TWI722478B - 具有砂輪之磨床及其砂輪加工地圖的最佳化方法 - Google Patents
具有砂輪之磨床及其砂輪加工地圖的最佳化方法 Download PDFInfo
- Publication number
- TWI722478B TWI722478B TW108123699A TW108123699A TWI722478B TW I722478 B TWI722478 B TW I722478B TW 108123699 A TW108123699 A TW 108123699A TW 108123699 A TW108123699 A TW 108123699A TW I722478 B TWI722478 B TW I722478B
- Authority
- TW
- Taiwan
- Prior art keywords
- grinding wheel
- grinding
- value
- processing map
- load rate
- Prior art date
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
Abstract
一種砂輪加工地圖的最佳化方法,包括:利用磨床之控制器從資料平
台取得砂輪之參考加工地圖,參考加工地圖包含理想負載率下,砂輪研磨線速度值、砂輪研磨切深值所形成之參考研磨參數區間;計算出縮放倍率值乘以參考研磨參數區間,得到該磨床的最佳化加工地圖。藉此,可以獲得量化的加工工藝參數,並可將參數資料儲存在控制器中,每次進行加工時可即時參考。
Description
本發明提供一種砂輪磨削工藝的最佳化方法,特別是針對於磨床中以特定砂輪進行研磨時所採用參數的最佳化,以及運用砂輪加工地圖的最佳化方法。
磨削加工是精密的加工手法之一,它的精度要求高,例如精度要求誤差在正負1μm之內,表面品質的要求也高,因此,對終端客戶在進行磨削時,對應於不同的待加工件材料需要有合適的砂輪種類,以及配合適當的機台特性下使用合適的加工參數,才能達到精度與品質的要求。然而,加工參數,例如磨削加工所使用的砂輪尺寸、砂輪轉速、砂輪於待加工工件的切深等等,往往需要花上大量時間進行調適與尋找,而使用新的待加工工件與新種類砂輪的搭配需要耗費短則數天、長則數周的時間進行調整,以達成較佳精度的工藝成品。再者,若是使用既有的、長時間使用的待加工工件與既有的砂輪搭配之加工參數,也會因砂輪片所設置的機台特性不同而需要調整,調整時間短則數小時、長則數天,仍需耗費較長的時間,這樣都造成了製作工件的成本增加。
另外,這調校工藝的操作者多是須要具備深厚的加工經驗,亦即須要資深的磨削加工師父來進行調整才能達成較好的精度與表面品質,一般新
手操作人員進行調校後也難以達到精度與品質的要求;就算達成標準,所花費的時間是遠超過資深的磨削加工師父進行調適所需要的時間。而且,進行調適時,加工工藝參數調整只憑藉著加工人員所稱的「手感」,沒有量化的結果,使得資深的磨削加工師父教導或是將經驗傳承給新手操作人員時無所本,讓一般工廠磨削加工調適工藝傳承困難。
為改善現有技術的缺失,本發明提供一種砂輪加工地圖的最佳化方法,包括:利用磨床之控制器從資料平台取得砂輪之參考加工地圖,參考加工地圖包含理想負載率下,砂輪研磨線速度值、砂輪研磨切深值所形成之參考研磨參數區間;取得參考研磨參數區間中,理想負載率下之起始點,起始點具有第一砂輪研磨線速度值以及第一砂輪研磨最大切深值;以使用砂輪之磨床進行研磨,利用控制器將砂輪設定於第一砂輪研磨線速度值;記錄待加工工件研磨到第一砂輪研磨切深值時,磨床輸出第一負載率;利用控制器將第一負載率與理想負載率進行比較,其中當第一負載率小於理想負載率時,則選擇估計點(qr),且該估計點(qr)與起始點具有相同第一砂輪研磨線速度值及大於第一砂輪研磨最大切深值的第(r+1)砂輪研磨最大切深值,當第一負載率大於該理想負載率時,則選擇估計點qr與起始點具有相同第一砂輪研磨線速度,及小於該第一砂輪研磨最大切深值的第(r+1)砂輪研磨最大切深值,藉此得到第(r+1)負載率等於該理想負載率,其中r為大於1的正整數;運用控制器將第(r+1)砂輪研磨最大切深值除以第一砂輪研磨最大切深值,以獲得縮放倍率值;以及根據縮放倍率值來縮放參考研磨參數區間,以獲得最佳化的加工地圖。
本發明的優點在於:使用本發明所提供的砂輪磨削工藝的最佳化方法,可以藉由量化的參考加工工藝參數,進行有系統的調校,以快速獲得精確的加工工藝參數,而且此加工工藝參數又可以儲存在控制器中或是上傳到資料平台,可為相同型號的砂輪對同樣種類的待加工工件進行加工時的依據。
本發明的另一優點在於:不同的加工機台(磨床)只要針對同種類的待加工工件、使用同型號砂輪片,便能夠快速建立此待加工工件、砂輪與機台組合的加工工藝參數。另外,操作者也可以隨時讀取先前任一次的加工工藝參數,如同資深的磨削加工師父隨時在場,讓磨削加工調適工藝傳承方便簡單且智慧化。
1:磨床
10:基座
12:第一滑軌
14:傳送件
16:砂輪組件
18:砂輪
20:第二滑軌
22:控制器
201:最佳化模組
202:儲存裝置
203:比較器
204:讀取器
205:運算器
30:加工工件
40:資料平台
a,b,c,d,e,f:參考加工地圖的邊界參考點
g,h,i,j,k,l:最佳化加工地圖的邊界參考點
m:臨界砂輪研磨切深值
s:臨界砂輪研磨線速度值
p:臨界砂輪研磨線速度值與臨界研磨砂輪切深值之交點
n:對應於c點X座標的臨界砂輪研磨線速度值
q:估計值
R:參考加工地圖之砂輪研磨線速度的中間值
F1~F9、J1~J2:獲得縮放倍率值所進行的步驟
G1~G4:獲得最佳化加工地圖所進行的步驟
圖1是根據本發明所揭露的技術,表示本發明所提供的加工地圖示意圖;圖2是根據本發明所揭露的技術,表示為具有砂輪的磨床的示意圖;圖3是根據本發明所揭露的技術,表示具有砂輪的磨床中,最佳化模組構造的內部示意圖;圖4是根據本發明所揭露的技術,表示獲得縮放倍率值所進行的演算流程圖;以及圖5是根據本發明所揭露的技術,表示進行縮放程序以獲得最佳化加工地圖的流程圖。
為使貴審查委員對於本發明之結構目的和功效有更進一步之瞭解與認同,茲配合圖示詳細說明如後。以下將參照圖式來描述為達成本發明目的所使用的技術手段與功效,而以下圖式所列舉之實施例僅為輔助說明,以利貴審查委員瞭解,但本案之技術手段並不限於所列舉圖式。
在本發明中,所示之坐標系是採用二維的笛卡爾坐標系(Cartesian coordinate system)。二維的笛卡爾坐標系是採用(X,Y)的資料格式表示,二維的笛卡爾坐標系具有兩個值,一個是X值,另一個是Y值。其中X值是指X座標值,Y值是指Y座標值。
首先請參考圖1,圖1是本發明所提供的加工地圖(包含參考加工地圖以及最佳化加工地圖)示意圖。此加工地圖是一個X軸為砂輪研磨線速度值(單位是m/min)、Y軸為砂輪研磨切深值(單位是μm)所構成的XY折線圖。加工地圖(即研磨參數區)的範圍為由多條折線與X軸構成的多邊形區域,界定研磨參數區間以讓使用者在此多邊形區域中選擇可用的研磨參數。圖1中,將邊界參考點a、b、c、d、e、f以直線連結所圍繞的區域稱為參考研磨參數區間。根據本發明之實施例,此參考研磨參數區間在加工地圖中是一個六邊形,具有六個邊界參考點g、h、i、j、k、l以直線連結所圍繞的區域稱為最佳化研磨參數區間。最佳化研磨參數區間是根據研磨參數區間經過運算得到的縮放倍率值所形成的。
根據本發明之實施例,砂輪供應廠商(簡稱砂輪廠)販售不同規格的砂輪予工件加工廠時,可一併將其該砂輪的參考加工地圖提供給工件加工廠。在一實施例中,砂輪廠可將出廠的砂輪之參考加工地圖上傳於資料平台,並隨砂輪提供QR code,加工廠時進行加工前可藉由掃描砂輪的QR code掃描從資料平台取得參考加工地圖,直接傳進磨床的控制器中。相同的砂輪對應不同材質的加工工件,或是不同規格的砂輪對應相同材質的加工工件,應有不同的對應參考加工地圖。
請繼續參考圖1。以下簡介加工地圖的形成過程。砂輪廠可將出廠前的同一規格砂輪,先裝到磨床上進行試磨,且會使用砂輪對不同材料的加工工件進行測試。圖1上的p點是砂輪製造時的規格。根據砂輪所使用的粒徑大小、尺寸、黏著劑等可以決定在最理想負載率(即磨床輸出的切削力/磨床馬達額定扭力)下,此砂輪理論的臨界砂輪研磨線速度值以及臨界砂輪研磨切深值,並以此點分別作出平行於加工地圖中X軸與Y軸的兩線段。此兩線段分別交X軸與Y軸於s點和m點。此m、p、s三點構成的直線與加工地圖中X軸與Y軸所圍繞的區域是該砂輪的臨界加工範圍。以下根據本發明之一實施例說明參考加工地圖的完成方法,砂輪對工件物料(例如模具鋼)的臨界砂輪研磨線速度值為2000m/min、臨界砂輪研磨切深值為30μm,以及理想負載率為50%(切削力10N.m/馬達額定扭力為20N.m)。當超過臨界砂輪研磨切深值時,砂輪上的顆粒會直接剝落,砂輪也會有破碎的危險。試磨時,以臨界砂輪研磨線速度值的一半,即1000m/min開始對特定加工工件30(例如模具鋼)進行研磨,並記錄於1000m/min的砂輪研磨線速度值下當機台負載率達到50%(即切削力達到10N.m/馬達額定扭力20N.m)時的砂輪研磨最大切深值(即圖1上c點的Y座標)。磨床1操作者繼續逐漸增加以及減低砂輪研磨線速度值,測試在不同砂輪研磨線速度值下,當機台負載率達到50%(即切削力達到10N.m/馬達額定扭力20N.m)時的砂輪研磨最大切深值,藉此得到如圖1之a、b、c、d、e、f點連接線所形成的參考研磨參數區間,即砂輪對工件30的參考加工地圖;a點是此砂輪對此工件的砂輪研磨最小線速度值800m/min,b點是對應砂輪研磨最小線速度值的砂輪研磨最大切深值10μm,當砂輪研磨線速度值提升時,砂輪研磨最大切深值也隨之提升,直到超過c點的X座標(1000m/min)之後,砂輪研磨最大切深值(15μm)會維持相同值到d點,當砂輪研磨線速度值增加到超過d點的X座標(1400m/min)之後,砂輪研磨最大切深值反而會隨X軸數值的增加而下降,直到e點到達極限11μm,該砂
輪對工件30的砂輪研磨最大線速度值為f點1800m/min。不同規格的砂輪針對不同材料的加工工件會有不同的加工地圖以及不同面積大小的研磨參數區間。
請繼續參考圖1,由g、h、i、j、k、l所圍成的六邊形是利用本發明的砂輪磨削工藝最佳化方法後,所獲得的最佳化的研磨參數區間,即最佳化的加工地圖。使用者利用本發明所提到的砂輪磨削工藝最佳化方法,可以獲得縮放倍率值。後續將此縮放倍率值對參考研磨參數區間進行縮放,以形成最佳化的研磨參數區間。在本實施例中,相同的砂輪使用於不同的磨床,因機台的剛性不同,在相同的負載率下,該機台的最佳化加工地圖會與出廠時的參考加工地圖呈現縮放的倍率關係。
接著請繼續參考圖2,圖2所示為本發明的一個實施例,表示具有砂輪的磨床1的示意圖。本實施例的磨床1包括了基座10,基座10上設有第一滑軌12以及傳送件14,傳送件14可沿著第一滑軌12水平地推送待磨的加工工件30,到砂輪組件16正下方的待磨位置。砂輪組件16裝設有砂輪18,砂輪組件16可沿著第二滑軌20垂直移動,以接觸加工工件達成研磨加工。磨床1並具有控制器22,可控制砂輪18且與資料平台40進行資訊連接,以取得特定砂輪對應特定加工工件之參考加工地圖。該資料平台40可由砂輪廠、加工廠或是提供平台服務的第三方廠商建構以及提供。控制器22更包含了資料運算用的最佳化模組201(如圖3所示)。磨床1的砂輪18,可依照操作者的不同需求進行替換,例如需要研磨不同材料的工件時。
接著請繼續參考圖3,圖3所示為具有砂輪的磨床1中,最佳化模組201構造的內部示意圖。最佳化模組201中包括了儲存裝置202、比較器203、讀取器204以及運算器205。最佳化模組201以儲存裝置202儲存砂輪廠所提供的參考加工地圖,並利用比較器203、讀取器204以及運算器205,根據參考加工地圖運算出最佳化的縮放倍率值,藉此生成最佳化加工地圖。在本實施例中,最
佳化模組201一般是微處理器(microprocessor)或是嵌入式系統。再者,儲存裝置202是非揮發性記憶體或是硬碟,讓磨床1斷電時能繼續保存加工地圖。參見圖2,控制器22亦可將最佳化加工地圖上傳至資料平台40,以構建更完整的參考加工地圖資料庫。
接著說明如何獲得縮放倍率值的詳細進行流程。請同時參考圖1與圖4,其中,圖4表示獲得縮放倍率值所進行的演算流程圖。以下詳細敘述演算流程中的各個步驟F1~F9以及J1~J2:
步驟F1:利用磨床1之控制器22從資料平台40取得砂輪18之參考加工地圖,以及該砂輪18對工件30的臨界砂輪研磨線速度值、臨界砂輪研磨切深值,以及理想負載率(即磨床的輸出切削力/馬達額定扭力)三個參數。根據本發明之實施例,該砂輪18對工件30的臨界砂輪研磨線速度值為2000m/min、臨界砂輪研磨切深值為30μm,以及理想負載率(即機台輸出之切削力/機台的馬達額定扭力)為50%(馬達額定扭力為20N.m,機台輸出之切削力為10N.m)。步驟F1的三個參數都是砂輪廠所提供。以最佳化模組201中的讀取器204獲得,藉此取得該參考研磨參數區間中,在該理想負載率下之一起始點,例如砂輪工作區間的砂輪研磨中間線速度值為1000m/min(第一砂輪研磨線速度值),以進行步驟F2。
步驟F2:砂輪研磨中間線速度值對應參考加工地圖c點的X座標,以c點為起始點。在本步驟中,利用最佳化模組201中的讀取器204獲得取得參考加工地圖中,c點的座標值為第一砂輪研磨線速度值1000m/min(X座標),第一砂輪研磨最大切深值為15μm(Y座標)、磨床負載率(即為理想負載率)為50%(切削力為10N.m/馬達額定扭力20N.m)。後續進行步驟F3。
步驟F3:以c點的座標值,即砂輪研磨線速度值1000m/min(X座標),砂輪研磨最大切深值為15μm(Y座標)在磨床1上進行試磨,以控制器22紀錄此時的負載率(即為第一負載率)。
步驟J1:利用控制器中最佳化模組201中的比較器203,將F3步驟得到的第一負載率與c座標的理想負載率進行比較。若是第一負載率小於理想負載率,表示此機台的剛性較大,相同的砂輪研磨線速度以及負載率可達成較大的砂輪研磨切深值;該機台的最佳化加工地圖會較參考加工地圖的範圍更大,可進行F4步驟。同理,若是第一負載率大於理想負載率,表示此機台的剛性較小,相同的砂輪研磨線速度值以及負載率只能達成較小切深值;該機台的其最佳化加工地圖會較參考加工地圖的範圍更小,進行F5步驟。
步驟F4:該機台的最佳化加工地圖會較參考加工地圖的範圍更大,因此將與c點有相同X值,且Y值為該砂輪的臨界砂輪研磨切深值的n點找出,利用最佳化模組201中的運算器205,運算出n點與c點座標的中心點,獲得第一估計點q1,其砂輪研磨切深值大於該第一最大砂輪研磨切深值,在此實施例中q1點的座標為(1000,22.5)。後續進行步驟F6。
步驟F5:該機台的最佳化加工地圖會較參考加工地圖的範圍更小,因此將與c點有相同X值,且砂輪研磨切深值為0的點找出,利用最佳化模組201中的運算器205,運算出c點與(Xc,0)座標的中心點,獲得第一估計點q1,其砂輪研磨切深值小於第一砂輪研磨最大切深值,在此時,施力中q1點的座標為(1000,7.5),後續進行步驟F6。
步驟F6:經過r次選擇以及比對後(其中r為大於1的正整數),得到估計點qr的砂輪研磨線速度值及砂輪研磨切深值進行磨削,得到第(r+1)負載率,以進行步驟J2。
步驟J2:利用最佳化模組201中的比較器203,將F6步驟得到的第(r+1)負載率與c座標的理想負載率進行比較,確認第(r+1)負載率是否等於理想負載率。因注意的是,根據使用者的設定,該第(r+1)負載率與該理想負載率之差值可有容許誤差值,讓控制器22可以更快速地完成最佳化加工地圖的運算。而容許誤差值是使用者根據所需運算時間長短而自行設定的數值,通常該容許誤差值為理想負載率的正負1~2%。例如,若是使用者想較快速獲得縮放倍率值,可將誤差值設定得較大。在此實施例中,容許誤差值為正負0.15N.m(1.5%)。若是估計點的第(r+1)負載率與c座標的負載率差值小於容許誤差值,則可進行步驟F7。若是估計點的負載率與c座標的負載率差值大於容許誤差值,則需要進行步驟F8。
步驟F7:利用最佳化模組201中的運算器205,將估計點qr的Y值(第(r+1)砂輪研磨切深值)與c點的Y值(第一砂輪研磨切深值)相除,得到縮放倍率值,並將該縮放倍率值儲存於最佳化模組201中的儲存裝置202。進行步驟F9,結束此流程。
步驟F8:利用最佳化模組201中的運算器205,於前述估計點qr與c點之間再取一個中心點,此中心點為下一個估計點,再進行步驟F6以及步驟J2,之後則是不斷重複二分逼近法,直到估計點qr之負載率(第r+1負載率)與c座標的差值小於容許誤差值。
根據以上流程得到該磨床的最佳化加工地圖的縮放倍率值以後,可由使用者自行設定或是由磨床1的控制器22自動設定將參考加工地圖進行縮放,以得到最佳化加工地圖。最後說明縮放圖形的詳細進行流程。請參考圖5,圖5表示進行縮放程序以獲得最佳化加工地圖的流程圖。後續詳述演算流程中的各個步驟G1~G4:
步驟G1:控制器22之運算器205以參考加工地圖的最大砂輪研磨線速度值(在本發明所提供的實施例中為1800m/min)及最小砂輪研磨線速度值(此實施例為800m/min),計算出參考加工地圖的中心參考點R的座標為(1300,0)(如圖1所示),並以讀取器204取得此中心參考點R。將R點設定為圖形縮放的中心點。後續進行步驟G2。
步驟G2:以運算器205計算參考加工地圖邊界參考點a、b、c、d、e、f各點到中心參考點R的向量。例如a-R的向量為(-500,0),c-R的向量為(-300,15),以此類推。後續進行步驟G3。
步驟G3:以運算器205將上述各向量乘上圖4流程所得到的縮放倍率值,並加上R的座標值,即可得到最佳化加工地圖的各邊界參考點座標值。例如,g點的座標值為a-R之向量(-500,0)乘上縮放倍率值9/5,並加上R的座標(1300,0),得到g點的座標為(400,0),以此類推得到最佳化加工地圖的g、h、i、j、k、l點座標,以界定出最佳化加工地圖的範圍。後續進行步驟G4。
步驟G4:利用控制器22的儲存裝置202將上述座標值以及最佳化加工地圖進行儲存,供後續進一步調整用。運算器205可採用電子試算表軟體,包含Microsoft Excel®、蘋果II型控制器的儲存裝置中的VisiCalc®、Mac OS X作業系統中附的Numbers®等等。任何具有資料輸入功能以及圖表製作功能的電子試算表都可以使用。
在本發明的一實施例中,使用者可以磨床1的控制器22的輸入介面206或是使用外部裝置(未示於圖中)控制控制器22。外部裝置可以是個人行動助理(PDA)、智慧型手機或是電腦。
上述進行縮放流程的實施例,即是利用前述所獲得的縮放倍率值進行縮放,透過加工地圖中參考參數,使最佳化的研磨參數區間能根據砂輪廠的參考加工地圖,且可根據磨床的特性快速最佳化,不斷更新並補強資料平台,
使得最佳化的加工地圖更具實用性。較於傳統上只能依據資深人員經驗傳承、無量化的資料與較慢的調整工件參數,本發明所提供的獲得縮放倍率值與縮放流程所構成的砂輪磨削工藝的最佳化方法能夠快速且量化地獲得可進行的最佳研磨參數,並且可將資料儲存並重複的最佳化,讓經驗得以傳承,並且根據實際加工狀況不斷更新資料。
上述僅為本發明之較佳實施例,並非用以限定本發明之權利範圍;同時以上的描述,對於相關技術領域之專門人士應可明瞭及實施,因其他未脫離本發明所揭示之精神下所完成的等效改變或修飾,均應包含在申請專利範圍中。
F1~F9、J1~J2:獲得縮放倍率值所進行的步驟
Claims (10)
- 一種砂輪加工地圖的最佳化方法,包括:利用一磨床之一控制器,從一資料平台取得一砂輪的一參考加工地圖,其中該參考加工地圖包含在一理想負載率下,由一砂輪研磨線速度值及一砂輪研磨切深值所形成之一參考研磨參數區間;取得該參考研磨參數區間中,在該理想負載率下之一起始點,該起始點具有一第一砂輪研磨線速度值以及一第一砂輪研磨最大切深值;使用該砂輪之該磨床對一待加工工件進行研磨,其中利用該控制器將該砂輪設定於該第一砂輪研磨線速度值;記錄該待加工工件研磨到該第一砂輪研磨切深值時,該磨床輸出一第一負載率;利用該控制器將該第一負載率與該理想負載率進行比較,其中當該第一負載率小於該理想負載率時,則選擇一估計點(qr),且該估計點(qr)與該起始點具有相同該第一砂輪研磨線速度值及大於該第一砂輪研磨最大切深值的一第(r+1)砂輪研磨最大切深值,當該第一負載率大於該理想負載率時,則選擇該估計點(qr)與該起始點具有相同之該第一砂輪研磨線速度,及小於該第一砂輪研磨最大切深值的該第(r+1)砂輪研磨最大切深值,藉此得到一第(r+1)負載率等於該理想負載率,其中r為大於1的正整數;運用該控制器將該第(r+1)砂輪研磨最大切深值除以該第一砂輪研磨最大切深值,以獲得一縮放倍率值;以及根據該縮放倍率值來縮放該參考研磨參數區間,以獲得一最佳化的加工地圖。
- 如請求項1所述的砂輪加工地圖的最佳化方法,其中該第(r+1)負載率與該理想負載率差值小於一容許誤差值,該容許誤差值為該理想負載率的正負1~2%。
- 如請求項1所述的砂輪加工地圖的最佳化方法,其中該控制器包含一儲存裝置以儲存該參考加工地圖以及該縮放倍率值。
- 如請求項1所述的砂輪加工地圖的最佳化方法,其中該控制器包含一比較器以比較該第一負載率、該第(r+1)負載率以及該理想負載率。
- 如請求項1所述的砂輪加工地圖的最佳化方法,其中該控制器包含一運算器以根據該第一砂輪研磨最大切深值以及該第(r+1)砂輪研磨最大切深值運算出該縮放倍率值。
- 如請求項1所述的砂輪加工地圖的最佳化方法,將該參考加工地圖以該縮放倍率值生成最佳化加工地圖的步驟中,包含:取得該參考加工地圖之一中心參考點,其座標為(砂輪研磨線速度中間值,切深值為0);取得該參考加工地圖中於該理想負載率下,複數個邊界參考點,其座標為(砂輪研磨線速度值,砂輪研磨切深值)的座標值;取得該中心參考點與該些邊界參考點的複數個向量;以及將該些向量值乘上該縮放倍率值,並加上該中心參考點的座標值以得到該最佳化加工地圖的各邊界參考點座標值。
- 一種具有砂輪之磨床,其包括:一基座,該基座上設有一第一滑軌及一傳送件; 一砂輪組件,裝設有一砂輪,該傳送件沿著該第一滑軌水平地推送待磨的一加工工件,到該砂輪組件正下方的一待磨位置,該砂輪組件沿著一第二滑軌垂直移動,以接觸該加工工件達成一研磨加工;以及一控制器用以控制該砂輪的一砂輪研磨線速度以及一砂輪研磨切深值,其中該控制器包含一最佳化模組,用以自一資料平台取得一參考加工地圖,以及運算生成一縮放倍率值以形成最佳化的一加工地圖,其中該加工地圖的一範圍為由多條折線與一X軸構成的一多邊形區域且該加工地圖用以界定一研磨參數區間以讓一使用者在該多邊形區域中選擇可用的一研磨參數。
- 如請求項7所述的該具有砂輪之磨床,其中該最佳化模組包含一儲存裝置用以儲存該參考加工地圖以及該縮放倍率值。
- 如請求項7所述的該具有砂輪之磨床,其中該最佳化模組包含一運算器用以運算出該縮放倍率值。
- 如請求項7所述的該具有砂輪之磨床,其中該最佳化模組包含一讀取器用以讀取該參考加工地圖。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108123699A TWI722478B (zh) | 2019-07-05 | 2019-07-05 | 具有砂輪之磨床及其砂輪加工地圖的最佳化方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW108123699A TWI722478B (zh) | 2019-07-05 | 2019-07-05 | 具有砂輪之磨床及其砂輪加工地圖的最佳化方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202103090A TW202103090A (zh) | 2021-01-16 |
TWI722478B true TWI722478B (zh) | 2021-03-21 |
Family
ID=75234542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108123699A TWI722478B (zh) | 2019-07-05 | 2019-07-05 | 具有砂輪之磨床及其砂輪加工地圖的最佳化方法 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI722478B (zh) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015008303A (ja) * | 2014-08-04 | 2015-01-15 | 株式会社東京精密 | 研磨終点検出装置、及び研磨終点検出方法 |
TW201517144A (zh) * | 2013-05-28 | 2015-05-01 | Shinetsu Handotai Kk | 晶圓的硏磨方法 |
US20180028898A1 (en) * | 2016-05-12 | 2018-02-01 | Skatescribe Corporation | Methods of Measuring and Grinding an Ice Blade, and Apparatuses Using Same |
US20180111246A1 (en) * | 2015-08-14 | 2018-04-26 | M Cubed Technologies, Inc. | Machine for finishing a work piece, and having a highly controllable treatment tool |
CN108398950A (zh) * | 2018-03-13 | 2018-08-14 | 安捷睿(厦门)机器人有限公司 | 一种地面磨平机器人及地面磨平机器人控制方法 |
TW201912302A (zh) * | 2017-08-31 | 2019-04-01 | 日商Sumco股份有限公司 | 矽晶圓的兩面研磨方法 |
CN109719612A (zh) * | 2017-10-31 | 2019-05-07 | 株式会社荏原制作所 | 研磨装置、研磨系统、基板处理装置以及研磨方法 |
CN109844656A (zh) * | 2017-05-12 | 2019-06-04 | 韩奉锡 | 半导体晶圆化学机械研磨工序的研磨动作分析方法及其装置 |
TW201923881A (zh) * | 2017-10-31 | 2019-06-16 | 日商荏原製作所股份有限公司 | 研磨裝置、研磨系統、基板處理裝置、研磨方法及程式 |
TWM586193U (zh) * | 2019-07-05 | 2019-11-11 | 新代科技股份有限公司 | 具有砂輪之磨床 |
-
2019
- 2019-07-05 TW TW108123699A patent/TWI722478B/zh active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201517144A (zh) * | 2013-05-28 | 2015-05-01 | Shinetsu Handotai Kk | 晶圓的硏磨方法 |
JP2015008303A (ja) * | 2014-08-04 | 2015-01-15 | 株式会社東京精密 | 研磨終点検出装置、及び研磨終点検出方法 |
US20180111246A1 (en) * | 2015-08-14 | 2018-04-26 | M Cubed Technologies, Inc. | Machine for finishing a work piece, and having a highly controllable treatment tool |
US20180028898A1 (en) * | 2016-05-12 | 2018-02-01 | Skatescribe Corporation | Methods of Measuring and Grinding an Ice Blade, and Apparatuses Using Same |
CN109844656A (zh) * | 2017-05-12 | 2019-06-04 | 韩奉锡 | 半导体晶圆化学机械研磨工序的研磨动作分析方法及其装置 |
TW201912302A (zh) * | 2017-08-31 | 2019-04-01 | 日商Sumco股份有限公司 | 矽晶圓的兩面研磨方法 |
CN109719612A (zh) * | 2017-10-31 | 2019-05-07 | 株式会社荏原制作所 | 研磨装置、研磨系统、基板处理装置以及研磨方法 |
TW201923881A (zh) * | 2017-10-31 | 2019-06-16 | 日商荏原製作所股份有限公司 | 研磨裝置、研磨系統、基板處理裝置、研磨方法及程式 |
CN108398950A (zh) * | 2018-03-13 | 2018-08-14 | 安捷睿(厦门)机器人有限公司 | 一种地面磨平机器人及地面磨平机器人控制方法 |
TWM586193U (zh) * | 2019-07-05 | 2019-11-11 | 新代科技股份有限公司 | 具有砂輪之磨床 |
Also Published As
Publication number | Publication date |
---|---|
TW202103090A (zh) | 2021-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101934484B (zh) | 刀具磨削加工方法及装置 | |
US20220379380A1 (en) | Hybrid additive and subtractive manufacturing | |
CN102445922B (zh) | 用于复合加工的方法和设备 | |
Hu et al. | Five-axis tool path generation based on machine-dependent potential field | |
CN114918747B (zh) | 三面刃铣刀的后刀面磨削方法、装置和计算机设备 | |
CN104460525A (zh) | 用于构建零件加工方法的方法和系统 | |
JP2005309713A (ja) | 工程設計支援システム及び支援方法 | |
US11307559B2 (en) | Generation of holding tabs for fixing a part during machining | |
CN111176214B (zh) | 一种刀具轨迹生成方法、装置和铣削机器人 | |
CN104317246B (zh) | 一种对弱刚性刀具多轴加工路径进行让刀补偿的方法 | |
Wang et al. | Suppression of mid-spatial-frequency waviness by a universal random tree-shaped path in robotic bonnet polishing | |
TWI722478B (zh) | 具有砂輪之磨床及其砂輪加工地圖的最佳化方法 | |
CN110300936A (zh) | 用于设计和加工齿轮的方法以及相应的加工机床和软件 | |
US11176291B2 (en) | Roughing toolpath sequences generation for computer aided manufacturing | |
TWM586193U (zh) | 具有砂輪之磨床 | |
CN110238710B (zh) | 具有砂轮之磨床及其砂轮加工地图的优化方法 | |
CN114905341B (zh) | 三面刃铣刀的前刀面磨削方法、装置和计算机设备 | |
Feng et al. | Tool path planning for five-axis U-pass milling of an impeller | |
CN210849444U (zh) | 一种具有砂轮的磨床 | |
JP5322881B2 (ja) | 加工シミュレーション装置および最適工程決定装置 | |
JP5983268B2 (ja) | 加工工程決定装置、加工工程決定プログラム及び加工工程決定方法 | |
CN112659121B (zh) | 机器人磨轮半径补偿方法、装置、机器人及存储介质 | |
CN101424934A (zh) | 直轴非球面镜面加工系统及方法 | |
CN104483905A (zh) | 用于控制机器人加工零件的方法和系统 | |
CN115587441B (zh) | 一种流道结构增减材复合制造工艺规划方法及系统 |