WO2014192459A1 - 固定子、モータ及び圧縮機 - Google Patents

固定子、モータ及び圧縮機 Download PDF

Info

Publication number
WO2014192459A1
WO2014192459A1 PCT/JP2014/061225 JP2014061225W WO2014192459A1 WO 2014192459 A1 WO2014192459 A1 WO 2014192459A1 JP 2014061225 W JP2014061225 W JP 2014061225W WO 2014192459 A1 WO2014192459 A1 WO 2014192459A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
groove
stator
insulator
peripheral surface
Prior art date
Application number
PCT/JP2014/061225
Other languages
English (en)
French (fr)
Inventor
基史 大辻
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to BR112015028783A priority Critical patent/BR112015028783A2/pt
Publication of WO2014192459A1 publication Critical patent/WO2014192459A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles

Definitions

  • the present invention relates to a stator including an insulator that insulates a core and a coil, a motor including the stator, and a compressor including the motor.
  • a conventional stator includes an annular core and insulators arranged on both end faces of the core.
  • the insulator has a protrusion that protrudes from the outer end toward the core. And this insulator is fixed to a core by engaging this protrusion part with the groove part formed in the outer peripheral surface of a core.
  • the core is formed by laminating a plurality of thin plates made of a metal material in the vertical direction. It is preferable that the plurality of thin plates used for the core have the same shape from the viewpoints of simplifying the manufacturing process and reducing the mold cost. That is, it is preferable that the core is formed of one type of thin plate. Therefore, the groove part formed in the outer peripheral surface of the core is a through groove penetrating in the vertical direction so that it can be formed of one kind of thin plate.
  • an object of the present invention is to provide a stator, a motor, and a compressor that can prevent a groove formed on the outer peripheral surface of a core from obstructing the flow of magnetic flux and reducing motor efficiency.
  • a stator includes an annular core having a plurality of teeth projecting radially inward, and an insulator disposed at an axial end of the core.
  • a projecting portion projecting from the end portion toward the core side, wherein the core is disposed on an outer peripheral surface of the axial end portion, and has a groove portion that engages with the projecting portion; It is characterized by not being in the whole area.
  • the core portion can be increased as compared with the conventional stator in which the groove portion is a through groove. Therefore, it can prevent that the groove part formed in the outer peripheral surface of a core obstructs the flow of magnetic flux, and reduces motor efficiency. Further, since the core portion can be increased as compared with the conventional stator, the rigidity of the core can be improved. Further, in the conventional stator in which the groove portion is a through groove, oil stays in a portion of the groove portion that does not engage with the protruding portion of the insulator. However, in this stator, since there is no groove portion in the entire area in the axial direction, the amount of oil remaining in the groove portion can be reduced.
  • the insulator is arranged at the first insulator disposed at one axial end portion of the core and the other axial end portion of the core.
  • a first groove portion of the core that engages with a first protrusion of the first insulator, and a second groove portion of the core that engages with a second protrusion of the second insulator. Are in the same position in plan view.
  • the first groove portion and the second groove portion are arranged at positions corresponding to the tooth portions on the outer peripheral surface of the core.
  • the groove portion is arranged at a position where the influence on the magnetic flux flow is small, the groove portion formed on the outer peripheral surface of the core can be prevented from obstructing the magnetic flux flow.
  • a motor according to a fourth aspect of the invention includes the stator according to any one of the first to third aspects of the invention, and a rotor disposed inside the stator.
  • the groove formed on the outer peripheral surface of the core can be prevented from obstructing the flow of magnetic flux, the rigidity of the core can be improved, and the amount of oil retained in the groove can be reduced. Can be reduced.
  • the compressor according to the fifth invention is characterized by including the motor according to the fourth invention.
  • the core portion can be increased as compared with the conventional stator in which the groove portion is a through groove. Therefore, it can prevent that the groove part formed in the outer peripheral surface of a core obstructs the flow of magnetic flux, and reduces motor efficiency. Further, since the core portion can be increased as compared with the conventional stator, the rigidity of the core can be improved. Further, in the conventional stator in which the groove portion is a through groove, oil stays in a portion of the groove portion that does not engage with the protruding portion of the insulator. However, in this stator, since there is no groove portion in the entire area in the axial direction, the amount of oil remaining in the groove portion can be reduced.
  • the types of thin plates for forming the core can be reduced.
  • the groove portion is disposed at a position where the influence on the magnetic flux flow is small, it is possible to prevent the groove portion formed on the outer peripheral surface of the core from obstructing the magnetic flux flow.
  • said stator by using said stator, it can prevent that the groove part formed in the outer peripheral surface of a core inhibits the flow of magnetic flux, can improve the rigidity of a core, and the residence of the oil which retains in a groove part The amount can be reduced.
  • the groove formed on the outer peripheral surface of the core can be prevented from obstructing the flow of magnetic flux, the rigidity of the core can be improved, and the amount of oil retained in the groove Can be reduced.
  • FIG. 1 It is sectional drawing which shows the compressor which concerns on embodiment of this invention. It is the perspective view which looked at the stator shown in FIG. 1 from upper direction.
  • (A) is a plan view of the core shown in FIG. 1
  • (b) is a sectional view taken along line III (b) -III (b) of (a)
  • (c) is a diagram of magnetic flux in the core. It is a figure for demonstrating a flow.
  • FIG. 5 is a partially enlarged cross-sectional view of the compressor corresponding to a cross section taken along line VV shown in FIG.
  • the compressor 1 is a one-cylinder rotary compressor, and includes an accumulator 2, a sealed casing 3, a drive mechanism 4 and a compression mechanism 5 disposed in the sealed casing 3. ing.
  • the drive mechanism 4 is disposed above the compression mechanism 5.
  • the compression mechanism 5 includes a cylinder 51, a front head 52, and a rear head 53.
  • lubricating oil L for smoothing the operation of the sliding portion of the compression mechanism 5 is stored at the bottom of the sealed casing 3.
  • hatching indicating a cross section of the drive mechanism 4 is omitted.
  • the refrigerant (in this embodiment, CO 2) introduced from the inlet pipe 2 a of the accumulator 2 is introduced into the sealed casing 3 from the suction pipe 6, compressed by the compression mechanism 5, and then discharged from the discharge pipe 7. Discharged from.
  • the compressor 1 is used by being incorporated in a refrigeration cycle such as an air conditioner, for example, and is installed in the direction shown in FIG. 1, that is, the direction in which the direction of the shaft 9 is the vertical direction.
  • the drive mechanism 4 drives the compression mechanism 5 and includes a motor 8 serving as a drive source and a shaft 9 driven by the motor 8.
  • the motor 8 is a concentrated winding motor in which a coil 90 (see FIG. 2) of each phase (U phase, V phase, W phase) is wound around a tooth portion 62 of a core 60 described later.
  • the motor 8 includes a stator 10 including a core 60 and a rotor 11 disposed on the radially inner side.
  • the shaft 9 is inserted into a through hole 11 a formed at a substantially central portion of the rotor 11.
  • the stator 10 includes an annular core 60 fixed to the inner peripheral surface of the hermetic casing 3, an upper insulator 70 (first insulator) disposed at an upper end portion 60 a (one axial end portion) of the core 60, and a core 60.
  • a lower insulator 80 (second insulator) disposed at the lower end 60b (the other end in the axial direction), and a core 60 and a coil 90 (see FIG. 2) wound around the upper and lower insulators 70 and 80. .
  • the core 60 is formed by laminating a plurality of thin plates made of metal materials and joining them together by welding or the like. As shown in FIG. 3, the core 60 includes an annular back yoke portion 61, nine tooth portions 62 projecting radially inward from the back yoke portion 61, and adjacent tooth portions 62. It has nine slots 63 formed. Nine slots 63 are formed through the core 60 in the vertical direction. The rotor 11 is disposed in the through hole H formed in the substantially central portion of the core 60.
  • each core cut portion 64 is provided at a position corresponding to the tooth portion 62 on the outer peripheral surface of the core 60.
  • the core cut portion 64 is not in contact with the inner peripheral surface of the sealed casing 3. Therefore, the lubricating oil L that has passed through the sliding portion of the compression mechanism 5 and the rotor 11 passes through the gap between the inner peripheral surface of the sealed casing 3 and the core cut portion 64. The lubricating oil L is then stored at the bottom of the sealed casing 3.
  • groove portions 65 are formed on the outer peripheral surfaces of both end portions 60 a and 60 b of the core 60. As shown in FIG. 3B, the groove 65 is divided into a first groove 66 and a second groove 67. In the following description of the groove portion, the groove portion 65 is used when the first groove portion 66 and the second groove portion 67 do not need to be distinguished, and the first groove portion 66 or the second groove portion 67 is usually used.
  • the first groove part 66 is disposed on the outer peripheral surface of the upper end part 60 a of the core 60.
  • a protrusion 74 (first protrusion) protruding from the outer end of the upper insulator 70 toward the core 60 is engaged with the first groove 66.
  • Three first groove portions 66 are formed at predetermined intervals (120 °) in the circumferential direction.
  • Each first groove portion 66 is disposed in the core cut portion 64. That is, each first groove portion 66 is disposed at a position corresponding to the tooth portion 62 on the outer peripheral surface of the core 60 (outside in the radial direction of the tooth portion 62).
  • the second groove portion 67 is disposed on the outer peripheral surface of the lower end portion 60 b of the core 60.
  • the second groove 67 engages with a protruding portion 84 (second protruding portion) that protrudes from the outer end portion of the lower insulator 80 toward the core 60 side.
  • Three second groove portions 67 are formed at predetermined intervals (120 °) in the circumferential direction.
  • Each second groove portion 67 is disposed in the core cut portion 64. That is, each second groove portion 67 is disposed at a position corresponding to the tooth portion 62 on the outer peripheral surface of the core 60.
  • the first groove portions 66 and the second groove portions 67 are arranged at the same position in plan view.
  • the groove 65 is not located in the entire area in the axial direction of the core 60 as shown in FIG. Therefore, a part of the region in the axial direction of the core 60 has no groove 65 and is a core portion.
  • the portion between the first groove portion 66 and the second groove portion 67 is the core 60 portion.
  • the flow of magnetic flux in the core 60 is directed from the radially inner end of the tooth portion 62 toward the radially outer portion of the back yoke portion 61 rather than the slot 63. . Therefore, the position corresponding to the tooth portion 62 on the outer peripheral surface of the core 60 is less affected by the magnetic flux.
  • the axial lengths of the first groove 66 and the second groove 67 are substantially the same as the axial lengths of the engaging portions 75 and 85 of the protrusions 74 and 84, as shown in FIG.
  • the circumferential lengths of the first groove portion 66 and the second groove portion 67 are substantially the same as the circumferential lengths of the engaging portions 75 and 85 of the projecting portions 74 and 84.
  • the core 60 is formed of two types of thin plates having different shapes.
  • the thin plate 68 has three cutouts 68a corresponding to the groove portions 65 formed on the outer peripheral surface.
  • the thin plate 69 has no notch formed on the outer peripheral surface.
  • the thin plate 68 is used in a range A in which the groove portion 65 is formed in the axial direction of the core 60. That is, the range A of the core 60 is formed by stacking a plurality of thin plates 68.
  • the thin plate 69 is used in a range B where the groove portion 65 does not exist in the axial direction of the core 60. That is, the range B of the core 60 is formed by stacking a plurality of thin plates 69.
  • the upper insulator 70 is disposed at the upper end portion 60 a of the core 60.
  • the upper insulator 70 includes nine teeth 71 projecting radially inward, a substantially annular outer wall 72 formed at the radially outer end of the teeth 71, and It has the inner wall part 73 formed in the radial direction inner side edge part of the tooth
  • the nine teeth 71 are stacked on the nine teeth 62 of the core 60, respectively.
  • the outer wall part 72 prevents the coil 90 wound around the tooth part 71 and the tooth part 62 of the core 60 from collapsing outward in the radial direction. Further, the inner wall portion 73 prevents the coil 90 from collapsing inward in the radial direction.
  • the protrusion 74 (first protrusion) is formed at three locations on the outer end (outer wall 72) of the upper insulator 70.
  • the protruding portion 74 protrudes radially outward from the outer wall portion 72 and then protrudes toward the core 60 side.
  • a portion protruding toward the core 60 side is an engaging portion 75.
  • the lower insulator 80 is disposed at the lower end 60 b of the core 60.
  • the lower insulator 80 is disposed at the upper end portion 60a of the core 60 and has substantially the same configuration as the upper insulator 70, and has nine tooth portions 81, an outer wall portion 82, an inner wall portion 83, a protruding portion 84, an engaging portion 85, and the like.
  • the lower insulator 80 has substantially the same configuration as the upper insulator 70, a detailed description of these configurations is omitted.
  • the stator 10, the motor 8, and the compressor 1 of this embodiment have the following characteristics.
  • the groove part 65 since the groove part 65 does not exist in the whole area in an axial direction, a core part can be increased compared with the conventional stator whose groove part is a through groove. Therefore, it can prevent that the groove part 65 formed in the outer peripheral surface of the core 60 obstructs the flow of magnetic flux, and reduces motor efficiency. Further, since the core portion can be increased as compared with the conventional stator, the rigidity of the core 60 can be improved. Further, in the conventional stator in which the groove portion is a through groove, oil stays in a portion of the groove portion that does not engage with the protruding portion of the insulator. However, in this stator 10, since the groove part 65 does not exist in the whole area in the axial direction, the amount of oil remaining in the groove part 65 can be reduced.
  • a thin plate (thin plate 69) used in a range where there is no groove 65 range B shown in FIG. 3B
  • the type of thin plate forming the core 60 can be reduced.
  • the groove portion 65 is disposed at a position corresponding to the tooth portion 62 on the outer peripheral surface of the core 60. That is, as shown in FIG. 3C, the groove 65 is disposed at a position where the influence on the flow of magnetic flux is small. Therefore, it can prevent that the groove part 65 formed in the outer peripheral surface of the core 60 obstructs the flow of magnetic flux.
  • the groove portion 65 formed on the outer peripheral surface of the core 60 can be prevented from obstructing the flow of magnetic flux, and the rigidity of the core 60 can be improved.
  • the amount of oil remaining in the groove 65 can be reduced.
  • the groove portion 65 formed on the outer peripheral surface of the core 60 can be prevented from obstructing the flow of magnetic flux, and the rigidity of the core 60 can be improved.
  • the amount of oil remaining in the groove 65 can be reduced.
  • the groove portion 65 is disposed at a position corresponding to the tooth portion 62 on the outer peripheral surface of the core 60 (outside in the radial direction of the tooth portion 62), but the groove portion 65 is the slot 63 in the back yoke portion 61. It may be arranged in the radially outer portion.
  • first groove 66 and the second groove 67 are in the same position in plan view, but may be in different positions in plan view.
  • the axial direction length of the 1st groove part 66 and the 2nd groove part 67 is substantially the same as the axial direction length of the engaging parts 75 and 85 of the protrusion parts 74 and 84, the protrusion part 74, It may be longer than the axial length of the 84 engaging portions 75 and 85.
  • the core 60 is formed in a ring shape, but may be formed by connecting a plurality of divided cores in a ring shape.
  • the insulators 70 and 80 are each integrally formed in an annular shape, but may be formed by annularly connecting a plurality of divided insulators.
  • the present invention it is possible to prevent the grooves formed on the outer peripheral surface of the core from obstructing the flow of magnetic flux, improve the rigidity of the core, and reduce the amount of oil remaining in the grooves.

Abstract

コアの外周面に形成された溝部が貫通溝である従来の固定子では、溝部が磁束の流れを阻害してモータ効率が低下する。この固定子(10)は、径方向内側に向かって突出した複数の歯部を有する環状のコア(60)と、コア(60)の軸方向両端部に配置されるインシュレータ(70、80)とを備えている。インシュレータ(70、80)は、それぞれ外側端部からコア(60)側に向かって突出した突出部(74、84)を有する。また、コア(60)は、軸方向両端部の外周面に配置され、突出部(74、84)と係合する溝部(65)を有する。そして、溝部(65)は、コア(60)の軸方向において全域にない。

Description

固定子、モータ及び圧縮機
 本発明は、コアとコイルとを絶縁するインシュレータを備えた固定子、この固定子を備えたモータ、及び、このモータを備えた圧縮機に関する。
 従来の固定子としては、環状のコアと、コアの両端面に配置されたインシュレータとを備えたものがある。インシュレータは、外側端部からコア側に向かって突出した突出部を有する。そして、この突出部がコアの外周面に形成された溝部に係合されることにより、インシュレータがコアに固定される。
 ところで、コアは、金属材料からなる複数の薄板が上下方向に積層されることによって形成されている。コアに用いられる複数の薄板は、製造工程の簡素化、金型費用の削減等の観点から全て同一形状であることが好ましい。すなわち、一種類の薄板でコアが形成されることが好ましい。そのため、コアの外周面に形成された溝部は、一種類の薄板で形成することが可能なように、上下方向に貫通する貫通溝とされている。
特表2007-531485号公報
 従来の固定子では、コアが比較的大きいため、溝部による磁束の流れへの影響が小さい。そのため、コアの外周面に形成された溝部が貫通溝であっても大きな問題はない。しかしながら、近年では、圧縮機の小型化に伴って、コアの小型化が進められている。その場合、コアの外周面に形成された貫通溝が磁束の流れを阻害してモータ効率が低下する問題がある。
 そこで、本発明の目的は、コアの外周面に形成された溝部が磁束の流れを阻害してモータ効率が低下するのを防止できる固定子、モータ及び圧縮機を提供することである。
 第1の発明にかかる固定子は、径方向内側に向かって突出した複数の歯部を有する環状のコアと、前記コアの軸方向端部に配置されたインシュレータとを備え、前記インシュレータは、外側端部から前記コア側に向かって突出した突出部を有し、前記コアは、軸方向端部の外周面に配置され、前記突出部と係合する溝部を有し、前記溝部が、軸方向において全域にないことを特徴とする。
 この固定子では、溝部が軸方向において全域にないので、溝部が貫通溝である従来の固定子に比べて、コア部分を多くすることができる。したがって、コアの外周面に形成された溝部が磁束の流れを阻害してモータ効率が低下するのを防止できる。
 また、従来の固定子に比べてコア部分を多くすることができるので、コアの剛性を向上できる。
 また、溝部が貫通溝である従来の固定子では、溝部のうちインシュレータの突出部と係合しない部分において油が滞留する。しかし、この固定子では、溝部が軸方向において全域にないので、溝部に滞留する油の滞留量を低減できる。
 第2の発明にかかる固定子では、第1の発明にかかる固定子において、前記インシュレータが、前記コアの軸方向一端部に配置された第1インシュレータと、前記コアの軸方向他端部に配置された第2インシュレータとを有し、前記第1インシュレータの第1突出部と係合する前記コアの第1溝部と、前記第2インシュレータの第2突出部と係合する前記コアの第2溝部とが、平面視において同一位置にあることを特徴とする。
 この固定子では、第1溝部と第2溝部とが平面視において同一位置にあるので、コアを形成するための薄板の種類を低減できる。
 第3の発明にかかる固定子では、第2の発明にかかる固定子において、前記第1溝部及び前記第2溝部が、前記コアの外周面において前記歯部と対応する位置に配置されることを特徴とする。
 この固定子では、磁束の流れへの影響が少ない位置に溝部が配置されるので、コアの外周面に形成された溝部が磁束の流れを阻害するのを防止できる。
 第4の発明にかかるモータでは、第1~第3のいずれかの発明にかかる固定子と、前記固定子の内側に配置された回転子とを備えることを特徴とする。
 このモータでは、上記の固定子を用いることにより、コアの外周面に形成された溝部が磁束の流れを阻害するのを防止でき、コアの剛性を向上でき、溝部に滞留する油の滞留量を低減できる。
 第5の発明にかかる圧縮機では、第4の発明にかかるモータを備えることを特徴とする。
 この圧縮機では、上記のモータを用いることにより、コアの外周面に形成された溝部が磁束の流れを阻害するのを防止でき、コアの剛性を向上でき、溝部に滞留する油の滞留量を低減できる。
 以上の説明に述べたように、本発明によれば、以下の効果が得られる。
 第1の発明では、溝部が軸方向において全域にないので、溝部が貫通溝である従来の固定子に比べて、コア部分を多くすることができる。したがって、コアの外周面に形成された溝部が磁束の流れを阻害してモータ効率が低下するのを防止できる。
 また、従来の固定子に比べてコア部分を多くすることができるので、コアの剛性を向上できる。
 また、溝部が貫通溝である従来の固定子では、溝部のうちインシュレータの突出部と係合しない部分において油が滞留する。しかし、この固定子では、溝部が軸方向において全域にないので、溝部に滞留する油の滞留量を低減できる。
 第2の発明では、第1溝部と第2溝部とが平面視において同一位置にあるので、コアを形成するための薄板の種類を低減できる。
 第3の発明では、磁束の流れへの影響が少ない位置に溝部が配置されるので、コアの外周面に形成された溝部が磁束の流れを阻害するのを防止できる。
 第4の発明では、上記の固定子を用いることにより、コアの外周面に形成された溝部が磁束の流れを阻害するのを防止でき、コアの剛性を向上でき、溝部に滞留する油の滞留量を低減できる。
 第5の発明では、上記のモータを用いることにより、コアの外周面に形成された溝部が磁束の流れを阻害するのを防止でき、コアの剛性を向上でき、溝部に滞留する油の滞留量を低減できる。
本発明の実施形態に係る圧縮機を示す断面図である。 図1に示す固定子を上方から見た斜視図である。 (a)は、図1に示すコアの平面図であり、(b)は、(a)のIII(b)-III(b)線断面図であり、(c)は、コア内の磁束の流れを説明するための図である。 図1に示すインシュレータの斜視図である。 図3に示すV-V線断面に相当する圧縮機の一部拡大断面図である。 図3に示すコアを構成する薄板の平面図である。
 以下、図面を参照しつつ本発明に係る圧縮機1の実施の形態について説明する。
[圧縮機1]
 圧縮機1は、図1に示すように、1シリンダ型のロータリ圧縮機であって、アキュムレータ2と、密閉ケーシング3と、密閉ケーシング3内に配置された駆動機構4及び圧縮機構5とを備えている。駆動機構4は、圧縮機構5の上方に配置されている。圧縮機構5は、シリンダ51と、フロントヘッド52と、リアヘッド53とを有する。また、密閉ケーシング3の底部には、圧縮機構5の摺動部の動作を滑らかにするための潤滑油Lが貯留されている。なお、図1では、駆動機構4の断面を示すハッチングを省略して図示している。
 圧縮機1では、アキュムレータ2の入口管2aから導入された冷媒(本実施形態では、CO2)が、吸入管6から密閉ケーシング3内に導入され、圧縮機構5で圧縮された後、排出管7から排出される。この圧縮機1は、例えば空調装置などの冷凍サイクルに組み込まれて使用され、図1に示す向き、即ち、シャフト9の向きが上下方向となる向きに設置される。
[駆動機構4]
 駆動機構4は、圧縮機構5を駆動するものであって、駆動源となるモータ8と、モータ8によって駆動されるシャフト9とを有する。このモータ8は、各相(U相、V相、W相)のコイル90(図2参照)を後述するコア60の歯部62に巻回した巻線方式が集中巻きのモータである。このモータ8は、コア60を含む固定子10と、その径方向内側に配置された回転子11とを有する。シャフト9は、回転子11の略中央部に形成された貫通孔11aに挿入されている。
<固定子10>
 固定子10は、密閉ケーシング3の内周面に固定された環状のコア60と、コア60の上端部60a(軸方向一端部)に配置された上インシュレータ70(第1インシュレータ)と、コア60の下端部60b(軸方向他端部)に配置された下インシュレータ80(第2インシュレータ)と、コア60と上および下インシュレータ70、80に巻回されたコイル90(図2参照)とを有する。
<コア60>
 コア60は、金属材料からなる複数の薄板が互いに積層されると共に、溶接などにより互いに接合されることによって形成されている。このコア60は、図3に示すように、環状のバックヨーク部61と、このバックヨーク部61から径方向内側に向かって突出した9個の歯部62と、隣接する歯部62の間に形成された9個のスロット63とを有する。9個のスロット63は、コア60を上下方向に貫通して形成される。コア60の略中央部に形成された貫通孔Hには、回転子11が配置される。
 また、コア60の外周面には、平面視において直線部であるコアカット部64が9カ所形成されている。各コアカット部64は、コア60の外周面において歯部62と対応する位置に設けられている。このコアカット部64は、密閉ケーシング3の内周面と接触していない。そのため、密閉ケーシング3の内周面とコアカット部64との隙間を、圧縮機構5の摺動部及び回転子11を通過した潤滑油Lが通過する。潤滑油Lは、その後、密閉ケーシング3の底部に貯留される。
 図3に示すように、コア60の両端部60a、60bの外周面には、溝部65が形成されている。この溝部65は、図3(b)に示すように、第1溝部66と、第2溝部67とに分かれている。なお、以下の溝部の説明においては、第1溝部66と第2溝部67とを区別する必要がない場合に溝部65を用い、通常は第1溝部66または第2溝部67を用いる。
 第1溝部66は、コア60の上端部60aの外周面に配置されている。この第1溝部66には、上インシュレータ70の外側端部からコア60側に向かって突出した突出部74(第1突出部)が係合する。この第1溝部66は、周方向において所定間隔(120°)毎に3カ所形成されている。各第1溝部66は、それぞれコアカット部64に配置されている。すなわち、各第1溝部66は、それぞれコア60の外周面において歯部62と対応する位置(歯部62の径方向外側)に配置されている。
 また、第2溝部67は、コア60の下端部60bの外周面に配置されている。この第2溝部67は、下インシュレータ80の外側端部からコア60側に向かって突出した突出部84(第2突出部)が係合する。この第2溝部67は、周方向において所定間隔(120°)毎に3カ所形成されている。各第2溝部67は、それぞれコアカット部64に配置されている。すなわち、各第2溝部67は、それぞれコア60の外周面において歯部62と対応する位置に配置されている。また、各第1溝部66と各第2溝部67とは、平面視において同一位置に配置されている。
 この溝部65は、図3(b)に示すように、コア60の軸方向において全域にない。したがって、コア60の軸方向において一部の領域は、溝部65がなく、コア部分となっている。たとえば、本実施形態では、図3(b)に示すように、第1溝部66と第2溝部67との間がコア60部分となっている。また、コア60内の磁束の流れは、図3(c)に示すように、歯部62の径方向内側端部から、バックヨーク部61のうちスロット63よりも径方向外側部分に向かっている。そのため、コア60の外周面において歯部62と対応する位置は、磁束の影響が少ない。
 第1溝部66および第2溝部67の軸方向長さは、図5に示すように、突出部74、84の係合部分75、85の軸方向長さと略同じである。また、第1溝部66および第2溝部67の周方向長さは、突出部74、84の係合部分75、85の周方向長さと略同じである。
 ここで、このコア60は、形状が異なる二種類の薄板によって形成されている。薄板68は、図6(a)に示すように、溝部65に対応する3カ所の切欠き68aが外周面に形成されている。また、薄板69は、図6(b)に示すように、外周面に切欠きが形成されていない。薄板68は、図3(b)に示すように、コア60の軸方向において、溝部65が形成される範囲Aに用いられている。すなわち、コア60の範囲Aは、複数の薄板68が積層されることによって形成される。また、薄板69は、コア60の軸方向において、溝部65がない範囲Bに用いられている。すなわち、コア60の範囲Bは、複数の薄板69が積層されることによって形成される。
<上インシュレータ70>
 上インシュレータ70は、図1に示すように、コア60の上端部60aに配置されている。この上インシュレータ70は、図4に示すように、径方向内側に向かって突出した9個の歯部71と、歯部71の径方向外側端部に形成された略環状の外壁部72と、歯部71の径方向内側端部にそれぞれ形成された内壁部73とを有する。9個の歯部71は、コア60の9個の歯部62にそれぞれ積層される。外壁部72は、歯部71及びコア60の歯部62に巻回されたコイル90が径方向外側に向けて崩れるのを防止するものである。また、内壁部73は、コイル90が径方向内側に向けて崩れるのを防止するものである。
 突出部74(第1突出部)は、上インシュレータ70の外側端部(外壁部72)に3カ所形成されている。この突出部74は、外壁部72から径方向外側に向かって突出したあと、コア60側に向かって突出しており、コア60側に向かって突出する部分が係合部分75である。
<下インシュレータ80>
 下インシュレータ80は、図1に示すように、コア60の下端部60bに配置されている。この下インシュレータ80は、コア60の上端部60aに配置され上インシュレータ70と略同じ構成であって、9個の歯部81、外壁部82、内壁部83、突出部84、係合部分85等を有する。ただし、この下インシュレータ80は、上インシュレータ70と略同じ構成であるため、これら構成の詳しい説明は割愛する。
<本実施形態の固定子、モータ及び圧縮機の特徴>
 本実施形態の固定子10、モータ8及び圧縮機1には、以下の特徴がある。
 本実施形態の固定子10では、溝部65が軸方向において全域にないので、溝部が貫通溝である従来の固定子に比べて、コア部分を多くすることができる。したがって、コア60の外周面に形成された溝部65が磁束の流れを阻害してモータ効率が低下するのを防止できる。
 また、従来の固定子に比べてコア部分を多くすることができるので、コア60の剛性を向上できる。
 また、溝部が貫通溝である従来の固定子では、溝部のうちインシュレータの突出部と係合しない部分において油が滞留する。しかし、この固定子10では、溝部65が軸方向において全域にないので、溝部65に滞留する油の滞留量を低減できる。
 また、本実施形態の固定子10では、上インシュレータ70(第1インシュレータ)の突出部74(第1突出部)と係合するコア60の第1溝部66と、下インシュレータ80(第2インシュレータ)の突出部84(第2突出部)と係合するコア60の第2溝部67とが、平面視において同一位置にあるので、二種類の薄板68、69でコア60を形成できる。
 例えば、第1溝部66と第2溝部67とが平面視において異なる位置にある場合、第1溝部66が形成される範囲に用いられる薄板と、第2溝部67が形成される範囲に用いられる薄板と、これら溝部65がない範囲(図3(b)に示す範囲B)に用いられる薄板(薄板69)の三種類の薄板が必要となる。
 したがって、この固定子10では、第1溝部66と第2溝部67とが平面視において同じ位置にあるので、第1溝部66と第2溝部67とが平面視において異なる位置にある場合に比べて、コア60を形成する薄板の種類を低減できる。
 また、本実施形態の固定子10では、コア60の外周面において歯部62と対応する位置に溝部65が配置される。すなわち、図3(c)に示すように、磁束の流れへの影響が少ない位置に溝部65が配置される。したがって、コア60の外周面に形成された溝部65が磁束の流れを阻害するのを防止できる。
 また、本実施形態のモータ8では、上記した固定子10を用いることにより、コア60の外周面に形成された溝部65が磁束の流れを阻害するのを防止でき、コア60の剛性を向上でき、溝部65に滞留する油の滞留量を低減できる。
 また、本実施形態の圧縮機1では、上記したモータ8を用いることにより、コア60の外周面に形成された溝部65が磁束の流れを阻害するのを防止でき、コア60の剛性を向上でき、溝部65に滞留する油の滞留量を低減できる。
 以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものでないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく請求の範囲によって示され、さらに請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。
 上記実施形態では、溝部65が、コア60の外周面において歯部62と対応する位置(歯部62の径方向外側)に配置されているが、溝部65が、バックヨーク部61のうちスロット63よりも径方向外側部分に配置されてもよい。
 また、上記実施形態では、第1溝部66と第2溝部67とが、平面視において同一位置にあるが、平面視において異なる位置にあってもよい。
 また、上記実施形態では、第1溝部66および第2溝部67の軸方向長さが、突出部74、84の係合部分75、85の軸方向長さと略同じであるが、突出部74、84の係合部分75、85の軸方向長さよりも長くてもよい。
 また、上記実施形態では、コア60は、環状に形成されているが、複数に分割されたコアを環状に連結したものであってもよい。また、インシュレータ70、80は、それぞれ環状に一体成形されたものであるが、複数に分割されたインシュレータを環状に連結したものであってもよい。
 本発明を利用すれば、コアの外周面に形成された溝部が磁束の流れを阻害するのを防止でき、コアの剛性を向上でき、溝部に滞留する油の滞留量を低減できる。
1 圧縮機
8 モータ
10 固定子
11 回転子
60 コア
60a 上端部(軸方向一端部)
60b 下端部(軸方向他端部)
62 歯部
65 溝部
66 第1溝部
67 第2溝部
70 上インシュレータ(第1インシュレータ)
74 突出部(第1突出部)
80 下インシュレータ(第2インシュレータ)
84 突出部(第2突出部)

Claims (5)

  1.  径方向内側に向かって突出した複数の歯部を有する環状のコアと、
     前記コアの軸方向端部に配置されたインシュレータとを備え、
     前記インシュレータは、
     外側端部から前記コア側に向かって突出した突出部を有し、
     前記コアは、
     軸方向端部の外周面に配置され、前記突出部と係合する溝部を有し、
     前記溝部が、軸方向において全域にないことを特徴とする固定子。
  2.  前記インシュレータが、前記コアの軸方向一端部に配置された第1インシュレータと、前記コアの軸方向他端部に配置された第2インシュレータとを有し、
     前記第1インシュレータの第1突出部と係合する前記コアの第1溝部と、前記第2インシュレータの第2突出部と係合する前記コアの第2溝部とが、平面視において同一位置にあることを特徴とする請求項1に記載の固定子。
  3.  前記第1溝部及び前記第2溝部が、前記コアの外周面において前記歯部と対応する位置に配置されることを特徴とする請求項2に記載の固定子。
  4.  請求項1~3のいずれかに記載の固定子と、前記固定子の内側に配置された回転子とを備えることを特徴とするモータ。
  5.  請求項4に記載のモータを備えることを特徴とする圧縮機。
PCT/JP2014/061225 2013-05-28 2014-04-22 固定子、モータ及び圧縮機 WO2014192459A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR112015028783A BR112015028783A2 (pt) 2013-05-28 2014-04-22 estator, motor e compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-112092 2013-05-28
JP2013112092A JP5733336B2 (ja) 2013-05-28 2013-05-28 固定子、モータ及び圧縮機

Publications (1)

Publication Number Publication Date
WO2014192459A1 true WO2014192459A1 (ja) 2014-12-04

Family

ID=51988498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061225 WO2014192459A1 (ja) 2013-05-28 2014-04-22 固定子、モータ及び圧縮機

Country Status (3)

Country Link
JP (1) JP5733336B2 (ja)
BR (1) BR112015028783A2 (ja)
WO (1) WO2014192459A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102355647B1 (ko) * 2017-05-22 2022-01-26 엘지이노텍 주식회사 스테이터 및 이를 포함하는 모터
JP6885380B2 (ja) 2017-10-12 2021-06-16 ダイキン工業株式会社 ステータ、モータおよび圧縮機
KR102570833B1 (ko) * 2022-07-22 2023-08-29 주식회사 코아오토모티브 스테이터조립체 및 이를 포함하는 모터

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642545U (ja) * 1987-06-20 1989-01-09
JP2007116844A (ja) * 2005-10-21 2007-05-10 Nippon Densan Corp ブラシレスモータ
JP2008167516A (ja) * 2006-12-27 2008-07-17 Daikin Ind Ltd モータおよび圧縮機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642545U (ja) * 1987-06-20 1989-01-09
JP2007116844A (ja) * 2005-10-21 2007-05-10 Nippon Densan Corp ブラシレスモータ
JP2008167516A (ja) * 2006-12-27 2008-07-17 Daikin Ind Ltd モータおよび圧縮機

Also Published As

Publication number Publication date
JP2014233123A (ja) 2014-12-11
JP5733336B2 (ja) 2015-06-10
BR112015028783A2 (pt) 2017-07-25

Similar Documents

Publication Publication Date Title
JP5458522B2 (ja) 電機子用磁芯、電機子、回転電機及び圧縮機
JP5829059B2 (ja) 固定子および回転機
JP2011055576A (ja) 圧縮機
JP5971114B2 (ja) 永久磁石埋設型回転電機
WO2010016583A1 (ja) ステータ、モータおよび圧縮機
JP5831533B2 (ja) 圧縮機
JP2016001947A (ja) モータおよび圧縮機
WO2014192459A1 (ja) 固定子、モータ及び圧縮機
JP4743337B2 (ja) 固定子、モータ及び圧縮機
JP4253574B2 (ja) 永久磁石式回転電機及びそれを用いた圧縮機
JP2014050290A (ja) 固定子、モータ、及び圧縮機
WO2020017625A1 (ja) モータおよびそれを備えるコンプレッサ
JP2013162676A (ja) 電動機および圧縮機
JP2013027141A (ja) ロータ、回転電気機械及び圧縮機
JP6364703B2 (ja) 固定子、モータ及び圧縮機
WO2021059616A1 (ja) 圧縮機
JP2014109204A (ja) 圧縮機
US9748807B2 (en) Motor
JP2021522768A (ja) ステータ
JP6099582B2 (ja) 回転電機の積層鉄心、ステータ、回転電機
JP5874418B2 (ja) モータ及び圧縮機
JP2019015241A (ja) 圧縮機
JP6235318B2 (ja) 密閉型圧縮機
JP5120126B2 (ja) 圧縮機
JP2011043072A (ja) 密閉型圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14805160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015028783

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 14805160

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015028783

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151117