WO2014192363A1 - オイルポンプ装置 - Google Patents

オイルポンプ装置 Download PDF

Info

Publication number
WO2014192363A1
WO2014192363A1 PCT/JP2014/056686 JP2014056686W WO2014192363A1 WO 2014192363 A1 WO2014192363 A1 WO 2014192363A1 JP 2014056686 W JP2014056686 W JP 2014056686W WO 2014192363 A1 WO2014192363 A1 WO 2014192363A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil pump
internal combustion
combustion engine
motor
drive source
Prior art date
Application number
PCT/JP2014/056686
Other languages
English (en)
French (fr)
Inventor
安達 一成
宏仁 寺島
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Publication of WO2014192363A1 publication Critical patent/WO2014192363A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0057Driving elements, brakes, couplings, transmission specially adapted for machines or pumps
    • F04C15/0061Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0057Driving elements, brakes, couplings, transmission specially adapted for machines or pumps
    • F04C15/008Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/102Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member the two members rotating simultaneously around their respective axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • F16H61/0028Supply of control fluid; Pumps therefore using a single pump driven by different power sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/108Structural association with clutches, brakes, gears, pulleys or mechanical starters with friction clutches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/42Clutches or brakes
    • B60Y2400/427One-way clutches

Definitions

  • the present invention relates to an oil pump device, and more particularly to an oil pump device configured to be driven by an internal combustion engine and a motor.
  • an oil pump device configured to be driven by an internal combustion engine and a motor is known.
  • Such an intake device is disclosed, for example, in Japanese Unexamined Patent Publication No. 2011-106543.
  • JP-A-2011-106543 discloses an oil pump in which a first power transmission path from an engine (internal combustion engine) and a second power transmission path from an electric motor are both connected to a single oil pump.
  • a drive is disclosed.
  • a first one-way clutch capable of transmitting only power from the engine is provided midway in the first power transmission path, and an electric motor is provided midway in the second power transmission path.
  • a second one-way clutch capable of transmitting only the power of the vehicle is provided.
  • a drive mode for driving the oil pump with the engine as a drive source and a drive mode for driving the oil pump with the electric motor as the drive source can be switched.
  • the first one-way clutch and the second one-way clutch are each in a locked state (power transmittable state) when they are rotated in opposite directions to each other. It is configured.
  • the first one-way clutch and the second one are transmitted to the first power transmission path from the engine and the second power transmission path from the electric motor, respectively. Since the one-way clutch is provided, there is a problem that the switching mechanism of the drive source becomes complicated and enlarged accordingly.
  • the present invention has been made to solve the problems as described above, and one object of the present invention is to provide an oil pump device that can be miniaturized by simplifying a switching mechanism of a drive source. It is to be.
  • an oil pump device comprises an internal combustion engine drive source for transmitting a driving force of an internal combustion engine to an oil pump including an inner rotor and an outer rotor; It is provided separately from the source and includes a motor for rotationally driving the oil pump, and a single one-way clutch disposed between the internal combustion engine drive source and the motor and connected to both the internal combustion engine drive source and the motor
  • the one-way clutch is configured to cut off the driving force by the internal combustion engine drive source when the rotational speed of the motor transmitted to the one-way clutch is greater than the rotational speed of the internal combustion engine drive source transmitted to the one-way clutch.
  • the internal combustion engine drive source for transmitting the driving force of the internal combustion engine to the oil pump, the motor for rotating the oil pump, and the internal combustion engine drive source
  • the switching mechanism of the drive source can be simplified as compared with the case of using a plurality of one-way clutches, and as a result, the oil pump can be miniaturized.
  • an internal combustion engine drive source is provided with an internal combustion engine drive source in which the number of revolutions of the motor transmitted to a single one-way clutch disposed between the internal combustion engine drive source and the motor and connected to both the internal combustion engine drive source and the motor If the rotational speed of the motor exceeds the rotational speed of the internal combustion engine drive source by interrupting the driving force of the internal combustion engine drive source by the one-way clutch if the rotational speed of the internal combustion engine is greater than In the absence state, the oil pump can be driven to rotate directly by the driving force of the motor. In addition, when the motor is not used (during control stop or motor failure, etc.), the driving force of the internal combustion engine drive source is transmitted to the one-way clutch and the oil pump can be rotationally driven via the one-way clutch. Even when the motor is not in use, oil pressure can always be generated from the oil pump. Thus, even when a single one-way clutch is used, it is possible to easily switch the drive source and reliably supply the hydraulic pressure.
  • the oil pump device preferably further includes an oil temperature detection unit for detecting an oil temperature, and a rotation speed detection unit for detecting a rotation speed of the internal combustion engine proportional to the rotation speed of the internal combustion engine drive source.
  • an oil temperature detection unit for detecting an oil temperature
  • a rotation speed detection unit for detecting a rotation speed of the internal combustion engine proportional to the rotation speed of the internal combustion engine drive source.
  • the oil pump to the internal combustion engine utilizes the large driving force of the internal combustion engine drive source. Can be pumped. Further, in this case, since the motor is not used to rotate the oil pump, the motor can be miniaturized without the need for a high output motor. This also makes it possible to miniaturize the oil pump device.
  • the rotational speed of the motor is controlled to a rotational speed larger than the rotational speed of the internal combustion engine drive source and the one-way clutch
  • the oil pump is driven by the motor in a state where the driving force from the internal combustion engine driving source is shut off.
  • the motor when the motor is driven by the internal combustion engine drive source, the motor is driven by the motor to the oil pump when the rotational speed of the motor is equal to or less than the rotational speed of the internal combustion engine drive source. It is configured to assist the force.
  • the drive force for driving the oil pump is shared by the internal combustion engine drive source and the motor, and therefore the load on the internal combustion engine drive source side (loss) because the drive side is also partially responsible for the drive force. Can be reduced. As a result, the fuel consumption (fuel consumption rate) of the internal combustion engine can be improved.
  • the one-way clutch is configured such that the rotation direction of the oil pump by the internal combustion engine drive source is the same as the rotation direction of the oil pump by the motor.
  • the oil pump can always be rotationally driven in the same direction regardless of the drive source, so that it is not necessary to switch the oil passage around the oil pump according to the rotation direction of the oil pump.
  • the oil passage around the oil pump can be simplified.
  • the oil pump device when the oil pump is driven by the internal combustion engine drive source, electric power is generated by rotating the motor using the driving force transmitted via the one-way clutch. It is configured to be possible. According to this structure, since the motor which is rotated (corotated) with the drive of the oil pump by the internal combustion engine drive source can be used as a generator, mechanical energy by the internal combustion engine drive source is used as electric energy on the motor side. Because of the partial recovery, the recovered electrical energy can be effectively used as drive power for other devices.
  • the internal combustion engine or the reduction gear mechanism for reducing the rotational speed of the internal combustion engine drive source is further provided, and the reduction gear mechanism reduces the rotational speed of the internal combustion engine or the internal combustion engine drive source
  • the driving force of the internal combustion engine is configured to be transmitted to the oil pump.
  • the oil pump can be rotationally driven while operating the internal combustion engine or the internal combustion engine drive source and the motor with high efficiency. Further, since the maximum rotational speed of the motor can be lowered, the operating range of the motor can be expanded, and the assist drive of the oil pump by the motor can be effectively performed.
  • the one-way clutch is connected to both the internal combustion engine drive source and the motor in a state of being disposed between the speed reduction mechanism and the motor.
  • the oil pump can be reliably driven via the one-way clutch by the number of revolutions (number of revolutions after deceleration) of the internal combustion engine or internal combustion engine drive source decelerated by the reduction mechanism portion.
  • the rotational speed of the motor exceeds the rotational speed of the internal combustion engine drive source (rotational speed after deceleration)
  • the driving force of the motor can be used to easily rotate the oil pump.
  • the reduction mechanism portion includes at least one of a sprocket or a gear that reduces the rotational speed of the internal combustion engine drive source, and the one-way clutch is disposed between at least one of the sprocket or the gear and the motor.
  • the oil pump can be reliably driven through the one-way clutch by the rotation speed of the internal combustion engine drive source decelerated by the sprocket or the gear.
  • a portion of the reduction gear mechanism whose speed is reduced most is disposed coaxially with the one-way clutch and connected to the outer periphery of the one-way clutch .
  • the driving force of the internal combustion engine is biased to the outer peripheral side (motor side member) of the one-way clutch via the portion of the reduction mechanism arranged coaxially with the one-way clutch where the rotational speed is reduced most. Can be transmitted stably. Further, since the portion of the reduction mechanism portion where the rotational speed is reduced most and the one-way clutch are coaxially arranged, the overall size of the oil pump device can be further reduced.
  • the internal combustion engine drive source is connected to the oil pump by the one-way clutch, and the internal combustion engine is driven by the one-way clutch. It is configured to be driven in the second drive mode in which the oil pump is driven by the motor in a state where the driving force by the source is cut off, and the operating range of the first drive mode and the operating range of the second drive mode are , And are respectively set according to the number of revolutions of the internal combustion engine.
  • the drive source of the oil pump can be appropriately switched according to the characteristics of the internal combustion engine, so the drive control of the oil pump is performed in accordance with the size (exhaust amount) and torque characteristics of the internal combustion engine. be able to.
  • the second drive mode is set to correspond to the rotational speed lower than the rotational speed of the internal combustion engine corresponding to the first drive mode.
  • the engine further comprises a drive force transmission shaft connected to the internal combustion engine drive source for transmitting the drive force of the internal combustion engine drive source to the oil pump; It is disposed between the drive source and one end side of the drive force transmission shaft.
  • the one-way clutch is attached near the end of the driving force transmission shaft extending to one side with respect to the oil pump and the internal combustion engine drive source is connected to the one-way clutch.
  • the driving force of the source can be easily transmitted to the oil pump via the one-way clutch and the driving force transmission shaft.
  • the one-way clutch can be disposed close to the one end side of the driving force transmission shaft, the oil pump can be effectively used by using other portions (areas) other than the one end side of the driving force transmission shaft Each motor can be arranged.
  • a motor is connected to the other end side of the driving force transmission shaft.
  • the internal combustion engine drive source and the motor can be disposed opposite to each other along the drive force transmission shaft.
  • a portion between the one end side and the other end side of the driving force transmission shaft is connected to the inner rotor of the oil pump.
  • the oil pump inner rotor
  • the oil pump is disposed by effectively utilizing the central portion (central region) of the drive force transmission shaft to which the internal combustion engine drive source and the motor are respectively connected near the respective end portions.
  • the oil pump device is an internal combustion engine drive which is disposed on one side in the axial direction of the oil pump including the inner rotor and the outer rotor and transmits the driving force of the internal combustion engine to the oil pump.
  • Source located on the other axial side of the oil pump, and a motor for driving the oil pump, and disposed between the internal combustion engine drive source and the oil pump and connected to both the internal combustion engine drive source and the motor And a single one-way clutch.
  • the oil pump can be rotationally driven through a single one-way clutch connected to both the internal combustion engine drive source and the motor, and therefore, compared to the case where a plurality of one-way clutches are used,
  • the source switching mechanism can be simplified, and as a result, the oil pump device can be miniaturized.
  • the oil pump can be directly driven to rotate by the drive force of the motor without being affected by the internal combustion engine drive source.
  • the driving force of the internal combustion engine drive source is transmitted to the one-way clutch to rotate the oil pump via the one-way clutch. Therefore, the oil pressure can always be generated from the oil pump even when the motor is not in use.
  • FIG. 1 is a cross-sectional view showing a structure of an oil pump device according to an embodiment of the present invention. It is sectional drawing which showed the internal structure of the oil pump in the oil pump apparatus by one Embodiment of this invention.
  • FIG. 5 is a view showing an example of an operation pattern (engine speed-oil pump speed) of the oil pump device according to the embodiment of the present invention.
  • FIG. 6 is a view showing an example of an operation pattern (engine speed-engine supplied oil pressure) of the oil pump device according to one embodiment of the present invention.
  • FIG. 7 is a view showing another example of the operation pattern (engine speed-oil pump speed) of the oil pump device according to the embodiment of the present invention.
  • FIG. 8 is a view showing another example of the operation pattern (engine speed-engine supplied oil pressure) of the oil pump device according to the embodiment of the present invention.
  • the oil pump device 100 is mounted on a vehicle (not shown) such as a car equipped with an engine 90, and lubricating oil (engine oil) 1 in an oil pan 91 (see FIG. 2) It has a function of supplying (see FIG. 2) around the piston 92 and to a movable portion (sliding portion) such as the crankshaft 93 or the like.
  • the oil pump device 100 includes an oil pump 10, a motor 20, a reduction gear unit 30, a one-way clutch 40, and a motor control unit 50.
  • the engine 90 is an example of the “internal combustion engine” in the present invention.
  • the configuration of each part constituting the oil pump device 100 will be described.
  • the oil pump 10 is configured as a trochoidal oil pump which is an internal gear type, and as shown in FIGS. 2 and 3, the casing portion 11 and an inner rotor rotatably provided in the casing portion 11. 12 and the outer rotor 13 are included. Further, a shaft portion 25 of the motor 20, which will be described later, is inserted into the inner rotor 12 along the rotation axis (center line 160) of the inner rotor 12. When the inner rotor 12 is rotated in the arrow P1 direction along with the rotational driving of the shaft portion 25, the outer rotor 13 is also rotated in the same direction. At this time, as shown in FIG.
  • the volume of the space S formed between the teeth 12a (peaks) and the teeth 13a (valley) of both rotors is increased or decreased with the rotation of both rotors. Therefore, the lubricating oil 1 is drawn by the oil pump 10 as the pressure in the space S decreases with the volume change from the minimum value to the maximum value of the space S, and the volume change from the maximum value to the minimum value in the space S As the pressure in the space S increases with the pressure, the suctioned lubricating oil 1 is discharged to the outside of the oil pump 10.
  • the shaft portion 25 is an example of the “driving force transmission shaft” in the present invention.
  • a suction portion 14 for sucking the lubricating oil 1, a discharge portion 15 for discharging the lubricating oil 1, and an oil return portion 16 are formed in the casing portion 11. ing. Therefore, the oil pump 10 has a function of suctioning the lubricating oil 1 from the oil pan 91 through the suction unit 14 and generating a predetermined hydraulic pressure and pumping it from the discharge unit 15 toward the oil filter (not shown). ing. The lubricating oil 1 which has passed through the oil filter and from which relatively small foreign matter has been removed is fed to the movable portion (sliding portion) in the engine 90. Further, the oil return portion 16 is a passage connecting the inside of a housing 21 of the motor 20, which will be described later, and the suction portion 14 and returns the lubricating oil 1 accumulated in the housing 21 to the suction portion 14 side ) Is provided.
  • the motor 20 includes a housing 21, and a rotor portion 22, a stator portion 23 and a connector portion 24 housed in the housing 21. Further, the housing 21 is attached along the end surface of the casing 11 of the oil pump 10 on the X2 side. Further, the motor 20 is provided with a shaft portion 25 disposed at the rotation center of the rotor portion 22.
  • the shaft portion 25 penetrates the inner rotor 12 of the oil pump 10 in the X1 direction from the X2 side along the center line 160 which is the rotation center of the rotor portion 22 and further extends to the outside (X1 side) of the casing portion 11 There is.
  • the connector 24 is configured to be connected to a connection terminal of a control wire 50a (see FIG. 1) (not shown) extending from the motor control unit 50 (see FIG. 1).
  • the motor 20 has a role of rotationally driving the oil pump 10 via the shaft portion 25 based on rotation speed control by the motor control unit 50.
  • the reduction gear portion 30 has a function of reducing the number of rotations of the crankshaft 93.
  • the reduction gear unit 30 is configured by combining a plurality of gears (not shown) having different numbers of teeth of different sizes from each other, and the drive side gear (larger rotational speed) is connected to the crankshaft 93 and
  • the final gear 31 (see FIG. 2) in the gear unit 30 is disposed as the most decelerated driven gear (small rotational speed). That is, the driving force of the engine 90 is transmitted to the final gear 31 via the reduction gear portion 30.
  • the reduction gear portion 30 is an example of the "reduction mechanism portion" in the present invention.
  • the final gear 31 in the reduction gear unit 30 is an example of the "internal combustion engine drive source" in the present invention.
  • the crankshaft 93 rotated at about 4000 rotations is decelerated to about 2000 rotations which is half in the final gear 31.
  • the final gear 31 (the reduction gear portion 30) is connected to the shaft portion 25 via a one-way clutch 40 described later. Therefore, in the present embodiment, the driving force of engine 90 (crankshaft 93) is reduced in rotational speed via reduction gear portion 30 and, in this state, to oil pump 10 via one-way clutch 40 and shaft portion 25. It is configured to be communicated.
  • the one-way clutch 40 is provided with a sprag type clutch mechanism that transmits rotational force (driving force) only in one direction (in this case, the arrow P1 direction).
  • the one-way clutch 40 has a structure in which a ring-shaped clasp (splug: not shown) is incorporated between an outer race (outer ring) 41 and an inner race (inner ring) 42.
  • a ring-shaped clasp splug: not shown
  • the inner race 42 rotates in one direction (arrow P1 direction)
  • the sprags mesh and transmit torque
  • the engagement of the sprags is released and the torque Are configured not to be transmitted.
  • the final gear 31 of the reduction gear portion 30 is fastened to the outer race 41 so as to transmit power, and the inner race 42 is fastened to the shaft portion 25 so as to transmit power. That is, the final gear 31 at which the number of rotations of the reduction gear unit 30 is reduced most is connected to the outer race 41 of the one-way clutch 40 in a state of being coaxially arranged with the one-way clutch 40.
  • the single one-way clutch 40 is disposed between the reduction gear portion 30 (final gear 31) for reducing the rotational speed of the crankshaft 93 and the motor 20. And is connected to both the reduction gear unit 30 (final gear 31) and the motor 20. That is, the final gear 31 is connected to the shaft 25 via the inner race 42 of the one-way clutch 40, and the rotor 22 of the motor 20 is also connected to the shaft 25.
  • the oil pump 10 is driven by the engine 90 (crankshaft 93), the reduction gear 30, the one-way clutch 40, and the shaft 25 sequentially in the first drive mode where the driving force is transmitted. Only the driving force of the part 22) is transmitted to the shaft part 25, and it is possible to operate by two drive modes of the 2nd drive mode with the 2nd drive mode rotationally driven.
  • the rotation number R2 of the motor 20 being energized (controlled) transmitted to the one-way clutch 40 (inner race 42) via the shaft 25 causes the reduction gear unit 30 to be driven.
  • the rotation speed R1 of the final gear 31 transmitted to the one-way clutch 40 (outer race 41) is larger (R2> R1)
  • the driving force by the reduction gear portion 30 (final gear 31) is machined by the one-way clutch 40
  • R2> R1 the driving force of motor 20 does not occur in one-way clutch 40. Only by this, the oil pump 10 is rotationally driven.
  • the one-way clutch 40 generates corotation and the crankshaft
  • the oil pump 10 is configured to be rotationally driven using a driving force of 93. Therefore, since oil pump 10 can be rotationally driven using the driving force of crankshaft 93 when motor 20 is not in use (when not controlling), oil pressure is always supplied from oil pump 10 when engine 90 is operating. It is possible to generate.
  • the shaft 25 is rotated using the driving force of the engine 90.
  • the rotor portion 22 of the motor 20 is also rotated as the shaft portion 25 rotates. Therefore, in the first drive mode, control is also performed so that the electric power is generated by the motor 20 simultaneously with the driving of the oil pump 10. Further, the electric power generated by the motor 20 is configured to be charged to the on-vehicle battery 94 (see FIG. 1) through the wiring 50b based on the electric power control of the motor control unit 50.
  • the shaft 25 and the inner rotor 12 are always in the direction of the arrow P1 both in the first drive mode using the drive force of the engine 90 and in the second drive mode using the drive force of the motor 20. It is configured to be rotated only. Therefore, the lubricating oil 1 is sucked from one suction unit 14 and discharged from one discharge unit 15 in any drive mode.
  • the reduction gear portion 30 and the one-way clutch 40 are disposed in the vicinity of the end portion 25 a on the X1 side of the shaft portion 25.
  • the rotor portion 22 is coupled such that the motor 20 is disposed on the end 25b side of the shaft portion 25 on the X2 side.
  • the oil pump 10 is disposed in the central region 25c between the end 25a side and the end 25b side of the shaft portion 25, and the inner rotor 12 of the oil pump 10 is connected to the central region 25c.
  • the end 25 a and the end 25 b are examples of the “one end” and the “other end” in the present invention, respectively.
  • the central region 25 c is an example of the “portion between the one end side and the other end side of the driving force transmission shaft” in the present invention.
  • the motor control unit 50 is based on the temperature (oil temperature) of the lubricating oil 1, the hydraulic pressure of the lubricating oil 1 pumped by the oil pump 10, and the rotational speed of the engine 90 (crankshaft 93). It has a role of performing rotational drive control (rotational speed control) of the motor 20. That is, an oil temperature sensor 51 provided in an oil pan 91 (see FIG. 2) or the like in the engine 90, an oil pressure sensor 52 of the engine 90, and a rotation speed detection unit 53 for detecting the rotation speed of the engine 90 The controller 50 is electrically connected.
  • the motor control unit 50 controls the motor 20 based on the temperature of the lubricating oil 1 detected by the oil temperature sensor 51 and the rotational speed of the engine 90 detected by the rotational speed detection unit 53.
  • the oil pump 10 can be rotationally driven by performing rotational drive control (rotational speed control). More specifically, in the oil pump device 100, the temperature of the lubricating oil 1 detected by the oil temperature sensor 51 immediately after the start of the engine 90 is lower than a predetermined temperature (about 80 ° C.). Under the condition that the rotation speed of the engine 90 is higher than the set rotation speed, the rotation speed R2 of the motor 20 is controlled to be equal to or less than the rotation speed R1 of the reduction gear portion 30 (final gear 31 (see FIG.
  • the rotation speed R2 of the motor 20 is set to the rotation speed R1 of the final gear 31 It is configured to be switched to the “second drive mode” in which the oil pump 10 is driven to rotate at the rotation speed R2 only by the driving force of the motor 20 by increasing the rotation speed to a larger rotation speed (R2> R1). That is, in the second drive mode, the driving force of the engine 90 from the reduction gear portion 30 side to the shaft portion 25 is cut off by the one-way clutch 40.
  • the number of revolutions R2 of the motor 20 is less than or equal to the number of revolutions R1 of the final gear 31 (R2 ⁇ R1
  • the driving force for the oil pump 10 is assisted by the motor 20.
  • the driving force of the crankshaft 93 is transmitted to the shaft portion 25 to rotationally drive the oil pump 10 and
  • the rotation speed control (R2 ⁇ R1) is performed by energizing the motor 20 according to the reference), and the shaft portion 25 is rotationally driven in an auxiliary manner.
  • the oil pump 10 is operated by using the driving force of the motor 20 in combination without operating the oil pump 10 with a single driving force by the crankshaft 93.
  • the motor 20 side is configured to compensate for the loss (loss horsepower) when operating 10. Therefore, the fuel consumption of the engine 90 is improved by the amount assisted by the motor 20.
  • the motor control unit 50 In addition to the detection results of the oil temperature sensor 51 and the rotational speed detector 53, the motor control unit 50 also detects the motor supply oil pressure of the lubricating oil 1 detected by the oil pressure sensor 52 (see FIG. 1). It is configured to perform drive control (rotational speed control). Thus, the lubricating oil 1 having an appropriate hydraulic pressure is discharged from the oil pump 10 even when the motor 20 is driven to rotate.
  • the lubricating oil 1 discharged from the discharge portion 15 is supplied to the movable portion (sliding portion) in the engine 90 via a hydraulic circuit not shown. After that, it is returned to the oil pan 91 in the engine 90 again.
  • a pressure adjustment valve 17 is provided in the hydraulic circuit connected to the discharge unit 15. That is, when the hydraulic pressure generated by the oil pump 10 exceeds a predetermined value regardless of the drive mode of either the engine 90 (crankshaft 93) or the motor 20, the pressure regulating valve 17 is opened to A portion is configured to be returned to the oil pan 91.
  • the oil pump device 100 is configured as described above.
  • an operation pattern of the oil pump device 100 according to the present embodiment will be described with reference to FIGS. 1, 2 and 4 to 7.
  • an operation pattern of the oil pump device 100 when the reduction gear portion 30 (see FIG. 2) is set to the reduction gear ratio "0.5" as an example will be described, and then, the reduction gear portion 30 as another example.
  • the operation pattern of the oil pump device 100 when the speed reduction ratio is set to "0.6" will be described.
  • the reduction gear portion 30 when the reduction gear portion 30 is configured to have a reduction ratio of “0.5”, the change in the rotational speed of the engine 90 (crankshaft 93) indicated by the horizontal axis is obtained. Accordingly, the rotation speed of final gear 31 (see FIG. 2) on the vertical axis is shown as graph A (solid line). For example, when the rotation speed of the engine 90 is 2000 rotations / minute, 4000 rotations / minute and 6000 rotations / minute, the graph A showing the rotation number of the final gear 31 is 1000 rotations / minute, 2000 rotations / minute and 3000 rotations / minute. Pass each point of the minute.
  • the change in the rotational speed shown in graph A is the shaft portion 25 (see FIG.
  • oil pump unit 100 in this example, based on the detection result of oil temperature sensor 51, oil pressure sensor 52 and rotation speed detection unit 53 (refer to FIG. 2) based on the rotation speed control of motor control unit 50 (refer to FIG. 1).
  • the rotational drive control is performed such that the rotational speed R2 of the motor 20 (see FIG. 2) is always higher than the rotational speed R1 of the final gear 31 in the entire range of the rotational speed of the engine 90 (the entire range of the rotational speed R1 of the final gear 31). It will be. That is, by performing drive control (second drive mode) shown by graph B (solid line) for the motor 20, the oil pump 10 is operated using the drive force of the motor 20 at all times.
  • the revolution speed R2 of the motor 20 is set at about 2000 revolutions / min and the oil pump 10 is
  • the rotation speed R1 of the final gear 31 is in the range of about 1500 rotations / minute to about 3000 rotations / minute (range A2 in graph A)
  • the rotation speed R2 of the motor 20 is doubled to about 4000 rotations / minute
  • the rotation speed control is performed to operate the oil pump 10 by increasing it.
  • the engine supply oil pressure (vertical axis) of the lubricating oil 1 discharged from the oil pump 10 in accordance with the change in rotational speed of the motor 20 shown in the graph B (see FIG. 4) follows the change as shown in C (solid line).
  • drive control is performed such that the engine supply hydraulic pressure is adjusted in two stages according to the rotational speed of the engine 90.
  • the graph of FIG. Since the engine supply oil pressure corresponding to the profile of A (see FIG.
  • FIGS. 4 and 5 are an example of an operation pattern applied to a vehicle equipped with an engine 90 having a small displacement (cylinder volume).
  • the rotational speed of the engine 90 shown on the horizontal axis is According to the change, the rotation speed of the oil pump 10 (the rotation speed of the final gear 31) on the vertical axis is shown as a graph E.
  • the graph E showing the number of revolutions of the oil pump 10 (final gear 31) is 1,200 rpm, 2,400 rpm. Pass each minute and 3600 revolutions / minute.
  • the change in the rotational speed shown in graph E corresponds to the change in the rotational speed of the shaft portion 25 and the oil pump 10 when the one-way clutch 40 rotates with the outer race 41 at the same rotational speed. equal. Therefore, the vertical axis in FIG. 6 is also described as the number of rotations (rotation / minute) of the oil pump 10.
  • the final gear 31 is controlled based on the control of the motor control unit 50 based on the detection results of the oil temperature sensor 51, the hydraulic pressure sensor 52, and the rotation speed detection unit 53 (see FIG. 2).
  • the rotation speed R2 of the motor 20 is always higher than the rotation speed R1 of the final gear 31 in the range from 0 rotation / min to about 2400 rotations / min in the rotation speed region (range E1 (broken line part in graph E)).
  • the oil pump 10 is operated using the driving force of the motor 20.
  • the drive control of the motor 20 is electrically stopped when the rotation speed range of the final gear 31 is in the range of about 2400 revolutions / minute to about 3600 revolutions / minute (range E2 (solid line part in graph E)).
  • drive control (first drive mode) is performed in which the oil pump 10 is operated via the one-way clutch 40.
  • the following rotational speed control of the motor 20 is performed. That is, when the rotation speed R1 of the final gear 31 is in the range of 0 rotations / min to about 1200 rotations / min, the rotation speed R2 of the motor 20 is set at about 1600 rotations / min as shown in graph F (solid line). While the oil pump 10 is operated, when the number of revolutions R1 of the final gear 31 is in the range of about 1200 revolutions / minute to about 2400 revolutions / minute, as shown in graph F, the number of revolutions R2 of the motor 20 is doubled. Rotation speed control is performed to operate the oil pump 10 by increasing it to about 2400 revolutions / minute.
  • the oil pump 10 is operated using the driving force of the motor 20 in the low rotation range (0 to about 4000 rotations / minute) in the engine 90, and the high rotation range (about 4000 rotations / minute in the engine 90) It is also possible to pressure-feed the lubricating oil 1 by operating the oil pump 10 using the driving force of the engine 90 at approximately 6000 revolutions per minute. Even when the oil pump 10 is not operated by the motor 20, the engine supply hydraulic pressure corresponding to the profile of the graph E (range E1) (see FIG. 6) by the driving force of the engine 90 is as shown by the graph H (broken line). Therefore, while the engine 90 is in operation, it is possible to generate oil pressure to the oil pump 10 to supply the lubricating oil 1 at all times.
  • the motor 20 (rotor portion 22) is also It is rotated. Thereby, electric power is generated using the motor 20 and stored in the battery 94 (see FIG. 1).
  • the operation patterns shown in FIGS. 6 and 7 are an example of an operation pattern applied to a vehicle equipped with the engine 90 having a large displacement (cylinder volume).
  • the final gear 31 (reduction gear portion 30) for transmitting the driving force of the engine 90 (crankshaft 93) to the oil pump 10, and the motor 20 for rotationally driving the oil pump 10.
  • a single one-way clutch 40 disposed between the final gear 31 and the motor 20 and connected to both the final gear 31 and the motor 20, the single gear connected to both the final gear 31 and the motor 20. Since the oil pump 10 can be rotationally driven via one one-way clutch 40, the switching mechanism for switching between the driving state by the engine 90 and the driving state by the motor 20 is simplified as compared to the case where a plurality of one-way clutches are used. can do.
  • the oil pump device 100 can be miniaturized.
  • the number of rotations R2 of the motor 20 transmitted to the single one-way clutch 40 disposed between the final gear 31 and the motor 20 and connected to both the final gear 31 and the motor 20 is a one-way clutch
  • the rotation speed R1 of the final gear 31 (the reduction gear portion 30) transmitted to 40 is larger than the rotation speed R2 of the motor 20 by cutting off the driving force of the final gear 31 by the one-way clutch 40.
  • the oil pump 10 can be driven to rotate directly by the driving force of the motor 20 without being affected by the final gear 31.
  • the final gear 31 is connected to the oil pump 10 by the one-way clutch 40 by controlling the rotational speed R2 of the motor 20 to the rotational speed R1 of the final gear 31 or less or stopping the motor 20 and the final gear 31
  • the oil pump 10 is configured to be driven.
  • the temperature (oil temperature) of the lubricating oil 1 is relatively low, the oil viscosity is high, and when the rotational speed of the engine 90 is high, the large driving force of the final gear 31 is used to drive the oil pump 10 to the engine 90.
  • the lubricating oil 1 can be pumped to the Further, in this case, since the motor 20 is used alone and the oil pump 10 is not rotationally driven, the motor 20 can be miniaturized without the need for the high output motor 20. Also by this, the oil pump device 100 can be miniaturized.
  • the rotation number R2 of the motor 20 is higher than the rotation number R1 of the final gear 31.
  • the oil pump 10 is driven by the motor 20 in a state in which the driving force of the final gear 31 is cut off by the one-way clutch 40 while controlling to a large rotation speed.
  • the oil pump 10 when the oil pump 10 is driven by the final gear 31 (the reduction gear portion 30), the oil 20 is driven by the motor 20 when the rotational speed R2 of the motor 20 is less than the rotational speed R1 of the final gear 31.
  • the driving force for the pump 10 is assisted.
  • the load (loss) on the final gear 31 (reduction gear portion 30) side can be reduced because the motor 20 side also partially bears the driving force of the shaft portion 25.
  • the fuel consumption rate of the engine 90 can be improved.
  • the one-way clutch 40 is configured such that the rotation direction of the oil pump 10 by the final gear 31 and the rotation direction of the oil pump 10 by the motor 20 are in the same arrow P1 direction.
  • the oil pump 10 can always be rotationally driven in the same direction (direction of arrow P1) regardless of the drive source, so that the oil passage including the suction portion 14 and the discharge portion 15 around the oil pump 10 can be There is no need to switch according to the direction of rotation. Thereby, the oil passage around the oil pump 10 can be simplified.
  • the oil pump 10 when the oil pump 10 is driven by the final gear 31 (the reduction gear portion 30), it is transmitted via the one way clutch 40.
  • the electric power is generated by rotating the motor 20 using the driving force.
  • the motor 20 rotated with the drive of the oil pump 10 by the final gear 31 can also be used as a generator, mechanical energy by the final gear 31 is recovered to the battery 94 as electric energy on the motor 20 side. Therefore, the recovered electric energy can be effectively used as drive power for other devices.
  • the reduction gear portion 30 is provided to reduce the rotational speed of the engine 90 (crankshaft 93) to the rotational speed R1 of the final gear 31.
  • the driving force of the engine 90 is transmitted to the oil pump 10 in a state where the number of rotations of the engine 90 is reduced by the reduction gear unit 30 to reduce the number of rotations R1 of the final gear 31.
  • the oil pump 10 can be rotationally driven while operating the engine 90 and the motor 20 with high efficiency.
  • the maximum rotational speed (rotational speed R2) of the motor 20 can be lowered, the operating range of the motor 20 can be expanded, and the assist drive of the oil pump 10 by the motor 20 can be effectively performed.
  • the one-way clutch 40 is disposed between the reduction gear portion 30 and the motor 20, and in this state, the one-way clutch 40 is connected to both the final gear 31 (reduction gear portion 30) and the motor 20.
  • the oil pump 10 can be reliably driven via the one-way clutch 40 by the rotation speed R1 of the final gear 31 decelerated by the reduction gear unit 30, and the rotation speed R2 of the motor 20 is the rotation of the final gear 31. If the number R1 is exceeded, the driving force of the motor 20 can be used to easily rotate the oil pump 10.
  • the reduction gear unit 30 includes the final gear 31 that reduces the rotational speed of the crankshaft 93, and the one-way clutch 40 is disposed between the final gear 31 and the motor 20.
  • the oil pump 10 can be reliably driven via the one-way clutch 40 by the rotational speed R1 reduced by the final gear 31 in the reduction gear unit 30.
  • the final gear 31 of the reduction gear unit 30 whose speed is reduced most is arranged coaxially with the one-way clutch 40 and coupled to the outer race 41 of the one-way clutch 40.
  • the driving force of the engine 90 can be stably transmitted to the outer race 41 without bias via the final gear 31 coaxially arranged with the one-way clutch 40.
  • the final gear 31 and the one-way clutch 40 are coaxially arranged, the overall size of the oil pump device 100 can be further reduced.
  • the first drive mode in which the final gear 31 of the reduction gear unit 30 is connected to the oil pump 10 by the one-way clutch 40 and the oil pump 10 is driven by the final gear 31 is connected to the oil pump 10 by the one-way clutch 40 and the oil pump 10 is driven by the final gear 31.
  • the oil pump device 100 is configured to be driven in the second drive mode in which the oil pump 10 is driven by the motor 20 in a state in which the driving force by the unit 30 (final gear 31) is shut off.
  • the operation range of the first drive mode and the operation range of the second drive mode are configured to be set in accordance with the rotational speed of the engine 90, respectively.
  • the drive source of the oil pump 10 can be appropriately switched according to the characteristics of the engine 90, so the drive control of the oil pump 10 is made compatible with the size (exhaust volume (cylinder volume)) and torque characteristics of the engine 90. It can be performed.
  • the second drive mode is set to the low rotation speed range of the engine 90 (for example, 4000 rpm or less in FIG. 7), and the high rotation speed range of the engine 90 (4000 in FIG. 7).
  • the oil pump device 100 is configured such that the first drive mode is set in the region where rotation / min is exceeded.
  • the required hydraulic pressure engine supply hydraulic pressure
  • the required hydraulic pressure may be relatively small, so the driving force of the motor 20 is used to drive the oil pump 10 without any problem. be able to.
  • the required hydraulic pressure is relatively large when the engine 90 is operated in the high speed range, sufficient hydraulic pressure can be supplied to the engine 90 by actively using the driving force of the engine 90. .
  • the shaft portion 25 is connected to the final gear 31 in the reduction gear portion 30 and transmits the driving force of the final gear 31 to the oil pump 10.
  • the one-way clutch 40 is disposed between the final gear 31 and the end 25 a side of the shaft portion 25.
  • the one-way clutch 40 is attached near the end of the drive force transmission shaft extending to one side with respect to the oil pump 10, and the final gear 31 in the reduction gear portion 30 is connected to the one-way clutch 40.
  • the driving force of the final gear 31 can be easily transmitted to the oil pump 10 via the one-way clutch 40 and the shaft portion 25.
  • the one-way clutch 40 can be disposed close to the end 25 a of the shaft 25, the oil pump 10 and the portion other than the end 25 a of the shaft 25 can be effectively used.
  • the motors 20 can be arranged respectively.
  • the motor 20 is connected to the end 25 b of the shaft 25.
  • the final gear 31 (the reduction gear portion 30) and the motor 20 can be disposed along the shaft portion 25 on the opposite sides.
  • a portion between the end 25 a side and the end 25 b side of the shaft portion 25 is connected to the inner rotor 12 of the oil pump 10.
  • the oil pump 10 inner rotor 12
  • the oil pump 10 is effectively utilized by utilizing the central region 25c of the shaft portion 25 where the final gear 31 (the reduction gear portion 30) and the motor 20 are respectively connected near the end 25a and the end 25b.
  • the present invention is not limited to this.
  • the present invention may be applied to an oil pump device for supplying AT fluid (AT oil) to an automatic transmission (AT) that automatically switches the transmission gear ratio according to the rotational speed of the engine 90.
  • AT oil AT fluid
  • AT automatic transmission
  • an input shaft for an automatic transmission driven by an internal combustion engine as a drive source may be applied as the "internal combustion engine drive source" of the present invention.
  • lubricating oil is supplied to the sliding portion in a continuously variable transmission (CVT) whose speed ratio can be changed continuously and continuously.
  • CVT continuously variable transmission
  • the present invention may be applied to an oil pump device for Further, the present invention may be applied to an oil pump device for supplying power steering oil to a power steering device for driving a steering (steering device) in a vehicle.
  • the temperature of the lubricating oil 1 detected by the oil temperature sensor 51 is lower than approximately 80 ° C.
  • the rotational speed of the engine 90 detected by the rotational speed detection unit 53 is higher than the set rotational speed.
  • the rotation speed R2 of the motor 20 is controlled to the rotation speed R1 or less of the reduction gear portion 30 (final gear 31) or the motor 20 is stopped to drive the oil pump 10 on the engine 90 side.
  • the present invention is not limited to this.
  • the control may be configured to drive the oil pump 10 on the side of the engine 90 by controlling the rotational speed R1 or less of the final gear 31).
  • a first sprocket driving side sprocket
  • a second sprocket driven sprocket
  • a roller A power transmission mechanism having a number of teeth set so that the number of teeth of the second sprocket is reduced so as to be reduced more than the number of rotations of the first sprocket; It can be used as an engine drive source.
  • the "speed reduction mechanism portion" of the present invention may be configured using a plurality of pulleys driven by a belt via a V-belt or a flat belt.
  • the diameter of the second pulley (following pulley) connected to the outer race 41 side is preferably larger than the diameter of the first pulley (driving pulley) connected to the crankshaft 93 side.
  • the operation pattern (see FIGS. 4 and 5) of the oil pump device 100 when the reduction gear ratio of the reduction gear portion 30 is set to “0.5” or “0.6” is shown.
  • the present invention is not limited to this.
  • the oil pump device 100 may be operated by setting the final reduction ratio of the reduction gear portion 30 to a reduction ratio other than the above.
  • the one-way clutch 40, the oil pump 10, and the motor 20 are arranged in order from the end 25a side (X1 side) to the end 25b side (X2 side) in the shaft portion 25.
  • the present invention is not limited to this.
  • the oil pump 10 (end 25a) along the shaft 25, the one-way clutch 40 (central region 25c) connected to the reduction gear 30 and the motor 20 (end 25b) may be arranged in this order.
  • the arrangement configuration of each device of the one-way clutch 40, the oil pump 10, and the motor 20 can be appropriately changed in accordance with the shape of the oil pump device mounted on a vehicle or equipment.
  • the example which provided the trochoid-type oil pump 10 which is an internal gear type in the oil pump apparatus 100 was shown in the said embodiment, this invention is not limited to this.
  • an oil pump to which an internal involute tooth shape is applied may be used.
  • the present invention is not limited to this.
  • the present invention may be applied to an oil pump device mounted on equipment other than a vehicle equipped with an internal combustion engine.
  • the engine (internal combustion engine) 90 a gasoline engine, a diesel engine, a gas engine or the like can be applied.
  • drive control of the motor 20 is performed based on the rotation speed control of the motor control unit 50 based on the detection results of the oil temperature sensor 51, the oil pressure sensor 52, and the rotation speed detection unit 53
  • the present invention is not limited to this.
  • drive control of the motor 20 may be performed based only on the detection results of the oil temperature sensor 51 and the oil pressure sensor 52.
  • drive control of the motor 20 may be performed based on the detection results of the hydraulic pressure sensor 52 and the rotational speed detector 53.
  • drive control of the motor 20 may be performed when the oil pump 10 is driven according to the load of the engine 90 which fluctuates depending on the traveling state of the vehicle.
  • Oil pump 1 lubricating oil 10 oil pump 12 inner rotor 13 outer rotor 20 motor 25 shaft portion (driving force transmission shaft) 25a end (one end) 25b end (other end) 25c Central region (part between the one end side and the other end side of the driving force transmission shaft) 30 Reduction gear (internal combustion engine drive source) 31 Final gear (internal combustion engine drive source) 40 One-way clutch 50 Motor control unit 51 Oil temperature sensor (oil temperature detection unit) 53 RPM detector 90 Engine (internal combustion engine) 94 Battery 100 oil pump device

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Control Of Transmission Device (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

 このオイルポンプ装置は、インナーロータとアウターロータとを含むオイルポンプに対して内燃機関の駆動力を伝達する内燃機関駆動源と、内燃機関駆動源とは別個に設けられ、オイルポンプを回転駆動するモータと、内燃機関駆動源とモータとの間に配置され、内燃機関駆動源およびモータの両方に接続された単一のワンウェイクラッチとを備える。ワンウェイクラッチに伝達されるモータの回転数がワンウェイクラッチに伝達される内燃機関駆動源の回転数よりも大きい場合に、ワンウェイクラッチにより内燃機関駆動源による駆動力を遮断するように構成されている。

Description

オイルポンプ装置
 本発明は、オイルポンプ装置に関し、特に、内燃機関およびモータにより駆動可能に構成されたオイルポンプ装置に関する。
 従来、内燃機関およびモータにより駆動可能に構成されたオイルポンプ装置が知られている。このような吸気装置は、たとえば、特開2011-106543号公報に開示されている。
 上記特開2011-106543号公報には、エンジン(内燃機関)からの第1動力伝達経路と電動モータからの第2動力伝達経路とが共に1台のオイルポンプに接続されて構成されたオイルポンプ駆動装置が開示されている。この特許文献1に記載のオイルポンプ駆動装置では、第1動力伝達経路の途中にエンジンからの動力のみを伝達可能な第1ワンウェイクラッチが設けられるとともに、第2動力伝達経路の途中に電動モータからの動力のみを伝達可能な第2ワンウェイクラッチが設けられている。これにより、エンジンを駆動源としてオイルポンプを駆動する駆動モードと、電動モータを駆動源としてオイルポンプを駆動する駆動モードとが切り替えられるように構成されている。なお、2つの駆動モードを択一的に切り替えるために、第1ワンウェイクラッチおよび第2ワンウェイクラッチは、互いに反対方向に回転された際に各々がロック状態(動力伝達可能な状態)になるように構成されている。
特開2011-106543号公報
 しかしながら、上記特開2011-106543号公報に記載されたオイルポンプ駆動装置では、エンジンからの第1動力伝達経路と電動モータからの第2動力伝達経路とに、それぞれ、第1ワンウェイクラッチおよび第2ワンウェイクラッチを設けるため、その分、駆動源の切替機構が複雑化するとともに大型化するという問題点がある。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、駆動源の切替機構の簡素化により小型化を図ることが可能なオイルポンプ装置を提供することである。
 上記目的を達成するために、この発明の一の局面におけるオイルポンプ装置は、インナーロータとアウターロータとを含むオイルポンプに対して内燃機関の駆動力を伝達する内燃機関駆動源と、内燃機関駆動源とは別個に設けられ、オイルポンプを回転駆動するモータと、内燃機関駆動源とモータとの間に配置され、内燃機関駆動源およびモータの両方に接続された単一のワンウェイクラッチとを備え、ワンウェイクラッチに伝達されるモータの回転数がワンウェイクラッチに伝達される内燃機関駆動源の回転数よりも大きい場合に、ワンウェイクラッチにより内燃機関駆動源による駆動力を遮断するように構成されている。
 この発明の一の局面によるオイルポンプ装置では、上記のように、オイルポンプに対して内燃機関の駆動力を伝達する内燃機関駆動源と、オイルポンプを回転駆動するモータと、内燃機関駆動源とモータとの間に配置され内燃機関駆動源およびモータの両方に接続された単一のワンウェイクラッチとを備えることによって、内燃機関駆動源およびモータの両方に接続された単一のワンウェイクラッチを介してオイルポンプを回転駆動することができるので、複数のワンウェイクラッチを用いる場合に比べて、駆動源の切替機構を簡素化することができ、その結果、オイルポンプ装置の小型化を図ることができる。また、内燃機関駆動源とモータとの間に配置され内燃機関駆動源およびモータの両方に接続された単一のワンウェイクラッチに伝達されるモータの回転数がワンウェイクラッチに伝達される内燃機関駆動源の回転数よりも大きい場合に、ワンウェイクラッチにより内燃機関駆動源による駆動力を遮断することによって、モータの回転数が内燃機関駆動源の回転数を上回る場合には内燃機関駆動源による影響を受けない状態でモータの駆動力により直接的にオイルポンプを回転駆動することができる。また、モータ非使用時(制御上の停止時またはモータ故障時など)には内燃機関駆動源の駆動力がワンウェイクラッチに伝達されてワンウェイクラッチを介してオイルポンプを回転駆動させることができるので、モータ非使用時においても常にオイルポンプから油圧を発生させることができる。これにより、単一のワンウェイクラッチを用いた場合にも、容易に駆動源を切り替えて確実に油圧を供給することができる。
 上記一の局面によるオイルポンプ装置において、好ましくは、油温を検出する油温検出部と、内燃機関駆動源の回転数と比例する内燃機関の回転数を検出する回転数検出部とをさらに備え、油温検出部により検出された油温が所定温度よりも低く、回転数検出部により検出された内燃機関の回転数が設定回転数よりも高い場合には、モータの回転数が内燃機関駆動源の回転数以下に制御されるか、またはモータを停止させることにより、ワンウェイクラッチにより内燃機関駆動源がオイルポンプに連結されて内燃機関駆動源によりオイルポンプが駆動されるように構成されている。このように構成すれば、油温が相対的に低くてオイル粘度が高く、内燃機関の回転数が高い場合には、内燃機関駆動源の大きな駆動力を利用してオイルポンプから内燃機関へオイルを圧送することができる。また、この場合はモータを単独で使用してオイルポンプの回転駆動を行わないので、高出力なモータを必要とせずモータを小型化することができる。これによっても、オイルポンプ装置の小型化を図ることができる。
 この場合、好ましくは、油温検出部により検出された油温が所定温度以上の場合には、モータの回転数が内燃機関駆動源の回転数よりも大きい回転数に制御されて、ワンウェイクラッチにより内燃機関駆動源による駆動力を遮断した状態でモータによりオイルポンプが駆動されるように構成されている。このように構成すれば、内燃機関の運転時間が進行して油温が上昇しオイル粘度が低下した場合には、小型化されたモータであっても大きな負荷を掛けることなくモータの駆動力を有効に利用してオイルポンプから内燃機関へオイルを圧送することができる。
 上記一の局面によるオイルポンプ装置において、好ましくは、内燃機関駆動源によりオイルポンプが駆動される際に、モータの回転数が内燃機関駆動源の回転数以下の場合に、モータによりオイルポンプに対する駆動力をアシストするように構成されている。このように構成すれば、オイルポンプを駆動する駆動力が内燃機関駆動源とモータとによって分担されるので、モータ側も駆動力を部分的に担う分、内燃機関駆動源側の負荷(損失)を低減させることができる。その結果、内燃機関の燃費(燃料消費率)を改善することができる。
 上記一の局面によるオイルポンプ装置において、好ましくは、ワンウェイクラッチは、内燃機関駆動源によるオイルポンプの回転方向と、モータによるオイルポンプの回転方向とが同一方向になるように構成されている。このように構成すれば、駆動源に関係なくオイルポンプを常に同じ方向に回転駆動させることができるので、オイルポンプまわりの油路をオイルポンプの回転方向に応じて切り替える必要がない。これにより、オイルポンプまわりの油路を簡素化することができる。
 上記一の局面によるオイルポンプ装置において、好ましくは、内燃機関駆動源によりオイルポンプが駆動される際に、ワンウェイクラッチを介して伝達される駆動力を利用してモータを回転させることにより電力を発電することが可能に構成されている。このように構成すれば、内燃機関駆動源によるオイルポンプの駆動とともに回転(連れ回り)されるモータを発電機として使用することができるので、内燃機関駆動源による機械エネルギがモータ側で電気エネルギとして一部回収される分、回収された電気エネルギを他の機器の駆動電力として有効に利用することができる。
 上記一の局面によるオイルポンプ装置において、好ましくは、内燃機関または内燃機関駆動源の回転数を減速する減速機構部をさらに備え、減速機構部により内燃機関または内燃機関駆動源の回転数を減速した状態で内燃機関の駆動力がオイルポンプに伝達されるように構成されている。このように構成すれば、内燃機関または内燃機関駆動源とモータとをそれぞれにおいて高効率に作動させながらオイルポンプの回転駆動を行うことができる。また、モータの最高回転数を下げられるのでモータの作動範囲を広げることができ、モータによるオイルポンプのアシスト駆動を有効に行うことができる。
 上記減速機構部を備える構成において、好ましくは、ワンウェイクラッチは、減速機構部とモータとの間に配置された状態で、内燃機関駆動源およびモータの両方に接続されている。このように構成すれば、減速機構部により減速された内燃機関または内燃機関駆動源の回転数(減速後の回転数)によりワンウェイクラッチを介してオイルポンプを確実に駆動することができるとともに、モータの回転数が内燃機関駆動源の回転数(減速後の回転数)を上回る場合にはモータの駆動力を使用してオイルポンプを容易に回転駆動することができる。
 この場合、好ましくは、減速機構部は、内燃機関駆動源の回転数を減速するスプロケットまたはギアの少なくとも一方を含み、ワンウェイクラッチは、スプロケットまたはギアの少なくとも一方と、モータとの間に配置されている。このように構成すれば、スプロケットまたはギアにより減速された内燃機関駆動源の回転数により、ワンウェイクラッチを介してオイルポンプを確実に駆動することができる。
 上記減速機構部を備える構成において、好ましくは、減速機構部は、減速機構部の最も回転数が減速される部分が、ワンウェイクラッチと同軸状に配置されてワンウェイクラッチの外周側に連結されている。このように構成すれば、ワンウェイクラッチと同軸状に配置された減速機構部の最も回転数が減速される部分を介して、内燃機関の駆動力をワンウェイクラッチの外周側(原動側部材)に偏りなく安定的に伝達することができる。また、減速機構部の最も回転数が減速される部分とワンウェイクラッチとが同軸状に配置される分、オイルポンプ装置の全体的なサイズをより小型化することができる。
 上記一の局面によるオイルポンプ装置において、好ましくは、ワンウェイクラッチにより内燃機関駆動源がオイルポンプに連結されて内燃機関駆動源によりオイルポンプが駆動される第1駆動モードと、ワンウェイクラッチにより内燃機関駆動源による駆動力を遮断した状態でモータによりオイルポンプが駆動される第2駆動モードとで駆動されるように構成されており、第1駆動モードの動作範囲と第2駆動モードの動作範囲とは、内燃機関の回転数に応じてそれぞれ設定されている。このように構成すれば、内燃機関の特性に応じてオイルポンプの駆動源を適切に切り替えることができるので、内燃機関のサイズ(排気量)やトルク特性に適合させてオイルポンプの駆動制御を行うことができる。
 この場合、好ましくは、第2駆動モードは、第1駆動モードに対応した内燃機関の回転数よりも低い回転数に対応して設定されている。このように構成すれば、内燃機関が低回転数で運転される際は要求される油圧も相対的に小さくて済むので、モータによる駆動力を用いてオイルポンプを支障なく駆動することができる。また、内燃機関が高回転数で運転される際は要求される油圧も相対的に大きいので、内燃機関の駆動力を積極的に使用して十分な油圧を内燃機関に供給することができる。
 上記一の局面によるオイルポンプ装置において、好ましくは、内燃機関駆動源に接続され、オイルポンプに対して内燃機関駆動源の駆動力を伝達する駆動力伝達軸をさらに備え、ワンウェイクラッチは、内燃機関駆動源と駆動力伝達軸の一方端部側との間に配置されている。このように構成すれば、オイルポンプに対して一方側に延びた駆動力伝達軸の端部近傍にワンウェイクラッチを取り付けるとともに内燃機関駆動源がこのワンウェイクラッチに対して接続されるので、内燃機関駆動源の駆動力をワンウェイクラッチおよび駆動力伝達軸を介してオイルポンプに容易に伝達することができる。また、ワンウェイクラッチを駆動力伝達軸の一方端部側に寄せて配置することができるので、駆動力伝達軸の一方端部側以外の他の部分(領域)を有効に使用してオイルポンプおよびモータをそれぞれ配置することができる。
 上記駆動力伝達軸を備える構成において、好ましくは、駆動力伝達軸の他方端部側には、モータが連結されている。このように構成すれば、内燃機関駆動源とモータとを駆動力伝達軸に沿って互いに反対側に配置することができる。
 上記駆動力伝達軸を備える構成において、好ましくは、駆動力伝達軸の一方端部側と他方端部側との間の部分は、オイルポンプのインナーロータに連結されている。このように構成すれば、各々の端部近傍に内燃機関駆動源およびモータがそれぞれ接続された駆動力伝達軸の中央部(中央領域)を有効に利用してオイルポンプ(インナーロータ)を配置することができるので、簡素な構造を有するオイルポンプ装置を容易に得ることができる。
 なお、本出願では、上記一の局面によるオイルポンプ装置とは別に、以下のような他の構成も考えられる。
 すなわち、本出願の他の構成によるオイルポンプ装置は、インナーロータとアウターロータとを含むオイルポンプの軸方向の一方側に配置され、オイルポンプに対して内燃機関の駆動力を伝達する内燃機関駆動源と、オイルポンプの軸方向の他方側に配置され、オイルポンプを回転駆動するモータと、内燃機関駆動源とオイルポンプとの間に配置され、内燃機関駆動源およびモータの両方に接続された単一のワンウェイクラッチとを備える。このように構成すれば、内燃機関駆動源およびモータの両方に接続された単一のワンウェイクラッチを介してオイルポンプを回転駆動することができるので、複数のワンウェイクラッチを用いる場合に比べて、駆動源の切替機構を簡素化することができ、その結果、オイルポンプ装置の小型化を図ることができる。また、モータの回転数が内燃機関駆動源の回転数よりも高い場合には内燃機関駆動源による影響を受けない状態でモータの駆動力により直接的にオイルポンプを回転駆動することができる。また、モータ非使用時(制御上の停止時またはモータ故障時など)には内燃機関駆動源の駆動力がワンウェイクラッチに伝達されてワンウェイクラッチを介してオイルポンプを回転駆動させるようにも構成することができるので、モータ非使用時においても常にオイルポンプから油圧を発生させることができる。これにより、単一のワンウェイクラッチを用いた場合にも、容易に駆動源を切り替えて確実に油圧を供給することができる。
 本発明の一の局面による構成によれば、上記のように、駆動源の切替機構の簡素化により小型化を図ることが可能なオイルポンプ装置を提供することができる。
本発明の一実施形態によるオイルポンプ装置の全体構成を示したブロック図である。 本発明の一実施形態によるオイルポンプ装置の構造を示した断面図である。 本発明の一実施形態によるオイルポンプ装置におけるオイルポンプの内部構造を示した断面図である。 本発明の一実施形態によるオイルポンプ装置の作動パターン(エンジン回転数-オイルポンプ回転数)の一例を示した図である。 本発明の一実施形態によるオイルポンプ装置の作動パターン(エンジン回転数-エンジン供給油圧)の一例を示した図である。 本発明の一実施形態によるオイルポンプ装置の作動パターン(エンジン回転数-オイルポンプ回転数)の他の例を示した図である。 本発明の一実施形態によるオイルポンプ装置の作動パターン(エンジン回転数-エンジン供給油圧)の他の例を示した図である。
 以下、本発明の実施形態を図面に基づいて説明する。
 まず、図1~図3を参照して、本発明の一実施形態によるオイルポンプ装置100の構成について説明する。
 オイルポンプ装置100は、図1に示すように、エンジン90を備えた自動車などの車両(図示せず)に搭載されており、オイルパン91(図2参照)内の潤滑油(エンジンオイル)1(図2参照)をピストン92まわりやクランクシャフト93などの可動部(摺動部)に供給する機能を有している。具体的には、オイルポンプ装置100は、オイルポンプ10と、モータ20と、減速ギア部30と、ワンウェイクラッチ40と、モータ制御部50とを備えている。なお、エンジン90は、本発明の「内燃機関」の一例である。以下、オイルポンプ装置100を構成する各部の構成について説明する。
 オイルポンプ10は、内接ギアタイプであるトロコイド式のオイルポンプとして構成されており、図2および図3に示すように、ケーシング部11と、ケーシング部11内に回転可能に設けられたインナーロータ12およびアウターロータ13とを含んでいる。また、インナーロータ12には、モータ20の後述するシャフト部25がインナーロータ12の回転軸(中心線160)に沿って挿入されている。シャフト部25の回転駆動とともにインナーロータ12が矢印P1方向に回転すると、アウターロータ13も同じ方向に回転される。この際、図3に示すように、両ロータの歯12a(山)と歯13a(谷)の間にできる空間Sの容積が両ロータの回転に伴って増減される。したがって、空間Sの極小値から極大値への容積変化に伴い空間Sの圧力が低下するのに合わせて潤滑油1がオイルポンプ10に吸引され、空間Sの極大値から極小値への容積変化に伴い空間Sの圧力が増加するのに合わせて吸引された潤滑油1がオイルポンプ10外に吐出される。なお、シャフト部25は、本発明の「駆動力伝達軸」の一例である。
 また、オイルポンプ10は、図2に示すように、潤滑油1が吸入される吸入部14と、潤滑油1を吐出する吐出部15と、オイル戻し部16とがケーシング部11内に形成されている。したがって、オイルポンプ10は、潤滑油1をオイルパン91から吸入部14を介して吸引するとともに所定の油圧を発生させた状態で吐出部15から図示しないオイルフィルタに向けて圧送する機能を有している。なお、オイルフィルタを通過して比較的小さな異物が除去された潤滑油1は、エンジン90内の可動部(摺動部)に給油される。また、オイル戻し部16は、モータ20の後述する筐体21内部と吸入部14とを接続する通路であり、筐体21内部に溜まり込んだ潤滑油1を吸入部14側に戻す(吸入させる)ために設けられている。
 モータ20は、図2に示すように、筐体21と、筐体21内に格納されたロータ部22、ステータ部23およびコネクタ部24とを含んでいる。また、筐体21は、オイルポンプ10のケーシング部11のX2側の端面に沿って取り付けられている。また、モータ20は、ロータ部22の回転中心部に配置されたシャフト部25を備えている。
 また、シャフト部25は、ロータ部22の回転中心となる中心線160に沿ってX2側からオイルポンプ10のインナーロータ12をX1方向に貫通しさらにケーシング部11の外部(X1側)まで延びている。また、コネクタ部24には、モータ制御部50(図1参照)から延びる図示しない制御用の配線50a(図1参照)の接続端子が接続されるように構成されている。また、モータ20は、モータ制御部50による回転数制御に基づいてシャフト部25を介してオイルポンプ10を回転駆動する役割を有している。
 減速ギア部30は、図2に示すように、クランクシャフト93の回転数を減速する機能を有している。減速ギア部30は、互いに異なる大小の歯数を有する複数のギア(図示せず)が組み合わされて構成されており、原動側ギア(回転数大)がクランクシャフト93に接続されるとともに、減速ギア部30における最終ギア31(図2参照)が最も減速された従動側ギア(回転数小)として配置されている。すなわち、エンジン90の駆動力が減速ギア部30を介して最終ギア31に伝達される。なお、減速ギア部30は、本発明の「減速機構部」の一例である。また、減速ギア部30における最終ギア31は、本発明の「内燃機関駆動源」の一例である。
 ここで、減速ギア部30が減速比として0.5に設定されている場合、約4000回転で回転されるクランクシャフト93は、最終ギア31においては半分となる約2000回転にまで減速される。また、最終ギア31(減速ギア部30)は、後述するワンウェイクラッチ40を介してシャフト部25に接続されている。したがって、本実施形態では、エンジン90(クランクシャフト93)の駆動力は、減速ギア部30を介して回転数が減速されるとともにこの状態でワンウェイクラッチ40およびシャフト部25を介してオイルポンプ10に伝達されるように構成されている。
 ワンウェイクラッチ40は、一方の方向(この場合、矢印P1方向)にのみ回転力(駆動力)を伝達するスプラグ式のクラッチ機構を備えている。ワンウェイクラッチ40は、アウターレース(外輪)41とインナーレース(内輪)42との間に、だるま形の輪留め(スプラグ:図示せず)が組み込まれた構造を有しており、アウターレース41がインナーレース42に対して一方(矢印P1方向)へ回転するとスプラグが噛み合ってトルクを伝達する一方、インナーレース42がアウターレース41に対して相対的に逆回転した場合はスプラグの噛み合いが外れてトルクが伝達されないように構成されている。また、減速ギア部30の最終ギア31がアウターレース41に動力伝達可能に締結されるとともに、インナーレース42がシャフト部25に動力伝達可能に締結されている。すなわち、減速ギア部30の最も回転数が減速される最終ギア31は、ワンウェイクラッチ40と同軸状に配置された状態でワンウェイクラッチ40のアウターレース41に連結されている。
 したがって、アウターレース41の回転数(最終ギア31の回転数R1)がインナーレース42の回転数(シャフト部25の回転数R2)よりも大きい場合にインナーレース42がアウターレース41とともに矢印P1方向に連れ回る一方、インナーレース42の回転数(シャフト部25の回転数R2)がアウターレース41の回転数(最終ギア31の回転数R1)よりも大きい場合にはこの連れ回り状態が生じず、アウターレース41からインナーレース42への駆動力が遮断されるように構成されている。
 ここで、本実施形態では、図2に示すように、単一のワンウェイクラッチ40は、クランクシャフト93の回転数を減速する減速ギア部30(最終ギア31)とモータ20との間に配置されるとともに、減速ギア部30(最終ギア31)およびモータ20の両方に接続されている。すなわち、最終ギア31はワンウェイクラッチ40のインナーレース42を介してシャフト部25に連結されるとともに、モータ20のロータ部22もシャフト部25に連結されている。これにより、オイルポンプ10は、エンジン90(クランクシャフト93)、減速ギア部30、ワンウェイクラッチ40およびシャフト部25の順に駆動力が伝達されて回転駆動される第1駆動モードと、モータ20(ロータ部22)の駆動力のみがシャフト部25に伝達されて回転駆動される第2駆動モードとの2つの駆動モードによって作動することが可能に構成されている。
 この場合、オイルポンプ装置100では、シャフト部25を介してワンウェイクラッチ40(インナーレース42)に伝達される通電中(制御中)のモータ20の回転数R2が、駆動中の減速ギア部30を介してワンウェイクラッチ40(アウターレース41)に伝達される最終ギア31の回転数R1よりも大きい場合(R2>R1)に、ワンウェイクラッチ40によって減速ギア部30(最終ギア31)による駆動力が機械的に遮断されるように構成されている。すなわち、モータ20の回転数R2が減速ギア部30(最終ギア31)の回転数R1よりも大きい場合(R2>R1)には、ワンウェイクラッチ40に連れ回りが発生することなくモータ20の駆動力のみによってオイルポンプ10が回転駆動される。また、これに対して減速ギア部30(最終ギア31)の回転数R1がモータ20の回転数R2よりも大きい場合(R1>R2)には、ワンウェイクラッチ40に連れ回りが発生してクランクシャフト93の駆動力を使用してオイルポンプ10が回転駆動されるように構成されている。したがって、モータ20の非使用時(非制御時)には、クランクシャフト93の駆動力を使用してオイルポンプ10を回転駆動することができるので、エンジン90作動時には、常にオイルポンプ10から油圧を発生させることが可能に構成されている。
 なお、ワンウェイクラッチ40を介して減速ギア部30(最終ギア31)によりオイルポンプ10が駆動される「第1駆動モード」では、エンジン90の駆動力を使用してシャフト部25が回転されるとともに、シャフト部25の回転に伴ってモータ20のロータ部22も回転される。したがって、第1駆動モードでは、オイルポンプ10の駆動と同時にモータ20により電力が発電されるようにも制御可能に構成されている。また、モータ20により発電された電力は、モータ制御部50の電力制御に基づき配線50bを介して車載用のバッテリ94(図1参照)に充電されるように構成されている。
 また、オイルポンプ10は、エンジン90の駆動力を使用した第1駆動モードにおいてもモータ20の駆動力を使用した第2駆動モードにおいても、常に、シャフト部25およびインナーロータ12が矢印P1方向にのみ回転されるように構成されている。したがって、いずれの駆動モードにおいても潤滑油1は1つの吸入部14から吸入されるとともに1つの吐出部15から吐出される。
 また、本実施形態では、減速ギア部30およびワンウェイクラッチ40は、シャフト部25におけるX1側の端部25a近傍に配置されている。そして、シャフト部25におけるX2側の端部25b側にモータ20が配置されるようにロータ部22が連結されている。したがって、シャフト部25の端部25a側と端部25b側との間の中央領域25cにオイルポンプ10が配置されており、中央領域25cにはオイルポンプ10のインナーロータ12が連結されている。なお、端部25aおよび端部25bは、それぞれ、本発明の「一方端部」および「他方端部」の一例である。また、中央領域25cは、本発明の「駆動力伝達軸の一方端部側と他方端部側との間の部分」の一例である。
 モータ制御部50は、図1に示すように、潤滑油1の温度(油温)、オイルポンプ10により圧送される潤滑油1の油圧、および、エンジン90(クランクシャフト93)の回転数に基づいてモータ20の回転駆動制御(回転数制御)を行う役割を有している。すなわち、エンジン90内のオイルパン91(図2参照)などに設けられた油温センサ51と、エンジン90の油圧センサ52と、エンジン90の回転数を検出する回転数検出部53とが、モータ制御部50に電気的に接続されている。
 ここで、本実施形態では、モータ制御部50は、油温センサ51により検出された潤滑油1の温度と、回転数検出部53により検出されたエンジン90の回転数とに基づいてモータ20の回転駆動制御(回転数制御)を行うことによりオイルポンプ10を回転駆動させることが可能に構成されている。より具体的には、オイルポンプ装置100では、エンジン90の始動直後など油温センサ51により検出された潤滑油1の温度が所定温度(約80℃)よりも低く、回転数検出部53により検出されたエンジン90の回転数が設定回転数よりも高い条件では、モータ20の回転数R2を減速ギア部30(最終ギア31(図2参照))の回転数R1以下に制御する(R2≦R1にする)か、またはモータ20を停止させることにより、ワンウェイクラッチ40により減速ギア部30(最終ギア31)がオイルポンプ10に連結されて減速ギア部30(最終ギア31)によりオイルポンプ10が回転数R1で駆動されるように構成されている(第1駆動モード時)。そして、エンジン90の運転時間が進行して油温センサ51により検出された潤滑油1の温度が約80℃以上となった場合には、モータ20の回転数R2を最終ギア31の回転数R1よりも大きい回転数(R2>R1)に増加させてモータ20の駆動力のみによってオイルポンプ10が回転数R2で回転駆動される「第2駆動モード」に切り替わるように構成されている。つまり、この第2駆動モード時には、ワンウェイクラッチ40により減速ギア部30側からのシャフト部25へのエンジン90の駆動力は遮断される。
 また、本実施形態では、減速ギア部30を介してオイルポンプ10が駆動される第1駆動モードの際に、モータ20の回転数R2が最終ギア31の回転数R1以下の場合(R2≦R1)に、モータ20によりオイルポンプ10に対する駆動力がアシストされるように構成されている。たとえば、エンジン90の始動直後やアイドリング中などの比較的低回転時においては、クランクシャフト93の駆動力をシャフト部25に伝達してオイルポンプ10を回転駆動させるとともに、モータ制御部50(図1参照)によりモータ20にも通電することによって回転数制御(R2≦R1)を行ってシャフト部25を補助的に回転駆動させるように構成されている。これにより、第1駆動モードでは、クランクシャフト93による単独の駆動力でオイルポンプ10を作動させずにモータ20の駆動力を併用してオイルポンプ10が作動されるので、エンジン90のみでオイルポンプ10を作動させる場合の損失(損失馬力)をモータ20側で補うように構成されている。したがって、モータ20によりアシストされる分、エンジン90の燃費が向上される。
 また、モータ制御部50は、油温センサ51および回転数検出部53による検知結果に加えて油圧センサ52(図1参照)により検出された潤滑油1のエンジン供給油圧に基づいてもモータ20の駆動制御(回転数制御)を行うように構成されている。これにより、モータ20の回転駆動時にもオイルポンプ10から適切な油圧を有する潤滑油1が吐出されるように構成されている。
 また、オイルポンプ装置100においては、図2に示すように、吐出部15から吐出された潤滑油1は、図示しない油圧回路を経由してエンジン90内の可動部(摺動部)に給油された後、再びエンジン90内のオイルパン91に戻される。なお、吐出部15に接続された油圧回路には調圧バルブ17が設けられている。すなわち、エンジン90(クランクシャフト93)またはモータ20のいずれかの駆動モードに関係なくオイルポンプ10により生じた油圧が所定値を超えた場合には、調圧バルブ17が開かれて潤滑油1の一部分がオイルパン91に戻されるように構成されている。オイルポンプ装置100は、上記のように構成されている。
 次に、図1、図2および図4~図7を参照して、本実施形態におけるオイルポンプ装置100の作動パターンについて説明する。まず、一例として減速ギア部30(図2参照)が減速比「0.5」に設定されている場合のオイルポンプ装置100の作動パターンについて説明し、次に、他の例として減速ギア部30が減速比「0.6」に設定されている場合のオイルポンプ装置100の作動パターンについて説明する。
 まず、図4に示すように、減速ギア部30が減速比「0.5」を有するようにギア構成されている場合、横軸に示されるエンジン90(クランクシャフト93)の回転数の変化に応じて、縦軸における最終ギア31(図2参照)の回転数はグラフA(実線)のように示される。たとえば、エンジン90の回転数が2000回転/分、4000回転/分および6000回転/分の場合、最終ギア31の回転数を示すグラフAは、1000回転/分、2000回転/分および3000回転/分の各点を通る。ここで、グラフAに示される回転数の変化は、ワンウェイクラッチ40(図2参照)がアウターレース41に対してインナーレース42が同じ回転数で連れ回りを生じる場合のシャフト部25(図2参照)およびオイルポンプ10(図2参照)の回転数の変化に等しい。したがって、図4における縦軸は、オイルポンプ10の回転数(回転/分)として表記している。
 そして、この例におけるオイルポンプ装置100では、油温センサ51、油圧センサ52および回転数検出部53(図2参照)の検知結果に基づくモータ制御部50(図1参照)の回転数制御に基づき、エンジン90の回転数の全域(最終ギア31の回転数R1の全域)においてモータ20(図2参照)の回転数R2を最終ギア31の回転数R1に対して常に上回らせる回転駆動制御が行われる。すなわち、モータ20についてはグラフB(実線)に示される駆動制御(第2駆動モード)が行われることにより、常に、モータ20の駆動力を使用してオイルポンプ10が作動される。なお、最終ギア31の回転数R1が0回転/分から約1500回転/分までの範囲(グラフAにおける範囲A1)では、モータ20の回転数R2を約2000回転/分に据え置いてオイルポンプ10を作動させる一方、最終ギア31の回転数R1が約1500回転/分から約3000回転/分までの範囲(グラフAにおける範囲A2)では、モータ20の回転数R2を2倍の約4000回転/分に増加させてオイルポンプ10を作動させる回転数制御が行われる。
 また、図5に示すように、グラフB(図4参照)に示されるモータ20の回転数変化にあわせて、オイルポンプ10から吐出される潤滑油1のエンジン供給油圧(縦軸)も、グラフC(実線)に示されるような変化を辿る。このように、オイルポンプ10は、エンジン90の回転数に応じてエンジン供給油圧が2段階に調整されるような駆動制御が行われる。なお、モータ20によりオイルポンプ10を作動させないような場合(たとえば、制御上、モータ20を非通電にする場合や、モータ20に故障が生じた場合など)においても、エンジン90の駆動力によりグラフA(図4参照)のプロファイルに対応したエンジン供給油圧がグラフD(破線)のように確保されるので、エンジン90の作動中は常にオイルポンプ10に油圧を発生させて潤滑油1をエンジン90に圧送することが可能である。また、図4および図5に示す作動パターンは、排気量(シリンダ容積)の小さいエンジン90が搭載された車両に適用される作動パターンの一例である。
 次に、他の例としては、図6に示すように、減速ギア部30が減速比「0.6」を有するようにギア構成されている場合、横軸に示されるエンジン90の回転数の変化に応じて、縦軸におけるオイルポンプ10の回転数(最終ギア31の回転数)はグラフEのように示される。たとえば、エンジン90の回転数が2000回転/分、4000回転/分および6000回転/分の場合、オイルポンプ10(最終ギア31)の回転数を示すグラフEは、1200回転/分、2400回転/分および3600回転/分の各点を通る。なお、グラフEに示される回転数の変化は、ワンウェイクラッチ40がアウターレース41に対してインナーレース42が同じ回転数で連れ回りを生じる場合のシャフト部25およびオイルポンプ10の回転数の変化に等しい。したがって、図6における縦軸についても、オイルポンプ10の回転数(回転/分)として表記している。
 そして、この例におけるオイルポンプ装置100では、油温センサ51、油圧センサ52および回転数検出部53(図2参照)の検知結果に基づくモータ制御部50の回転数制御に基づき、最終ギア31の回転数領域のうち0回転/分から約2400回転/分までの範囲(グラフEにおける範囲E1(破線部分))では、モータ20の回転数R2を最終ギア31の回転数R1に対して常に上回らせる駆動制御(第2駆動モード)が行われることにより、モータ20の駆動力を使用してオイルポンプ10が作動される。その一方で、最終ギア31の回転数領域が約2400回転/分から約3600回転/分までの範囲(グラフEにおける範囲E2(実線部分))では、モータ20の駆動制御を電気的に停止して、常にエンジン90(クランクシャフト93)の駆動力を使用するためにワンウェイクラッチ40を介してオイルポンプ10を作動させる駆動制御(第1駆動モード)が行われる。
 なお、グラフEにおける範囲E1では以下のようなモータ20の回転数制御が行われる。すなわち、最終ギア31の回転数R1が0回転/分から約1200回転/分までの範囲では、グラフF(実線)に示されるように、モータ20の回転数R2を約1600回転/分に据え置いてオイルポンプ10を作動させる一方、最終ギア31の回転数R1が約1200回転/分から約2400回転/分までの範囲では、同じくグラフFに示されるように、モータ20の回転数R2を2倍の約2400回転/分に増加させてオイルポンプ10を作動させる回転数制御が行われる。
 また、図7に示すように、グラフF(図6参照)に示されるモータ20の回転数変化およびグラフE(範囲E2)(図6参照)に示されるエンジン90(クランクシャフト93)の回転数変化にあわせて、オイルポンプ10から吐出される潤滑油1のエンジン供給油圧(縦軸)も、グラフG(実線)に示されるような変化を辿る。このようにエンジン90における低回転域(0~約4000回転/分)ではモータ20による駆動力を利用してオイルポンプ10を作動させ、かつ、エンジン90における高回転域(約4000回転/分~約6000回転/分)ではエンジン90による駆動力を利用してオイルポンプ10を作動させることにより潤滑油1を圧送することも可能である。なお、モータ20によりオイルポンプ10を作動させないような場合においても、エンジン90の駆動力によりグラフE(範囲E1)(図6参照)のプロファイルに対応したエンジン供給油圧がグラフH(破線)のように確保されるので、エンジン90の作動中は常にオイルポンプ10に油圧を発生させて潤滑油1を供給することが可能である。
 また、第1駆動モードが実行されるエンジン90における高回転域(約4000回転/分~約6000回転/分)では、オイルポンプ10の駆動と同時にモータ20(ロータ部22)もシャフト部25により回転される。これにより、モータ20を使用して電力が発電されてバッテリ94(図1参照)に蓄電される。なお、図6および図7に示す作動パターンは、排気量(シリンダ容積)の大きいエンジン90が搭載された車両に適用される作動パターンの一例である。
 本実施形態では、上記のように、オイルポンプ10に対してエンジン90(クランクシャフト93)の駆動力を伝達する最終ギア31(減速ギア部30)と、オイルポンプ10を回転駆動するモータ20と、最終ギア31とモータ20との間に配置され最終ギア31およびモータ20の両方に接続された単一のワンウェイクラッチ40とを備えることによって、最終ギア31およびモータ20の両方に接続された単一のワンウェイクラッチ40を介してオイルポンプ10を回転駆動することができるので、複数のワンウェイクラッチを用いる場合に比べて、エンジン90による駆動状態とモータ20による駆動状態とを切り替える切替機構を簡素化することができる。また、単一のワンウェイクラッチ40を用いるのでオイルポンプ10の回転方向(矢印P1方向)も一義的となり、オイルポンプ10に特殊な構造を適用する必要がない。これらの結果、オイルポンプ装置100の小型化を図ることができる。
 また、本実施形態では、最終ギア31とモータ20との間に配置され最終ギア31およびモータ20の両方に接続された単一のワンウェイクラッチ40に伝達されるモータ20の回転数R2がワンウェイクラッチ40に伝達される最終ギア31(減速ギア部30)の回転数R1よりも大きい場合に、ワンウェイクラッチ40により最終ギア31による駆動力を遮断することによって、モータ20の回転数R2が最終ギア31の回転数R1を上回る場合には最終ギア31による影響を受けない状態でモータ20の駆動力により直接的にオイルポンプ10を回転駆動することができる。また、モータ20の非使用時(制御上、モータ20を非通電にする場合や、モータ20に故障が生じた場合など)には最終ギア31の駆動力がワンウェイクラッチ40に伝達されてワンウェイクラッチ40を介してオイルポンプ10を回転駆動させることができるので、このようなモータ20の非使用時においても常にオイルポンプ10から油圧を発生させることができる。これにより、単一のワンウェイクラッチ40を用いた場合にも、容易にエンジン90による駆動状態とモータ20による駆動状態とを切り替えて確実に油圧を供給することができる。
 また、本実施形態では、潤滑油(エンジンオイル)1の温度を検出する油温センサ51と、最終ギア31(減速ギア部30)の回転数R1と比例するエンジン90の回転数を検出する回転数検出部53とを備える。そして、油温センサ51により検出された潤滑油1の温度が所定温度(約80℃)よりも低く、回転数検出部53により検出されたエンジン90の回転数が設定回転数よりも高い場合には、モータ20の回転数R2を最終ギア31の回転数R1以下に制御するか、またはモータ20を停止することにより、ワンウェイクラッチ40により最終ギア31がオイルポンプ10に連結されて最終ギア31によりオイルポンプ10を駆動するように構成する。これにより、潤滑油1の温度(油温)が相対的に低くてオイル粘度が高く、エンジン90の回転数が高い場合には最終ギア31の大きな駆動力を利用してオイルポンプ10からエンジン90へ潤滑油1を圧送することができる。また、この場合はモータ20を単独で使用してオイルポンプ10の回転駆動を行わないので、高出力なモータ20を必要とせずモータ20を小型化することができる。これによっても、オイルポンプ装置100の小型化を図ることができる。
 また、本実施形態では、油温センサ51により検出された潤滑油1の温度が所定温度(約80℃)以上の場合には、モータ20の回転数R2を最終ギア31の回転数R1よりも大きい回転数に制御して、ワンウェイクラッチ40により最終ギア31による駆動力を遮断した状態でモータ20によりオイルポンプ10を駆動するように構成する。これにより、エンジン90の運転時間が進行して潤滑油1の温度(油温)が上昇しオイル粘度が低下した場合には、小型化されたモータ20であっても大きな負荷を掛けることなくモータ20の駆動力を有効に利用してオイルポンプ10からエンジン90へ潤滑油1を圧送することができる。
 また、本実施形態では、最終ギア31(減速ギア部30)によりオイルポンプ10が駆動される際に、モータ20の回転数R2が最終ギア31の回転数R1以下の場合に、モータ20によりオイルポンプ10に対する駆動力をアシストするように構成する。これにより、オイルポンプ10を駆動する駆動力が最終ギア31とモータ20とによって分担されるので、最終ギア31がワンウェイクラッチ40を介して接続された非通電状態のモータ20を連れ回すような場合と異なり、モータ20側もシャフト部25の駆動力を部分的に担う分、最終ギア31(減速ギア部30)側の負荷(損失)を低減させることができる。その結果、エンジン90の燃料消費率を改善することができる。
 また、本実施形態では、最終ギア31によるオイルポンプ10の回転方向と、モータ20によるオイルポンプ10の回転方向とが同じ矢印P1方向になるようにワンウェイクラッチ40を構成する。これにより、駆動源に関係なくオイルポンプ10を常に同じ方向(矢印P1方向)に回転駆動させることができるので、オイルポンプ10まわりの吸入部14および吐出部15を含む油路をオイルポンプ10の回転方向に応じて切り替える必要がない。これにより、オイルポンプ10まわりの油路を簡素化することができる。
 また、本実施形態では、上記モータ20の通電による駆動力のアシスト制御に加えて、最終ギア31(減速ギア部30)によりオイルポンプ10が駆動される際に、ワンウェイクラッチ40を介して伝達される駆動力を利用してモータ20を回転させることにより電力を発電するように構成する。これにより、最終ギア31によるオイルポンプ10の駆動とともに連れ回りされるモータ20を発電機としても使用することができるので、最終ギア31による機械エネルギがモータ20側で電気エネルギとしてバッテリ94に回収される分、回収された電気エネルギを他の機器の駆動電力として有効に利用することができる。
 また、本実施形態では、エンジン90(クランクシャフト93)の回転数を最終ギア31の回転数R1まで減速させる減速ギア部30を備える。そして、減速ギア部30によりエンジン90の回転数を最終ギア31における回転数R1を減速した状態で、エンジン90の駆動力をオイルポンプ10に伝達するように構成する。これにより、エンジン90とモータ20とをそれぞれにおいて高効率に作動させながらオイルポンプ10の回転駆動を行うことができる。また、モータ20の最高回転数(回転数R2)を下げられるのでモータ20の作動範囲を広げることができ、モータ20によるオイルポンプ10のアシスト駆動を有効に行うことができる。
 また、本実施形態では、ワンウェイクラッチ40を減速ギア部30とモータ20との間に配置するとともに、この状態で、ワンウェイクラッチ40を最終ギア31(減速ギア部30)およびモータ20の両方に接続するように構成する。これにより、減速ギア部30により減速された最終ギア31の回転数R1によりワンウェイクラッチ40を介してオイルポンプ10を確実に駆動することができるとともに、モータ20の回転数R2が最終ギア31の回転数R1を上回る場合にはモータ20の駆動力を使用してオイルポンプ10を容易に回転駆動することができる。
 また、本実施形態では、減速ギア部30は、クランクシャフト93の回転数を減速する最終ギア31を含み、ワンウェイクラッチ40を最終ギア31とモータ20との間に配置するように構成する。これにより、減速ギア部30における最終ギア31により減速された回転数R1により、ワンウェイクラッチ40を介してオイルポンプ10を確実に駆動することができる。
 また、本実施形態では、減速ギア部30の最も回転数が減速される最終ギア31を、ワンウェイクラッチ40と同軸状に配置されてワンウェイクラッチ40のアウターレース41に連結するように構成する。これにより、ワンウェイクラッチ40と同軸状に配置された最終ギア31を介して、エンジン90の駆動力をアウターレース41に偏りなく安定的に伝達することができる。また、最終ギア31とワンウェイクラッチ40とが同軸状に配置される分、オイルポンプ装置100の全体的なサイズをより小型化することができる。
 また、本実施形態では、ワンウェイクラッチ40により減速ギア部30の最終ギア31がオイルポンプ10に連結されて最終ギア31によりオイルポンプ10が駆動される第1駆動モードと、ワンウェイクラッチ40により減速ギア部30(最終ギア31)による駆動力を遮断した状態でモータ20によりオイルポンプ10が駆動される第2駆動モードとで駆動されるようにオイルポンプ装置100を構成する。そして、第1駆動モードの動作範囲と第2駆動モードの動作範囲とを、エンジン90の回転数に応じてそれぞれ設定するように構成する。これにより、エンジン90の特性に応じてオイルポンプ10の駆動源を適切に切り替えることができるので、エンジン90のサイズ(排気量(シリンダ容積))やトルク特性に適合させてオイルポンプ10の駆動制御を行うことができる。
 また、本実施形態では、エンジン90の低回転数域(たとえば図7においては4000回転/分以下)に第2駆動モードが設定されるとともに、エンジン90の高回転数域(図7においては4000回転/分を超えた領域)に第1駆動モードが設定されるようにオイルポンプ装置100を構成する。これにより、エンジン90が低回転数域で運転される際は要求される油圧(エンジン供給油圧)も相対的に小さくて済むので、モータ20による駆動力を用いてオイルポンプ10を支障なく駆動することができる。また、エンジン90が高回転数域で運転される際は要求される油圧も相対的に大きいので、エンジン90の駆動力を積極的に使用して十分な油圧をエンジン90に供給することができる。
 また、本実施形態では、減速ギア部30における最終ギア31に接続され、オイルポンプ10に対して最終ギア31の駆動力を伝達するシャフト部25を備える。そして、最終ギア31とシャフト部25の端部25a側との間にワンウェイクラッチ40を配置する。これにより、オイルポンプ10に対して一方側に延びた駆動力伝達軸の端部近傍にワンウェイクラッチ40を取り付けるとともに減速ギア部30における最終ギア31がこのワンウェイクラッチ40に対して接続されるので、最終ギア31の駆動力をワンウェイクラッチ40およびシャフト部25を介してオイルポンプ10に容易に伝達することができる。また、ワンウェイクラッチ40をシャフト部25の端部25a側に寄せて配置することができるので、シャフト部25の端部25a側以外の他の部分(領域)を有効に使用してオイルポンプ10およびモータ20をそれぞれ配置することができる。
 また、本実施形態では、シャフト部25の端部25b側にモータ20を連結するように構成する。これにより、最終ギア31(減速ギア部30)とモータ20とをシャフト部25に沿って互いに反対側に配置することができる。
 また、本実施形態では、シャフト部25の端部25a側と端部25b側との間の部分は、オイルポンプ10のインナーロータ12に連結されている。これにより、端部25a近傍および端部25b近傍に最終ギア31(減速ギア部30)およびモータ20がそれぞれ接続されたシャフト部25の中央領域25cを有効に利用してオイルポンプ10(インナーロータ12)を配置することができるので、簡素な構造を有するオイルポンプ装置100を容易に得ることができる。
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 たとえば、上記実施形態では、エンジン90に潤滑油(エンジンオイル)1を供給するオイルポンプ装置100に本発明を適用した例について示したが、本発明はこれに限られない。たとえば、エンジン90の回転数に応じて変速比を自動的に切り替えるオートマチックトランスミッション(AT)にATフルード(ATオイル)を供給するためのオイルポンプ装置に本発明を適用してもよい。なお、ATフルードを供給するオイルポンプ装置を構成する場合、本発明の「内燃機関駆動源」として、内燃機関を駆動源として駆動されるオートマチックトランスミッション用のインプットシャフトを適用すればよい。また、ギアの組み合わせを替えて変速する上記AT(多段変速機)とは異なり連続的に無段階で変速比を変更可能な無段変速機(CVT)内の摺動部に潤滑油を供給するためのオイルポンプ装置に本発明を適用してもよい。また、車両におけるステアリング(操舵装置)を駆動するパワーステアリング装置にパワーステアリングオイルを供給するためのオイルポンプ装置に本発明を適用してもよい。
 また、上記実施形態では、油温センサ51により検出された潤滑油1の温度が約80℃よりも低く、回転数検出部53により検出されたエンジン90の回転数が設定回転数よりも高い場合にモータ20の回転数R2を減速ギア部30(最終ギア31)の回転数R1以下に制御するか、またはモータ20を停止してオイルポンプ10をエンジン90側で駆動するように構成した例について示したが、本発明はこれに限られない。たとえば、モータ20を使用してオイルポンプ10を駆動していた際に油圧センサ52により検出された潤滑油1の油圧が所定圧力よりも高い場合、モータ20の回転数R2を減速ギア部30(最終ギア31)の回転数R1以下に制御してオイルポンプ10をエンジン90側で駆動するように制御を構成してもよい。
 また、上記実施形態では、最終ギア31を含む減速ギア部30により本発明の「減速機構部」を構成した例について示したが、本発明はこれに限られない。たとえば、スプロケットを用いて本発明の「減速機構部」を構成してもよい。すなわち、エンジン90側(クランクシャフト93側)に接続される第1スプロケット(原動側スプロケット)と、ワンウェイクラッチ40側(アウターレース41側)に接続される第2スプロケット(従動側スプロケット)と、ローラチェーンとを備え、第2スプロケットの回転数が第1スプロケットの回転数よりも減速されるように各々の歯数が設定された動力伝達機構(減速機構部)をオイルポンプ10の駆動源(内燃機関駆動源)として用いることが可能である。また、Vベルトや平ベルトを介してベルト駆動される複数のプーリを用いて本発明の「減速機構部」を構成してもよい。この場合、クランクシャフト93側に接続される第1プーリ(原動側プーリ)の直径よりもアウターレース41側に接続される第2プーリ(従動側プーリ)の直径が大きいのが好ましい。
 また、上記実施形態では、減速ギア部30の減速比を「0.5」または「0.6」とした場合のオイルポンプ装置100の作動パターン(図4および図5参照)について示したが、本発明はこれに限られない。減速ギア部30の最終減速比を上記以外の減速比に設定してオイルポンプ装置100を作動させるように構成してもよい。
 また、上記実施形態におけるオイルポンプ装置100の作動パターンとして図6においては、最終ギア31の回転数領域が約2400回転/分から約3600回転/分までの範囲(グラフEにおける範囲E2)では、モータ20の駆動制御を電気的に停止(発電機として利用)して、常にエンジン90(クランクシャフト93)の駆動力を使用してオイルポンプ10を作動させた例について示したが、本発明はこれに限られない。この回転数領域(範囲E2)においてモータ20の回転数R2を最終ギア31の回転数R1に等しいかまたは若干低い回転数(R2≦R1)に制御してオイルポンプ10の駆動をモータ20側でアシストしてもよい。また、この回転数領域(範囲E2)においては、モータ20を発電機として使用するかオイルポンプ10をアシスト駆動させるかをエンジン90の負荷に応じて切り替えるようにモータ制御部50を構成してもよい。
 また、上記実施形態では、シャフト部25における端部25a側(X1側)から端部25b側(X2側)に向かってワンウェイクラッチ40、オイルポンプ10およびモータ20の順に配置した例について示したが、本発明はこれに限られない。たとえば、シャフト部25に沿ってオイルポンプ10(端部25a側)、減速ギア部30に接続されるワンウェイクラッチ40(中央領域25c)およびモータ20(端部25b側)の順に配置してもよいし、シャフト部25に沿ってオイルポンプ10(端部25a側)、モータ20(中央領域25c)および減速ギア部30に接続されるワンウェイクラッチ40(端部25b側)の順に配置してもよい。このように、ワンウェイクラッチ40、オイルポンプ10およびモータ20の各機器の配置構成は、車両や設備機器に搭載されるオイルポンプ装置の形状に合わせて適宜変更可能である。
 また、上記実施形態では、オイルポンプ装置100に内接ギアタイプであるトロコイド式のオイルポンプ10を設けた例について示したが、本発明はこれに限られない。内接ギアタイプでは、内接式インボリュート歯型を適用したオイルポンプを用いてもよい。
 また、上記実施形態では、エンジン90を備えた自動車などの車両にオイルポンプ装置100を搭載した例について示したが、本発明はこれに限られない。たとえば、内燃機関を備えた車両以外の設備機器に搭載されたオイルポンプ装置に対して本発明を適用してもよい。また、エンジン(内燃機関)90としては、ガソリンエンジン、ディーゼルエンジンおよびガスエンジンなどが適用可能である。
 また、上記実施形態では、油温センサ51と油圧センサ52と回転数検出部53との検知結果に基づくモータ制御部50の回転数制御に基づきモータ20の駆動制御を行うように構成した例について示したが、本発明はこれに限られない。たとえば、油温センサ51および油圧センサ52の検知結果にのみ基づいてモータ20の駆動制御を行うように構成してもよい。また、エンジン90の作動条件(暖機運転時以外など)によっては、油圧センサ52および回転数検出部53の検知結果に基づいてモータ20の駆動制御を行うように構成してもよい。また、車両の走行状態によって変動するエンジン90の負荷に応じてオイルポンプ10を駆動する際のモータ20の駆動制御を行うように構成してもよい。
 1 潤滑油
 10 オイルポンプ
 12 インナーロータ
 13 アウターロータ
 20 モータ
 25 シャフト部(駆動力伝達軸)
 25a 端部(一方端部)
 25b 端部(他方端部)
 25c 中央領域(駆動力伝達軸の一方端部側と他方端部側との間の部分)
 30 減速ギア部(内燃機関駆動源)
 31 最終ギア(内燃機関駆動源)
 40 ワンウェイクラッチ
 50 モータ制御部
 51 油温センサ(油温検出部)
 53 回転数検出部
 90 エンジン(内燃機関)
 94 バッテリ
 100 オイルポンプ装置

Claims (15)

  1.  インナーロータとアウターロータとを含むオイルポンプに対して内燃機関の駆動力を伝達する内燃機関駆動源と、
     前記内燃機関駆動源とは別個に設けられ、前記オイルポンプを回転駆動するモータと、
     前記内燃機関駆動源と前記モータとの間に配置され、前記内燃機関駆動源および前記モータの両方に接続された単一のワンウェイクラッチとを備え、
     前記ワンウェイクラッチに伝達される前記モータの回転数が前記ワンウェイクラッチに伝達される前記内燃機関駆動源の回転数よりも大きい場合に、前記ワンウェイクラッチにより前記内燃機関駆動源による駆動力を遮断するように構成されている、オイルポンプ装置。
  2.  油温を検出する油温検出部と、
     前記内燃機関駆動源の回転数と比例する前記内燃機関の回転数を検出する回転数検出部とをさらに備え、
     前記油温検出部により検出された油温が所定温度よりも低く、前記回転数検出部により検出された前記内燃機関の回転数が設定回転数よりも高い場合には、前記モータの回転数が前記内燃機関駆動源の回転数以下に制御されるか、または前記モータを停止させることにより、前記ワンウェイクラッチにより前記内燃機関駆動源が前記オイルポンプに連結されて前記内燃機関駆動源により前記オイルポンプが駆動されるように構成されている、請求項1に記載のオイルポンプ装置。
  3.  前記油温検出部により検出された油温が前記所定温度以上の場合には、前記モータの回転数が前記内燃機関駆動源の回転数よりも大きい回転数に制御されて、前記ワンウェイクラッチにより前記内燃機関駆動源による駆動力を遮断した状態で前記モータにより前記オイルポンプが駆動されるように構成されている、請求項2に記載のオイルポンプ装置。
  4.  前記内燃機関駆動源により前記オイルポンプが駆動される際に、前記モータの回転数が前記内燃機関駆動源の回転数以下の場合に、前記モータにより前記オイルポンプに対する駆動力をアシストするように構成されている、請求項1~3のいずれか1項に記載のオイルポンプ装置。
  5.  前記ワンウェイクラッチは、前記内燃機関駆動源による前記オイルポンプの回転方向と、前記モータによる前記オイルポンプの回転方向とが同一方向になるように構成されている、請求項1~4のいずれか1項に記載のオイルポンプ装置。
  6.  前記内燃機関駆動源により前記オイルポンプが駆動される際に、前記ワンウェイクラッチを介して伝達される駆動力を利用して前記モータを回転させることにより電力を発電することが可能に構成されている、請求項1~5のいずれか1項に記載のオイルポンプ装置。
  7.  前記内燃機関または前記内燃機関駆動源の回転数を減速する減速機構部をさらに備え、
     前記減速機構部により前記内燃機関または前記内燃機関駆動源の回転数を減速した状態で前記内燃機関の駆動力が前記オイルポンプに伝達されるように構成されている、請求項1~6のいずれか1項に記載のオイルポンプ装置。
  8.  前記ワンウェイクラッチは、前記減速機構部と前記モータとの間に配置された状態で、前記内燃機関駆動源および前記モータの両方に接続されている、請求項7に記載のオイルポンプ装置。
  9.  前記減速機構部は、前記内燃機関駆動源の回転数を減速するスプロケットまたはギアの少なくとも一方を含み、
     前記ワンウェイクラッチは、前記スプロケットまたはギアの少なくとも一方と、前記モータとの間に配置されている、請求項8に記載のオイルポンプ装置。
  10.  前記減速機構部は、前記減速機構部の最も回転数が減速される部分が、前記ワンウェイクラッチと同軸状に配置されて前記ワンウェイクラッチの外周側に連結されている、請求項7~9のいずれか1項に記載のオイルポンプ装置。
  11.  前記ワンウェイクラッチにより前記内燃機関駆動源が前記オイルポンプに連結されて前記内燃機関駆動源により前記オイルポンプが駆動される第1駆動モードと、前記ワンウェイクラッチにより前記内燃機関駆動源による駆動力を遮断した状態で前記モータにより前記オイルポンプが駆動される第2駆動モードとで駆動されるように構成されており、
     前記第1駆動モードの動作範囲と前記第2駆動モードの動作範囲とは、前記内燃機関の回転数に応じてそれぞれ設定されている、請求項1~10のいずれか1項に記載のオイルポンプ装置。
  12.  前記第2駆動モードは、前記第1駆動モードに対応した前記内燃機関の回転数よりも低い回転数に対応して設定されている、請求項11に記載のオイルポンプ装置。
  13.  前記内燃機関駆動源に接続され、前記オイルポンプに対して前記内燃機関駆動源の駆動力を伝達する駆動力伝達軸をさらに備え、
     前記ワンウェイクラッチは、前記内燃機関駆動源と前記駆動力伝達軸の一方端部側との間に配置されている、請求項1~12のいずれか1項に記載のオイルポンプ装置。
  14.  前記駆動力伝達軸の他方端部側には、前記モータが連結されている、請求項13に記載のオイルポンプ装置。
  15.  前記駆動力伝達軸の一方端部側と他方端部側との間の部分は、前記オイルポンプの前記インナーロータに連結されている、請求項13または14に記載のオイルポンプ装置。
PCT/JP2014/056686 2013-05-29 2014-03-13 オイルポンプ装置 WO2014192363A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-112514 2013-05-29
JP2013112514A JP2014231770A (ja) 2013-05-29 2013-05-29 オイルポンプ装置

Publications (1)

Publication Number Publication Date
WO2014192363A1 true WO2014192363A1 (ja) 2014-12-04

Family

ID=51988407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056686 WO2014192363A1 (ja) 2013-05-29 2014-03-13 オイルポンプ装置

Country Status (2)

Country Link
JP (1) JP2014231770A (ja)
WO (1) WO2014192363A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107923516A (zh) * 2015-12-14 2018-04-17 皮尔伯格泵技术有限责任公司 混合动力油泵
CN111911260A (zh) * 2020-07-30 2020-11-10 东风柳州汽车有限公司 一种发动机润滑系统、发动机及汽车
CN115123375A (zh) * 2022-06-20 2022-09-30 江铃汽车股份有限公司 汽车转向泵驱动蓄能系统及汽车

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015219771A1 (de) * 2015-10-13 2017-04-13 Continental Automotive Gmbh Fördereinrichtung für ein Kraftfahrzeug
DE102015221891A1 (de) * 2015-11-06 2017-05-11 Continental Automotive Gmbh Fördereinrichtung zur Förderung von Öl
JP6671165B2 (ja) 2015-12-09 2020-03-25 株式会社マーレ フィルターシステムズ オイルポンプ装置
JP7219175B2 (ja) * 2019-06-21 2023-02-07 ジヤトコ株式会社 車両及びオイルポンプ駆動制御方法
JP2021099046A (ja) * 2019-12-20 2021-07-01 住友電工焼結合金株式会社 ポンプ構造

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074202A (ja) * 1998-08-26 2000-03-14 Toyota Motor Corp 変速機の変速制御装置
JP2006316666A (ja) * 2005-05-11 2006-11-24 Nissan Motor Co Ltd オイルポンプ
JP2010255622A (ja) * 2009-03-30 2010-11-11 Honda Motor Co Ltd 車両用流体供給装置
JP2012159167A (ja) * 2011-02-02 2012-08-23 Toyo Advanced Technologies Co Ltd オイルポンプの駆動制御装置
JP2013072368A (ja) * 2011-09-28 2013-04-22 Jtekt Corp 内接ギアポンプユニット

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002120552A (ja) * 2000-10-17 2002-04-23 Toyota Industries Corp 発電発動システム
US6644939B2 (en) * 2001-08-17 2003-11-11 Borgwarner, Inc. Method and apparatus for providing a hydraulic transmission pump assembly having a differential actuation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074202A (ja) * 1998-08-26 2000-03-14 Toyota Motor Corp 変速機の変速制御装置
JP2006316666A (ja) * 2005-05-11 2006-11-24 Nissan Motor Co Ltd オイルポンプ
JP2010255622A (ja) * 2009-03-30 2010-11-11 Honda Motor Co Ltd 車両用流体供給装置
JP2012159167A (ja) * 2011-02-02 2012-08-23 Toyo Advanced Technologies Co Ltd オイルポンプの駆動制御装置
JP2013072368A (ja) * 2011-09-28 2013-04-22 Jtekt Corp 内接ギアポンプユニット

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107923516A (zh) * 2015-12-14 2018-04-17 皮尔伯格泵技术有限责任公司 混合动力油泵
CN111911260A (zh) * 2020-07-30 2020-11-10 东风柳州汽车有限公司 一种发动机润滑系统、发动机及汽车
CN115123375A (zh) * 2022-06-20 2022-09-30 江铃汽车股份有限公司 汽车转向泵驱动蓄能系统及汽车

Also Published As

Publication number Publication date
JP2014231770A (ja) 2014-12-11

Similar Documents

Publication Publication Date Title
WO2014192363A1 (ja) オイルポンプ装置
US6964631B2 (en) Integrated electric motor-driven oil pump for automatic transmissions in hybrid applications
EP3507156B1 (en) Dual input pump and system
US20090082153A1 (en) Driving device
US9657612B2 (en) Control system for electric vehicle
US9683631B2 (en) Hydraulic system for vehicle
JP3578150B2 (ja) ハイブリッド車両の油圧供給装置
US9477231B2 (en) Control system for variable displacement pump
JP2013542377A (ja) パワートレイン
JP4302704B2 (ja) ハイブリッド車両駆動装置
WO2014192352A1 (ja) オイルポンプ駆動制御装置
JP5429252B2 (ja) 車両用駆動装置
JP3885636B2 (ja) ハイブリッド車両の油圧供給装置
JP5652044B2 (ja) 車両用制御システム
JP3769650B2 (ja) 変速機用油圧源装置
JP2004011819A (ja) ハイブリッド車両の油圧供給装置
JP2009243482A (ja) 車両の駆動装置用油圧ポンプ制御システムおよび車両の駆動装置用油圧ポンプ装置の制御方法
JP3900142B2 (ja) 車両駆動装置
JP2013095261A (ja) 車両用駆動装置
JP6230269B2 (ja) 車両用制御装置
JP2002255052A (ja) 車両の補機駆動装置
JP2013189085A (ja) 油圧ハイブリッド車両
JP2019163013A (ja) オイルポンプ装置
JP2004096970A (ja) ハイブリッド車両の制御装置
JP2021138213A (ja) ハイブリッド車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14803907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14803907

Country of ref document: EP

Kind code of ref document: A1