WO2014192224A1 - ウェーハの研磨方法 - Google Patents

ウェーハの研磨方法 Download PDF

Info

Publication number
WO2014192224A1
WO2014192224A1 PCT/JP2014/002332 JP2014002332W WO2014192224A1 WO 2014192224 A1 WO2014192224 A1 WO 2014192224A1 JP 2014002332 W JP2014002332 W JP 2014002332W WO 2014192224 A1 WO2014192224 A1 WO 2014192224A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
wafer
nozzle
pure water
time
Prior art date
Application number
PCT/JP2014/002332
Other languages
English (en)
French (fr)
Inventor
三千登 佐藤
上野 淳一
薫 石井
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Publication of WO2014192224A1 publication Critical patent/WO2014192224A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only

Definitions

  • the present invention relates to an index-type wafer polishing method for preventing haze and etching unevenness.
  • a semiconductor wafer typified by a silicon wafer includes a surface plate 102 on which a polishing cloth 105 is attached, an abrasive supply mechanism 103 for supplying an abrasive 106 to the surface plate 102, as shown in FIG.
  • a polishing apparatus 101 configured with a polishing head 104 for holding a wafer W to be polished
  • the wafer W is held by the polishing head 104
  • the abrasive 106 is supplied onto the polishing cloth 105 from the abrasive supply mechanism 103.
  • Polishing is performed by rotating the surface plate 102 and the polishing head 104 to bring the surface of the wafer W into sliding contact with the polishing cloth 105.
  • the polishing of a semiconductor wafer is often performed in multiple stages by changing the type of polishing cloth and the type of abrasive, and the polishing process performed in the final stage is called finish polishing or final polishing.
  • FIG. 9 shows an index type polishing apparatus.
  • the polishing apparatus 201 having a plurality of surface plates 207, 208, and 209 often has a larger number of polishing axes than the number of surface plates for rotating the polishing head.
  • productivity can be improved.
  • a method is used in which each polishing axis is rotated around a central axis 202.
  • the movement of the polishing head during the pivotal movement differs depending on the polishing axis in order to protect various wirings.
  • the polishing axis to which the polishing head 206 is attached is 4 axes ⁇ n or more (4 axes in the case of the polishing apparatus 201 in FIG. 9).
  • the polishing shaft whose initial position is the position of the loading / unloading stage 205 is the first polishing shaft 204
  • the first polishing shaft 204 moves the position of the loading / unloading stage 205 as shown in FIG.
  • the wafer is polished while the first polishing head 206 is pivoted at 0 degrees (loading / unloading stage 205 position). That is, when the polishing is completed at the position of 270 degrees (the third surface plate 209 position), it rotates in the opposite direction of 270 degrees, returns to the loading / unloading stage 205 position, and starts the peeling operation from the polishing head.
  • the first, second, third, and fourth polishing axes in FIG. 10 are the first polishing axis 204, the second polishing axis 210, the third polishing axis 211, and the fourth polishing axis in FIG. 212 respectively.
  • the wafer is cleaned using ultrasonic waves or chemicals, and then inspected for particles and haze using a particle measuring instrument such as KLA-Tencor.
  • the particle measuring device can output the difference in in-plane haze as a map.
  • the haze map is often output with an autoscale in order to make it easy to determine unevenness on the surface, and as the haze level decreases, the unevenness becomes more visible.
  • each polishing shaft may turn 90 degrees or 270 degrees, and may move to the next step.
  • Each time is different. Since the wafer of the first polishing shaft 204 is rotated by 270 degrees in the reverse direction to the unloading position after the final polishing by the third surface plate 209, the wafer is moved to the surface of the wafer during the movement after the polishing is completed.
  • the time for the etching action by the attached abrasive becomes longer, and the haze is likely to occur as compared with wafers of other polishing axes.
  • the cause of this hazy irregularity is abrasive foam remaining on the polished surface of the wafer.
  • the adhesive state of the abrasive differs between the part with and without the foam on the polished surface of the wafer. This is because a part or the whole of the film remains on the polished surface of the wafer and is observed as hazyness.
  • each polishing shaft has a different start position, the timing for performing the reverse rotation of 270 degrees is different.
  • the first polishing shaft 204 rotates 270 degrees after polishing, the surface of the wafer after polishing is easily etched.
  • the second polishing shaft 210 and the third polishing shaft 211 are rotated 270 degrees in the middle of the polishing step before the polishing is completed, even if the wafer surface is etched by the abrasive during the rotation, the next polishing is performed. Often corrected in steps.
  • the fourth polishing shaft 212 rotates 270 degrees before starting polishing, all the rotation from the interruption of polishing to the resumption of polishing becomes 90 degrees, which is an ideal operation in terms of the rotation time. Therefore, due to the mechanism of the polishing apparatus 201, the first polishing shaft 204 is most likely to occur, and the fourth polishing shaft 212 is least likely to occur.
  • FIG. 11 shows an example of a haze map of a wafer polished while being held by a polishing head at the position of each polishing axis among a plurality of wafers having a diameter of 300 mm polished using an index type polishing apparatus.
  • the polished surface of the wafer polished by the first polishing shaft 204 is generally uneven.
  • the polished surfaces of the wafers polished by the second polishing shaft 210 and the third polishing shaft 211 are uniform as a whole, but a partially uneven pattern can be seen in the circled portion in the figure. . Such unevenness is not observed on the polished surface of the wafer polished by the fourth polishing shaft 212.
  • the hazyness of the wafer of the first polishing shaft 204 becomes more prominent in a large-sized polishing apparatus capable of polishing with a diameter of 450 mm, and becomes a level that is unsatisfactory in the determination of hazyness using an autoscale map.
  • An example of this Heismura is shown in FIG.
  • the haze map on the polished wafer surface differs depending on which polishing axis is used for polishing.
  • the wafer polished by the first polishing axis 204 was polished by another polishing axis.
  • haismura was more likely to occur than a wafer.
  • the demand for improving the smoothness of the surface has increased, and the haze level has been greatly improved by the introduction of brush cleaning with low etching power for cleaning after polishing.
  • the haze irregularity between the polishing axes peculiar to the index type polishing apparatus when polishing with the index type polishing apparatus has become a problem.
  • the haze irregularity generated in the first polishing shaft 204 has been recognized as an obvious abnormality.
  • Patent Document 1 is a method of using a time management until the cleaning tank is put into the wafer after finish polishing, or a shower or a low-pressure shower that is atomized before cleaning, as shown in FIG.
  • the present invention has been made in view of the above-described problems, and effectively prevents hazy irregularities and etching irregularities that occur during the polishing step and after the polishing is completed until the peeling operation starts, which is peculiar to the index type polishing apparatus.
  • An object of the present invention is to provide a polishing method that can be used.
  • a polishing head for holding a wafer and a plurality of surface plates to which a polishing cloth for polishing the wafer is attached are used together, and the polishing head is swung.
  • an index for simultaneously polishing a plurality of wafers while supplying an abrasive from the abrasive supply mechanism onto each of the surface plates are 30.
  • the polishing head is rotated and pure water or a hydrophilic agent is sprayed from the nozzle. It provides a method of polishing wafer, and removing the abrasive foam adhering to the polished surface of the serial wafer.
  • the injection of the pure water or the hydrophilic agent from the nozzle can be performed within the diameter range of the wafer.
  • the spray from the nozzle is limited to the wafer surface, and the sprayed pure water or hydrophilic agent can be prevented from reaching the electrical components installed in the cover above the polishing head. The trouble of parts can be prevented.
  • the usage-amount of the pure water or the hydrophilic agent which does not contribute to foam removal can be reduced, and cost can be suppressed.
  • the orifice diameter of the nozzle can be set to 0.5 mm to 2.0 mm. In this way, by adjusting the supply pressure of the nozzle, it is possible to optimize the spray angle and flow rate of pure water or hydrophilic agent, and more reliably remove abrasive bubbles and generate hazy irregularities on the wafer. Can be prevented.
  • the material of the nozzle can be made of resin. If it does in this way, it can prevent that pure water or a hydrophilic agent receives the impurity contamination from a nozzle, and it can remove the foam
  • the flow rate of the pure water or the hydrophilic agent injected from the nozzle is 0.5 L / min or more. In this way, it is possible to sufficiently inject pure water or a hydrophilic agent necessary for effectively removing abrasive bubbles remaining on the polishing surface of the wafer, and more reliably prevent the occurrence of haismura. be able to.
  • the rotational speed of the polishing head when the pure water or the hydrophilic agent is ejected from the nozzle can be set to 20 rpm or less. If the rotation speed is within this range, the removal efficiency of the abrasive bubbles remaining on the polishing surface of the wafer is increased, the bubbles can be removed in a short injection time, and the rotation speed is higher than necessary. Therefore, there is no worry that pure water is shaken off and scattered around. As a result, the amount of pure water or hydrophilic agent used can be reduced, costs can be reduced, and work efficiency can be improved.
  • the time from the interruption of wafer polishing to the restart of polishing when switching the surface plate, and the time from the end of polishing of the wafer to the start of the peeling operation from the polishing head within 30 seconds is rotated, and pure water or a hydrophilic agent is sprayed from the nozzle to remove the abrasive bubbles adhering to the polishing surface of the wafer.
  • the time it takes can be shortened. As a result, it is possible to effectively prevent the occurrence of hazyness and etching unevenness on the polished surface of the wafer.
  • the present invention is not limited to this.
  • the movement time to the next step is different for each polishing axis, especially in the polishing axis that requires a long movement after polishing interruption and after polishing is completed.
  • there was a variation in the state of adhesion of the abrasive due to the foam of the abrasive and a part or the whole of the foam pattern remained on the wafer surface due to the etching action of the abrasive, and there was a problem that hazyness was generated.
  • the inventors of the present invention have made extensive studies to prevent the occurrence of haismat in the index-type wafer polishing method.
  • the time from the interruption of wafer polishing when switching the surface plate to the resumption of polishing and the time from the completion of wafer polishing to the start of the peeling operation from the polishing head should be within 30 seconds.
  • pure water or hydrophilic agent is sprayed from the nozzle to remove abrasive bubbles adhering to the polishing surface of the wafer, effectively preventing the occurrence of hazy irregularity and etching unevenness
  • the present invention has been completed by conceiving what can be done.
  • the polishing apparatus 1 includes a loading / unloading stage 2 for loading and unloading a wafer W, and a first fixed member to which a polishing cloth 17 for polishing the wafer W is attached.
  • a panel 3, a second surface plate 4, and a third surface plate 5 are provided above the loading / unloading stage 2, the first surface plate 3, the second surface plate 4, and the third surface plate 5, a first polishing head 6 and a first polishing head 6 for holding the wafer W are respectively provided.
  • First polishing shaft 10 for attaching and rotating the polishing head 6, second polishing head 7 and second polishing shaft 11, third polishing head 8 and third polishing shaft 12, fourth polishing head 9 And a fourth polishing shaft 13.
  • the respective rotating shafts are simultaneously turned around the central axis 14 so that the respective polishing heads are turned and perform polishing while switching the surface plate used for wafer polishing.
  • the positions of the respective polishing heads and the polishing shaft shown in FIG. 1 are initial positions, and thereafter, the wafer is polished, loaded, and unloaded (peeled) while repeatedly rotating and switching the surface plate.
  • a polishing agent supply mechanism 15 for supplying the polishing agent onto the surface plate and a pure water or a hydrophilic agent are sprayed on the polishing surface of the wafer above each surface plate to polish the wafer. It has a nozzle 16 that removes bubbles of abrasives adhering to the surface.
  • the nozzle 16 is preferably a flat type nozzle. If it is a flat type nozzle, since a spray liquid is sprayed in fan shape, a bubble can be effectively removed by spraying in a horizontal direction with respect to the wafer surface.
  • the wafer polishing method of the present invention when such a polishing apparatus 1 is used will be described.
  • the first polishing shaft 10 at the loading / unloading stage 2 position is rotated 90 degrees after loading the wafer onto the first polishing head 6.
  • the polishing on the first surface plate 3 is interrupted, turned 90 degrees, moved to the second surface plate 4, and the polishing is resumed.
  • the polishing on the second surface plate 4 is interrupted, turned 90 degrees, moved to the third surface plate 5, and the polishing is resumed on the third surface plate 5.
  • the wafer When the polishing of the wafer is completed on the third surface plate 5, the wafer is turned to the opposite side of 270 degrees, moved to the loading / unloading stage 2, the wafer is unloaded, and one cycle is completed.
  • the other polishing shafts simultaneously rotate in the same manner to perform polishing, loading, and unloading of the wafer while switching each surface plate or each surface plate and the loading / unloading stage 2.
  • the time from the interruption of wafer polishing to the resumption of polishing when switching each surface plate, and the time from the end of polishing of the wafer to the start of the peeling operation from the polishing head are within 30 seconds. . Further, after the polishing of the wafer is interrupted, before the polishing is resumed, and after the polishing is finished and before the peeling operation is started, pure water or a hydrophilic agent is sprayed from the nozzle 16 to rotate and adhere to the polished surface of the wafer. Remove the abrasive foam.
  • the bubbles of the abrasive remaining on the polishing surface of the wafer can be effectively removed by spraying pure water or a hydrophilic agent.
  • the time during which the wafer is subjected to the etching action of the abrasive can be shortened.
  • a hydrophilic agent can also be used.
  • the wafer polishing method of the present invention can prevent the occurrence of hazyness and etching unevenness.
  • injection of pure water or a hydrophilic agent from the nozzle 16 can be performed so as to be within the diameter range of the wafer.
  • the injection pattern from the nozzle 16 is shown in FIG.
  • the angle of the range in which the pure water or the hydrophilic agent is ejected from the nozzle 16 is defined as the spray angle
  • the spray angle falls within the range of the wafer diameter
  • the injected pure water it is possible to prevent the occurrence of troubles in electrical components on the upper part of each polishing head due to the hydrophilic agent.
  • the amount of pure water or hydrophilic agent that does not contribute to the removal of abrasive bubbles remaining on the polished surface of the wafer can be reduced, and the cost can be reduced.
  • the spray angle of pure water or hydrophilic agent can be selected by calculating from the wafer diameter and the distance from the wafer center position to the nozzle 16. For example, when the wafer has a diameter of 300 mm and the distance from the nozzle to the wafer center is 500 mm, the injection angle required to cover the diameter is about 31 degrees. Similarly, if the wafer is 450 mm in diameter and the distance from the nozzle to the wafer center is 700 mm, the required angle is about 33 degrees. In either case, the nozzle injection angle to be selected is about 25 to 30 degrees. Then, the bubbles adhering to the wafer surface can be effectively removed.
  • the orifice diameter of the nozzle 16 is preferably 0.5 mm to 2.0 mm. Within this range, the injection angle and flow rate can be optimized by the supply pressure of the nozzle 16, and the occurrence of haismura can be prevented more reliably.
  • the material of the nozzle is resin.
  • the resin selected as the nozzle material is PP (polypropylene), PVDF (polyvinylidene fluoride), PPS (polyphenylene sulfide), PFA (perfluoroalkoxyalkane), PE (polyethylene), PVC (polychlorinated). Vinyl) is preferred.
  • the flow rate of the pure water or the hydrophilic agent ejected from the nozzle 16 is 0.5 L / min or more. In this way, it is possible to sufficiently inject pure water or a hydrophilic agent necessary for effectively removing abrasive bubbles remaining on the polishing surface of the wafer, and more reliably prevent the occurrence of haismura. be able to.
  • a flow rate of 1 L / min or more can be taken.
  • the nozzle injection angle displayed in catalogs is the case of a supply pressure of 0.3 MPa, but the injection flow rate is a nozzle that can secure a flow rate of 0.5 L / min or more at a pressure of 0.3 MPa.
  • the bubble can be removed by selecting the nozzle, and more preferably, since there is a limitation on the rotational movement time of each polishing shaft, a nozzle capable of taking a flow rate of 1 L / min or more is selected.
  • the injection angle from a nozzle changes depending on pure water or a hydrophilic agent supply pressure. In order to inject a viscous hydrophilic agent at a specified angle, it is difficult at low pressure, and therefore, the supply pressure is desirably 0.3 MPa or more.
  • the rotation speed of each polishing head when jetting pure water or a hydrophilic agent from the nozzle 16 is 20 rpm or less.
  • the bubble removal efficiency can be improved, and the ejection time is shortened.
  • the bubbles of the abrasive remaining on the polished surface of the wafer can be removed more efficiently and reliably, and the amount of pure water or hydrophilic agent used can be reduced, thereby reducing the cost.
  • water droplets or the like are not scattered and scattered.
  • Table 1 shows a wafer having a diameter of 450 mm by using the polishing method of the present invention, with an injection flow rate of 1 L / min, an injection angle of 25 degrees, an injection liquid of pure water, and a polishing head rotation speed and an injection time of pure water varied.
  • the combination of a plurality of polishing head rotation speeds and pure water jetting time can reduce the occurrence of haismura to 0%, that is, it can prevent the occurrence of haismura, and the polishing head rotation speed and jetting time can be adjusted according to the nozzle used. It can be seen that, by optimizing, reliable bubble removal can be achieved in a short time.
  • the nozzle installation position is preferably obliquely below the polishing head as shown in FIG. If the spraying position is the head rising end position after interruption of polishing and after completion of polishing, bubbles can be removed in the shortest time after completion of polishing. It is also possible to provide an ejection position during the turning of the head. When jetting in the middle of turning, the time until bubble removal is slightly delayed, but the turning speed is added as an optimization condition, so it is easier to optimize the conditions.
  • a polishing apparatus including three surface plates and four polishing heads is used.
  • the present invention is not limited to this number, and an index type polishing apparatus that simultaneously polishes a wafer using a plurality of these. As long as any of them is used, the present invention can be implemented. Further, the present invention can be implemented even when a plurality of polishing heads assigned to one surface plate as shown in FIG. 1 are used instead of one.
  • Example 1 A silicon wafer was polished according to the wafer polishing method of the present invention using an index-type wafer polishing apparatus as shown in FIGS. After performing a processing flow using a brush cleaning mechanism for improving the haze level in the cleaning after polishing, the silicon wafer is polished using the first polishing axis that is most likely to generate a haze unevenness.
  • a particle measuring instrument SP3 manufactured by KLA-Tencor was measured with a particle measuring instrument SP3 manufactured by KLA-Tencor, and a haze map was output on an auto scale and then judged visually.
  • the wafer to be polished was 450 mm in diameter.
  • the injection liquid from the nozzle was pure water, the nozzle was a flat type made of PP, the pure water supply pressure was 0.3 MPa, the injection angle was 25 degrees, the orifice diameter was 1.3 mm, and the injection amount was 1 L / min.
  • the time from polishing interruption to restart when switching the surface plate and the time from the end of polishing to the start of the peeling operation at the unloading stage were 30 seconds.
  • Example 2 Example 1 except that the time from polishing interruption to resumption when switching the surface plate and the time from the end of polishing to the start of the peeling operation at the unloading stage (including the 270-degree turning movement) being 20 seconds The wafer was polished under the same conditions as above, and the haze was evaluated.
  • Example 3 Example 1 except that the time from polishing interruption to restart when switching the surface plate and the time from the end of polishing to the start of the peeling operation at the unloading stage (including 270 degrees of swivel movement) were set to 15 seconds The wafer was polished under the same conditions as above, and the haze was evaluated.
  • Example 1 Example 1 except that the time from polishing interruption to resumption when switching the surface plate and the time from the end of polishing to the start of the peeling operation at the unloading stage (including the 270-degree turning movement) being 40 seconds
  • the wafer was polished under the same conditions as above, and the haze was evaluated.
  • Example 2 The wafer was polished under the same conditions as in Example 1 except that pure water or a hydrophilic agent was not sprayed from the nozzle onto the wafer, and the haze was evaluated.
  • FIG. 6 shows a haze map on the wafer surface in the case of Example 1 and Comparative Example 2.
  • Example 1 in which pure water was jetted from the nozzle, no haismura was observed on the wafer surface, but in the case of Comparative Example 2 in which no pure water was jetted from the nozzle, the hazyma was noticeable. .
  • the time from the polishing interruption to the restart when the spray liquid is sprayed onto the polishing surface of the wafer and the switching of the surface plate, and the time from the end of polishing to the start of the peeling operation at the unloading stage are 30. It was found that the occurrence of haismura can be prevented by setting the time within seconds.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

本発明は、研磨ヘッド(6,7,8,9)と、研磨布(17)が貼り付けられた定盤(3,4,5)を共に複数用い、研磨ヘッドを旋回移動させることで、研磨ヘッドで保持したウェーハ(W)の研磨に用いる定盤を切り替えながら、研磨剤をそれぞれの定盤上に供給しつつ、複数のウェーハを同時に研磨するインデックス方式の研磨方法であって、定盤を切り替える際のウェーハの研磨中断後から研磨再開までの時間とウェーハの研磨終了後から研磨ヘッドからの剥離動作開始までの時間を30秒以内とし、ウェーハの研磨中断後及び研磨終了後に、研磨ヘッドを回転させつつ、純水又は親水剤をノズル(16)から噴射してウェーハの研磨面に付着した研磨剤の泡を除去することを特徴とするウェーハの研磨方法であり、研磨ステップ途中及び研磨終了後から剥離動作開始までに発生するヘイズムラやエッチングムラを効果的に防止することができる。

Description

ウェーハの研磨方法
 本発明は、ヘイズムラ及びエッチングムラを防止するインデックス方式のウェーハの研磨方法に関する。
 シリコンウェーハに代表される半導体ウェーハは、図8に示すような、研磨布105が貼り付けられた定盤102と、定盤102上に研磨剤106を供給するための研磨剤供給機構103と、研磨するウェーハWを保持するための研磨ヘッド104から構成された研磨装置101を用い、研磨ヘッド104でウェーハWを保持し、研磨剤供給機構103から研磨布105上に研磨剤106を供給するとともに、定盤102と研磨ヘッド104をそれぞれ回転させてウェーハWの表面を研磨布105に摺接させることにより研磨が行なわれている。
 また、半導体ウェーハの研磨は、研磨布の種類や研磨剤の種類を換えて、多段で行なわれることが多く、特に最終段で行なわれる研磨工程を仕上研磨やファイナル研磨と呼んでいる。
 半導体ウェーハの研磨で用いられる研磨装置は、生産性の面から、一般的にインデックス方式と呼ばれている複数の定盤を持つ研磨装置が使用されていることが多い。インデックス方式の研磨装置を図9に示す。ここで、複数の定盤207、208、209を持つ研磨装置201は、研磨ヘッドを回転させるための研磨軸を定盤数よりも多く持つことが多く、このような研磨装置201は、研磨中にウェーハWのローディング(保持)とアンローディング(剥離)を行なうことができるため、生産性を向上させることができる。このような研磨装置201は、中心軸202を起点に各研磨軸を旋回させる方式が用いられている。
 また、インデックス方式の研磨装置は、各種配線等の保護のため、研磨ヘッドの旋回移動時の動きは研磨軸によって異なる。
 例えば図9に示すような定盤を3つ持つインデックス方式の研磨装置の場合、研磨ヘッド206を取り付ける研磨軸は、4軸×n以上(図9の研磨装置201の場合は4軸)ある。初期位置がローディング/アンローディングステージ205の位置である研磨軸を第1の研磨軸204とした場合、図10に示すように、第1の研磨軸204は、ローディング/アンローディングステージ205の位置を基準として、0度(ローディング/アンローディングステージ205位置)→90度(第1の定盤207位置)→180度(第2の定盤208位置)→270度(第3の定盤209位置)→0度(ローディング/アンローディングステージ205位置)のように第1の研磨ヘッド206が旋回移動しながらウェーハの研磨が行なわれる。つまり、270度(第3の定盤209位置)の位置で研磨が終了すると、270度逆方向へ旋回しローディング/アンローディングステージ205位置へ戻って研磨ヘッドからの剥離動作を開始する。なお、図10中の第1、2、3、4の研磨軸は、図9中における、第1の研磨軸204、第2の研磨軸210、第3の研磨軸211、第4の研磨軸212をそれぞれ表している。
 仕上げ研磨工程が終了したウェーハは、超音波や薬液を用いた洗浄を行った後、KLA-Tencor社製などのパーティクル測定器にてパーティクルとヘイズの検査が行なわれる。パーティクル測定器は、面内のヘイズの違いをマップとして出力することが可能である。ここで、ヘイズマップは、表面のムラを判定し易くするため、オートスケールで出力されることが多く、ヘイズレベルが小さくなると、ムラはより見えやすくなる。
 このため、従来では、オートスケールで出力した際に確認されるヘイズムラの顕在化を防止するため、仕上げ研磨剤に含有する親水剤を調整し、研磨後のウェーハ表面の保護膜を強化するなどの対策をとっていた。また、特許文献1には、ウェーハ表面に付着した研磨剤による局所的なエッチングを防止するために、仕上げ研磨終了後、40秒以内に研磨後のウェーハを洗浄槽へ投入する、あるいは、仕上げ研磨終了後のウェーハ表面に対し、霧状にしたシャワーあるいは低圧のシャワーを行い、ウェーハの表面が研磨剤で覆われた状態で洗浄する方法が記載されている。
特開2004-265906号公報
 上記したように、例えば図9に示すインデックス方式の研磨装置201を用いて研磨した場合、各研磨軸は90度旋回移動する場合と、270度旋回移動する場合があり、次のステップまでの移動時間がそれぞれ異なる。第1の研磨軸204のウェーハは、第3の定盤209で最後の研磨をした後、アンローディング位置まで逆方向に270度の旋回移動を行なうため、研磨終了後の移動中にウェーハ表面に付着した研磨剤によるエッチング作用を受ける時間が長くなり、他の研磨軸のウェーハに比べて、ヘイズムラが発生しやすい。このヘイズムラの原因は、ウェーハの研磨面に残留する研磨剤の泡であり、ウェーハの研磨面の泡がある部分とない部分では、研磨剤の付着状態が異なり、研磨剤のエッチングにより泡のパターンの一部あるいは全体がウェーハの研磨面に残り、ヘイズムラとして観察されるからである。
 さらに、各研磨軸はスタート位置が異なるため、270度の逆旋回を行なうタイミングが異なる。上記したように、第1の研磨軸204は研磨終了後に270度の旋回を行なうため、研磨後ウェーハの表面がエッチングされやすい。第2の研磨軸210、第3の研磨軸211は研磨終了前の研磨ステップの途中で270度の旋回が行なわれるため、旋回移動中にウェーハ表面が研磨剤によりエッチングされても、次の研磨ステップで修正がされることが多い。第4の研磨軸212は、研磨開始前に270度の旋回を行なうため、研磨中断後から研磨再開までの旋回は全て90度となり、旋回移動時間の面では理想的な動作となる。したがって、研磨装置201の機構的に、ヘイズムラは第1の研磨軸204が最も発生し易く、第4の研磨軸212が最も発生し難くなる。
 インデックス方式の研磨装置を使用して研磨を行なった直径300mmの複数のウェーハの中から、各研磨軸の位置での研磨ヘッドで保持しながら研磨したウェーハのヘイズマップの一例を図11に示す。第1の研磨軸204にて研磨されたウェーハの研磨面は、全体的にムラっぽいことが分かる。第2の研磨軸210と第3の研磨軸211で研磨されたウェーハの研磨面は、全体的には均一であるが、図中の丸で囲んだ部分で一部ムラのようなパターンが見える。第4の研磨軸212で研磨されたウェーハの研磨面には、このようなムラは見られない。
 特に、第1の研磨軸204のウェーハのヘイズムラは、直径450mmの研磨が可能な大型の研磨装置では、更に顕著となり、オートスケールのマップによるヘイズムラ判定では不良となるレベルとなる。このヘイズムラの一例を図12に示す。
 このように、どの研磨軸で研磨を行うかによって、研磨後のウェーハ表面のヘイズマップに違いが発生し、特に第1の研磨軸204で研磨されたウェーハは、他の研磨軸で研磨されたウェーハよりもヘイズムラが潜在的に発生しやすいといった機構上の問題があった。
 近年、表面の平滑性の改善要求が高まり、研磨後の洗浄にエッチング力の少ないブラシ洗浄等が導入されたことにより、ヘイズレベルは大きく改善した。これに伴い、インデックス方式の研磨装置で研磨した場合のインデックス方式の研磨装置特有の研磨軸間のヘイズムラが問題となってきた。特に、直径450mmのウェーハの研磨が可能な大型の研磨装置では、図12で示すように第1の研磨軸204で発生するヘイズムラは明らかな異常として認識されるようになった。
 また、特許文献1に記載された方法は、仕上研磨後のウェーハに対し、洗浄槽投入までの時間管理や、洗浄前に霧状にしたシャワーあるいは低圧のシャワーを用いる方法であるため、図10に示したような、インデックス方式における各研磨軸の移動時間の違いから発生するヘイズムラは防止することができなかった。従って、同一製品であっても、研磨に使用する研磨軸毎に、異なるヘイズパターンが混在するといった問題があった。
 本発明は前述のような問題に鑑みてなされたもので、インデックス方式の研磨装置特有の、研磨ステップ途中及び研磨終了後から剥離動作開始までに発生するヘイズムラやエッチングムラを、効果的に防止することができる研磨方法を提供することを目的とする。
 上記目的を達成するために、本発明によれば、ウェーハを保持するための研磨ヘッドと、ウェーハを研磨するための研磨布が貼り付けられた定盤を共に複数用い、前記研磨ヘッドを旋回移動させることによって、前記研磨ヘッドで保持した前記ウェーハの研磨に用いる前記定盤を切り替えながら、研磨剤供給機構から研磨剤をそれぞれの前記定盤上に供給しつつ、複数のウェーハを同時に研磨するインデックス方式の研磨方法であって、前記定盤を切り替える際の前記ウェーハの研磨中断後から研磨再開までの時間、及び、前記ウェーハの研磨終了後から前記研磨ヘッドからの剥離動作開始までの時間を30秒以内とし、前記ウェーハの研磨中断後及び研磨終了後に、前記研磨ヘッドを回転させつつ、純水又は親水剤をノズルから噴射して前記ウェーハの研磨面に付着した研磨剤の泡を除去することを特徴とするウェーハの研磨方法を提供する。
 このようなウェーハの研磨方法であれば、ウェーハの研磨中断後及び研磨終了後に、ウェーハの研磨面に残留する研磨剤の泡を効果的に除去することができ、かつ、短時間で研磨再開及び剥離動作開始することで、ウェーハが研磨剤のエッチング作用を受ける時間を短くすることができる。その結果、ウェーハのヘイズムラやエッチングムラの発生を防止することができる。特に、インデックス方式における各研磨軸の移動時間の違いから発生するヘイズムラは防止することができる。また、噴射液は純水でも十分な効果が得られるが、親水剤を用いることもできる。親水剤を用いると、ウェーハ表面をコーティングする効果がある。
 このとき、前記ノズルからの前記純水又は前記親水剤の噴射を、前記ウェーハの直径範囲内となるように行うことができる。
 このようにすれば、ノズルからの噴射はウェーハ面内に限定され、研磨ヘッド上部のカバー内に設置された電装部品に、噴射した純水又は親水剤が到達することを防ぐことができ、電装部品のトラブルを防ぐことができる。さらに、泡除去に寄与しない純水又は親水剤の使用量を削減することができ、コストを抑えることができる。
 またこのとき、前記ノズルのオリフィス径を0.5mm~2.0mmとすることができる。
 このようにすれば、ノズルの供給圧を調整することにより、純水又は親水剤の噴射角度と流量を最適化することができ、より確実に研磨剤の泡を除去してウェーハのヘイズムラの発生を防止することができる。
 さらに、前記ノズルの材質を樹脂製とすることができる。
 このようにすれば、純水又は親水剤がノズルからの不純物汚染を受けることを防止でき、清浄度の高い純水又は親水剤でウェーハの研磨面に残留する研磨剤の泡を除去できる。その結果、ウェーハの不純物汚染を防止することができる。
 このとき、前記ノズルから噴射する前記純水又は前記親水剤の流量を0.5L/min以上とすることが好ましい。
 このようにすれば、ウェーハの研磨面に残留する研磨剤の泡を効果的に除去するために必要な純水又は親水剤を十分に噴射することができ、より確実にヘイズムラの発生を防止することができる。
 またこのとき、前記ノズルから前記純水又は前記親水剤を噴射しているときの前記研磨ヘッドの回転数を20rpm以下とすることができる。
 このような回転数の範囲にすれば、ウェーハの研磨面に残留する研磨剤の泡の除去効率が上昇し、短い噴射時間で泡を除去することができるとともに、必要以上に高回転となることにより、純水等が振り飛ばされて、周囲に飛散する心配もない。その結果、純水又は親水剤の使用量を削減し、コストを抑えることができ、さらに、作業効率を向上させることができる。
 本発明の、ウェーハの研磨方法では、定盤を切り替える際のウェーハの研磨中断後から研磨再開までの時間、及び、ウェーハの研磨終了後から研磨ヘッドからの剥離動作開始までの時間を30秒以内とし、ウェーハの研磨中断後及び研磨終了後に、研磨ヘッドを回転させつつ、純水又は親水剤をノズルから噴射して前記ウェーハの研磨面に付着した研磨剤の泡を除去するので、エッチング作用を受ける時間を短くすることができる。その結果、ウェーハの研磨面におけるヘイズムラやエッチングムラの発生を効果的に防止することができる。
本発明のウェーハの研磨方法で用いる研磨装置を説明する概略図である。 本発明のウェーハの研磨方法で用いる研磨装置の一部を示す概略図である。 本発明の研磨方法における各研磨軸の旋回移動方法の一例を示すフロー図である。 ノズルからの噴射パターンを示す図である。 実施例1,2,3と比較例1におけるヘイズムラ発生率を示した図である。 実施例1と比較例2におけるヘイズムラ発生率を示した図である。 実施例1と比較例2におけるヘイズマップを示した図である。 一般的な研磨装置の一例を示す図である。 インデックス方式の研磨装置の一例を示す図である。 インデックス方式の研磨方法の各研磨軸の旋回移動方法の一例を示すフロー図である。 従来のインデックス方式の研磨方法により研磨した直径300mmウェーハのヘイズマップを示した図である。 従来のインデックス方式の研磨方法により第1の研磨軸の位置で研磨した直径450mmウェーハのヘイズマップを示した図である。
 以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
 上記したように、従来のインデックス方式のウェーハの研磨方法においては、研磨軸毎に、次のステップまでの移動時間がそれぞれ異なり、特に研磨中断後及び研磨終了後に長時間の移動を要する研磨軸においては、研磨剤の泡による研磨剤の付着状態のばらつきがあり、研磨剤のエッチング作用により泡のパターンの一部あるいは全体がウェーハ表面に残り、ヘイズムラが発生するという問題があった。
 そこで、本発明者等はインデックス方式のウェーハの研磨方法において、ヘイズムラの発生を防止すべく鋭意検討を重ねた。その結果、定盤を切り替える際のウェーハの研磨中断後から研磨再開までの時間、及び、ウェーハの研磨終了後から研磨ヘッドからの剥離動作開始までの時間を30秒以内とし、ウェーハの研磨中断後及び研磨終了後に、研磨ヘッドを回転させつつ、純水又は親水剤をノズルから噴射してウェーハの研磨面に付着した研磨剤の泡を除去することでヘイズムラやエッチングムラの発生を効果的に防止できることに想到し、本発明を完成させた。
 まず、本発明の研磨方法において用いられる研磨装置について説明する。図1及び図2に示すように、研磨装置1はウェーハWのロード及びアンロードを行うローディング/アンローディングステージ2と、ウェーハWを研磨するための研磨布17が貼り付けられた第1の定盤3、第2の定盤4、第3の定盤5を具備する。ローディング/アンローディングステージ2、第1の定盤3、第2の定盤4、第3の定盤5の上方には、それぞれウェーハWを保持するための第1の研磨ヘッド6と第1の研磨ヘッド6を取り付け回転させるための第1の研磨軸10、第2の研磨ヘッド7と第2の研磨軸11、第3の研磨ヘッド8と第3の研磨軸12、第4の研磨ヘッド9と第4の研磨軸13を有している。
 また、各々の回転軸が同時に中心軸14を起点に旋回することで、各研磨ヘッドが旋回移動し、ウェーハの研磨に用いる定盤を切り替えながら研磨を行うものとなっている。図1に示した各研磨ヘッドと研磨軸の位置は初期位置であり、この後旋回移動を繰り返して定盤を切り替えながらウェーハの研磨、ロード、アンロード(剥離)を行う。
 また、図2に示すように、各定盤の上方には研磨剤を定盤上に供給するための研磨剤供給機構15とウェーハの研磨面に純水又は親水剤を噴射し、ウェーハの研磨面に付着した研磨剤の泡を除去するノズル16を有している。
 ここで、効果的に泡を除去するために、ノズル16としては、フラットタイプのノズルが好ましい。フラットタイプのノズルであれば、噴射液が扇状に噴射されるため、ウェーハ面に対し、水平方向に噴射することにより、効果的に泡を除去することができる。
 このような研磨装置1を用いた場合の本発明のウェーハの研磨方法について説明する。
 図1及び図3に示すように、最初、ローディング/アンローディングステージ2の位置にある第1の研磨軸10は、第1の研磨ヘッド6にウェーハをロードした後、90度旋回し、第1の定盤3へ移動し、そこで研磨を開始する。次に、第1の定盤3での研磨を中断し、90度旋回し、第2の定盤4へ移動し研磨を再開する。次に、第2の定盤4での研磨を中断し、90度旋回し、第3の定盤5へ移動し第3の定盤5で研磨を再開する。
 第3の定盤5でウェーハの研磨が終了すると、270度逆側に旋回し、ローディング/アンローディングステージ2へ移動し、ウェーハをアンロードし、1サイクル終了となる。その他の研磨軸も同時に、同様の旋回移動をすることで各定盤または各定盤とローディング/アンローディングステージ2を切り替えながらウェーハの研磨、ロード、アンロードを行う。
 ここで、本発明では各定盤を切り替える際のウェーハの研磨中断後から研磨再開までの時間、及び、ウェーハの研磨終了後から前記研磨ヘッドからの剥離動作開始までの時間を30秒以内とする。さらに、ウェーハの研磨中断後から研磨再開前、及び、研磨終了後から剥離動作開始までに、各研磨ヘッドを回転させながら、純水又は親水剤をノズル16から噴射してウェーハの研磨面に付着した研磨剤の泡を除去する。
 このような、本発明の研磨方法であれば、ウェーハの研磨中断後及び研磨終了後に、純水又は親水剤の噴射によってウェーハの研磨面に残留する研磨剤の泡を効果的に除去することができ、研磨剤のエッチングにより泡のパターンがウェーハの研磨面に残るのを防ぐことができる。さらに、短時間で研磨再開及び剥離動作開始することで、ウェーハが研磨剤のエッチング作用を受ける時間を短くすることができる。また、噴射液は純水でも十分な効果が得られるが、親水剤を用いることもできる。親水剤を用いると、ウェーハ表面をコーティングする効果があり、研磨剤のエッチング作用を低減することができる。以上のことから、本発明のウェーハの研磨方法であれば、ヘイズムラやエッチングムラの発生を防止することができる。
 このとき、ノズル16からの純水又は親水剤の噴射を、ウェーハの直径範囲内となるように行うことができる。
 ここでノズル16からの噴射パターンを、図4に示す。図4に示すようにノズル16からの純水又は親水剤が噴射される範囲の角度を噴射角度とすると、この噴射角度が、ウェーハの直径の範囲内に入るようにすれば、噴射した純水又は親水剤による各研磨ヘッドの上部の電装部品のトラブルの発生を未然に防ぐことができる。さらに、ウェーハの研磨面に残留する研磨剤の泡の除去に寄与しない純水又は親水剤の使用量を削減することができ、コストを抑えることができる。
 また、純水又は親水剤の噴射角度は、ウェーハ直径とウェーハ中心位置からノズル16までの距離から計算して選定することができる。例えば、直径300mmのウェーハで、ノズルからウェーハ中心までの距離が500mmの場合、直径をカバーするのに必要な噴射角度は約31度となる。同様に、直径450mmのウェーハで、ノズルからウェーハ中心までの距離が700mmの場合、必要な角度は約33度となり、どちらの場合も、選定するノズルの噴射角度は25度~30度程度を選定すれば、ウェーハ表面に付着した泡を効果的に除去することができる。
 このとき、ノズル16のオリフィス径を0.5mm~2.0mmとすることが好ましい。
 この範囲であれば、ノズル16の供給圧により、噴射角度と流量を最適化することができ、ヘイズムラの発生をより確実に防止することができる。
 またこのとき、ノズルの材質を樹脂製とすることが好ましい。
 このようにすれば、ノズルからの不純物汚染を防止することができ、清浄度の高い純水又は親水剤でウェーハの研磨面に残留する研磨剤の泡を除去でき、ウェーハの不純物汚染を防止できる。
 より具体的には、ノズルの材質として選択する樹脂は、PP(ポリプロピレン)やPVDF(ポリフッ化ビニリデン)、PPS(ポリフェニレンサルファイド)、PFA(パーフルオロアルコキシアルカン)、PE(ポリエチレン)、PVC(ポリ塩化ビニル)が好ましい。
 さらに、ノズル16から噴射する前記純水又は前記親水剤の流量を0.5L/min以上とすることが好ましい。
 このようにすれば、ウェーハの研磨面に残留する研磨剤の泡を効果的に除去するために必要な純水又は親水剤を十分に噴射することができ、より確実にヘイズムラの発生を防止することができる。
 より好ましくは、1L/min以上の流量が取れると良い。一般的にカタログ等に表示されているノズルの噴射角度は0.3MPaの供給圧の場合であるが、噴射流量は、0.3MPaの圧力で、0.5L/min以上の流量が確保できるノズルを選定すれば泡の除去は可能であり、さらに好ましくは、各研磨軸の旋回移動時間に制約があるため、1L/min以上の流量が取れるノズルを選定する。また、ノズルからの噴射角度は、純水又は親水剤供給圧に依存して変化する。粘性のある親水剤を規定の角度で噴射するためには、低圧では難しいため、供給圧は0.3MPa以上であることが望ましい。
 このとき、ノズル16から純水又は親水剤を噴射しているときの各研磨ヘッドの回転数を20rpm以下とすることが好ましい。
 このように、回転数を制御することで、泡の除去効率を向上させることができ、噴射時間が短くなる。その結果、より効率良く確実にウェーハの研磨面に残留する研磨剤の泡を除去することができ、さらに、純水又は親水剤の使用量を削減することができ、コストを抑えることができる。また、必要以上に高速回転させることで、水滴等を振り飛ばして、飛散させることもなくなる。
 表1に、本発明の研磨方法を用いて、噴射流量を1L/min、噴射角度25度、噴射液を純水とし、研磨ヘッド回転数と純水の噴射時間を変化させて直径450mmのウェーハの研磨を行った場合のヘイズムラ発生率を示す。複数の研磨ヘッド回転数と純水の噴射時間の組合せでヘイズムラの発生率を0%に、すなわちヘイズムラの発生を防止することができ、使用するノズルに合わせて、研磨ヘッド回転数と噴射時間を最適化することにより短時間で、確実な泡除去が可能であることがわかる。
Figure JPOXMLDOC01-appb-T000001
 ノズルの設置位置は、図2のように、研磨ヘッド下斜め方向が好ましい。噴射する位置は研磨中断後及び研磨終了後のヘッド上昇端位置であれば、研磨終了後最短時間で泡除去を行うことができる。また、ヘッド旋回途中に噴射位置を設けることも可能である。旋回途中に噴射する場合は、泡除去までの時間は若干遅くなるが、最適化条件として旋回速度が加わるため、より条件の最適化がし易くなる。
 上記では、3個の定盤と4個の研磨ヘッドを具備した研磨装置を用いているが、本発明はこの数に限定されず、これらを複数用いてウェーハを同時に研磨するインデックス方式の研磨装置であれば、いずれのものを用いても本発明を実施できる。また、図1に示すような1つの定盤に割り当てる研磨ヘッドを1つではなく複数としたものを用いても本発明を実施できる。
 以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
 図1、図2に示すようなインデックス方式のウェーハの研磨装置を用いて、本発明のウェーハの研磨方法に従ってシリコンウェーハを研磨した。研磨後の洗浄に、ヘイズレベルを改善するためのブラシ洗浄機構を用いた加工フローを行った後で、最もヘイズムラが発生しやすい第1の研磨軸を使用して研磨を行ったシリコンウェーハのヘイズムラを、KLA-Tencor社製のパーティクル測定器SP3で測定し、ヘイズマップをオートスケールで出力した後、目視で判定した。
 研磨対象のウェーハは直径450mmとした。ノズルからの噴射液は純水とし、ノズルはPP製のフラットタイプ、純水供給圧を0.3MPa、噴射角度25度、オリフィス径1.3mm、噴射量を1L/minとした。また、定盤を切り替える際の研磨中断から再開までの時間、及び、研磨終了からアンローディングステージでの剥離動作開始までの時間(270度の旋回移動を含む)を30秒とした。
(実施例2)
 定盤を切り替える際の研磨中断から再開までの時間、及び、研磨終了からアンローディングステージでの剥離動作開始までの時間(270度の旋回移動を含む)を20秒としたこと以外、実施例1と同様な条件でウェーハを研磨し、ヘイズムラを評価した。
(実施例3)
 定盤を切り替える際の研磨中断から再開までの時間、及び、研磨終了からアンローディングステージでの剥離動作開始までの時間(270度の旋回移動を含む)を15秒としたこと以外、実施例1と同様な条件でウェーハを研磨し、ヘイズムラを評価した。
(比較例1)
 定盤を切り替える際の研磨中断から再開までの時間、及び、研磨終了からアンローディングステージでの剥離動作開始までの時間(270度の旋回移動を含む)を40秒としたこと以外、実施例1と同様な条件でウェーハを研磨し、ヘイズムラを評価した。
(比較例2)
ノズルからウェーハに純水又は親水剤を噴射しなかったこと以外、実施例1と同様な条件でウェーハを研磨し、ヘイズムラを評価した。
 図5に示すように、実施例1、2、3においてはヘイズムラの発生を防止することができた。しかし、比較例1では約4%のヘイズムラの発生が見られた。このことから、定盤を切り替える際の研磨中断から再開までの時間、及び、研磨終了から剥離動作開始までの時間が長くなるとヘイズムラが発生するが、30秒以内であれば、ヘイズムラの発生を防止することができることがわかった。
 図6に示すように、比較例2では、ヘイズムラ発生率が53.1%と非常に高くなってしまった。また、図7に実施例1と比較例2の場合のウェーハ表面におけるヘイズマップを示す。ノズルからの純水の噴射があった実施例1の場合、ウェーハ表面にはヘイズムラは見られないが、ノズルからの純水の噴射がない比較例2の場合では、ヘイズムラが顕著にみられた。
 以上の結果から、噴射液をウェーハの研磨面に噴射し、かつ、定盤を切り替える際の研磨中断から再開までの時間、及び、研磨終了からアンローディングステージでの剥離動作開始までの時間を30秒以内とすることでヘイズムラの発生を防止できることが分かった。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (6)

  1.  ウェーハを保持するための研磨ヘッドと、ウェーハを研磨するための研磨布が貼り付けられた定盤を共に複数用い、前記研磨ヘッドを旋回移動させることによって、前記研磨ヘッドで保持した前記ウェーハの研磨に用いる前記定盤を切り替えながら、研磨剤供給機構から研磨剤をそれぞれの前記定盤上に供給しつつ、複数のウェーハを同時に研磨するインデックス方式の研磨方法であって、
     前記定盤を切り替える際の前記ウェーハの研磨中断後から研磨再開までの時間、及び、前記ウェーハの研磨終了後から前記研磨ヘッドからの剥離動作開始までの時間を30秒以内とし、前記ウェーハの研磨中断後及び研磨終了後に、前記研磨ヘッドを回転させつつ、純水又は親水剤をノズルから噴射して前記ウェーハの研磨面に付着した研磨剤の泡を除去することを特徴とするウェーハの研磨方法。
  2.  前記ノズルからの前記純水又は前記親水剤の噴射を、前記ウェーハの直径範囲内となるように行うことを特徴とする請求項1に記載のウェーハの研磨方法。
  3.  前記ノズルのオリフィス径を0.5mm~2.0mmとすることを特徴とする請求項1又は請求項2に記載のウェーハの研磨方法。
  4.  前記ノズルの材質を樹脂製とすることを特徴とする請求項1乃至請求項3のいずれか1項に記載のウェーハの研磨方法。
  5.  前記ノズルから噴射する前記純水又は前記親水剤の流量を0.5L/min以上とすることを特徴とする請求項1乃至請求項4のいずれか1項に記載のウェーハの研磨方法。
  6.  前記ノズルから前記純水又は前記親水剤を噴射しているときの前記研磨ヘッドの回転数を20rpm以下とすることを特徴とする請求項1乃至請求項5のいずれか1項に記載のウェーハの研磨方法。
     
PCT/JP2014/002332 2013-05-28 2014-04-25 ウェーハの研磨方法 WO2014192224A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013112321A JP6044455B2 (ja) 2013-05-28 2013-05-28 ウェーハの研磨方法
JP2013-112321 2013-05-28

Publications (1)

Publication Number Publication Date
WO2014192224A1 true WO2014192224A1 (ja) 2014-12-04

Family

ID=51988279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002332 WO2014192224A1 (ja) 2013-05-28 2014-04-25 ウェーハの研磨方法

Country Status (3)

Country Link
JP (1) JP6044455B2 (ja)
TW (1) TW201517144A (ja)
WO (1) WO2014192224A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114714234A (zh) * 2022-05-13 2022-07-08 安徽微芯长江半导体材料有限公司 一种碳化硅晶片减薄装置及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6602720B2 (ja) * 2016-04-04 2019-11-06 グローバルウェーハズ・ジャパン株式会社 半導体基板の保護膜形成方法
TWI722478B (zh) * 2019-07-05 2021-03-21 新代科技股份有限公司 具有砂輪之磨床及其砂輪加工地圖的最佳化方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196340A (ja) * 1999-10-27 2001-07-19 Shin Etsu Handotai Co Ltd ワークの研磨方法及びワーク研磨装置
JP2001274124A (ja) * 2000-03-23 2001-10-05 Tokyo Seimitsu Co Ltd ウェハ研磨装置
JP2002510875A (ja) * 1998-04-08 2002-04-09 アプライド マテリアルズ インコーポレイテッド ケミカルメカニカルポリシングにおいてスラリーを除去する装置および方法
JP2003289058A (ja) * 2002-03-28 2003-10-10 Sumitomo Electric Ind Ltd 化合物半導体ウエハの研磨方法および化合物半導体ウエハの研磨装置
JP2011066426A (ja) * 2009-09-21 2011-03-31 Semes Co Ltd スイングノズルユニット及びそれを有する基板処理装置
JP2011142201A (ja) * 2010-01-07 2011-07-21 Okamoto Machine Tool Works Ltd 半導体基板の平坦化加工装置および平坦化加工方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3185753B2 (ja) * 1998-05-22 2001-07-11 日本電気株式会社 半導体装置の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002510875A (ja) * 1998-04-08 2002-04-09 アプライド マテリアルズ インコーポレイテッド ケミカルメカニカルポリシングにおいてスラリーを除去する装置および方法
JP2001196340A (ja) * 1999-10-27 2001-07-19 Shin Etsu Handotai Co Ltd ワークの研磨方法及びワーク研磨装置
JP2001274124A (ja) * 2000-03-23 2001-10-05 Tokyo Seimitsu Co Ltd ウェハ研磨装置
JP2003289058A (ja) * 2002-03-28 2003-10-10 Sumitomo Electric Ind Ltd 化合物半導体ウエハの研磨方法および化合物半導体ウエハの研磨装置
JP2011066426A (ja) * 2009-09-21 2011-03-31 Semes Co Ltd スイングノズルユニット及びそれを有する基板処理装置
JP2011142201A (ja) * 2010-01-07 2011-07-21 Okamoto Machine Tool Works Ltd 半導体基板の平坦化加工装置および平坦化加工方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114714234A (zh) * 2022-05-13 2022-07-08 安徽微芯长江半导体材料有限公司 一种碳化硅晶片减薄装置及方法
CN114714234B (zh) * 2022-05-13 2023-11-21 安徽微芯长江半导体材料有限公司 一种碳化硅晶片减薄装置及方法

Also Published As

Publication number Publication date
TW201517144A (zh) 2015-05-01
JP6044455B2 (ja) 2016-12-14
JP2014232783A (ja) 2014-12-11

Similar Documents

Publication Publication Date Title
TWI353006B (en) Method for manufacturing epitaxial wafer
JP6100002B2 (ja) 基板裏面の研磨方法および基板処理装置
KR100903602B1 (ko) 실리콘 웨이퍼 제조 방법
TW201618898A (zh) 拋光處理裝置及基板處理裝置
JP6044455B2 (ja) ウェーハの研磨方法
US10256120B2 (en) Systems, methods and apparatus for post-chemical mechanical planarization substrate buff pre-cleaning
TWI547348B (zh) 化學機械研磨裝置與方法
TW201246318A (en) Method for cleaning a semiconductor wafer
CN102172878B (zh) 一种硅片的抛光方法
CN105312268A (zh) 晶圆清洗装置
CN203887686U (zh) 研磨头清洗装置和化学机械研磨设备
CN112405331A (zh) 晶圆研磨装置
CN111383955A (zh) 用于清洗晶圆的滚轮以及具有滚轮的清洗装置
US11881418B2 (en) Wafer cleaning apparatus
JP6439608B2 (ja) 面取り加工方法及び面取り加工装置
JP2010021273A (ja) 半導体装置の製造方法及び半導体製造装置
JP2010135524A (ja) 研削加工されたシリコン基盤の洗浄方法
KR20080109181A (ko) 반도체 제조설비의 웨이퍼 표면 세정장치
WO2015015705A1 (ja) ウェーハの研磨方法及びウェーハの研磨装置
JP2004200240A (ja) 片面鏡面ウェーハの製造方法
JP2015191930A (ja) 化学機械研磨装置
TWI614089B (zh) 半導體基板的保護膜形成方法
KR101540799B1 (ko) 실리콘 웨이퍼 재사용을 위한 웨이퍼 클리닝 장치 및 클리닝 방법
CN103128649A (zh) 能减少残余浆料的化学机械抛光方法
JP7464088B2 (ja) 半導体ウェーハの両面研磨方法、研磨ウェーハの製造方法、及び半導体ウェーハの両面研磨装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14803442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14803442

Country of ref document: EP

Kind code of ref document: A1