WO2014192578A1 - 酸化亜鉛自立基板及びその製造方法 - Google Patents

酸化亜鉛自立基板及びその製造方法 Download PDF

Info

Publication number
WO2014192578A1
WO2014192578A1 PCT/JP2014/063221 JP2014063221W WO2014192578A1 WO 2014192578 A1 WO2014192578 A1 WO 2014192578A1 JP 2014063221 W JP2014063221 W JP 2014063221W WO 2014192578 A1 WO2014192578 A1 WO 2014192578A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc oxide
sintered body
substrate
single crystal
oriented
Prior art date
Application number
PCT/JP2014/063221
Other languages
English (en)
French (fr)
Inventor
守道 渡邊
吉川 潤
浩文 山口
七瀧 努
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2015519795A priority Critical patent/JP6385009B2/ja
Publication of WO2014192578A1 publication Critical patent/WO2014192578A1/ja
Priority to US14/951,548 priority patent/US10156024B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/10Single-crystal growth directly from the solid state by solid state reactions or multi-phase diffusion
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/04Production of homogeneous polycrystalline material with defined structure from liquids
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/605Products containing multiple oriented crystallites, e.g. columnar crystallites
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/005Epitaxial layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/12Liquid-phase epitaxial-layer growth characterised by the substrate

Definitions

  • the present invention relates to a zinc oxide self-supporting substrate and a manufacturing method thereof.
  • Zinc oxide (hereinafter also referred to as ZnO) is a semiconductor having a band gap of about 3.3 to 3.4 eV and has excellent optical transparency. Moreover, it is also abundant in terms of resources, and its application to various light emitting elements such as LEDs is being studied. These applications require high-quality single crystal wafers, and various manufacturing methods have been proposed.
  • Patent Document 1 Japanese Patent No. 4427347
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-315361 disclose a technique for producing a ZnO single crystal by a hydrothermal method.
  • Patent Document 3 Japanese Patent Laid-Open No. 2011-124330 discloses a method for growing a ZnO single crystal film by MOCVD (metal organic chemical vapor deposition).
  • Patent Document 4 Japanese Patent No. 4665175 discloses an oriented ZnO crystal film made of an assembly of ZnO nanosheets, but there are problems such as being not dense and having a small crystallite size.
  • Patent Document 5 Japanese Patent Laid-Open No. 2004-315342 discloses an oriented ZnO crystal film formed on a substrate by using an aqueous solution deposition method, but the crystal size is as small as 0.1 to 1 ⁇ m in diameter. Met.
  • single crystal substrates are generally small in area and expensive.
  • cost reduction of LED manufacturing using a large area substrate has been demanded, but it is not easy to mass-produce a large area single crystal substrate, and the manufacturing cost is further increased. Therefore, an inexpensive material that can be a preferable alternative material for a single crystal substrate such as zinc oxide is desired.
  • the present inventors have now obtained the knowledge that a zinc oxide free-standing substrate that is inexpensive and suitable for large area can be produced as a preferable alternative material for a zinc oxide single crystal substrate.
  • an object of the present invention is to provide a zinc oxide self-supporting substrate useful as a preferable alternative material for a zinc oxide single crystal substrate that is inexpensive and suitable for increasing the area.
  • the present invention is composed of a plate composed of a plurality of zinc oxide single crystal particles having a single crystal structure in a substantially normal direction, and the cross-sectional average diameter of the zinc oxide single crystal particles exceeds 1 ⁇ m.
  • a zinc oxide free-standing substrate is provided.
  • a step of preparing an oriented polycrystalline sintered body Forming a layer composed of a zinc oxide-based crystal having a thickness of 20 ⁇ m or more on the oriented polycrystalline sintered body so as to have a crystal orientation substantially following the crystal orientation of the oriented polycrystalline sintered body; Removing the oriented polycrystalline sintered body to obtain a zinc oxide free-standing substrate; A method for manufacturing a zinc oxide self-supporting substrate is provided.
  • the zinc oxide substrate of the present invention can have the form of a free standing substrate.
  • the “self-supporting substrate” means a substrate that can be handled as a solid material without being deformed or damaged by its own weight when handled.
  • the thickness of the zinc oxide self-supporting substrate is not particularly limited as long as it can provide the substrate with self-supporting properties, but is preferably 20 ⁇ m or more, more preferably 100 ⁇ m or more, and further preferably 300 ⁇ m or more.
  • An upper limit should not be defined for the thickness of the zinc oxide free-standing substrate, but 3000 ⁇ m or less is realistic from the viewpoint of manufacturing cost.
  • the zinc oxide self-supporting substrate of the present invention comprises a plate composed of a plurality of zinc oxide single crystal particles having a single crystal structure in a substantially normal direction. That is, the zinc oxide free-standing substrate is composed of a plurality of zinc oxide single crystal particles that are two-dimensionally connected in the horizontal plane direction, and therefore has a single crystal structure in a substantially normal direction. . Therefore, although the zinc oxide free-standing substrate as a whole is not a single crystal, it has a single crystal structure in a local domain unit, so that a light emitting element, a light receiving element, a solar cell, a photonic crystal, a micro ultraviolet laser, a piezoelectric body, It can be used as a substrate for various devices such as a gas sensor.
  • the zinc oxide free-standing substrate of the present invention is not a single crystal substrate.
  • the single crystal substrate generally has a small area and is expensive.
  • there has been a demand for cost reduction of LED manufacturing using a large area substrate but it is not easy to mass-produce a large area single crystal substrate, and the manufacturing cost is further increased.
  • the plurality of zinc oxide-based single crystal particles constituting the self-supporting substrate have crystal orientations substantially aligned in a substantially normal direction.
  • Crystal orientation that is generally aligned in the normal direction is not necessarily a crystal orientation that is perfectly aligned in the normal direction, as long as a device such as a light-emitting element using a self-supporting substrate can ensure desired device characteristics. This means that the crystal orientation may be aligned to some extent in the normal or similar direction.
  • the zinc oxide-based single crystal particles have a structure grown substantially following the crystal orientation of the oriented polycrystalline sintered body used as the base material in the manufacture of the zinc oxide self-supporting substrate. It can also be said.
  • the “structure grown substantially following the crystal orientation of the oriented polycrystalline sintered body” means a structure brought about by crystal growth affected by the crystal orientation of the oriented polycrystalline sintered body, and is not necessarily oriented.
  • the crystal of the oriented polycrystalline sintered body is not necessarily a structure that has grown completely following the crystal orientation of the crystalline sintered body, as long as a device such as a light-emitting element using a self-supporting substrate can ensure the desired device characteristics. It may be a structure grown to some extent along the direction. That is, this structure includes a structure that grows in a different crystal orientation from the oriented polycrystalline sintered body. In that sense, the expression “a structure grown substantially following the crystal orientation” can also be rephrased as “a structure grown substantially derived from the crystal orientation”.
  • the zinc oxide free-standing substrate can have a structure in which the crystal orientations are substantially uniform with respect to the substantially normal direction.
  • the zinc oxide free-standing substrate is an aggregate of columnar-structured zinc oxide single crystal particles that are observed as single crystals when viewed in the normal direction, and grain boundaries are observed when viewed in the cut plane in the horizontal plane direction. It is also possible to grasp that.
  • the “columnar structure” does not mean only a typical vertically long column shape, but includes various shapes such as a horizontally long shape, a trapezoidal shape, and a shape in which the trapezoid is inverted. Defined as meaning.
  • the zinc oxide free-standing substrate may be a structure having a crystal orientation that is aligned to some extent in the normal or similar direction, and does not necessarily have a columnar structure in a strict sense.
  • the cause of the columnar structure is considered to be because the zinc oxide single crystal particles grow under the influence of the crystal orientation of the oriented polycrystalline sintered body used for the manufacture of the zinc oxide free-standing substrate as described above.
  • the average particle diameter of the cross section of zinc oxide single crystal particles which can be said to be a columnar structure (hereinafter referred to as the average diameter of the cross section) depends not only on the film forming conditions but also on the average particle diameter of the plate surface of the oriented polycrystalline sintered body It is thought to do.
  • the crystallinity of the zinc oxide single crystal particles constituting the zinc oxide free-standing substrate tends to be high, and the density of defects such as dislocations can be kept low. For this reason, it is considered that in certain applications such as a light-emitting device, it is possible to preferably use a zinc oxide free-standing substrate as compared with a commercially available zinc oxide single crystal substrate.
  • a functional layer is formed on a zinc oxide free-standing substrate by epitaxial growth, the functional layer grows substantially following the underlying zinc oxide free-standing substrate and becomes an aggregate of columnar structures.
  • epitaxial growth since the underlying crystal quality is inherited, a high crystal quality can be obtained in each domain unit of the columnar structure constituting the functional layer.
  • the defect density of the crystal grains constituting the zinc oxide free-standing substrate is low is not clear, but among the lattice defects generated at the initial stage of the zinc oxide free-standing substrate, the one that progresses in the horizontal direction is the grain boundary as it grows. It is thought that it is absorbed and disappears.
  • the grain boundaries that define the horizontal boundaries of the single crystal grains have the effect of scattering or reflecting when light is transmitted in the horizontal direction. For this reason, when the zinc oxide free-standing substrate is applied to a light-emitting device having a structure in which light is extracted in the normal direction, an effect of increasing luminance due to scattered light from the grain boundary is also expected.
  • the cross-sectional average diameter of the columnar structure exceeds at least 1 ⁇ m. is required.
  • the cross-sectional average diameter of the single crystal particles of the zinc oxide free-standing substrate is preferably 3 ⁇ m or more, and more preferably 10 ⁇ m or more.
  • the “average cross-sectional diameter” is calculated as follows. First, the cross section of the zinc oxide free-standing substrate is polished, and an image of the cross section is taken using a scanning electron microscope. When the line segment is drawn in the thickness direction, the field of view area is divided into (a) the center of the line segment and (b) the line segment from the center to one end, and (c) the line segment. A straight line that intersects with 10 to 30 single crystal particles when a straight line is drawn in the horizontal direction at each position where the distance from the center to the end opposite to (b) is bisected. The range is such that it can be drawn.
  • a horizontal straight line is drawn so as to cross the columnar structure of the single crystal particle at each position of (a), (b) and (c), and for each particle where each straight line intersects, each individual particle A value obtained by multiplying the average length of the line segments on the inside by 1.5 is taken as the average cross-sectional diameter of the zinc oxide single crystal particles constituting the zinc oxide self-supporting substrate.
  • thermal etching, chemical etching, plasma etching, etc. are performed, and the above evaluation is performed after performing the treatment that makes the interface stand out. You may go. Further, as long as the same evaluation as described above can be performed, the field of view may be divided and photographed individually and evaluated.
  • the sintered particle size on the plate surface of the particles constituting the oriented polycrystalline sintered body used for the production of the zinc oxide self-supporting substrate is set to 1 ⁇ m to 1000 ⁇ m. It is desirable that the thickness be 3 ⁇ m to 1000 ⁇ m, and more desirably 10 ⁇ m to 1000 ⁇ m.
  • the zinc oxide single crystal particles constituting the zinc oxide self-supporting substrate may contain a dopant or may contain no dopant.
  • dopant means that an element added for the purpose of imparting some function or characteristic is not contained, and it is needless to say that inclusion of inevitable impurities is allowed.
  • the zinc oxide single crystal particles constituting the zinc oxide free-standing substrate may be doped with an n-type dopant or a p-type dopant. In this case, the zinc oxide free-standing substrate is used as a functional layer having semiconductor characteristics. be able to.
  • Preferred examples of the p-type dopant include nitrogen (N), phosphorus (P), arsenic (As), carbon (C), lithium (Li), sodium (Na), potassium (K), silver (Ag), and copper. 1 or more types selected from the group which consists of (Cu) are mentioned.
  • Preferred examples of the n-type dopant include aluminum (Al), gallium (Ga), indium (In), boron (B), fluorine (F), chlorine (Cl), bromine (Br), iodine (I) and silicon. 1 or more types selected from the group which consists of (Si) are mentioned.
  • the zinc oxide single crystal particles constituting the zinc oxide free-standing substrate may be mixed to control the band gap.
  • the zinc oxide single crystal particles may be composed of ZnO mixed with at least one crystal selected from the group consisting of MgO, CdO, ZnS, ZnSe, and ZnTe, and may be p-type oxidized.
  • the mixed crystal zinc oxide may be doped with a p-type dopant or an n-type dopant.
  • it can be used as a p-type substrate by doping N into Zn x Mg 1-x O, which is a mixed crystal of ZnO and MgO.
  • the zinc oxide free-standing substrate preferably has a diameter of 50.8 mm (2 inches) or more, more preferably has a diameter of 100 mm (4 inches) or more, and more preferably has a diameter of 200 mm (8 inches) or more.
  • a larger zinc oxide self-supporting substrate is preferable from the viewpoint of manufacturing cost because the number of devices that can be manufactured increases. Further, when used as a substrate for a light emitting device, it is preferable from the viewpoint that the degree of freedom of the device area is increased and the application to surface emitting illumination is widened, and the upper limit should not be defined for the area or size.
  • the zinc oxide free-standing substrate is preferably circular or substantially circular when viewed from above, but is not limited thereto.
  • the area is preferably at 2026Mm 2 or more, more preferably 7850mm 2 or more, further preferably 31400Mm 2 or more.
  • the area may be smaller than the above range, for example, a diameter of 50.8 mm (2 inches) or less, and 2026 mm 2 or less in terms of area.
  • the zinc oxide self-supporting substrate of the present invention comprises (1) an oriented polycrystalline sintered body, and (2) a layer composed of a zinc oxide-based crystal having a thickness of 20 ⁇ m or more on the oriented polycrystalline sintered body. Can be produced by having a crystal orientation substantially following the crystal orientation of the oriented polycrystalline sintered body, and (3) removing the oriented polycrystalline sintered body to obtain a zinc oxide self-supporting substrate. .
  • Oriented polycrystalline sintered body An oriented polycrystalline sintered body is prepared as a base substrate for producing a zinc oxide self-supporting substrate.
  • the composition of the oriented polycrystalline sintered body is not particularly limited, but the oriented polycrystalline sintered body is composed of zinc oxide (ZnO), alumina (Al 2 O 3 ), aluminum nitride (AlN), and gallium nitride (GaN). It is preferable to include one selected from the main components (or main phase), more preferably alumina or zinc oxide.
  • the oriented polycrystalline sintered body may contain inevitable impurities, an n-type or p-type dopant, and / or a sintering aid, and comprises a mixed crystal with different materials (for example, oriented ZnMgO). There may be.
  • An oriented polycrystalline sintered body can be efficiently manufactured through molding and firing using commercially available plate-like powder, so it can be manufactured at a low cost, but also because it is easy to mold, it can also increase the area. Suitable.
  • zinc oxide useful as a substrate for various devices is obtained by using an oriented polycrystalline sintered body as a base substrate and growing a plurality of zinc oxide-based single crystal particles thereon. A free-standing substrate can be manufactured.
  • the oriented polycrystalline sintered body is composed of a sintered body including a large number of single crystal particles, and a large number of single crystal particles are oriented to some extent or highly in a certain direction.
  • a polycrystalline sintered body oriented in this way it is possible to produce a zinc oxide free-standing substrate having a crystal orientation substantially aligned in a substantially normal direction, such as zinc oxide or gallium nitride on the zinc oxide free-standing substrate.
  • a semiconductor material is formed by epitaxial growth or similar crystal growth, a state in which crystal orientations are substantially aligned in a substantially normal direction is realized.
  • the functional layer can be formed in a state in which the crystal orientation is substantially aligned in a substantially normal direction, High device characteristics (for example, light emission efficiency) equivalent to the case of using a single crystal substrate can be realized.
  • this highly oriented zinc oxide self-supporting substrate is used as a functional layer of a device such as a light emitting element, high device characteristics (for example, luminous efficiency) equivalent to the case of using a single crystal substrate can be realized.
  • a hot isostatic pressing method HIP
  • HP hot press method
  • SPS discharge plasma sintering
  • the oriented polycrystalline sintered body preferably has a diameter of 50.8 mm (2 inches) or more, more preferably has a diameter of 100 mm (4 inches) or more, and more preferably has a diameter of 200 mm (8 inches) or more. .
  • the larger the oriented polycrystalline sintered body is the larger the area of the zinc oxide free-standing substrate that can be produced, which increases the number of light-emitting elements that can be produced, which is preferable from the viewpoint of production cost. Further, when used as a substrate for a light emitting device, it is preferable from the viewpoint that the degree of freedom of the device area is increased and the application to surface emitting illumination is widened, and the upper limit should not be defined for the area or size.
  • the zinc oxide free-standing substrate is preferably circular or substantially circular when viewed from above, but is not limited thereto. If not a circular or substantially circular shape, as the area is preferably at 2026Mm 2 or more, more preferably 7850mm 2 or more, further preferably 31400Mm 2 or more. However, for applications that do not require a large area, the area may be smaller than the above range, for example, a diameter of 50.8 mm (2 inches) or less, and 2026 mm 2 or less in terms of area.
  • the thickness of the oriented polycrystalline sintered body is not particularly limited as long as it is self-supporting, but if it is too thick, it is not preferable from the viewpoint of production cost. Accordingly, the thickness is preferably 20 ⁇ m or more, more preferably 100 ⁇ m or more, and further preferably 100 to 1000 ⁇ m.
  • the sintered particle size on the plate surface of the particles constituting the oriented polycrystalline sintered body is preferably 1 ⁇ m to 1000 ⁇ m, more preferably 3 ⁇ m to 1000 ⁇ m, and even more preferably 10 ⁇ m to 1000 ⁇ m.
  • the sintered particle diameter is within such a range, it becomes easy to produce zinc oxide single crystal particles having a cross-sectional average diameter exceeding 1 ⁇ m.
  • the sintered grain size of the oriented polycrystalline sintered body varies among materials, it can be preferably adjusted by controlling the firing conditions such as the firing temperature, the raw material grain size, the addition of a sintering aid, and the like.
  • grains in this invention is measured with the following method.
  • the visual field range is a visual field range in which a straight line intersecting 10 to 30 particles can be drawn when a straight line is drawn on the diagonal line of the obtained image. Two straight lines are drawn on the diagonal line of the obtained image, and the value obtained by multiplying the average of the length of the inner line segment of each particle by 1.5 for all the particles that intersect the line.
  • the average particle size of is performed after performing the process of making the interface stand out by thermal etching (for example, 1550 ° C. for 45 minutes) or chemical etching. You may go.
  • the material and orientation plane orientation of the oriented polycrystalline sintered body are similar to the crystal structure of zinc oxide, and are not particularly limited as long as the zinc oxide film can grow following the base.
  • the orientation plane orientation may be the (002) plane, the (100) plane, or the (110) plane. It may be the (101) plane or another plane.
  • the degree of orientation for example, the degree of orientation on the substrate surface is preferably 50% or more, more preferably 65% or more, and further preferably 75% or more. This degree of orientation can be calculated using the Lotgering method.
  • an XRD apparatus for example, product name “RINT-TTR III” manufactured by Rigaku Corporation
  • RINT-TTR III manufactured by Rigaku Corporation
  • An oriented polycrystalline alumina sintered body is also a preferred oriented polycrystalline sintered body.
  • Alumina is aluminum oxide (Al 2 O 3 ), which is typically ⁇ -alumina having the same corundum type structure as single crystal sapphire, and the oriented polycrystalline alumina sintered body has innumerable alumina crystal particles oriented. Solids that are bonded together by sintering.
  • the alumina crystal particles are particles composed of alumina, and may include a dopant and inevitable impurities as other elements, or may be composed of alumina and inevitable impurities.
  • the oriented polycrystalline alumina sintered body may also contain other phases or other elements as described above in addition to the alumina crystal particles, but preferably comprises alumina crystal particles and inevitable impurities.
  • the orientation plane of the oriented polycrystalline alumina sintered body is not particularly limited, and may be a c-plane, a-plane, r-plane, m-plane, or the like.
  • the oriented crystal orientation of the oriented polycrystalline alumina sintered body is not particularly limited, and may be c-plane, a-plane, r-plane, m-plane, etc., from the viewpoint of lattice constant matching with a zinc oxide free-standing substrate. It is preferably oriented in the c-plane or a-plane.
  • the degree of orientation on the plate surface is preferably 50% or more, more preferably 65% or more, still more preferably 75% or more, particularly preferably 85%, and particularly preferably. 90% or more, and most preferably 95% or more.
  • This degree of orientation is calculated by the following equation by measuring the XRD profile when X-rays are irradiated on the plate surface of plate-like alumina using an XRD apparatus (for example, RINT-TTR III, manufactured by Rigaku Corporation). It is obtained by doing.
  • An oriented polycrystalline alumina sintered body can be produced by molding and sintering using a plate-like alumina powder as a raw material.
  • Plate-like alumina powder is commercially available and is commercially available.
  • the plate-like alumina powder can be oriented by a technique using shearing force to obtain an oriented molded body.
  • the technique using shearing force include tape molding, extrusion molding, doctor blade method, and any combination thereof.
  • the orientation method using the shearing force is made into a slurry by appropriately adding additives such as a binder, a plasticizer, a dispersing agent, and a dispersion medium to the plate-like alumina powder.
  • the slit width of the discharge port is preferably 10 to 400 ⁇ m.
  • the amount of the dispersion medium is preferably such that the slurry viscosity is 5000 to 100,000 cP, more preferably 20000 to 60000 cP.
  • the thickness of the oriented molded body formed into a sheet is preferably 5 to 500 ⁇ m, more preferably 10 to 200 ⁇ m. It is preferable to stack a large number of oriented molded bodies formed in this sheet shape to form a precursor laminate having a desired thickness, and press-mold the precursor laminate.
  • This press molding can be preferably performed by isostatic pressing at a pressure of 10 to 2000 kgf / cm 2 in warm water at 50 to 95 ° C. by packaging the precursor laminate with a vacuum pack or the like.
  • the sheet-shaped molded body is integrated and laminated in the mold after passing through a narrow discharge port in the mold due to the design of the flow path in the mold.
  • the molded body may be discharged.
  • the obtained molded body is preferably degreased according to known conditions.
  • the oriented molded body obtained as described above is subjected to pressure firing such as hot isostatic pressing (HIP), hot pressing (HP), spark plasma sintering (SPS), etc. in addition to normal atmospheric firing.
  • pressure firing such as hot isostatic pressing (HIP), hot pressing (HP), spark plasma sintering (SPS), etc. in addition to normal atmospheric firing.
  • Firing is performed by a sintering method or a combination of these methods to form an alumina sintered body containing oriented alumina crystal particles.
  • the firing temperature and firing time in the firing vary depending on the firing method, the firing temperature is 1100 to 1900 ° C., preferably 1500 to 1800 ° C., and the firing time is 1 minute to 10 hours, preferably 30 minutes to 5 hours.
  • a first firing step of firing in a hot press at 1500 to 1800 ° C. for 2 to 5 hours under a surface pressure of 100 to 200 kgf / cm 2 and the obtained sintered body is subjected to hot isostatic pressing (HIP) More preferably, it is carried out through a second firing step in which firing is carried out again at 1500 to 1800 ° C.
  • HIP hot isostatic pressing
  • the firing time at the above-mentioned firing temperature is not particularly limited, but is preferably 1 to 10 hours, and more preferably 2 to 5 hours.
  • the alumina sintered body thus obtained becomes a polycrystalline alumina sintered body oriented in a desired plane such as the c-plane depending on the type of plate-like alumina powder used as the raw material. It is preferable that the oriented polycrystalline alumina sintered body thus obtained is ground with a grindstone to flatten the plate surface, and then the plate surface is smoothed by lapping using diamond abrasive grains to obtain an oriented alumina substrate.
  • a layer composed of a zinc oxide crystal having a thickness of 20 ⁇ m or more (hereinafter referred to as a zinc oxide crystal layer) is formed on an oriented polycrystalline sintered body. It is formed so as to have a crystal orientation substantially following the orientation.
  • the method for forming the zinc oxide crystal layer is preferably at least one selected from methods such as a solid phase epitaxial growth method, an aqueous solution deposition method, a hydrothermal method, a spin coating method, and a dipping method.
  • the solid phase epitaxial growth method can be preferably performed, for example, by forming a film on a substrate by an aerosol deposition method (AD method) and making a single crystal by heating a film.
  • the liquid phase epitaxial growth method is suitable for forming a thick zinc oxide crystal layer, and an aqueous solution precipitation method or a hydrothermal method is particularly suitable.
  • a seed crystal layer made of a zinc oxide-based material is formed on the oriented polycrystalline sintered body so as to have a crystal orientation that substantially follows the crystal orientation of the oriented polycrystalline sintered body. May be.
  • This is an effective technique when a material different from zinc oxide is used as the oriented polycrystalline sintered body.
  • the seed crystal layer formation method is not particularly limited, but may be a vapor phase method such as MOCVD (metal organic chemical vapor deposition), MBE (molecular beam epitaxy), or sputtering.
  • the oriented polycrystalline sintered body is removed to obtain a zinc oxide self-supporting substrate.
  • the method for removing the oriented polycrystalline sintered body is not particularly limited. However, grinding, chemical etching, interfacial heating (laser lift-off) by laser irradiation from the oriented polycrystalline sintered body side, and thermal expansion difference during temperature rise are used. And spontaneous peeling.
  • Example 1 Production of a self-supporting oriented ZnO substrate using an oriented Al 2 O 3 sintered body (1) Production of a c-plane oriented alumina sintered body As a raw material, a plate-like alumina powder (manufactured by Kinsei Matech Co., Ltd., grade 00700) was used. Prepared.
  • binder polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.
  • plasticizer DOP: di (2-ethylhexyl) phthalate, black metal chemicals 3.5 parts by weight
  • a dispersant Rosui Chemical Co., Ltd.
  • a dispersion medium 2-ethylhexanol
  • the obtained tape was cut into a circular shape having a diameter of 50.8 mm (2 inches), 150 sheets were laminated, placed on an Al plate having a thickness of 10 mm, and then vacuum-packed. This vacuum pack was hydrostatically pressed in warm water at 85 ° C. at a pressure of 100 kgf / cm 2 to obtain a disk-shaped molded body.
  • the obtained molded body was placed in a degreasing furnace and degreased at 600 ° C. for 10 hours.
  • the obtained degreased body was fired in a nitrogen atmosphere at 1600 ° C. for 4 hours under a surface pressure of 200 kgf / cm 2 using a graphite mold.
  • the obtained sintered body was fired again at 1700 ° C. for 2 hours in argon at a gas pressure of 1500 kgf / cm 2 by a hot one-pressure method (HIP).
  • HIP hot one-pressure method
  • the sintered body thus obtained is fixed to a ceramic surface plate and ground to # 2000 using a grindstone to flatten the plate surface, and the orientation is 2 inches 50.8 mm (2 inches) in diameter and 1 mm in thickness.
  • An alumina sintered body was obtained as an oriented alumina substrate. Further, the flatness was improved while gradually reducing the size of the abrasive grains from 3 ⁇ m to 0.5 ⁇ m. The average roughness Ra after processing was about 80 nm.
  • the average particle diameter of the plate surface was measured with the following method.
  • the plate surface of the obtained oriented alumina substrate was polished and subjected to thermal etching at 1550 ° C. for 45 minutes, and then an image was taken with a scanning electron microscope.
  • the visual field range was such that a straight line intersecting 10 to 30 particles could be drawn when a straight line was drawn on the diagonal line of the obtained image.
  • the average particle size of the plate surface was 100 ⁇ m.
  • the cross-sectional average diameter of the columnar structure of the ZnO freestanding substrate was measured by the following method. After the sample cross section was polished, thermal etching was performed at 1250 ° C. for 45 minutes, and an image of the cross section was taken with a scanning electron microscope. When the line segment is drawn in the thickness direction, (a) the center of the line segment, (b) the position from the center of the line segment to one end, and (c) the line segment. 10 to 30 when a straight line is drawn horizontally to the plate surface so as to cross the columnar structure at each position where the distance between the center of the plate and the end on the opposite side to (b) is bisected.
  • the range was such that a straight line intersecting the columnar structure could be drawn.
  • the images were appropriately segmented.
  • a horizontal straight line is drawn across the columnar structure at each of the positions (a), (b), and (c) from the obtained image.
  • a value obtained by multiplying the average length of the line segments by 1.5 was defined as the average cross-sectional diameter of the ZnO single crystal particles constituting the ZnO free-standing substrate.
  • the average cross-sectional diameter was about 100 ⁇ m.
  • the interface could be clearly discriminated by the scanning microscope image of the cross section subjected to the thermal etching.
  • the above evaluation may be performed after performing a process for making the interface stand out by chemical etching or plasma etching.
  • Example 2 Production of a self-supporting oriented ZnO substrate using an oriented ZnO sintered body (1) Production of a c-plane oriented ZnO sintered body (1a) Production of a plate-like zinc oxide powder A c-plane oriented ZnO powder was prepared as follows. Produced. 173 parts by weight of zinc sulfate heptahydrate (manufactured by High Purity Chemical Laboratory) and 0.45 part by weight of sodium gluconate (manufactured by Wako Pure Chemical Industries) were dissolved in 300 parts by weight of ion-exchanged water. The solution thus obtained was placed in a beaker and dissolved by heating to 90 ° C. while stirring with a magnetic stirrer.
  • zinc sulfate heptahydrate manufactured by High Purity Chemical Laboratory
  • sodium gluconate manufactured by Wako Pure Chemical Industries
  • This solution was kept at 90 ° C., and 49 parts by weight of 25% ammonium water was added dropwise with a microtube pump while stirring. After completion of dropping, the solution was kept at 90 ° C. with stirring for 4 hours, and then the solution was poured into a large amount of ion-exchanged water and allowed to stand. The precipitate deposited on the bottom of the container was separated by filtration, further washed with ion-exchanged water three times, and dried to obtain a white powdered zinc oxide precursor. The obtained zinc oxide precursor was placed on a zirconia setter and calcined in the air in an electric furnace to obtain a zinc oxide plate-like porous powder. The temperature schedule at the time of calcination was raised from room temperature to 900 ° C. at a rate of temperature increase of 100 ° C./h, and then kept at 900 ° C. for 30 minutes to allow natural cooling.
  • the slurry thus prepared was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 20 ⁇ m.
  • the obtained tape was cut into a sheet of 20 ⁇ 20 cm, 500 pieces of cutting tape were stacked, placed on an aluminum plate having a thickness of 10 mm, and then vacuum packed. This vacuum pack was hydrostatically pressed in warm water at 85 ° C. at a pressure of 100 kgf / cm 2 to produce a plate-like molded body.
  • the obtained molded body was placed in a degreasing furnace and degreased at 600 ° C. for 20 hours.
  • the obtained degreased body was fired under normal pressure at 1400 ° C. for 5 hours in nitrogen to produce a plate-like oriented ZnO sintered body substrate.
  • a disc having a diameter of 50.8 mm (2 inches) was cut out from the sintered body thus obtained.
  • the disc was fixed to a ceramic surface plate and ground to # 2000 using a grindstone to flatten the plate surface, and an oriented alumina sintered body having a diameter of 2 inches and a thickness of 1 mm was obtained as an oriented alumina substrate. Further, the flatness was improved while gradually reducing the size of the abrasive grains from 3 ⁇ m to 0.5 ⁇ m.
  • the average roughness Ra after processing was about 50 nm.
  • the average particle diameter of the plate surface was measured with the following method.
  • the plate surface of the obtained oriented ZnO substrate was polished, etched with nitric acid having a concentration of 0.3 M for 10 seconds, and then images were taken with a scanning electron microscope.
  • the visual field range was such that a straight line intersecting 10 to 30 particles could be drawn when a straight line was drawn on the diagonal line of the obtained image.
  • the average particle size of the plate surface was 38 ⁇ m.
  • a ZnO film having a thickness of about 900 ⁇ m was formed by the same method as in Example 1 except that an oriented ZnO substrate was used instead of the oriented alumina substrate and no seed crystal layer was formed.
  • removal of the oriented ZnO substrate, grinding, and evaluation of the cross-sectional average diameter were carried out in the same manner as in Example 1 to obtain a ZnO free-standing substrate having a thickness of 500 ⁇ m and a cross-sectional average diameter of about 40 ⁇ m.
  • Example 3 Self-supporting oriented ZnO substrate using hydrothermal method
  • Solution A was prepared by dissolving zinc nitrate in pure water to a concentration of 0.1M.
  • 1M ammonia water was prepared to prepare a solution B.
  • Solution B 1: 1 to obtain a growing aqueous solution.
  • an oriented ZnO substrate produced by the same method as in Example 2 (1) was suspended in 1 liter of an aqueous solution for growth, placed in an autoclave, hydrothermally treated at 270 ° C. for 24 hours, and an oriented alumina substrate A ZnO film was deposited thereon.
  • the deposition process of the ZnO film was performed 30 times, followed by annealing at 500 ° C. in the atmosphere to form a ZnO film having a thickness of about 1000 ⁇ m.
  • removal of the oriented ZnO substrate and grinding, and evaluation of the cross-sectional average diameter were carried out in the same manner as in Example 1 to obtain a ZnO free-standing substrate having a thickness of 500 ⁇ m and a cross-sectional average diameter of about 40 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Recrystallisation Techniques (AREA)
  • Led Devices (AREA)

Abstract

 略法線方向に単結晶構造を有する複数の酸化亜鉛系単結晶粒子で構成される板からなり、前記酸化亜鉛系単結晶粒子の断面平均径が1μmを超える、酸化亜鉛自立基板が提供される。この酸化亜鉛自立基板は、配向多結晶焼結体を用意する工程と、配向多結晶焼結体上に、厚さ20μm以上の酸化亜鉛系結晶から構成される層を、配向多結晶燒結体の結晶方位に概ね倣った結晶方位を有するように形成する工程と、配向多結晶焼結体を除去して、酸化亜鉛自立基板を得る工程とを含む方法により製造することができる。本発明によれば、安価で且つ大面積化にも適した、酸化亜鉛単結晶基板の好ましい代替材料として有用な酸化亜鉛自立基板を提供することができる。

Description

酸化亜鉛自立基板及びその製造方法
 本発明は、酸化亜鉛自立基板及びその製造方法に関する。
 酸化亜鉛(以下、ZnOともいう)はバンドギャップが3.3~3.4eV程度の半導体であり、光学的透明性に優れた特性を有している。また、資源的にも豊富であり、LEDなどの各種発光素子への応用が検討されている。これらの用途には良質な単結晶ウェハが必要であり、種々の製造手法が提案されてきた。例えば、特許文献1(特許第4427347号公報)及び特許文献2(特開2004-315361号公報)には、水熱法によりZnO単結晶を作製する手法が開示されている。また、特許文献3(特開2011-124330公報)には、MOCVD法(有機金属気相成長法)によるZnO単結晶膜の成長方法が開示されている。
 一方、配向ZnO結晶膜も提案されている。例えば、特許文献4(特許第4665175号公報)にはZnOナノシートの集積体からなる配向ZnO結晶膜が開示されているが、緻密でない、結晶子サイズが小さい等の問題がある。特許文献5(特開2004-315342号公報)には水溶液析出法を用いて基板上に形成された配向ZnO結晶膜が開示されているが、その結晶サイズは直径0.1~1μmと小さいものであった。
特許第4427347号公報 特開2004-315361号公報 特開2011-124330公報 特許第4665175号公報 特開2004-315342号公報
 しかしながら、単結晶基板は一般的に面積が小さく且つ高価なものである。特に、大面積基板を用いたLED製造の低コスト化が求められてきているが、大面積の単結晶基板を量産することは容易なことではなく、その製造コストはさらに高くなる。そこで、酸化亜鉛等の単結晶基板の好ましい代替材料となりうる安価な材料が望まれる。
 本発明者らは、今般、酸化亜鉛単結晶基板の好ましい代替材料として、安価で且つ大面積化にも適した酸化亜鉛自立基板を作製できるとの知見を得た。
 したがって、本発明の目的は、安価で且つ大面積化にも適した、酸化亜鉛単結晶基板の好ましい代替材料として有用な酸化亜鉛自立基板を提供することにある。
 本発明の一態様によれば、略法線方向に単結晶構造を有する複数の酸化亜鉛系単結晶粒子で構成される板からなり、前記酸化亜鉛系単結晶粒子の断面平均径が1μmを超える、酸化亜鉛自立基板が提供される。
 本発明の他の一態様によれば、配向多結晶焼結体を用意する工程と、
 前記配向多結晶焼結体上に、厚さ20μm以上の酸化亜鉛系結晶から構成される層を、前記配向多結晶燒結体の結晶方位に概ね倣った結晶方位を有するように形成する工程と、
 前記配向多結晶焼結体を除去して、酸化亜鉛自立基板を得る工程と、
を含む、酸化亜鉛自立基板の製造方法が提供される。
 酸化亜鉛自立基板
 本発明の酸化亜鉛基板は自立基板の形態を有しうる。本発明において「自立基板」とは、取り扱う際に自重で変形又は破損せず、固形物として取り扱うことのできる基板を意味する。酸化亜鉛自立基板の厚さは基板に自立性を付与できるかぎり特に限定されないが、20μm以上が好ましく、より好ましくは100μm以上であり、さらに好ましくは300μm以上である。酸化亜鉛自立基板の厚さに上限は規定されるべきではないが、製造コストの観点では3000μm以下が現実的である。
 本発明の酸化亜鉛自立基板は、略法線方向に単結晶構造を有する複数の酸化亜鉛系単結晶粒子で構成される板からなる。すなわち、酸化亜鉛自立基板は、水平面方向に二次元的に連結されてなる複数の酸化亜鉛系単結晶粒子で構成されており、それ故、略法線方向には単結晶構造を有することになる。したがって、酸化亜鉛自立基板は、全体としては単結晶ではないものの、局所的なドメイン単位では単結晶構造を有するため、発光素子、受光素子、太陽電池、フォトニック結晶、マイクロ紫外レーザー、圧電体、ガスセンサー等の各種デバイス用基板として用いることができる。そうでありながら、本発明の酸化亜鉛自立基板は単結晶基板ではない。前述のとおり、単結晶基板は一般的に面積が小さく且つ高価なものである。特に、近年、大面積基板を用いたLED製造の低コスト化が求められてきているが、大面積の単結晶基板を量産することは容易なことではなく、その製造コストはさらに高くなる。これに対し、本発明によれば、安価で且つ大面積化にも適した、酸化亜鉛単結晶基板の好ましい代替材料として有用な酸化亜鉛自立基板を提供することができる。
 好ましくは、自立基板を構成する複数の酸化亜鉛系単結晶粒子は、略法線方向に概ね揃った結晶方位を有する。「略法線方向に概ね揃った結晶方位」とは、必ずしも法線方向に完全に揃った結晶方位とは限らず、自立基板を用いた発光素子等のデバイスが所望のデバイス特性を確保できるかぎり、法線ないしそれに類する方向にある程度揃った結晶方位であってよいことを意味する。製法由来の表現をすれば、酸化亜鉛系単結晶粒子は、酸化亜鉛自立基板の製造の際に下地基材として使用した配向多結晶焼結体の結晶方位に概ね倣って成長した構造を有するともいえる。「配向多結晶焼結体の結晶方位に概ね倣って成長した構造」とは、配向多結晶焼結体の結晶方位の影響を受けた結晶成長によりもたらされた構造を意味し、必ずしも配向多結晶焼結体の結晶方位に完全に倣って成長した構造であるとは限らず、自立基板を用いた発光素子等のデバイスが所望のデバイス特性を確保できるかぎり、配向多結晶焼結体の結晶方位にある程度倣って成長した構造であってよい。すなわち、この構造は配向多結晶焼結体と異なる結晶方位に成長する構造も含む。その意味で、「結晶方位に概ね倣って成長した構造」との表現は「結晶方位に概ね由来して成長した構造」と言い換えることもでき、この言い換え及び上記意味は本明細書中の同種の表現に同様に当てはまる。したがって、そのような結晶成長はエピタキシャル成長によるものが好ましいが、これに限定されず、それに類する様々な結晶成長の形態であってもよい。いずれにしても、このように成長することで、酸化亜鉛自立基板は略法線方向に関しては結晶方位が概ね揃った構造とすることができる。
 したがって、酸化亜鉛自立基板は、法線方向に見た場合に単結晶と観察され、水平面方向の切断面で見た場合に粒界が観察される柱状構造の酸化亜鉛系単結晶粒子の集合体であると捉えることも可能である。ここで、「柱状構造」とは、典型的な縦長の柱形状のみを意味するのではなく、横長の形状、台形の形状、及び台形を逆さにしたような形状等、種々の形状を包含する意味として定義される。もっとも、上述のとおり、酸化亜鉛自立基板は法線ないしそれに類する方向にある程度揃った結晶方位を有する構造であればよく、必ずしも厳密な意味で柱状構造である必要はない。柱状構造となる原因は、前述のとおり、酸化亜鉛自立基板の製造に用いられる配向多結晶焼結体の結晶方位の影響を受けて酸化亜鉛単結晶粒子が成長するためと考えられる。このため、柱状構造ともいえる酸化亜鉛単結晶粒子の断面の平均粒径(以下、断面平均径という)は成膜条件だけでなく、配向多結晶焼結体の板面の平均粒径にも依存するものと考えられる。
 酸化亜鉛自立基板を構成する酸化亜鉛系単結晶粒子の結晶性は高くなる傾向があり、転位等の欠陥の密度を低く抑えることができる。このため、発光デバイス等のある種の用途においては、酸化亜鉛自立基板を市販の酸化亜鉛単結晶基板に比べて好ましく用いることすら可能になるものと考えられる。例えば、エピタキシャル成長により酸化亜鉛自立基板上に機能層を作製する場合、機能層は下地の酸化亜鉛自立基板に概ね倣って成長し、柱状構造の集合体となる。エピタキシャル成長では下地の結晶品質を引き継ぐため、機能層を構成する柱状構造の各ドメイン単位では高い結晶品質を得ることができる。酸化亜鉛自立基板を構成する結晶粒子の欠陥密度が低い理由は定かではないが、酸化亜鉛自立基板の作製初期で生じた格子欠陥のうち水平方向に傾いて進展するものが成長に伴って粒界に吸収されて消滅するためと考えられる。また、各単結晶粒子の水平方向の境界を画定する粒界は水平方向に光が透過した際に散乱ないし反射する効果がある。このため、酸化亜鉛自立基板を法線方向に光を取り出す構造の発光デバイスに適用した場合、粒界からの散乱光により輝度が高まる効果も期待される。
 もっとも、酸化亜鉛自立基板を構成する柱状構造同士の界面は結晶性が低下するため、粒径が大きく粒界面積が小さいことが必要であり、柱状構造の断面平均径は少なくとも1μmを超える大きさが必要である。また、発光素子等の光デバイス用基板として用いる場合、断面平均径が十分に大きくないと法線方向の可視光透過率が低下するため好ましくない。このため、酸化亜鉛自立基板の単結晶粒子の断面平均径は3μm以上が好ましく、10μm以上が更に好ましい。この断面平均径の上限は特に限定されないが、1000μm以下が現実的である。なお、「断面平均径」の算出方法は下記のとおり行うものとする。まず酸化亜鉛自立基板の断面を研磨し、走査電子顕微鏡を用いて断面の画像を撮影する。視野領域は、厚み方向に線分を引いたときに、(a)線分の中央と、(b)線分の中央から片端部までの間を二等分した位置、(c)線分の中央から上記(b)と反対側の端部までの間を二等分した位置の各位置において、水平方向に直線を引いた場合に10個から30個の単結晶粒子と交わるような直線が引けるような範囲とする。得られた画像において、(a)、(b)及び(c)の各位置で単結晶粒子の柱状組織を横切るように水平な直線を引き、各直線が交わる全ての粒子に対し、個々の粒子の内側の線分の長さを平均したものに1.5を乗じた値を、酸化亜鉛自立基板を構成する酸化亜鉛系単結晶粒子の断面平均径とする。なお、酸化亜鉛自立基板を構成する柱状組織の界面(粒界)が不明瞭な場合はサーマルエッチング、ケミカルエッチング、プラズマエッチング等の処理を行い、界面を際立たせる処理を施した後に上記の評価を行ってもよい。また、上記と同様の評価ができる限り、視野を分割して個別に撮影し、評価してもよい。
 上述したような断面平均径の単結晶粒子を作製するには、酸化亜鉛自立基板の製造に用いられる配向多結晶焼結体を構成する粒子の板面における焼結粒径を1μm~1000μmとするのが望ましく、より望ましくは3μm~1000μm、更に望ましくは10μm~1000μmである。
 酸化亜鉛自立基板を構成する酸化亜鉛系単結晶粒子は、ドーパントを含むものであってよいし、ドーパントを含まないものであってもよい。ここで、「ドーパントを含まない」とは何らかの機能ないし特性の付与を意図して添加された元素を含まないことを意味し、不可避不純物の含有が許容されるのはいうまでもない。あるいは、酸化亜鉛自立基板を構成する酸化亜鉛系単結晶粒子は、n型ドーパント又はp型ドーパントでドープされていてもよく、この場合、酸化亜鉛自立基板を、半導体特性を有する機能層として使用することができる。p型ドーパントの好ましい例としては、窒素(N)、リン(P)、砒素(As)、カーボン(C)、リチウム(Li)、ナトリウム(Na)、カリウム(K)、銀(Ag)及び銅(Cu)からなる群から選択される1種以上が挙げられる。n型ドーパントの好ましい例としては、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、硼素(B)、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)及びシリコン(Si)からなる群から選択される1種以上が挙げられる。
 酸化亜鉛自立基板を構成する酸化亜鉛系単結晶粒子は、バンドギャップの制御のため混晶化されていてもよい。好ましくは、酸化亜鉛単結晶粒子は、MgO、CdO、ZnS、ZnSe及びZnTeからなる群から選択される1種以上の結晶と混晶化されたZnOからなるものであってもよく、p型酸化亜鉛及び/又はn型酸化亜鉛単結晶粒子はこの混晶化された酸化亜鉛にp型ドーパント又はn型ドーパントがドープされていてもよい。例えば、ZnOとMgOの混晶であるZnMg1-xOにNをドーピングすることでp型基板として使用することができる。
 酸化亜鉛自立基板は直径50.8mm(2インチ)以上の大きさを有するのが好ましく、より好ましくは直径100mm(4インチ)以上であり、さらに好ましくは直径200mm(8インチ)以上である。酸化亜鉛自立基板は大きければ大きいほど作製可能な素子の個数が増えるため、製造コストの観点で好ましい。また、発光素子用基板として用いる場合は素子面積の自由度が増え面発光照明等への用途が広がる点で好ましく、その面積ないし大きさに上限は規定されるべきではない。なお、酸化亜鉛自立基板は上面視で円形状あるいは実質的に円形状であることが好ましいが、これに限定されない。円形状あるいは実質的に円形状ではない場合、面積として、2026mm以上であることが好ましく、より好ましくは7850mm以上であり、さらに好ましくは31400mm以上である。もっとも、大面積を要しない用途については、上記範囲よりも小さい面積、例えば直径50.8mm(2インチ)以下、面積換算で2026mm以下としてもよい。
 製造方法
 本発明の酸化亜鉛自立基板は、(1)配向多結晶焼結体を用意し、(2)配向多結晶焼結体上に、厚さ20μm以上の酸化亜鉛系結晶から構成される層を、配向多結晶燒結体の結晶方位に概ね倣った結晶方位を有するように形成し、(3)配向多結晶焼結体を除去して、酸化亜鉛自立基板を得ることにより製造することができる。
(1)配向多結晶焼結体
 酸化亜鉛自立基板を作製するための下地基板として、配向多結晶焼結体を用意する。配向多結晶焼結体の組成は特に限定されないが、配向多結晶焼結体が、酸化亜鉛(ZnO)、アルミナ(Al)、窒化アルミニウム(AlN)及び窒化ガリウム(GaN)からなる群より選択される1種を主成分(ないし主相)として含んでなるのが好ましく、更に好ましくはアルミナ又は酸化亜鉛である。配向多結晶焼結体は、不可避不純物、n型若しくはp型ドーパント、及び/又は焼結助剤を含んでいてもよく、異種材料との混晶(例えば配向ZnMgO等)を含んでなるものであってもよい。配向多結晶焼結体は、商業的に入手可能な板状粉末を用いて成形及び焼成を経て効率的に製造できるため、低コストで製造できるだけでなく、成形しやすいが故に大面積化にも適する。そして、本発明者らの知見によれば、配向多結晶焼結体を下地基板として用い、その上に複数の酸化亜鉛系単結晶粒子を成長させることで、各種デバイス用基板として有用な酸化亜鉛自立基板を製造することができる。
 配向多結晶焼結体は、多数の単結晶粒子を含んで構成される焼結体からなり、多数の単結晶粒子が一定の方向にある程度又は高度に配向したものである。このように配向された多結晶焼結体を用いることで略法線方向に概ね揃った結晶方位を有する酸化亜鉛自立基板を作製可能であり、酸化亜鉛自立基板上に酸化亜鉛や窒化ガリウム等の半導体材料をエピタキシャル成長又はこれに類する結晶成長により形成した場合、略法線方向に結晶方位が概ね揃った状態が実現される。このため、そのような配向性の高い酸化亜鉛自立基板を発光素子等のデバイス用基板として用いれば、機能層を同様に略法線方向に結晶方位が概ね揃った状態で形成することができ、単結晶基板を用いた場合と同等の高いデバイス特性(例えば発光効率)を実現できる。あるいは、この配向性の高い酸化亜鉛自立基板を発光素子等のデバイスの機能層として用いた場合であっても、単結晶基板を用いた場合と同等の高いデバイス特性(例えば発光効率)を実現できる。いずれにしても、このような配向性が高い酸化亜鉛自立基板を作製するには配向多結晶焼結体を下地基板として用いる必要がある。配向多結晶焼結体を得る製法としては、通常の常圧焼結法に加え、熱間等方圧加圧法(HIP)、ホットプレス法(HP)、放電プラズマ焼結(SPS)などの加圧焼結法、及びこれらを組み合わせた方法を用いることができる。
 配向多結晶焼結体は直径50.8mm(2インチ)以上の大きさを有するのが好ましく、より好ましくは直径100mm(4インチ)以上であり、さらに好ましくは直径200mm(8インチ)以上である。配向多結晶焼結体は大きければ大きいほど作製可能な酸化亜鉛自立基板の面積が増え、それにより作製可能な発光素子の個数が増えるため、製造コストの観点で好ましい。また、発光素子用基板として用いる場合は素子面積の自由度が増え面発光照明等への用途が広がる点で好ましく、その面積ないし大きさに上限は規定されるべきではない。なお、酸化亜鉛自立基板は上面視で円形状あるいは実質的に円形状であることが好ましいが、これに限定されない。円形状あるいは実質的に円形状ではない場合、面積として、2026mm以上であることが好ましく、より好ましくは7850mm以上であり、さらに好ましくは31400mm以上である。もっとも、大面積を要しない用途については、上記範囲よりも小さい面積、例えば直径50.8mm(2インチ)以下、面積換算で2026mm以下としてもよい。配向多結晶焼結体の厚さは自立する限り特に限定はないが、厚すぎると製造コストの観点では好ましくない。従って、20μm以上が好ましく、より好ましくは100μm以上であり、さらに好ましくは100~1000μmである。
 配向多結晶焼結体を構成する粒子の板面における焼結粒径は1μm~1000μmとするのが好ましく、より好ましくは3μm~1000μm、さらに好ましくは10μm~1000μmである。このような範囲内の焼結粒径であると、断面平均径が1μmを超える酸化亜鉛系単結晶粒子を作製しやすくなる。配向多結晶燒結体の焼結粒径は材料間で異なるが、焼成温度等の焼成条件や原料粒径の制御、焼結助剤の添加等により好ましく調整することができる。なお、本発明における焼結体粒子の板面における平均粒径は以下の方法により測定されるものである。すなわち、板状焼結体の板面を研磨し、走査電子顕微鏡にて画像を撮影する。視野範囲は、得られる画像の対角線に直線を引いた場合に、いずれの直線も10個から30個の粒子と交わるような直線が引けるような視野範囲とする。得られた画像の対角線に2本の直線を引いて、直線が交わる全ての粒子に対し、個々の粒子の内側の線分の長さを平均したものに1.5を乗じた値を板面の平均粒径とする。なお、板面の走査顕微鏡像で明瞭に焼結体粒子の界面を判別できない場合は、サーマルエッチング(例えば1550℃で45分間)やケミカルエッチングによって界面を際立たせる処理を施した後に上記の評価を行ってもよい。
 配向多結晶焼結体の材質や配向面方位は、酸化亜鉛の結晶構造に類似し、酸化亜鉛膜が下地に倣って成長することができれば特に限定されない。例えば、配向酸化亜鉛焼結体を用いた場合は、その配向面方位が(002)面であってもよいし、(100)面であってもよいし、(110)面であってもよいし、(101)面であってもよいし、他の面であってもよい。配向度については、例えば、基板表面における配向度が50%以上であるのが好ましく、より好ましくは65%以上、さらに好ましくは75%以上である。この配向度はロットゲーリング法を用いて算出することができる。例えば、c面配向酸化亜鉛焼結体を評価する場合にはXRD装置(例えば、株式会社リガク製、製品名「RINT-TTR III」)を用い、板状酸化亜鉛の表面に対してX線を照射したときのXRDプロファイルを測定し、以下の式により算出することにより得られるものである。
Figure JPOXMLDOC01-appb-M000001
 また、配向多結晶アルミナ焼結体も好ましい配向多結晶焼結体である。アルミナは酸化アルミニウム(Al)であり、典型的には単結晶サファイアと同じコランダム型構造を有するα-アルミナであり、配向多結晶アルミナ焼結体は無数のアルミナ結晶粒子が配向された状態で焼結により互いに結合されてなる固体である。アルミナ結晶粒子はアルミナを含んで構成される粒子であり、他の元素として、ドーパント及び不可避不純物を含んでいてもよいし、アルミナ及び不可避不純物からなるものであってもよい。また、配向多結晶アルミナ焼結体も、アルミナ結晶粒子以外に他の相又は上述したような他の元素を含んでいてもよいが、好ましくはアルミナ結晶粒子及び不可避不純物からなる。また、配向多結晶アルミナ焼結体の配向面は特に限定がなく、c面、a面、r面又はm面などであってもよい。
 配向多結晶アルミナ焼結体の配向結晶方位は特に限定されるものではなく、c面、a面、r面又はm面などであってもよく、酸化亜鉛自立基板との格子定数マッチングの観点でc面又はa面に配向しているのが好ましい。配向度については、例えば、板面における配向度が50%以上であるのが好ましく、より好ましくは65%以上、さらに好ましくは75%以上であり、特に好ましくは85%であり、特により好ましくは90%以上であり、最も好ましくは95%以上である。この配向度は、XRD装置(例えば、株式会社リガク製、RINT-TTR III)を用い、板状アルミナの板面に対してX線を照射したときのXRDプロファイルを測定し、以下の式により算出することにより得られるものである。
Figure JPOXMLDOC01-appb-M000002
 配向多結晶アルミナ焼結体は、板状アルミナ粉末を原料として用いて成形及び焼結を行うことにより製造することができる。板状アルミナ粉末は市販されており、商業的に入手可能である。好ましくは、板状アルミナ粉末を、せん断力を用いた手法により配向させ、配向成形体とすることができる。せん断力を用いた手法の好ましい例としては、テープ成形、押出し成形、ドクターブレード法、及びこれらの任意の組合せが挙げられる。せん断力を用いた配向手法は、上記例示したいずれの手法においても、板状アルミナ粉末にバインダー、可塑剤、分散剤、分散媒等の添加物を適宜加えてスラリー化し、このスラリーをスリット状の細い吐出口を通過させることにより、基板上にシート状に吐出及び成形するのが好ましい。吐出口のスリット幅は10~400μmとするのが好ましい。なお、分散媒の量はスラリー粘度が5000~100000cPとなるような量にするのが好ましく、より好ましくは20000~60000cPである。シート状に成形した配向成形体の厚さは5~500μmであるのが好ましく、より好ましくは10~200μmである。このシート状に成形した配向成形体を多数枚積み重ねて、所望の厚さを有する前駆積層体とし、この前駆積層体にプレス成形を施すのが好ましい。このプレス成形は前駆積層体を真空パック等で包装して、50~95℃の温水中で10~2000kgf/cmの圧力で静水圧プレスにより好ましく行うことができる。また、押出し成形を用いる場合には、金型内の流路の設計により、金型内で細い吐出口を通過した後、シート状の成形体が金型内で一体化され、積層された状態で成形体が排出されるようにしてもよい。得られた成形体には公知の条件に従い脱脂を施すのが好ましい。上記のようにして得られた配向成形体を通常の常圧焼成に加え、熱間等方圧加圧法(HIP)、ホットプレス法(HP)、放電プラズマ焼結(SPS)などの加圧焼結法、及びこれらを組み合わせた方法にて焼成し、アルミナ結晶粒子を配向して含んでなるアルミナ焼結体を形成する。上記焼成での焼成温度や焼成時間は焼成方法によって異なるが、焼成温度は1100~1900℃、好ましくは1500~1800℃、焼成時間は1分間~10時間、好ましくは30分間~5時間である。ホットプレスにて1500~1800℃で2~5時間、面圧100~200kgf/cmの条件で焼成する第一の焼成工程と、得られた焼結体を熱間等方圧加圧法(HIP)にて1500~1800℃で30分間~5時間、ガス圧1000~2000kgf/cmの条件で再度焼成する第二の焼成工程を経て行われるのがより好ましい。上記焼成温度での焼成時間は特に限定されないが、好ましくは1~10時間であり、より好ましくは2~5時間である。こうして得られたアルミナ焼結体は、前述した原料となる板状アルミナ粉末の種類によりc面等の所望の面に配向した多結晶アルミナ焼結体となる。こうして得られた配向多結晶アルミナ焼結体を砥石で研削して板面を平坦にした後、ダイヤモンド砥粒を用いたラップ加工により板面を平滑化して配向アルミナ基板とするのが好ましい。
(2)酸化亜鉛結晶層の形成
 配向多結晶焼結体上に、厚さ20μm以上の酸化亜鉛系結晶から構成される層(以下、酸化亜鉛結晶層という)を、配向多結晶燒結体の結晶方位に概ね倣った結晶方位を有するように形成する。酸化亜鉛結晶層の形成方法は、固相エピタキシャル成長法、水溶液析出法、水熱法、スピンコート法、ディッピング法などの液相エピタキシャル法等の方法から選ばれる少なくとも1種以上が好ましく例示される。固相エピタキシャル成長法は、例えば、基板上にエアロゾルデポジション法(AD法)により成膜しておき、被膜加熱により単結晶化することにより好ましく行うことができる。また、液相エピタキシャル成長法は厚い酸化亜鉛結晶層を形成するのに適しており、水溶液析出法、又は水熱法が特に適する。
 酸化亜鉛結晶層の形成に先立ち、配向多結晶焼結体上に、酸化亜鉛系材料からなる種結晶層を、配向多結晶焼結体の結晶方位に概ね倣った結晶方位を有するように形成してもよい。これは、配向多結晶焼結体として酸化亜鉛と異なる材質を用いる場合に有効な手法である。種結晶の組成や構造に限定はないが、酸化亜鉛と格子定数が近い結晶構造を持つものであればよく、例えば酸化亜鉛、窒化ガリウム、及びそれらを主成分とする混晶などが挙げられる。また、種結晶層の成膜方法には特に限定がないが、MOCVD(有機金属気相成長法)、MBE(分子線エピタキシー法)、スパッタリング法等の気相法としてもよい。
(3)配向多結晶焼結体の除去
 配向多結晶焼結体を除去して、酸化亜鉛自立基板を得る。配向多結晶焼結体を除去する方法は、特に限定されないが、研削加工、ケミカルエッチング、配向多結晶焼結体側からのレーザー照射による界面加熱(レーザーリフトオフ)、昇温時の熱膨張差を利用した自発剥離等が挙げられる。
 本発明を以下の例によってさらに具体的に説明する。
 例1:配向Al焼結体を用いた自立配向ZnO基板の作製
(1)c面配向アルミナ焼結体の作製
 原料として、板状アルミナ粉末(キンセイマテック株式会社製、グレード00610)を用意した。板状アルミナ粒子100重量部に対し、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)7重量部と、可塑剤(DOP:ジ(2-エチルヘキシル)フタレート、黒金化成株式会社製)3.5重量部と、分散剤(レオドールSP-O30、花王株式会社製)2重量部と、分散媒(2-エチルヘキサノール)を混合した。分散媒の量は、スラリー粘度が20000cPとなるように調整した。上記のようにして調製されたスラリーを、ドクターブレード法によって、PETフィルムの上に、乾燥後の厚さが20μmとなるように、シート状に成形した。得られたテープを口径50.8mm(2インチ)の円形に切断した後150枚積層し、厚さ10mmのAl板の上に載置した後、真空パックを行った。この真空パックを85℃の温水中で、100kgf/cmの圧力にて静水圧プレスを行い、円盤状の成形体を得た。
 得られた成形体を脱脂炉中に配置し、600℃で10時間の条件で脱脂を行った。得られた脱脂体を黒鉛製の型を用い、ホットプレスにて窒素中1600℃で4時間、面圧200kgf/cmの条件で焼成した。得られた焼結体を熱間当方圧加圧法(HIP)にてアルゴン中1700℃で2時間、ガス圧1500kgf/cmの条件で再度焼成した。
 このようにして得た焼結体をセラミックスの定盤に固定し、砥石を用いて#2000まで研削して板面を平坦にし、口径2インチ50.8mm(2インチ)、厚さ1mmの配向アルミナ焼結体を配向アルミナ基板として得た。更に砥粒のサイズを3μmから0.5μmまで段階的に小さくしつつ、平坦性を高めた。加工後の平均粗さRaは約80nmであった。
(2)配向アルミナ基板の評価
(配向度の評価)
 得られた配向アルミナ基板の配向度を確認するため、XRDにより本実験例における測定対象とする結晶面であるc面の配向度を測定した。XRD装置(株式会社リガク製、RINT-TTR III)を用い、配向アルミナ基板の板面に対してX線を照射したときの2θ=20~70°の範囲でXRDプロファイルを測定した。c面配向度は、以下の式により算出した。この結果、本実験例におけるc面配向度の値は97%であった。
Figure JPOXMLDOC01-appb-M000003
(焼結体粒子の粒径評価)
 配向アルミナ基板の焼結体粒子について、板面の平均粒径を以下の方法により測定した。得られた配向アルミナ基板の板面を研磨し、1550℃で45分間サーマルエッチングを行った後、走査電子顕微鏡にて画像を撮影した。視野範囲は、得られる画像の対角線に直線を引いた場合に、いずれの直線も10個から30個の粒子と交わるような直線が引けるような視野範囲とした。得られた画像の対角線に引いた2本の直線において、直線が交わる全ての粒子に対し、個々の粒子の内側の線分の長さを平均したものに1.5を乗じた値を板面の平均粒径とした。この結果、板面の平均粒径は100μmであった。
(3)ZnO自立基板の作製
(3a)種結晶層の成膜
 RS-MBE(ラジカルソース分子線成長)装置にて、金属材料である亜鉛(Zn)をクヌーセンセルで照射し、配向アルミナ基板に供給した。ガス材料である酸素(O)は、RFラジカル発生装置にてそれぞれOガスを原料とし、酸素ラジカルとして供給した。各種原料の純度はZnが7N、Oが6Nのものを用いた。基板は抵抗加熱ヒーターを用いて700℃に加熱し、ZnとOの原子比が1対1となるように各種ガスソースのフラックスを制御しながら厚さ100nmのZnO層を成膜した。
(3b)水溶液析出法によるZnO層の成膜
(3b-1)育成用水溶液の調製
 育成用水溶液を作製するため、硝酸亜鉛及びヘキサメチレンテトラアミン(HMT)を純水中にそれぞれ0.1Mとなるように溶解させ、それぞれ溶液A及び溶液Bとした。スルホコハク酸ジ-2-エチルヘキシルナトリウムを1-ブタノール中に0.1Mとなるように溶解させて溶液Cとした。これらの溶液に純水を加え、容積比で、溶液A:溶液B:溶液C:純水=5:5:2:10となるように混合及び撹拌して、育成用水溶液を得た。
(3b-2)ZnO膜の析出
 配向アルミナ基板を懸垂させて育成用水溶液中1リットル中に設置した。次に、防水加工を施したセラミックス製ヒーターとマグネチックスターラーを水溶液中に設置し、スターラーにより水溶液を緩やかに撹拌しつつ、ヒーターにより水溶液を加熱した。ヒーター温度で75℃まで昇温させて1時間保持することにより、配向アルミナ基板上にZnO膜を析出させた。育成用水溶液の調整と入れ替えを行った上で、ZnO膜の析出プロセスを50回実施した。その後、ZnO膜が析出した配向アルミナ基板を純水洗浄し、大気中にて60℃で乾燥処理した。こうして表面にZnO膜が形成された試料を得た。
(3b-3)ZnO膜の評価結果
 得られた試料を観察したところ、厚さ約900μmのZnO膜が析出していることが確認された。また、断面SEM観察を行ったところ、試料中に気孔やクラックは検出されなかった。
(4)配向アルミナ基板の除去
 試料の配向アルミナ基板部を砥石による研削加工により除去し、平滑化加工を施すことで、厚さ約500μmのZnO自立基板を得た。なお、平滑化加工においては、砥粒のサイズを3μmから0.1μmまで段階的に小さくしつつ、平坦性を高めた。
(5)断面平均径の評価
 ZnO自立基板の柱状組織の断面平均径を以下の方法により測定した。試料断面を研磨後、1250℃で45分間サーマルエッチングを行い、走査電子顕微鏡にて断面の画像を撮影した。視野範囲は、厚み方向に線分を引いたときに、(a)線分の中央と、(b)線分の中央から片端部までの間を二等分した位置と、(c)線分の中央から上記(b)と反対側の端部までの間を二等分した位置の各位置において、柱状組織を横切るように板面と水平に直線を引いた場合に10個から30個の柱状組織と交わるような直線が引けるような範囲とした。なお、低倍撮影では柱状組織の界面が不明瞭なため、適宜分割して撮影した。得られた画像に対し、(a)、(b)及び(c)の各位置で柱状組織を横切るように水平な直線を引き、各直線が交わる全ての粒子に対し、個々の粒子の内側の線分の長さを平均したものに1.5を乗じた値を、ZnO自立基板を構成するZnO単結晶粒子の断面平均径とした。この結果、断面平均径は約100μmであった。なお、本例ではサーマルエッチングした断面の走査顕微鏡像で明瞭に界面を判別できたが、ケミカルエッチングやプラズマエッチングによって界面を際立たせる処理を施した後に上記の評価を行ってもよい。
 例2:配向ZnO焼結体を用いた自立配向ZnO基板の作製
(1)c面配向ZnO焼結体の作製
(1a)板状酸化亜鉛粉末の作製
 c面配向ZnO粉末を次のようにして作製した。硫酸亜鉛七水和物(高純度化学研究所製)173重量部とグルコン酸ナトリウム(和光純薬工業製)0.45重量部をイオン交換水300重量部に溶解した。こうして得られた溶液をビーカーに入れ、マグネットスターラーで攪拌しながら90℃に加熱して溶解させた。この溶液を90℃に保持し、攪拌しながら25%アンモニウム水49重量部をマイクロチューブポンプで滴下した。滴下終了後、90℃で攪拌しながら4時間保持した後、溶液を多量のイオン交換水に投入し、静置した。容器の底部に堆積した沈殿物をろ過により分離し、更にイオン交換水による洗浄を3回行い、乾燥して白色粉末状の酸化亜鉛前駆物質を得た。得られた酸化亜鉛前駆物質をジルコニア製のセッターに載置し、電気炉にて大気中で仮焼することにより、酸化亜鉛板状多孔質粉末を得た。仮焼時の温度スケジュールは、室温から900℃まで昇温速度100℃/hにて昇温した後、900℃で30分間保持し、自然放冷とした。
(1b)成形及び焼成工程
 得られた酸化亜鉛板状粒子100重量部に対し、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)15重量部と、可塑剤(DOP:ジ(2-エチルヘキシル)フタレート、黒金化成株式会社製)10重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)3重量部と、分散媒(2-エチルヘキサノール)とを混合した。分散媒の量はスラリー粘度が10000cPとなるように調整した。こうして調製されたスラリーを、ドクターブレード法により、PETフィルムの上に、乾燥後の厚さが20μmとなるようにシート状に成形した。得られたテープを20×20cmのシートに切断し、500枚の切断テープ片を積層し、厚さ10mmのアルミニウム板の上に載置した後、真空パックを行った。この真空パックを85℃の温水中で、100kgf/cm2の圧力にて静水圧プレスを行い、板状の成形体を作製した。得られた成形体を脱脂炉中に配置し、600℃で20時間の条件で脱脂を行った。得られた脱脂体を窒素中、1400℃で5時間の条件で常圧焼成して、板状の配向ZnO焼結体基板を作製した。
 このようにして得た焼結体から口径50.8mm(2インチ)の円板を切り出した。円板をセラミックスの定盤に固定し、砥石を用いて#2000まで研削して板面を平坦にし、口径2インチ、厚さ1mmの配向アルミナ焼結体を配向アルミナ基板として得た。更に砥粒のサイズを3μmから0.5μmまで段階的に小さくしつつ、平坦性を高めた。加工後の平均粗さRaは約50nmであった。
(2)焼結体基板の評価
 得られた配向ZnO基板について以下の評価を行った。
(配向度の評価)
 得られた配向ZnO基板の配向度を確認するため、XRDにより本実験例における測定対象とする結晶面であるc面の配向度を測定した。XRD装置(株式会社リガク製、RINT-TTR III)を用い、配向ZnO基板の板面に対してX線を照射したときの2θ=20~70°の範囲でXRDプロファイルを測定した。c面配向度は、以下の式により算出した。この結果、本実験例におけるc面配向度の値は80%であった。
Figure JPOXMLDOC01-appb-M000004
(焼結体粒子の粒径評価)
 配向ZnO基板の焼結体粒子について、板面の平均粒径を以下の方法により測定した。得られた配向ZnO基板の板面を研磨し、濃度0.3Mの硝酸にて10秒間エッチングを行った後、走査電子顕微鏡にて画像を撮影した。視野範囲は、得られる画像の対角線に直線を引いた場合に、いずれの直線も10個から30個の粒子と交わるような直線が引けるような視野範囲とした。得られた画像の対角線に引いた2本の直線において、直線が交わる全ての粒子に対し、個々の粒子の内側の線分の長さを平均したものに1.5を乗じた値を板面の平均粒径とした。この結果、板面の平均粒径は38μmであった。
(3)ZnO自立基板の作製
 配向アルミナ基板の代わりに配向ZnO基板を使用し、種結晶層を成膜しないこと以外は例1と同じ方法で厚さ約900μmのZnO膜を形成した。次に、例1と同様の方法で配向ZnO基板の除去と研削加工と断面平均径の評価を実施し、厚さ500μm、断面平均径約40μmのZnO自立基板を得た。
 例3:水熱法を用いた自立配向ZnO基板
 硝酸亜鉛を純水中に0.1Mとなるように溶解させて溶液Aとした。次に1Mのアンモニア水を準備し、溶液Bとした。これらの溶液を容積比で、溶液A:溶液B=1:1となるように混合及び撹拌して、育成用水溶液を得た。次に、育成用水溶液1リットル中に例2の(1)と同じ方法で作製した配向ZnO基板を懸垂して設置し、オートクレーブに入れて270℃で24時間の水熱処理を行い、配向アルミナ基板上にZnO膜を析出させた。育成用水溶液の調整と入れ替えを行った上で、ZnO膜の析出プロセスを30回実施した後、大気中500℃でアニール処理を行い、厚さ約1000μmのZnO膜を形成した。次に、例1と同様の方法で配向ZnO基板の除去と研削加工、及び断面平均径の評価を実施し、厚さ500μm、断面平均径約40μmのZnO自立基板を得た。

Claims (12)

  1.  略法線方向に単結晶構造を有する複数の酸化亜鉛系単結晶粒子で構成される板からなり、前記酸化亜鉛系単結晶粒子の断面平均径が1μmを超える、酸化亜鉛自立基板。
  2.  前記酸化亜鉛系単結晶粒子の断面平均径が3μm以上である、請求項1に記載の酸化亜鉛自立基板。
  3.  20μm以上の厚さを有する、請求項1~2のいずれか一項に記載の酸化亜鉛自立基板。
  4.  直径100mm以上の大きさを有する、請求項1~3のいずれか一項に記載の酸化亜鉛自立基板。
  5.  前記酸化亜鉛系単結晶粒子が、略法線方向に概ね揃った結晶方位を有する、請求項1~4のいずれか一項に記載の酸化亜鉛自立基板。
  6.  前記窒化酸化亜鉛単結晶粒子がn型ドーパント又はp型ドーパントでドープされている、請求項1~5のいずれか一項に記載の酸化亜鉛自立基板。
  7.  前記酸化亜鉛系単結晶粒子がドーパントを含まない、請求項1~5のいずれか一項に記載の酸化亜鉛自立基板。
  8.  配向多結晶焼結体を用意する工程と、
     前記配向多結晶焼結体上に、厚さ20μm以上の酸化亜鉛系結晶から構成される層を、前記配向多結晶燒結体の結晶方位に概ね倣った結晶方位を有するように形成する工程と、
     前記配向多結晶焼結体を除去して、酸化亜鉛自立基板を得る工程と、
    を含む、酸化亜鉛自立基板の製造方法。
  9.  前記酸化亜鉛系結晶から構成される層の形成に先立ち、前記配向多結晶焼結体上に、酸化亜鉛系材料からなる種結晶層を、前記配向多結晶焼結体の結晶方位に概ね倣った結晶方位を有するように形成する工程を更に含む、請求項8に記載の方法。
  10.  前記配向多結晶焼結体が、酸化亜鉛(ZnO)、アルミナ(Al)、窒化アルミニウム(AlN)及び窒化ガリウム(GaN)からなる群より選択される1種を主成分として含んでなる、請求項8又は9に記載の方法。
  11.  前記配向多結晶焼結体を構成する粒子の板面における平均粒径が1~1000μmである、請求項8~10のいずれか一項に記載の方法。
  12.  前記酸化亜鉛系結晶から構成される層の形成が、固相エピタキシャル成長又は液相エピタキシャル成長により行われる、請求項8~11のいずれか一項に記載の方法。
PCT/JP2014/063221 2013-05-31 2014-05-19 酸化亜鉛自立基板及びその製造方法 WO2014192578A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015519795A JP6385009B2 (ja) 2013-05-31 2014-05-19 酸化亜鉛自立基板及びその製造方法
US14/951,548 US10156024B2 (en) 2013-05-31 2015-11-25 Zinc oxide free-standing substrate and method for manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-115753 2013-05-31
JP2013115753 2013-05-31
JP2014016606 2014-01-31
JP2014-016606 2014-01-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/951,548 Continuation US10156024B2 (en) 2013-05-31 2015-11-25 Zinc oxide free-standing substrate and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2014192578A1 true WO2014192578A1 (ja) 2014-12-04

Family

ID=51988613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063221 WO2014192578A1 (ja) 2013-05-31 2014-05-19 酸化亜鉛自立基板及びその製造方法

Country Status (3)

Country Link
US (1) US10156024B2 (ja)
JP (1) JP6385009B2 (ja)
WO (1) WO2014192578A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315342A (ja) * 2003-03-31 2004-11-11 Japan Science & Technology Agency 高密度柱状ZnO結晶膜体とその製造方法
JP2007137757A (ja) * 2005-11-17 2007-06-07 Sharp Corp c軸選択配向性ZnO膜の製造方法、及びc軸選択配向性のZnO薄膜構造
JP2008230906A (ja) * 2007-03-20 2008-10-02 Mitsubishi Gas Chem Co Inc Mg含有ZnO系混晶単結晶、その積層体およびそれらの製造方法
JP2008254997A (ja) * 2007-03-15 2008-10-23 Kyushu Institute Of Technology 単結晶酸化亜鉛基板

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2374468A1 (en) * 2000-03-24 2001-09-27 Sumitomo Electric Industries, Ltd. Surface acoustic wave device
US20020045531A1 (en) * 2000-10-18 2002-04-18 Toru Suzuki Oriented sintered ceramic product and manufacturing method thereof
JP2004315361A (ja) 2003-04-03 2004-11-11 Tokyo Denpa Co Ltd 酸化亜鉛単結晶
JP4427347B2 (ja) 2004-02-16 2010-03-03 東京電波株式会社 ZnO単結晶の製造方法
JP4378535B2 (ja) * 2005-02-25 2009-12-09 国立大学法人長岡技術科学大学 精密配向多結晶六方晶酸化亜鉛焼結体の製造方法
JP4665175B2 (ja) 2007-01-09 2011-04-06 独立行政法人産業技術総合研究所 高c軸配向高比表面積ZnO結晶自立膜及びその作製方法
JP5519492B2 (ja) * 2008-04-26 2014-06-11 森 竜平 酸化亜鉛単結晶基板の製造方法及びその方法により育成された単結晶基板並びにその基板上に成膜した半導体発光素子
WO2010114172A1 (ja) * 2009-03-31 2010-10-07 Toto株式会社 ドープ薄層を有する複合材料及びその製造方法
JP5411681B2 (ja) 2009-12-09 2014-02-12 スタンレー電気株式会社 酸化亜鉛系半導体の成長方法及び半導体発光素子の製造方法
CN103155102A (zh) * 2011-02-15 2013-06-12 住友电气工业株式会社 具有保护膜的复合衬底和制造半导体器件的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004315342A (ja) * 2003-03-31 2004-11-11 Japan Science & Technology Agency 高密度柱状ZnO結晶膜体とその製造方法
JP2007137757A (ja) * 2005-11-17 2007-06-07 Sharp Corp c軸選択配向性ZnO膜の製造方法、及びc軸選択配向性のZnO薄膜構造
JP2008254997A (ja) * 2007-03-15 2008-10-23 Kyushu Institute Of Technology 単結晶酸化亜鉛基板
JP2008230906A (ja) * 2007-03-20 2008-10-02 Mitsubishi Gas Chem Co Inc Mg含有ZnO系混晶単結晶、その積層体およびそれらの製造方法

Also Published As

Publication number Publication date
US20160145768A1 (en) 2016-05-26
JPWO2014192578A1 (ja) 2017-02-23
US10156024B2 (en) 2018-12-18
JP6385009B2 (ja) 2018-09-05

Similar Documents

Publication Publication Date Title
JP5770905B1 (ja) 窒化ガリウム自立基板、発光素子及びそれらの製造方法
JP6480398B2 (ja) 多結晶窒化ガリウム自立基板及びそれを用いた発光素子
JP6474734B2 (ja) 発光素子用複合基板及びその製造方法
WO2014192911A1 (ja) 窒化ガリウム自立基板、発光素子及びそれらの製造方法
JP6890117B2 (ja) 多結晶13族元素窒化物からなる自立基板及びそれを用いた発光素子
JP6681406B2 (ja) エピタキシャル成長用配向アルミナ基板
KR101758548B1 (ko) 질화갈륨 자립 기판, 발광 소자 및 이들의 제조 방법
WO2017145802A1 (ja) 多結晶窒化ガリウム自立基板及びそれを用いた発光素子
CN108137411B (zh) 外延生长用取向氧化铝基板
JP6385009B2 (ja) 酸化亜鉛自立基板及びその製造方法
JP6339069B2 (ja) 窒化ガリウム結晶の育成方法、複合基板、発光素子の製造方法および結晶育成装置
JP6812413B2 (ja) 自立基板および積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804425

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015519795

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14804425

Country of ref document: EP

Kind code of ref document: A1