to add a silane coupling agent from the viewpoint of improving the surface shape.
  • a silane coupling agent an alkoxysilane compound is preferable, and examples thereof include tetraalkoxysilane and trialkoxysilane. Of these, trialkoxysilane is preferable, and an alkoxysilane compound having an amino group is particularly preferable.
  • the silane coupling agent is added, the addition amount is preferably 0.3% by mass to 1.0% by mass, and 0.5% by mass to 0.8% by mass with respect to the layer (E). It is particularly preferred. When the addition amount is 0.3% by mass or more, a surface improvement effect is obtained, and when the addition amount is 1.0% by mass or less, aggregation of the coating liquid can be prevented.
  • crosslinking agent used in the (E) layer include those mentioned as the crosslinking agent used in the (D) layer.
  • the surfactant used in the (E) layer known anionic or nonionic surfactants can be used.
  • the coating amount is preferably 0 mg / m 2 to 15 mg / m 2 , more preferably 0.5 mg / m 2 to 5 mg / m 2 .
  • the application amount of the surfactant is 0.1 mg / m 2 or more, generation of repellency can be suppressed and good layer formation can be obtained, and when it is 15 mg / m 2 or less, adhesion can be satisfactorily performed. .
  • the thickness of the layer (E) is usually preferably from 0.8 ⁇ m to 12 ⁇ m, more preferably from 0.5 ⁇ m to 15 ⁇ m, and even more preferably from 1.0 ⁇ m to 10 ⁇ m. When the thickness is within the above range, weather resistance and durability are further improved, and deterioration of the coated surface state is suppressed.
  • the (E) layer is preferably the outermost layer of the solar cell backsheet.
  • a gas barrier layer may be provided on the surface of the support opposite to the (B) layer.
  • the cas barrier layer is a layer that provides a moisture-proof function to prevent water and gas from entering the polyester support.
  • the water vapor transmission rate (moisture permeability) of the gas barrier layer is preferably 10 2 g / m 2 ⁇ d to 10 -6 g / m 2 ⁇ d, more preferably 10 1 g / m 2 ⁇ d to 10 -5 g. / M 2 ⁇ d, and more preferably 10 0 g / m 2 ⁇ d to 10 -4 g / m 2 ⁇ d.
  • the moisture permeability can be measured based on JIS Z0208.
  • a dry method is suitable.
  • resistance heating deposition, electron beam deposition, induction heating deposition, and vacuum deposition methods such as plasma or ion beam assist methods, reactive sputtering method, ion beam Sputtering method, sputtering method such as ECR (electron cyclotron) sputtering method, physical vapor deposition method (PVD method) such as ion plating method, chemical vapor deposition method using heat, light, plasma, etc. (CVD method) ) And the like.
  • PVD method physical vapor deposition method
  • CVD method chemical vapor deposition method using heat, light, plasma, etc.
  • CVD method chemical vapor deposition method using heat, light, plasma, etc.
  • Examples of the material for forming the gas barrier layer include inorganic oxides, inorganic nitrides, inorganic oxynitrides, inorganic halides, inorganic sulfides, and the like.
  • Aluminum foil may be attached to form a gas barrier layer.
  • the thickness of the gas barrier layer is preferably 1 ⁇ m or more and 30 ⁇ m or less.
  • the thickness is 1 ⁇ m or more, water hardly penetrates into the support over time (thermo) and is excellent in hydrolysis resistance.
  • the thickness is 30 ⁇ m or less, the inorganic layer does not become too thick, and the support is caused by the stress of the inorganic layer. There will be no bevels.
  • a solar cell element that converts light energy of sunlight into electric energy is disposed between a transparent substrate on which sunlight is incident and a back sheet for solar cells, and the substrate.
  • the back sheet is sealed with a sealing material such as an ethylene-vinyl acetate copolymer.
  • the solar cell protective sheet of the present invention has a transparent base material on which sunlight is incident, and a sealing material that is provided on the base material and seals the solar cell element and the solar cell element.
  • An element structure portion and a solar cell backsheet disposed on the side opposite to the side where the substrate of the element structure portion is located. And the solar cell backsheet of this invention is applied as a solar cell backsheet.
  • the transparent front substrate only needs to have a light transmission property through which sunlight can pass, and can be appropriately selected from base materials that transmit light. From the viewpoint of power generation efficiency, the higher the light transmittance, the better.
  • a transparent resin such as an acrylic resin, or the like can be suitably used.
  • Solar cell elements include silicon-based materials such as single crystal silicon, polycrystalline silicon, and amorphous silicon, III-V groups such as copper-indium-gallium-selenium, copper-indium-selenium, cadmium-tellurium, gallium-arsenic, and II Various known solar cell elements such as a group VI compound semiconductor can be applied.
  • ethylene glycol was added to the resulting polymer in the polycondensation reaction tank to which the esterification reaction product had been transferred.
  • an ethylene glycol solution of cobalt acetate and manganese acetate was added to 30 ppm and 15 ppm, respectively, with respect to the resulting polymer.
  • a 2% by mass ethylene glycol solution of a titanium alkoxide compound was added to 5 ppm with respect to the resulting polymer.
  • a 10% by mass ethylene glycol solution of ethyl diethylphosphonoacetate was added so as to be 5 ppm with respect to the resulting polymer.
  • the reaction system was gradually heated from 250 ° C. to 285 ° C. and the pressure was reduced to 40 Pa. The time to reach the final temperature and final pressure was both 60 minutes.
  • the reaction system was purged with nitrogen, returned to normal pressure, and the polycondensation reaction was stopped. And it discharged to cold water in the shape of a strand, and it cut immediately, and produced the polymer pellet (about 3 mm in diameter, about 7 mm in length). The time from the start of decompression to the arrival of the predetermined stirring torque was 3 hours.
  • the TD stretching temperature is 105 ° C., stretched 4.5 times in the TD direction, and heat treatment is performed for 15 seconds at a film surface of 200 ° C.
  • the MD relaxation rate is 5% at 190 ° C., and the TD relaxation rate is 11%.
  • Thermal relaxation was performed in the MD / TD direction to obtain a biaxially stretched polyethylene terephthalate support (hereinafter referred to as “transparent PET support with an inline coat layer”) having a thickness of 250 ⁇ m on which an inline coat layer was formed.
  • composition of inline coat layer forming coating solution Polyolefin resin aqueous dispersion 3.74 parts by mass [Arrow Base SE-1013N, manufactured by Unitika Ltd., solid content: 20.2% by mass] ⁇ Acrylic resin aqueous dispersion 0.3 parts by mass [AS-563A, manufactured by Daicel Finechem Co., Ltd., solid content: 28% by mass latex] ⁇ Water-soluble oxazoline-based crosslinking agent 0.85 parts by mass [Epocross WS-700, manufactured by Nippon Shokubai Co., Ltd., solid content: 25% by mass] ⁇ 100 parts by weight of distilled water
  • a coating layer (B) to a coating layer (E) were formed as follows to obtain a solar cell backsheet.
  • Examples 1 to 91, Comparative Examples 1 to 8 First, using the raw materials shown in Table 1, a composition for forming a layer (B) was prepared so as to have the solid content ratio described below. In some cases, inorganic particles are added to this formulation in the types and amounts (volume% in a dry film state) as shown in Tables 7 to 11 to obtain a composition for forming a layer (B).
  • sodium-1.2- ⁇ bis (3,3,4,4,5,5,6,6,6-nanofluorohexylcarbonyl) ⁇ ethanesulfonate is water / ethanol 2: 1. It was diluted with a mixed solvent of 2% by mass and used.
  • (B) A composition for forming a layer was prepared by mixing the components shown in Table 1 at a solid content ratio described below and adding distilled water to a solid content concentration of 7.0% by mass. did.
  • the following white PET support with an inline coat layer was used in place of the transparent PET support with an inline coat layer used in Examples 1 to 87.
  • the same inline coat layer forming composition as in the above-mentioned “Preparation of transparent PET support” was applied by an inline coat method so that the coating amount was 5.1 ml / m 2 .
  • An in-line coat layer having a thickness of 0.1 ⁇ m was formed.
  • the coating was performed after MD stretching and before stretching in the transverse direction (TD) perpendicular to MD (before TD stretching).
  • TD stretching was performed 4.5 times at 105 ° C., and the surface of the inline coat layer was heat-treated at 200 ° C. for 15 seconds. Thereafter, MD and TD were subjected to thermal relaxation at 190 ° C. with an MD relaxation rate of 5% and a TD relaxation rate of 11%.
  • a biaxially stretched polyethylene terephthalate support white PET with an inline coat layer having a thickness of 250 ⁇ m was obtained.
  • Example 2- Water-soluble oxazoline-based crosslinking agent 29.0 parts by mass [Epocross WS-700, manufactured by Nippon Shokubai Co., Ltd., solid content: 25% by mass] ⁇ Polymer with yield point [XPS002 (solid content concentration: 45%)] 144.7 parts by mass Sodium-1.2- ⁇ bis (3,3,4,4,5,5,6,6,6-nanofluorohexylcarbonyl) ⁇ ethanesulfonate (2%) 3.6 mass Parts / distilled water 822.6 parts by mass
  • the obtained composition for forming a layer (B) was applied to the surface of the transparent PET support with an inline coat layer on which the inline coat layer was formed so that the film thickness after drying was 1.0 ⁇ m.
  • the coating layer (B) was formed by drying at 0 ° C. for 2 minutes.
  • Tables 7 to 10 show the types and addition amounts of inorganic particles in the coating layer (B).
  • the details of the polymer used for forming the (B) layer are shown in Table 2 below.
  • the yield point of the polymer film described in Table 2 is a result of measurement by the method described above.
  • the coating layer (C) (described as “(C) layer” in Tables 6 to 10) forming composition [C-1 to C-9] on the surface of the (B) layer was dried to 0.3 ⁇ m. It apply
  • the composition of the (C) layer forming composition [C-1 to C-9] is shown in Table 3 below.
  • EMALEX 110 was diluted with a mixed solvent of water / ethanol 2: 1 to 2% by mass and used.
  • (D) layer-forming composition and (E) layer-forming composition having the compositions shown in Table 4 and Table 5 below are used as the weather-resistant layer. Then, the (D) layer and the (E) layer were formed in the order shown in FIG. 1 to obtain a back sheet.
  • Preparation of Titanium Dioxide Dispersion A titanium dioxide dispersion was prepared by dispersing using a Dinomill disperser so that the average particle diameter of titanium dioxide was 0.42 ⁇ m. The average particle diameter of titanium dioxide was measured using Microtrac FRA manufactured by Honeywell.
  • Titanium dioxide 455.8 parts by mass (Taipaque CR-95, manufactured by Ishihara Sangyo Co., Ltd., powder) -PVA aqueous solution: 227.9 parts by mass (PVA-105, manufactured by Kuraray Co., Ltd., concentration: 10% by mass)
  • Dispersant 5.5 parts by mass (Demol EP, manufactured by Kao Corporation, concentration: 25% by mass)
  • Distilled water 310.8 parts by mass
  • (D) Preparation of layer forming composition The components shown in Table 4 below were mixed to prepare (D) layer forming compositions [D-1 to D-4].
  • the “titanium dioxide dispersion liquid *” in Table 4 below is the one prepared above.
  • (D) Formation of Layer The obtained composition for (D) layer formation is 4.7 g / m 2 in binder application amount on the back surface ((B) layer non-formation surface) of the polymer support, and titanium dioxide application amount. was applied at a temperature of 5.6 g / m 2 and dried at 170 ° C. for 2 minutes to form a (D) layer (white layer) having a thickness of 5 ⁇ m.
  • the solar cell backsheet obtained in each example was cut into 2.5 cm (TD direction) ⁇ 15 cm (MD direction).
  • an EVA film (Hangzhou F806) is laminated on a glass plate of 2.5 cm ⁇ 7.5 cm ⁇ thickness 0.5 cm so that the back sheet for evaluation is in contact with EVA (C) layer. It was laminated using a vacuum laminator (LAMINATOR0505S) manufactured by Nisshinbo Mechatronics under the conditions of 145 ° C., evacuation for 4 minutes, and pressurization for 10 minutes. After adjusting the humidity of the back sheet bonded to EVA for 24 hours at 23 ° C.
  • LAMINATOR0505S vacuum laminator manufactured by Nisshinbo Mechatronics
  • the adhesive strength after long-term storage with a sealing material (EVA) in a high-temperature and high-humidity environment was maintained at a favorable level, and delamination between layers was also suppressed.
  • EVA sealing material
  • the backsheet for solar cells of this invention can maintain the adhesiveness with respect to the sealing material which seals a solar cell element for a long period of time also in severe conditions of high temperature and high humidity.
  • the inclusion of carbon black in the layer (B) imparts desired light-shielding properties to the solar cell backsheet without deteriorating the adhesion and delamination suppressing effect. I can understand.
  • Example 92 Provide of solar cell power generation module> 3 mm thick tempered glass, EVA sheet (SC50B manufactured by Mitsui Chemicals Fabro Co., Ltd.), crystalline solar cell, EVA sheet (SC50B manufactured by Mitsui Chemicals Fabro Co., Ltd.), and the sun of Example 36
  • the battery back sheet is overlaid in this order so that the (C) layer of the solar cell back sheet is in direct contact with the EVA sheet which is the sealing material for the solar cell element, and a vacuum laminator (Nisshinbo Co., Ltd., vacuum It was made to adhere to EVA by hot pressing using a laminating machine.
  • the bonding method is as follows. Using a vacuum laminator, evacuation was performed at 128 ° C.
  • a solar cell power generation module of Example 88 (hereinafter, also referred to as “solar cell module” as appropriate) was produced using crystalline solar cells.
  • the produced solar cell module was allowed to stand for 70 hours under an environmental condition of 120 ° C. and a relative humidity of 100% and then operated for power generation.
  • the solar cell backsheet of Example 36 was excellent in weather resistance.
  • the 36 solar cell power generation modules were able to stably obtain power generation performance over a long period of time.
  • Example 93 to 95 ⁇ Production of solar cell power generation module> Using the crystalline solar battery cell used in Example 92 and the solar battery backsheet of Example 36, as shown in FIG. 1A, the area of the exposed portion of the solar battery backsheet in plan view is as follows.
  • a solar cell power generation module of Example 93 was made in the same manner as Example 92 except that the crystalline solar battery cells were arranged so as to be 39%.
  • a solar cell power generation module of Example 94 was produced in the same manner as Example 93, except that the crystalline solar cells were arranged so that the area of the exposed portion of the solar cell backsheet was 25%.
  • FIG. 1A is a plan view showing a solar cell module in which the area of the exposed portion of the solar cell backsheet is 39%
  • FIG. 1B shows the area of the exposed portion of the solar cell backsheet of 25%
  • FIG. 1C is a plan view showing a solar cell module in which the area of the exposed portion of the solar cell backsheet is 5%.
  • the hatched area indicates the exposed portion of the solar cell backsheet.
  • the solar cell backsheet of Example 36 was excellent in weather resistance. Therefore, the solar cell power generation modules of Examples 93 to 95 had power generation performance. Can be obtained stably over a long period of time.
  • Example 96 to 98 ⁇ Production of solar cell power generation module>
  • the solar cells of Examples 96 to 98 are the same as Examples 93 to 95 except that the solar cell back sheet of Example 37 was used instead of the solar cell back sheet of Example 36.
  • a power generation module was produced.
  • the area of the exposed portion of the solar cell backsheet is 39% (see FIG. 1A), and in Example 97, the area of the exposed portion of the solar cell backsheet is 25. % (See FIG. 1B), and in Example 97, the area of the exposed portion of the solar cell backsheet is 5% (see FIG. 1C).
  • Example 92 When the produced solar cell module was operated for power generation in the same manner as in Example 92, the solar cell backsheet of Example 37 was excellent in weather resistance. Therefore, the solar cell power generation modules of Example 96 to Example 98 were The power generation performance can be obtained stably over a long period of time.
  • Examples 99 to 101 ⁇ Production of solar cell power generation module>
  • the solar cells of Examples 99 to 101 are the same as those of Examples 93 to 95 except that the solar cell back sheet of Example 85 was used instead of the solar cell back sheet of Example 36.
  • a power generation module was produced.
  • the area of the exposed portion of the solar cell backsheet is 39% (see FIG. 1A), and in Example 100, the area of the exposed portion of the solar cell backsheet is 25. % (See FIG. 1B), and in Example 101, the area of the exposed portion of the solar cell backsheet is 5% (see FIG. 1C).
  • the solar cell backsheet of Example 37 was excellent in weather resistance. Therefore, the solar cell power generation modules of Examples 99 to 101 had power generation performance. Can be obtained stably over a long period of time.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】太陽電池素子を封止する封止材に対する高い密着性が、高温高湿の厳しい条件下においても長期間維持される耐候性、耐久性に優れた太陽電池用バックシート、及びそれを備える太陽電池モジュールを提供する。 【解決手段】支持体と、前記支持体の少なくとも一方の面側に、降伏点を有するポリマーを含む塗布層(B)と、塗布層(C)と、をこの順に有し、前記塗布層(C)は太陽電池用バックシートが適用される太陽電池モジュールの封止材と直接接する太陽電池用バックシート、及びそれを備えた太陽電池モジュールである。

Description

太陽電池用バックシート、及び太陽電池モジュール
 本発明は、太陽電池用バックシート、及び太陽電池モジュールに関する。
 太陽電池は、発電時に二酸化炭素の排出がなく環境負荷が小さい発電方式であり、近年急速に普及が進んでいる。太陽電池モジュールは、一般に太陽光が入射するオモテ面側に配置されるフロント基材と、太陽光が入射するオモテ面側とは反対側(裏面側)に配置される、いわゆるバックシートとの間に、太陽電池素子が封止材で封止された太陽電池セルが挟まれた構造を有しており、フロント基材と太陽電池セルとの間及び太陽電池セルとバックシートとの間は、それぞれEVA(エチレン-ビニルアセテート共重合体)樹脂などの封止材で封止されている。
 太陽電池モジュールが一般に用いられる環境は、屋外等の常に風雨に曝されるような環境であるため、太陽電池用バックシートの耐久性は重要な課題の一つである。
 このような湿熱環境下での太陽電池用バックシートの耐久性は、太陽電池用バックシートと隣接する封止材と太陽電池用バックシートとが剥離したり、太陽電池用バックシートが積層構造を有している場合に、太陽電池用バックシート内の各層間で剥離が生じたりして、水分が太陽電池側基板に入らないことが重要である。
 近年、太陽電池モジュールのバックシートのさらなる薄層化が望まれており、特に、バックシートと封止材とを接着する塗布層を薄くすることが望まれている。
 しかしながら、太陽電池モジュールは、屋外において、直射日光、高温高湿などの厳しい条件下にて長期間使用されるために、塗布層を薄くするに従い、バックシートと封止材との密着性が従来以上に低下してしまうという問題があった。
 耐久性に優れた太陽電池用バックシートとして、基材フィルムの両面にビニル系モノマー等を含む硬化性組成物の硬化層を有する3層構造のバックシート(例えば、特開2012-227382号公報参照。)、或いは、特定の物性を有するアクリルポリオールとイソシアネート化合物との反応で得られるウレタン樹脂を接着層として用いた太陽電池用バックシート(例えば、特開2012-142349号公報参照。)が提案されている。
 本発明の態様によれば、支持体と、該支持体の少なくとも一方の面側に、降伏点を有するポリマーを含む塗布層(B)と、塗布層(C)と、をこの順に有し、塗布層(C)は太陽電池用バックシートが適用される太陽電池モジュールの封止材と直接接し、高温高湿の厳しい条件下においても該封止材に対する高い密着性が長期間維持される耐候性、耐久性に優れた太陽電池用バックシート、及びそれを備えた太陽電池モジュールが提供される。
 しかしながら、特許文献1~2の太陽電池用バックシートでは、耐候性に優れ、経時後のバックシートの外観上の剥がれは、ある程度抑制されるものの、本発明者らの検討によれば、屈曲した場合などにおけるバックシートと封止材との界面における剥離まで充分に抑制されるものではなく、封止材とバックシートとの剥離試験による密着力が不十分であり、さらなる改良が望まれているのが現状である。
 上記従来技術の問題点を考慮してなされた本発明の課題は、接着のための塗布層が薄層であっても、太陽電池素子を封止する封止材との密着性、特に高温高湿下の厳しい環境においても優れた密着性が長期間維持される耐久性に優れた太陽電池用バックシート、及びそれを備える太陽電池モジュールを提供することである。
 前記課題を達成するための具体的手段は以下の通りである。
 <1> 支持体と、支持体の少なくとも一方の面側に、降伏点を有するポリマーを含む塗布層(B)と、塗布層(C)と、をこの順に有し、塗布層(C)は太陽電池用バックシートが適用される太陽電池モジュールの封止材と直接接する太陽電池用バックシート。
 <2> 塗布層(B)の膜厚は、塗布層(C)の膜厚よりも大きい<1>に記載の太陽電池用バックシート。
 <3> 塗布層(B)の膜厚は、0.3μm~5μmの範囲である<1>又は<2>に記載の太陽電池用バックシート。
 <4> 塗布層(B)は、さらに無機粒子を含む<1>~<3>のいずれか1つに記載の太陽電池用バックシート。
 <5> 塗布層(B)における無機粒子の含有率は10体積%~35体積%の範囲である<4>に記載の太陽電池用バックシート。
 <6> 塗布層(B)に含まれる無機粒子の平均粒子径は、塗布層(B)の膜厚以下である<4>又は<5>に記載の太陽電池用バックシート。
 <7> 塗布層(B)に含まれる無機粒子の平均粒子径は、前記塗布層(B)の膜厚の1/2以下である<4>~<6>のいずれか1つに記載の太陽電池用バックシート。
 <8> 塗布層(B)に含まれる無機粒子の平均粒子径は、1.0μm以下である<4>~<7>のいずれか1つに記載の太陽電池用バックシート。
 <9> 塗布層(B)に含まれる無機粒子は、コロイダルシリカ、酸化チタン、酸化アルミニウム、及び酸化ジルコニウムから選択される少なくとも1種の粒子である<4>~<8>のいずれか1つに記載の太陽電池用バックシート。
 <10> 塗布層(B)に含まれる無機粒子は、少なくとも黒色顔料を含有する<4>~<9>のいずれか1つに記載の太陽電池用バックシート。
 <11> 黒色顔料が、少なくともカーボンブラックを含有する<10>に記載の太陽電池用バックシート。
 
 <16> 塗布層(D)の支持体側とは反対側の面上に、シリコーン樹脂又はフッ素系ポリマーと無機粒子とを含む塗布層(E)を更に有する、<14>又は<15<12> 塗布層(C)が帯電防止剤を更に含み、塗布層(B)が塗布層(B)中のポリマーと架橋した、架橋剤の成分を更に含む<1>~<11>のいずれか1つに記載の太陽電池用バックシート。
 <13> 架橋剤がオキサゾリン系架橋剤である、<12>に記載の太陽電池用バックシート。
 <14> 支持体の塗布層(B)側とは反対側の面上に、シリコーン樹脂又はフッ素系ポリマーと無機粒子とを含む塗布層(D)を更に有する、<12>又は<13>に記載の太陽電池用バックシート。
 <15> 塗布層(D)に更に黒色顔料とノニオン界面活性剤とを含んで成る<14>に記載の太陽電池用バックシート。>に記載の太陽電池用バックシート。
 <17> 塗布層(E)に更に、ノニオン界面活性剤と、シリコーン樹脂又はフッ素系ポリマーと架橋した架橋剤の成分と、を含む<16>に記載の太陽電池用バックシート。
 <18> 太陽光が入射する透明性の基材と、基材上に設けられ、太陽電池素子及び前記太陽電池素子を封止する封止材を有する素子構造部分と、素子構造部分の基材が位置する側と反対側に配置された<1>~<17>のいずれか1項に記載の太陽電池用バックシートと、を備えた太陽電池モジュール。
 <19> 支持体と、支持体の少なくとも一方の面側に、降伏点を有するポリマーを含む塗布層(B)と、塗布層(C)と、をこの順に有する太陽電池用バックシート。
 本発明によれば、接着のための塗布層が薄層であっても、太陽電池素子を封止する封止材との密着性、特に高温高湿下の厳しい環境においても優れた密着性が長期間維持される耐久性に優れた太陽電池用バックシート、及びそれを備える太陽電池モジュールを提供することができる。
本発明の太陽電池用バックシートに、結晶系太陽電池セルを配置してなる太陽電池モジュールの一例を示す平面図であり、太陽電池用バックシートの露出面積が39%の態様を示す図である。 本発明の太陽電池用バックシートに、結晶系太陽電池セルを配置してなる太陽電池モジュールの一例を示す平面図であり、太陽電池用バックシートの露出面積が25%の態様を示す図である。 本発明の太陽電池用バックシートに、結晶系太陽電池セルを配置してなる太陽電池モジュールの一例を示す平面図であり、太陽電池用バックシートの露出面積が5%の態様を示す図である。
 以下、本発明の太陽電池用バックシート及び太陽電池モジュールについて詳細に説明する。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 また、支持体の少なくとも一方の面側に、「塗布層(B)、及び塗布層(C)をこの順に有する」とは、支持体の少なくとも一方の面側に、該支持体側から、塗布層(B)と、塗布層(C)と、がこの順に備えられることを意味し、任意に設けられる他の層の存在を否定するものではない。即ち、例えば、支持体と塗布層(B)との間に下塗り層を有したり、塗布層(B)と塗布層(C)との間に中間層を有したりする態様であってもよい。また、支持体の(B)層などを有しない裏面には、耐候性層、ガスバリア層などを有していてもよい。
[太陽電池用バックシート]
 本発明の太陽電池用バックシート(以下、適宜、「バックシート」と称する)は、支持体と、該支持体の少なくとも一方の面側に、降伏点を有するポリマーを含む塗布層(B)(以下、適宜、「(B)層」と称する)と、塗布層(C)(以下、適宜、「(C)層」と称する)と、をこの順に有し、前記塗布層(C)は太陽電池用バックシートが適用される太陽電池モジュールの封止材と直接接する位置に備えられている。
 本発明の作用は明確ではないが、本発明のバックシートは、封止材に直接接触する易接着層である(C)層と支持体との間に、降伏点を有するポリマーを含む(B)層を備えるが、(B)層の主成分である降伏点を有するポリマーにより形成された膜は優れた強度と、高温高湿下での寸法安定性を有することになり、これに起因して、少なくとも(B)層と(C)層の2層を備える塗布層が薄層であっても、厳しい条件下においてバックシートと封止材との密着性が良好なレベルで維持され、密着性の低下が長期間に亘って抑制されるものと考えられる。
 以下、本発明のバックシートの構成を説明する。
 太陽電池用バックシートの一実施形態では、支持体の片面に、酸変性ポリオレフィン水分散体を含んで形成される被覆層(以下、適宜、「インラインコート層」と称する)、降伏点を有するポリマーを含む(B)層、及び封止材との密着性に優れた易接着層である(C)層とを備える。
 支持体の(B)層を形成しない側(以下、裏面側と称することがある)には、必要に応じて、耐候性層やガスバリア層などが設けられる。以下に詳述する実施例では、支持体の裏面側には、耐候性層である、無機粒子とシリコーン樹脂とを含有する(D)層、及、フッ素含有樹脂を含有する(E)層をこの順に備える。
 前記インラインコート層、(D)層及び(E)層は、いずれもバックシートに、所望により設けられる任意の層である。
 以下、本発明のバックシートの詳細について説明する。
 本発明のバックシートは、支持体と、支持体の少なくとも一方の面側に(B)層と(C)層とを有する。(C)層は、バックシートの最外層であって、易接着性層として機能する層である。
 本発明のバックシートは、その他、必要に応じて、着色層、耐候性層、紫外線吸収層、ガスバリア層等の周知の機能層が設けられていてもよい。また、支持体と(B)層との間にはインラインコート層や中間層を設けてもよい。これら任意の層は、支持体の(B)層が設けられる面側、及び当該面とは反対の面側(裏面側)のいずれに設けられていてもよい。また、支持体とそれと隣接するように設ける(B)層又は機能層との間には、下塗り層を設けてもよい。なお、(B)層は、着色層等の機能層を兼ねる層であってもよい。
 以下、まず、本発明のバックシートに用いられる支持体及びこれに積層して設けられる各層の詳細について説明する。
(支持体)
 支持体は、樹脂(以下「原料樹脂」と称する)を含む。
-原料樹脂-
 原料樹脂しては、ポリエステル、ポリスチレン、ポリフェニレンエーテル、ポリフェニレンサルファイド等が挙げられるが、コスト、機械安定性や耐久性の観点からポリエステルが好ましい。
 ポリエステルとしては、例えば、芳香族二塩基酸又はそのエステル形成性誘導体とジオール又はそのエステル形成性誘導体とから合成される線状飽和ポリエステルが挙げられる。線状飽和ポリエステルの具体例としては、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)、ポリエチレン-2,6-ナフタレートなどが挙げられる。このうち、力学的物性やコストのバランスの点で、ポリエチレンテレフタレート又はポリエチレン-2,6-ナフタレート、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)が特に好ましい。
 ポリエステルは、単独重合体であってもよいし、共重合体であってもよい。更に、ポリエステルに他の種類の樹脂、例えばポリイミド等を少量ブレンドしたものであってもよい。
 ポリエステルの種類は、上記に限られるものではなく、公知のポリエステルを使用してもよい。公知のポリエステルとしては、ジカルボン酸成分と、ジオール成分とを用いて合成してもよいし、市販のポリエステルを用いてもよい。
 ポリエステルを合成する場合は、例えば、(a)ジカルボン酸成分と、(b)ジオール成分とを、周知の方法でエステル化反応及びエステル交換反応の少なくとも一方の反応をさせることによって得ることができる。
 (a)ジカルボン酸成分としては、例えば、マロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、セバシン酸、ドデカンジオン酸、ダイマー酸、エイコサンジオン酸、ピメリン酸、アゼライン酸、メチルマロン酸、エチルマロン酸等の脂肪族ジカルボン酸類;アダマンタンジカルボン酸、ノルボルネンジカルボン酸、シクロヘキサンジカルボン酸、デカリンジカルボン酸などの脂環族ジカルボン酸;テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸、フェニルインダンジカルボン酸、アントラセンジカルボン酸、フェナントレンジカルボン酸、9,9’-ビス(4-カルボキシフェニル)フルオレン酸等の芳香族ジカルボン酸;などのジカルボン酸もしくはそのエステル誘導体が挙げられる。
 (b)ジオール成分としては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオール等の脂肪族ジオール類;シクロヘキサンジメタノール、スピログリコール、イソソルビドなどの脂環式ジオール類;ビスフェノールA、1,3―ベンゼンジメタノール、1,4-ベンゼンジメタノール、9,9’-ビス(4-ヒドロキシフェニル)フルオレンなどの芳香族ジオール類;等のジオール化合物が挙げられる。
 (a)ジカルボン酸成分として、芳香族ジカルボン酸の少なくとも1種を用いることが好ましい。より好ましくは、ジカルボン酸成分のうち、芳香族ジカルボン酸を主成分として含有する。なお、「主成分」とは、ジカルボン酸成分に占める芳香族ジカルボン酸の割合が80質量%以上であることをいう。芳香族ジカルボン酸以外のジカルボン酸成分を含んでもよい。このようなジカルボン酸成分としては、芳香族ジカルボン酸などのエステル誘導体等である。
(b)ジオール成分として、脂肪族ジオールの少なくとも1種を用いることが好ましい。脂肪族ジオールとして、エチレングリコールを含むことができ、好ましくはエチレングリコールを主成分として含有することがよい。なお、主成分とは、ジオール成分に占めるエチレングリコールの割合が80質量%以上であることをいう。
 脂肪族ジオール(例えばエチレングリコール)の使用量は、芳香族ジカルボン酸(例えばテレフタル酸)及び必要に応じそのエステル誘導体の1モルに対して、1.015~1.50モルの範囲であるのが好ましい。脂肪族ジオールの使用量は、より好ましくは1.02~1.30モルの範囲であり、更に好ましくは1.025~1.10モルの範囲である。脂肪族ジオールの使用量は、1.015以上の範囲であると、エステル化反応が良好に進行し、1.50モル以下の範囲であると、例えばエチレングリコールの2量化によるジエチレングリコールの副生が抑えられ、融点やガラス転移温度、結晶性、耐熱性、耐加水分解性、耐候性など多くの特性を良好に保つことができる。
 エステル化反応又はエステル交換反応には、従来から公知の反応触媒を用いることができる。反応触媒としては、アルカリ金属化合物、アルカリ土類金属化合物、亜鉛化合物、鉛化合物、マンガン化合物、コバルト化合物、アルミニウム化合物、アンチモン化合物、チタン化合物、リン化合物などが挙げられる。通常、ポリエステルの製造方法が完結する以前の任意の段階において、重合触媒としてアンチモン化合物、ゲルマニウム化合物、チタン化合物を添加することが好ましい。このような方法としては、例えば、ゲルマニウム化合物を例に取ると、ゲルマニウム化合物粉体をそのまま添加することが好ましい。
 例えば、エステル化反応工程は、芳香族ジカルボン酸と脂肪族ジオールとを、チタン化合物を含有する触媒の存在下で重合する。このエステル化反応では、触媒であるチタン化合物として、有機酸を配位子とする有機キレートチタン錯体を用いると共に、工程中に少なくとも、有機キレートチタン錯体と、マグネシウム化合物と、置換基として芳香環を有しない5価のリン酸エステルとをこの順序で添加する過程を設けることがよい。
 具体的には、エステル化反応工程では、まず、初めに、芳香族ジカルボン酸及び脂肪族ジオールを、マグネシウム化合物及びリン化合物の添加に先立って、チタン化合物である有機キレートチタン錯体を含有する触媒と混合する。有機キレートチタン錯体等のチタン化合物は、エステル化反応に対しても高い触媒活性を持つので、エステル化反応を良好に行なわせることができる。このとき、芳香族ジカルボン酸成分及び脂肪族ジオール成分を混合した中にチタン化合物を加えてもよいし、芳香族ジカルボン酸成分(又は脂肪族ジオール成分)とチタン化合物を混合してから脂肪族ジオール成分(又は芳香族ジカルボン酸成分)を混合してもよい。また、芳香族ジカルボン酸成分と脂肪族ジオール成分とチタン化合物とを同時に混合するようにしてもよい。混合は、その方法に特に制限はなく、従来公知の方法により行なうことが可能である。
 ここで、上記ポリエステルの重合に際し、下記の化合物を加えることも好ましい。
 5価のリン化合物として、置換基として芳香環を有しない5価のリン酸エステルの少なくとも一種が用いられる。例えば、炭素数2以下の低級アルキル基を置換基として有するリン酸エステル〔(OR)-P=O;R=炭素数1又は2のアルキル基〕が挙げられ、
具体的には、リン酸トリメチル、リン酸トリエチルが特に好ましい。
 リン化合物の添加量としては、P元素換算値が50ppm~90ppmの範囲となる量が好ましい。リン化合物の量は、より好ましくは60ppm~80ppmとなる量であり、さらに好ましくは60ppm~75ppmとなる量である。
 ポリエステルにマグネシウム化合物を含めることにより、ポリエステルの静電印加性が向上する。
 マグネシウム化合物としては、例えば、酸化マグネシウム、水酸化マグネシウム、マグネシウムアルコキシド、酢酸マグネシウム、炭酸マグネシウム等のマグネシウム塩が挙げられる。中でも、エチレングリコールへの溶解性の観点から、酢酸マグネシウムが最も好ましい。
 マグネシウム化合物の添加量としては、高い静電印加性を付与するためには、Mg元素換算値が50ppm以上となる量が好ましく、50ppm~100ppmの範囲となる量がより好ましい。マグネシウム化合物の添加量は、静電印加性の付与の点で、好ましくは60ppm~90ppmの範囲となる量であり、さらに好ましくは70ppm~80ppmの範囲となる量である。
 エステル化反応工程においては、触媒成分であるチタン化合物と、添加剤であるマグネシウム化合物及びリン化合物とを、下記式(i)から算出される値Zが下記の関係式(ii)を満たすように、添加して溶融重合させる場合が特に好ましい。ここで、P含有量は芳香環を有しない5価のリン酸エステルを含むリン化合物全体に由来するリン量であり、Ti含有量は、有機キレートチタン錯体を含むTi化合物全体に由来するチタン量である。このように、チタン化合物を含む触媒系でのマグネシウム化合物及びリン化合物の併用を選択し、その添加タイミング及び添加割合を制御することによって、チタン化合物の触媒活性を適度に高く維持しつつも、黄色味の少ない色調が得られ、重合反応時やその後の製膜時(溶融時)などで高温下に曝されても黄着色を生じ難い耐熱性を付与することができる。
 (i)Z=5×(P含有量[ppm]/P原子量)-2×(Mg含有量[ppm]/Mg原子量)-4×(Ti含有量[ppm]/Ti原子量)
 (ii)0≦Z≦5.0
 これは、リン化合物はチタンに作用するのみならずマグネシウム化合物とも相互作用することから、3者のバランスを定量的に表現する指標となるものである。
 式(i)は、反応可能な全リン量から、マグネシウムに作用するリン分を除き、チタンに作用可能なリンの量を表現したものである。値Zが正の場合は、チタンを阻害するリンが余剰な状況にあり、逆に負の場合はチタンを阻害するために必要なリンが不足する状況にあるといえる。反応においては、Ti、Mg、Pの各原子1個は等価ではないことから、式中の各々のモル数に価数を乗じて重み付けを施してある。
 なお、ポリエステルの合成には特殊な合成等が不要であり、安価でかつ容易に入手可能なチタン化合物、このようなリン化合物、マグネシウム化合物を用いて、反応に必要とされる反応活性を持ちながら、色調及び熱に対する着色耐性に優れたポリエステルを得ることができる。
 式(ii)において、重合反応性を保った状態で、色調及び熱に対する着色耐性をより高める観点から、1.0≦Z≦4.0を満たす場合が好ましく、1.5≦Z≦3.0を満たす場合がより好ましい。
 エステル化反応工程の好適な態様としては、エステル化反応が終了する前に、芳香族ジカルボン酸及び脂肪族ジオールに、1ppm~30ppmのクエン酸又はクエン酸塩を配位子とするキレートチタン錯体を添加することがよい。その後、キレートチタン錯体の存在下に、また、60ppm~90ppm(より好ましくは70ppm~80ppm)の弱酸のマグネシウム塩を添加し、該添加後にさらに、60ppm~80ppm(より好ましくは65ppm~75ppm)の、芳香環を置換基として有しない5価のリン酸エステルを添加することが好ましい。
 エステル化反応工程は、少なくとも2個の反応器を直列に連結した多段式装置を用いて、エチレングリコールが還流する条件下で、反応によって生成した水又はアルコールを系外に除去しながら実施することができる。
 エステル化反応工程は、一段階で行なってもよいし、多段階に分けて行なうようにしてもよい。
 エステル化反応工程を一段階で行なう場合、エステル化反応温度は230~260℃が好ましく、240~250℃がより好ましい。
 エステル化反応工程を多段階に分けて行なう場合、第一反応槽のエステル化反応の温度は230℃~260℃が好ましく、より好ましくは240℃~250℃であり、圧力は1.0kg/cm~5.0kg/cmが好ましく、より好ましくは2.0kg/cm~3.0kg/cmである。第二反応槽のエステル化反応の温度は230℃~260℃が好ましく、より好ましくは245℃~255℃であり、圧力は0.5kg/cm~5.0kg/cm、より好ましくは1.0kg/cm~3.0kg/cmである。さらに3段階以上に分けて実施する場合は、中間段階のエステル化反応の条件は、第一反応槽と最終反応槽の間の条件に反応温度と圧力を設定するのが好ましい。
 一方、エステル化反応で生成されたエステル化反応生成物を重縮合反応させて重縮合物を生成する。重縮合反応は、1段階で行なってもよいし、多段階に分けて行なうようにしてもよい。
 エステル化反応で生成したオリゴマー等のエステル化反応生成物は、引き続いて重縮合反応に供される。この重縮合反応は、多段階の重縮合反応槽に供給することにより好適に行なうことが可能である。
 例えば、3段階の反応槽で行なう場合の重縮合反応条件は、第一反応槽は、反応温度が255℃~280℃、より好ましくは265℃~275℃であり、圧力が100torr~10torr(13.3×10-3MPa~1.3×10-3MPa)、より好ましくは50torr~20torr(6.67×10-3MPa~2.67×10-3MPa)であって、第二反応槽は、反応温度が265℃~285℃、より好ましくは270℃~280℃であり、圧力が20torr~1torr(2.67×10-3MPa~1.33×10-4MPa)、より好ましくは10torr~3torr(1.33×10-3MPa~4.0×10-4MPa)であって、最終反応槽内における第三反応槽は、反応温度が270℃~290℃、より好ましくは275℃~285℃であり、圧力が10torr~0.1torr(1.33×10-3MPa~1.33×10-5MPa)、より好ましくは5torr~0.5torr(6.67×10-4MPa~6.67×10-5MPa)である態様が好ましい。
 上記のようにして合成されたポリエステルには、光安定化剤、酸化防止剤、紫外線吸収剤、難燃剤、易滑剤(微粒子)、核剤(結晶化剤)、結晶化阻害剤などの添加剤を更に含有させてもよい。
 また、意匠性及び反射率の観点から、硫酸バリウム、リン酸カルシウム、シリカ粒子、酸化チタンなどの無機粒子、ポリメチルペンテンなどの有機粒子を含むことが好ましい。中でも、シリカ粒子、酸化チタンなどの白色粒子が好ましく、特に好適には、酸化チタンが用いられる。 酸化チタンは、平均一次粒径が0.1μm~1.0μmであるものが好ましく用いられ、平均一次粒径は、特に0.1μm~0.3μmの範囲が最も好ましい。平均一次粒径は、ハネウェル社製のマイクロトラックFRAにより測定される値である。
 上記の中でも、無機粒子が好ましく、無機粒子は、耐光性及び分散性の観点から、アルミナ処理、シリカ処理、ZrO処理などが施されているものが好ましく、ポリエチレンテレフタレート(PET)の耐加水分解性への影響を考慮し、アルミナ処理のみが施されたものが最も好ましい。また、分散性の観点から、ポリオールや有機ポリシロキサンなどの有機表面処理されているものが好ましい。表面処理された酸化チタンの例としては、例えば、石原産業社製のPF-739(アルミナ処理後にポリオール処理を施したもの)などが挙げられる。
 酸化チタンを含む場合、酸化チタンの添加量は、ポリエステルに対して、0.5質量%~10質量%が好ましく、耐加水分解性及び遷移確率の観点から0.5質量%~5質量%が好ましい。
 ポリエステルの合成では、エステル化反応により重合した後に、固相重合を行うことが好ましい。固相重合することにより、ポリエステルの含水率、結晶化度、ポリエステルの酸価、すなわち、ポリエステルの末端カルボキシル基の濃度、固有粘度を制御することができる。
 特に、固相重合開始時のエチレングリコール(EG)ガス濃度を固相重合終了時のEGガス濃度よりも200ppm~1000ppmの範囲で高くすることが好ましく、より好ましくは250ppm~800ppm、さらに好ましくは300ppm~700ppmの範囲で高くして固相重合することが好ましい。この時、平均EGガス濃度(固相重合開始時と終了時のガス濃度の平均)のEGを添加することでAV(末端COOH濃度)を制御できる。即ちEG添加により末端COOHと反応させAVを低減できる。添加EG量は100ppm~500ppmが好ましく、より好ましくは150ppm~450ppm、さらに好ましくは200ppm~400ppmである。
 また、固相重合の温度は180℃~230℃が好ましく、より好ましくは190℃~215℃、さらに好ましくは195℃~209℃である。
 また、固相重合時間は10時間~40時間が好ましく、より好ましくは14時間~35時間、さらに好ましくは18時間~30時間である。
 ここで、ポリエステルは、高い耐加水分解性を有することが好ましい。このためポリエステル中のカルボキシル基含量は50当量/t(ここで、tはtonを意味し、tonは1000kgの意味である)以下が好ましく、より好ましくは35当量/t以下であり、さらに好ましくは20当量/t以下である。カルボキシル基含量が50当量/t以下であると、耐加水分解性を保持し、湿熱経時したときの強度低下を小さく抑制することができる。カルボキシル基含量の下限は、ポリエステルに形成される層(例えば着色層)との間の接着性を保持する点で、2当量/t、より好ましくは3当量/t、さらに好ましくは3当量/tが望ましい。
 ポリエステル中のカルボキシル基含量は、重合触媒種、製膜条件(製膜温度や時間)、固相重合、添加剤(末端封止剤等)により調整することが可能である。
-カルボジイミド化合物、ケテンイミン化合物、イミノエーテル化合物-
 支持体には、その原料樹脂がポリエステルである場合などには、カルボジイミド化合物、ケテンイミン化合物、及びイミノエーテル化合物から選ばれる少なくとも1種を含んでもよい。カルボジイミド化合物、ケテンイミン化合物、及びイミノエーテル化合物は、各々単独で使用してよく、2種以上を併用してもよい。これによりサーモ後のポリエステルの劣化を抑制し、サーモ後も高い絶縁性を保つのに有効である。
 カルボジイミド化合物、ケテンイミン化合物、又はイミノエーテル化合物は、ポリエステルに対して、0.1~10質量%含有されていることが好ましく、0.1~4質量%含有されていることがより好ましく、0.1~2質量%含有されていることがさらに好ましい。カルボジイミド化合物、ケテンイミン化合物、又はイミノエーテル化合物の含有量を上記範囲内とすることにより、支持体と隣接する層との間の密着性をより高めることができる。また、支持体の耐熱性を高めることができる。
 なお、カルボジイミド化合物、ケテンイミン化合物、及びイミノエーテル化合物から選ばれる2種以上が併用される場合は、2種類の化合物の含有率の合計が、上記範囲内であることが好ましい。
 カルボジイミド化合物について説明する。
 カルボジイミド化合物としては、分子中に1個以上のカルボジイミド基を有する化合物(ポリカルボジイミド化合物を含む)が挙げられ、具体的には、モノカルボジイミド化合物として、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジメチルカルボジイミド、ジイソブチルカルボジイミド、ジオクチルカルボジイミド、t-ブチルイソプロピルカルボジイミド、ジフェニルカルボジイミド、ジ-t-ブチルカルボジイミド、ジ-β-ナフチルカルボジイミド、N,N’-ジ-2,6-ジイソプロピルフェニルカルボジイミドなどが例示される。ポリカルボジイミド化合物としては、その重合度が、下限が通常2以上、好ましくは4以上であり、上限が通常40以下、好ましくは、30以下であるものが使用され、米国特許第2941956号明細書、特公昭47-33279号公報、J.Org.Chem.28巻、p2069-2075(1963)、及びChemical Review 1981、81巻、第4号、p.619-621等に記載された方法により製造されたものが挙げられる。
 ポリカルボジイミド化合物の製造原料である有機ジイソシアネートとしては、例えば、芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環族ジイソシアネートやこれらの混合物を挙げることができ、具体的には、1,5-ナフタレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルジメチルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートの混合物、ヘキサメチレンジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、メチルシクロヘキサンジイソシアネート、テトラメチルキシリレンジイソシアネート、2,6-ジイソプロピルフェニルイソシアネート、1,3,5-トリイソプロピルベンゼン-2,4-ジイソシアネートなどが例示される。
 工業的に入手可能な具体的なポリカルボジイミド化合物としては、カルボジライトHMV-8CA(日清紡製)、カルボジライト LA-1(日清紡製)、スタバクゾールP(ラインケミー社製)、スタバクゾールP100(ラインケミー社製)、スタバクゾールP400(ラインケミー社製)、スタビライザー9000(ラシヒケミ社製)などが例示される。
 カルボジイミド化合物は単独で使用することもできるが、複数の化合物を混合して使用することもできる。
 ここで、環骨格にカルボジイミド基を1つ含み、その第一窒素と第二窒素が結合基により結合されている環状構造を分子内に少なくとも1つ有する環状カルボジイミド化合物は、環状封止剤として機能する。
 環状カルボジイミド化合物は、国際公開2011/093478号パンフレットに記載された方法によって調製することができる。
 環状カルボジイミド化合物は、環状構造を有する。環状カルボジイミド化合物は、環状構造を複数有していてもよい。環状構造は、カルボジイミド基(-N=C=N-)を1個有しその第一窒素と第二窒素とが結合基により結合されている。一つの環状構造中には、1個のカルボジイミド基のみを有するが、例えば、スピロ環など、分子中に複数の環状構造を有する場合にはスピロ原子に結合するそれぞれの環状構造中に1個のカルボジイミド基を有していれば、化合物として複数のカルボジイミド基を有していてもよい。環状構造中の原子数は、好ましくは8~50、より好ましくは10~30、さらに好ましくは10~20、特に好ましくは10~15である。
 ここで、環状構造中の原子数とは、環構造を直接構成する原子の数を意味し、例えば、8員環であれば8、50員環であれば50である。環状構造中の原子数が8より小さいと、環状カルボジイミド化合物の安定性が低下して、保管、使用が困難となる場合があるためである。また反応性の観点よりは環員数の上限値に関しては特別の制限はないが、50を超える原子数の環状カルボジイミド化合物は合成上困難となり、コストが大きく上昇する場合が発生するためである。かかる観点より環状構造中の原子数は好ましくは、10~30、より好ましくは10~20、特に好ましくは10~15の範囲が選択される。
 環状カルボジイミド化合物としては、下記一般式(O-A)又は一般式(O-B)で表される環状カルボジイミド化合物を用いることが好ましい。
 以下、本発明の環状カルボジイミド化合物の好ましい構造について、下記一般式(O-A)と一般式(O-B)の順に説明する。
 まず、一般式(O-A)で表される環状カルボジイミド化合物について説明する。
Figure JPOXMLDOC01-appb-C000001

 
 一般式(O-A)中、R及びRは、それぞれ独立にアルキル基、アリール基又はアルコキシ基を表す。R~R及びR~Rは、それぞれ独立に水素原子、アルキル基、アリール基又はアルコキシ基を表す。R~Rは互いに結合して環を形成してもよい。X及びXは、それぞれ独立に単結合、-O-、-CO-、-S-、-SO-、-NH-又は-CH-を表す。Lは2価の連結基を表す。
 一般式(O-A)中、R及びRは、それぞれ独立にアルキル基、アリール基又はアルコキシ基を表し、アルキル基又はアリール基を表すことが好ましく、2級もしくは3級アルキル基又はアリール基を表すことがポリエステルの末端に連結したイソシアネートとポリエステルの水酸基末端の反応を抑制し、増粘を抑制する観点からより好ましく、2級アルキル基を表すことが特に好ましい。
 一般式(O-A)中、R及びRが表すアルキル基は、炭素数1~20のアルキル基であることが好ましく、炭素数1~12のアルキル基であることがより好ましく、炭素数2~6のアルキル基であることが特に好ましい。R及びRが表すアルキル基は直鎖であっても分枝であっても環状であってもよいが、分枝又は環状であることが、ポリエステルの末端に連結したイソシアネートとポリエステルの水酸基末端の反応を抑制し、増粘を抑制する観点から好ましい。R及びRが表すアルキル基は2級又は3級アルキル基であることが好ましく、2級アルキル基であることがより好ましい。R及びRが表すアルキル基は、メチル基、エチル基、n-プロピル基、sec-プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基、sec-ブチル基、iso-ブチル基、n-ペンチル基、sec-ペンチル基、iso-ペンチル基、n-ヘキシル基、sec-ヘキシル基、iso-ヘキシル基、シクロヘキシル基、などを挙げることができ、その中でもiso-プロピル基、tert-ブチル基、iso-ブチル基、iso-ペンチル基、iso-ヘキシル基、シクロヘキシル基が好ましく、iso-プロピル基、シクロヘキシル基、tert-ブチル基がより好ましく、iso-プロピル基及びシクロヘキシル基が特に好ましい。
 一般式(O-A)中、R及びRが表すアルキル基はさらに置換基を有していてもよく、該置換基としては特に制限されるものではない。但し、R及びRが表すアルキル基は、カルボン酸との反応性の観点から、さらに置換基を有さないことが好ましい。
 一般式(O-A)中、R及びRが表すアリール基は、炭素数6~20のアリール基であることが好ましく、炭素数6~12のアリール基であることがより好ましく、炭素数6のアリール基であることが特に好ましい。R及びRが表すアリール基は、RとRが縮合又はRとRが縮合して形成されたアリール基であってもよいが、R及びRは、それぞれR及びRと縮合して環を形成しないことが好ましい。R及びRが表すアリール基は、フェニル基、ナフチル基などを挙げることができ、その中でもフェニル基がより好ましい。
 一般式(O-A)中、R及びRが表すアリール基はさらに置換基を有していてもよく、該置換基としては特に制限されるものではない。但し、R及びRが表すアリール基は、カルボン酸との反応性の観点から、さらに置換基を有さないことが好ましい。
 一般式(O-A)中、R及びRが表すアルコキシ基は、炭素数1~20のアルコキシ基であることが好ましく、炭素数1~12のアルコキシ基であることがより好ましく、炭素数2~6のアルコキシ基であることが特に好ましい。R及びRが表すアルコキシ基は直鎖であっても分枝であっても環状であってもよいが、分枝又は環状であることが、ポリエステルの末端に連結したイソシアネートとポリエステルの水酸基末端の反応を抑制し、増粘を抑制する観点から好ましい。R及びRが表すアルコキシ基の好ましい例は、R及びRが表すアルキル基の末端に-O-が連結した基を挙げることがあり、好ましい範囲も同様にR及びRが表す好ましいアルキル基の末端に-O-が連結した基である。
 一般式(O-A)中、R及びRが表すアルコキシ基はさらに置換基を有していてもよく、該置換基としては特に制限されるものではない。但し、R及びRが表すアルコキシ基は、カルボン酸との反応性の観点から、さらに置換基を有さないことが好ましい。
 一般式(O-A)中、R及びRは、同じであっても異なっていてもよいが、コストの観点から同じであることが好ましい。
 一般式(O-A)中、R~R及びR~Rは、それぞれ独立に水素原子、アルキル基、アリール基又はアルコキシ基を表し、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基であることが好ましく、水素原子、炭素数1~6のアルキル基がより好ましく、水素原子が特に好ましい。
 一般式(O-A)中、R~R及びR~Rが表すアルキル基、アリール基又はアルコキシ基はさらに置換基を有していてもよく、該置換基としては特に制限されるものではない。
 一般式(O-A)中、R及びRがともに水素原子であることが、R及びRに嵩高い置換基を導入しやすい観点から好ましい。ここで、WO2010/071211号公報には、上記一般式(O-A)においてR及びRに相当する部位(カルボジイミド基に対してメタ位)にアルキル基やアリール基が置換した化合物が例示されているが、これらの化合物はポリエステルの末端に連結したイソシアネートとポリエステルの水酸基末端との反応を抑制することができない上、一般式(O-A)においてR及びRに相当する部位(カルボジイミド基に対してオルト位)に置換基を導入することが困難である。
 一般式(O-A)中、R~Rは互いに結合して環を形成してもよい。このときに形成される環は特に制限はないが、芳香族環であることが好ましい。例えば、R~Rの2以上が互いに結合して縮合環を形成してもよく、R~Rが置換しているベンゼン環とともに炭素数10以上のアリーレン基やヘテロアリーレン基を形成してもよい。このときに形成される炭素数10以上のアリーレン基としては、ナフタレンジイル基などの炭素数10~15の芳香族基が挙げられる。
 一般式(O-A)中、同様に、例えば、R~Rの2以上が互いに結合して縮合環を形成してもよく、R~Rが置換しているベンゼン環とともに炭素数10以上のアリーレン基やヘテロアリーレン基を形成してもよく、そのときの好ましい範囲はR~Rが置換しているベンゼン環とともに炭素数10以上のアリーレン基やヘテロアリーレン基を形成するときの好ましい範囲と同様である。
 但し、一般式(O-A)中、R~Rは互いに結合して環を形成しないことが好ましい。
 一般式(O-A)中、X及びXは、それぞれ独立に単結合、-O-、-CO-、-S-、-SO-、-NH-及び-CH-から選択される少なくとも1種を表し、その中でも-O-、-CO-、-S-、-SO-、-NH-であることが好ましく、-O-、-S-であることが合成容易性の観点からより好ましい。
 一般式(O-A)中、Lは2価の連結基を表し、それぞれヘテロ原子ならびに置換基を含んでいてもよく、2価の炭素数1~20の脂肪族基、2価の炭素数3~20の脂環族基、2価の炭素数5~15の芳香族基、又はこれらの組み合わせであることが好ましく、2価の炭素数1~20の脂肪族基であることがより好ましい。
 一般式(O-A)中、Lが表す2価の脂肪族基として、炭素数1~20のアルキレン基が挙げられる。炭素数1~20のアルキレン基として、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基、ドデシレン基、へキサデシレン基などが挙げられ、メチレン基、エチレン基、プロピレン基がより好ましく、エチレン基が特に好ましい。これらの脂肪族基は置換されていてもよい。置換基として、炭素数1~20のアルキル基、炭素数6~15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。
 一般式(O-A)中、Lが表す2価の脂環族基として、炭素数3~20のシクロアルキレン基が挙げられる。炭素数3~20のシクロアルキレン基として、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロへプチレン基、シクロオクチレン基、シクロノニレン基、シクロデシレン基、シクロドデシレン基、シクロへキサデシレン基などが挙げられる。これらの脂環族基は置換されていてもよい。置換基として、炭素数1~20のアルキル基、炭素数6~15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。
 一般式(O-A)中、Lが表す2価の芳香族基として、へテロ原子を含んで複素環構造を持っていてもよい、炭素数5~15のアリーレン基が挙げられる。炭素数5~15のアリーレン基として、フェニレン基、ナフタレンジイル基などが挙げられる。これらの芳香族基は置換されていてもよい。置換基として、炭素数1~20のアルキル基、炭素数6~15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。
 一般式(O-A)中におけるカルボジイミド基を含む環状構造中の原子数は、好ましくは8~50、より好ましくは10~30、さらに好ましくは10~20、特に好ましくは10~15である。
 ここで、カルボジイミド基を含む環状構造中の原子数とは、カルボジイミド基を含む環状構造を直接構成する原子の数を意味し、例えば、8員環であれば8、50員環であれば50である。環状構造中の原子数が8より小さいと、環状カルボジイミド化合物の安定性が低下して、保管、使用が困難となる場合がある。また反応性の観点よりは環員数の上限値に関しては特別の制限はないが、50を超える原子数の環状カルボジイミド化合物は合成上困難となり、コストが大きく上昇する場合がある。かかる観点より、一般式(O-A)中、環状構造中の原子数は好ましくは、10~30、より好ましくは10~20、特に好ましくは10~15の範囲が選択される。
 次に、一般式(O-B)で表される環状カルボジイミド化合物について説明する。
Figure JPOXMLDOC01-appb-C000002

 
 一般式(O-B)中、R11、R15、R21及びR25は、それぞれ独立にアルキル基、アリール基又はアルコキシ基を表す。R12~R14、R16~R18、R22~R24及びR26~R28は、それぞれ独立に水素原子、アルキル基、アリール基又はアルコキシ基を表す。R11~R28は互いに結合して環を形成してもよい。X11、X12、X21及びX22は、それぞれ独立に単結合、-O-、-CO-、-S-、-SO-、-NH-又は-CH-を表す。Lは4価の連結基を表す。
 一般式(O-B)中、R11、R15、R21及びR25の好ましい範囲は、上記一般式(O-A)中のR及びRの好ましい範囲と同様である。
 R11、R15、R21及びR25が表すアリール基は、R11とR12が縮合、R15とR16が縮合、R21とR22が縮合又はR25とR26が縮合して形成されたアリール基であってもよいが、R11、R15、R21及びR25は、それぞれR12、R16、R22及びR26と縮合して環を形成しないことが好ましい。
 R11、R15、R21及びR25は、同じであっても異なっていてもよいが、コストの観点から同じであることが好ましい。
 一般式(O-B)中、R12~R14、R16~R18、R22~R24及びR26~R28の好ましい範囲は、上記一般式(O-A)中のR~R及びR~Rの好ましい範囲と同様である。
 R12~R14、R16~R18、R22~R24及びR26~R28中、R12、R16、R22及びR26がともに水素原子であることが、R11、R15、R21及びR25に嵩高い置換基を導入しやすい観点から好ましい。
 ここで、一般式(O-B)で表される環状カルボジイミド化合物は、このようにカルボジイミド基の近傍に、アルキル基、アリール基又はアルコキシ基のように嵩高い基を導入することで、カルボジイミド基とポリエステルの末端カルボン酸が反応した後に生成するイソシアネート基とポリエステルの末端水酸基の反応を抑制できる。この結果、ポリエステルの高分子量化を抑制でき、上述のようなポリエステルの粘性増加による切り屑の発生を抑制できる。
 一般式(O-B)中、R11~R28は互いに結合して環を形成してもよく、好ましい環の範囲は上記一般式(O-A)中、R~Rが互いに結合して形成する環の範囲と同様である。
 一般式(O-B)中、X11、X12、X21及びX22の好ましい範囲は、上記一般式(O-A)中のX及びXの好ましい範囲と同様である。
 一般式(O-B)中、Lは4価の連結基を表し、それぞれヘテロ原子ならびに置換基を含んでいてもよい、4価の炭素数1~20の脂肪族基、4価の炭素数3~20の脂環族基、4価の炭素数5~15の芳香族基、又はこれらの組み合わせであることが好ましく、4価の炭素数1~20の脂肪族基であることがより好ましい。
 一般式(O-B)中、Lが表す4価の脂肪族基として、炭素数1~20のアルカンテトライル基などが挙げられる。炭素数1~20のアルカンテトライル基として、メタンテトライル基、エタンテトライル基、プロパンテトライル基、ブタンテトライル基、ペンタンテトライル基、ヘキサンテトライル基、ヘプタンテトライル基、オクタンテトライル基、ノナンテトライル基、デカンテトライル基、ドデカンテトライル基、ヘキサデカンテトライル基などが挙げられ、メタンテトライル基、エタンテトライル基、プロパンテトライル基がより好ましく、エタンテトライル基が特に好ましい。これら脂肪族基は置換基を含んでいてもよい。置換基として、炭素数1~20のアルキル基、炭素数6~15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。
 一般式(O-B)中、Lが表す4価の脂環族基として、炭素数3~20のシクロアルカンテトライル基が挙げられる。炭素数3~20のシクロアルカンテトライル基として、シクロプロパンテトライル基、シクロブタンテトライル基、シクロペンタンテトライル基、シクロヘキサンテトライル基、シクロヘプタンテトライル基、シクロオクタンテトライル基、シクロノナンテトライル基、シクロデカンテトライル基、シクロドデカンテトライル基、シクロヘキサデカンテトライル基などが挙げられる。これら脂環族基は置換基を含んでいてもよい。置換基として、炭素数1~20のアルキル基、炭素数6~15のアリーレン基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。
 一般式(O-B)中、Lが表す4価の芳香族基として、へテロ原子を含んで複素環構造を持っていてもよい、炭素数5~15のアレーンテトライル基が挙げられる。炭素数5~15のアレーンテトライル基(4価)として、ベンゼンテトライル基、ナフタレンテトライル基などが挙げられる。これらの芳香族基は置換されていてもよい。置換基として、炭素数1~20のアルキル基、炭素数6~15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。
 一般式(O-B)中、4価の連結基であるLを介して、カルボジイミド基を含む環状構造が2つ含まれる。
 一般式(O-B)中における各カルボジイミド基を含む環状構造中の原子数の好ましい範囲はそれぞれ、上記一般式(O-A)中におけるカルボジイミド基を含む環状構造中の原子数の好ましい範囲と同様である。
 ここで、環状カルボジイミド化合物は、分子内に2つ以上のカルボジイミド基の第一窒素と第二窒素とが連結基により結合した環構造を有さない芳香族カルボジイミドであること、すなわち環状カルボジイミド化合物は単環であり、上記一般式(O-A)で表されることが、増粘し難い観点から好ましい。
 但し、揮散を抑制でき、製造時のイソシアネートガスの発生を抑制できる観点からは、本発明の環状カルボジイミド化合物は環状構造を複数有し、上記一般式(O-B)で表されることも好ましい。
 環状カルボジイミド化合物の分子量は、重量平均分子量で400~1500が好ましい。環状カルボジイミド化合物の分子量は、400以上であると、揮散性が小さく、製造時のイソシアネートガスの発生を抑制できるため好ましい。また、環状カルボジイミド化合物の分子量の上限は特に限定はないが、カルボン酸との反応性の観点から、1500以下が好ましい。
 環状カルボジイミド化合物の分子量は、500~1200であることがより好ましい。
 一般式(O-A)又は一般式(O-B)で表される環状カルボジイミド化合物の具体例としては、以下の化合物が挙げられる。但し、本発明は以下の具体例により限定されるものではない。
Figure JPOXMLDOC01-appb-C000003

 
Figure JPOXMLDOC01-appb-C000004

 
Figure JPOXMLDOC01-appb-C000005

 
Figure JPOXMLDOC01-appb-C000006

 
 環状カルボジイミド化合物は、芳香環に隣接して-N=C=N-で表される構造(カルボイジイミド基)を少なくとも1つ有する化合物であることが好ましく、例えば、適当な触媒の存在下に、有機イソシアネートを加熱し、脱炭酸反応で製造できる。また、本発明の環状カルボジイミド化合物は、特開2011-256337号公報に記載の方法などを参考にして合成することができる。
 環状カルボジイミド化合物を合成するにあたり、カルボジイミド基の第一窒素と第二窒素に隣接するアリーレン基のオルト位に特定の嵩高い置換基を導入する方法としては特に制限はないが、例えば既知の方法でアルキルベンゼンをニトロ化することで、アルキル基が置換されたニトロベンゼンを合成することができ、それを元にWO2011/158958に記載の方法で環状カルボジイミドを合成することができる。
 ケテンイミン化合物について説明する。
 ケテンイミン化合物としては、下記一般式(K-A)で表されるケテンイミン化合物を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000007

 
 一般式(K-A)中、R及びRは、それぞれ独立にアルキル基、アリール基、アルコキシ基、アルコキシカルボニル基、アミノカルボニル基、アリールオキシ基、アシル基又はアリールオキシカルボニル基を表し、Rはアルキル基又はアリール基を表す。
 ここで、ケテンイミン化合物の窒素原子と該窒素原子に結合している置換基を除く部分の分子量は320以上であることが好ましい。すなわち、一般式(K-A)では、R-C(=C)-R基の分子量は320以上であることが好ましい。ケテンイミン化合物の窒素原子と該窒素原子に結合している置換基を除く部分の分子量は、320以上であることが好ましく、500~1500であることがより好ましく、600~1000であることがさらに好ましい。このように、窒素原子と該窒素原子に結合している置換基を除く部分の分子量を上記範囲内とすることにより、支持体とそれと接する層との密着性を高めることができる。これは、窒素原子と該窒素原子に結合している置換基を除く部分が一定範囲の分子量を有することで、ある程度の嵩高さをもったポリエステル末端が支持体に接する層に拡散し投錨効果を発揮するためである。
 一般式(K-A)中、R及びRで表されるアルキル基は、炭素数1~20のアルキル基であることが好ましく、炭素数1~12のアルキル基であることがより好ましい。R及びRが表すアルキル基は直鎖であっても分枝であっても環状であってもよい。R及びRが表すアルキル基としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基、sec-ブチル基、iso-ブチル基、n-ペンチル基、sec-ペンチル基、iso-ペンチル基、n-ヘキシル基、sec-ヘキシル基、iso-ヘキシル基、シクロヘキシル基、などを挙げることができる。中でもメチル基、エチル基、n-プロピル基、iso-プロピル基、iso-ブチル基、シクロヘキシル基とすることがより好ましい。
 一般式(K-A)中、R及びRが表すアルキル基はさらに置換基を有していてもよい。ケテンイミン基とカルボキシル基との反応性を低下させない限り、置換基は特に制限されることはなく、該置換基として、炭素数1~20のアルキル基、炭素数6~15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。なお、R及びRが表すアルキル基の炭素数は、置換基を含まない炭素数を示す。
 一般式(K-A)中、R及びRが表すアリール基は、炭素数6~20のアリール基であることが好ましく、炭素数6~12のアリール基であることがより好ましい。R及びRが表すアリール基としては、フェニル基、ナフチル基などを挙げることができ、その中でもフェニル基が特に好ましい。
 一般式(K-A)中、R及びRが表すアリール基にはヘテロアリール基が含まれるものとする。ヘテロアリール基とは、芳香族性を示す5員、6員又は7員の環又はその縮合環の環構成原子の少なくとも1つがヘテロ原子に置換されたものをいう。ヘテロアリール基としては、例えば、イミダゾリル基、ピリジル基、キノリル基、フリル基、チエニル基、ベンズオキサゾリル基、インドリル基、ベンズイミダゾリル基、ベンズチアゾリル基、カルバゾリル基、アゼピニル基を例示することができる。ヘテロアリール基に含まれるヘテロ原子は、酸素原子、硫黄原子、窒素原子であることが好ましく、中でも、酸素原子又は窒素原子であることが好ましい。
 一般式(K-A)中、R及びRが表すアリール基又はヘテロアリール基はさらに置換基を有していてもよく、ケテンイミン基とカルボキシル基との反応性を低下させない限り、置換基は特に制限されない。該置換基としては上記のアルキル基に対する置換基を同様に例示することができる。なお、R及びRが表すアリール基又はヘテロアリール基の炭素数は、置換基を含まない炭素数を示す。
 一般式(K-A)中、R及びRが表すアルコキシ基は、炭素数1~20のアルコキシ基であることが好ましく、炭素数1~12のアルコキシ基であることがより好ましく、炭素数2~6のアルコキシ基であることが特に好ましい。R及びRが表すアルコキシ基は直鎖であっても分枝であっても環状であってもよい。R及びRが表すアルコキシ基の好ましい例としては、R及びRが表すアルキル基の末端に-O-が連結した基を挙げることができる。R及びRが表すアルコキシ基はさらに置換基を有していてもよく、ケテンイミン基とカルボキシル基との反応性を低下させない限り、置換基は特に制限されない。該置換基としては上記のアルキル基に対する置換基を同様に例示することができる。なお、R及びRが表すアルコキシ基の炭素数は、置換基を含まない炭素数を示す。
 一般式(K-A)中、R及びRが表すアルコキシカルボニル基は、炭素数2~20のアルコキシカルボニル基であることが好ましく、炭素数2~12のアルコキシカルボニル基であることがより好ましく、炭素数2~6のアルコキシカルボニル基であることが特に好ましい。R及びRが表すアルコキシカルボニル基のアルコキシ部としては、上述したアルコキシ基の例を挙げることができる。
 一般式(K-A)中、R及びRが表すアミノカルボニル基は、炭素数1~20のアルキルアミノカルボニル基、炭素数6~20のアリールアミノカルボニル基であることが好ましい。アルキルアミノカルボニル基のアルキルアミノ部の好ましい例としては、R及びRが表すアルキル基の末端に-NH-が連結した基を挙げることができる。R及びRが表すアルキルアミノカルボニル基はさらに置換基を有していてもよく、ケテンイミン基とカルボキシル基との反応性を低下させない限り、置換基は特に制限されない。該置換基としては上記のアルキル基に対する置換基を同様に例示することができる。炭素数6~20のアリールアミノカルボニル基のアリールアミノ部の好ましい例としては、R及びRが表すアリール基の末端に-NH-が連結した基を挙げることができる。R及びRが表すアリールアミノカルボニル基はさらに置換基を有していてもよく、ケテンイミン基とカルボキシル基との反応性を低下させない限り、置換基は特に制限されない。該置換基としては上記のアルキル基に対する置換基を同様に例示することができる。なお、R及びRが表すアルキルアミノカルボニル基の炭素数は、置換基を含まない炭素数を示す。
 一般式(K-A)中、R及びRが表すアリールオキシ基は、炭素数6~20のアリールオキシ基であることが好ましく、炭素数6~12のアリールオキシ基であることがより好ましい。R及びRが表すアリールオキシ基のアリール部としては、上述したアリール基の例を挙げることができる。
 一般式(K-A)中、R及びRが表すアシル基は、炭素数2~20のアシル基であることが好ましく、炭素数2~12のアシル基であることがより好ましく、炭素数2~6のアシル基であることが特に好ましい。R及びRが表すアシル基はさらに置換基を有していてもよく、ケテンイミン基とカルボキシル基との反応性を低下させない限り、置換基は特に制限されない。該置換基としては上記のアルキル基に対する置換基を同様に例示することができる。なお、R及びRが表すアシル基の炭素数は、置換基を含まない炭素数を示す。
 一般式(K-A)中、R及びRが表すアリールオキシカルボニル基は、炭素数7~20のアリールオキシカルボニル基であることが好ましく、炭素数7~12のアリールオキシカルボニル基であることがより好ましいR及びRが表すアリールオキシカルボニル基のアリール部としては、上述したアリール基の例を挙げることができる。
 一般式(K-A)中、Rはアルキル基又はアリール基を表す。アルキル基は、炭素数1~20のアルキル基であることが好ましく、炭素数1~12のアルキル基であることがより好ましい。Rが表すアルキル基は直鎖であっても分枝であっても環状であってもよい。Rが表すアルキル基としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、tert-ブチル基、sec-ブチル基、iso-ブチル基、n-ペンチル基、sec-ペンチル基、iso-ペンチル基、n-ヘキシル基、sec-ヘキシル基、iso-ヘキシル基、シクロヘキシル基、などを挙げることができる。中でもメチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、シクロヘキシル基とすることがより好ましい。
 一般式(K-A)中、Rが表すアルキル基はさらに置換基を有していてもよい。ケテンイミン基とカルボキシル基との反応性を低下させない限り、置換基は特に制限されることはなく、該置換基としては上記のアルキル基に対する置換基を同様に例示することができる。
 一般式(K-A)中、Rが表すアリール基は、炭素数6~20のアリール基であることが好ましく、炭素数6~12のアリール基であることがより好ましい。Rが表すアリール基としては、フェニル基、ナフチル基などを挙げることができ、その中でもフェニル基が特に好ましい。
 一般式(K-A)中、Rが表すアリール基にはヘテロアリール基が含まれるものとする。ヘテロアリール基とは、芳香族性を示す5員、6員又は7員の環又はその縮合環の環構成原子の少なくとも1つがヘテロ原子に置換されたものをいう。ヘテロアリール基としては、例えば、イミダゾリル基、ピリジル基、キノリル基、フリル基、チエニル基、ベンズオキサゾリル基、インドリル基、ベンズイミダゾリル基、ベンズチアゾリル基、カルバゾリル基、アゼピニル基を例示することができる。ヘテロアリール基に含まれるヘテロ原子は、酸素原子、硫黄原子、窒素原子であることが好ましく、中でも、酸素原子又は窒素原子であることが好ましい。
 一般式(K-A)中、Rが表すアリール基又はヘテロアリール基はさらに置換基を有していてもよく、ケテンイミン基とカルボキシル基との反応性を低下させない限り、置換基は特に制限されない。該置換基としては上記のアルキル基に対する置換基を同様に例示することができる。
 なお、一般式(K-A)は、繰り返し単位を含んでいてもよい。この場合、R又はRの少なくとも一方が繰り返し単位であり、この繰り返し単位には、ケテンイミン部が含まれることが好ましい。
 ケテンイミン化合物としては、下記一般式(K-B)で表されるケテンイミン化合物を用いることも好ましい。
Figure JPOXMLDOC01-appb-C000008

 
 一般式(K-B)中、Rはアルキル基、アリール基、アルコキシ基、アルコキシカルボニル基、アミノカルボニル基、アリールオキシ基、アシル基又はアリールオキシカルボニル基を表す。Rは置換基としてLを有するアルキル基、アリール基、アルコキシ基、アルコキシカルボニル基、アミノカルボニル基、アリールオキシ基、アシル基又はアリールオキシカルボニル基を表す。Rはアルキル基又はアリール基を表す。nは1~4の整数を表し、Lはn価の連結基を表す。(R-C(=C)-R-)-L基の分子量は320以上であることが好ましい。
 一般式(K-B)中、Rは、一般式(K-A)におけるそれと同意であり、好ましい範囲も同様である。
 一般式(K-B)中、Rは、n価の連結基であるLを有するアルキル基、アリール基、アルコキシ基、アルコキシカルボニル基、アミノカルボニル基、アリールオキシ基、アシル基又はアリールオキシカルボニル基を表す。アルキル基、アリール基、アルコキシ基、アルコキシカルボニル基、アミノカルボニル基、アリールオキシ基、アシル基又はアリールオキシカルボニル基としては、一般式(K-A)におけるそれと同意であり、好ましい範囲も同様である。
 一般式(K-B)中、Rは、一般式(K-A)におけるそれと同意であり、好ましい範囲も同様である。
 一般式(K-B)中、Lはn価の連結基を表し、ここで、nは1~4の整数を表す。中でも、nは2~4であることが好ましい。
 一般式(K-B)中、Lが表す二価の連結基の具体例としては、例えば、-NR-(Rは水素原子、置換基を有していてもよいアルキル基又は置換基を有していてもよいアリール基を表し、水素原子が好ましい)で表される基、-SO-、-CO-、置換もしくは無置換のアルキレン基、置換もしくは無置換のアルケニレン基、アルキニレン基、置換もしくは無置換のフェニレン基、置換もしくは無置換のビフェニレン基、置換もしくは無置換のナフチレン基、-O-、-S-及び-SO-ならびにこれらを2つ以上組み合わせて得られる基が挙げられる。該置換基として、炭素数1~20のアルキル基、炭素数6~15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。
 一般式(K-B)中、Lが表す三価の連結基の具体例としては、例えば、二価の連結基の例として挙げた連結基のうち置換基を有するものから1つの水素原子を取り除いた基が挙げられる。
 一般式(K-B)中、Lが表す四価の連結基の具体例としては、例えば、例えば、二価の連結基の例として挙げた連結基のうち置換基を有するものから2つの水素原子を取り除いた基が挙げられる。
 一般式(K-B)中、Lが表す連結基のn価を2~4とすることにより、ケテンイミン部を一分子中に2以上有する化合物とすることができ、より優れた末端封止効果を発揮することができる。また、ケテンイミン部を一分子中に2以上有する化合物とすることにより、ケテンイミン基当たりの分子量を低くすることができ、効率よくケテンイミン化合物とポリエステルの末端カルボキシル基を反応させることができる。さらに、ケテンイミン部を一分子中に2以上有することにより、ケテンイミン化合物やケテン化合物が揮散することを抑制することができる。
 一般式(K-B)中、nは3又は4であることがより好ましい。nを3又は4とすることにより、ケテンイミン部を一分子中に3又は4有する化合物とすることができ、より優れた末端封止効果を発揮することができる。また、nを3又は4とすることにより、一般式(K-B)中のR又はRの置換基のモル分子量を小さくした場合であっても、ケテンイミン化合物の揮散を抑制することができる。
 ケテンイミン化合物としては、下記一般式(K-C)で表されるケテンイミン化合物を用いることも好ましい。
Figure JPOXMLDOC01-appb-C000009

 
 一般式(K-C)中、R及びRはアルキル基、アリール基、アルコキシ基、アルコキシカルボニル基、アミノカルボニル基、アリールオキシ基、アシル基又はアリールオキシカルボニル基を表す。R及びRは置換基としてLを有するアルキル基、アリール基、アルコキシ基、アルコキシカルボニル基、アミノカルボニル基、アリールオキシ基、アシル基又はアリールオキシカルボニル基を表す。R及びRはアルキル基又はアリール基を表す。Lは単結合又は二価の連結基を表す。R-C(=C)-R-L-R―C(=C)-R基の分子量は320以上であることが好ましい。
 一般式(K-C)中、Rは、一般式(K-A)におけるそれと同意であり、好ましい範囲も同様である。また、Rは、一般式(K-A)におけるRと同意であり、好ましい範囲も同様である。
 一般式(K-C)中、Rは、一般式(K-B)におけるそれと同意であり、好ましい範囲も同様である。また、Rは、一般式(K-B)におけるRと同意であり、好ましい範囲も同様である。
 一般式(K-C)中、Rは、一般式(K-A)におけるそれと同意であり、好ましい範囲も同様である。また、Rは、一般式(K-A)におけるRと同意であり、好ましい範囲も同様である。
 一般式(K-C)中、Lは、単結合又は二価の連結基を表す。二価の連結基の具体例としては、一般式(K-B)のLで例示した連結基を挙げることができる。
 ここで、ケテンイミン化合物の窒素原子と該窒素原子に結合している置換基を除く部分の分子量は320以上であることが好ましい。ケテンイミン化合物の窒素原子と該窒素原子に結合している置換基を除く部分の分子量は320以上であれば良く、400以上であることが好ましく、500以上であることがさらに好ましい。また、一分子中のケテンイミン部の数に対するケテンイミン化合物のモル分子量(モル分子量/ケテンイミン部の数)は、1000以下であることが好ましく、500以下であることがより好ましく、400以下であることがさらに好ましい。ケテンイミン化合物のケテンイミン部炭素上の置換基の分子量及びケテンイミン部の数に対するケテンイミン化合物のモル分子量を上記範囲内とすることにより、ケテンイミン化合物自体の揮散を抑制し、ポリエステルの末端カルボキシル基を封止する際に生じるケテン化合物の揮散を抑制し、さらにポリエステルの末端カルボキシル基の封止を低添加量のケテンイミン化合物にて行うことができる。
 ケテンイミン基を少なくとも1つ有するケテンイミン化合物は、例えば、J. Am.
 Chem. Soc., 1953, 75 (3), pp 657-660に記載の方法などを参考にして合成することができる。
 以下、一般式(K-A)~(K-C)で表されるケテンイミン化合物の好ましい具体例を示すが、本発明はこれに限定されない。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012

 
 上記例示化合物に示されているように、ケテンイミン化合物は、3官能又は4官能であることがより好ましい。これにより、ポリエステル等原料樹脂の末端封止効果をより高めることができ、ケテンイミン化合物やケテン化合物の揮散を効果的に抑制することができる。
 また、例示化合物(K-6)のようにケテンイミン部を環骨格として環状構造を有する場合、一般式(K-A)~(K-C)中、RとRは連結して環状構造を形成し、Rは、環骨格のアルキレン基又はアリーレン基からなる。この場合、Rはケテンイミン部を含む連結基を有する。
 例示化合物(K-10)は一般式(K-A)~(K-C)の繰り返し数nの繰り返し単位を示し、nは3以上の整数を表す。例示化合物(K-10)に示される左末端は水素原子であり、右末端はフェニル基である。
-支持体の製造方法-
 以下、支持体の製造方法の好ましい態様について、支持体がポリエステルである場合を例に挙げて説明する。
 支持体は、例えば、上記のポリエステルをフィルム状に溶融押出を行った後、キャスティングドラムで冷却固化させて未延伸フィルムとし、この未延伸フィルムをTg~(Tg+60)℃で長手方向に1回もしくは2回以上合計の倍率が3倍~6倍になるよう延伸し、その後Tg~(Tg+60)℃で幅方向に倍率が3倍~5倍になるように延伸した2軸延伸フィルムであることが好ましい。
 さらに、必要に応じて180℃~230℃で1秒間~60秒間の熱処理を行ったものでもよい。
 なお、Tgはガラス転移温度を表し、JIS K7121或いはASTM D3418-82等に基づいて測定することができる。例えば。本発明では、島津製作所社製の示差走査熱量測定装置(DSC)を用いて測定する。
 具体的には、試料としてポリエステル等のポリマーを10mg秤量し、アルミパンにセットし、昇温速度10℃/minで、室温から最終温度300℃まで昇温しながら、DSC装置で、温度に対する熱量を測定したとき、DSC曲線が屈曲する温度をガラス転移温度とした。
 以下、支持体の製造方法の好ましい態様として、ポリエステルフィルムの製造方法の一例について説明する。
・ポリエステルフィルム形成工程:
 ポリエステルフィルム形成工程、すなわちポリエステルフィルムを製膜する工程では、樹脂組成物に含まれるポリエステルとケテンイミン化合物、カルボジイミド化合物、及びイミノエーテル化合物の少なくとも一種と、を溶融させた溶融体をギアポンプや濾過器を通し、その後、ダイを介して冷却ロールに押出し、これを冷却固化させる。これにより、(未延伸)フィルムを形成することができる。溶融は押出し機を用いて行なうが、単軸押出し機を用いてもよく、2軸押出し機を用いてもよい。
 カルボジイミド化合物やケテンイミン化合物、イミノエーテル化合物は、直接これらの押出し機に添加してもよいが、予めポリエステルとマスターバッチを形成し押出し機に投入することが、押出し安定性の観点から好ましい。マスターバッチを形成する場合は、ケテンイミン化合物を含むマスターバッチの供給量に上記変動を与えることが好ましい。なお、マスターバッチケテンイミンの濃度は濃縮したものを使用することが好ましく、製膜後のフィルム中の濃度の2倍~100倍、より好ましくは5倍~50倍にすることがコストの観点から好ましい。
 押出しは真空排気や不活性ガス雰囲気下で行なうことが好ましい。これによりでケテンイミン、カルボジイミド化合物、及びイミノエーテル化合物などの末端封止材等の分解を抑止できる。押出し機の温度は使用するポリエステルの融点から融点+80℃以下で行なうことが好ましく、より好ましくは融点+10℃以上、融点+70℃以下、さらに好ましくは融点+20℃以上、融点+60℃以下である。融点+10℃未満では、充分に樹脂が融解しない。一方、温度が融点+80℃を超えると、ポリエステルや、ケテンイミン化合物、カルボジイミド化合物、及びイミノエーテル化合物などの末端封止材等が分解し好ましくない。なお、この押出しの前に、ポリエステルや、ケテンイミン化合物、カルボジイミド化合物、及びイミノエーテル化合物などの末端封止材等のマスターバッチを乾燥しておくことが好ましく、好ましい含水率は、10ppm~300ppmが好ましく、より好ましくは20ppm~150ppmである。
 なお、押出された溶融体は、ギアポンプ、濾過機、多層ダイを通してキャストドラム上に流涎される。多層ダイの方式はマルチマニホールドダイ、フィードブロックダイ、どちらも好適に用いることができる。ダイの形状はT-ダイ、ハンガーコートダイ、フィッシュテール、いずれでも構わない。このようなダイの先端(ダイリップ)に上述のような温度変動を付与することが好ましい。キャストドラム上では、溶融樹脂(メルト)を、静電印加法を用いて冷却ロールに密着させることができる。この際、キャストドラムの駆動速度に上記のような変動を与えることが好ましい。キャストドラムの表面温度は、おおよそ10℃~40℃とすることができる。キャストドラムの直径は0.5m以上5m以下が好ましく、より好ましくは1m以上4m以下である。キャストドラムの駆動速度(最外週の線速度)は1m/分以上50m/分以下が好ましく、より好ましくは3m/分以上30m/分以下である。
・延伸工程:
 フィルム形成工程によって形成された(未延伸)フィルムは、延伸工程において、延伸処理を施すことができる。延伸は縦方向(MD)、横方向(TD)の少なくとも一方に行なうことが好ましく、より好ましくは、MD、TDの両方延伸を行なうことが、フィルムの物性にバランスが取れ好ましい。このような2方向延伸は、縦、横逐次におこなってもよく、同時に実施してもよい。延伸工程においては、冷却ロールで冷却固化させた(未延伸)フィルムに1つ又は2つの方向に延伸されることが好ましく、2つの方向に延伸されることがより好ましい。2つの方向への延伸(二軸延伸)は、長手方向(MD:Machine Direction)の延伸(以下「縦延伸」ともいう)及び幅方向(TD:Transverse Direction)の延伸(以下、「横延伸」ともいう)であることが好ましい。当該縦延伸、横延伸は各々1回で行ってもよく、複数回に亘って実施してもよく、同時に縦、横に延伸してもよい。
 延伸処理は、フィルムのガラス温度(Tg)℃~(Tg+60)℃で行うのが好ましく、より好ましくは(Tg+3)℃~(Tg+40)℃、さらに好ましくは(Tg+5)℃~(Tg+30)℃である。この時、上述のように温度分布を付与することが好ましい。
 好ましい延伸倍率は少なくとも一方に280%~500%、より好ましくは300%~480%、さらに好ましくは320%~460%である。二軸延伸の場合、縦、横均等に延伸してもよいが、一方の延伸倍率を他方より大きくし不均等に延伸するほうがより好ましい。縦(MD)、横(TD)いずれを大きくしてもよい。ここで云う延伸倍率は、以下の式を用いて求めたものである。
 延伸倍率(%)=100×{(延伸後の長さ)/(延伸前の長さ)〕
 二軸延伸処理は、例えば、フィルムのガラス転移温度である(Tg)℃~(Tg+60)℃で長手方向に1回もしくは2回以上、合計の倍率が3倍~6倍になるよう延伸し、その後、(Tg)℃~(Tg+60)℃で幅方向に倍率が3~5倍になるよう施すことができる。
 縦二軸延伸処理は出口側の周速を速くした2対以上のニップロールを用いて、長手方向に延伸することができ(縦延伸)、またチャックで幅方向を把持した後、このチャック間の長手方向の間隔を広げることで延伸してもよい。
 横延伸はフィルムの両端をチャックで把持しこれを直交方向(長手方向と直角方向)に広げておこなうことができる(横延伸)。
 同時延伸は、チャックで把持したあと、長手方向にチャック間隔を拡げる操作と、幅方向にチャック間隔を拡げる操作を組み合わせることで実施できる。
 これらの延伸工程に、後述する下塗り層(インラインコート層)の塗布工程を組み合わせることが好ましい。下塗り層は、このような延伸工程の前や延伸工程の間の工程において、塗布によりポリエステルフィルムの表面に形成されることが好ましい。すなわち、本発明では、ポリエステルフィルム基材を少なくとも1回延伸することが好ましい。
 例えば、延伸工程と塗布工程は、下記のような組合せで実施することができる。
(a)縦延伸→塗布→横延伸
(b)塗布→縦延伸→横延伸
(c)塗布→縦、横同時延伸
(d)縦延伸→横延伸→塗布→縦延伸
(e)縦延伸→横延伸→塗布→横延伸
 この中で好ましいのが(a)、(b)、(c)であり、さらに好ましいのが(a)である。この手法が最も密着力が高く、設備もコンパクトとなり好ましい。
 延伸工程においては、延伸処理の前又はその後、好ましくは延伸処理後に、フィルムに熱処理を施すことができる。熱処理を施すことによって、微結晶を生成し、力学特性や耐久性を向上させることができる。180℃~225℃程度(更に好ましくは、185℃~210℃)で1秒間~60秒間(更に好ましくは2秒間~30秒間)の熱処理をフィルムに施してもよい。
 延伸工程においては、熱処理後、熱緩和処理を施すことができる。熱緩和処理とは、フィルムに対して応力緩和のために熱を加えて、フィルムを収縮させる処理である。熱緩和処理は、フィルムのMD及びTDの両方向に施すことが好ましい。熱緩和処理における諸条件は、熱処理温度より低い温度で処理することが好ましく、130℃~220℃が好ましい。また、熱緩和処理は、フィルムの熱収縮率(150℃)がMD及びTDがいずれも1%~12%であることが好ましく、1%~10%が更に好ましい。尚、熱収縮率(150℃)は、測定方向350mm、幅50mmのサンプルを切り出し、サンプルの長手方向の両端近傍300mm間隔に標点を付け、150℃の温度に調整されたオーブンに一端を固定、他端をフリーで30分間放置し、その後、室温で標点間距離を測定し、この長さをL(mm)とし、かかる測定値を用いて、下記式にて熱収縮率を求めることができる。
 150℃熱収縮率(%)=100×(300-L)/300
 また、熱収縮率が正の場合は縮みを、負は伸びを表わす。
 以上の工程を経て、支持体としてのポリエステルフィルムが製造される。
 また、白色ポリエステルフィルムの製造方法について一例を説明する。
 白色ポリエステルフィルムは、少なくともポリエステル樹脂と白色粒子とを含有する。白色ポリエステルフィルムは、ポリエステルフィルム形成工程を設けて形成することができる。ポリエステルフィルム形成工程は、ポリエステル樹脂と白色粒子とを混合し、押出機で溶融混練してシート状に押し出し、これを冷却固化させる工程を含む。これにより、未延伸フィルムを形成する。押出す場合、例えば0.5~30MPaの押出圧力が付与される。白色粒子は、ポリエステル樹脂に対して0.3~5.0質量%の範囲で混合することができる。
 なお、ポリエステルフィルムには、一方の面にポリマー層(平均膜厚0.03~0.5μm)が、他方の面に機能性層(平均膜厚4.0~8.0μm)が、形成されてもよい。
 ポリエステルフィルム形成工程では、白色ポリエステルの製造にあたり、ポリエステル樹脂と白色粒子と必要に応じて他の添加物とを混合し、押出機で溶融混練したマスターペレットを調製することが好ましい。白色粒子には、既述の無機粒子より選ばれる白色粒子を用いることができる。マスターペレットの調製に用いるポリエステル樹脂は、ジオール成分とジカルボン酸成分を常法に従い重縮合した後、ペレット状に加工されたものを用いることができる。また、ポリエステルフィルムに含まれる、白色粒子以外の粒子や、カルボジイミド化合物やケテンイミン化合物、イミノエーテル化合物等の末端封止剤も、必要に応じてマスターペレットに混合される。カルボジイミド化合物やケテンイミン化合物、イミノエーテル化合物等の末端封止剤は、直接押出し機に添加してもよいが、あらかじめポリエステルと共に混合し溶融混練してマスターバッチを調製しておき、マスターバッチの形態で押出機に投入することが、押出し安定性の点で好ましい。
 マスターペレットを調製する工程では、乾燥工程を設けることが好ましく、粒子又は末端封止剤、ポリエステル樹脂等の組成物を真空中あるいは熱風中で乾燥する。乾燥工程では、これらの組成物中の含水率を100ppm以下、より好ましくは80ppm以下、さらに好ましくは60ppm以下にすることが好ましい。この時の乾燥温度は80~200℃が好ましく、より好ましくは100~180℃、さらに好ましくは110~170℃である。乾燥時間は、上記含水率になるように適宜調整することができる。
 次いで、乾燥した白色粒子及びポリエステルを混練し、高濃度に白色粒子が分散したマスターペレットを作製する。マスターペレット中の白色粒子又は末端封止剤の添加剤濃度は、フィルムでの使用濃度の1.5~20倍が好ましく、より好ましくは2~15倍、さらに好ましくは3~10倍である。添加濃度を目的とする濃度よりも高くするのは、次工程の製膜工程で、ポリエステルペレットによって希釈されて目的濃度となるためである。
 混練には、単軸押出し機、2軸押出し機、バンバリーミキサー、ブラベンダー等の各種混練機を使用できる。中でも、2軸押出し機を用いることが好ましい。混練温度は、ポリエステル樹脂の結晶融解温度(Tm)以上Tm+80℃以下が好ましく、より好ましくはTm+10~Tm+70℃、さらに好ましくはTm+20~Tm+60℃である。混練雰囲気は、空気中、真空中、不活性気流中いずれでもよいが、より好ましくは真空中、不活性気流中である。混練時間は、1~20分が好ましく、より好ましくは2~18分であり、さらに好ましくは3~15分である。混練した樹脂は、ストランド状に押出し、空気中あるいは水中で冷却、固化した後、裁断し、ペレット化する。
 マスターペレットは、スターペレットと共に加えられるポリエステル樹脂とともに、樹脂温度の最高到達温度が300℃程度になるよう加熱され、溶融される。その後、溶融樹脂(メルト)は、ダイを通して冷却ロール上にフィルム状となるように押出される(押出工程)。溶融樹脂は、冷却ロール上で固化されて製膜される。このように製膜されたフィルムは、キャストフィルム(未延伸原反)となる。溶融樹脂は、メルト配管を通し、ギアポンプ、濾過器を通すことが好ましい。また、メルト配管中にスタチックミキサーを設け、樹脂と添加物の混合を促すことも好ましい。
 なお、末端封止剤の分解を抑止するためにも、上記のような押出しは、真空排気や不活性ガス雰囲気下で行なうことが好ましい。
-その他事項-
 支持体の厚みは、30μm以上350μmが好ましいが、耐電圧の観点から、160μm以上300μm以下がより好ましく、さらに好ましくは180μm以上280μm以下である。
 支持体は、120℃、相対湿度100%の条件で50時間保存した後の破断伸びが、保存前の破断伸びに対して50%以上であるものが好ましい(以下、当該条件により湿熱処理した支持体の処理前後における破断伸びの保持率を、単に「破断伸び保持率」ともいう。)。破断伸び保持率が50%以上であることで、加水分解に伴う変化が抑えられ、長期使用の際に塗布層との密着界面での密着状態が安定的に保持されることにより、経時での剥離等が防止される。これにより、バックシートが、例えば屋外等の高温、高湿環境や曝光下に長期に亘り置かれる場合でも、高い耐久性能を示す。より好ましくは50%に達する時間は、75時間以上200時間以下が好ましく、より好ましくは100時間以上180時間以下である。
 支持体は180℃で50時間熱処理した後の破断強度が、熱処理前の破断強度の50%以上であることが好ましい。より好ましくは180℃で80時間熱処理した後の破断強度が熱処理前の破断強度の50%以上であり、さらに好ましくは180℃で100時間熱処理した後の破断強度が熱処理前の破断強度の50%以上である。これにより高温に曝されたときの耐熱性を良好にすることができる。
 支持体は150℃で30分間熱処理をした時の熱収縮がMD,TDとも1%以下、より好ましくは0.5%以下であることが好ましい。熱収縮を1%以下に保つことにより、太陽電池モジュールを形成した時の反りを防止することができる。
 支持体は必要に応じてコロナ放電処理、火炎処理、グロー放電処理のような表面処理を行ってもよい。これらのうちでコロナ放電処理は低コストで行うことができる、好ましい表面処理方法である。
 コロナ放電処理は、通常誘導体を被膜した金属ロール(誘電体ロール)と絶縁された電極間に高周波、高電圧を印加して、電極間の空気の絶縁破壊を生じさせることにより、電極間の空気をイオン化させて、電極間にコロナ放電を発生させる。そして、このコロナ放電の間を、支持体を通過させることにより行う。
 本発明で用いる好ましい処理条件は、電極と誘電体ロ-ルのギャップクリアランス1~3mm、周波数1~100kHz、印加エネルギー0.2~5kV・A・分/m程度が
好ましい。
 グロー放電処理は、真空プラズマ処理又はグロー放電処理とも呼ばれる方法で、低圧雰囲気の気体(プラズマガス)中での放電によりプラズマを発生させ、基材表面を処理する方法である。本発明の処理で用いる低圧プラズマはプラズマガスの圧力が低い条件で生成する非平衡プラズマである。本発明の処理は、この低圧プラズマ雰囲気内に被処理フィルムを置くことにより行われる。
 グロー放電処理において、プラズマを発生させる方法としては、直流グロー放電、高周波放電、マイクロ波放電等の方法を利用することができる。放電に用いる電源は直流でも交流でもよい。交流を用いる場合は30Hz~20MHz程度の範囲が好ましい。
 交流を用いる場合には50又は60Hzの商用の周波数を用いてもよいし、10~50kHz程度の高周波を用いてもよい。また、13.56MHzの高周波を用いる方法も好ましい。
 グロー放電処理で用いるプラズマガスとして、酸素ガス、窒素ガス、水蒸気ガス、アルゴンガス、ヘリウムガス等の無機ガスを使用することができ、特に、酸素ガス、又は、酸素ガスとアルゴンガスとの混合ガスが好ましい。具体的には、酸素ガスとアルゴンガスとの混合ガスを使用することが望ましい。酸素ガスとアルゴンガスを用いる場合、両者の比率としては、分圧比で酸素ガス:アルゴンガス=100:0~30:70位、より好ましくは、90:10~70:30位が好ましい。また、特に気体を処理容器に導入せず、リークにより処理容器にはいる大気や被処理物から出る水蒸気などの気体をプラズマガスとして用いる方法も好ましい。
 ここで、プラズマガスの圧力としては、非平衡プラズマ条件が達成される低圧が必要である。具体的なプラズマガスの圧力としては、0.005Torr~10Torr、より好ましくは0.008Torr~3Torr程度の範囲が好ましい。プラズマガスの圧力が0.005Torr未満の場合は接着性改良効果が不充分な場合があり、逆に10Torrを超えると電流が増大して放電が不安定になる場合がある。
 プラズマ出力としては、処理容器の形状や大きさ、電極の形状などにより一概には言えないが、100W~2500W程度、より好ましくは、500W~1500W程度が好ましい。
 グロー放電処理の処理時間は0.05秒~100秒、より好ましくは0.5秒~30秒程度が好ましい。処理時間が0.05秒未満の場合には接着性改良効果が不充分な場合があり、逆に100秒を超えると被処理フィルムの変形や着色等の問題が生じる場合がある。
 グロー放電処理の放電処理強度はプラズマ出力と処理時間によるが、0.01~10kV・A・分/mの範囲が好ましく、0.1~7kV・A・分/mがより好ましい。放電処理強度を0.01kV・A・分/m以上とすることで充分な接着性改良効果が得
られ、10kV・A・分/m以下とすることで被処理フィルムの変形や着色といった問
題を避けることができる。
 グロー放電処理では、あらかじめ被処理フィルムを加熱しておくことも好ましい。この方法により、加熱を行わなかった場合に比べ、短時間で良好な接着性が得られる。加熱の温度は40℃~被処理フィルムの軟化温度+20℃の範囲が好ましく、70℃~被処理フィルムの軟化温度の範囲がより好ましい。加熱温度を40℃以上とすることで充分な接着性の改良効果が得られる。また、加熱温度を被処理フィルムの軟化温度以下とすることで処理中に良好なフィルムの取り扱い性が確保できる。
 真空中で被処理フィルムの温度を上げる具体的方法としては、赤外線ヒーターによる加熱、熱ロールに接触させることによる加熱などが挙げられる。
〔降伏点を有するポリマーを含む塗布層(B):(B)層〕
 本発明のバックシートでは、前記支持体の少なくとも片方の面に、降伏点を有するポリマーを含む(B)層を備える。
 (B)層が含むポリマーが降伏点を有するか否か、及び当該ポリマーの降伏点は、以下の方法により測定される。
(ポリマーの降伏点の測定方法)
 まず、セラピール(東レ社製)に、降伏点を測定するポリマーを乾燥後の膜厚が15μmになるように塗布し、170℃で2分間乾燥して、セラピール表面にポリマー膜を形成する。
 セラピール表面に形成されたポリマー膜を、121℃100%の高温高湿環境下に30時間保存し、その後、3cm×5mmの大きさに切断して、ポリマー膜をセラピールから剥離する。
 得られたポリマー膜を引っ張り試験機(テンシロン:A&D Company社製)により23.0℃、50.0%の環境下、50mm/minの速度でポリマー膜の引張試験を行い、伸張度と応力とを測定する。
 この引っ張り試験において、ポリマー膜は引っ張り応力に従って伸びが大きくなるが、ある応力を超えると歪み(伸び)が大きくなるのに対して引っ張り応力が下降する現象が起こる。この現象をポリマー膜が「降伏」したと判断し、この点における応力を降伏点と称する。このような挙動を示すポリマーを「降伏点を有する」と判断する。
 他方、引っ張り応力と伸びが共に上昇し、ある応力で破断するポリマー膜は降伏点を有しないと判断する。
 (B)層に用いうる降伏点を有するポリマーとしては、ベースとなるポリマーには特に制限はなく、アクリル系樹脂、オレフィン系樹脂、ウレタン系樹脂、ポリエステル樹脂などから選択されるが、上記測定法によりポリマー膜が降伏点を有するものであることを要する。
 降伏点を有するポリマーは、例えば、溶剤製膜やラテックス製膜によりポリマー膜を製膜し、上記測定法により降伏点が測定される。
 降伏点を有するポリマーは、ポリマーを有機溶剤に溶解して用いてもよく、ポリマー粒子が水に分散してなる分散物として用いてもよい。環境への配慮から水に分散しているものを使用するのが好ましい。
 降伏点を有するポリマーは市販品としても入手可能であり、例えば、三井化学〔(株)、ボンロンXPS001、ボンロンXPS002(いずれも商品名:アクリル系樹脂粒子分散物)、東洋紡(株)ハードレンNZ-1001(商品名:酸変性オレフィン系樹脂粒子分散物)などが挙げられる。
 降伏点を有するポリマーは1種のみを用いてもよく、2種以上を混合して用いてもよいが、2種以上混合する場合には、ポリマー混合物により形成される膜が降伏点を有することを要する。一般的には、混合するポリマーの50質量%以上が降伏点を有するポリマーであることが好ましく、さらに好ましくは混合するポリマーの70質量%以上、特に好ましくは混合する全てのポリマーが降伏点を有するものである。
 (B)層は、降伏点を有するポリマーを適切な溶剤に溶解させるか、ポリマー粒子を分散媒に分散させたものを塗布し、乾燥して形成される。(B)層形成用組成物には、降伏点を有すポリマー及び溶媒或いは分散媒に加え、必要に応じて、その他の添加剤が含まれていてもよい。(B)層形成用組成物は、環境への配慮から水に分散しているものを使用するのが好ましい。
-その他の添加剤-
 その他の添加剤としては、(B)層に付与する機能に応じて、例えば、膜強度向上のための無機粒子、架橋剤、塗膜の均一性を向上するための界面活性剤、着色剤、紫外線吸収剤、酸化防止剤、防腐剤などが挙げられる。
-無機粒子-
 塗布層(B)には無機粒子を含有することが好ましい。無機粒子としては、例えば、コロイダルシリカなどのシリカ粒子、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム、酸化錫などの金属酸化物粒子、炭酸カルシウム、炭酸マグネシウムなどの無機炭酸塩粒子、硫酸バリウム等の金属化合物粒子、カーボンブラックなどの黒色顔料粒子が挙げられ、なかでも、白色顔料としては、コロイダルシリカ、酸化チタン粒子、酸化アルミニウム粒子、酸化ジルコニウムなどが好ましく挙げられ、黒色顔料としてはカーボンブラックなどが好ましく挙げられる。
 (B)層には、無機粒子を1種のみ含んでもよく、2種以上を併用してもよい。2種以上を併用する場合、白色顔料のみを2種以上用いてもよく、黒色顔料を2種以上用いてもよく、また、白色顔料と黒色顔料とを併用してもよい。
 ここで、無機粒子として黒色顔料を用いることで、太陽電池用バックシートに隠蔽性を持たせることができる。
 太陽電池においては、意匠性の観点から、発電素子への配線などが外側から見えないことが好ましく、太陽電池用バックシートに高い隠蔽性をたせることが好ましい態様である。フィルムの隠蔽性を向上させるために、ポリエステルに直接黒色顔料であるカーボンブラックを添加してなるポリエステルフィルムが知られている。しかしながら、ポリエステルにカーボンブラックを直接添加すると、カーボンブラックが結晶化の核となってポリエステルの結晶化速度が速くなるため、延伸によるフォルム成形が困難になる、或いは、ポリエステルを用いたフィルムを湿熱雰囲気下に置いた場合にフィルムの結晶化度増大の速度が速く、早期に脆化し、フィルムの耐湿熱性が低下する、といった問題があった。
 本発明においては、(B)層にカーボンブラックなどの黒色顔料を添加することで、無機粒子としての強度向上効果のみならず、支持体となるポリエステルフィルムの耐湿熱性低下を抑制しつつ、太陽電池用バックシートに高い隠蔽性を付与しうるという利点をも有することになる。
 (B)層に用いうるコロイダルシリカとは、ケイ素酸化物を主成分とする粒子が、水、アルコール類、ジオール類等あるいは、これらの混合物を分散媒としてコロイダル状で存在するものである。
 コロイダルシリカ粒子の粒子径は平均一次粒径が数nm~100nm程度である。平均粒子径は、走査電子顕微鏡(SEM)等による電子顕微鏡写真から計測することができるし、また動的光散乱法や静的光散乱法等を利用する粒度分布計等によって計測することもできる。コロイダルシリカ粒子の形状は球形であってもよいし、これらが数珠状に連結したものでもよい。
 コロイダルシリカ粒子は、市販されており、例えば日産化学工業社のスノーテックスシリーズ、触媒化成工業社のカタロイド-Sシリーズ、バイエル社のレバシルシリーズ等が挙げられる。具体的には、たとえば日産化学工業社製のスノーテックスST-20、ST-30、ST-40、ST-C、ST-N、ST-20L、ST-O、ST-OL、ST-S、ST-XS、ST-XL、ST-YL、ST-ZL、ST-OZL、ST-AK、スノーテックス-AKシリーズ、スノーテックス-PSシリーズ、スノーテックス-UPシリーズ等を挙げることができる。
 (B)層に用いられるカーボンブラックには、特に制限はなく、黒色顔料として知られているカーボンブラックを適宜選択して用いることができる。
 本発明では、カーボンブラックとして、少量で高い着色力を得るために、カーボンブラック粒子を使用することが好ましく、一次粒子径が1μm以下のカーボンブラック粒子を使用することがより好ましく、一次粒子径が0.1μm~0.8μmのカーボンブラック粒子であることが特に好ましい。さらに、カーボンブラック粒子を分散剤とともに水に分散して使用することが好ましい。
 なお、カーボンブラックは、商業的に入手することができるものを使用してもよく、例えば、MF-5630ブラック(商品名:大日精化(株)製)や、特開2009-132887号公報の段落番号[0035]に記載のものなどを用いることができる。
 塗布層(B)に含まれる無機粒子の平均粒子径には特に制限はないが、膜強度を向上させ、且つ、良好な接着性を維持するという観点からは、平均一次粒子径は、塗布層(B)の膜厚以下であることが好ましく、塗布層(B)の膜厚の1/2以下であることがより好ましく、塗布層(B)の膜厚の1/3以下であることがさらに好ましい。
 また、具体的には、無機粒子の平均一次粒子径は、1.0μm以下であることが好ましく、10nm~700nmであることがより好ましく、15nm~300nmがさらに好ましい。
 本明細書における無機粒子の平均一次粒子径は、ハネウェル社製マイクロトラックFRAにより測定された値を用いている。
 塗布層(B)における無機粒子の含有率は、10体積%~35体積%の範囲であることが好ましく、20体積%~30体積%の範囲であることがより好ましい。
[架橋剤]
 (B)層形成用組成物は、架橋剤を含有することが好ましい。
 (B)層形成用組成物が架橋剤を含有することで、(B)層形成用組成物に含まれるバインダー(降伏点を有するポリマー)膜中に架橋構造が形成され、接着性及び強度がより向上した層が形成される。
 架橋剤としては、エポキシ系、イソシアネート系、メラミン系、カルボジイミド系、オキサゾリン系等の架橋剤を挙げることができる。(B)層とインラインコート層との間、または、(B)層とポリエステル基材との間の湿熱経時後の密着性を確保する観点から、このなかで特にオキサゾリン系架橋剤が好ましい。
 オキサゾリン系架橋剤の具体例としては、2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリン、2,2’-ビス-(2-オキサゾリン)、2,2’-メチレン-ビス-(2-オキサゾリン)、2,2’-エチレン-ビス-(2-オキサゾリン)、2,2’-トリメチレン-ビス-(2-オキサゾリン)、2,2’-テトラメチレン-ビス-(2-オキサゾリン)、2、2’-ヘキサメチレン-ビス-(2-オキサゾリン)、2,2’-オクタメチレン-ビス-(2-オキサゾリン)、2,2’-エチレン-ビス-(4,4’-ジメチル-2-オキサゾリン)、2,2’-p-フェニレン-ビス-(2-オキサゾリン)、2,2’-m-フェニレン-ビス-(2-オキサゾリン)、2,2’-m-フェニレン-ビス-(4,4’-ジメチル-2-オキサゾリン)、ビス-(2-オキサゾリニルシクロヘキサン)スルフィド、ビス-(2-オキサゾリニルノルボルナン)スルフィド等がある。さらに、これらの化合物の(共)重合体も好ましく利用することができる。
 また、オキサゾリン系架橋剤は、市販品を用いてもよく、例えば、エポクロスK2010E、K2020E、K2030E、WS500、WS700〔いずれも日本触媒化学工業(株)製〕等を用いることができる。
-架橋剤の触媒-
 (B)層形成用組成物には、架橋剤と共に、架橋剤の触媒をさらに併用してもよい。架橋剤の触媒を含有することで、バインダー(樹脂)と架橋剤との架橋反応が促進され、耐溶剤性の向上が図られる。また、架橋が良好に進むことで、(B)層の強度、寸法安定性がより改善できる。
 特に、架橋剤としてオキサゾリン基を有する架橋剤(オキサゾリン系架橋剤)を用いる場合、架橋剤の触媒を使用することがよい。
 架橋剤の触媒としては、オニウム化合物を挙げることができる。
 オニウム化合物としては、アンモニウム塩、スルホニウム塩、オキソニウム塩、ヨードニウム塩、ホスホニウム塩、ニトロニウム塩、ニトロソニウム塩、ジアゾニウム塩等が好適に挙げられる。
 オニウム化合物の具体例としては、リン酸一アンモニウム、リン酸二アンモニウム、塩化アンモニウム、硫酸アンモニウム、硝酸アンモニウム、p-トルエンスルホン酸アンモニウム、スルファミン酸アンモニウム、イミドジスルホン酸アンモニウム、塩化テトラブチルアンモニウム、塩化ベンジルトリメチルアンモニウム、塩化トリエチルベンジルアンモニウム、四フッ化ホウ素テトラブチルアンモニウム、六フッ化燐テトラブチルアンモニウム、過塩素酸テトラブチルアンモニウム、硫酸テトラブチルアンモニウム等のアンモニウム塩;
 ヨウ化トリメチルスルホニウム、四フッ化ホウ素トリメチルスルホニウム、四フッ化ホウ素ジフェニルメチルスルホニウム、四フッ化ホウ素ベンジルテトラメチレンスルホニウム、六フッ化アンチモン2-ブテニルテトラメチレンスルホニウム、六フッ化アンチモン3-メチル-2-ブテニルテトラメチレンスルホニウム等のスルホニウム塩;
 四フッ化ホウ素トリメチルオキソニウム等のオキソニウム塩;
 塩化ジフェニルヨードニウム、四フッ化ホウ素ジフェニルヨードニウム等のヨードニウム塩;
 六フッ化アンチモンシアノメチルトリブチルホスホニウム、四フッ化ホウ素エトキシカルボニルメチルトリブチルホスホニウム等のホスホニウム塩;
 四フッ化ホウ素ニトロニウム等のニトロニウム塩;四フッ化ホウ素ニトロソニウム等のニトロソニウム塩;
 塩化4-メトキシベンゼンジアゾニウム等のジアゾニウム塩等が挙げられる。
 これらの中でも、オニウム化合物は、硬化時間の短縮の点で、アンモニウム塩、スルホニウム塩、ヨードニウム塩、ホスホニウム塩がより好ましく、これらの中ではアンモニウム塩が更に好ましく、安全性、pH、及びコストの観点からは、リン酸系、塩化ベンジル系のものが好ましい。オニウム化合物が第二リン酸アンモニウムであることがより特に好ましい。
 架橋剤の触媒は、1種のみであってもよいし、2種以上を併用してもよい。
 架橋剤の触媒の添加量は、架橋剤に対して、0.1質量%以上15質量%以下の範囲が好ましく、0.5質量%以上12質量%以下の範囲がより好ましく、1質量%以上10質量%以下の範囲が特に好ましく、2質量%以上7質量%以下がより特に好ましい。架橋剤に対する架橋剤の触媒の添加量が0.1質量%以上であることは、架橋剤の触媒を積極的に含有していることを意味し、架橋剤の触媒の含有によりバインダーである降伏点を有するポリマーと架橋剤の間の架橋反応がより良好に進行し、より優れた耐久性が得られる。また、架橋剤の触媒の含有量が15質量%以下であることで、溶解性、塗布液のろ過性、隣接する各層との密着性の点で有利である。
-(B)層の厚み-
 (B)層の厚みは、後述する易接着層である(C)層の厚みよりも厚いことが密着性向上の観点から好ましい。即ち、(B)層の厚みを(b)、(C)層の厚みを(c)としたときに(b)>(c)の関係であることが好ましく、より好ましくは、(b):(c)が、2:1~15:1の範囲である。
 また、(B)層の厚みは、0.5μm以上が好ましく、より好ましくは、0.7μm以上である。また、5.0μm以下であることが好ましく、さらに好ましくは1.5μm以下である。(B)層の厚み、及び(B)層の厚みと(C)層の厚みとのバランスが、上記範囲において、(B)層を構成するポリマー膜の特性が良好に発現され、支持体と封止材との密着性と耐久性がより優れたものとなる。
-(B)層の形成方法-
 (B)層の形成方法としては、塗布による方法がある。塗布による方法は、簡便でかつ均一性の高い薄膜での形成が可能である点で好ましい。塗布方法としては、例えば、グラビアコーターやバーコーターなどの公知の方法を利用することができる。塗布に用いる塗布液の溶媒(或いは、分散媒)としては、水でもよいし、トルエンやメチルエチルケトンのような有機溶剤でもよい。溶媒は、1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。(B)層形成用組成物は、環境への配慮から、降伏点を有するポリマーが水に分散しているものを使用するのが好ましい。
 (B)層を塗布により形成する場合は、乾燥ゾーンにおいて塗膜の乾燥と熱処理を兼ねることが好ましい。
 (B)層形成用組成物(塗布液)を塗布した後には、塗膜を乾燥させる工程を設けることが好ましい。乾燥工程は、塗膜に乾燥風を供給する工程である。乾燥風の平均風速は、5m/秒~30m/秒であることが好ましく、7m/秒~25m/秒であることがより好ましく、9m/秒~20m/秒以下であることがさらに好ましい。
 (B)層を支持体上に塗布する前に、支持体表面に対してコロナ放電処理、グロー処理、大気圧プラズマ処理、火炎処理、UV処理等の表面処理を行うことも好ましい。また、酸変性ポリオレフィンを含んで形成されるインラインコート層を設けることも好ましい。
(下塗り層:インラインコート層)
 インラインコート層は、既述のように前記支持体に用いるポリエステルフィルムの延伸工程の前や延伸工程の間の工程において、塗布によりポリエステルフィルムの表面に形成される。
 インラインコート層は、酸変性ポリオレフィンを含有する。インラインコート層形成用組成物を塗布する際には水溶液もしくは水系分散液(ラテックス)を、塗布することが好ましい。酸変性ポリオレフィンは、非水溶性であるため、水溶液もしくは水系分散液(ラテックス)には、その分散安定性を付与する中和剤として、沸点が200℃以下である塩基性化合物が混合される。
 インラインコート層形成用組成物の調製に一例を挙げて詳細を説明する。
 まず、酸変性ポリオレフィンを調製する。
 撹拌機及びヒーターを備えた、ガラス容器に、原料として、エチレンとメタクリル酸の共重合樹脂と、有機溶剤(例えば、n-プロパノール)と、塩基性化合物と蒸留水とを仕込み、密閉し撹拌混合する。
 撹拌混合後に、容器底部に樹脂粒状物の沈澱が認められず、浮遊状態となっていることを確認する。その後、そこでガラス容器全体を保温材で被い、ヒーターの電源を入れ、系内温度を50℃~250℃に保温しながら、さらに30分間~120分間撹拌を継続する。その後、ヒーターの電源を切り、攪拌しつつ、自然冷却にて冷却する。
 その後、ガラス容器の保温材を外し、ガラス容器の下半分を水に浸し水冷した。系内温が35℃以下になったときに攪拌を停止し、ガラス容器内の内容物をステンレス製フィルターでろ過して、酸変性ポリオレフィンを含有する水性分散体を得ることができる。
 その後、得られた酸変性ポリオレフィン水分散体に、架橋剤及び蒸留水を加えてインラインコート層形成用組成物を得る。
 この組成物には、さらに、ノニオン系界面活性剤、アニオン系界面活性剤などの界面活性剤などを目的に応じて添加してもよい。
 インラインコート層形成用組成物をポリエステルフィルムに塗布する際の塗布方法としては、特に制限はなく、バーコーター塗布、スライドコーター塗布等の公知の方法を用いることができる。
〔塗布層(C)〕
 塗布層(B)の支持体とは反対の面に、塗布層(C)が設けられる。
 塗布層(C)は本発明の太陽電池用バックシートが適用される太陽電池モジュールの封止材と直接接する位置、即ち、最外層に位置し、易接着層として機能する層である。
 塗布層(C)は少なくともバインダーを含み、所望により種々の添加剤を含みうる。
-バインダー-
 バインダーとしては、ポリオレフィン樹脂、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂から選ばれる1種類以上のポリマーが挙げられる。これらの樹脂は密着力を得やすいため好ましく用いられる。具体的には、例えば以下の樹脂が挙げられる。
 アクリル樹脂としては、例えば、ポリメチルメタクリレート、ポリエチルアクリレート等を含有するポリマー等が好ましい。アクリル樹脂として、アクリルとシリコーンとの複合樹脂も好ましい。アクリル樹脂としては上市されている市販品を用いてもよく、例えば、AS-563A(ダイセルフアインケム(株)製)、ジュリマーET-410、同SEK-301(ともに日本純薬工業(株)製)が挙げられる。アクリルとシリコーンとの複合樹脂としては、セラネートWSA1060、同WSA1070(ともにDIC(株)製)、及びH7620、H7630、H7650(ともに旭化成ケミカルズ(株)製)が挙げられる。
 ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレン-2,6-ナフタレート(PEN)等が好ましい。ポリエステル樹脂としては上市されている市販品を用いてもよく、例えば、バイロナールMD-1245(東洋紡(株)製)を好ましく用いることができる。
 ポリウレタン樹脂としては、例えば、カーボネート系ウレタン樹脂が好ましく、例えば、スーパーフレックス460(第一工業製薬(株)製)を好ましく用いることができる。
 ポリオレフィン樹脂としては、例えば、変性ポリオレフィン共重合体が好ましい。ポリオレフィン樹脂としては上市されている市販品を用いてもよく、例えば、アローベースSE-1013N、SD-1010、TC-4010、TD-4010(ともにユニチカ(株)製)、ハイテックS3148、S3121、S8512(ともに東邦化学(株)製)、ケミパールS-120、S-75N、V100、EV210H(ともに三井化学(株)製)などを挙げることができる。その中でも、低密度ポリエチレン、アクリル酸エステル、無水マレイン酸の三元共重合体である、アローベースSE-1013N、ユニチカ(株)製を用いることが密着性を向上させる上で好ましい。
 これらのポリオレフィン樹脂は単独で用いても2種以上併用して用いてもよく、2種以上併用する場合は、アクリル樹脂とポリオレフィン樹脂の組合せ、ポリエステル樹脂とポリオレフィン樹脂の組合せ、ウレタン樹脂とポリオレフィン樹脂の組合せが好ましく、アクリル樹脂とポリオレフィン樹脂の組合せがより好ましい。
 アクリル樹脂とポリオレフィン樹脂の組合せで用いる場合、(C)層中のポリオレフィン樹脂とアクリル樹脂の合計に対するアクリル樹脂の含有量は、3質量%~50質量%であることが好ましく、5質量%~40質量%であることがより好ましく、7質量%~25質量%であることが特に好ましい。
 これらのポリオレフィン樹脂に、ポリエステル樹脂(例えば、バイロナールMD-1245(東洋紡(株)製)を好ましく組合せて用いることができる。またポリオレフィン樹脂にポリウレタン樹脂を加えることも好ましく、例えば、カーボネート系ウレタン樹脂が好ましく、例えば、スーパーフレックス460(第一工業製薬(株)製)を好ましく用いることができる。
-架橋剤-
 (C)層に含まれるバインダー(樹脂)は、架橋剤により架橋されていてもよい。(C)層に架橋構造を形成させると密着性をより向上することができ、好ましい。架橋剤としては、エポキシ系、イソシアネート系、メラミン系、カルボジイミド系、オキサゾリン系等(B)層において例示した架橋剤を同様に挙げることができる。その中でも(C)層では、架橋剤がオキサゾリン系架橋剤であることが好ましい。オキサゾリン基を有する架橋剤として、エポクロスK2010E、同K2020E、同K2030E、同WS-500、同WS-700(いずれも日本触媒化学工業(株)製)等を利用することができる。
 架橋剤の添加量は、(C)層が含むバインダーに対して0.5質量%~50質量%が好ましく、より好ましくは3質量%~40質量%であり、特に好ましくは5質量%以上30質量%未満である。特に架橋剤の添加量は、0.5質量%以上であると、(C)層の強度及び接着性を保持しながら充分な架橋効果が得られ、50質量%以下であると、塗布液のポットライフを長く保て、40質量%未満であると塗布面状を改良できる。
-架橋剤の触媒-
 (C)層においても、架橋剤を用いる場合には、架橋剤の触媒をさらに併用してもよい。架橋剤の触媒を含有することで、バインダー(樹脂)と架橋剤との架橋反応が促進され、耐溶剤性の向上が図られる。また、架橋が良好に進むことで、(C)層と封止材との密着性がより改善される。
 特に、架橋剤としてオキサゾリン基を有する架橋剤(オキサゾリン系架橋剤)を用いる場合、架橋剤の触媒を使用することがよい。
 架橋剤の触媒としては、オニウム化合物を挙げることができる。
 オニウム化合物としては、アンモニウム塩、スルホニウム塩、オキソニウム塩、ヨードニウム塩、ホスホニウム塩、ニトロニウム塩、ニトロソニウム塩、ジアゾニウム塩等が好適に挙げられる。
 これら架橋剤の触媒としては、(B)層において挙げた化合物が同様に使用され、好ましい例も同様である。
 (C)層に含まれる架橋剤の触媒は、1種のみであってもよいし、2種以上を併用してもよい。
 架橋剤の触媒の添加量は、架橋剤に対して、0.1質量%以上15質量%以下の範囲が好ましく、0.5質量%以上12質量%以下の範囲がより好ましく、1質量%以上10質量%以下の範囲が特に好ましく、2質量%以上7質量%以下がより特に好ましい。架橋剤に対する架橋剤の触媒の添加量が0.1質量%以上であることは、架橋剤の触媒を積極的に含有していることを意味し、架橋剤の触媒の含有によりバインダーと架橋剤の間の架橋反応がより良好に進行し、より優れた耐溶剤性が得られる。また、架橋剤の触媒の含有量が15質量%以下であることで、溶解性、塗布液のろ過性、封止剤との密着性向上の点で有利である。
 (C)層には、バインダーに加え、本発明の効果を損なわない限りにおいて種々の添加剤を含有してもよい。
 添加剤としては、帯電防止剤、紫外線吸収剤、着色剤、防腐剤などが挙げられる。
 帯電防止剤としては、ノニオン系界面活性剤等の界面活性剤、有機系導電性材料、無機系導電性材料、有機系/無機系複合導電性材料などが挙げられる。
 (C)層が含みうる帯電防止剤に用いられる界面活性剤としては、ノニオン系界面活性剤、アニオン系界面活性剤などが好ましく、なかでもノニオン系界面活性剤が好ましく、エチレングリコール鎖(ポリオキシエチレン鎖;-(CH-CH-O)-)を有し且つ炭素-炭素三重結合(アルキン結合)を有さないノニオン系界面活性剤が好ましく挙げられる。さらに、エチレングリコール鎖が7~30であるものが特に好ましい。
 より具体的には、ヘキサエチレングリコールモノドデシルエーテル、3,6,9,12,15-ペンタオキサヘキサデカン-1-オール、ポリオキシエチレンフェニルエーテル、ポリオキシエチレンメチルフェニルエーテル、ポリオキシエチレンナフチルエーテル、ポリオキシエチレンメチルナフチルエーテル等が挙げられるが、これらに限定されない。
 帯電防止剤として界面活性剤を用いる場合の含有量は、固形分重量で2.5質量%~40質量%であることが好ましく、より好ましくは5.0質量%~35質量%であり、さらに好ましくは10質量%~30質量%である。
 この含有量の範囲において、部分放電電圧の低下が抑制され、且つ、太陽電池素子を封止する封止材に対する封止材(例えば、EVA:エチレン-ビニルアセテート共重合体)との密着性が良好に維持される。
 有機系導電性材料としては、例えば、分子中にアンモニウム基、アミン塩基、四級アンモニウム基などのカチオン性の置換基を有するカチオン系導電性化合物;スルホン酸塩基、リン酸塩基、カルボン酸塩基などのアニオン性を有するアニオン系導電性化合物;アニオン性の置換基、カチオン性置換基の両方を有する両性系導電性化合物等のイオン性の導電性材料;共役したポリエン系骨格を有するポリアセチレン、ポリパラフェニレン、ポリアニリン、ポリチオフェン、ポリパラフェニレンビニレン、ポリピロールなどの導電性高分子化合物等が挙げられる。
 無機系導電性材料としては、例えば、金、銀、銅、白金、ケイ素、硼素、パラジウム、レニウム、バナジウム、オスミウム、コバルト、鉄、亜鉛、ルテニウム、プラセオジウム、クロム、ニッケル、アルミニウム、スズ、亜鉛、チタン、タンタル、ジルコニウム、アンチモン、インジウム、イットリウム、ランタニウム、マグネシウム、カルシウム、セリウム、ハフニウム、バリウム、等の無機物群を主たる成分とするものを酸化、亜酸化、次亜酸化させたもの;上記無機物群と上記無機物群を酸化、亜酸化、次亜酸化させたものとの混合物(以後これらを称して無機酸化物とする);上記無機物群を主たる成分とするものを窒化、亜窒化、次亜窒化させたもの;上記無機物群と上記無機物群を窒化、亜窒化、次亜窒化したものとの混合物(以後これらを称して無機窒化物とする);上記無機物群を主たる成分とするものを酸窒化、亜酸窒化、次亜酸窒化させたもの;上記無機物群と上記無機物群を酸窒化、亜酸窒化、次亜酸窒化させたものの混合物(以後これらを称して無機酸窒化物とする);上記無機物群を主たる成分とするものを炭化、亜炭化、次亜炭化させたもの;上記無機物群と上記無機物群を炭化、亜炭化、次亜炭化させたものとの混合物(以後これらを称して無機炭化物とする);上記無機物群を主たる成分とするものをフッ化、塩素化、臭化及びヨウ化の少なくとも一つのハロゲン化、亜ハロゲン化、次亜ハロゲン化させたもの;上記無機物群と上記無機物群をハロゲン化、亜ハロゲン化、次亜ハロゲン化させたものとの混合物(以後これらを称して無機ハロゲン化物とする);上記無機物群を硫化、亜硫化、次亜硫化させたもの;上記無機物群と上記無機物群を硫化、亜硫化、次亜硫化させたものとの混合物(以後これらを称して無機硫化物とする);無機物群に異元素をドープしたもの;グラファイト状カーボン、ダイヤモンドライクカーボン、カーボンファイバー、カーボンナノチューブ、フラーレンなどの炭素系化合物(以後これらを称し炭素系化合物とする);これらの混合物などが挙げられる。
 本発明の太陽電池用バックシートは、支持体上に、少なくとも前記塗布層(B)と塗布層(C)とをこの順に備える。この構成とすることで、本発明のバックシートは封止材との密着性とその耐久性、耐候性に優れたものとなる。
 なお、支持体の裏面側には、以下に詳述する耐候性層の少なくとも1層を有していてもよい。耐候性層を有することで、支持体に与える環境からの影響が抑制され、耐候性、耐久性がより向上する。
 以下、本発明に好適に用いられる耐候性層として、塗布層(D)及び塗布層(E)を例に挙げて詳細に説明する。
〔バインダー、着色剤および散乱粒子を含有する耐候性層:塗布層(D)〕
 耐候性層として、バインダー、着色剤および散乱粒子を含有する層〔塗布層(D)〕が挙げられる。このような耐候性層を以下、適宜、(D)層と称する。
 (D)層は、電池側基板〔=太陽光が入射する側の透明性の基材(ガラス基板等)/太陽電池素子を含む素子構造部分〕/太陽電池用バックシートの積層構造を有する太陽電池において、太陽電池用バックシートにおける支持体の前記電池側基板と接する側とは反対側に配される裏面保護層である。
 (D)層は、単層構造であっても、複数の層からなる積層構造であってもよい。単層の場合、ポリマー支持体上に、バインダー、着色剤および散乱粒子を含有する層を配置する態様が好ましい。一方、積層構造の場合、ポリマー支持体上に前記バインダー、着色剤および散乱粒子を含有する層を2層積層する態様と、ポリマー支持体上に前記バインダー、着色剤および散乱粒子を含有する層を形成した上に、さらに、任意のフッ素系ポリマーを含み、着色剤、散乱粒子のいずれも含まない耐候性層(例えば、以下に詳述する塗布層(E))の如き別の組成物の層)を積層する態様をとることもできる。
-バインダー
 (D)層に用いられるバインダーは、有機ポリマー、無機ポリマーまたは有機・無機複合ポリマーからなるバインダーのいずれであってもよく、ポリマーを含むことで、前記支持体に対する接着や、耐候性層2層以上からなる積層構造をとる場合の層間における接着が良化するとともに、湿熱環境下での劣化耐性が得られる。
 前記無機ポリマーとしては特に制限はなく、公知の無機ポリマーを用いることができる。前記有機ポリマーまたは有機・無機複合ポリマーとしては特に制限はないが、フッ素系ポリマーおよびシリコーン系ポリマーの少なくとも一方を含むことが好ましく、フッ素系有機ポリマーおよびシリコーン-アクリル有機・無機複合樹脂の少なくとも一方を含むことがより好ましく、シリコーン-アクリル有機・無機複合樹脂を含むことが特に好ましい。
《シリコーン系ポリマー》
 シリコーン系ポリマーは、分子鎖中に(ポリ)シロキサン構造を有するポリマーであり、(D)層はシリコーン系ポリマーを含有することにより、太陽電池用バックシートの支持体や後述する塗布層(E)などの隣接材料との接着性及び湿熱環境下での耐久性により優れるものとなる。
 シリコーン系ポリマーは、分子鎖中に(ポリ)シロキサン構造を有している限り特に制限されるものではなく、(ポリ)シロキサン構造単位を有する化合物の単独重合体(ホモポリマー)であってもよく、(ポリ)シロキサン構造単位と他の構造単位とを含む共重合体であってもよい。シロキサン構造単位と共重合する他の構造単位は、非シロキサン系の構造単位である。
 シリコーン系ポリマーは、(ポリ)シロキサン構造として、下記一般式(1)で表されるシロキサン構造単位を有するものが好ましい。
Figure JPOXMLDOC01-appb-C000013

 
 一般式(1)中、R及びRは、各々独立に、水素原子、ハロゲン原子、又は1価の有機基を表す。ここで、RとRとは同一でも異なってもよく、また、複数存在するR及びRは各々、互いに同一でも異なってもよい。nは、1以上の整数を表す。
 シリコーン系ポリマー中の前記シロキサン構造単位である「-(Si(R)(R)-O)n-」の部分構造は、線状、分岐状あるいは環状の構造を有する各種の(ポリ)シロキサン構造を形成しうるシロキサンセグメントである。
 R及びRはがハロゲン原子を表す場合のハロゲン原子としては、フッ素原子、塩素原子、ヨウ素原子等を挙げることができる。
 R及びRが1価の有機基を表す場合の1価の有機基としては、Si原子と共有結合可能な基であればいずれでもよく、例えば、アルキル基(例:メチル基、エチル基など)、アリール基(例:フェニル基など)、アラルキル基(例:ベンジル基、フェニルエチルなど)、アルコキシ基(例:メトキシ基、エトキシ基、プロポキシ基など)、アリールオキシ基(例;フェノキシ基など)、メルカプト基、アミノ基(例:アミノ基、ジエチルアミノ基など)、アミド基等が挙げられる。これらの有機基は、無置換でも置換基をさらに有してもよい。該有機基が更に置換基を有する場合の該置換基としては、例えば、炭素数1~20のアルキル基、炭素数6~15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。
 中でも、ポリマー基材などの隣接材料との接着性及び湿熱環境下での耐久性の点で、R、Rとしては各々独立に、水素原子、塩素原子、臭素原子、無置換の又は置換された炭素数1~4のアルキル基(特にメチル基、エチル基)、無置換の又は置換されたフェニル基、無置換の又は置換されたアルコキシ基、メルカプト基、無置換のアミノ基、アミド基が好ましく、より好ましくは、湿熱環境下での耐久性の点で、無置換の又は置換されたアルコキシ基(好ましくは炭素数1~4のアルコキシ基)である。
 前記nは、1~5000であることが好ましく、1~1000であることがより好ましい。
 ポリマー中における「-(Si(R) (R)-O)-」の部分(一般式(1)で表される(ポリ)シロキサン構造単位)の比率は、ポリマーの全質量に対して、15~85質量%であることが好ましく、中でも、ポリマー層表面の強度向上を図り、引っ掻きや擦過等による傷の発生を防ぐと共に、ポリマー基材などの隣接材料との接着性及び湿熱環境下での耐久性により優れる観点から、20質量%~80質量%の範囲がより好ましい。(ポリ)シロキサン構造単位の比率は、15質量%以上であると、ポリマー層表面の強度が向上し、引っ掻きや擦過、飛来した小石等の衝突で生じる傷の発生が防止され、また支持体をなすポリマー基材などの隣接材料との接着性に優れる。傷の発生抑止により耐候性が向上し、熱や水分が与えられて劣化しやすい剥離耐性、形状安定性、並びに湿熱環境下に曝されたときの接着耐久性が効果的に高められる。また、(ポリ)シロキサン構造単位の比率が85質量%以下であると、液を安定に保つことができる。
 本発明におけるポリマーが(ポリ)シロキサン構造単位と他の構造単位とを有する共重合ポリマーである場合、分子鎖中に前記一般式(1)で表される(ポリ)シロキサン構造単位を質量比率で15質量%~85質量%と、非シロキサン系構造単位を質量比率で85質量%~15質量%とを含んでいる場合が好ましい。このような共重合ポリマーを含有することにより、ポリマー層の膜強度が向上し、引っ掻きや擦過等による傷の発生を防ぎ、支持体をなすポリマー基材との接着性、すなわち熱や水分が与えられて劣化しやすい剥離耐性、形状安定性、並びに湿熱環境下での耐久性を、従来に比べて飛躍的に向上させることができる。
 前記共重合ポリマーとしては、シロキサン化合物(ポリシロキサンを含む)と、非シロキサン系モノマー又は非シロキサン系ポリマーから選ばれる化合物とが共重合し、前記一般式(1)で表される(ポリ)シロキサン構造単位と非シロキサン系の構造単位とを有するブロック共重合体であることが好ましい。この場合、シロキサン化合物及び共重合される非シロキサン系モノマー又は非シロキサン系ポリマーは、一種単独でもよく、二種以上であってもよい。
 前記(ポリ)シロキサン構造単位と共重合する非シロキサン系構造単位(非シロキサン系モノマー又は非シロキサン系ポリマーに由来)は、シロキサン構造を有していないこと以外は特に制限されるものではなく、任意のポリマーに由来のポリマーセグメントのいずれであってもよい。ポリマーセグメントの前駆体である重合体(前駆ポリマー)としては、例えば、ビニル系重合体、ポリエステル系重合体、ポリウレタン系重合体等の各種の重合体等が挙げられる。
 中でも、調製が容易なこと及び耐加水分解性に優れる点から、ビニル系重合体及びポリウレタン系重合体が好ましく、ビニル系重合体が特に好ましい。
 前記ビニル系重合体の代表的な例としては、アクリル系重合体、カルボン酸ビニルエステル系重合体、芳香族ビニル系重合体、フルオロオレフィン系重合体等の各種の重合体が挙げられる。中でも、設計の自由度の観点から、アクリル系重合体が特に好ましい。
 なお、非シロキサン系構造単位を構成する重合体は、一種単独でもよいし、2種以上の併用であってもよい。
 また、非シロキサン系構造単位を形成しうる前駆ポリマーは、酸基及び中和された酸基の少なくとも1つ並びに/又は加水分解性シリル基を含有するものが好ましい。このような前駆ポリマーのうち、ビニル系重合体は、例えば、(a)酸基を含むビニル系単量体と加水分解性シリル基及び/又はシラノール基を含むビニル系単量体とを、これらと共重合可能な単量体と共重合させる方法、(2)予め調製した水酸基並びに加水分解性シリル基及び/又はシラノール基を含むビニル系重合体にポリカルボン酸無水物を反応させる方法、(3)予め調製した酸無水基並びに加水分解性シリル基及び/又はシラノール基を含むビニル系重合体を、活性水素を有する化合物(水、アルコール、アミン等)と反応させる方法などの各種方法を利用して調製することができる。
 前駆ポリマーは、例えば、特開2009-52011号公報の段落番号0021~0078に記載の方法を利用して製造、入手することができる。
 本発明におけるポリマー層は、バインダーとして、前記ポリマーを単独で用いてもよいし、他のポリマーと併用してもよい。他のポリマーを併用する場合、本発明における(ポリ)シロキサン構造を含むポリマーの含有比率は、全バインダー量の30質量%以上が好ましく、より好ましくは60質量%以上である。(ポリ)シロキサン構造を含むポリマーの含有比率が30質量%以上であることで、層表面の強度向上を図り、引っ掻きや擦過等による傷の発生が防止されると共に、ポリマー基材との接着性及び湿熱環境下での耐久性により優れる。
 前記ポリマーの分子量としては、5,000~100,000が好ましく、10,000~50,000がより好ましい。
 ポリマーの調製には、(i)前駆ポリマーと、前記一般式(1)で表される構造単位を有するポリシロキサンとを反応させる方法、(ii)前駆ポリマーの存在下に、前記R及び/又は前記Rが加水分解性基である前記一般式(1)で表される構造単位を有するシラン化合物を加水分解縮合させる方法、等の方法を利用することができる。
 前記(ii)の方法で用いられるシラン化合物としては、各種シラン化合物が挙げられるが、アルコキシシラン化合物が特に好ましい。
 前記(i)の方法によりポリマーを調製する場合、例えば、前駆ポリマーとポリシロキサンの混合物に、必要に応じて水と触媒を加え、20℃~150℃程度の温度で30分~30時間程度(好ましくは50℃~130℃で1時間~20時間)反応させることにより調製することができる。触媒としては、酸性化合物、塩基性化合物、金属含有化合物等の各種のシラノール縮合触媒を添加することができる。
 また、前記(ii)の方法によりポリマーを調製する場合、例えば、前駆ポリマーとアルコキシシラン化合物の混合物に、水とシラノール縮合触媒を添加して、20℃~150℃程度の温度で30分~30時間程度(好ましくは50℃~130℃で1時間~20時間)加水分解縮合を行なうことにより調製することができる。
 また、(ポリ)シロキサン構造を有するポリマーは、上市されている市販品を用いてもよく、例えば、DIC(株)製のセラネートシリーズ(例えば、セラネートWSA1070、同WSA1060等)、旭化成ケミカルズ(株)製のH7600シリーズ(H7650,H7630,H7620等)、JSR(株)製の無機・アクリル複合エマルジョンなどを使用することができる。
 前記(ポリ)シロキサン構造を有するポリマーの(D)層中における塗布量としては、0.2g/m超15g/m以下の範囲であることが好ましい。該ポリマーの塗布量が上記範囲において外力を受けて発生する傷の発生が抑制され、(D)層の充分な硬化が達成される。
 上記範囲の中では、(D)層の表面強度の観点から、0.5g/m~10.0g/mの範囲が好ましく、1.0g/m~5.0g/mの範囲がより好ましい。
 上記した中でも、本発明における(D)層は、前記ポリマーとして、DIC(株)製のセラネートシリーズ、JSR(株)製の無機・アクリル複合エマルジョンを用いて構成された形態が好ましい。
-フッ素系ポリマー-
 (D)層は、フッ素系ポリマー(含フッ素ポリマー)を主バインダーとして構成されてもよい。主バインダーとは、層中において含有量が最も多いバインダーである。
 ここで用いうるフッ素系ポリマーとしては-(CFX-CX)-で表される繰り返し単位を有するポリマーであれば特に制限はない(但し、X、X、及びXはそれぞれ独立に、水素原子、フッ素原子、塩素原子又は炭素数1から3のフルオロアルキル基を示す。)。
 具体的なポリマーの例としては、ポリテトラフルオロエチレン(以降、PTFEと表す場合がある)、ポリフッ化ビニル(以降、PVFと表す場合がある)、ポリフッ化ビニリデン(以降、PVDFと表す場合がある)、ポリ塩化3フッ化エチレン(以降、PCTFEと表す場合がある)、ポリテトラフルオロプロピレン(以降、HFPと表す場合がある)などがある。
 フッ素系ポリマーは単独のモノマーを重合したホモポリマーでも良いし、2種類以上を共重合したものでもよい。この例として、テトラフルオロエチレンとテトラフルオロプロピレンを共重合したコポリマー(P(TFE/HFP)と略記)、テトラフルオロエチレンとフッ化ビニリデンを共重合したコポリマー(P(TFE/VDF)と略記)等を挙げることができる。
 さらに、前記フッ素系ポリマーを含む(D)層に用いるポリマーとしては-(CFX-CX)-で表されるフッ素系構造単位と、それ以外の構造単位とを共重合したポリマーでもよい。これらの例としてテトラフルオロエチレンとエチレンの共重合体(以下、P(TFE/E)と略記)、テトラフルオロエチレンとプロピレンの共重合体(P(TFE/P)と略記)、テトラフルオロエチレンとビニルエーテルの共重合体(P(TFE/VE)と略記)、テトラフルオロエチレンとパーフロロビニルエーテルの共重合体(P(TFE/FVE)と略記)、クロロトリフルオロエチレンとビニルエーテルの共重合体(P(CTFE/VE)と略記)、クロロトリフルオロエチレンとパーフロロビニルエーテルの共重合体(P(CTFE/FVE)と略記)等を挙げることができる。
 これらのフッ素系ポリマーとしてはポリマーを有機溶剤に溶解して用いるものでも、ポリマー微粒子を水に分散して用いるものでもよい。環境負荷が小さい点から後者が好ましい。フッ素系ポリマーの水分散物については例えば特開2003-231722号公報、特開2002-20409号公報、特開平9-194538号公報等に記載されており、ここに記載のポリマーを本発明に適用しうる。
 フッ素系ポリマーを含む(D)層のバインダーとしては上記のフッ素系ポリマーを単独で用いてもよいし、2種類以上併用してもよい。また、全バインダーの50質量%を超えない範囲でアクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリオレフィン樹脂、シリコーン樹脂などのフッ素系ポリマー以外の樹脂を併用してもよい。但し、フッ素系ポリマー以外の樹脂が50質量%を超えると目的とする耐候性向上効果が得られない場合がある。
 (D)層を設ける場合の層の厚みは0.8μm~12μmの範囲であることが好ましい。この厚みの範囲において、耐久性、耐候性向上効果が十分に得られ、面状の悪化が抑制され、且つ、隣接する層との接着力が十分となる。より好ましい膜厚は1.0μm~10μm程度の範囲である。
-着色剤-
 (D)層に用いうる着色剤としては、特に制限はなく、公知の染料や公知の顔料などを用いることができる。ただし、本明細書における着色剤は、散乱粒子を除く。本発明では、前記着色剤は、黒色の着色剤、グリーン系の着色剤、ブルー系の着色剤、レッド系の着色剤であることが好ましい。
 (D)層に用いられる着色顔料はカーボンブラック、チタンブラック、黒色の複合金属酸化物、シアニン系カラーおよびキナクリドン系カラーから選択される少なくとも1種を含有することが好ましい以外は特に限定されず、要求される光学濃度に応じて選択すればよい。
 ここで、前記黒色の複合金属酸化物としては、鉄、マンガン、コバルト、クロム、銅、ニッケルのうち少なくとも1種を含む複合金属酸化物が好ましく、コバルト、クロム、鉄、マンガンおよび銅、ニッケルのうち2種以上を含むことがより好ましく、カラーインデックスがPBk26、PBk27およびPBk28、PBr34から選ばれる少なくとも1つ以上の顔料がより特に好ましい。なお、PBk26の顔料は、鉄、マンガン、銅の複合酸化物であり、PBk27の顔料は鉄、コバルト、クロムの複合酸化物であり、PBk-28は銅、クロム、マンガンの複合酸化物であり、PBr34はニッケル、鉄の複合酸化物である。前記シアニン系カラーおよびキナクリドン系カラーとしては、シアニングリーン、シアニンブルー、キナクリドンレッド、フタロシアニンブルー、フタロシアニングリーン等が挙げられる。
 なかでも、着色剤としてカーボンブラックを用いることが、光学濃度を上記好ましい範囲に制御しやすい観点や、少量で光学濃度を制御できる観点から、好ましい。
 カーボンブラックは、粒子径が0.1μm~0.8μmのカーボンブラック微粒子であることが好ましい。さらに、カーボンブラック微粒子を分散剤とともに水に分散して使用することが好ましい。なお、カーボンブラックは商業的に入手することができるものを使用することができ、例えばMF-5630ブラック(大日精化(株)製や、特開2009-132887号公報の[0035]段落に記載のものなどを用いることができる。
-散乱粒子-
 (D)層が含みうる散乱粒子としては、特に制限はなく、公知の散乱粒子を用いることができる。本明細書中、散乱粒子とは、粒子そのものに、光吸収がほとんどない粒子のことを言い、前記着色剤を含まない。本発明では前記散乱粒子として、白色顔料を用いることが好ましい。
 散乱粒子として用いうる白色顔料としては、二酸化チタン、硫酸バリウム、酸化珪素、酸化アルミニウム、酸化マグネシウム、炭酸カルシウム、カオリン、タルク、コロイタルシリカ等の無機顔料、中空粒子等の有機顔料などが挙げられ、なかでも二酸化チタンが好ましい。
 二酸化チタンの結晶系にはルチル型、アナターゼ型、ブルカイト型があるが、本発明で用いる二酸化チタンとしては、このうちルチル型が好ましい。本発明で用いる二酸化チタンは必要に応じて酸化アルミニウム(Al)、二酸化珪素(SiO)、アルカノールアミン化合物、ケイ素化合物などで表面処理をしてもよい。
 特に、嵩比重が0.50g/cm以上である二酸化チタンを用いることで二酸化チタンが密に詰まり、耐候性層が強靭になる。一方、嵩比重が0.85g/cmを超える二酸化チタンを用いると、二酸化チタンの分散性が悪化して塗布層の面状が悪くなる。嵩比重を0.50g/cm以上0.85g/cm以下にすることで、二酸化チタンが密に詰まり、塗膜が強靭になることで、二酸化チタンの質量割合を高く設定しても密着性を高く維持できる。耐候性層に用いる二酸化チタンの嵩比重としては、特に、0.60g/cm以上0.80g/cm以下が好ましい。
 本明細書中における白色顔料の嵩比重は、下記の方法によって測定される値である。(1)顔料を目開き1.0mmのふるいを通す。(2)上記の顔料について、約100gの顔料を秤量し(m)、250mLメスシリンダーに静かに入れる。必要に応じて、顔料層の上面を圧密せずに注意深くならし、体積(V)を測定する。(3)下記の式に従って、嵩比重を求める。嵩比重=m/V (単位:g/cm
 (D)層がシリコーン系或いはフッ素系ポリマーなどのベースポリマーに加え、さらに散乱粒子としての白色顔料を含有することで(D)層の反射率を高くでき、長期高温高湿試験(85℃、相対湿度85%で2000~3000時間)およびUV照射試験(IEC61215のUV試験に準じ、総照射量が45Kwh/m)下での黄変を少なくすることができる。さらに、(D)層に散乱粒子などの白色顔料を添加することで、隣接する他の層との密着性がより改善される。
 (D)層に散乱粒子を用いる場合の塗布量は、(D)層1層当たり1.0g/m~15g/mであることが好ましい。散乱粒子、好ましくは白色顔料の含有量が1.0g/m以上であると、反射率や耐UV性(耐光性)を効果的に与えることができる。また、前記白色顔料の前記耐候性層中における塗布量が15g/m以下であると、着色層の面状を良好に維持しやすく、膜強度により優れる。なかでも、(D)層に含有される散乱粒子の塗布量が、2.5g/m~10g/mの範囲であることがより好ましく、4.5g/m~8.5g/mの範囲が特に好ましい。
 散乱粒子としての白色顔料の平均粒径としては、体積平均粒径で0.03μm~0.8μmが好ましく、より好ましくは0.15μm~0.5μm程度である。平均粒径が前記範囲内であると、光の反射効率が高い。平均粒径は、レーザー解析/散乱式粒子径分布測定装置LA950〔(株)堀場製作所製〕により測定される値である。
 (D)層における、バインダー成分(前記シリコーン系ポリマーを含む)の含有量は、散乱粒子である白色顔料100質量部に対して、15質量部~200質量部の範囲が好ましく、17質量部~100質量部の範囲がより好ましい。バインダーの含有量は、15質量部以上であると、着色層の強度が充分に得られ、また200質量部以下であると、反射率や装飾性を良好に保つことができる。
-他の成分-
 本発明のポリマーシートがシリコーン系ポリマーなどのバインダー、着色剤および散乱粒子を含有する(D)層を有する場合、必要に応じて、さらに各種添加剤などの他の成分、例えば、架橋剤、界面活性剤、フィラー等を含んでいてもよい。
 なかでも、バインダー(結着樹脂)に架橋剤を添加して(D)層に架橋剤に由来する架橋構造を形成することが、(D)層の強度と耐久性をより向上させるという観点から好ましい。
 (D)層が含みうる架橋剤としては、エポキシ系、イソシアネート系、メラミン系、カルボジイミド系、オキサゾリン系等の架橋剤を挙げることができる。これらのなかでも、カルボジイミド系架橋剤、オキサゾリン系架橋剤およびイソシアネート系架橋剤から選ばれる少なくとも1種以上の架橋剤であることが好ましい。
 架橋剤としては、(B)層において説明したものが、(D)層においても同様に適用され、好ましい例も同様である。
 (D)層に架橋剤を用いる場合の添加量は、(D)層に含まれるバインダー100質量部に対して0.5質量部~30質量部が好ましく、より好ましくは3質量部以上15質量部未満である。架橋剤の添加量は、0.5質量%以上であると、前記耐候性層の強度及び接着性を保持しながら充分な架橋効果が得られ、30質量%以下であると、塗布液のポットライフを長く保て、15質量%未満であると塗布面状を改良できる。
 (D)層に用い得る界面活性剤としては、アニオン系やノニオン系等の公知の界面活性剤が挙げられる。界面活性剤を添加する場合、その塗布量は0.1mg/m~10mg/mが好ましく、より好ましくは0.5mg/m~3mg/mである。界面活性剤の塗布量は、0.1mg/m以上であると、ハジキの発生を抑えて良好な層形成が得られ、10mg/m以下であると、ポリマー支持体などとの接着を良好に行なうことができる。
 (D)層には、フィラーを添加してもよい。フィラーとしてはコロイダルシリカなどの公知のフィラーを用いることができる。
 (D)層は、バインダー等を含む塗布液を支持体の裏面側の表面に塗布して乾燥させることにより形成することができる。
 本発明のポリマーシートは、(D)層が、前記フッ素系ポリマーおよびシリコーン系ポリマーの少なくとも一方を含有する(D)層形成用水系組成物を塗付されてなる塗布層であることが好ましい。
 本発明のポリマーシートの製造方法においては、これらシリコーン系又はフッ素系樹脂や所望により併用される他の成分が水中に分散含有された水分散液を調製し、この水分散液を水系塗布液として所望のポリマー支持体上に塗布する態様が好ましい。
 塗布方法や用いる塗布液の溶媒には、特に制限はない。塗布方法としては、例えばグラビアコーターやバーコーターを利用することができる。塗布液に用いる溶媒は、水でもよいし、トルエンやメチルエチルケトン等の有機溶媒でもよい。環境負荷の観点から、水を塗布溶媒とした水系塗布液に調製されることが好ましい。
 塗布溶媒は1種類を単独で用いてもよいし、2種類以上を混合して用いてもよい。バインダーを水分散した水系塗布液を形成して、これを塗布する方法が好ましい。この場合、溶媒中の水の割合は60質量%以上が好ましく、80質量%以上がより好ましい。
 塗布後は、所望の条件で塗膜の乾燥を行う乾燥工程が設けられてもよい。乾燥時の乾燥温度については、塗布液の組成や塗布量などの場合に応じて適宜選択すればよい。また、ポリマー支持体が2軸延伸フィルムである場合は、2軸延伸した後のポリマー支持体に前記耐候性層を形成するための塗布液を塗布した後、塗膜を乾燥させてもよいし、1軸延伸後のポリマー支持体に塗布液を塗布して塗膜を乾燥させた後に、初めの延伸と異なる方向に延伸する方法でもよい。さらに、延伸前のポリマー支持体に塗布液を塗布して塗膜を乾燥させた後に2方向に延伸してもよい。
-厚み-
 塗布層(D)〔(D)層〕の厚みとしては、通常は0.3μm~22μmが好ましく、0.5μm~15μmがより好ましく、0.8μm~12μmの範囲が更に好ましく、1.0μm~8μmの範囲が特に好ましく、2μm~6μmの範囲が最も好ましい。厚みが前記範囲において湿熱環境下に曝されたときに(D)層表面から内部に水分が浸透し難く、また、(D)層と支持体との界面に水分が到達し難くなることで接着性の劣化が顕著に抑制されるとともに、(D)層自体の膜強度も良好に維持され、湿熱環境下に暴露したときに耐候性層の破壊が生じ難くなることで接着性の維持がより改善される。
〔フッ素系ポリマーを含む耐候性層:塗布層(E)〕
 本発明のポリマーシートは、前記シリコーン系又はフッ素系バインダー樹脂と着色剤と散乱粒子とを含む(D)層の表面に、さらに、フッ素系ポリマーを含有する塗布層(E)〔以下、適宜、(E)層と称する)を有していてもよい。
 本発明のポリマーシートが、フッ素系ポリマーを含む(E)層を有する場合、(E)層は、支持体上に任意に設けられる前記(D)層の表面に直接設けられることが好ましい。(E)層は、本発明のポリマーシートの最外層に位置することが好ましい。
 フッ素系ポリマーを含む塗布層(E)は、フッ素系ポリマー(含フッ素ポリマー)を主バインダーとして構成される。主バインダーとは、(E)層において含有量が最も多いバインダーを意味する。
 以下、(E)層及びそこに含まれるフッ素系ポリマーについて具体的に説明する。
 -フッ素系ポリマー-
 (E)層前記フッ素系ポリマーを含む耐候性層に用いるフッ素系ポリマーとしては-(CFX-CX)-で表される繰り返し単位を有するポリマーであれば特に制限はない(式中、X、X、及びXはそれぞれ独立に水素原子、フッ素原子、塩素原子又は炭素数1から3のフルオロアルキル基を示す。)。
 (E)層で用いられるフッ素系ポリマーは、前記塗布層(D)に用いられるフッ素系ポリマーと同様のポリマーが挙げられ、具体例、及び、好ましい例も同様である。
 塗布層(E)の形成に際しては、フッ素系ポリマーを有機溶剤に溶解して用いてもよく、フッ素系ポリマー粒子を水などの適切な分散媒に分散して用いてもよい。環境負荷が小さいという観点からは、水又は水系溶剤を分散媒としたポリマー粒子分散物として用いることが好ましい。フッ素系ポリマーの水分散物については、例えば、特開2003-231722号公報、特開2002-20409号公報、特開平9-194538号公報等に記載されており、これらを塗布層(E)の形成に用いてもよい。
 塗布層(E)には、フッ素系ポリマーを単独で用いてもよいし、2種類以上併用してもよい。また、全バインダーの50質量%を超えない範囲でアクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリオレフィン樹脂、シリコーン樹脂などのフッ素系ポリマー以外の樹脂を併用してもよい。ただし、フッ素系ポリマーが50質量%を超えて含有されることでバックシートに用いた場合に耐候性向上効果がより良好に発現される。
-滑剤-
 塗布層(E)は、滑剤の少なくとも一種を含有することが好ましい。
 滑剤を含有することで、含フッ素系ポリマーを用いた場合に生じやすい滑り性の低下(すなわち動摩擦係数の上昇)が抑えられるので、引っ掻きや擦過、小石などの衝突などの外力で生じる傷付きやすさが飛躍的に緩和される。また、含フッ素系ポリマーを用いた場合に生じやすい塗布液の面状ハジキを改善することができ、面状が良好なフッ素系ポリマーを含む耐候性層を形成することができる。
 滑剤は、塗布層(E)中に0.2mg/m~200mg/mの範囲で含有される。滑剤の塗布量が0.2mg/m未満であると、滑剤が少な過ぎて、滑剤を含有することによる動摩擦係数の低減効果が小さい。また、滑剤の塗布量が200mg/mを超えて多くなり過ぎると、ポリマー層を塗布形成する際に、塗布ムラや凝集物が発生したり、はじき故障が発生したり、しやすくなる。
 上記範囲の中では、動摩擦係数低減効果と塗布適性の観点から、1.0mg/m~1150mg/mの範囲が好ましく、5.0mg/m~100mg/mの範囲がより好ましい。
 滑剤としては、例えば、合成ワックス系化合物、天然ワックス系化合物、界面活性剤系化合物、無機系化合物、有機樹脂系化合物などが挙げられる。中でも、ポリマー層の表面強度の点で、合成ワックス系化合物、天然ワックス系化合物、及び界面活性剤系化合物から選ばれる化合物が好ましい。
 前記合成ワックス系化合物としては、例えば、ポリエチレンワックス、ポリプロピレンワックス等のオレフィン系ワックス、ステアリン酸、オレイン酸、エルカ酸、ラウリン酸、ベヘン酸、パルミチン酸、アジピン酸などのエステル、アミド、ビスアミド、ケトン、金属塩及びその誘導体、フィッシャートロプシュワックスなどの合成炭化水素系ワックス、リン酸エステル、硬化ヒマシ油、硬化ヒマシ油誘導体の水素化ワックスなどが挙げられる。
 前記天然ワックス系化合物としては、例えば、カルナバワックス、キャンデリラワックス、木蝋などの植物系ワックス、パラフィンワックス、マイクロクリスタリンワックスなどの石油系ワックス、モンタンワックスなどの鉱物系ワックス、蜜蝋、ラノリンなどの動物系ワックスなどが挙げられる。
 前記界面活性剤系化合物としては、例えば、アルキルアミン塩などのカチオン系界面活性剤、アルキル硫酸エステル塩などのアニオン系界面活性剤、ポリオキシエチレンアルキルエーテルなどのノニオン系界面活性剤、アルキルベタインなどの両性系界面活性剤、フッ素系界面活性剤などが挙げられる。
 滑剤は、上市されている市販品を用いてもよく、具体的には、
 合成ワックス系の滑剤として、例えば、三井化学(株)製のケミパールシリーズ(例えば、ケミパールW700、同W900,同W950等)、中京油脂(株)製のポリロンP-502、ハイミクロンL-271,ハイドリンL-536などが挙げられ、
 天然ワックス系の滑剤として、例えば、中京油脂(株)製のハイドリンL-703-35,セロゾール524,セロゾールR-586などが挙げられ、また、
 界面活性剤系の滑剤として、例えば、日光ケミカルズ(株)製のNIKKOLシリーズ(例えば、NIKKOL SCS等)、花王(株)製のエマールシリーズ(例えば、エマール40など)が挙げられる。
 上記した中でも、本発明における塗布層(E)は、前記ポリマーとして、DIC(株)製のセラネートシリーズ、JSR(株)製の無機・アクリル複合エマルジョンを、前記滑剤として、三井化学(株)製のケミパールシリーズを用いて構成された形態が好ましい。
-その他の添加剤-
 前記(E)層には、必要に応じて、コロイダルシリカ、シランカップリング剤、架橋剤、界面活性剤等を添加してもよい。
 コロイダルシリカについては、塗布層(B)において記載したものが同様に用いられる。
 (E)層が、面状の改良のためコロイダルシリカを含有する場合の含有量としては、(E)層の全固形分中、0.3質量%~1.0質量%であることが好ましく、0.5質量%~0.8質量%であることがより好ましい。添加量を0.3質量%以上とすることで、面状改良効果が得られ、1.0質量%以下とすることで、塗布液の凝集がより効果的に防止される。
 (E)層にコロイダルシリカを含有する場合、シランカップリング剤を添加することが面状改良の観点から好ましい。
 シランカップリング剤としては、アルコキシシラン化合物が好ましく、例えば、テトラアルコキシシラン、トリアルコキシシランなどが挙げられる。なかでも、トリアルコキシシランが好ましく、特にアミノ基を有するアルコキシシラン化合物が好ましい。
 シランカップリング剤を添加する場合、その添加量は(E)層に対して0.3質量%~1.0質量%であることが好ましく、0.5質量%~0.8質量%であることが特に好ましい。添加量を0.3質量%以上とすることで、面状改良効果が得られ、1.0質量%以下とすることで、塗布液の凝集を防止できる。
 (E)層に架橋剤を添加して架橋構造を形成することが、耐候性向上の観点から好ましい。(E)層に用いられる架橋剤としては、(D)層に用いられる架橋剤として挙げたものが同様に挙げられる。
 (E)層に用いられる界面活性剤としては、アニオン系やノニオン系等の公知の界面活性剤を用いることができる。界面活性剤を添加する場合、その塗布量は0mg/m~15mg/mが好ましく、より好ましくは0.5mg/m~5mg/mである。界面活性剤の塗布量は、0.1mg/m以上であると、ハジキの発生を抑えて良好な層形成が得られ、15mg/m以下であると、接着を良好に行なうことができる。
-厚み-
 (E)層の厚みとしては、通常は0.8μm~12μmが好ましく、0.5μm~15μmがより好ましく、1.0μm~10μmの範囲がさらに好ましい。
 厚みが前記範囲において耐候性、耐久性がより向上し、塗布面状の悪化が抑制される。
 本発明のポリマーシートは、(E)層の上(外層)にさらに別の層を積層してもよいが、バックシート用ポリマーシートの耐久性の向上、軽量化、薄型化、低コスト化などの観点から、(E)層が太陽電池用バックシートの最外層であることが好ましい。
-その他の層-
(ガスバリア層)
 支持体の(B)層とは反対側の面には、ガスバリア層を設けてもよい。カスバリア層は、ポリエステル支持体への水やガスの浸入を防止する防湿性の機能を与える層である。
 ガスバリア層の水蒸気透過量(透湿度)としては、10g/m・d~10-6g/m・dが好ましく、より好ましくは10g/m・d~10-5g/m・dであり、さらに好ましくは10g/m・d~10-4g/m・dである。
 尚、透湿度はJIS Z0208等に基づいて測定することができる。
 このような透湿度を有するガスバリア層を形成するには、乾式法が好適である。乾式法によりガスバリア性のガスバリア層を形成する方法としては、抵抗加熱蒸着、電子ビーム蒸着、誘導加熱蒸着、及びこれらにプラズマやイオンビームによるアシスト法などの真空蒸着法、反応性スパッタリング法、イオンビームスパッタリング法、ECR(電子サイクロトロン)スパッタリング法などのスパッタリング法、イオンプレーティング法などの物理的気相成長法(PVD法)、熱や光、プラズマなどを利用した化学的気相成長法(CVD法)などが挙げられる。中でも、真空下で蒸着法により膜形成する真空蒸着法が好ましい。
 ガスバリア層を形成する材料としては、無機酸化物、無機窒化物、無機酸窒化物、無機ハロゲン化物、無機硫化物などが挙げられる
 なお、アルミ箔を貼り合わせてガスバリア層としてもよい。
 ガスバリア層の厚みは、1μm以上30μm以下が好ましい。厚みは、1μm以上であると経時(サーモ)中に支持体中に水が浸透し難く耐加水分解性に優れ、30μm以下であると無機層が厚くなり過ぎず、無機層の応力で支持体にベコが発生することもない。
[太陽電池モジュール]
 本発明の太陽電池モジュールは、例えば、太陽光の光エネルギーを電気エネルギーに変換する太陽電池素子を、太陽光が入射する透明性の基板と太陽電池用バックシートとの間に配置し、該基板とバックシートとの間をエチレン-酢酸ビニル共重合体などの封止材で封止している。
 具体的には、本発明の太陽電池用保護シートは、太陽光が入射する透明性の基材と、基材上に設けられ、太陽電池素子及び太陽電池素子を封止する封止材を有する素子構造部分と、素子構造部分の基材が位置する側と反対側に配置された太陽電池用バックシートと、を備える。そして、太陽電池用バックシートとして、本発明の太陽電池バックシートが適用される。
 太陽電池モジュール、太陽電池セル、バックシート以外の部材については、例えば、「太陽光発電システム構成材料」(杉本栄一監修、(株)工業調査会、2008年発行)に詳細に記載されている。
 透明性のフロント基板は、太陽光が透過し得る光透過性を有していればよく、光を透過する基材から適宜選択することができる。発電効率の観点からは、光の透過率が高いものほど好ましく、このような基板として、例えば、ガラス基板、アクリル樹脂などの透明樹脂などを好適に用いることができる。
 太陽電池素子としては、単結晶シリコン、多結晶シリコン、アモルファスシリコンなどのシリコン系、銅-インジウム-ガリウム-セレン、銅-インジウム-セレン、カドミウム-テルル、ガリウム-砒素などのIII-V族やII-VI族化合物半導体系など、各種公知の太陽電池素子を適用することができる。
 以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。なお、特に断りのない限り、「部」は質量基準である。
(透明PET支持体の作製)
-ポリエステルの合成-
 高純度テレフタル酸(三井化学(株)製)100kgとエチレングリコール(日本触媒(株)製)45kgのスラリーを、予めビス(ヒドロキシエチル)テレフタレート約123kgが仕込まれ、温度250℃、圧力1.2×10Paに保持されたエステル化反応
槽に、4時間かけて順次供給し、供給終了後もさらに1時間かけてエステル化反応を行なった。その後、得られたエステル化反応生成物123kgを重縮合反応槽に移送した。
 引き続いて、エステル化反応生成物が移送された重縮合反応槽に、エチレングリコールを、得られるポリマーに対して0.3質量%添加した。5分間撹拌した後、酢酸コバルト及び酢酸マンガンのエチレングリコール溶液を、得られるポリマーに対してそれぞれ30ppm、15ppmとなるように加えた。更に5分間撹拌した後、チタンアルコキシド化合物の2質量%エチレングリコール溶液を、得られるポリマーに対して5ppmとなるように添加した。その5分後、ジエチルホスホノ酢酸エチルの10質量%エチレングリコール溶液を、得られるポリマーに対して5ppmとなるように添加した。その後、低重合体を30rpmで攪拌しながら、反応系を250℃から285℃まで徐々に昇温するとともに、圧力を40Paまで下げた。最終温度、最終圧力到達までの時間はともに60分とした。所定の攪拌トルクとなった時点で反応系を窒素パージし、常圧に戻し、重縮合反応を停止した。そして、冷水にストランド状に吐出し、直ちにカッティングしてポリマーのペレット(直径約3mm、長さ約7mm)を作製した。なお、減圧開始から所定の撹拌トルク到達までの時間は3時間であった。
 但し、チタンアルコキシド化合物には、特開2005-340616号公報の段落番号[0083]の実施例1で合成しているチタンアルコキシド化合物(Ti含有量=4.44質量%)を用いた。
-固相重合-
 上記で得られたペレットを、40Paに保たれた真空容器中、220℃の温度で30時間保持して、固相重合を行った。
-ベース形成-
 以上のように固相重合を経た後のペレットを、280℃で溶融して金属ドラムの上にキャストし、厚さ約3mmの未延伸ベースを作製した。その後、90℃で縦方向に3.4倍に延伸し、下記条件でコロナ放電処理を行い、次いで、下記組成のインラインコート層形成用組成物をポリエチレンテレフタレート支持体のコロナ処理面に、塗布量が5.1ml/mとなるように、MD延伸後、TD延伸前にインラインコート法にて塗布を行い、厚み0.1μmのインラインコート層を形成した。なお、TD延伸温度は、105℃で、TD方向に4.5倍に延伸し、膜面200℃で15秒間の熱処理を行い、190℃でMD緩和率5%、・TD緩和率11%でMD・TD方向に熱緩和を行い、インラインコート層が形成された厚み250μmの2軸延伸ポリエチレンテレフタレート支持体(以下、「インラインコート層付き透明PET支持体」と称する。)を得た。
(コロナ放電処理)
 PET支持体の一方の面に行ったコロナ放電処理の条件は以下の通りである。
 ・電極と誘電体ロールギャップクリアランス:1.6mm
 ・処理周波数:9.6kHz
 ・処理速度:20m/分
 ・処理強度:0.375kV・A・分/m
(インラインコート層形成塗布液の組成)
・ポリオレフィン樹脂水分散液           3.74質量部
 〔アローベースSE-1013N、ユニチカ(株)製、固形分:20.2質量%〕
・アクリル樹脂水分散液               0.3質量部
 〔AS-563A、ダイセルファインケム(株)製、固形分:28質量%のラテックス〕
・水溶性オキサゾリン系架橋剤           0.85質量部
 〔エポクロスWS-700、日本触媒(株)製、固形分:25質量%〕
・蒸留水                      100質量部
 以上のようにして得られたインラインコート層付き透明PET支持体を用いて、以下のようにして塗布層(B)~塗布層(E)を形成しての太陽電池用バックシートとした。
[実施例1~91、比較例1~8]
 まず、表1に記載の原料を用い、以下に記載する固形分含有比率となるようにして、(B)層形成用組成物を調製した。この処方に、表7~表11に示すような種類と量(乾膜の状態での容量%)で無機粒子を添加して、(B)層形成用組成物とする場合もある。
 なお、下記表1におけるナトリウム-1.2-{ビス(3,3,4,4,5,5,6,6,6-ナノフルオロヘキシルカルボニル)}エタンスルホナートは、水/エタノール2:1の混合溶媒で2質量%となるように希釈して用いた。表1に記載の各成分を以下に記載する固形分比率で混合し、さらに蒸留水を加え、固形分濃度が7.0質量%となるようにして、(B)層形成用組成物を調製した。
 また、実施例88~91では、実施例1~87で用いたインラインコート層付き透明PET支持体に代えて、下記のインラインコート層付き白色PET支持体を用いた。
(白色PET支持体の作製)
-マスターペレットの作製-
 上記「透明PET支持体の作製」において作製した固相重合前のペレットに酸化チタンを、含有比率がペレット全体の50質量%になるように加えて混練し、マスターペレットを作製した。
 ここで、酸化チタンとして、石原産業社製のPF-739(商品名;平均一次粒径=0.25μm、表面処理としてアルミナ処理後にポリオール処理を施したもの)を用いた。
-ベース形成-
 上記「透明PET支持体の作製」と同様に固相重合を経た後のペレット、及び上記のマスターペレットを、酸化チタン量が下記の表11に示す濃度になるように混合し、280℃で溶融して金属ドラムの上にキャストし、厚さ約3mmの未延伸ベースを作製した。その後、90℃で縦方向(MD)に3.0倍に延伸(MD延伸)し、上記「透明PET支持体の作製」と同様の条件でコロナ放電処理を行った。次いで、このコロナ処理面に、上記「透明PET支持体の作製」と同様のインラインコート層形成用組成物を、塗布量が5.1ml/mとなるようにインラインコート法にて塗布し、厚み0.1μmのインラインコート層を形成した。塗布は、MD延伸後、MDと直交する横方向(TD)に延伸する前(TD延伸前)に行った。そして、インラインコート層の形成後、105℃で4.5倍にTD延伸し、インラインコート層の表面を200℃で15秒間熱処理した。その後、190℃でMD緩和率5%、TD緩和率11%としてMD及びTDに熱緩和を施した。
 以上のようにして、厚み250μmの2軸延伸ポリエチレンテレフタレート支持体(インラインコート層付き白色PET)を得た。
Figure JPOXMLDOC01-appb-T000014
-(B)層形成用組成物の固形分比率-
・降伏点を有するポリマー                90質量部
・架橋剤                        10質量部
・ナトリウム-1.2-{ビス(3,3,4,4,5,5,6,6,6-
  ナノフルオロヘキシルカルボニル)}エタンスルホナート 1質量部
 
 参考までに、実施例2において用いた(B)層形成用組成物の処方を具体的に示す。実施例4~実施例87では、この組成物にさらに無機粒子が添加される。
 
-実施例2の(B)層形成用組成物-
・水溶性オキサゾリン系架橋剤            29.0質量部
 〔エポクロスWS-700、日本触媒(株)製、固形分:25質量%〕
・降伏点を有するポリマー〔XPS002(固形分濃度:45%)〕
                         144.7質量部
・ナトリウム-1.2-{ビス(3,3,4,4,5,5,6,6,6-ナノフルオロヘキシルカルボニル)}エタンスルホナート(2%)    3.6質量部
・蒸留水                     822.6質量部
 得られた(B)層形成用組成物を、乾燥後の膜厚が1.0μmとなるようにインラインコート層付き透明PET支持体のインラインコート層が形成された側の表面に塗布し、170℃で2分間乾燥して塗布層(B)を形成した。塗布層(B)における無機粒子の種類と添加量は表7~表10に示すとおりである。
 (B)層の形成に用いたポリマーの詳細を下記表2に示す。表2に記載のポリマー膜の降伏点は、既述の方法にて測定した結果である。
Figure JPOXMLDOC01-appb-T000015
 その後、塗布層(C)(表6~表10では「(C)層」と記載)形成用組成物〔C-1~C-9〕を(B)層の表面に、0.3μmの乾燥膜厚となるように塗布し、乾燥して(C)層を形成した。
 (C)層形成用組成物〔C-1~C-9〕の組成を下記表3に示す。EMALEX110は、水/エタノール2:1の混合溶媒で2質量%となるように希釈して用いた。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-C000017
 さらに、支持体のインラインコート層を形成していない側に、耐候性層として、下記表4及び表5に示す組成の(D)層形成用組成物、(E)層形成用組成物を用いて、(D)層、及び(E)層を図1に示す順に形成してバックシートを得た。
-(D)層の形成-
1.二酸化チタン分散物の調製
 ダイノミル分散機を用いて二酸化チタンの平均粒径が0.42μmになるよう分散して二酸化チタン分散液を調整した。なお、二酸化チタンの平均粒径はハネウェル社製、マイクロトラックFRAを用いて測定した。
(二酸化チタン分散液の組成)
・二酸化チタン … 455.8質量部(タイペークCR-95、石原産業(株)製、粉体)
・PVA水溶液 … 227.9質量部(PVA-105、クラレ(株)製、濃度10質量%)
・分散剤 … 5.5質量部(デモールEP、花王(株)製、濃度25質量%)
・蒸留水 … 310.8質量部
2.(D)層形成用組成物の調製
 下記表4に記載の各成分を混合し、(D)層形成用組成物〔D-1~D-4〕を調製した。下記表4における「二酸化チタン分散液※」は、上記で調整したものを用いている。
3.(D)層の形成
 得られた(D)層形成用組成物を、ポリマー支持体の裏面((B)層非形成面)上にバインダー塗布量が4.7g/m、二酸化チタン塗布量が5.6g/mとなるよう塗布して170℃で2分間乾燥して、厚み5μmの(D)層(白色層)を形成した。
Figure JPOXMLDOC01-appb-T000018
-(E)層の形成-
 (D)層表面に、下記表5に示す(E)層形成用組成物〔E-1~E-3〕の(E)層形成用組成物塗布液をバインダー塗布量が1.3g/mとなるよう塗布して、175℃で2分間乾燥して(E)層を形成した。
 (C)層の厚みはいずれも0.3μmである。また、支持体上に形成された(C)層~(E)層の形成にいずれの組成を用いたかについても、下記表6~表10に記載した。
Figure JPOXMLDOC01-appb-T000019
[評価]
 各例で得られた太陽電池用バックシートについて、以下の評価を行った。その結果を下記表6~表10に示す。
(封止材(EVA)との密着力)
 各例で得られた太陽電池用バックシートを2.5cm(TD方向)×15cm(MD方向)にカットした。次に、2.5cm×7.5cm×厚さ0.5cmのガラス板の上にEVAフィルム(杭州 F806)を積層したものに、評価用のバックシートを(C)層がEVAに接するように乗せ、145℃、真空引き4分、加圧10分の条件下で日清紡メカトロニクス社製 真空ラミネート装置(LAMINATOR0505S)を用いて、ラミネートした。
 EVAに接着されたバックシートを、23℃50%の条件で24時間以上、調湿した後、バックシートのMD方向にカッターで10mm幅になるように2本の切り込みを入れ、切り込みを入れたバックシートとEVAとガラス板との積層物を、121℃100%の環境下で30時間保存した。
 上記、作製したサンプルの10mm幅の部分を100mm/minの速度でテンシロンにより180°で引っ張った。そして、以下の評価基準で(B)層における破壊応力を評価した。この応力が高い程、高温高湿条件下での密着力が高く、耐候性に優れると評価した。
 また、剥離した箇所を目視で観察し、支持体であるPET表面の凝集破壊の有無を判定した。凝集破壊が生じるとPET支持体が遷移する。
 上記試験を10回行い、PET表面の凝集破壊率(遷移確率)を以下の基準にて判断した。
・(B)層における破壊応力(表6~表10中、「密着力」と記載)
  5:破壊応力が5N/mm以上であるもの
  4:破壊応力が4~5N/mm未満であるもの
  3:破壊応力が3~4N/mm未満であるもの
  2:破壊応力が2~3N/mm未満であるもの
  1:全てPETの凝集破壊でB塗布層の破壊応力が測定できないもの
・PET凝集破壊確率(表6~表10中、「遷移確率」と記載)
  3:PETの凝集破壊が無い
  2:PETの凝集破壊が1/2以下
  1:全てPETの凝集破壊が発生
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022

 
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
 上記結果から、本実施例では、封止材(EVA)との高温高湿環境下での長期保存後の密着力が良好なレベルに維持され、層間の剥離も抑制されたことがわかる。
 これにより、本発明の太陽電池用バックシートは、太陽電池素子を封止する封止材に対する密着性を高温高湿度の厳しい条件下においても長期間維持しうることがわかる。
 また、実施例84~87の結果より、(B)層にカーボンブラックを含有させることで、密着力、層間剥離抑制効果を低下させることなく、太陽電池用バックシートに所望の遮光性を付与しうることがわかる。
〔実施例92〕
<太陽電池発電モジュールの作製>
 厚さ3mmの強化ガラスと、EVAシート(三井化学ファブロ(株)製のSC50B)と、結晶系太陽電池セルと、EVAシート(三井化学ファブロ(株)製のSC50B)と、実施例36の太陽電池用バックシートとを、太陽電池用バックシートの(C)層が、太陽電池素子の封止材であるEVAシートと直接接するようにこの順に重ね合わせ、真空ラミネータ(日清紡(株)製、真空ラミネート機)を用いてホットプレスすることにより、EVAと接着させた。接着方法は、以下の通りである。
 真空ラミネータを用いて、128℃で3分間の真空引き後、2分間加圧して仮接着した。その後、ドライオーブンにて150℃で30分間、本接着処理を施した。
 以上のようにして、結晶系の太陽電池セルを用いて実施例88の太陽電池発電モジュール(以下、適宜、「太陽電池モジュール」と称することがある)を作製した。
 作製された太陽電池モジュールを120℃、相対湿度100%の環境条件下に70時間放置した後、発電運転させたところ、実施例36の太陽電池用バックシートは、耐候性に優れるため、実施例36の太陽電池発電モジュールは、発電性能を長期に亘って安定的に得ることができた。
〔実施例93~95〕
<太陽電池発電モジュールの作製>
 実施例92で用いた結晶系太陽電池セルと、実施例36の太陽電池用バックシートとを用い、図1(A)に示すように、平面視による太陽電池用バックシートの露出部分の面積が39%となるように結晶系太陽電池セルを配置させた以外は、実施例92と同様にして、実施例93の太陽電池発電モジュールを作製した。
 太陽電池用バックシートの露出部分の面積が25%となるように結晶系太陽電池セルを配置させた以外は、実施例93と同様にして、実施例94の太陽電池発電モジュールを作製した。
 太陽電池用バックシートの露出部分の面積が5%となるように結晶系太陽電池セルを配置させた以外は、実施例93と同様にして、実施例95の太陽電池発電モジュールを作製した。
 図1(A)は、太陽電池用バックシートの露出部分の面積が39%の太陽電池モジュールを示す平面図であり、図1(B)は、太陽電池用バックシートの露出部分の面積が25%の太陽電池モジュールを示す平面図であり、図1(C)は、太陽電池用バックシートの露出部分の面積が5%の太陽電池モジュールを示す平面図である。図1(A)~(C)中、斜線にて表示した領域が太陽電池用バックシートの露出部分を示す。
 作製された太陽電池モジュールを実施例92と同様に発電運転させたところ、実施例36の太陽電池用バックシートは、耐候性に優れるため、実施例93~95の太陽電池発電モジュールは、発電性能を長期に亘って安定的に得ることができた。
〔実施例96~98〕
<太陽電池発電モジュールの作製>
 実施例36の太陽電池用バックシートに換えて、実施例37の太陽電池用バックシートを用いた以外は、実施例93~実施例95と同様にして、実施例96~実施例98の太陽電池発電モジュールを作製した。実施例92の太陽電池モジュールは、太陽電池用バックシートの露出部分の面積が39%であり(図1(A)参照)、実施例97は、太陽電池用バックシートの露出部分の面積が25%であり(図1(B)参照)、実施例97は、太陽電池用バックシートの露出部分の面積が5%である(図1(C)参照)。
 作製された太陽電池モジュールを実施例92と同様に発電運転させたところ、実施例37の太陽電池用バックシートは、耐候性に優れるため、実施例96~実施例98の太陽電池発電モジュールは、発電性能を長期に亘って安定的に得ることができた。
〔実施例99~101〕
<太陽電池発電モジュールの作製>
 実施例36の太陽電池用バックシートに換えて、実施例85の太陽電池用バックシートを用いた以外は、実施例93~実施例95と同様にして、実施例99~実施例101の太陽電池発電モジュールを作製した。実施例99の太陽電池モジュールは、太陽電池用バックシートの露出部分の面積が39%であり(図1(A)参照)、実施例100は、太陽電池用バックシートの露出部分の面積が25%であり(図1(B)参照)、実施例101は、太陽電池用バックシートの露出部分の面積が5%である(図1(C)参照)。
 作製された太陽電池モジュールを実施例92と同様に発電運転させたところ、実施例37の太陽電池用バックシートは、耐候性に優れるため、実施例99~101の太陽電池発電モジュールは、発電性能を長期に亘って安定的に得ることができた。
 本発明の具体的態様の前記記述は、記述と説明の目的で提供するものである。開示された、まさにその形態に本発明を限定することを企図するものでもなく、或いは網羅的なものを企図するものでもない。明らかに、当業者が多くの修飾や変形をすることができることは自明である。該態様は、本発明の概念やその実際の応用を最もよく説明するために選定されたものであって、それによって、当業者の他者が企図する特定の用途に適合させるべく種々の態様や種々の変形をなすことができるように、当業者の他者に本発明を理解せしめるためのものである。
 2013年5月31日出願の日本特許出願第2013-116439号公報、2013年8月16日出願の日本特許出願第2013-169243号公報、および2014年5月26日出願の日本特許出願第2014-108183号公報は、その開示全体がここに参照文献として組み込まれるものである。  本明細書に記述された全ての刊行物や特許出願、並びに技術標準は、それら個々の刊行物や特許出願、並びに技術標準が引用文献として特別に、そして個々に組み込むことが指定されている場合には、該引用文献と同じ限定範囲においてここに組み込まれるものである。本発明の範囲は下記特許請求の範囲及びその等価物に拠って決定されることを企図するものである。

Claims (18)

  1.  支持体と、
     前記支持体の少なくとも一方の面側に、降伏点を有するポリマーを含む塗布層(B)と
     塗布層(C)と、をこの順に有し、
     前記塗布層(C)は太陽電池用バックシートが適用される太陽電池モジュールの封止材と直接接する太陽電池用バックシート。
  2.  前記塗布層(B)の膜厚は、塗布層(C)の膜厚よりも大きい請求項1に記載の太陽電池用バックシート。
  3.  前記塗布層(B)の膜厚は、0.3μm~5μmの範囲である請求項1又は請求項2に記載の太陽電池用バックシート。
  4.  前記塗布層(B)は、さらに無機粒子を含む請求項1~請求項3のいずれか1項に記載の太陽電池用バックシート。
  5.  前記塗布層(B)における無機粒子の含有率は10体積%~35体積%の範囲である請求項4に記載の太陽電池用バックシート。
  6.  前記塗布層(B)に含まれる無機粒子の平均粒子径は、前記塗布層(B)の膜厚以下である請求項4又は請求項5に記載の太陽電池用バックシート。
  7.  前記塗布層(B)に含まれる無機粒子の平均粒子径は、前記塗布層(B)の膜厚の1/2以下である請求項4~請求項6のいずれか1項に記載の太陽電池用バックシート。
  8.  前記塗布層(B)に含まれる無機粒子の平均粒子径は、1.0μm以下である請求項4~請求項7のいずれか1項に記載の太陽電池用バックシート。
  9.  前記塗布層(B)に含まれる無機粒子は、コロイダルシリカ、酸化チタン、酸化アルミニウム、及び酸化ジルコニウムから選択される少なくとも1種の粒子である請求項4~請求項8のいずれか1項に記載の太陽電池用バックシート。
  10.  前記塗布層(B)に含まれる無機粒子は、少なくとも黒色顔料を含有する請求項4~請求項9のいずれか1項に記載の太陽電池用バックシート。
  11.  前記黒色顔料が、少なくともカーボンブラックを含有する請求項10に記載の太陽電池用バックシート。
  12.  前記塗布層(C)が帯電防止剤を更に含み、前記塗布層(B)が前記塗布層(B)中の前記ポリマーと架橋した、架橋剤の成分を更に含む請求項1~請求項11のいずれか1項に記載の太陽電池用バックシート。
  13.  前記架橋剤がオキサゾリン系架橋剤である、請求項12に記載の太陽電池用バックシート。
  14.  前記支持体の前記塗布層(B)側とは反対側の面上に、シリコーン樹脂又はフッ素系ポリマーと無機粒子とを含む塗布層(D)を更に有する、請求項12又は請求項13に記載の太陽電池用バックシート。
  15.  前記塗布層(D)に更に黒色顔料とノニオン界面活性剤とを含んで成る請求項14に記載の太陽電池用バックシート。
  16.  前記塗布層(D)の前記支持体側とは反対側の面上に、シリコーン樹脂又はフッ素系ポリマーと無機粒子とを含む塗布層(E)を更に有する、請求項14又は請求項15に記載の太陽電池用バックシート。
  17.  前記塗布層(E)に更に、ノニオン界面活性剤と、前記シリコーン樹脂又は前記フッ素系ポリマーと架橋した架橋剤の成分と、を含む請求項16に記載の太陽電池用バックシート。
  18.  太陽光が入射する透明性の基材と、
     前記基材上に設けられ、太陽電池素子及び前記太陽電池素子を封止する封止材を有する素子構造部分と、
     前記素子構造部分の前記基材が位置する側と反対側に配置された請求項1~請求項17のいずれか1項に記載の太陽電池用バックシートと、
     を備えた太陽電池モジュール。
PCT/JP2014/064031 2013-05-31 2014-05-27 太陽電池用バックシート、及び太陽電池モジュール WO2014192774A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480028998.4A CN105229798B (zh) 2013-05-31 2014-05-27 太阳电池用背板及太阳电池模块
US14/938,856 US20160064586A1 (en) 2013-05-31 2015-11-12 Solar cell back sheet, and solar cell module

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-116439 2013-05-31
JP2013116439 2013-05-31
JP2013169243 2013-08-16
JP2013-169243 2013-08-16
JP2014108183A JP2015057814A (ja) 2013-05-31 2014-05-26 太陽電池用バックシート及び太陽電池モジュール
JP2014-108183 2014-05-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/938,856 Continuation US20160064586A1 (en) 2013-05-31 2015-11-12 Solar cell back sheet, and solar cell module

Publications (1)

Publication Number Publication Date
WO2014192774A1 true WO2014192774A1 (ja) 2014-12-04

Family

ID=51988802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064031 WO2014192774A1 (ja) 2013-05-31 2014-05-27 太陽電池用バックシート、及び太陽電池モジュール

Country Status (5)

Country Link
US (1) US20160064586A1 (ja)
JP (1) JP2015057814A (ja)
CN (1) CN105229798B (ja)
TW (1) TW201504048A (ja)
WO (1) WO2014192774A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182546A1 (ja) * 2014-05-30 2015-12-03 富士フイルム株式会社 ポリエステル樹脂組成物、マスターペレット、ポリエステルフィルム、太陽電池モジュール用バックシート及び太陽電池モジュール

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5587230B2 (ja) * 2011-03-25 2014-09-10 富士フイルム株式会社 太陽電池用バックシート及びその製造方法、並びに太陽電池モジュール
JP6708206B2 (ja) * 2015-03-20 2020-06-10 東洋紡株式会社 太陽電池用白色ポリエステルフィルム、これを用いた太陽電池裏面封止シートおよび太陽電池モジュール

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027543A1 (ja) * 2011-08-25 2013-02-28 富士フイルム株式会社 ポリエステルフィルム及びその製造方法、太陽電池用バックシート、並びに太陽電池モジュール

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201466033U (zh) * 2009-06-05 2010-05-12 中国乐凯胶片集团公司 一种太阳能电池背板
CN102368511B (zh) * 2011-11-15 2013-07-10 乐凯胶片股份有限公司 一种太阳能电池背膜的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027543A1 (ja) * 2011-08-25 2013-02-28 富士フイルム株式会社 ポリエステルフィルム及びその製造方法、太陽電池用バックシート、並びに太陽電池モジュール

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182546A1 (ja) * 2014-05-30 2015-12-03 富士フイルム株式会社 ポリエステル樹脂組成物、マスターペレット、ポリエステルフィルム、太陽電池モジュール用バックシート及び太陽電池モジュール
JPWO2015182546A1 (ja) * 2014-05-30 2017-04-20 富士フイルム株式会社 ポリエステル樹脂組成物、マスターペレット、ポリエステルフィルム、太陽電池モジュール用バックシート及び太陽電池モジュール

Also Published As

Publication number Publication date
US20160064586A1 (en) 2016-03-03
CN105229798A (zh) 2016-01-06
TW201504048A (zh) 2015-02-01
JP2015057814A (ja) 2015-03-26
CN105229798B (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
JP5815276B2 (ja) 太陽電池用バックシート用ポリマーシート及びその製造方法並びに太陽電池モジュール
JP2007150084A (ja) 太陽電池モジュール用裏面保護シート、太陽電池モジュール用裏面積層体、および、太陽電池モジュール
KR101649054B1 (ko) 태양 전지용 보호 시트와 그 제조 방법, 태양 전지용 백시트, 태양 전지 모듈
KR20140015360A (ko) 태양전지용 백시트와 그 제조 방법, 및 태양전지 모듈
WO2013024892A1 (ja) 太陽電池用バックシート及びその製造方法、並びに太陽電池モジュール
WO2014192774A1 (ja) 太陽電池用バックシート、及び太陽電池モジュール
JP5848718B2 (ja) 易接着シート、太陽電池用保護シート、絶縁シート、太陽電池用バックシート部材、太陽電池用バックシート及び太陽電池モジュール
WO2013146516A1 (ja) ポリマーシート、太陽電池用裏面保護シートおよび太陽電池モジュール
JP6271738B2 (ja) 積層ポリエステルフィルム及びその製造方法、太陽電池用保護シート、並びに太陽電池モジュール
JP5763021B2 (ja) 太陽電池用ポリマーシート及びその製造方法、並びに太陽電池モジュール
WO2013008945A1 (ja) 太陽電池用ポリマーシート及び太陽電池モジュール
WO2016031340A1 (ja) 太陽電池用裏面保護シート及び太陽電池モジュール
JP5650681B2 (ja) 太陽電池用裏面保護シートおよび太陽電池モジュール
JP6157892B2 (ja) 太陽電池用バックシートのポリマー層形成用組成物、太陽電池用バックシート及び太陽電池モジュール
JP6050652B2 (ja) 太陽電池用ポリマーシートおよび太陽電池モジュール
JP2013026256A (ja) 太陽電池用バックシート及びその製造方法、並びに太陽電池モジュール
JP5995831B2 (ja) 太陽電池用バックシート、および太陽電池モジュール
JP2014156553A (ja) ポリエステルフィルム、太陽電池用モジュール用バックシートおよび太陽電池用モジュール
JP2013055079A (ja) 太陽電池用ポリマーシート及びその製造方法、並びに太陽電池モジュール
JP2013042006A (ja) 太陽電池モジュール用ポリマーシートとその製造方法、太陽電池モジュール用バックシート及び太陽電池モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480028998.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14804643

Country of ref document: EP

Kind code of ref document: A1