JP2013072368A - 内接ギアポンプユニット - Google Patents

内接ギアポンプユニット Download PDF

Info

Publication number
JP2013072368A
JP2013072368A JP2011212249A JP2011212249A JP2013072368A JP 2013072368 A JP2013072368 A JP 2013072368A JP 2011212249 A JP2011212249 A JP 2011212249A JP 2011212249 A JP2011212249 A JP 2011212249A JP 2013072368 A JP2013072368 A JP 2013072368A
Authority
JP
Japan
Prior art keywords
output shaft
rotor
rotation angle
predetermined angle
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011212249A
Other languages
English (en)
Inventor
Yuichi Miura
悠一 三浦
Atsushi Kubo
厚 久保
Yuki Shishihara
祐樹 獅子原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2011212249A priority Critical patent/JP2013072368A/ja
Publication of JP2013072368A publication Critical patent/JP2013072368A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】ホールセンサ等の磁界検出手段を用いることなく、低回転から高回転まで効率良く電動ポンプを駆動することが可能であり、エンジンの出力軸の負荷をより低減させることができる内接ギアポンプユニットを提供する。
【解決手段】インナギア31にはロータ33が接続されてワンウェイクラッチを介して出力軸20の回転動力が伝達され、ワンウェイクラッチは第1所定角度毎に係合位置を有し、複数の磁極は隣り合うN極とS極の角度が第2所定角度となるように数が設定され、自然数をJ、Kとすると、第2所定角度*J=第1所定角度、且つ第1所定角度*K=360°を満足し、出力軸には回転角度検出手段が設けられている。モータ制御手段は出力軸が所定回転数未満で回転している際に電動モータを動作させる場合は、回転角度検出手段にて検出したロータの回転角度に基づいて、ロータの回転数が出力軸の回転数と同じとなるように各コイルへの通電を制御する。
【選択図】図4

Description

本発明は、アウタギアの内歯にインナギアの外歯を内接させた構造を有して流体の吸入と吐出を行う内接ギアポンプユニットに関する。
従来、車両のエンジンの作動時において、各種機構の潤滑、作動、制御等を行うオイルを供給するために、自動変速機にメカニカルポンプが組み込まれることが知られている(例えば、特許文献1参照)。
また近年では、走行していた車両が一時停止した際、エンジンを一時停止させるアイドリングストップシステムを搭載した車両が増加傾向にある。
アイドリングストップシステムを搭載した車両では、エンジンの一時停止(アイドルストップ)に伴ってメカニカルポンプの動作が停止するため、自動変速機内のクラッチ機構等にオイルを供給することができなくなる。そこで、アイドリングストップシステムが搭載された車両の中には、メカニカルポンプに加えて、エンジン停止時においても自動変速機内のクラッチ機構等にオイルを供給できる電動ポンプを自動変速機の外部に設けている車両がある。
特開平9−25809号公報
メカニカルポンプが組み込まれている自動変速機の外部に、別体の電動ポンプを設ける場合、車両によっては配置スペースの確保が困難となる場合がある。
また近年では、特に燃費向上の要求が高く、より燃費を向上させることができるシステムが所望されている。
燃費を向上させるには、種々の方法が考えられるが、燃費向上の方法の1つとして、エンジンの出力軸の負荷の低減が挙げられる。
エンジン回転時、上記のようにメカニカルポンプをエンジンから機械的に回転駆動しており、このメカニカルポンプがエンジンの負荷の1つとなっている。従って、メカニカルポンプの回転をアシストするように電動ポンプを電気的に回転駆動できれば、エンジンの負荷を低減して燃費の向上が期待できる。
なお、電動ポンプを回転させる際は、ポンプ負荷等に対して効率良く回転させるために、ロータの回転角度を検出しながら各コイルへの通電タイミング等を適切に制御している。
ロータの回転角度を検出する方法には、以下の2通りの方法がある。
(方法1)通電していないコイルに発生する正弦波状の誘起電圧を検出し、誘起電圧が0[V]を横切るタイミング(いわゆるゼロクロス点)を検出することで、該当するコイルの位置に対するロータの磁極の位置(すなわちロータの回転角度)を検出する方法。
(方法2)磁界の方向を検出可能な磁界検出手段(例えばホールセンサ)をロータに対して所定角度間隔で配置しておき、当該磁界検出手段の検出信号に基づいて、磁界検出手段の位置に対するロータの磁極の位置(すなわちロータの回転角度)を検出する方法。
上記の(方法1)では、通電していないコイルに発生する誘起電圧を利用しているため、ロータの回転が低速の場合、正弦波状の誘起電圧の振幅が小さくなり、正しいゼロクロス点を検出できない場合がある。
また上記(方法2)では、ロータの回転が低速であっても利用できるが、新たに磁界検出手段(ホールセンサ等)を所定の位置に配置する必要がある。
本発明は、このような点に鑑みて創案されたものであり、ホールセンサ等の磁界検出手段を用いることなく、低回転から高回転まで効率良く電動ポンプを駆動することが可能であり、エンジンの出力軸の負荷をより低減させることができる内接ギアポンプユニットを提供することを課題とする。
上記課題を解決するため、本発明に係る内接ギアポンプユニットは次の手段をとる。
まず、本発明の第1の発明は、外周面に外歯を有してエンジンの出力軸の外周面に外嵌されるインナギアと、前記インナギアの前記外歯と噛合する内歯を内周面に有するアウタギアと、前記インナギアを駆動可能な電動モータと、前記電動モータを制御するモータ制御手段と、を備え、前記電動モータは、周方向に複数の磁極が配置されたロータと、複数のコイルと、を有する。
また、前記インナギアには、前記ロータが接続されてワンウェイクラッチを介して前記出力軸の回転動力が伝達され、前記ワンウェイクラッチは、第1所定角度毎に係合位置を有しており、前記複数の磁極は、隣り合うN極とS極における周方向の角度が、第2所定角度となるように数が設定されている。
ここで、自然数をJ、Kとすると、第2所定角度*J=第1所定角度、且つ第1所定角度*K=360°を満足するように、前記第1所定角度と前記第2所定角度及び前記磁極の数が設定されており、前記出力軸には、回転角度を検出可能な回転角度検出手段が設けられている。
そして、前記モータ制御手段は、コイルに通電するための通電手段と、通電していないコイルに発生する誘起電圧を検出可能な誘起電圧検出手段と、を各コイルに対応させて有しており、前記出力軸が所定回転数以上で回転している際に前記電動モータを動作させる場合は、前記誘起電圧検出手段からの検出信号に基づいて前記ロータの回転角度を検出し、検出した回転角度に基づいて、前記ロータの回転数が前記出力軸の回転数以上となるように各コイルへの通電を制御し、前記出力軸が所定回転数未満で回転している際に前記電動モータを動作させる場合は、前記回転角度検出手段からの検出信号に基づいて前記ロータの回転角度を検出し、検出した回転角度に基づいて、前記ロータの回転数が前記出力軸の回転数と同一回転数となるように各コイルへの通電を制御する。
この第1の発明によれば、誘起電圧検出手段からの検出信号が利用できないような低い回転数でロータが回転していても、回転角度検出手段からの検出信号を用いて、ワンウェイクラッチを介して出力軸とともに回転しているロータの回転角度を検出し、適切に電動モータを電気的に回転駆動することができる。また、誘起電圧検出手段からの検出信号が利用できる回転数であれば、誘起電圧検出手段からの検出信号を用いてロータの回転角度を検出し、適切に電動モータを電気的に回転駆動することができる。
このように、磁界検出手段を用いることなく、低回転から高回転まで効率良く電動ポンプを回転駆動させることができる。そして、エンジンの出力軸の負荷をより低減させることができる。
ポンプハウジング10に対する内接ギアポンプユニット30(メカニカルポンプと電動ポンプを一体化したポンプ)の配置位置、及び内接ギアポンプユニット30の構造の一実施の形態を説明する断面図である。 出力軸20の外周面にワンウェイクラッチK1を介してインナギア31が外嵌されている状態の例を説明する図である。 電動モータを構成する磁極、コイル(34A〜34L)、モータ制御手段60の構成及び接続等を説明する図である。 モータ制御手段60の処理手順の例を説明するフローチャートである。 メカニカルポンプと電動ポンプを別々のポンプとして構成した例を説明する断面図である。
以下に本発明を実施するための形態を図面を用いて説明する。
まず図1〜図4を用いて、エンジンの出力軸20からワンウェイクラッチK1を介してインナギア31を機械的に回転駆動するメカニカルポンプと、モータ制御手段60からコイル34A〜34Lの通電を制御してインナギア31を電動モータにて電気的に回転駆動する電動ポンプとが一体的に構成された内接ギアポンプユニット30の例を説明する。
●[内接ギアポンプユニット30の全体構造(図1)とワンウェイクラッチK1の構造(図2)]
図1の断面図に示すように、ポンプハウジング10は、ハウジング体11、12が結合されることで構成され、エンジンのケーシング(図示省略)にボルト等にて固定される。
ハウジング体11、12が対向する位置には、内接ギアポンプユニット30を収容可能なポンプ収容空間が形成されている。そしてハウジング体11には、内接ギアポンプユニット30がオイルを吸入するための吸入ポート、内接ギアポンプユニット30がオイルを吐出するための吐出ポートが形成されている。
また内接ギアポンプユニット30は、インナギア31、アウタギア32、ロータ33、ステータ34等を有している。
インナギア31は、図2に示すように外周面に外歯31Tを有してワンウェイクラッチK1を介してエンジンの出力軸20の外周面に外嵌されている。なお本実施の形態の例では、出力軸20には出力軸20と一体となって回転するスリーブ21が嵌め込まれており、スリーブ21の外周面にインナギア31が外嵌されている。また、ワンウェイクラッチK1の構造については後述する。また本実施の形態の説明では、外歯が7歯の例を説明する。またインナギア31は、図3に示すように回転軸Zi回りに回転し、回転軸Ziは出力軸20の回転軸ZCと同じである。
アウタギア32は、図3に示すように、インナギア31の外歯31Tに噛合する内歯32Tを内周面に有している。また本実施の形態の説明では、内歯が8歯の例を説明する。またアウタギア32は、図3に示すようにインナギア31の回転軸Ziに対して偏心した位置となる回転軸Zo回りに回転する。
ロータ33は、図1及び図3に示すように、磁極支持体33Zと、当該磁極支持体33Zの外周面に交互に配置された複数の磁極33Mにて構成されている。またロータ33は、図1に示すように磁極支持体33Zがインナギア31に固定されており、インナギア31と一体となって回転する。また本実施の形態の説明では、磁極数(N極とS極の合計)が8個の例を説明する。この場合、各N極及びS極は、45°(360°/8=45°)の間隔で交互に配置されている。ここで、隣り合うN極とS極における周方向の角度を第2所定角度θ2とする。図3の例では、第2所定角度θ2=90°(45°*2=90°)となる。
また、磁極支持体33Zは、可能であれば吸入ポートと吐出ポートが形成されていない側に配置されている。なお、吸入ポートと吐出ポートが形成されている側に磁極支持体33Zを配置する場合は、図5(B)に示すように、吸入ポートと吐出ポートが連通しないように磁極支持体133Zにスリット133Sを形成しておけばよい。
ステータ34は、図3に示すように、鉄心部34Zとコイル34A〜34Lにて構成され、ロータ33の外周面に対向するように配置され、ポンプハウジング10に固定される。なお、本実施の形態の説明では、8極のロータに対して、12個のコイル(34A〜34L)を備えたステータの例を説明する。
次に図2を用いてワンウェイクラッチK1の構造について説明する。
エンジンの出力軸20には、一体となって回転するスリーブ21が嵌め込まれている。
スリーブ21の外周面において、インナギア31の内周面と対向する位置には、第1所定角度θ1の間隔でクラッチ溝21Aが形成されている。本実施の形態では、第1所定角度θ1=90°の間隔でクラッチ溝21Aが円周方向に形成されている。
クラッチ溝21Aは、一方の回転方向(図2の例では時計回りの方向)の面には、クラッチ溝21Aの底面からスリーブ21の外周面に向かって傾斜面21Cが形成されている。また他方の回転方向(図2の例では反時計回りの方向)の面には、クラッチ溝21Aの底面からスリーブ21の外周面に向かって垂直面21Bが形成されている。
インナギア31の内周面において、スリーブ21の外周面と対向する位置には、第1所定角度θ1の間隔でピン収容空間31Cが形成されている。本実施の形態の例では、第1所定角度θ1=90°の間隔でピン収容空間31Cが形成されている。各ピン収容空間31Cには、弾性部材31Bとクラッチピン31Aが収容されている。そしてクラッチピン31Aは、出力軸20の回転軸ZC(すなわちインナギア31の回転軸Zi)の方向に向けて弾性部材31Bにて付勢されており、クラッチピン31Aは、ピン収容空間31Cから回転軸ZCの方向に突出可能であるとともに、ピン収容空間31C内に収容可能である。
上記の構成にて、図2(B)に示すように、インナギア31に対して出力軸20(すなわちスリーブ21)が、相対的に時計回り方向(図2(B)におけるRR方向)に回転した場合は、クラッチピン31Aがクラッチ溝21Aの垂直面21Bに係合し、出力軸20(スリーブ21)とインナギア31とが一体となって回転する。
また、図2(C)に示すように、インナギア31に対して出力軸20(すなわちスリーブ21)が、相対的に反時計回り方向(図2(C)におけるRL方向)に回転した場合は、クラッチピン31Aがクラッチ溝21Aの傾斜面21Cから外周面へと移動可能であり、出力軸20(スリーブ21)に対してインナギア31が空回りすることができる。
なお図2の例では、90°間隔でワンウェイクラッチK1が係合するように構成されているので、図2の例では第1所定角度θ1=90°となる。また、上記したように隣り合う1組のN極とS極の周方向である第2所定角度θ2=90°である。
従って、ワンウェイクラッチK1が、どの位置で係合しても、係合位置に対する磁極(N極、S極)の位置は変化しない。なお、自然数をJ、Kとして、下記の(式1)を満足するように、第1所定角度θ1と、第2所定角度θ2及び磁極数を設定すると、ワンウェイクラッチK1がどの位置で係合しても、係合位置に対する磁極(N極、S極)の位置が変化しないように構成することができる。
第2所定角度θ2*J=第1所定角度θ1、且つ第1所定角度θ1*K=360°(式1)
例えば磁極数を6個にした場合、第2所定角度θ2=360°/(6/2)=120°であるので、この場合は(式1)より第1所定角度θ1を120°または360°に設定すればよい。また例えば磁極数を8個にした場合、第2所定角度θ2=360°/(8/2)=90°であるので、この場合は(式1)より第1所定角度θ1を90°または180°または360°に設定すればよい。
以上の構成にて、エンジンの出力軸20が回転している場合は、前記出力軸20は前記インナギア31に対して相対的に時計回り方向に回転し、電動モータを動作させなくても、ワンウェイクラッチK1が係合されてインナギア31が機械的に回転駆動され、インナギア31の回転に伴ってアウタギア32が回転駆動される。従ってエンジンの出力軸20が回転している場合、内接ギアポンプユニット30は、出力軸20(スリーブ21)にて機械的に回転駆動されるメカニカルポンプとして動作する。
また出力軸20の回転が停止している場合、モータ制御手段60は、コイル34A〜34Lの各々を適切なタイミングで通電し、ロータ33(すなわちインナギア31)を電気的に回転駆動することができる。そしてインナギア31の回転に伴ってアウタギア32が回転駆動される。このとき、出力軸20はインナギア31に対して相対的に反時計回りに回転し、ワンウェイクラッチK1が係合しないので、インナギア31は出力軸20(スリーブ21)に対して空回りする。従って出力軸20の回転が停止している場合、内接ギアポンプユニット30は、モータ制御手段60にて電気的に回転駆動される電動ポンプとして動作させることができる。
なお、出力軸20が回転している場合であっても、出力軸20による機械的な回転よりもより高速にロータ33を電気的に回転駆動することも可能であり、この場合、電動ポンプとして動作させることができる。
●[電動ポンプの制御システムの構成(図3)]
次に図3を用いて、内接ギアポンプユニット30を電動ポンプとして機能させる際の制御システム(ロータ33を電気的に回転駆動するための入出力)の構成及び接続等について説明する。なお図3ではワンウェイクラッチK1の記載を省略している。
インナギア31に接続されたロータ33には、ステータ34の各コイル34A〜34Lに対向するように複数のN極とS極が交互に配置されている。
またロータ33とステータ34にて構成された電動モータを制御するモータ制御手段60は、CPU61、通電手段64A、64B、誘起電圧検出手段65A、65B、検出回路62等を有している。
コイル34Aには、通電手段64Aと誘起電圧検出手段65Aが接続されている。またコイル34Bには、同様に、通電手段64Bと誘起電圧検出手段65Bが接続されている。そしてコイル34C〜34Lにも同様に通電手段と誘起電圧検出手段が接続されるが、図示省略する。
そして各通電手段は、モータ制御手段60のCPU61からの制御信号に基づいて接続されたコイルに電流を供給する。また各誘起電圧検出手段は、接続されているコイルが通電されていない場合に発生した正弦波状の誘起電圧に基づいた信号(例えばゼロクロス点を通過した際に1パルスを発生する信号や、正弦波そのもの)をCPU61に入力する。
モータ制御手段60のCPU61は、適切なタイミングにて順番に通電手段に制御信号を出力し、適切な順番で各コイルに通電してロータ33を回転駆動する。また、CPU61は、通電していないコイルに対応する誘起電圧検出手段からの検出信号を取り込み、ロータ33の磁極の位置(すなわち回転角度)を検出することができる。
またエンジンの出力軸20には、エンジン制御等に用いるための回転角度検出手段52が設けられており、CPU61は、検出回路62を介して回転角度検出手段52の検出信号を取り込み、出力軸20の回転数及び回転角度を検出することが可能である。
近年の車両では、エンジン制御コンピュータにてエンジンを制御することが必須であり、回転角度検出手段52を必ず備えているので、この回転角度検出手段52の検出信号を流用する。
内接ギアポンプユニット30をモータ制御手段60にて電気的に回転駆動する場合、適切な順番及び適切な通電時間にて、各コイルを順番に制御してロータ33を回転駆動する。なお、効率良くロータ33を回転駆動するには、ポンプの負荷等によるロータ33の回転の遅れ(あるいは回転の進み)を適切に検出し、ロータ33の現在の回転角度に応じて、各コイルへの通電タイミング及び通電時間等を制御している。
ここで、ロータ33の回転角度を検出する一般的な方法としては、通電していないコイルに対応する誘起電圧検出手段からの検出信号に基づいたゼロクロス点を検出する(方法1)と、磁界検出手段からの検出信号に基づいて検出する(方法2)の2通りがある。
(方法1)では、モータのトルク定数や逆起電圧定数によって異なるが、例えばロータ33の回転が300rpm以下等の低回転では、誘起電圧の振幅が小さく、正しいゼロクロス点を検出できないという欠点がある。
また(方法2)では、磁界検出手段を所定の位置に配置する必要があり、システムが複雑化してコストも増加するという欠点がある。
そこで本願では、磁界検出手段を用いることなく、誘起電圧検出手段にて正しいゼロクロス点を検出できないような低回転では、すでにエンジンの出力軸に設けられている回転角度検出手段52を利用してロータ33の回転角度を検出して電動モータを効率良く回転駆動させるものであり、その方法について以下に説明する。
●[モータ制御手段60の処理手順(図4)]
次に図4を用いて、図3に示す制御システムにおけるCPU61の処理手順について説明する。
図4に示す処理は、エンジンの始動後等、所定のタイミングで起動される。
ステップS10にて、CPU61は、回転角度検出手段52からの検出信号に基づいて出力軸20の回転数を検出し、ステップS20に進む。
ステップS20にて、CPU61は、エンジンがアイドルストップ中であるか否かを判定する。アイドルストップ中である(出力軸20の回転数=0rpm)場合(Yes)はステップS120に進み、アイドルストップ中でない(出力軸20の回転数≠0rpm)場合(No)はステップS30に進む。
ステップS30に進んだ場合、CPU61は、出力軸20の回転数が所定回転数未満であるか否かを判定する。所定回転数未満である場合(Yes)はステップS40に進み、所定回転数未満でない場合(No)はステップS60に進む。ここで所定回転数は、誘起電圧検出手段にて正しいゼロクロス点を検出可能な回転数の下限値よりも大きな値であり、モータのトルク定数や逆起電圧定数によって異なるが、例えば300rpm等に設定される。
ステップS40では、CPU61は、回転角度検出手段52からの検出信号に基づいて出力軸20の回転角度を検出し、ステップS50に進む。
なお、ステップS40及びステップS50の処理は、エンジンがアイドルストップ中でなく回転しているときに実行されるが、エンジンの出力軸20から機械的に回転されるインナギア31及びロータ33の回転速度が低く、誘起電圧検出手段からの検出信号ではロータ33の回転角度を検出することが困難な場合の処理である。出力軸20が回転しておりワンウェイクラッチK1が係合している場合では、出力軸20の回転角度がわかればインナギア31に接続されているロータ33の磁極の回転角度を検出することができる。
ステップS50では、CPU61は、検出した出力軸20の回転角度に基づいて検出したロータ33の磁極の回転角度に基づいて各コイルへの通電タイミング及び通電時間等を制御して電動モータを回転駆動し、ステップS10に戻る。なお、ワンウェイクラッチK1の係合状態を維持する必要があるので、電動モータのモータ回転数=出力軸20の回転数となるように電動モータを回転駆動する。
なお、適切な頻度で一時的にあえて、モータ回転数<出力軸20の回転数、となるように電動モータを電気的に回転駆動すれば、より確実にワンウェイクラッチK1を係合状態にすることができる。
ステップS60に進んだ場合、CPU61は、誘起電圧検出手段の検出信号に基づいてロータ33の回転角度(磁極の回転角度)を検出し、ステップS70に進む。
なお、ステップS60及びステップS70の処理は、エンジンがアイドルストップ中でなく回転しているときに実行され、エンジンの出力軸20から機械的に回転されるインナギア31及びロータ33の回転速度が充分高く、誘起電圧検出手段からの検出信号を用いてロータ33の回転角度を検出することが可能な場合の処理である。
ステップS70では、CPU61は、検出したロータ33の回転角度(磁極の回転角度)に基づいて各コイルへの通電タイミング及び通電時間等を制御して電動モータを回転駆動し、ステップS10に戻る。なお、この場合はワンウェイクラッチK1の係合状態を維持する必要は特にないので、電動モータのモータ回転数≧出力軸20の回転数となるように電動モータを回転駆動する。
なお、電動モータを電気的に回転駆動可能な上限の回転数を超える回転数で出力軸20が回転している場合には、電気的な回転駆動を停止して機械的な回転駆動のみとしても良い。
ステップS120に進んだ場合、CPU61は、電動モータを動作中(コイルの通電を制御中)であるか否かを判定する。動作中である場合(Yes)はステップS130に進み、動作中でない場合(No)はステップS160に進む。
ステップS130に進んだ場合、CPU61は、アイドルストップ中における目標モータ回転数を設定し、ステップS140に進む。この時点ではエンジンの出力軸20の回転が停止しているので、回転角度検出手段52からの検出信号を使ってロータ33の回転角度を検出することができない。従って、誘起電圧検出手段からの検出信号を利用できる回転数範囲の中から選定した目標モータ回転数が設定される。
ステップS140では、CPU61は、誘起電圧検出手段の検出信号に基づいてロータ33の回転角度(磁極の回転角度)を検出し、ステップS150に進む。
ステップS150では、CPU61は、検出したロータ33の回転角度(磁極の回転角度)に基づいて各コイルへの通電タイミング及び通電時間等を制御して電動モータを回転駆動し、ステップS10に戻る。なお、この場合は出力軸20の回転が停止しており、電動モータのモータ回転数=目標モータ回転数となるように電動モータを回転駆動する。
ステップS160に進んだ場合、CPU61は、ステップS130と同様に、アイドルストップ中における目標モータ回転数を設定し、ステップS170に進む。なお、目標モータ回転数は、ステップS130と同じ回転数でも良いし、停止しているモータを起動する特別な目標回転数としてステップS130とは異なる回転数であってもよい。
ステップS170では、CPU61は、ロータ33の回転角度を検出できていないが、強制的に電動モータを起動し、ステップS140に進む。電動モータが停止状態であり、出力軸20も回転停止状態であるので、誘起電圧検出手段及び回転角度検出手段を用いてもロータ33の回転角度を検出できない。従ってCPU61は、見込み制御で電動モータを起動する。起動してしまえば、誘起電圧検出手段を用いてロータ33の回転角度を検出できるので、以降はステップS140、ステップS150の処理にて電動モータを回転駆動する。
以上に説明したように、エンジンがアイドリング状態で回転している場合は、ステップS40とステップS50の処理、またはステップS60とステップS70の処理が実行され、エンジンがワンウェイクラッチK1を介してインナギア31を機械的に回転する際の負荷を低減するようにアシストすることができる。
これにより、アイドリング回転数をより低く設定することが可能であり、負荷の低減と合わせて燃費の向上が期待できる。
また、エンジンがアイドリング回転以上の回転数で回転している場合(走行中等)は、ステップS60とステップS70の処理が実行され、エンジンがワンウェイクラッチK1を介してインナギア31を機械的に回転する際の負荷を低減するようにアシストすることができる。
これにより、走行中等のエンジンの負荷を低減し、燃費の向上が期待できる。
なお、走行していた車両が信号等で停止した際にエンジンを一時的に停止するアイドルストップ状態は、アイドリング状態を経由してからエンジンが停止される。従って、アイドリング状態では、上記のようにステップS40とステップS50の処理、またはステップS60とステップS70の処理が実行されて電動モータが回転駆動されている。その後、エンジンが停止した場合は、ステップS120、ステップS130、ステップS140、ステップS150の処理が実行され、電動モータの回転駆動が継続される。すなわちアイドルストップ状態であっても、電動ポンプが動作され、必要なオイルを適切に供給することができる。
●[メカニカルポンプと電動ポンプとを別々のポンプとして構成した内接ギアポンプユニット330の例(図5)]
以上の説明では、メカニカルポンプと電動ポンプとが一体的に構成された内接ギアポンプユニット30の例を説明した。
次に図5を用いて、エンジンの出力軸20の回転軸ZC方向に、メカニカルポンプ230と電動ポンプ130とが並列に配置された内接ギアポンプユニット330について説明する。なお図5は、回転軸ZCを通る平面にて切断した断面図を示している。
電動ポンプ130は、電動側インナギア131と、電動側アウタギア132と、ロータ133と、ステータ134等にて構成されている。
電動側インナギア131は、ワンウェイクラッチK2を介してスリーブ21の外周面に外嵌され、図3に示すインナギア31と同様に、外周面に外歯を有しており、回転軸ZC回りに回転可能である。まお、ワンウェイクラッチK2の構造は、図2に示したワンウェイクラッチK1と同様であり、電動側インナギア131のピン収容空間131C内に弾性部材131Bとクラッチピン131Aが収容されており、スリーブ21にはクラッチ溝121Aが形成されている。そしてクラッチ溝121Aには、図2で説明したクラッチ溝21Aと同様に、円周方向に傾斜面と垂直面が設けられている。
そして電動側インナギア131に対してスリーブ21が相対的に所定方向に回転した場合はクラッチピン131Aがクラッチ溝121Aに係合し、スリーブ21と電動側インナギア131とが一体となって回転する。また電動側インナギア131に対してスリーブ21が相対的に前記所定方向と反対の方向に回転した場合はクラッチピン131Aがクラッチ溝121Aに係合することなく、スリーブ21に対して電動側インナギア131が空回りする。
電動側アウタギア132は、図3に示すアウタギア32と同様に、電動側インナギア131の外歯に噛合する内歯を内周面に有しており、電動側インナギア131の回転軸ZCに対して偏心した位置の回転軸回りに回転可能である。
ロータ133は、図3に示すロータ33と同様に、磁極支持体133Zと複数の磁極133Mにて構成されており、電動側インナギア131に取り付けられて電動側インナギア131と一体となって回転する。そして磁極支持体133Zの外周面には複数の磁極133M(N極、S極)が交互に配置されている。
ステータ134は、図3に示すステータ34と同様に、ポンプハウジング10(ハウジング体13、14にて構成)に固定され、鉄心部134Zと複数のコイル134A等とを有している。
なお、図3に示す回転角度検出手段52、モータ制御手段60も同様に備えているが、図示は省略する。
また、ワンウェイクラッチK2の係合位置は第1所定角度θ1毎に設定されており、磁極133Mにおける隣り合うN極とS極における円周方向の角度は第2所定角度θ2に設定されている。
そして、自然数をJ、Kとして、第2所定角度θ2*J=第1所定角度θ1、且つ第1所定角度θ1*K=360°を満足するように、第1所定角度θ1と、第2所定角度θ2及び磁極数が設定されている。
メカニカルポンプ230は、メカ側インナギア231と、メカ側アウタギア232と、にて構成されている。
メカ側インナギア231は、スリーブ21と一体となって回転するように嵌め込まれ、外周面に外歯を有しており、回転軸ZC回りに回転する。
メカ側アウタギア232は、メカ側インナギア231の外歯に噛合する内歯を内周面に有しており、メカ側インナギア231の回転軸ZCに対して偏心した位置の回転軸回りに回転する。
なお、メカニカルポンプ230と電動ポンプ130は、互いに干渉することなく、各々が独立して動作する。
上記の構成を有することで、エンジンの出力軸20及びスリーブ21が回転すると、メカ側インナギア231が機械的に回転駆動され、メカ側インナギア231の回転に伴ってメカ側アウタギア232が回転してメカニカルポンプ230が機械的に回転駆動される。
また、ワンウェイクラッチK2にてスリーブ21の回転動力が電動側インナギア131に伝達され、電動側インナギア131が機械的に回転駆動される。そして電動側インナギア131の回転に伴って電動側アウタギア132が回転して電動ポンプ130が機械的に回転駆動される。なお、出力軸20(スリーブ21)が回転している場合であっても、電動モータを回転駆動してスリーブ21の回転よりも高速で電動側インナギア131を回転させることもできる。
また、エンジンの出力軸20及びスリーブ21の回転が停止した場合、モータ制御手段60からコイルへの通電を制御してロータ133を回転駆動することで電動側インナギア131を電気的に回転駆動することができる。そして電動側インナギア131の回転に伴って電動側アウタギア132が回転して電動ポンプ130が動作する。
また電動ポンプ130の吸入口の近傍には電動側吸入ポート117が形成されており、メカニカルポンプ230の吸入口の近傍にはメカ側吸入ポート115が形成されている。
また電動ポンプ130の吐出口の近傍には電動側吐出ポート118が形成されており、メカニカルポンプ230の吐出口の近傍にはメカ側吐出ポート116が形成されている。
そして、電動ポンプ130とメカニカルポンプ230との間には、メカニカルポンプ230を介して電動側吸入ポート117と電動側吐出ポート118が連通しないように、及び電動ポンプ130を介してメカ側吸入ポート115とメカ側吐出ポート116が連通しないように、遮蔽板140が設けられている。
なお遮蔽板140には、電動側吸入ポート117とメカ側吸入ポート115とを連通する連通孔144が形成されており、電動側吐出ポート118とメカ側吐出ポート116とを連通する連通孔145が形成されている。
なお、モータ制御手段(図示省略)のCPUの処理手順は、図4を用いて説明した内容と同じであるので、説明を省略する。
以上、図1〜図4を用いて説明したメカニカルポンプと電動ポンプとを一体化した(一体型の)内接ギアポンプユニット30では、エンジンの出力軸20の回転動力が、ワンウェイクラッチK1を介してインナギア31に伝達される。
また、図5を用いて説明したメカニカルポンプ230と電動ポンプ130とを別体で構成して軸方向に並列配置した(並列型の)内接ギアポンプユニット330では、エンジンの出力軸20の回転動力が、ワンウェイクラッチK2を介して電動側インナギア131に伝達される。
そして一体型の内接ギアポンプユニット30と並列型の内接ギアポンプユニット330のどちらも、エンジンの出力軸20の回転数が誘起電圧検出手段の検出信号を利用できないくらい低い場合は、出力軸20の回転角度から検出したロータ33の回転角度(磁極の位置)に基づいて電動モータを回転駆動する(出力軸と同一回転数で回転駆動する)。また、一体型の内接ギアポンプユニット30と並列型の内接ギアポンプユニット330のどちらも、エンジンの出力軸20の回転数が誘起電圧検出手段の検出信号を利用できる回転数である場合は、誘起電圧検出手段の検出信号から検出したロータ33の回転角度(磁極の位置)に基づいて電動モータを回転駆動する(出力軸の回転数以上の回転数で回転駆動する)。
これにより、磁界検出手段を用いることなく、エンジンの低回転から高回転まで全回転域においてエンジンがメカニカルポンプを機械的に回転駆動する負荷を低減することができる。なお、図5に示す並列型の内接ギアポンプユニット330の場合は、電動ポンプ130を機械的に回転駆動する際の負荷を低減することができる。
そしてエンジンの負荷を低減することで、燃費の向上が期待できる。また、エンジンの負荷を低減することで、アイドル回転数をより低く設定することが可能であり、更に燃費の向上が期待できる。
本発明の内接ギアポンプユニット30、330は、本実施の形態で説明した外観、構成、構造、処理手順等に限定されず、本発明の要旨を変更しない範囲で種々の変更、追加、削除が可能である。
また本発明の内接ギアポンプユニット30、330において、アウタギア及びインナギアの歯数は、本実施の形態にて説明した歯数に限定されず、種々の歯数を設定することができる。
また、ロータの磁極の数、及びステータのコイルの数は、種々の数に設定することができる。
本発明の内接ギアポンプユニット30、330は、例えば車両に用いる種々のオイルポンプとして利用することができる他にも、種々の流体の吸入と吐出を行う種々の機械のポンプとして利用することができる。
また、磁極支持体33Z、133Zに設けるスリット133Sの形状、サイズ、位置、数は、図5(B)に示すものに限定されるものではない。
また、以上(≧)、以下(≦)、より大きい(>)、未満(<)等は、等号を含んでも含まなくてもよい。
また、本実施の形態の説明に用いた数値は一例であり、この数値に限定されるものではない。
10 ポンプハウジング
20 出力軸
21 スリーブ
30 内接ギアポンプユニット
31 インナギア
32 アウタギア
33 ロータ
33M 磁極
33Z 磁極支持体
34 ステータ
34A〜34L コイル
34Z 鉄心部
52 回転角度検出手段
60 モータ制御手段
61 CPU
64A、64B 通電手段
65A、65B 誘起電圧検出手段
130 電動ポンプ
131 電動側インナギア
132 電動側アウタギア
133 ロータ
134 ステータ
140 遮蔽板
230 メカニカルポンプ
231 メカ側インナギア
232 メカ側アウタギア
330 内接ギアポンプユニット
K1、K2 ワンウェイクラッチ
Zi インナギアの回転軸
Zo アウタギアの回転軸
ZC 出力軸の回転軸
θ1 第1所定角度
θ2 第2所定角度

Claims (1)

  1. 外周面に外歯を有してエンジンの出力軸の外周面に外嵌されるインナギアと、
    前記インナギアの前記外歯と噛合する内歯を内周面に有するアウタギアと、
    前記インナギアを駆動可能な電動モータと、
    前記電動モータを制御するモータ制御手段と、を備え、
    前記電動モータは、周方向に複数の磁極が配置されたロータと、複数のコイルと、を有し、
    前記インナギアには、前記ロータが接続されてワンウェイクラッチを介して前記出力軸の回転動力が伝達され、
    前記ワンウェイクラッチは、第1所定角度毎に係合位置を有しており、
    前記複数の磁極は、隣り合うN極とS極における周方向の角度が、第2所定角度となるように数が設定されており、
    自然数をJ、Kとすると、第2所定角度*J=第1所定角度、且つ第1所定角度*K=360°を満足するように、前記第1所定角度と前記第2所定角度及び前記磁極の数が設定されており、
    前記出力軸には、回転角度を検出可能な回転角度検出手段が設けられており、
    前記モータ制御手段は、
    コイルに通電するための通電手段と、通電していないコイルに発生する誘起電圧を検出可能な誘起電圧検出手段と、を各コイルに対応させて有しており、
    前記出力軸が所定回転数以上で回転している際に前記電動モータを動作させる場合は、前記誘起電圧検出手段からの検出信号に基づいて前記ロータの回転角度を検出し、検出した回転角度に基づいて、前記ロータの回転数が前記出力軸の回転数以上となるように各コイルへの通電を制御し、
    前記出力軸が所定回転数未満で回転している際に前記電動モータを動作させる場合は、前記回転角度検出手段からの検出信号に基づいて前記ロータの回転角度を検出し、検出した回転角度に基づいて、前記ロータの回転数が前記出力軸の回転数と同一回転数となるように各コイルへの通電を制御する、
    内接ギアポンプユニット。

JP2011212249A 2011-09-28 2011-09-28 内接ギアポンプユニット Withdrawn JP2013072368A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011212249A JP2013072368A (ja) 2011-09-28 2011-09-28 内接ギアポンプユニット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011212249A JP2013072368A (ja) 2011-09-28 2011-09-28 内接ギアポンプユニット

Publications (1)

Publication Number Publication Date
JP2013072368A true JP2013072368A (ja) 2013-04-22

Family

ID=48477077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011212249A Withdrawn JP2013072368A (ja) 2011-09-28 2011-09-28 内接ギアポンプユニット

Country Status (1)

Country Link
JP (1) JP2013072368A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192363A1 (ja) * 2013-05-29 2014-12-04 アイシン精機株式会社 オイルポンプ装置
EP3135912A1 (en) 2015-08-31 2017-03-01 MAHLE Filter Systems Japan Corporation Pump
CN106989010A (zh) * 2017-04-13 2017-07-28 天津市汇晶丰精密机械有限公司 一种环卫车用齿轮泵
JP2019167863A (ja) * 2018-03-23 2019-10-03 いすゞ自動車株式会社 オイルポンプの駆動装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192363A1 (ja) * 2013-05-29 2014-12-04 アイシン精機株式会社 オイルポンプ装置
JP2014231770A (ja) * 2013-05-29 2014-12-11 アイシン精機株式会社 オイルポンプ装置
EP3135912A1 (en) 2015-08-31 2017-03-01 MAHLE Filter Systems Japan Corporation Pump
CN106989010A (zh) * 2017-04-13 2017-07-28 天津市汇晶丰精密机械有限公司 一种环卫车用齿轮泵
JP2019167863A (ja) * 2018-03-23 2019-10-03 いすゞ自動車株式会社 オイルポンプの駆動装置

Similar Documents

Publication Publication Date Title
EP2475079B1 (en) Wiper motor
RU2540346C2 (ru) Шестеренный насос
JP2013072368A (ja) 内接ギアポンプユニット
JP5511770B2 (ja) 電動ポンプ、及び電動ポンプの製造方法
KR102118028B1 (ko) 전동식 펌프
CN1405948A (zh) 电动机转子
JP6287394B2 (ja) 電動オイルポンプ
JP2011190763A (ja) 回転式ポンプ
JP2013121809A (ja) ハイブリッド車両の電動式オイルポンプ
JP5431872B2 (ja) 電動ポンプ
CN110836179A (zh) 电动泵的安装结构
EP2744072A2 (en) Motor
US8786161B2 (en) Sensorless motor and pump having a consequent rotor
CN110612410A (zh) 换档装置
JP6409673B2 (ja) 燃料ポンプ
JP2013074731A (ja) 内接ギアポンプユニット
JP2013074732A (ja) 内接ギアポンプユニット
JP2008131678A (ja) センサマグネットの着磁方法
JP2009287463A (ja) ポンプ
WO2018062096A1 (ja) 制御装置、制御方法、モータ、および電動オイルポンプ
KR101220371B1 (ko) 베인펌프
JP6962375B2 (ja) モータの制御装置及び記憶媒体
JP2018127918A (ja) 電動ポンプ
JP2012120395A (ja) モータ、および、これを用いた電動ポンプ
JP5964097B2 (ja) 電動ポンプ

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202