WO2014192313A1 - ボイラの腐食抑制剤、ボイラ及びボイラの腐食抑制方法 - Google Patents

ボイラの腐食抑制剤、ボイラ及びボイラの腐食抑制方法 Download PDF

Info

Publication number
WO2014192313A1
WO2014192313A1 PCT/JP2014/002889 JP2014002889W WO2014192313A1 WO 2014192313 A1 WO2014192313 A1 WO 2014192313A1 JP 2014002889 W JP2014002889 W JP 2014002889W WO 2014192313 A1 WO2014192313 A1 WO 2014192313A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrosion
boiler
particles
exhaust gas
inhibiting
Prior art date
Application number
PCT/JP2014/002889
Other languages
English (en)
French (fr)
Inventor
竹田 航哉
育生 下村
英彰 村田
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to CN201480030930.XA priority Critical patent/CN105229377B/zh
Priority to JP2015519659A priority patent/JP6078149B2/ja
Publication of WO2014192313A1 publication Critical patent/WO2014192313A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/025Devices and methods for diminishing corrosion, e.g. by preventing cooling beneath the dew point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/48Preventing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/003Arrangements of devices for treating smoke or fumes for supplying chemicals to fumes, e.g. using injection devices

Definitions

  • the present invention relates to a boiler corrosion inhibitor for preventing corrosion of a boiler, particularly a superheater tube, a boiler using the same, and a boiler corrosion suppression method.
  • a combustion furnace that burns fuel, a flue through which combustion exhaust gas generated in the combustion furnace passes, and a superheater that generates high-temperature and high-pressure superheated steam by heating the steam with the heat of the combustion exhaust gas
  • a boiler is known.
  • the superheater includes a superheater pipe disposed in the flue, and water vapor passing through the superheater pipe is superheated by heat of combustion exhaust gas passing through the flue.
  • Superheated steam generated in the boiler can be used for power generation.
  • Biomass fuel is a fuel using biomass such as construction waste wood.
  • the waste fuel is a fuel using wastes such as general wastes, waste tires, and waste plastics that are discharged from households.
  • Biomass fuel and waste fuel contain, for example, salts such as NaCl and KCl, and heavy metals such as lead and zinc. Therefore, when biomass fuel or waste fuel is burned in a combustion furnace, a low melting point (about 300 ° C.) molten salt composed of, for example, KCl, NaCl, ZnCl 2 , K 2 SO 4 , Na 2 SO 4, etc. is generated. The produced molten salt flows along with the combustion ash to the periphery of the superheater tube in the flue. Since the superheater generates high-temperature and high-pressure steam that can be used for power generation, the gas temperature around the superheater pipe is set to be higher than the steam temperature in the superheater pipe.
  • the molten salt composed of KCl, NaCl, ZnCl 2 , K 2 SO 4 , Na 2 SO 4, etc. flowing around the superheater tube adheres to the surface of the high temperature superheater tube of 300 ° C. or higher. This causes a problem that the superheater tube is corroded.
  • Patent Document 1 An example of a conventional boiler corrosion prevention method for solving the above problem is disclosed in Patent Document 1.
  • a predetermined amount of predetermined particles (coal combustion ash) is supplied into a combustion furnace, and the predetermined particles are converted into molten salt particles (molten salt particles) generated in the combustion furnace. ).
  • the molten salt particles are sufficiently dispersed into the predetermined particles so that the surface of the molten salt particles is surrounded by the corrosion preventing particles, and the molten salt component on the surface of the molten salt particles is diluted by the predetermined particles.
  • the concentration and contact area of the molten salt particles adhering to the surface of the superheater tube can be reduced by predetermined particles. it can. This is to suppress the corrosion of the superheater tube.
  • the predetermined particle has a melting point higher than the combustion temperature of the combustion furnace, does not melt in the vicinity of the combustion furnace and the superheater, and has a chlorine concentration, Na concentration, K concentration, and heavy metal concentration of 1000 ppm or less, respectively. Therefore, it contains almost no molten salt component.
  • An object of the present invention is to provide a boiler corrosion inhibitor, a boiler, and a boiler corrosion inhibition method capable of reducing the amount of fly ash (including corrosion inhibition particles).
  • the boiler corrosion inhibitor according to the present invention is a boiler corrosion inhibitor supplied into the exhaust gas passage in order to suppress corrosion of a superheater pipe provided in the exhaust gas passage through which the combustion exhaust gas of the boiler passes. , It contains corrosion inhibiting particles that adhere to the superheater tube together with the combustion ash floating in the exhaust gas passage and attract the corrosive particles in the combustion ash.
  • the corrosion-suppressing particles supplied and scattered in the exhaust gas passage through which the combustion exhaust gas of the boiler passes come into contact with the corrosive particles contained in the combustion ash scattered in the exhaust gas passage. Part or all of which can cause these corrosive particles to adhere to the corrosion-inhibiting particles.
  • the corrosive particles adhering to the corrosion-inhibiting particles have a smaller surface area than the corrosive particles in a dispersed state, so the surface of the corrosive layer formed on the metal interface of the superheater tube and its outer surface (hereinafter simply referred to as “corrosive particles”).
  • the contact area of the corrosive particles with the metal interface, etc. when adhering to the metal interface of the superheater tube is determined from the contact area of the dispersed corrosive particles with the metal interface, etc. Can also be reduced. As a result, corrosion of the superheater tube can be suppressed.
  • the corrosion-inhibiting particles become corrosive particles.
  • the attracting force works, and as a result, the corrosive particles and the corrosion-inhibiting particles adhere to each other or adhere to a metal interface or the like in a state of being close to each other.
  • the contact area with respect to the metal interface or the like is smaller than the contact area with respect to the metal interface or the like of the dispersed corrosive particles.
  • the corrosion-inhibiting particles may have at least one of an adsorption ability and an ion exchange ability to attract the corrosive particles.
  • the corrosion-inhibiting particles it is possible to exert an action of attracting the corrosive particles based on either or both of the adsorption ability and ion exchange ability of the corrosion-inhibiting particles.
  • the corrosion-inhibiting particles are at least one of zeolite, dolomite, and kaolin, or a compound containing the same as a main component, or a mixture containing two or more of zeolite, dolomite, and kaolin. Good.
  • the particle diameter of the corrosion-inhibiting particles is 0.1 ⁇ m or more and less than 10 ⁇ m.
  • the supplied corrosion-inhibiting particles are subjected to thermophoresis or inertial collision with the metal interface of the superheater tube. Can be attached by.
  • the corrosive particles having a corrosive particle size of 0.1 to 10 ⁇ m scattered in the exhaust gas passage can reduce the adhesion weight and the adhesion area adhering to the metal interface of the superheater tube, etc. The progress of corrosion of the pipe can be suppressed.
  • the inventors of the present application have reported that highly corrosive corrosive particles containing Na and K chlorides having a particle diameter of 0.1 to 10 ⁇ m scattered in the exhaust gas passage are connected to the metal interface of the superheater tube or the like. It was investigated that the corrosion of the superheater tube proceeds by adhering to the surface of the corrosive layer formed on the outer surface (hereinafter sometimes simply referred to as “metal interface of the superheater tube”).
  • the particle size is 0.1 to 10 ⁇ m.
  • the corrosion weight of the superheater tube can be reduced by reducing the adhesion weight and the adhesion area where the corrosive particles adhere to the metal interface of the superheater tube.
  • the boiler corrosion inhibitor may be a slurry-like mixed material obtained by mixing the corrosion-inhibiting particles in a liquid.
  • the boiler corrosion inhibitor may be a powdery mixed material obtained by mixing the corrosion-inhibiting particles with a powder having a particle diameter larger than that of the corrosion-inhibiting particles.
  • the boiler corrosion inhibitor described above even when the weight of the corrosion-inhibiting particles to be supplied to the exhaust gas passage is small, it is possible to accurately supply the desired weight of the corrosion-inhibiting particles to the exhaust gas passage. And the liquid with which the corrosion inhibition particles are mixed can be easily obtained and can be used at low cost, thereby reducing the cost of the liquid. Moreover, the cost of the corrosion inhibitor can be reduced by using a powder having a particle diameter larger than that of the corrosion-inhibiting particles and inexpensive, such as incinerated ash, as the powder mixed with the corrosion-inhibiting particles.
  • the boiler according to the present invention is A combustion furnace; An exhaust gas passage through which the combustion exhaust gas from the combustion furnace passes, A superheater tube provided in the exhaust gas passage; And a corrosion inhibitor for supplying the boiler corrosion inhibitor into the exhaust gas passage.
  • the corrosion suppression device is configured to supply the boiler corrosion inhibitor to a region where the gas temperature in the exhaust gas passage is lower than the melting point of the corrosion suppression particles.
  • the corrosion inhibitor corrosion inhibiting particles
  • the corrosion inhibiting particles are melted and bonded to each other, Part of the components in the gas can condense with the corrosion-inhibiting particles as nuclei, thereby preventing the particle size from increasing.
  • the corrosion-suppressing particles supplied into the exhaust gas passage can be scattered so that the particle diameter does not increase, so that the corrosion-suppressing particles can efficiently attract the corrosive particles scattered in the exhaust gas passage.
  • These corrosive particles can effectively adhere to the corrosion-inhibiting particles. Therefore, the progress of corrosion on the entire surface of the superheater tube can be effectively suppressed.
  • the corrosion-inhibiting particles can be attached to the entire surface of the corrosion layer formed on the metal interface of the superheater tube or its outer surface in a state where the particle diameter is originally small. Therefore, the amount of corrosive particles adhering to the metal interface of the superheater tube provided in the exhaust gas passage can be reduced.
  • a boiler corrosion inhibiting method is a boiler corrosion inhibiting method for inhibiting corrosion of a superheater pipe provided in an exhaust gas passage through which boiler combustion exhaust gas passes. Is supplied to the upstream side of the superheater pipe in the exhaust gas passage.
  • supplying the corrosion inhibitor for the boiler includes supplying the corrosion inhibitor for the boiler to a region where the gas temperature in the exhaust gas passage is lower than the melting point of the corrosion suppressing particles.
  • the corrosion suppression particles are supplied into the exhaust gas passage through which the combustion exhaust gas of the boiler passes, and the supplied corrosion suppression particles include the combustion ash containing the corrosive particles scattered in the exhaust gas passage. At the same time, it adheres to the superheater tube and attracts the corrosive particles in the combustion ash, so that the contact area when the corrosive particles come into contact with the superheater tube can be reduced, resulting in corrosion of the superheater tube. Can be suppressed.
  • the corrosion suppression particles supplied into the exhaust gas passage and the combustion ash containing the corrosive particles floating in the exhaust gas passage are superheater tubes.
  • the contact area of the corrosive particles adhering to the metal interface of the superheater tube can be reduced.
  • the corrosion-inhibiting particles adhering to the metal interface of the superheater tube without combustion ash can attract the corrosive particles that are about to adhere to the metal interface of the superheater tube. Therefore, a corrosion inhibiting effect can be obtained efficiently even with a relatively small amount of corrosion inhibiting particles.
  • the weight of fly ash (including the corrosion-inhibiting particles) that needs to be recovered is reduced. As a result, the cost for suppressing corrosion of the superheater tube can be reduced.
  • FIG. 1 is a schematic perspective view showing an internal structure of a boiler with a corrosion inhibitor according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a control configuration of the boiler according to the embodiment.
  • FIG. 3 is a diagram for explaining the boiler according to the embodiment, and is a diagram showing a relationship between the type of corrosion-inhibiting particles and the thickness reduction ratio of the simulated superheater tube at a predetermined test temperature.
  • FIG. 4 is a diagram for explaining the boiler according to the embodiment, and is a diagram showing a relationship between the type of corrosion-inhibiting particles and the thickness reduction ratio of the simulated superheater tube at a predetermined other test temperature. is there.
  • FIG. 5B is a photograph showing the distribution of potassium (K) in the cross section shown in FIG. 5A.
  • FIG. 5C is a photograph showing the distribution of chlorine (Cl) in the cross section shown in FIG. 5A.
  • FIGS. 1 includes a combustion furnace 10 for burning fuel, an exhaust gas passage 28 through which combustion exhaust gas generated in the combustion furnace 10 passes, A superheater 25 having a superheater pipe 27 disposed in the exhaust gas passage 28, a corrosion detection device 30, a corrosion suppression device 59, and a control device 100 are provided.
  • the boiler 19 can generate high-temperature and high-pressure superheated steam by superheating the steam passing through the superheater pipe 27 with the heat of the flue gas generated by the combustion of fuel.
  • the high-temperature and high-pressure superheated steam generated in the boiler 19 is used to rotate the turbine 26 of the generator 11.
  • the boiler 19 is provided with a corrosion suppression device 59 for suppressing the corrosion of the superheater tube 27.
  • the corrosion inhibitor 59 is configured to supply a corrosion inhibitor into the exhaust gas passage 28 (particularly desirably, in the second flue 21 upstream of the superheater pipe 27).
  • the boiler 19 is an exhaust heat recovery boiler, and includes a waste incinerator 10 as a combustion furnace.
  • the garbage incinerator 10 includes a hopper 12 for supplying garbage.
  • the hopper 12 is connected to the main combustion chamber 14 via a chute 13.
  • Garbage supplied from the hopper 12 is sent to the main combustion chamber 14 through the chute 13.
  • the main combustion chamber 14 is provided with a dry stoker 15, a combustion stoker 16, and a post-combustion stoker 17.
  • Primary air is sent into the main combustion chamber 14 from below the stokers 15, 16, and 17, and secondary air is sent from the ceiling 14 a of the main combustion chamber 14 into the main combustion chamber 14.
  • Garbage thrown into the main combustion chamber 14 is first sent to the drying stoker 15, where it is dried and ignited by the primary air and the radiant heat of the main combustion chamber 14.
  • the ignited garbage is sent to the combustion stoker 16.
  • combustible gas is generated from the ignited garbage by thermal decomposition. This combustible gas is sent to the gas layer above the main combustion chamber 14 by primary air, and burns with the secondary air in the gas layer. Due to the heat radiation associated with this flame combustion, the temperature of the garbage is further increased.
  • Part of the ignited garbage is burned by the combustion stoker 16, and the remaining unburned portion is sent to the post-combustion stoker 17. Unburned waste is combusted by the post-combustion stoker 17, and the incineration ash remaining after the combustion is discharged from the chute 18 to the outside.
  • the main combustion chamber 14 is connected to the radiation chamber 20, and combustion exhaust gas generated by the combustion of garbage is sent from the main combustion chamber 14 to the radiation chamber 20.
  • the combustion exhaust gas is burned again in the radiation chamber 20, and then led to the third flue 22 through the second flue 21.
  • the atmosphere is discharged.
  • the radiation chamber 20, the second flue 21, and the third flue 22 serve as an exhaust gas passage 28 through which the exhaust gas from the incinerator 10 passes.
  • a plurality of water pipes 23 connected to the boiler drum 24 are provided on each of the walls defining the radiation chamber 20 and the second flue 21.
  • the water pipe 23 is formed of, for example, carbon steel (for example, STB340), and water sent from the boiler drum 24 flows therein.
  • the water in the water pipe 23 recovers the waste heat of the radiation chamber 20 or the second flue 21, part of which is evaporated to become brackish water and returned to the boiler drum 24.
  • a part of the brackish water returning to the boiler drum 24 is vaporized to become steam.
  • the steam is sent from the boiler drum 24 to a superheater 25 provided in the third flue 22.
  • the superheater 25 includes a superheater pipe 27 exposed in the third flue 22 and exposed to the combustion exhaust gas, and the steam is superheated while passing through the superheater pipe 27.
  • the superheated steam that has been heated up to high temperature and high pressure is sent to the turbine 26 and drives the generator 11.
  • combustion ash etc. the material that volatilized during combustion and a part of the incinerated ash (also collectively referred to as “combustion ash etc.”) are accompanied by the flow of the combustion exhaust gas and the radiation chamber. 20, carried to the second flue 21 and the third flue 22, and deposited on the superheater pipe 27 of the water pipe 23 and the superheater 25.
  • combustion ash having high corrosiveness has been a factor that corrodes the superheater tube 27 of the high-temperature superheater 25.
  • This corrosion suppression device 59 is a device for suppressing the corrosion of the superheater tube 27 shown in FIG. 1, and a boiler corrosion inhibitor (hereinafter simply referred to as a “corrosion inhibitor”) is overheated in the exhaust gas passage. It is configured to supply upstream from the instrument tube 27.
  • the corrosion inhibitor contains corrosion-inhibiting particles as an active ingredient.
  • the corrosion inhibitor is a slurry-like mixed material obtained by mixing corrosion-inhibiting particles with a liquid such as water.
  • the corrosion inhibitor may be a powdery mixed material obtained by mixing corrosion-inhibiting particles with powder (for example, incineration ash) having a particle size larger than that of the corrosion-inhibiting particles.
  • the corrosion inhibitor 59 When the corrosion inhibitor is in the form of a slurry, the corrosion inhibitor 59 is configured as a liquid supply device that can supply (drop or eject) the corrosion inhibitor into the second flue 21. Further, when the corrosion inhibitor is in the form of particles, the corrosion inhibitor 59 is configured as a particle supply device that can supply (blow) the corrosion inhibitor into the second flue 21.
  • a supply port 59 a for supplying the corrosion inhibitor into the second flue 21 appears on the side wall portion forming the second flue 21 of the boiler 19.
  • the corrosion suppressing particles are floating in the second flue 21 (that is, accompanying the flow of the combustion exhaust gas). It adheres to the surface of the superheater tube 27 together with the combustion ash containing the corrosive particles) and attracts the corrosive particles in the combustion ash.
  • the contact area between the corrosive particles and the superheater tube 27 when the corrosive particles contact the superheater tube 27 can be reduced.
  • the corrosion-inhibiting particles are at least one of zeolite, dolomite, and kaolin.
  • the corrosion-inhibiting particles are a compound mainly containing at least one of zeolite, dolomite, and kaolin.
  • the corrosion-inhibiting particles are a mixture comprising two or more of zeolite, dolomite, and kaolin.
  • the action of the corrosion-inhibiting particles attracting the corrosive particles is based on the adsorption ability and / or ion exchange ability of the corrosion-inhibiting particles.
  • the particle diameter (dynamic sphere equivalent diameter) of the corrosion inhibiting particles is, for example, 0.1 ⁇ m or more and less than 10 ⁇ m.
  • the region where the corrosion inhibitor is supplied by the corrosion suppressing device 59 is a region where the combustion exhaust gas temperature in the flue (exhaust gas passage 28) is lower than the melting point of the corrosion suppressing particles.
  • the region where the corrosion inhibitor is supplied by the corrosion inhibitor 59 is such that the corrosion-inhibiting particles are not melted and bonded to each other by the combustion exhaust gas in that region, or (and) some of the components in the gas are not. This is a region where the particle size does not increase by concentrating the corrosion-inhibiting particles as nuclei.
  • a corrosion inhibitor containing corrosion-inhibiting particles having a melting point of 800 ° C. or higher is supplied into the second flue 21.
  • the inside of the second flue 21 is a region where the gas temperature of the flowing combustion exhaust gas is lower than 800 ° C.
  • the corrosion detection device 30 is provided on the side wall portion of the third flue 22 of the boiler 19 and on the upstream side of the superheater 25 in the flow direction of the combustion exhaust gas. Located in the third flue 22.
  • the corrosion detection device 30 has a pair of electrodes provided in the third flue 22.
  • the corrosion detection device 30 is configured to detect the degree of corrosion of the superheater tube 27 based on the change in electrical resistance between the pair of electrodes and generate a corrosion detection signal corresponding to the degree of corrosion. .
  • the control device 100 is configured to control the corrosion suppression device 59 based on the corrosion detection signal generated by the corrosion detection device 30 and adjust the supply weight of the corrosion suppression particles. For example, the control device 100 calculates and monitors the change over time of the degree of corrosion, and when the progress of corrosion (for example, the corrosion rate or the corrosion amount) of the superheater tube 27 exceeds a predetermined allowable range, the corrosion inhibitor. The corrosion inhibiting device 59 is controlled so that the supply amount of is increased from a predetermined reference amount. Conversely, when the progress of corrosion of the superheater tube 27 falls below a predetermined allowable range, the control device 100 controls the corrosion suppression device 59 so that the supply amount of the corrosion inhibitor is smaller than a predetermined reference amount. .
  • the corrosion detection device 30 when the corrosion of the superheater tube 27 progresses rapidly, the supply weight of the corrosion suppression particles can be increased, and When the progress of the corrosion of the superheater tube 27 is slow, the supply weight of the corrosion inhibiting particles can be reduced. In this way, it is possible to take a corrosion suppression measure according to the degree of corrosion of the superheater tube 27 (for example, the amount of corrosion, the corrosion rate), and the weight of the corrosion-inhibiting particles, which is economically advantageous, is added to the second smoke. It can supply in the path
  • the corrosion suppression particles are accompanied by the flow of the combustion exhaust gas and the second flue. 21 and the third flue 22.
  • the corrosion-inhibiting particles come into contact with the combustion ash and contact with the corrosive particles contained in the combustion ash. Then, some or all of the corrosive particles are attracted to the corrosion-inhibiting particles. As a result, the corrosive particles adhere to the corrosion-inhibiting particles.
  • the corrosive particles adhering to the corrosion-inhibiting particles have a smaller surface area than the corrosive particles in a dispersed state (that is, not attracted to the corrosion-inhibiting particles).
  • Contact of the corrosive particles with the metal interface or the like when adhering to the surface of the corrosion layer formed on the metal interface or the outer surface thereof hereinafter sometimes simply referred to as “metal interface of the superheater tube”.
  • the area can be made smaller than the contact area of the dispersed corrosive particles with the metal interface or the like. As a result, corrosion of the superheater tube 27 can be suppressed.
  • the contact area of the corrosive particles with the metal interface, etc. It becomes smaller than the contact area with the metal interface etc. of particle
  • the corrosion-inhibiting particles aiming at the corrosive particles that are to adhere to the superheater tube 27 Attracts corrosive particles, so that the corrosion suppression effect of the superheater tube 27 can be expected more efficiently than when corrosion suppression particles are supplied to other locations (for example, the combustion furnace 10).
  • the corrosion suppression particles, the boiler 19 with the corrosion suppression device, and the boiler corrosion suppression method according to this embodiment are compared with the conventional method of supplying particles for suppressing corrosion to the combustion furnace 10 as compared with the exhaust gas passage 28. Even if the supply weight of the corrosion-inhibiting particles into the inside is reduced, the same degree of corrosion-inhibiting effect as that of the conventional one can be achieved. Thereby, the cost for the corrosion-inhibiting particles can be reduced.
  • the supply weight of the corrosion-inhibiting particles into the second flue 21 can be reduced, the weight of fly ash (including the corrosion-inhibiting particles) that needs to be recovered can be reduced. As a result, the cost of the fly ash collection process can also be reduced.
  • corrosion inhibiting particles for example, zeolite, dolomite, kaolin, or a compound mainly composed thereof
  • the supplied corrosion-inhibiting particles are thermophoresed on the metal interface of the superheater tube 27 or the surface of the corrosion layer formed on the outer surface thereof (such as the metal interface of the superheater tube 27). And can be attached by inertial collision.
  • corrosive particles for example, KCl, NaCl
  • KCl, NaCl a corrosive particle having a particle diameter of 0.1 to 10 ⁇ m scattered in the third flue 22 reduce the adhesion weight and adhesion area adhering to the metal interface of the superheater tube 27.
  • the progress of corrosion of the superheater tube 27 can be suppressed.
  • the progress of corrosion of the superheater tube 27 can be suppressed more effectively than in the past. Therefore, maintenance and inspection costs for the superheater tube 27 can be reduced, and the boiler 19 can be used stably for a long period of time.
  • the corrosion-inhibiting particles into a slurry-like mixed material obtained by mixing the corrosion-inhibiting particles with a liquid such as water, or powder (for example, incineration ash) having a particle diameter larger than that of the corrosion-inhibiting particles. Since the powdery mixed substance is supplied into the second flue 21 using the corrosion inhibitor 59 as a corrosion inhibitor, the corrosion-suppressing particles to be supplied into the second flue 21 Even when the weight is small, the corrosion suppressing device 59 can be used to accurately supply the corrosion suppressing particles having a desired weight into the second flue 21. If water is used as the liquid in which the corrosion inhibiting particles are mixed, the water is economical because it is easily available and inexpensive. In addition, by using an inexpensive powder having a particle diameter larger than that of the corrosion-inhibiting particles, such as incineration ash, the powder can be reduced in cost.
  • a liquid such as water, or powder (for example, incineration ash) having a particle diameter larger than that of the corrosion-inhibiting particles.
  • the corrosion inhibitor is supplied to a region where the gas temperature in the exhaust gas passage 28 is lower than the melting point of the corrosion-inhibiting particles (for example, 800 ° C. or higher) (in the second flue 21 where the gas temperature is lower than 800 ° C., for example).
  • the corrosion-inhibiting particles for example, 800 ° C. or higher
  • the corrosion-inhibiting particles it is possible to prevent the corrosion-inhibiting particles from melting and bonding to each other, or to condense some of the components in the gas with the corrosion-inhibiting particles as nuclei, thereby condensing the particle size.
  • the corrosion-inhibiting particles supplied into the second flue 21 can be scattered so that the particle diameter does not increase, so that the corrosion-inhibiting particles are corrosive particles that are scattered in the second flue 21. Can be efficiently attracted, and corrosive particles can effectively adhere to the corrosion-inhibiting particles. Therefore, the progress of corrosion on the entire surface of the superheater tube 27 can be effectively suppressed.
  • the corrosion-inhibiting particles can be attached to the entire surface of the corrosion layer formed on the metal interface of the superheater tube 27 or its outer surface in a state where the particle diameter is originally small. Therefore, the amount of corrosive particles adhering to the metal interface of the superheater tube 27 provided in the third flue 22 can be reduced.
  • FIG. 3 and FIG. 4 are diagrams showing test results when a corrosion inhibition test is performed under the following conditions in order to investigate the corrosion inhibition effect of the corrosion inhibitor (corrosion inhibition particles) on the simulated superheater tube. .
  • the test method is to create a test piece in which the mixture of combustion ash and sample is applied to the surface of the simulated superheater tube, place this test piece in a test chamber at a predetermined test temperature atmosphere, and set the predetermined composition in the test chamber.
  • the test gas (combustion exhaust gas) is supplied at a predetermined flow rate for a predetermined time.
  • the test time is 100 hours, and the test temperature is 450 ° C. (FIG. 3) and 550 ° C. (FIG. 4).
  • Combustion exhaust gas conditions are as follows: CO 2 is 10%, O 2 is 8%, HCl is 1000 ppm, SO 2 is 50 ppm, H 2 O is 5%, and N 2 is bal. It is.
  • Sample A is a zeolite having the attractive force (adsorption ability, ion exchange ability) of the present embodiment.
  • Sample B is silicon dioxide (SiO 2 )
  • sample C is diatomaceous earth
  • samples B and C are corrosion-inhibiting particles that have a weaker attractive force (adsorption ability) than sample A.
  • samples A, B, and C are each substantially the same particle diameter.
  • the reference conditions shown in FIGS. 3 and 4 are conditions in which the corrosion-inhibiting particles are not mixed with the combustion ash, and the thickness reduction ratio of the simulated superheater tube in the reference conditions is 100%.
  • the thickness reduction ratios of the samples A, B, and C in FIG. 3 are about 20%, about 50%, and about 70%, respectively.
  • the thickness reduction ratios of the samples A and B in FIG. 4 are about 20% and about 50%, respectively.
  • the sample A layer is formed by applying the corrosion-inhibiting particles of the sample A to the surface of the simulated superheater tube.
  • combustion ash containing K and Cl is applied to the upper layer to form a combustion ash layer on the surface of the sample A layer.
  • the sample A layer and the combustion ash layer thus formed were removed from the simulated superheater tube, and the cross sections thereof were examined by a microscope and EPMA analysis.
  • FIG. 5A is a cross-sectional photograph of a region where the sample A layer (zeolite) and the combustion ash layer are in contact with each other.
  • FIG. 5B is a cross-sectional photograph showing the distribution of potassium (K) in the cross section shown in FIG. 5A.
  • the photograph shown in FIG. 5B is obtained by color mapping K of the cross section shown in the photograph of FIG. 5A, and the density of K is represented by a color.
  • the concentration of K in the surface of the sample A layer and in the vicinity thereof is significantly higher than the standard concentration.
  • the concentration of K away from the surface is lower than the standard concentration.
  • FIG. 5C is a cross-sectional photograph showing the distribution of chlorine (Cl) in the cross section shown in FIG. 5A.
  • the photograph shown in FIG. 5C is a color mapping of Cl in the cross section shown in the photograph of FIG. 5A, and the concentration of Cl is represented by a color.
  • the concentration of Cl in the surface of the sample A layer and in the vicinity thereof is remarkably higher than the standard concentration.
  • the concentration of Cl away from the surface is lower than the standard concentration. From this, it can be seen that Cl as a corrosive component adheres to the surface of the sample A layer (zeolite) and is closely distributed. Therefore, it can be seen that the sample A layer (zeolite) attracts particles containing Cl as a corrosive component.
  • sample A zeolite
  • corrosion-inhibiting particles exhibits the corrosion-inhibiting effect on the superheater tube 27 as described above.
  • dolomite and kaolin may have an action of attracting corrosive components such as potassium (K) and chlorine (Cl). Therefore, by using dolomite and kaolin as the corrosion-inhibiting particles, the progress of corrosion of the superheater tube 27 can be suppressed as in the case of zeolite.
  • the reason why the particle size of the corrosion-inhibiting particles is defined as 0.1 ⁇ m or more and less than 10 ⁇ m will be described.
  • the supplied corrosion inhibiting particles adhere to the metal interface of the superheater tube 27 or the like.
  • corrosive particles having a corrosive particle size of 0.1 to 10 ⁇ m enter through the gaps between the corrosion-inhibiting particles having a particle size of 10 ⁇ m or more and adhere to the metal interface of the superheater tube 27.
  • corrosion-inhibiting particles having the same particle size (0.1 ⁇ m or more and less than 10 ⁇ m) as corrosive particles having a corrosive particle size of 0.1 to 10 ⁇ m are contained in the second flue 21.
  • the adhesion weight and adhesion area of the corrosive particles of 0.1 to 10 ⁇ m adhering to the surface of the superheater tube 27 are reduced, and the corrosion of the superheater tube 27 is reduced. The progress of this was suppressed.
  • the waste incinerator 10 is given as an example of the combustion furnace 10 of the boiler 19.
  • the present invention can be applied to a boiler 19 equipped with other combustion furnaces. it can.
  • the present invention can be applied to a boiler 19 having a combustion furnace using heavy oil as fuel.
  • the stoker type combustion furnace was mentioned as an example as the combustion furnace 10 of the boiler 19, this invention is provided with the boiler 19 provided with the combustion furnace of the other type.
  • the present invention can be applied to.
  • the present invention can be applied to a boiler 19 that includes a fluidized bed furnace that burns fuel while flowing in a fluidized bed.
  • the corrosion detection device 30 shown in FIG. 1 is used to detect the degree of corrosion of the superheater tube 27.
  • other corrosion detection devices may be used.
  • grains whose particle diameter is 0.1 micrometer or more and less than 10 micrometers is supplied in the 2nd flue 21 upstream from the superheater pipe
  • the supply area is not limited to the above.
  • the corrosion inhibitor may be supplied into the third flue 22 or the radiation chamber 20 where the superheater tube 27 is provided.
  • the corrosion-inhibiting particles having a particle size of 0.1 ⁇ m or more and less than 10 ⁇ m are used, but instead, corrosion-inhibiting particles having a particle size of more than 2 ⁇ m and less than 10 ⁇ m may be used. . Even if it does in this way, even if it is the corrosion suppression particle
  • the corrosion-inhibiting particles, the boiler with the corrosion-inhibiting device, and the boiler corrosion-inhibiting method according to the present invention require a small amount of the corrosion-inhibiting particles used for suppressing the corrosion of the superheater tube.
  • the boiler has an excellent effect of reducing the amount of fly ash (including corrosion-inhibiting particles) that needs to be recovered, and is concerned about the corrosion of superheater tubes such as waste incinerator boilers. Suitable for applying.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Chimneys And Flues (AREA)

Abstract

 ボイラ19は、燃焼炉10と、燃焼炉10からの燃焼排ガスが通る排ガス通路28と、排ガス通路28内に設けられた過熱器管27と、ボイラの腐食抑制剤を排ガス通路28内に供給する腐食抑制装置59とを備えている。ボイラの腐食抑制剤は、過熱器管27の腐食を抑制するためのものであって、排ガス通路28内で浮遊する燃焼灰と共に過熱器管27に付着し、燃焼灰中の腐食性粒子を引き付ける腐食抑制粒子を含有している。

Description

ボイラの腐食抑制剤、ボイラ及びボイラの腐食抑制方法
 本発明は、ボイラの特に過熱器管の腐食を防止するためのボイラの腐食抑制剤、これを使用するボイラ及びボイラの腐食抑制方法に関する。
 従来、燃料を燃焼する燃焼炉と、燃焼炉で発生する燃焼排ガスが通る煙道と、燃焼排ガスが有する熱で蒸気を過熱して、高温・高圧の過熱蒸気を発生させる過熱器とを備えたボイラが知られている。過熱器は、煙道内に配置された過熱器管を備えており、過熱器管を通る水蒸気が煙道を通る燃焼排ガスの熱で過熱される。ボイラで生成された過熱蒸気は、発電に利用することができる。
 近年にあっては、CO削減や廃棄物の熱利用の観点から、バイオマス燃料や廃棄物燃料をボイラの燃料として活用することが進められている。バイオマス燃料は、例えば建設廃材系木質等のバイオマスを用いた燃料である。廃棄物燃料は、家庭から出る一般廃棄物、廃タイヤ及び廃プラスチック等の廃棄物を用いた燃料である。
 バイオマス燃料や廃棄物燃料は、燃料中に、例えばNaCl、KCl等の塩類や、鉛及び亜鉛等の重金属を含んでいる。従って、燃焼炉でバイオマス燃料や廃棄物燃料を燃焼すると、例えば、KCl、NaCl、ZnCl、KSO、NaSO等から成る低融点(300°C程度)の溶融塩が生成し、生成した溶融塩が燃焼灰と共に煙道内の過熱器管の周囲へ流れる。過熱器は発電に利用可能な程度の高温・高圧の蒸気を生成するものであるから、過熱器管の周囲のガス温度は、過熱器管内の蒸気温度より高い温度に設定されている。よって、過熱器管の周囲へ流れて来たKCl、NaCl、ZnCl、KSO、NaSO等から成る溶融塩が、300°C以上の高温の過熱器管の表面に付着することによって、過熱器管が腐食するという問題を生じている。
 上記問題を解決するための従来のボイラの腐食防止方法の一例が特許文献1に示されている。
 このボイラの腐食防止方法は、所定量の所定の粒子(石炭燃焼灰)を燃焼炉内に供給して、当該所定の粒子を、この燃焼炉内で生成される溶融塩の粒子(溶融塩粒子)に混合させるものである。この混合によって溶融塩粒子が所定の粒子へ十分に分散して、この溶融塩粒子の表面が腐食防止粒子によって取り囲まれた状態となり、溶融塩粒子の表面の溶融塩成分が所定の粒子によって希釈される。そして、この溶融塩粒子が、下流側の過熱器管の表面に付着することになるので、過熱器管の表面に付着する溶融塩粒子の濃度及び接触面積を、所定の粒子によって低減することができる。これによって、過熱器管の腐食を抑制しようとするものである。
 なお、所定の粒子は、その融点が燃焼炉の燃焼温度より高く、燃焼炉及び過熱器付近では溶融しないものであり、かつ、塩素分濃度、Na濃度、K濃度、重金属濃度が各々1000ppm以下であって、溶融塩成分を殆ど含まないものである。
特開2006-308179号公報
 しかし、上記従来のボイラの腐食防止方法では、ボイラで生成される溶融塩粒子の量に応じて多量の所定の粒子を燃焼炉内に供給する必要があり、所定の粒子のコストが嵩むと共に、この所定の粒子を含む燃焼灰の処理のためのコストも嵩む。
 本発明は、上記のような課題を解決するためになされたものであり、過熱器管の腐食を抑制するために使用される腐食抑制粒子の量が少なくて済み、これによって、回収処理が必要とされる飛灰(腐食抑制粒子を含む)の量を低減することができるボイラの腐食抑制剤、ボイラ及びボイラの腐食抑制方法を提供することを目的としている。
 本発明に係るボイラの腐食抑制剤は、ボイラの燃焼排ガスが通る排ガス通路内に設けられた過熱器管の腐食を抑制するために前記排ガス通路内に供給されるボイラの腐食抑制剤であって、
前記排ガス通路内で浮遊する燃焼灰と共に前記過熱器管に付着し、前記燃焼灰中の腐食性粒子を引き付ける腐食抑制粒子を含有することを特徴としている。
 本発明に係るボイラの腐食抑制剤によると、ボイラの燃焼排ガスが通る排ガス通路内に供給されて飛散する腐食抑制粒子は、排ガス通路内に飛散する燃焼灰に含まれる腐食性粒子と接触した際、その一部又は全部を引き付けることができ、これによって、これら腐食性粒子は、腐食抑制粒子に付着する。
 そして、腐食抑制粒子に付着した腐食性粒子は、分散した状態の腐食性粒子よりも表面積が小さくなるので、過熱器管の金属界面やその外表面に形成される腐食層の表面(以下、単に「過熱器管の金属界面等」と言うこともある。)に付着したときの、当該腐食性粒子の金属界面等に対する接触面積を、分散した状態の腐食性粒子の金属界面等に対する接触面積よりも小さくすることができる。その結果、過熱器管の腐食を抑制することができる。
 また、排ガス通路内で腐食抑制粒子に付着せずに分散した状態で飛散する腐食性粒子及び腐食抑制粒子が、過熱器管の金属界面等に付着した後も、腐食抑制粒子が腐食性粒子を引き付ける力が働いており、これによって、これら腐食性粒子及び腐食抑制粒子が互いに付着し合ったり、互いに接近した状態で金属界面等に付着する。
 そして、このように腐食性粒子が腐食抑制粒子に付着したり、腐食性粒子が腐食抑制粒子に接近した状態で、金属界面等に付着すると、腐食抑制粒子及び腐食性粒子のうちの腐食性粒子の金属界面等に対する接触面積は、分散した状態の腐食性粒子の金属界面等に対する接触面積よりも小さくなる。その結果、過熱器管の腐食を抑制することができる。
 上記ボイラの腐食抑制剤において、前記腐食抑制粒子が、前記腐食性粒子を引き付ける吸着能及びイオン交換能の少なくとも一方を有していてよい。
 この腐食抑制粒子によると、この腐食抑制粒子の吸着能及びイオン交換能の両方又はいずれか一方に基づいて、腐食性粒子を引き付ける作用を奏することができる。
 上記ボイラの腐食抑制剤において、前記腐食抑制粒子は、ゼオライト、ドロマイト及びカオリンの少なくとも1つ又はそれを主成分とする化合物、又は、ゼオライト、ドロマイト及びカオリンのうち2つ以上を含む混合物であってよい。
 上記ボイラの腐食抑制剤において、前記腐食抑制粒子の粒子径が、0.1μm以上10μm未満であることが望ましい。
 このように、粒子径が0.1μm以上10μm未満の腐食抑制粒子を、排ガス通路内に供給することによって、この供給した腐食抑制粒子を過熱器管の金属界面等に対して熱泳動や慣性衝突によって付着させることができる。これによって、排ガス通路内に飛散する粒子径が0.1~10μmの腐食性の強い腐食性粒子が、過熱器管の金属界面等に付着する付着重量及び付着面積を減少させることができ、過熱器管の腐食の進行を抑制することができる。
 つまり、本願の発明者らは、排ガス通路内に飛散する粒子径が0.1~10μmであるNaやKの塩化物を含む腐食性の強い腐食性粒子が、過熱器管の金属界面やその外表面に形成される腐食層の表面(以下、単に「過熱器管の金属界面等」と言うこともある。)に付着することによって、過熱器管の腐食が進行することを究明した。従って、当該腐食性粒子と同程度の粒子径が0.1μm以上10μm未満の腐食抑制粒子を、排ガス通路内に供給して過熱器管の金属界面等に付着させることによって、0.1~10μmの腐食性粒子が過熱器管の金属界面等に付着する付着重量及び付着面積を小さくして、過熱器管の腐食の進行を抑制することができる。
 上記ボイラの腐食抑制剤が、液体に前記腐食抑制粒子を混合して得られたスラリー状の混合物質であってよい。或いは、上記ボイラの腐食抑制剤が、前記腐食抑制粒子よりも粒子径が大きい粉体に前記腐食抑制粒子を混合して得られた粉状の混合物質であってよい。
 上記ボイラの腐食抑制剤によれば、排ガス通路に供給しようとする腐食抑制粒子の重量が小さい場合でも、所望の重量の腐食抑制粒子を精度よく排ガス通路に供給することが可能である。そして、腐食抑制粒子が混合される液体は、入手が容易であり安価であるものを使用することによって、当該液体のコストの低減を図ることができる。また、腐食抑制粒子が混合される粉体として、腐食抑制粒子よりも粒子径の大きくて安価なもの、例えば焼却灰を使用することによって、腐食抑制剤のコストの低減を図ることができる。
 本発明に係るボイラは、
燃焼炉と、
前記燃焼炉からの燃焼排ガスが通る排ガス通路と、
前記排ガス通路内に設けられた過熱器管と、
上記のボイラの腐食抑制剤を前記排ガス通路内に供給する腐食抑制装置とを備えることを特徴としている。
 本発明に係る腐食抑制装置付きボイラによると、上述の本発明に係るボイラの腐食抑制剤について説明した作用と同様の作用を奏する。
 上記ボイラにおいて、前記腐食抑制装置が、前記排ガス通路内のガス温度が前記腐食抑制粒子の融点よりも低い領域へ前記ボイラの腐食抑制剤を供給するように構成されていることが望ましい。
 このように、腐食抑制剤(腐食抑制粒子)を、排ガス通路内のガス温度がその腐食抑制粒子の融点よりも低い領域に供給することによって、腐食抑制粒子が溶融して互いに結合することや、ガス中の成分の一部が腐食抑制粒子を核にして凝縮することで粒子径が大きくならないようにすることができる。これによって、排ガス通路内に供給された腐食抑制粒子を、その粒子径が大きくならないように飛散させることができるので、腐食抑制粒子は、排ガス通路内に飛散する腐食性粒子を効率よく引き付けることができ、これら腐食性粒子は、腐食抑制粒子に効果的に付着する。よって、過熱器管の表面全体の腐食の進行を効果的に抑制することができる。
 また、腐食抑制粒子を、その粒子径が元の小さい状態で、過熱器管の金属界面やその外表面に形成される腐食層の表面全体に付着させることができる。よって、排ガス通路内に設けられている過熱器管の金属界面に腐食性粒子が付着する量を低減させることができる。
 本発明に係るボイラの腐食抑制方法は、ボイラの燃焼排ガスが通る排ガス通路内に設けられた過熱器管の腐食を抑制するためのボイラの腐食抑制方法であって、上記のボイラの腐食抑制剤を前記排ガス通路の前記過熱器管より上流側へ供給することを特徴としている。ここで、前記ボイラの腐食抑制剤を供給することが、前記排ガス通路内のガス温度が前記腐食抑制粒子の融点よりも低い領域へ前記ボイラの腐食抑制剤を供給することを含むことが望ましい。
 本発明に係るボイラの腐食抑制方法によると、ボイラの燃焼排ガスが通る排ガス通路内に腐食抑制粒子を供給し、この供給した腐食抑制粒子が、排ガス通路内に飛散する腐食性粒子を含む燃焼灰と共に過熱器管に付着し、燃焼灰中の腐食性粒子を引き付けることによって、腐食性粒子が過熱器管に接触したときのその接触面積を小さくすることができ、その結果、過熱器管の腐食を抑制することができる。
 本発明に係るボイラの腐食抑制剤、ボイラ及びボイラの腐食抑制方法によれば、排ガス通路内に供給された腐食抑制粒子が、排ガス通路内で浮遊する腐食性粒子を含む燃焼灰と共に過熱器管に付着し、燃焼灰中の腐食性粒子を引き付けることによって、過熱器管の金属界面等に付着した腐食性粒子の接触面積を小さくすることができる。また、燃焼灰を伴わずに過熱器管の金属界面等に付着した腐食抑制粒子は、過熱器管の金属界面等に付着しようとしている腐食性粒子を引き付けることができる。よって、比較的少量の腐食抑制粒子でも効率的に腐食抑制効果を得ることができる。腐食抑制粒子の供給量が少なくなることによって、回収処理が必要とされる飛灰(腐食抑制粒子を含む)の重量が低減する。この結果、過熱器管の腐食を抑制するために掛かる費用を削減することができる。
図1は、本発明の一実施形態に係る腐食抑制装置付きボイラの内部構造を示す概略斜視図である。 図2は、同実施形態に係る同ボイラの制御構成を示すブロック図である。 図3は、同実施形態に係る同ボイラを説明するための図であり、所定の試験温度において、腐食抑制粒子の種類と模擬過熱器管の減肉量割合との関係を示す図である。 図4は、同実施形態に係る同ボイラを説明するための図であり、所定の他の試験温度において、腐食抑制粒子の種類と模擬過熱器管の減肉量割合との関係を示す図である。 同実施形態の引付け力を有する試料A層(同実施形態の腐食抑制粒子層)及びこの層の表面に付着する燃焼灰層の断面写真である。 図5Bは、図5Aに示す断面におけるカリウム(K)の分布を示す写真である。 図5Cは、図5Aに示す断面における塩素(Cl)の分布を示す写真である。
 次に、本発明に係る腐食抑制剤、ボイラ19及びボイラの腐食抑制方法の一実施形態を、図1~図5を参照して説明する。図1に示す腐食抑制装置付きボイラ(以下、単に「ボイラ」と言うこともある。)19は、燃料を燃焼する燃焼炉10と、燃焼炉10で生じた燃焼排ガスが通る排ガス通路28と、排ガス通路28内に配置された過熱器管27を有する過熱器25と、腐食検出装置30と、腐食抑制装置59と、制御装置100とを備えている。ボイラ19は、燃料の燃焼により発生する燃焼排ガスが有する熱によって過熱器管27を通る蒸気を過熱して、高温・高圧の過熱蒸気を発生することができる。ボイラ19で生成した高温・高圧の過熱蒸気は、発電機11のタービン26を回転するために用いられる。
 ボイラ19には、過熱器管27の腐食を抑制するための腐食抑制装置59が設けられている。この腐食抑制装置59は、腐食抑制剤を排ガス通路28内(特に望ましくは、過熱器管27の上流側の第2煙道21内)に供給するように構成されている。
 本実施形態に係るボイラ19は排熱回収ボイラであって、燃焼炉としてごみ焼却炉10を備えている。ごみ焼却炉10は、ごみを供給するホッパ12を備えている。ホッパ12は、シュート13を介して主燃焼室14と接続されている。ホッパ12から供給されたごみは、シュート13を通って主燃焼室14に送られる。主燃焼室14には、乾燥ストーカ15、燃焼ストーカ16及び後燃焼ストーカ17が設けられている。各ストーカ15,16,17の下方から主燃焼室14内へ一次空気が送られており、また主燃焼室14の天井14aから主燃焼室14内へ二次空気が送られている。
 主燃焼室14へ投入されたごみは、まず乾燥ストーカ15に送られ、一次空気及び主燃焼室14の輻射熱により乾燥されて着火する。着火したごみは、燃焼ストーカ16に送られる。また、着火したごみからは、熱分解により可燃性ガスが発生する。この可燃性のガスは、一次空気により主燃焼室14の上部のガス層に送られ、このガス層において二次空気と共に炎燃焼する。この炎燃焼に伴う熱輻射により、ごみが更に昇温する。着火したごみの一部は、燃焼ストーカ16にて燃焼し、残りの未燃焼分は、後燃焼ストーカ17へと送られる。未燃焼分のごみは後燃焼ストーカ17で燃焼され、燃焼後に残った焼却灰はシュート18から外部へと排出される。
 また、主燃焼室14は放射室20と接続されており、ごみの燃焼により生じた燃焼排ガスが、主燃焼室14から放射室20に送られてくる。この燃焼排ガスは、放射室20で再度燃焼した後に、第2煙道21を通って第3煙道22へと導かれ、その後、図示しない排ガス処理設備で無害化の処理が成されてから大気に放出される。なお、放射室20、第2煙道21、及び第3煙道22が、焼却炉10からの排ガスが通る排ガス通路28となっている。
 放射室20及び第2煙道21を規定する壁の各々に、ボイラドラム24に接続された複数の水管23が設けられている。水管23は、例えば炭素鋼(例えば、STB340)で形成され、その中にボイラドラム24から送られてくる水が流れている。水管23内の水は、放射室20又は第2煙道21の廃熱を回収して、その一部が蒸発して汽水となりボイラドラム24へと戻される。ボイラドラム24に戻った汽水は、一部が気化して蒸気となっている。蒸気は、ボイラドラム24から第3煙道22に設けられた過熱器25へと送られる。過熱器25は、第3煙道22内に露出し燃焼排ガスに晒された過熱器管27を備えており、蒸気は過熱器管27を通過するうちに過熱される。このように過熱されて高温高圧となった過熱蒸気は、タービン26へと送られ、発電機11を駆動する。
 上記のように構成されたボイラ19によると、燃焼時に揮発した物質及び焼却灰の一部(総称して「燃焼灰等」と言うこともある。)が燃焼排ガスの流れに同伴して放射室20、第2煙道21及び第3煙道22へと運ばれ、そして水管23及び過熱器25の過熱器管27に付着して堆積する。このような高い腐食性を有する燃焼灰等は、従来は、高温の過熱器25の過熱器管27を腐食させる要因となっていた。
 次に、腐食抑制装置59について説明する。この腐食抑制装置59は、図1に示す過熱器管27の腐食を抑制するための装置であって、ボイラの腐食抑制剤(以下、単に「腐食抑制剤」という)を排ガス流路内の過熱器管27より上流側に供給するように構成されている。腐食抑制剤は、有効成分として腐食抑制粒子を含有している。この実施形態では、腐食抑制剤は、水等の液体に腐食抑制粒子を混合して得られたスラリー状の混合物質である。但し、腐食抑制剤は、腐食抑制粒子よりも粒子径が大きい粉体(例えば、焼却灰)に腐食抑制粒子を混合して得られた粉状の混合物質であってもよい。
 腐食抑制剤がスラリー状の場合は、腐食抑制装置59は腐食抑制剤を第2煙道21内に供給する(滴下する又は噴出する)ことができる液体供給装置として構成されている。また、腐食抑制剤が粒子状の場合は、腐食抑制装置59は、腐食抑制剤を第2煙道21内に供給する(吹き込む)ことができる粒子供給装置として構成されている。図1には、ボイラ19の第2煙道21を形成する側壁部に、腐食抑制剤を第2煙道21内に供給するための供給口59aが表れている。
 また、腐食抑制装置59によって第2煙道21内に腐食抑制剤が供給されることによって、腐食抑制粒子は、第2煙道21内を浮遊している(即ち、燃焼排ガスの流れに同伴して流れている)腐食性粒子を含む燃焼灰と共に過熱器管27の表面に付着し、燃焼灰中の腐食性粒子を引き付ける。これによって、腐食性粒子が過熱器管27に接触したときの、腐食性粒子と過熱器管27との接触面積を小さくすることができるものである。
 腐食抑制粒子は、ゼオライト、ドロマイト、及びカオリンの少なくとも1つである。或いは、腐食抑制粒子は、ゼオライト、ドロマイト、及びカオリンのうち少なくとも1つを主成分とする化合物である。或いは、腐食抑制粒子は、ゼオライト、ドロマイト、及びカオリンのうちの2つ以上を含む混合物である。腐食抑制粒子が腐食性粒子を引き付ける作用は、腐食抑制粒子の吸着能及びイオン交換能の両方又はいずれか一方に基づくものである。そして、腐食抑制粒子の粒子径(動力学的球相当径)は、例えば0.1μm以上10μm未満である
 更に、腐食抑制装置59により腐食抑制剤が供給される領域は、煙道(排ガス通路28)内の燃焼排ガス温度が腐食抑制粒子の融点よりも低い領域である。つまり、腐食抑制装置59により腐食抑制剤が供給される領域は、その領域の燃焼排ガスによって、腐食抑制粒子が溶融して互いに結合しないような、又は(及び)、ガス中の成分の一部が腐食抑制粒子を核にして凝縮して粒子径が大きくならないような領域である。
 一例として、この実施形態では、融点が800℃以上の腐食抑制粒子を含む腐食抑制剤が、第2煙道21内に供給される。この第2煙道21内は、流れる燃焼排ガスのガス温度が800℃よりも低い領域である。
 次に、図1及び図2に示す腐食検出装置30、制御装置100及び腐食抑制装置59について説明する。
 腐食検出装置30は、図1に示すように、ボイラ19の第3煙道22の側壁部であって、過熱器25よりも燃焼排ガスの流れ方向の上流側に設けられ、先端の検出部が第3煙道22内に位置している。この腐食検出装置30は、第3煙道22内に設けられた一対の電極を有している。腐食検出装置30は、一対の電極間の電気抵抗の変化に基づいて過熱器管27の腐食の程度を検出して、その腐食の程度と対応する腐食検出信号を生成するように構成されている。
 制御装置100は、腐食検出装置30が生成する腐食検出信号に基づいて、腐食抑制装置59を制御して、腐食抑制粒子の供給重量を調整するように構成されている。例えば、制御装置100は、腐食の程度の経時変化を算出して監視し、過熱器管27の腐食の進行(例えば、腐食速度又は腐食量)が所定の許容範囲を上回るときは、腐食抑制剤の供給量を所定の基準量より多くするように、腐食抑制装置59を制御する。逆に、制御装置100は、過熱器管27の腐食の進行が所定の許容範囲を下回るときは、腐食抑制剤の供給量を所定の基準量より少なくするように、腐食抑制装置59を制御する。
 上記のように構成された腐食検出装置30、制御装置100及び腐食抑制装置59によると、過熱器管27の腐食の進行が速いときは、腐食抑制粒子の供給重量を多くすることができ、そして、過熱器管27の腐食の進行が遅いときは、腐食抑制粒子の供給重量を少なくすることができる。このようにして、過熱器管27の腐食の程度(例えば腐食量、腐食速度)に応じた腐食の抑制措置をとることができ、しかも経済的に有利となる重量の腐食抑制粒子を第2煙道21内に供給することができ、過熱器管27の腐食を確実に抑制することができる。
 次に、上記のように構成された腐食抑制装置付きボイラ19、それに使用する腐食抑制剤及びボイラの腐食抑制方法の作用について説明する。
 この実施形態に係る腐食抑制剤によると、ボイラ19の燃焼排ガスが通る第2煙道21内に腐食抑制剤が供給されると、腐食抑制粒子が燃焼排ガスの流れに同伴して第2煙道21内及び第3煙道22内を流れる。第2煙道21内において、腐食抑制粒子は燃焼灰と接触して、その燃焼灰に含まれる腐食性粒子と接触する。すると、その腐食性粒子の一部又は全部が腐食抑制粒子に引き付けられる。これによって、腐食性粒子が、腐食抑制粒子に付着する。そして、腐食抑制粒子に付着した腐食性粒子は、分散した状態(即ち、腐食抑制粒子に引き付けられていない状態)の腐食性粒子よりも表面積が小さくなるので、腐食性粒子が過熱器管27の金属界面やその外表面に形成される腐食層の表面(以下、単に「過熱器管の金属界面等」と言うこともある。)に付着したときの、当該腐食性粒子の金属界面等に対する接触面積を、分散した状態の腐食性粒子の金属界面等に対する接触面積よりも小さくすることができる。その結果、過熱器管27の腐食を抑制することができる。
 また、第2煙道21及び第3煙道22内で腐食抑制粒子に付着せずに分散した状態で飛散する腐食性粒子及び腐食抑制粒子が、過熱器管27の金属界面等に付着した後も、腐食抑制粒子が腐食性粒子を引き付ける力が働いており、これによって、これら腐食性粒子及び腐食抑制粒子が互いに付着し合ったり、互いに接近した状態で金属界面等に付着する。
 そして、腐食性粒子が付着した腐食抑制粒子や腐食性粒子が接近している腐食抑制粒子が金属界面等に付着すると、腐食性粒子の金属界面等との接触面積は、分散した状態の腐食性粒子の金属界面等との接触面積よりも小さくなる。さらに、燃焼灰を伴わずに過熱器管27の金属界面等に付着した腐食抑制粒子は、過熱器管27の金属界面等に付着しようとしている腐食性粒子を引き付けることができる。その結果、過熱器管27の腐食を抑制することができる。加えて、腐食防止対象である過熱器管27の周辺で腐食抑制剤(腐食抑制粒子)が供給されることにより、過熱器管27に付着しようとする腐食性粒子に狙いを定めて腐食抑制粒子が腐食性粒子を引き付けるので、他の場所(例えば、燃焼炉10)へ腐食抑制粒子が供給される場合と比較して効率的に過熱器管27の腐食抑制効果が期待される。
 従って、この実施形態に係る腐食抑制粒子、腐食抑制装置付きボイラ19及びボイラの腐食抑制方法は、腐食を抑制するための粒子を燃焼炉10へ供給する従来の手法と比較して、排ガス通路28内への腐食抑制粒子の供給重量を少なくしても、従来と同程度の腐食抑制効果を奏することができる。これによって、腐食抑制粒子に掛かる費用を低減することができる。
 更に、第2煙道21内への腐食抑制粒子の供給重量を少なくすることができるので、回収処理が必要とされる飛灰(腐食抑制粒子を含む)の重量を低減することができる。これによって、飛灰の回収処理に掛かる費用も低減することができる。
 よって、過熱器管27の腐食に対する保守、点検費用の低減を図ることができるし、ボイラ19を安定して長期間継続して使用できるようにすることができる。
 そして、図1に示す腐食抑制装置59を使用して、粒子径が0.1μm以上10μm未満の腐食抑制粒子(例えばゼオライト、ドロマイト若しくはカオリン、又はそれを主成分とする化合物)を、第2煙道21内に供給することによって、この供給した腐食抑制粒子を過熱器管27の金属界面やその外表面に形成される腐食層の表面(過熱器管27の金属界面等)に対して熱泳動や慣性衝突によって付着させることができる。これによって、第3煙道22内で飛散する粒子径が0.1~10μmの腐食性粒子(例えばKCl、NaCl)が、過熱器管27の金属界面等に付着する付着重量及び付着面積を減少させることができ、過熱器管27の腐食の進行を抑制することができる。
 従って、従来よりも効果的に過熱器管27の腐食の進行を抑制することができる。よって、過熱器管27の保守、点検費用の低減を図ることができ、ボイラ19を安定して長期間継続して使用できるようにすることができる。
 また、水等の液体に腐食抑制粒子を混合して得られたスラリー状の混合物質、又は腐食抑制粒子よりも粒子径が大きい粉体(例えば焼却灰)に腐食抑制粒子を混合して得られた粉状の混合物質を、腐食抑制剤として腐食抑制装置59を使用して第2煙道21内に供給するようにしているので、第2煙道21内に供給しようとする腐食抑制粒子の重量が小さい場合でも、腐食抑制装置59を使用して、所望の重量の腐食抑制粒子を精度よく第2煙道21内に供給することができる。そして、腐食抑制粒子が混合される液体として水を採用すると、水は、入手が容易であり安価であるので経済的である。また、腐食抑制粒子が混合される粉体として、腐食抑制粒子よりも粒子径の大きい安価なもの、例えば焼却灰を使用することによって、当該粉体のコストの低減を図ることができる。
 更に、腐食抑制剤を、排ガス通路28内のガス温度が腐食抑制粒子の融点(例えば800℃以上)よりも低い領域(ガス温度が例えば800℃よりも低い第2煙道21内)に供給することによって、腐食抑制粒子が溶融して互いに結合することや、ガス中の成分の一部が腐食抑制粒子を核にして凝縮することで粒子径が大きくならないようにすることができる。
 これによって、第2煙道21内に供給された腐食抑制粒子を、その粒子径が大きくならないように飛散させることができるので、腐食抑制粒子は、第2煙道21内に飛散する腐食性粒子を効率よく引き付けることができ、腐食性粒子が腐食抑制粒子に効果的に付着することができる。よって、過熱器管27の表面全体の腐食の進行を効果的に抑制することができる。
 また、腐食抑制粒子を、その粒子径が元の小さい状態で、過熱器管27の金属界面やその外表面に形成される腐食層の表面全体に付着させることができる。よって、第3煙道22内に設けられている過熱器管27の金属界面等に腐食性粒子が付着する量を低減させることができる。
 次に、図3及び図4の説明をする。この図3及び図4は、腐食抑制剤(腐食抑制粒子)の模擬過熱器管に対する腐食抑制効果を調査するために、下記の条件で腐食抑制試験を行ったときの試験結果を示す図である。
 試験方法は、燃焼灰と試料とを混合したものを模擬過熱器管の表面に塗布した試験片を作成し、この試験片を所定の試験温度雰囲気の試験室内に設置し、試験室内に所定組成の試験ガス(燃焼排ガス)を所定流量で所定時間だけ供給する、というものである。試験時間は、100時間、試験温度は、450℃(図3)、550℃(図4)である。燃焼排ガス条件は、COが10%、Oが8%、HClが1000ppm、SOが50ppm、HOが5%、Nがbal.である。
 燃焼灰と試料A、B、C(腐食抑制粒子)との混合条件は、燃焼灰と試料とが1対1の重量割合となるように混合した。試料Aは、本実施形態の引付け力(吸着能、イオン交換能)を有するゼオライトである。試料Bは、二酸化ケイ素(SiO)、試料Cは、珪藻土であり、試料B、Cは、引付け力(吸着能)が試料Aと比較して弱い腐食抑制粒子である。そして、これら試料A、B、Cは、それぞれほぼ同等の粒子径である。図3及び図4に示す参考条件は、腐食抑制粒子を燃焼灰に混合していない条件であり、参考条件における模擬過熱器管の減肉量割合を100%とする。
 図3及び図4に示す試験結果から、試料Aを使用すると、試料B、Cを使用した場合と比較して、模擬過熱器管に対して極めて高い減肉抑制効果があることがわかる。
 これによって、試料Aの引付け力(吸着能、イオン交換能)が、模擬過熱器管の減肉量割合を低減する役割を果たしていると判断することができる。
 なお、図3の試料A、B、Cのそれぞれの減肉量割合は、約20%、約50%、約70%である。図4の試料A、Bのそれぞれの減肉量割合は、約20%、約50%である。
 次に、試料Aの腐食抑制粒子(ゼオライト)の引付け力(吸着能、イオン交換能)を調査するために、模擬過熱器管の表面に試料A(引付け力を有する腐食抑制粒子層)と燃焼灰を2層にして、試料A層と燃焼灰層とが接している領域における各元素K(カリウム)、Cl(塩素)の分布を調べた。このK、Clは、飛散する燃焼灰に分散した状態で含まれていたものであり、腐食性成分である。
 つまり、この調査のための実験方法は、まず、模擬過熱器管の表面に試料Aの腐食抑制粒子を塗布して試料A層を形成する。次に、K、Clを含む燃焼灰をその上層に塗布して、試料A層の表面に燃焼灰層を形成する。このようにして形成された試料A層及び燃焼灰層を模擬過熱器管から取り外してその断面を顕微鏡及びEPMA分析によって調べた。
 図5Aは、試料A層(ゼオライト)及び燃焼灰層とが接している領域の断面写真である。図5Bは、図5Aに示す断面におけるカリウム(K)の分布を示す断面写真である。この図5Bに示す写真は、図5Aの写真に示された断面のKをカラーマッピングしたものであり、Kの濃度が色で表されている。この図5Bに現れているように、写真の上端付近を燃焼灰層のKの標準濃度とすると、試料A層の表面及びその近傍のKの濃度が標準濃度よりも著しく高く、試料A層の表面から離れたところのKの濃度が標準濃度よりも低い。このことから、腐食性成分であるKが試料A層(ゼオライト)の表面に付着し及び接近して分布していることが分かる。従って、試料A層(ゼオライト)は、腐食性成分であるKを含有する粒子を引き付けていることが分かる。
 図5Cは、図5Aに示す断面における塩素(Cl)の分布を示す断面写真である。この図5Cに示す写真は、図5Aの写真に示された断面のClをカラーマッピングしたものであり、Clの濃度が色で表されている。この図5Cに現れているように、写真の上端付近を燃焼灰層のClの標準濃度とすると、試料A層の表面及びその近傍のClの濃度が標準濃度よりも著しく高く、試料A層の表面から離れたところのClの濃度が標準濃度よりも低い。このことから、腐食性成分であるClが試料A層(ゼオライト)の表面に付着し及び接近して分布していることが分かる。従って、試料A層(ゼオライト)は、腐食性成分であるClを含有する粒子を引き付けていることが分かる。
 従って、試料A(ゼオライト)を腐食抑制粒子として使用することによって、上記のように、過熱器管27に対する腐食抑制効果を奏することが分かる。
 そして、ゼオライトと同様に、ドロマイト及びカオリンも、カリウム(K)及び塩素(Cl)等の腐食性成分を引き付ける作用を有することが考えられる。よって、ドロマイト及びカオリンを腐食抑制粒子として使用することによって、ゼオライトと同様に、過熱器管27の腐食の進行を抑制することができる。
 次に、腐食抑制粒子の粒子径を0.1μm以上10μm未満と規定した理由を説明する。腐食抑制装置59を使用して、例えば粒子径が10μm以上の腐食抑制粒子を、第2煙道21内に供給することによって、この供給した腐食抑制粒子を過熱器管27の金属界面等に付着させた場合は、粒子径が10μm以上の腐食抑制粒子どうしの隙間から腐食性が強い粒子径が0.1~10μmの腐食性粒子が入り込んで、過熱器管27の金属界面等に付着してしまう可能性が大きい。よって、粒子径が10μm以上の腐食抑制粒子を使用すると、過熱器管27の腐食を殆ど抑制することはできない。
 従って、本実施形態は、腐食性が強い粒子径が0.1~10μmの腐食性粒子と同程度の粒子径(0.1μm以上10μm未満)の腐食抑制粒子を、第2煙道21内に供給して過熱器管27の表面に付着させることによって、0.1~10μmの腐食性粒子が過熱器管27の表面に付着する付着重量及び付着面積を小さくして、過熱器管27の腐食の進行を抑制するようにした。
 以上に本発明の好適な実施形態を説明したが、上記のボイラ19の構成は例えば以下のように変更することができる。
 上記実施形態では、図1に示すように、ボイラ19の燃焼炉10として、例えばごみ焼却炉10を例として挙げたが、本発明をこれ以外の燃焼炉を備えたボイラ19に適用することができる。例えば、重油を燃料とする燃焼炉を備えたボイラ19に本発明を適用することができる。
 また、上記実施形態では、図1に示すように、ボイラ19の燃焼炉10として、例えばストーカ式の燃焼炉を例に挙げたが、本発明をこれ以外の形式の燃焼炉を備えたボイラ19に適用することができる。例えば、燃料を流動層で流動させながら燃焼させる流動層炉を備えたボイラ19に本発明を適用することができる。
 また、上記実施形態では、図1に示す腐食検出装置30を使用して、過熱器管27の腐食の程度を検出したが、これ以外の腐食検出装置を使用してもよい。
 更に、上記実施形態では、粒子径が0.1μm以上10μm未満の腐食抑制粒子を含む腐食抑制剤を、過熱器管27よりも上流側の第2煙道21内に供給したが、腐食抑制剤の供給領域は上記に限定されない。例えば、過熱器管27が設けられている第3煙道22内や放射室20内に腐食抑制剤を供給するようにしてもよい。
 そして、上記実施形態では、粒子径が0.1μm以上10μm未満の腐食抑制粒子を使用したが、これに代えて、その粒子径が2μmを超えて10μm未満の腐食抑制粒子を使用してもよい。このようにしても、過熱器管27の腐食の進行を抑制することができるのは、このような粒子径の腐食抑制粒子であっても、腐食性粒子を引き付けることができ、上記実施形態で説明したように、過熱器管27の腐食の進行を抑制することができるからである。
 以上のように、本発明に係る腐食抑制粒子、腐食抑制装置付きボイラ及びボイラの腐食抑制方法は、過熱器管の腐食を抑制するために使用される腐食抑制粒子の量が少なくて済み、これによって、回収処理が必要とされる飛灰(腐食抑制粒子を含む)の量を低減することができる優れた効果を有し、ごみ焼却ボイラのような過熱器管の腐食が懸念されるボイラに適用するのに適している。
 10 燃焼炉(ごみ焼却炉)
 11 発電機
 12 ホッパ
 13 シュート
 14 主燃焼室
 14a 天井
 15 乾燥ストーカ
 16 燃焼ストーカ
 17 後燃焼ストーカ
 18 シュート
 19 ボイラ
 20 放射室
 21 第2煙道
 22 第3煙道
 23 水管
 24 ボイラドラム
 25 過熱器
 26 タービン
 27 過熱器管
 28 排ガス通路
 30 腐食検出装置
 59 腐食抑制装置
 59a 供給口
 100 制御装置
 
 

Claims (10)

  1.  ボイラの燃焼排ガスが通る排ガス通路内に設けられた過熱器管の腐食を抑制するために前記排ガス通路内に供給されるボイラの腐食抑制剤であって、
    前記排ガス通路内で浮遊する燃焼灰と共に前記過熱器管に付着し、前記燃焼灰中の腐食性粒子を引き付ける腐食抑制粒子を含有する、ボイラの腐食抑制剤。
  2.  前記腐食抑制粒子が、前記腐食性粒子を引き付ける吸着能及びイオン交換能の少なくとも一方を有する、請求項1に記載のボイラの腐食抑制剤。
  3.  前記腐食抑制粒子は、ゼオライト、ドロマイト及びカオリンの少なくとも1つ又はそれを主成分とする化合物、又は、ゼオライト、ドロマイト及びカオリンのうち2つ以上を含む混合物である、請求項1又は2に記載のボイラの腐食抑制剤。
  4.  前記腐食抑制粒子の粒子径が、0.1μm以上10μm未満である、請求項1~3のいずれかに記載のボイラの腐食抑制剤。
  5.  液体に前記腐食抑制粒子を混合して得られたスラリー状の混合物質である、請求項1~4のいずれか一項に記載のボイラの腐食抑制剤。
  6.  前記腐食抑制粒子よりも粒子径が大きい粉体に前記腐食抑制粒子を混合して得られた粉状の混合物質である、請求項1~4のいずれか一項に記載のボイラの腐食抑制剤。
  7.  燃焼炉と、
     前記燃焼炉からの燃焼排ガスが通る排ガス通路と、
     前記排ガス通路内に設けられた過熱器管と、
     請求項1~6のいずれか一項に記載のボイラの腐食抑制剤を前記排ガス通路内に供給する腐食抑制装置とを
    備える、ボイラ。
  8.  前記腐食抑制装置が、前記排ガス通路内のガス温度が前記腐食抑制粒子の融点よりも低い領域へ前記ボイラの腐食抑制剤を供給するように構成されている、請求項7に記載のボイラ。
  9.  ボイラの燃焼排ガスが通る排ガス通路内に設けられた過熱器管の腐食を抑制するためのボイラの腐食抑制方法であって、
     請求項1~6のいずれか一項に記載のボイラの腐食抑制剤を、前記排ガス通路の前記過熱器管より上流側へ供給する、ボイラの腐食抑制方法。
  10.  前記ボイラの腐食抑制剤を供給することが、前記排ガス通路内のガス温度が前記腐食抑制粒子の融点よりも低い領域へ前記ボイラの腐食抑制剤を供給することを含む、請求項9に記載のボイラの腐食抑制方法。
PCT/JP2014/002889 2013-05-31 2014-05-30 ボイラの腐食抑制剤、ボイラ及びボイラの腐食抑制方法 WO2014192313A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480030930.XA CN105229377B (zh) 2013-05-31 2014-05-30 锅炉的抗腐蚀剂、锅炉以及锅炉的抗腐蚀方法
JP2015519659A JP6078149B2 (ja) 2013-05-31 2014-05-30 ボイラの腐食抑制剤、ボイラ及びボイラの腐食抑制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-114981 2013-05-31
JP2013114981 2013-05-31

Publications (1)

Publication Number Publication Date
WO2014192313A1 true WO2014192313A1 (ja) 2014-12-04

Family

ID=51988364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002889 WO2014192313A1 (ja) 2013-05-31 2014-05-30 ボイラの腐食抑制剤、ボイラ及びボイラの腐食抑制方法

Country Status (3)

Country Link
JP (1) JP6078149B2 (ja)
CN (1) CN105229377B (ja)
WO (1) WO2014192313A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017120150A (ja) * 2015-12-28 2017-07-06 川崎重工業株式会社 ボイラ及び腐食抑制方法
KR101816010B1 (ko) * 2015-09-08 2018-01-08 한국생산기술연구원 발전용 열교환기의 부식 저감장치
JP7141067B2 (ja) 2019-12-18 2022-09-22 日鉄エンジニアリング株式会社 ボイラ用腐食抑制剤の製造方法及びボイラとボイラの腐食抑制方法
US11994286B2 (en) * 2020-10-13 2024-05-28 Zhejiang University Method for inhibiting high temperature corrosion of heat exchange surface of biomass boiler

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031324A (ja) * 2001-05-07 2002-01-31 Sumitomo Heavy Ind Ltd 排ガス系装置へのダスト付着防止方法及びその装置
JP2006308179A (ja) * 2005-04-27 2006-11-09 Sumitomo Heavy Ind Ltd ボイラの腐食防止装置及び腐食防止方法
JP2008544202A (ja) * 2005-06-16 2008-12-04 ケミラ オーワイジェイ ボイラーの伝熱面への塩素堆積を防止する方法
JP2009046342A (ja) * 2007-08-17 2009-03-05 Kurita Water Ind Ltd 排ガス成分付着防止剤および排ガス成分付着防止方法
JP2009204224A (ja) * 2008-02-27 2009-09-10 Mitsubishi Heavy Ind Ltd 火炉併設ボイラ設備の灰付着防止方法及び火炉併設ボイラ設備
JP2010117095A (ja) * 2008-11-14 2010-05-27 Ebara Corp 腐食抑制方法
JP2012220064A (ja) * 2011-04-06 2012-11-12 Nippon Steel Engineering Co Ltd 廃棄物処理設備の廃熱ボイラの低温腐食防止方法及び廃熱ボイラ
JP2013053829A (ja) * 2011-09-06 2013-03-21 Kawasaki Heavy Ind Ltd 腐食抑制装置付きボイラ及びボイラの腐食抑制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348392A (ja) * 1986-08-15 1988-03-01 Toa Netsuken Kk 石炭の排ガスダストのクリンカ−アツシユ抑制方法
JPS6480425A (en) * 1987-09-19 1989-03-27 Hokkaido Electric Power Treatment of exhaust gas
JP3379677B2 (ja) * 1996-02-16 2003-02-24 栗田工業株式会社 焼却炉におけるダイオキシン類の生成防止材及びその方法
JP4220142B2 (ja) * 2001-07-12 2009-02-04 川崎重工業株式会社 排気ガス処理装置
CN101445758A (zh) * 2008-12-19 2009-06-03 华中科技大学 燃烧过程中减少细微颗粒物及金属排放的方法
JP2011080727A (ja) * 2009-10-09 2011-04-21 Kobe Steel Ltd ボイラの灰付着抑制方法及び灰付着抑制装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031324A (ja) * 2001-05-07 2002-01-31 Sumitomo Heavy Ind Ltd 排ガス系装置へのダスト付着防止方法及びその装置
JP2006308179A (ja) * 2005-04-27 2006-11-09 Sumitomo Heavy Ind Ltd ボイラの腐食防止装置及び腐食防止方法
JP2008544202A (ja) * 2005-06-16 2008-12-04 ケミラ オーワイジェイ ボイラーの伝熱面への塩素堆積を防止する方法
JP2009046342A (ja) * 2007-08-17 2009-03-05 Kurita Water Ind Ltd 排ガス成分付着防止剤および排ガス成分付着防止方法
JP2009204224A (ja) * 2008-02-27 2009-09-10 Mitsubishi Heavy Ind Ltd 火炉併設ボイラ設備の灰付着防止方法及び火炉併設ボイラ設備
JP2010117095A (ja) * 2008-11-14 2010-05-27 Ebara Corp 腐食抑制方法
JP2012220064A (ja) * 2011-04-06 2012-11-12 Nippon Steel Engineering Co Ltd 廃棄物処理設備の廃熱ボイラの低温腐食防止方法及び廃熱ボイラ
JP2013053829A (ja) * 2011-09-06 2013-03-21 Kawasaki Heavy Ind Ltd 腐食抑制装置付きボイラ及びボイラの腐食抑制方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101816010B1 (ko) * 2015-09-08 2018-01-08 한국생산기술연구원 발전용 열교환기의 부식 저감장치
JP2017120150A (ja) * 2015-12-28 2017-07-06 川崎重工業株式会社 ボイラ及び腐食抑制方法
JP7141067B2 (ja) 2019-12-18 2022-09-22 日鉄エンジニアリング株式会社 ボイラ用腐食抑制剤の製造方法及びボイラとボイラの腐食抑制方法
US11994286B2 (en) * 2020-10-13 2024-05-28 Zhejiang University Method for inhibiting high temperature corrosion of heat exchange surface of biomass boiler

Also Published As

Publication number Publication date
JPWO2014192313A1 (ja) 2017-02-23
CN105229377B (zh) 2018-02-13
JP6078149B2 (ja) 2017-02-08
CN105229377A (zh) 2016-01-06

Similar Documents

Publication Publication Date Title
Sandberg et al. A 7 year long measurement period investigating the correlation of corrosion, deposit and fuel in a biomass fired circulated fluidized bed boiler
JP6078149B2 (ja) ボイラの腐食抑制剤、ボイラ及びボイラの腐食抑制方法
Singh et al. An overview of problems and solutions for components subjected to fireside of boilers
Otsuka A thermodynamic approach on vapor-condensation of corrosive salts from flue gas on boiler tubes in waste incinerators
Mudgal et al. Corrosion problems in incinerators and biomass‐fuel‐fired boilers
Chen et al. Investigation of chloride deposit formation in a 24 MWe waste to energy plant
JP6046886B2 (ja) 腐食抑制装置付きボイラ及びボイラの腐食抑制方法
Qiu et al. Ash deposition during pressurized oxy-fuel combustion of Zhundong coal in a lab-scale fluidized bed
Kalisz et al. Full-scale study on halloysite fireside additive in 230 t/h pulverized coal utility boiler
Kumar et al. Role of surface modification techniques to prevent failure of components subjected to the fireside of boilers
Damoe et al. Impact of coal fly ash addition on combustion aerosols (PM2. 5) from full-scale suspension-firing of pulverized wood
Backman et al. The effect of peat ash addition to demolition wood on the formation of alkali, lead and zinc compounds at staged combustion conditions
Liu et al. An experimental investigation into the effect of flue gas recirculation on ash deposition and Na migration behaviour in circulating fluidized bed during combustion of high sodium Zhundong lignite
JP6309709B2 (ja) 腐食抑制装置付きボイラ及びボイラの腐食抑制方法
Li et al. Corrosion of heat exchanger materials in co-combustion thermal power plants
Xiong et al. A typical super-heater tube leakage and high temperature corrosion mechanism investigation in a 260 t/h circulated fluidized boiler
JP4448053B2 (ja) ボイラの腐食防止装置及び腐食防止方法
JP6339360B2 (ja) 腐食抑制装置付きボイラ及びボイラの腐食抑制方法
JP6678452B2 (ja) ボイラ及び腐食抑制方法
Ni et al. Experimental research on fully burning high‐alkali coal in a 300 MW boiler with slag‐tap furnace
WO2017115845A1 (ja) 燃焼設備
National Research Council Incineration processes and environmental releases
Ots Oil shale combustion technology
JP7495876B2 (ja) ボイラ及びボイラの腐食抑制方法
Jensen et al. A review: Fly ash and deposit formation in PF fired biomass boilers

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480030930.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804181

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015519659

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14804181

Country of ref document: EP

Kind code of ref document: A1