WO2014189066A1 - ブレーキ装置及びブレーキシステム - Google Patents

ブレーキ装置及びブレーキシステム Download PDF

Info

Publication number
WO2014189066A1
WO2014189066A1 PCT/JP2014/063421 JP2014063421W WO2014189066A1 WO 2014189066 A1 WO2014189066 A1 WO 2014189066A1 JP 2014063421 W JP2014063421 W JP 2014063421W WO 2014189066 A1 WO2014189066 A1 WO 2014189066A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
stroke simulator
master cylinder
brake device
axis
Prior art date
Application number
PCT/JP2014/063421
Other languages
English (en)
French (fr)
Inventor
雅記 御簾納
亮平 丸尾
千春 中澤
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201480013262.XA priority Critical patent/CN105073525B/zh
Priority to KR1020157023337A priority patent/KR101719443B1/ko
Priority to DE112014002556.9T priority patent/DE112014002556T5/de
Priority to US14/774,553 priority patent/US10202108B2/en
Publication of WO2014189066A1 publication Critical patent/WO2014189066A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input
    • B60T8/4086Systems with stroke simulating devices for driver input the stroke simulating device being connected to, or integrated in the driver input device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T11/00Transmitting braking action from initiating means to ultimate brake actuator without power assistance or drive or where such assistance or drive is irrelevant
    • B60T11/10Transmitting braking action from initiating means to ultimate brake actuator without power assistance or drive or where such assistance or drive is irrelevant transmitting by fluid means, e.g. hydraulic
    • B60T11/16Master control, e.g. master cylinders
    • B60T11/20Tandem, side-by-side, or other multiple master cylinder units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T11/00Transmitting braking action from initiating means to ultimate brake actuator without power assistance or drive or where such assistance or drive is irrelevant
    • B60T11/10Transmitting braking action from initiating means to ultimate brake actuator without power assistance or drive or where such assistance or drive is irrelevant transmitting by fluid means, e.g. hydraulic
    • B60T11/16Master control, e.g. master cylinders
    • B60T11/22Master control, e.g. master cylinders characterised by being integral with reservoir
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T11/00Transmitting braking action from initiating means to ultimate brake actuator without power assistance or drive or where such assistance or drive is irrelevant
    • B60T11/10Transmitting braking action from initiating means to ultimate brake actuator without power assistance or drive or where such assistance or drive is irrelevant transmitting by fluid means, e.g. hydraulic
    • B60T11/16Master control, e.g. master cylinders
    • B60T11/228Pressure-maintaining arrangements, e.g. for replenishing the master cylinder chamber with fluid from a reservoir
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/142Systems with master cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/02Arrangements of pumps or compressors, or control devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/36Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force
    • B60T8/3615Electromagnetic valves specially adapted for anti-lock brake and traction control systems
    • B60T8/3675Electromagnetic valves specially adapted for anti-lock brake and traction control systems integrated in modulator units
    • B60T8/368Electromagnetic valves specially adapted for anti-lock brake and traction control systems integrated in modulator units combined with other mechanical components, e.g. pump units, master cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/36Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force
    • B60T8/3615Electromagnetic valves specially adapted for anti-lock brake and traction control systems
    • B60T8/3675Electromagnetic valves specially adapted for anti-lock brake and traction control systems integrated in modulator units
    • B60T8/368Electromagnetic valves specially adapted for anti-lock brake and traction control systems integrated in modulator units combined with other mechanical components, e.g. pump units, master cylinders
    • B60T8/3685Electromagnetic valves specially adapted for anti-lock brake and traction control systems integrated in modulator units combined with other mechanical components, e.g. pump units, master cylinders characterised by the mounting of the modulator unit onto the vehicle

Definitions

  • the present invention relates to a brake device.
  • a brake device for a vehicle is known.
  • the stroke simulator is arranged so as to be in the horizontal position of the master cylinder when the vehicle is mounted.
  • An object of the present invention is to provide a brake device capable of improving the vehicle mountability.
  • the master cylinder and the stroke simulator are arranged so as to overlap each other in the vertical direction (as viewed from the vertical direction) when the vehicle is mounted.
  • FIG. 1 is a perspective view of a brake device 1 according to a first embodiment.
  • 1 is a perspective view of a brake device 1 according to a first embodiment.
  • 1 is a top view of a brake device 1 according to a first embodiment.
  • 1 is a bottom view of a brake device 1 according to a first embodiment.
  • 1 is a side view of a brake device 1 according to a first embodiment.
  • 1 is a side view of a brake device 1 according to a first embodiment.
  • 1 is a front view of a brake device 1 according to a first embodiment.
  • 1 is a rear view of a brake device 1 according to a first embodiment.
  • FIG. 8 is a cross-sectional view taken along line AA in FIG. 7.
  • 3 is a perspective view of an actuator 8 according to Embodiment 1.
  • the vehicle to which the brake device of the present embodiment is applied is an electric vehicle that can generate a regenerative braking force by an electric motor.
  • the electric vehicle include a hybrid vehicle provided with an electric motor (generator) in addition to an engine (internal combustion engine) as a prime mover for driving wheels, an electric vehicle provided with only a motor (generator), and the like.
  • the braking system (brake system) of the present embodiment is a hydraulic brake system that applies a brake hydraulic pressure to each wheel of the vehicle to generate a braking force.
  • a wheel cylinder (caliper) provided on each wheel of the vehicle generates a brake operating fluid pressure (wheel cylinder fluid pressure) in response to a supply of a brake operation fluid pressure or a control fluid pressure.
  • the brake system includes a brake device 1 as an input device to which a driver's brake operation is input, and an electric brake actuator (hereinafter referred to as actuator 8) that can generate a brake fluid pressure based on an electric signal corresponding to the driver's brake operation. And).
  • the brake device 1 operates in accordance with a driver's brake operation, and generates a master cylinder hydraulic pressure as a braking operation hydraulic pressure.
  • the actuator 8 is provided separately from the brake device 1 and controls the wheel cylinder hydraulic pressure (brake hydraulic pressure) according to the brake operation state or the vehicle state.
  • the x-axis is provided in the vehicle front-rear direction (the axial direction in which the master cylinder 4 operates).
  • the axial direction of the master cylinder 4 is substantially parallel to the longitudinal direction of the vehicle, so the x-axis direction is the longitudinal direction of the vehicle.
  • the forward direction of the vehicle is the x-axis positive direction.
  • the y-axis is provided in the vehicle width direction (left-right direction or lateral direction), and the left side when viewed from the rear of the vehicle (x-axis negative direction side) is the y-axis positive direction.
  • the z axis is provided in the vertical direction (vertical direction) of the vehicle, and the upper side of the vehicle (the side where the reservoir tank 3 is installed with respect to the master cylinder 4) is defined as the positive direction of the z axis.
  • FIG. 1 is a perspective view of the brake device 1 as viewed from the x-axis negative direction side, the y-axis positive direction side, and the z-axis positive direction side.
  • FIG. 2 is a perspective view of the brake device 1 as seen from the x-axis positive direction side, the y-axis negative direction side, and the z-axis positive direction side.
  • FIG. 3 is a top view of the brake device 1 as viewed from the z-axis positive direction side.
  • FIG. 4 is a bottom view of the brake device 1 as seen from the z-axis negative direction side.
  • FIG. 5 is a side view of the brake device 1 as viewed from the y-axis positive direction side.
  • FIG. 6 is a side view of the brake device 1 as seen from the y-axis negative direction side.
  • FIG. 7 is a front view of the brake device 1 as seen from the x-axis positive direction side.
  • FIG. 3 is a top view of the brake device 1 as viewed from the z-axis positive direction side.
  • FIG. 4 is a bottom view of the brake device 1 as seen from the z-axis negative direction side.
  • FIG. 5 is a
  • FIG. 8 is a rear view of the brake device 1 as seen from the x-axis negative direction side.
  • 9 is a cross-sectional view of the brake device 1 taken along a plane passing through the axis of the master cylinder 4.
  • FIG. 7 is a cross-sectional view taken along the line AA in FIG.
  • the brake device 1 includes a push rod 2, a reservoir tank 3, a master cylinder 4, a stroke simulator 5, and a stroke simulator valve 6. That is, the brake device 1 is a master cylinder unit in which the master cylinder 4 is built.
  • the brake system has two systems (primary P system and secondary S system) of brake piping. Hereinafter, members and structures provided corresponding to each system are distinguished by adding suffixes P and S to the end of the reference numerals.
  • the push rod 2 is connected to a brake pedal (not shown) via a clevis 20.
  • the brake pedal is an input member (brake operation member) that receives an input of a driver's brake operation.
  • the push rod 2 operates in the x-axis direction in conjunction with the brake pedal.
  • the stroke is performed in the positive x-axis direction in accordance with the depression operation of the brake pedal.
  • the x-axis positive direction end of the push rod 2 is in contact with the piston 41P of the master cylinder 4 (see FIG. 9).
  • the push rod 2 receives the driver's operation force input to the brake pedal, and transmits this to the master cylinder 4 as thrust in the x-axis direction.
  • a flange portion 21 is provided on the outer periphery of the push rod 2 on the x-axis positive direction side.
  • An abutting member 22 whose tip on the x-axis positive direction side is formed in a convex spherical shape is fixed to the x-axis positive direction end of the push rod 2.
  • the brake device 1 of the present embodiment is a booster device (brake booster) for reducing a driver's brake operation force.
  • the brake device 1 is interposed between a brake pedal and a master cylinder, and generates suction from a vehicle engine. It is not necessary to have a type that operates using atmospheric pressure (negative pressure) (master back).
  • the reservoir tank 3 is a brake fluid source that stores brake fluid, and supplies the brake fluid to the master cylinder 4 and the actuator 8.
  • the reservoir tank 3 has a supply port 30, supply ports 31P and 31S, and supply ports 32a and 32b.
  • the supply port 30 protrudes to the z-axis positive direction side on the x-axis positive direction side of the reservoir tank 3 and opens to the outside, and is provided to be opened and closed by a lid 3a.
  • the supply ports 31P and 31S are provided so as to be aligned in the x-axis direction, project toward the negative z-axis direction of the reservoir tank 3, and open to the master cylinder 4 side.
  • the supply port 31P is provided on the negative side in the x-axis direction from the supply port 31S.
  • the supply ports 32a and 32b are provided on the x-axis negative direction side of the supply port 31P, and open on both side surfaces of the reservoir tank 3 in the y-axis direction.
  • a fastening portion 35 is provided between the supply ports 31P and 31S on the negative z-axis direction side of the reservoir tank 3.
  • a hole for inserting a pin for stopping the reservoir tank 3 to the master cylinder 4 is formed in the fastening portion 35 so as to extend in the y-axis direction.
  • two partition plates 33a and 33b are installed so as to extend in the z-axis positive direction from the bottom surface on the z-axis negative direction side.
  • the reservoir tank 3 is divided into three regions by two partition plates 33a and 33b.
  • a supply port 31S is provided in the region on the x-axis positive direction side, supply ports 32a and 32b are provided in the region on the x-axis negative direction side, and a supply port 31P is provided in a region sandwiched between these two regions. .
  • Supply port 31S, supply ports 32a and 32b, and supply port 31P each have an opening.
  • the partition plate 33 stores brake fluid in each region even when the vehicle is tilted or accelerated / decelerated, for example, thereby enabling the brake fluid to be supplied from each supply port.
  • a pipe attachment portion 320a is connected to the supply port 32a (see FIG. 1). One end of the brake pipe 71 is attached to the pipe attachment portion 320a.
  • the pipe attachment portion 320a is provided so as to protrude from the outer surface of the reservoir tank 3 on the x-axis negative direction side, the y-axis positive direction side, and the z-axis negative direction side to the y-axis positive direction side and bend in the middle on the x-axis positive direction side. It has been.
  • the tip of the pipe attachment portion 320a to which the brake pipe 71 is attached opens to the x-axis positive direction side.
  • a pipe attachment portion 320b is connected to the supply port 32b (see FIG. 2). One end of another brake pipe is attached to the pipe attachment portion 320b.
  • the pipe attachment portion 320b is provided so as to protrude from the outer surface of the reservoir tank 3 on the x-axis negative direction side, the y-axis negative direction side, and the z-axis negative direction side to the y-axis negative direction side and bend in the middle on the x-axis positive direction side. It has been.
  • the tip of the pipe attachment portion 320b to which the brake pipe is attached opens to the x-axis positive direction side.
  • the master cylinder 4 is a first brake fluid pressure generation source that generates fluid pressure (master cylinder fluid pressure) in response to a brake pedal operation (brake operation) by the driver.
  • the master cylinder 4 is connected to the wheel cylinder via an oil passage (brake piping) (not shown).
  • the master cylinder hydraulic pressure is supplied to the wheel cylinder via the oil passage, and generates a wheel cylinder hydraulic pressure (brake hydraulic pressure).
  • the master cylinder 4 has a master cylinder housing (cylinder) 40, a piston 41, and a coil spring 42.
  • the master cylinder housing 40 has a main body portion 40a, a flange portion 40b, and a fitting portion 40c.
  • the main body 40a is formed in a bottomed cylindrical shape extending in the x-axis direction with one end side (x-axis positive direction side) closed.
  • the flange portion 40b is provided on the outer periphery of the main body portion 40a on the x-axis negative direction side.
  • Fastening portions 40d and 40e formed with bolt holes extending in the x-axis direction are provided on both sides in the y-axis direction of the flange portion 40b.
  • the fastening portions 40d and 40e are provided at substantially symmetrical positions across the axis of the main body portion 40a.
  • the fitting portion 40c is adjacent to the flange 40b on the x-axis negative direction side, and is provided in a substantially columnar shape extending from the flange 40b in the x-axis direction.
  • a seal member 402 is installed in a seal groove 401 provided so as to surround the outer periphery of the fitting portion 40c.
  • an axial hole 400 extending in the x-axis direction is formed in the master cylinder housing 40.
  • the hole 400 opens on the x-axis negative direction side of the master cylinder housing 40.
  • the master cylinder 4 is a so-called tandem type, and two pistons 41P and 41S are provided in the hole 400 so as to be operable (reciprocating) in the x-axis direction.
  • a concave spherical receiving portion 410 is formed on the x-axis negative direction side of the P-system piston 41P.
  • the x-axis positive direction end formed in the convex spherical shape of the push rod 2 (contact member 22) is in contact with the receiving portion 410.
  • the S-system piston 41S is a free piston and is installed on the x-axis positive direction side of the piston 41P.
  • the pistons 41p and 41s are provided with recesses 411p and 411s that extend in the x-axis direction and open to the x-axis positive direction side.
  • the pistons 41p and 41s are provided with communication holes 412p and 412s that communicate the inner peripheral surfaces of the recesses 411p and 411s and the outer peripheral surfaces of the pistons 41p and 41s so as to extend in the radial direction.
  • the master cylinder housing 40 has discharge ports 44p and 44s and supply ports 45p and 45s.
  • the discharge ports 44p and 44s and the supply ports 45p and 45s open on the inner peripheral surface of the hole 400.
  • the discharge ports 44p and 44s extend in the y-axis direction and open on the side surface of the master cylinder housing 40 on the y-axis negative direction side (see FIG. 2), and the actuator 8 (see FIG. 10) through a brake pipe (not shown). ) Is connected.
  • the discharge ports 44p and 44s are provided so as to communicate with a wheel cylinder (not shown) via the actuator 8.
  • Two P-system discharge ports 44P are provided, and other discharge ports 44P (see FIG.
  • the discharge port 44P that opens in the y-axis positive direction side is connected to the stroke simulator 5 via the brake pipe 70, and is provided so as to be able to communicate with the stroke simulator 5 (main chamber 54).
  • the supply ports 45p and 45s extend in the z-axis direction, open on the upper surface of the master cylinder housing 40 on the positive z-axis direction, and connect to and communicate with the reservoir tank 3.
  • Replenishing ports 31P and 31S of the reservoir tank 3 are fitted into recesses 48P and 48S on the upper surface of the master cylinder housing 40 (where the replenishing port 45 is opened) via seal members 34P and 34S, respectively, and replenishing ports 45P and 45S, respectively.
  • the reservoir tank 3 is provided integrally with the master cylinder 4.
  • the master cylinder 4 is supplied with brake fluid from the reservoir tank 3 through the supply ports 31P and 31S and the supply ports 45P and 45S.
  • a fastening portion 49 is provided between the concave portions 48P and 48S at the positive end in the z-axis direction of the master cylinder housing 40 when viewed from the y-axis direction.
  • the fastening portion 49 is formed with a hole for inserting a pin for stopping the reservoir tank 3 so as to extend in the y-axis direction.
  • a pin (not shown) is inserted into the fastening portion 49 and the fastening portion 35 of the reservoir tank 3, and the fastening portion 35 of the reservoir tank 3 is fastened to the fastening portion 49 of the master cylinder housing via the pin.
  • the tank 3 is fixed with respect to the master cylinder housing 40.
  • Seal members 46P, 46S, 47P, 47S having a cup-shaped cross section are fixedly installed on the inner peripheral surface of the hole 400.
  • the seal members 46P and 47P are arranged so as to sandwich the opening of the supply port 45P in the x-axis direction.
  • the seal members 46S and 47S are arranged so as to sandwich the opening of the supply port 45S in the x-axis direction.
  • the inner peripheral sides (lip portions) of the seal members 46P, 46S, 47P, 47S are in contact with the outer peripheral surfaces of the pistons 41P, S. Seal members 46P, 46S, 47P, and 47S restrict the flow of brake fluid through the gap between the inner periphery of hole 400 and the outer periphery of pistons 41P and S in one direction.
  • the P-system seal member 46P restricts the flow of brake fluid from the supply port 45P toward the x-axis negative direction side (outside of the master cylinder housing 40).
  • the S-system seal member 46S allows only the flow of brake fluid from the supply port 45S toward the negative x-axis direction.
  • the seal members 47P and 47S allow only the flow of the brake fluid from the supply ports 45P and 45S toward the positive x-axis direction.
  • a hydraulic chamber 43 including a P-system hydraulic chamber 43P and an S-system hydraulic chamber 43S is defined in the master cylinder housing 40 (hole 400). Between the pistons 41P and 41S (region sealed by the seal members 47P and 46S), a P-system hydraulic chamber 43P is defined. An S-system hydraulic chamber 43S is defined between the piston 41S and the bottom of the master cylinder housing 40 (an area sealed by the seal member 47S). Coil springs 42P and 42S as return springs of the pistons 41P and 41S are installed in the hydraulic pressure chambers 43P and 43S in a compressed state, respectively. Discharge ports 44P and 44S open in the hydraulic chambers 43P and 43S, respectively. As shown in FIG.
  • the pistons 41P and 41S are most negative in the x-axis.
  • the communication holes 412P and 412S of the pistons 41P and 41S are located on the x-axis negative direction side of the seal members 47P and 47S, respectively. Accordingly, the replenishment ports 45P and 45S communicate with the inner peripheral side of the recesses 411P and 411S of the pistons 41P and 41S, that is, the hydraulic chambers 43P and 43S, respectively, through the communication holes 412P and 412S.
  • Brake fluid pressure is generated by the pistons 41P and 41S operating in the x-axis direction in the hole 400. Specifically, the thrust in the x-axis positive direction of the push rod 2 is transmitted to the piston 41P by the driver's brake operation. When the pistons 41P and 41S make strokes in the positive x-axis direction, the volumes of the hydraulic chambers 43P and 43S are reduced. When the communication holes 412P and 412S are positioned on the positive side in the x-axis direction with respect to the seal members 47P and 47S, replenishment is made from the hydraulic chambers 43P and 43S via the communication holes 412P and 412S by the seal members 47P and 47S.
  • the stroke simulator 5 is provided so that the brake fluid that flows out from the master cylinder 4 can flow in, and is an operation reaction force generation source that generates a pseudo operation reaction force of the brake pedal.
  • the stroke simulator 5 is connected to the master cylinder 4 via an oil passage (brake piping 70) and is connected to the reservoir tank 3 via an oil passage (brake piping 71).
  • the stroke simulator 5 includes a stroke simulator housing 50, a reaction force piston 51, and a coil spring 52.
  • the stroke simulator housing 50 integrally includes a main body portion 50a, a connection portion 50b, and a flange portion 50c.
  • the main body 50a has a stepped bottomed cylindrical shape, and integrally includes a large-diameter cylindrical portion 50d, a small-diameter cylindrical portion 50e, and a flange portion 50f.
  • the small-diameter cylindrical portion 50e is provided substantially coaxially with the cylindrical portion 50d on the positive x-axis direction side of the large-diameter cylindrical portion 50d.
  • the flange portion 50f is provided substantially coaxially with the cylindrical portion 50e on the positive x-axis direction side of the small diameter cylindrical portion 50e.
  • the cylindrical portion 50e is provided with an air bleeding bleeder 57 for extracting air from the stroke simulator 5.
  • the air bleeding bleeder 57 is provided so as to protrude from the outer peripheral surface of the cylindrical portion 50e on the x-axis positive direction side and the z-axis positive direction side to the y-axis negative direction side.
  • the outer diameter of the flange portion 50f (the main body excluding the following fastening portions 50g and 50h) is larger than the outer diameter of the cylindrical portion 50e and smaller than the outer diameter of the cylindrical portion 50d.
  • Fastening portions 50g having bolt holes extending in the x-axis direction are provided on the y-axis positive direction side and z-axis negative direction side of the flange portion 50f.
  • a fastening part 50h in which a bolt hole extending in the x-axis direction is formed is provided on the y-axis negative direction side and the z-axis positive direction side of the flange part 50f.
  • the fastening portions 50g and 50h are provided at substantially symmetrical positions across the axis of the main body portion 50a.
  • the stroke simulator 5 and the stroke simulator valve 6 are connected by passing a bolt through the bolt hole of the fastening portion 50g and the bolt hole of the fastening portion 50h.
  • a first axial hole 501 Inside the main body 50a, a first axial hole 501, a second axial hole 502, a valve mounting hole 503, an oil passage 55, and the like are formed.
  • the first axial hole 501 is formed to extend in the x-axis direction on the inner peripheral side of the large-diameter cylindrical portion 50d.
  • the second axial hole 502 has a smaller diameter than the first axial hole 501, and extends in the x-axis direction continuously to the first axial hole 501 on the inner peripheral side of the small-diameter cylindrical portion 50e.
  • the cylindrical portion 50d is open at the bottom on the x-axis positive direction side.
  • the oil passage of the air bleeding bleeder 57 is opened at the x-axis positive end and the z-axis positive end of the second axial hole 502.
  • One end (the x-axis positive direction end of the second axial hole 502) side of the main body 50a is closed, and the other end (the x-axis negative direction end of the first axial hole 501) side is open.
  • the valve mounting hole 503 is formed on the inner peripheral side of the flange portion 50f and the cylindrical portion 50e so as to extend in the x-axis direction and opens to the x-axis positive direction side of the flange portion 50f.
  • the valve mounting hole 503 has a stepped shape that decreases in diameter from the x-axis positive direction side toward the x-axis negative direction side.
  • the x-axis negative direction end of the valve mounting hole 503 and the x-axis positive direction end of the second axial hole 502 are connected via an oil passage 55 extending in the x-axis direction.
  • the axial holes 501, 502, the valve mounting hole 503, and the oil passage 55 are formed substantially coaxially.
  • a connection port 58 that communicates with the first axial hole 501 is provided on the positive z-axis direction side and the y-axis positive direction side of the cylindrical portion 50d.
  • a pipe mounting portion 580 is connected to the connection port 58.
  • the other end of the brake pipe 71 is attached to the pipe attachment portion 580.
  • the pipe mounting portion 580 protrudes from the outer surface of the cylindrical portion 50d slightly on the x-axis positive direction side, the y-axis positive direction side and the z-axis positive direction side to the y-axis positive direction side, and bends to the x-axis positive direction side in the middle. Is provided.
  • the tip of the pipe attachment portion 580 to which the brake pipe 71 is attached opens to the x axis positive direction side.
  • the brake pipe 71 is not a steel pipe but a flexible pipe made of a material such as rubber. As shown in FIG. 5, the brake pipe 71 is installed in a U shape when viewed from the y-axis positive direction side.
  • the brake pipe 71 extends from the pipe mounting portion 320a of the reservoir tank 3 to the x-axis positive direction side, and extends to the y-axis positive direction side so as to wrap the discharge port 44P on the inner peripheral side thereof. After being bent, it is folded back to the x-axis negative direction side and attached to the pipe attachment portion 580.
  • the first axial hole 501 is connected to the supply port 32 a of the reservoir tank 3 via the brake pipe 71 and communicates with the reservoir tank 3.
  • a connection port 59 is provided on the positive side in the y-axis direction of the boundary portion between the cylindrical portion 50e and the flange portion 50f.
  • the connection port 59 communicates with the valve mounting hole 503 and is connected via the brake pipe 70 to a discharge port 44P opened to the y-axis positive direction side of the master cylinder 4 to the master cylinder 4 (hydraulic pressure chamber 43P).
  • the brake pipe 70 is configured as a pipe (for example, a steel pipe) having a smaller diameter and higher rigidity than the brake pipe 71. As shown in FIG. 7, the brake pipe 70 is installed in a U shape when viewed from the x-axis direction.
  • the brake pipe 70 extends from the discharge port 44P opened to the y-axis positive direction side of the master cylinder 4 so as to bend to the y-axis positive direction side and the z-axis negative direction side, and the y-axis negative so as to wrap the brake pipe 71 on the inner peripheral side. It turns back in the direction and is connected to the connection port 59.
  • the connecting portion 50b is provided on the z axis positive direction side of the main body portion 50a (cylindrical portion 50d).
  • the connecting portion 50b has a bottomed cylindrical shape extending in the x-axis direction.
  • Fastening portions 50i and 50j formed with bolt holes extending in the x-axis direction are provided on both sides of the connecting portion 50b in the y-axis direction.
  • the outer peripheral surface of the connection portion 50b (including the fastening portions 50i and 50j) is substantially the same in shape and size as the outer peripheral surface of the flange portion 40b (including the fastening portions 40d and 40e) of the master cylinder housing 40 when viewed from the x-axis direction. It is provided in the same way.
  • the pipe mounting portion 320a of the reservoir tank 3 is located on the y-axis negative direction side with respect to the y-axis positive direction edge of the connection portion 50b (fastening portion 50i) (does not protrude to the y-axis positive direction side with respect to the fastening portion 50i).
  • the pipe mounting portion 320b of the reservoir tank 3 is located on the y-axis positive direction side with respect to the edge in the y-axis negative direction of the connection portion 50b (fastening portion 50j) (does not protrude to the y-axis negative direction side from the fastening portion 50j).
  • the tip of the air bleeding bleeder 57 on the negative side in the y-axis direction is located on the positive side in the positive y-axis direction with respect to the edge in the negative y-axis direction of the connecting portion 50b (fastening portion 50j). Does not protrude to the side).
  • a first axial hole 504, a second axial hole 505, and a third axial hole 506 are formed inside the connecting portion 50b.
  • the first axial hole 504 is formed in a substantially cylindrical shape extending in the x-axis direction, and opens to the positive side of the connecting part 50b in the x-axis direction.
  • the diameter of the first axial hole 504 is slightly larger than the diameter of the fitting portion 40 c of the master cylinder housing 40.
  • the second axial hole 505 has a smaller diameter than the first axial hole 504 and is formed so as to extend in the x-axis direction continuously to the first axial hole 504.
  • the third axial hole 506 is smaller in diameter than the second axial hole 505 and is formed so as to extend in the x-axis direction continuously to the second axial hole 505. Is opened on the x-axis negative direction side (vehicle attachment surface 508 side).
  • the axial holes 504 to 506 are formed substantially coaxially.
  • the fastening portions 50i and 50j are provided at substantially symmetrical positions with the shaft centers of the holes 504 to 506 interposed therebetween.
  • a stopper portion 507 is formed at the bottom of the connecting portion 50b on the x-axis negative direction side so as to surround the third axial hole 506.
  • the surface on the x-axis positive direction side of the stopper portion 507 is formed in a taper shape substantially parallel to the surface on the x-axis negative direction side of the flange portion 21 of the push rod 2, and on the x-axis negative direction side of the flange portion 21. It is provided so as to be able to contact the surface.
  • the flange portion 50c is provided on the x-axis negative direction side of the stroke simulator housing 50 in a plate shape that extends substantially parallel to the yz plane.
  • the flange portion 50c is a fixing flange for fixing the stroke simulator housing 50 to the vehicle.
  • the flange portion 50c is a substantially rectangular shape having sides extending in the y-axis direction and sides extending in the z-axis direction when viewed from the x-axis direction, and stud shafts (stud bolts as fixing tools) 509 are respectively provided at four corners thereof. It is fixed so as to protrude in the negative x-axis direction.
  • the axial center of the main body 50a (axial hole 501 etc.) and the axial center of the connecting part 50b (axial bore 504 etc.) are located at the approximate center in the y-axis direction of the flange 50c.
  • the axial center of the connecting portion 50b is located approximately at the center in the z-axis direction of the flange portion 50c.
  • the shaft center of the main body 50a is located slightly below the end of the flange 50c on the z-axis negative direction side (z-axis negative direction side) (see FIG. 7).
  • the width (y-axis direction dimension) of the flange part 50c is larger than the width (y-axis direction dimension) of the main body part 50a, larger than the width (y-axis direction dimension) of the main body part 40a of the master cylinder housing 40, and the reservoir
  • the tank 3 is provided larger than the width (dimension in the y-axis direction).
  • the width (y-axis direction dimension) of the flange portion 50c is provided substantially the same as the width (y-axis direction dimension) of the connection portion 50b or the flange portion 40b of the master cylinder housing 40. Specifically, as shown in FIGS.
  • the outer peripheral edges of the portions 40d and 40e substantially coincide with both end edges in the y-axis direction of the flange portion 50c (at substantially the same y-axis direction position).
  • the height (z-axis direction dimension) of the flange portion 50c is greater than the height (z-axis direction dimension) of the connection portion 50b, and the master cylinder housing 40 (flange portion). 40b) is larger than the height (dimension in the z-axis direction).
  • a reaction force piston 51 is installed in the second axial hole 502 of the main body 50a of the stroke simulator housing 50 so as to be operable in the x-axis direction.
  • the reaction force piston 51 is installed so as to protrude from the x-axis negative direction end of the second axial hole 502 into the first axial hole 501.
  • a spring retainer 512 is provided at the negative end of the reaction force piston 51 protruding into the first axial hole 501 in the x-axis negative direction.
  • the spring retainer 512 is provided so as to be movable integrally with the reaction force piston 51 in the first axial hole 501.
  • a seal groove 510 is provided on the outer periphery of the reaction force piston 51, and a seal member 511 is installed in the seal groove 510.
  • the seal member 511 is in contact with the inner peripheral surface of the second axial hole 502.
  • a plate-like spring retainer 53 that closes the opening is fixedly installed in the opening of the first axial hole 501 on the x-axis negative direction side.
  • a seal member 532 is installed on the outer periphery of the spring retainer 53.
  • the opening of the first axial hole 501 is liquid-tightly sealed by the seal member 532 coming into contact with the inner peripheral surface of the first axial hole 501.
  • a main chamber 54 and a sub chamber 56 are defined by a reaction force piston 51.
  • a main chamber 54 is defined in the second axial hole 502 and closer to the x-axis positive direction side than the reaction force piston 51.
  • a sub chamber 56 is defined in the first axial hole 501 and closer to the x-axis negative direction side than the reaction force piston 51. Communication between the main chamber 54 and the sub chamber 56 is suppressed by the seal member 511. The oil passage 55 and the oil passage of the air bleeding bleeder 57 are always open in the main chamber 54.
  • a coil spring 52 as a return spring of the reaction force piston 51 is installed in a compressed state.
  • the coil spring 52 is an elastic member that constantly urges the reaction force piston 51 toward the main chamber 54 (direction in which the volume of the main chamber 54 is reduced and the volume of the sub chamber 56 is increased).
  • the x-axis positive direction end of the coil spring 52 is held in contact with the outer peripheral side of the spring retainer 512, and the x-axis negative direction end of the coil spring 52 is held in contact with the outer peripheral side of the spring retainer 53.
  • a concave portion 530 that opens to the positive side in the x-axis direction is formed in a portion of the spring retainer 53 on the inner peripheral side of the coil spring 52.
  • An elastic member 531 is installed in the recess 530.
  • the elastic member 531 protrudes further toward the x-axis positive direction side than the spring retainer 53.
  • the elastic member 531 is positioned at a portion on the inner peripheral side of the coil spring 52 of the spring retainer 512, and is opposed to a portion on the inner peripheral side of the spring retainer 512 in the x-axis direction.
  • the elastic member 531 comes into contact with the inner peripheral portion of the spring retainer 512 and elastically deforms.
  • the movement of the reaction force piston 51 in the negative x-axis direction is restricted, and the elastic member 531 functions as a damper that absorbs an impact when the movement is restricted.
  • the brake device 1 as a master cylinder unit is also a valve unit with a built-in stroke simulator valve 6.
  • the stroke simulator valve 6 is a normally shut-off (closed in a non-energized state) simulator cutoff valve provided to be able to restrict the inflow of brake fluid to the stroke simulator 5.
  • the stroke simulator valve 6 is mounted in a valve mounting hole 503 formed in the stroke simulator housing 50 (main body portion 50a).
  • the surface on the x-axis positive direction side of the main body portion 50a (flange portion 50f) in which the valve mounting hole 503 opens constitutes a valve mounting surface.
  • the main chamber 54 of the stroke simulator 5 is connected to the stroke simulator valve 6 via an oil passage 55.
  • the stroke simulator valve 6 is connected to the hydraulic chamber 43P of the master cylinder 4 via an oil passage (brake pipe 70).
  • the stroke simulator valve 6 includes a solenoid 61, a valve body 62, an armature 63, a plunger 64, a coil spring 65, a valve seat member 66, and a plurality of oil passage components. is doing.
  • the solenoid 61 is fastened with a bolt to the flange portion 50f (fastening portions 50g, 50h) at the end in the x-axis positive direction of the main body portion 50a of the stroke simulator housing 50.
  • the armature 63 is fixedly installed on the inner peripheral side of the solenoid 61, and generates an electromagnetic force (magnetic attraction force) when the solenoid 61 is energized.
  • a connector portion 610 that opens to the x-axis positive direction side is provided at the x-axis positive direction end of the solenoid 61.
  • the connector 610 is connected to wiring (harness) that supplies a drive current to the solenoid 61.
  • the valve body 62 is a non-magnetic hollow cylinder, is fixedly installed so as to be fitted to the outer periphery of the armature 63, and extends to the x-axis negative direction side of the armature 63.
  • the plunger 64 is accommodated in the valve body 62 so as to reciprocate in the x-axis direction.
  • a spherical valve body 640 is provided at the tip of the plunger 64 on the x-axis negative direction side.
  • the valve body 640 operates in the x-axis direction.
  • the coil spring 65 is installed in a compressed state between the armature 63 and the plunger 64, and constantly urges the plunger 64 in the negative x-axis direction.
  • the valve seat member 66 is installed on the inner peripheral side of the valve mounting hole 503 of the main body 50a.
  • the valve seat member 66 has a bottomed cylindrical shape, and a valve seat is provided at the bottom of the x-axis positive direction side.
  • the bottom portion is provided with an orifice 660 extending in the x-axis direction, and opens to the central portion of the valve seat.
  • the plunger 64 is driven by the electromagnetic force of the armature 63 (suction force in the positive direction of the x-axis), and the valve body 640 opens and closes the orifice 660 so that the oil passage including the orifice 660 (the simulator oil passage below) is in communication. Is controlled.
  • the oil passage constituent member includes a first member 67 as a body, second and third members 68 and 69 as filters, and a seal member 60.
  • the first member 67 is a hollow member that is fixed to the opening on the x-axis positive direction side of the valve mounting hole 503 by a flange.
  • a valve seat member 66 is fixedly installed on the inner peripheral side of the first member 67, and an oil passage is formed between the inner periphery of the first member 67 and the outer periphery of the valve seat member 66.
  • the second member 68 is a ring-shaped filter member that is fixed to the negative side of the first member 67 in the x-axis direction.
  • a valve seat member 66 is installed on the inner peripheral side of the second member 68, and an oil passage is formed between the inner periphery of the second member 68 and the outer periphery of the valve seat member 66.
  • the third member 69 is a disk-shaped filter member (retainer of the seal member 60) installed at the bottom of the valve mounting hole 503 on the negative x-axis direction, and a valve seat member 66 is installed on the inner peripheral side thereof.
  • the seal member 60 is a cup-shaped seal member similar to the seal member 46 and the like, and is installed between the second member 68 and the third member 69.
  • a valve seat member 66 is fixedly installed on the inner peripheral side of the seal member 60.
  • An oil passage is not formed between the inner periphery of the seal member 60 and the outer periphery of the valve seat member 66.
  • the lip portion on the outer peripheral side of the seal member 60 is in contact with the inner peripheral surface of the valve mounting hole 503 so as to open in the positive x-axis direction.
  • the flow of the brake fluid between the seal member 60 (lip portion) and the inner peripheral surface of the valve mounting hole 503 only the flow from the x-axis negative direction side to the x-axis positive direction side is allowed, and the reverse flow is suppressed. Is done.
  • a connection port 59 is opened between the second member 68 and the seal member 60 on the inner periphery of the valve mounting hole 503.
  • An oil passage 55 that communicates with the main chamber 54 of the stroke simulator 5 opens at the bottom of the valve mounting hole 503 on the x-axis negative direction side.
  • the connection port 59 is connected to an oil passage between the outer periphery of the valve seat member 66 and the inner periphery of the first and second members 67 and 68, and a recess provided at the x-axis positive direction end of the first member 67.
  • the orifice 660 communicates with the oil passage 55 via an oil passage 661 provided on the inner peripheral side of the valve seat member 66.
  • the above-described path forms a simulator oil path that connects the hydraulic chamber 43P and the main chamber 54 while switching between communication and blocking by the stroke simulator valve 6.
  • the main chamber 54 of the stroke simulator 5 communicates with the hydraulic chamber 43P through the oil passage 55, the stroke simulator valve 6, and the brake pipe 70.
  • the sub chamber 56 of the stroke simulator 5 is connected to the reservoir tank 3 via a brake pipe 71.
  • the sub chamber 56 always communicates with the reservoir tank 3 and is released to a low pressure (atmospheric pressure), and constitutes a back pressure chamber of the stroke simulator 5.
  • the sub chamber 56 may be directly released to a low pressure (atmospheric pressure) without being connected to the reservoir tank 3.
  • the stroke simulator valve 6 is opened, the brake fluid that has flowed out of the master cylinder 4 (hydraulic pressure chamber 43P) by the driver's braking operation flows into the stroke simulator housing 50 (main chamber 54) via the simulator oil passage. .
  • the reaction force piston 51 is operated in the axial direction in the hole 502.
  • a pseudo reaction force of the brake pedal is generated and applied to the brake pedal.
  • the stroke simulator valve 6 is opened when energized to allow the simulator oil passage to communicate.
  • the master cylinder hydraulic pressure acts on the main chamber 54 of the stroke simulator 5 through the simulator oil passage.
  • a predetermined or higher hydraulic pressure master cylinder hydraulic pressure
  • the reaction force piston 51 compresses the coil spring 52 and compresses the coil spring 52 in the axial direction.
  • the volume of the main chamber 54 increases, and the brake fluid flows from the master cylinder 5 (hydraulic pressure chamber 43P) into the main chamber 54 via the simulator oil passage. Further, the brake fluid is discharged from the sub chamber 56 to the reservoir tank 3 through the brake pipe 71.
  • the stroke simulator 5 creates a pedal stroke by sucking brake fluid from the master cylinder 5 when the driver performs a brake operation (depresses the brake pedal), and simulates the fluid rigidity of the wheel cylinder. And reproduce the feeling of depression of the brake pedal.
  • the spring constant is low and the increasing gradient of the pedal reaction force is low.
  • the elastic member 531 is being compressed and contracted in addition to the coil spring 52 in the latter half of the depression of the brake pedal, the spring constant is high and the increasing gradient of the pedal reaction force is high.
  • the pedal depression feeling is set to be the same as that of an existing master cylinder, for example.
  • the third member 69 is formed with an oil passage that communicates the inner circumference with the end surface in the x-axis positive direction, and the oil passage 55 communicates with the negative direction side of the seal member 60 via the oil passage. You may make it do.
  • a bypass oil passage that is provided in parallel to the simulator oil passage and whose flow direction is restricted by the seal member 60 is configured.
  • the seal member 60 allows only the flow of brake fluid from the main chamber 54 of the stroke simulator 5 toward the hydraulic chamber 43P of the master cylinder 4 in the bypass oil passage. Even if the stroke simulator valve 6 is closed (fixed in a closed state) with the brake fluid flowing into the main chamber 54, the bypass oil passage is connected from the main chamber 54 through the bypass oil passage. The brake fluid can be returned to the master cylinder 4 side.
  • Master cylinder housing 40 is fixed to stroke simulator housing 50.
  • the housings 40 and 50 are fixed integrally with each other.
  • Each housing 40, 50 is provided with a joint surface for fixing together.
  • the joint surface includes an outer peripheral surface of the fitting portion 40c of the master cylinder housing 40, an end surface in the negative x-axis direction of the flange portion 40b, and an inner peripheral surface of the first axial hole 504 of the connection portion 50b of the stroke simulator housing 50. And an end surface in the positive x-axis direction of the connecting portion 50b (where the first axial hole 504 opens).
  • the joint surface includes a stamping part (an outer peripheral surface of the fitting part 40c and an inner peripheral surface of the first axial hole 504) that functions as a stamping joint. That is, a part of the stroke simulator housing 50 (connecting portion 50b) is recessed, and the projecting portion of the master cylinder housing 40 is fitted into the recessed portion, thereby joining the housings 40 and 50 together. Specifically, the fitting portion 40c of the master cylinder housing 40 is inserted into the first axial hole 504 of the stroke simulator housing 50, and both are fitted.
  • the end surface in the negative x-axis direction of the flange portion 40b of the master cylinder housing 40 abuts on the end surface in the positive x-axis direction of the connection portion 50b.
  • the bolt 10 is inserted into the fastening portions 40d and 40e of the master cylinder housing 40 (flange portion 40b) and the fastening portions 50i and 50j of the stroke simulator housing 50 (connection portion 50b), and the fastening portions 40d and 40e and the fastening portions 50i and 50j
  • the master cylinder housing 40 and the stroke simulator housing 50 are integrally fastened and fixed.
  • the opening of the first axial hole 504 is liquid-tightly sealed by the seal member 402 installed in the fitting portion 40c coming into contact with the inner peripheral surface of the first axial hole 504. .
  • the master cylinder housing 40 has a portion projecting toward the x-axis negative direction side of the fitting portion 40c on the inner peripheral side of the fitting portion 40c. A portion of the master cylinder housing 40 that protrudes in the negative x-axis direction from the fitting portion 40 c is accommodated in the first axial hole 504.
  • the piston 41P protruding from the hole 400 of the master cylinder housing 40 to the x-axis negative direction side is accommodated in the second axial hole 505.
  • the brake device 1 includes a vehicle attachment surface 508 for attaching the stroke simulator housing 50 (brake device 1) to the vehicle.
  • the vehicle attachment surface 508 includes a surface on the x-axis negative direction side of the stroke simulator housing 50.
  • the surface on the x-axis negative direction side of the stroke simulator housing 50 includes the surface on the x-axis negative direction side of the flange portion 50c.
  • the stroke simulator housing 50 is fastened and fixed to the x-axis positive direction side of the lower portion (the ground surface side portion) of the dash panel (floor panel) of the vehicle body (not shown) by the stud shaft 509.
  • the dash panel is a partition member on the vehicle body side that partitions an engine room (or a motor room in which a power unit such as a traveling motor is installed; hereinafter simply referred to as an engine room) and a vehicle compartment.
  • the stroke simulator housing 50 has a dash at four fastening points while a slight gap in the x-axis direction is formed between the flange portion 50c and the dash panel by a spacer (not shown) screwed or inserted into the stud shaft 509. Fixed to the panel.
  • the size of the flange portion 50c (the thickness in the x-axis direction, the width in the y-axis direction, and the height in the z-axis direction) is sufficient to ensure that the mounting strength of the brake device 1 to the vehicle is sufficient and does not become unnecessarily large. Set to.
  • the master cylinder housing 40 Since the master cylinder housing 40 is fixed to the stroke simulator housing 50 as described above, the master cylinder housing 40 is fixed to the vehicle via the stroke simulator housing 50. With the brake device 1 fixed to the dash panel, the x-axis negative direction side of the push rod 2 penetrates the dash panel and protrudes into the vehicle interior (x-axis negative direction side).
  • a master cylinder 4, a reservoir tank 3, a stroke simulator 5, and the like are installed on the vehicle body front side (x-axis positive direction side) in the engine room. A part of the stopper portion 507 of the stroke simulator housing 50 protrudes from the vehicle attachment surface 508 to the x-axis negative direction side to form a locking portion.
  • a boot 2 a is attached to the locking portion to cover the push rod 2.
  • the stroke simulator housing 50 can be rigidly fixed to the dash panel by the stud shaft 509 (without using an elastic body). Therefore, a favorable reaction force is generated with respect to the brake operation force (stepping force) of the driver input to the brake pedal (push rod 2), and the brake operation force is appropriately transmitted to the piston 41 of the master cylinder 4. A master cylinder hydraulic pressure corresponding to the brake operating force is generated. But you may fix the stroke simulator housing 50 to a dash panel via an elastic body.
  • the master cylinder 4 and the stroke simulator 5 are arranged so as to be in the vertical position when mounted on the vehicle. That is, the master cylinder 4 and the stroke simulator 5 are integrally arranged so as to overlap each other when viewed from the vertical direction (in the vertical direction) when the vehicle is mounted.
  • the reservoir tank 3, the master cylinder 4, and the stroke simulator 5 are arranged in this order from the top. That is, the reservoir tank 3 is disposed on the upper side of the master cylinder 4, and the stroke simulator 5 is disposed on the lower side of the master cylinder 4.
  • the master cylinder 4 and the stroke simulator 5 are arranged in parallel with each other.
  • the axial direction of the master cylinder 4 and the axial direction of the stroke simulator 5 are arranged in substantially the same direction.
  • the master cylinder 4 and the stroke simulator 5 are positioned up and down with their axial directions aligned.
  • the center of the reservoir tank 3 in the y-axis direction, the axis of the master cylinder 4, and the axis of the stroke simulator 5 are substantially the same in parallel to the z-axis when viewed from the x-axis direction. Are arranged on a straight line. Therefore, when the vehicle is mounted, the range in which the reservoir tank 3, the master cylinder 4, and the stroke simulator 5 overlap each other when viewed from the vertical direction is maximized. Thereby, the area which projected the reservoir tank 3, the master cylinder 4, and the stroke simulator 5 in the perpendicular direction becomes the minimum. As shown in FIGS.
  • the master cylinder 4 main body portion 40 a of the master cylinder housing 40
  • the stroke simulator 5 main body portion 50 a of the stroke simulator housing 50
  • the brake pipes 70 and 71 are provided so as to be within the entire height (dimension in the z-axis direction) of the reservoir tank 3, the master cylinder housing 40, and the stroke simulator housing 50.
  • the brake pipe 71 does not protrude from the reservoir tank 3 toward the positive z-axis direction.
  • the brake pipe 70 does not protrude from the stroke simulator housing 50 toward the negative z-axis direction.
  • each member or structure of the brake device 1 is provided so as to be within the width of the flange portion 50c of the stroke simulator housing 50.
  • the master cylinder 4 including the flange portion 40b including the fastening portions 40d and 40e of the master cylinder housing 40
  • the stroke simulator 5 including the fastening portions 50i and 50j of the stroke simulator housing 50
  • the connecting portion 50b and the like are configured to be within the width (dimension in the y-axis direction) of the flange portion 50c.
  • the brake pipe 71 is provided so as to be within the width (y-axis direction dimension) of the flange portion 50 c.
  • the brake pipe 71 is disposed substantially parallel to the xz plane, and the brake pipe 71 (the y-axis positive direction end) is located on the y-axis negative direction side of the y-axis positive direction edge of the flange portion 50c ( (It does not protrude in the positive y-axis direction from the flange portion 50c).
  • the stroke simulator valve 6 is disposed at the axial position of the stroke simulator 5. That is, as shown in FIG. 7, the stroke simulator valves 6 overlap with each other on one side of the stroke simulator 5 in the axial direction (x-axis positive direction side) when viewed from the axial direction (x-axis direction) of the stroke simulator 5. Has been placed. Further, the operation direction of the valve element 640 (plunger 64) of the stroke simulator valve 6 and the operation direction of the reaction force piston 51 of the stroke simulator 5 are arranged in substantially the same direction. More specifically, the stroke simulator valve 6 is disposed substantially coaxially with the stroke simulator 5.
  • the central axis of the stroke simulator valve 6 (valve mounting hole 503) is provided on substantially the same straight line as the central axis of the stroke simulator 5 (axial direction holes 501, 502). Therefore, the range where the stroke simulator 5 and the stroke simulator valve 6 overlap each other in the axial direction is the maximum. Thereby, the area which projected the stroke simulator 5 and the stroke simulator valve
  • the stroke simulator valve 6 (the flange portion 50f including the fastening portions 50g, 50h of the stroke simulator housing 50, the solenoid 61, etc.) is the width of the stroke simulator 5 (the main body portion 50a of the stroke simulator housing 50). It is provided so as to be within the y-axis direction dimension) and the height (z-axis direction dimension).
  • the stroke simulator valve 6 is arranged below the master cylinder 4 so as to overlap the master cylinder 4 when viewed from the vertical direction when mounted on the vehicle.
  • the master cylinder 4 and the stroke simulator valve 6 are arranged in parallel to each other (the axial directions are substantially the same as each other). As a result, the master cylinder 4 and the stroke simulator valve 6 are positioned up and down with their axial directions aligned.
  • the axis of the master cylinder 4 and the axis of the stroke simulator valve 6 are arranged so as to be aligned on substantially the same straight line parallel to the z axis when viewed from the x-axis direction.
  • the range in which the master cylinder 4 and the stroke simulator valve 6 overlap each other when viewed from the vertical direction is maximized.
  • the stroke simulator valve 6 (the flange portion 50f including the fastening portions 50g and 50h of the stroke simulator housing 50, the solenoid 61, etc.) is connected to the master cylinder 4 (the main body portion 40a of the master cylinder housing 40). Is provided so as to be within the width (dimension in the y-axis direction).
  • the x-axis negative direction end of the stroke simulator 5 specifically, the x-axis negative direction end of the main body portion 50a of the stroke simulator housing 50 is the flange portion 50c. It extends to.
  • the x-axis positive direction end of the stroke simulator valve 6, specifically, the x-axis positive direction end of the solenoid 61 excluding the connector portion 610 is located on the x-axis negative direction side with respect to the x-axis positive direction end surface of the master cylinder housing 40. (Does not protrude from the master cylinder housing 40 toward the positive x-axis direction). As shown in FIGS.
  • the x-axis positive direction end of the reservoir tank 3, the x-axis positive direction end of the master cylinder 4, and the x-axis positive direction end of the stroke simulator valve 6 (connector portion 610) are substantially the same.
  • the brake pipe 71 is provided so as to be within the length (x-axis direction dimension) of the master cylinder housing 40 and the stroke simulator housing 50.
  • the brake pipe 71 (of the x-axis positive direction end) is positioned on the x-axis negative direction side of the x-axis positive direction end surface of the master cylinder housing 40 (does not protrude toward the x-axis positive direction side of the master cylinder housing 40).
  • the master cylinder 4 when the brake device 1 is viewed from the x-axis negative direction side, the master cylinder 4, the stroke simulator 5, and the brake pipe 71 (most of the z-axis negative direction side) are connected to the flange portion 50c. I can't see it in the shade.
  • the master cylinder 4 when the brake device 1 is viewed from the z-axis positive direction side, the master cylinder 4 (excluding a part of the flange portion 40b of the master cylinder housing 40) and the connecting portion 50b of the stroke simulator housing 50 are shown.
  • the stroke simulator 5 is hidden behind the reservoir tank 3 and cannot be seen.
  • FIG. 10 is a perspective view of the actuator 8 as viewed from the x-axis negative direction side, the y-axis negative direction side, and the z-axis positive direction side.
  • the actuator 8 is a second brake fluid pressure generation source that receives supply of brake fluid from the master cylinder 4 and the reservoir tank 3 and can generate brake fluid pressure independently of the brake operation by the driver.
  • the actuator 8 is a hydraulic pressure control unit that is provided between the wheel cylinder of each wheel and the master cylinder 4 and can individually supply the master cylinder hydraulic pressure or the control hydraulic pressure generated by itself to each wheel cylinder. .
  • the actuator 8 includes a hydraulic unit 8a and a controller (electronic control unit ECU) 8b that controls the operation of the hydraulic unit 8a.
  • the hydraulic unit 8a and the controller 8b are configured as an integral unit.
  • the hydraulic unit 8a is a hydraulic device for generating a control hydraulic pressure, and a plurality of control valves (solenoid valves) for switching a communication state between a pump that is a hydraulic pressure generation source and an oil passage formed in the housing 80. And have.
  • a motor 8c for driving the pump is integrally attached to the hydraulic unit 8a (housing 80). Since the specific hydraulic circuit configuration of the hydraulic unit 8a is the same as that of a known hydraulic unit, description thereof is omitted.
  • the hydraulic pressure unit 8a is provided with a hydraulic pressure sensor that detects a hydraulic pressure (master cylinder hydraulic pressure or the like) at a predetermined portion of the oil passage, and the detected value is input to the controller 8b.
  • the controller 8b is provided so as to be able to control the hydraulic pressure of each wheel cylinder independently of the driver's brake operation by controlling the operation of each device of the hydraulic pressure unit 8a based on various types of input information. .
  • the hydraulic unit 8a is connected to the brake device 1 via a brake pipe.
  • the hydraulic unit 8a is disposed on the lower side of the brake device 1 so that the direction of the x axis in FIG. 10 and the like coincide with the direction of the x axis in FIG. As a result, it is possible to reduce the projected area in the vertical direction (vehicle up-down direction) of the entire brake system and improve the vehicle mountability.
  • the housing 80 of the hydraulic unit 8a is fixedly installed on the vehicle body side (the floor of the engine room) via a damper 8d and a bracket 8e.
  • a master cylinder port 81 for the P system and the S system and four wheel cylinder ports 82 are provided as openings of oil passages formed in the housing 80.
  • the P system master cylinder port 81P is connected to the P system (y axis negative direction side) discharge port 44P of the master cylinder 4 via the brake pipe, and communicates with the hydraulic chamber 43P.
  • the master cylinder port 81S of the S system is connected to the discharge port 44S of the S system of the master cylinder 4 via another brake pipe, and communicates with the hydraulic pressure chamber 43S.
  • Each wheel cylinder port 82 is connected to each wheel cylinder via a brake pipe.
  • the other port of the housing 80 is connected to the supply port 32b of the reservoir tank 3 through the brake pipe and communicates with the reservoir tank 3.
  • the controller 8b is configured separately from the master cylinder 4, in other words, separate from the brake device 1 (master cylinder unit including the stroke simulator valve 6).
  • the controller 8b is provided with a connector 83 to which a harness is connected.
  • the stroke simulator valve 6 and the controller 8b are connected via a harness.
  • the controller 8b has a detection value sent from a pedal stroke sensor that detects the amount of operation of the brake pedal, a detection value sent from a hydraulic pressure sensor that detects the discharge pressure of the pump and the master cylinder hydraulic pressure, and a travel sent from the vehicle. Information on the state is input.
  • the controller 8b controls the opening / closing of each electromagnetic valve of the hydraulic unit 8a and the number of rotations of the motor (pump discharge amount) according to a built-in program.
  • boost control to reduce brake operating force
  • ABS anti-lock brake control
  • Brake control vehicle behavior control such as VDC and ESC
  • automatic brake control such as preceding vehicle follow-up control
  • target deceleration in coordination with regenerative brake
  • Regenerative cooperative brake control to achieve the target braking force.
  • the boost control the master hydraulic pressure generated in response to the brake operation is driven by the hydraulic pressure unit 8a (using the pump discharge pressure) to increase the assist hydraulic pressure that is formed. Foil cylinder hydraulic pressure higher than cylinder hydraulic pressure is created.
  • the hydraulic chamber 43 of the master cylinder 4 and the wheel cylinder of each wheel are in communication.
  • the wheel cylinder hydraulic pressure is generated by the master cylinder hydraulic pressure generated using the operating force (depressing force) of the brake pedal by the driver (pressing force brake).
  • brake fluid is supplied from each hydraulic chamber 43 of each system of the master cylinder 4 (via an oil passage in the hydraulic unit 8a) to each wheel cylinder (pressure increase). Time). That is, the master cylinder hydraulic pressure generated according to the depression operation of the brake pedal is supplied to the wheel cylinder as it is.
  • the wheel cylinder hydraulic pressure is created by the hydraulic pressure generated using the pump while blocking the communication between the hydraulic chamber 43 of the master cylinder 4 and each wheel cylinder. It is possible. Thus, a so-called brake-by-wire system can be configured, and boost control, regenerative cooperative brake control, and the like can be realized.
  • the stroke simulator valve 6 is energized and opened. Therefore, the master cylinder 4 (hydraulic pressure chamber 43P) and the stroke simulator 5 (main chamber 54) communicate with each other.
  • the stroke simulator 5 sucks and discharges brake fluid from the master cylinder 4 to create a pedal stroke.
  • the controller 8b controls the operation (energized state) of the stroke simulator valve 6. That is, the controller 8b integrates a hydraulic pressure controller for controlling the wheel cylinder hydraulic pressure and a controller for controlling the stroke simulator valve 6. In other words, the latter controller is included in the former hydraulic controller.
  • the brake device 1 and the actuator 8 are provided separately (separated). Therefore, the versatility of each device (brake device 1 and actuator 8) is high, and the brake system can be easily applied to different vehicle types. Moreover, the brake device 1 can be reduced in size compared with the case where the brake device 1 and the actuator 8 are provided integrally. In general, an installation space in a vehicle of a brake device as an input device to which a brake operation is input is limited. However, by reducing the size of the brake device 1, the layout flexibility of the brake device 1 can be improved.
  • the actuator 8 generates a wheel cylinder hydraulic pressure higher than the master cylinder hydraulic pressure so as to execute a boost control that reduces the brake operating force.
  • the actuator 8 provided as a wheel cylinder hydraulic pressure control unit provided separately from the brake device 1 can also function as a booster. Therefore, it is possible to omit a conventional booster, for example, a master back that boosts the brake operation force using the intake pressure (negative pressure) generated by the vehicle engine.
  • the brake device 1 as the input device may not include a booster that boosts the brake operation force using an accumulator, an electric motor, or the like. Therefore, the whole brake system can be simplified and the applicability to a vehicle is high.
  • the space of the vehicle can be saved while reducing the size of the brake device 1.
  • the brake device 1 can be installed in a space necessary for installing the master back.
  • a link type using a link mechanism or an electric (hydraulic type) booster using an electric motor or the like may be provided.
  • the brake device 1 (brake system) of the present embodiment is suitable for a vehicle that can generate a regenerative braking force, but can also be applied to other vehicles (non-electric vehicles that use only an engine as a drive source). is there.
  • the reservoir tank 3, the master cylinder 4, and the stroke simulator 5 are provided integrally (assuming one master cylinder unit). Therefore, the oil path connecting the reservoir tank 3, the master cylinder 4, and the stroke simulator 5 can be shortened. Moreover, the brake device 1 as an input device provided with the reservoir tank 3, the master cylinder 4, and the stroke simulator 5 can be reduced in size. By reducing the size of the brake device 1, it is easy to mount the brake device 1 on different vehicle types, and versatility is high. Therefore, manufacturing cost can be reduced.
  • the master cylinder has variations depending on the vehicle type of the vehicle to be mounted. If the master cylinder and the stroke simulator are formed using a common housing, it is necessary to set the common housing for each variation of the master cylinder. Therefore, in this case, it is difficult to apply the brake device to different vehicle types (vehicle grades), it is difficult to divert, and there is a possibility of lacking versatility.
  • the master cylinder housing 40 is fixed to the stroke simulator housing 50. That is, before assembling the brake device 1, the master cylinder 4 and the stroke simulator 5 are separate bodies (having their own housings 40 and 50) and are separated from each other. The brake device 1 is completed by fixing the housings 40 and 50 integrally at the time of assembly.
  • the master cylinder 4 and the stroke simulator 5 are modularized so that the modules 4 and 5 can be appropriately combined according to the type of vehicle (vehicle grade) to be mounted. Therefore, it is easy to use existing products. Specifically, it is suitable for a vehicle by appropriately combining an existing master cylinder 4 (master cylinder housing 40) corresponding to the vehicle grade of the vehicle to be mounted on a predetermined stroke simulator 5 (stroke simulator housing 50). The brake device 1 can be obtained.
  • the master cylinder housing 40 and the stroke simulator housing 50 are joined together (sealing joint) by joint surfaces (such as the outer peripheral surface of the fitting portion 40c) having a stamping part, and are fixed integrally with each other. Therefore, the existing (general purpose) master cylinder can be used more easily.
  • a concave shape in this embodiment, the first axial direction in this embodiment
  • any projection originally fitting portion 40c on the x-axis negative direction side
  • the existing master cylinder 4 can be used as it is.
  • the stroke simulator housing 50 includes a vehicle attachment surface 508, and is attached to the vehicle by the vehicle attachment surface 508. Therefore, the master cylinder 4 and the stroke simulator 5 can be easily attached to the vehicle via the stroke simulator housing 50. But it is good also as attaching not the stroke simulator housing 50 but the master cylinder housing 40 to a vehicle. However, in this case, if the stroke simulator housing 50 is fixed to the master cylinder housing 40 attached to the vehicle without changing the shape of the existing master cylinder housing 40 as much as possible (for improving versatility), the master cylinder housing At 40, the appropriate locations where the stroke simulator housing 50 can be joined are limited. That is, it is relatively easy to improve the versatility of the master cylinder 4 and attach the stroke simulator 5 to the vehicle via the master cylinder housing 40 (attached to the vehicle).
  • the stroke simulator housing 50 is attached to the vehicle as in this embodiment and the master cylinder 4 is attached to the vehicle via the stroke simulator housing 50, the shape of the stroke simulator housing 50 can be set relatively freely. Therefore, it is relatively easy to secure a portion where the master cylinder housing 40 can be joined. That is, the master cylinder 4 and the stroke simulator 5 can be easily attached to the vehicle while improving the versatility of the master cylinder 4. In this embodiment, since the stroke simulator housing 50 is attached to the vehicle, the versatility of the stroke simulator housing 50 can be improved as compared with the case where the master cylinder housing 40 is attached to the vehicle.
  • a vehicle mounting portion (a fitting portion in this embodiment) originally provided in the existing master cylinder housing is used as a portion of the master cylinder housing 40 joined to the stroke simulator housing 50.
  • 40c can be selected.
  • This vehicle attachment part (fitting part 40c) is standardized to some extent. If a concave shape corresponding to the standardized vehicle attachment portion (fitting portion 40c) is provided in the stroke simulator housing 50, this can be used as a general-purpose stroke simulator housing 50. That is, since the general-purpose stroke simulator housing 50 can be combined with an arbitrary master cylinder housing 40, the stroke simulator 5 can be easily used.
  • brake pipes 70 and 71 constituting oil passages for connecting them are provided. It is preferable.
  • the pipe mounting portion 320a of the reservoir tank 3 and the connection port 58 of the stroke simulator 5 are provided on the same side surface (y-axis positive direction side) of the brake device 1, thereby shortening the brake pipe 71, Connection workability and handling performance of the brake pipe 71 can be improved.
  • at least the brake pipe 71 where high pressure does not act is formed of a flexible material (material such as rubber). Therefore, compared with the case where the brake pipe 71 is configured as a steel pipe, the layout and handling characteristics of the brake pipe 71 can be improved.
  • the stroke simulator is positioned at the horizontal position of the master cylinder when mounted on the vehicle (adjacent to the horizontal direction or overlapping when viewed from the horizontal direction). Has been placed. Therefore, since the area occupied by the brake device as viewed from above increases, vehicle mountability cannot be improved.
  • the master cylinder 4 and the stroke simulator 5 are arranged so as to overlap each other (become up and down positions) when viewed from the vertical direction when mounted on the vehicle. Therefore, the projected area of the brake device 1 from above can be reduced.
  • the brake device 1 can be installed over a space necessary for installing the master back (a space generated by excluding the master back). Therefore, it is less necessary to separately provide a space for installing the brake device 1.
  • the master cylinder 4 and the stroke simulator 5 overlap each other (both 4, 5 overlap when viewed from the direction orthogonal to the axis of the master cylinder 4).
  • positioning both 4 and 5 so that it may overlap in an axial direction (longitudinal direction)
  • the increase in the dimension of the brake device 1 in the axial direction of the master cylinder 4 can be suppressed.
  • the master cylinder 4 and the stroke simulator 5 can be overlapped when viewed from above. Therefore, the occupied area of the brake device 1 can be reduced.
  • the axial direction of the master cylinder 4 and the axial direction of the stroke simulator 5 are arranged in the same direction (substantially parallel to each other).
  • the axial directions (longitudinal directions) of the master cylinder 4 and the stroke simulator 5 are aligned (aligned). Therefore, it is possible to reduce the area in which the entire master cylinder 4 and the stroke simulator 5 are projected from the axial direction of the master cylinder 4 as compared with the case where both the axial directions are shifted from each other (there is an angle between both axes). is there.
  • the brake device 1 (the size of the entire device in the direction perpendicular to the axis of the master cylinder 4) in a plane extending perpendicular to the axis of the master cylinder 4.
  • the master cylinder 4 and the stroke simulator 5 are viewed as a whole from the direction perpendicular to the axis of the master cylinder 4, when viewed from a direction in which the axes of the four and the fifth are located on the same straight line, the master cylinder It is possible to minimize the overall size of the device in the direction perpendicular to the four axes.
  • the master cylinder 4 and the stroke simulator 5 are arranged in parallel (substantially in parallel with each other) so as to overlap each other in the axial direction (x-axis direction) of the master cylinder 4, both 4, as viewed from the direction perpendicular to the axis of the master cylinder 4. It is possible to increase the area where 5 overlaps (see FIG. 4).
  • the axis of the master cylinder 4 and the axis of the stroke simulator 5 are positioned on substantially the same straight line, so that the area where both 4 and 5 overlap can be increased. it can. Therefore, the occupied area of the brake device 1 can be further reduced.
  • the above effect can be enhanced by minimizing the overall projected area in the vertical direction.
  • the stroke simulator 5 (excluding a part of the connecting portion 50b of the stroke simulator housing 50 and the flange portion 50c) is the contour of the master cylinder 4 (master cylinder housing 40). Fits within.
  • the master cylinder 4 (excluding a part of the flange portion 40b) fits within the contour of the reservoir tank 3. Therefore, as shown in FIG.
  • the projected area in the vertical direction of the brake device 1 is (the flange portion 40b of the master cylinder housing 40, the connection portion 50b of the stroke simulator housing 50, the pipe mounting portion 320, and the brake pipe 70, Except for 71), the projected area in the vertical direction of the reservoir tank 3 is substantially equal. Therefore, the projected area in the vertical direction of the brake device 1 can be made as small as possible.
  • the operating direction of the valve element 640 (plunger 64) of the stroke simulator valve 6 and the operating direction of the reaction force piston 51 of the stroke simulator 5 are arranged in substantially the same direction.
  • the axial directions of the stroke simulator valve 6 and the stroke simulator 5 are matched. Therefore, it is possible to reduce the projected area from the axial direction of the entire stroke simulator 5 of the stroke simulator valve 6 and the stroke simulator 5 as compared with the case where both axial directions are shifted from each other (there is an angle between both axes). It is.
  • the brake device 1 (the size of the entire device in the direction perpendicular to the axis of the stroke simulator 5) in a plane extending perpendicular to the axis of the stroke simulator 5. Therefore, when the shaft of the stroke simulator 5 is installed so as to extend in the front-rear direction of the vehicle, a region (occupied area) occupied by the brake device 1 in the engine room when viewed from the front-rear direction is reduced. Mountability can be improved. Further, by matching the axial directions of the stroke simulator valve 6 and the stroke simulator 5, as a result, the axial directions of the master cylinder 4 and the stroke simulator valve 6 are matched (substantially parallel to each other). In addition, the occupied area when viewed from above the brake device 1 can be further reduced.
  • the stroke simulator valve 6 is disposed at the axial position of the stroke simulator 5. That is, the stroke simulator valve 6 is disposed so as to overlap the stroke simulator 5 when viewed from the axial direction (x-axis direction). Thereby, the projection area from the axial direction of the stroke simulator 5 of the whole stroke simulator valve
  • the stroke simulator valve 6 is arranged substantially coaxially with the stroke simulator 5. Therefore, when viewed from the axial direction (x-axis direction), the area where both 5 and 6 overlap can be maximized, and the projected area can be minimized.
  • the master cylinder 4 and the stroke simulator valve 6 are arranged so as to overlap each other in the x-axis direction.
  • positioning both 4 and 6 so that it may overlap in an axial direction (longitudinal direction)
  • the increase in the dimension of the brake device 1 in the axial direction of the master cylinder 4 can be suppressed.
  • the master cylinder 4 and the stroke simulator valve 6 can be overlapped when viewed from the vertical direction. Therefore, the occupation area when viewed from above the brake device 1 can be reduced. It should be noted that there is a range where the master cylinder 4 and the stroke simulator valve 6 partially overlap when projected in the vertical direction, but it is preferable that at least half of the stroke simulator valve 6 overlaps the master cylinder 4. In the present embodiment, the above-described effect can be enhanced by maximizing the area where both 4 and 6 overlap in the vertical direction and minimizing the projected area in the vertical direction.
  • the stroke simulator valve 6 when viewed from the z-axis direction, fits within the contour of the master cylinder 4 (master cylinder housing 40).
  • the x-axis positive direction end of the stroke simulator valve 6 (connector portion 610) is at substantially the same position as the x-axis positive direction ends of the reservoir tank 3 and the master cylinder 4 in the x-axis direction. Therefore, the projected area in the vertical direction of the brake device 1 can be made as small as possible.
  • the entire brake device 1 can be further miniaturized and the vehicle mountability can be improved. Moreover, since the structure and brake piping for connecting both 5 and 6 become unnecessary, it is possible to improve the fail-safe property while simplifying the configuration and improving the mounting workability.
  • the controller 8b that controls the stroke simulator valve 6 is configured separately from the brake device 1 and is connected to the stroke simulator valve 6 via a harness. Therefore, compared with the case where the brake device 1 and the controller 8b are provided integrally, the brake device 1 can be downsized and the layout flexibility of the brake device 1 can be improved. In other words, the layout performance of the brake device 1 can be improved by integrating the hydraulic pressure controller for controlling the wheel cylinder hydraulic pressure and the controller for controlling the stroke simulator valve 6 as the controller 8b.
  • the master cylinder 4, the stroke simulator 5, and the stroke simulator valve 6 are configured to fit within the width (y-axis direction dimension) of the flange portion 50c for mounting the brake device 1 (stroke simulator housing 50) to the vehicle. Therefore, it is possible to reduce the size of the brake device 1 in the lateral direction of the vehicle (in other words, the direction perpendicular to the axes of the master cylinder 4 and the stroke simulator valve 6 when viewed from above). Thereby, the vehicle mountability of the brake device 1 can be further improved, and the space in the engine room can be saved. For example, when viewed from the front-rear direction of the vehicle, it is possible to install the brake device 1 so as to be approximately within the space necessary for installing the master back (the space generated by excluding the master back). . Therefore, it is less necessary to separately provide a space for installing the brake device 1.
  • the brake pipe 71 connecting the reservoir tank 3 and the stroke simulator 5 is provided so as to be within the width (y-axis direction dimension) of the flange portion 50c. Therefore, the size of the brake device 1 in the lateral direction of the vehicle can be reduced, and the vehicle mountability of the brake device 1 can be further improved.
  • the fastening portion 40d of the master cylinder housing 40 and the fastening portion 50i of the stroke simulator housing 50 are within the width (y-axis direction dimension) of the flange portion 50c while protruding in the y-axis positive direction side.
  • Pipe mounting portions 320a and 580 are arranged in the space above and below the fastening portions 40d and 50i, respectively.
  • the pipe mounting portions 320a and 580 are both bent so as to open to the x-axis positive direction side (not the y-axis positive direction side) and are provided so as to be within the width (dimension in the y-axis direction) of the flange portion 50c. .
  • the brake pipe 71 attached to the pipe attachment parts 320a and 580 is installed in a U shape that bypasses the fastening parts 40d and 50i and the discharge port 44P.
  • the brake pipe 71 fits within the width (dimension in the y-axis direction) of the flange portion 50c while eliminating interference with the fastening portion 40d and the like.
  • interference between the brake pipe 71 and other members in the engine room can be avoided. Therefore, the vehicle mountability of the brake device 1 can be improved while suppressing damage to the brake pipe 71.
  • the brake pipe 71 is formed of a flexible material (a material such as rubber), the damage can be effectively suppressed.
  • the stroke simulator 5 is arranged on the lower side of the master cylinder 4 and the reservoir tank 3 is arranged on the upper side of the master cylinder 4 (when the vehicle is mounted, the reservoir tank 3, the master cylinder 4 and the stroke simulator 5 are arranged in this order). For this reason, the air bleeding property of the brake device 1 can be improved. In other words, when the brake device 1 is attached to the vehicle or maintenance (brake fluid replacement), an operation of removing air from the brake device 1 is performed. In the simulator oil passage, the air can be easily extracted by the air bleeding bleeder 57 on the side of the stroke simulator 5 (including the main chamber 54) from the stroke simulator valve 6.
  • the bleeder 57 is provided so as to open to the z-axis positive direction side of the main chamber 54 (cylindrical portion 50e) of the stroke simulator 5, that is, an upper portion where air easily collects. Therefore, the air bleeding property can be improved.
  • the air passes through the brake pipe 70 to the master cylinder 4 (hydraulic pressure chamber 43 ⁇ / b> P) and the reservoir tank 3 (supply port 30). Can be pulled out.
  • the stroke simulator 5 is disposed below the master cylinder 4, and the reservoir tank 3 is disposed above the master cylinder 4. Therefore, since air (bubbles) rises due to buoyancy and is easily removed from the reservoir tank 3 via the brake pipe 70 and the like, the air venting performance can be improved.
  • a master cylinder 4 that generates brake fluid pressure by a driver's brake operation
  • a stroke simulator 5 for generating the pseudo operation reaction force of the brake operation member by receiving the brake fluid flowing out from the master cylinder 4
  • the master cylinder 4 and the stroke simulator 5 provide a brake device that is integrally arranged so as to overlap each other in the vertical direction (viewed from the vertical direction) when the vehicle is mounted. Therefore, the projected area of the brake device 1 from above can be reduced, and the vehicle mountability can be improved.
  • a reservoir tank 3 capable of supplying brake fluid to the master cylinder 4;
  • the stroke simulator 5 is disposed below the master cylinder 4, and the reservoir tank 3 is disposed above the master cylinder 4. Therefore, the air bleeding property can be improved.
  • the stroke simulator 5 includes a reaction force piston 51 (piston) that operates in the axial direction when brake fluid flows in,
  • the axial direction of the master cylinder 4 and the axial direction of the stroke simulator 5 are arranged in the same direction. Therefore, the projected area of the brake device 1 from above can be further reduced by aligning both axial directions.
  • a stroke simulator valve 6 for restricting the inflow of brake fluid into the stroke simulator;
  • the stroke simulator valve is arranged coaxially with the stroke simulator.
  • the stroke simulator valve 6 is arranged so as to overlap the master cylinder 4 in the vertical direction (viewed from the vertical direction).
  • It has a flange part 50c (flange) for fixing to the vehicle,
  • the master cylinder 4 and the stroke simulator 5 are configured to fit within the width of the flange portion 50c. Therefore, it is possible to reduce the size of the brake device 1 in the lateral direction of the vehicle and further improve the vehicle mountability.
  • a reservoir tank 3 disposed above the master cylinder for storing brake fluid;
  • a brake pipe 71 for connecting the reservoir tank and the stroke simulator is provided, The brake pipe is provided to fit within the width of the flange.
  • the master cylinder 4 includes a master cylinder housing 40 in which a piston is accommodated.
  • the stroke simulator includes a stroke simulator housing 50 that houses a piston that operates in the axial direction when brake fluid flows therein, Each housing is fixed integrally with each other.
  • a master cylinder 4 capable of generating brake fluid pressure by operating the piston in the axial direction;
  • a brake simulator 5 that generates a pseudo operation reaction force by injecting a brake fluid that flows out of the master cylinder when the driver performs a brake operation, and operating a reaction force piston in an axial direction by the inflow brake fluid;
  • a brake device in which the master cylinder and the stroke simulator are arranged so as to be in a vertical position in a state where the axial directions are aligned when mounted on a vehicle.
  • a reservoir tank 3 for supplying brake fluid into the master cylinder; When the vehicle is mounted, the reservoir tank, the master cylinder, and the stroke simulator are arranged in this order from the top.
  • the stroke simulator valve is disposed at an axial position of the stroke simulator.
  • the stroke simulator valve has a valve body 640 that operates in the axial direction, The operating direction of the valve body and the operating direction of the reaction force piston are arranged in the same direction.
  • the master cylinder has a master cylinder housing that houses a piston inside,
  • the stroke simulator includes a stroke simulator housing in which a reaction force piston is accommodated.
  • the master cylinder housing and the stroke simulator housing have joint surfaces for fixing them together, The joining surface includes a stamping part.
  • the stroke simulator housing has a fixing flange for fixing to the vehicle, The master cylinder and the stroke simulator are configured to fit within the width of the fixed flange.
  • Brake piping that connects the reservoir tank that stores brake fluid and the stroke simulator, The brake piping is provided to fit within the width of the fixed flange.
  • an actuator 8 for controlling a wheel cylinder hydraulic pressure in accordance with a brake operation state or a vehicle state;
  • a brake system provided with a brake device 1 that is provided separately from the actuator 8 and that operates according to a driver's brake operation,
  • the brake device 1 includes a master cylinder 4 that generates brake fluid pressure by a driver's brake operation, A stroke simulator 5 in which the brake fluid flowing out from the master cylinder 4 flows and generates a pseudo operation reaction force of the brake operation member;
  • a stroke simulator valve 6 for restricting the flow of brake fluid into the stroke simulator 5;
  • a controller 8b for controlling the stroke simulator valve 6;
  • the master cylinder 4 and the stroke simulator 5 are integrally arranged so as to overlap each other in the vertical direction (viewed from the vertical direction) when mounted on the vehicle,
  • the controller 8b is configured separately from the master cylinder 4, and the stroke simulator valve 6 and the controller 8b provide a brake system connected via a harness.
  • the actuator has a hydraulic pressure controller to control the wheel cylinder hydraulic pressure, The controller is included in the hydraulic controller.
  • the master cylinder has a master cylinder housing that houses a piston inside,
  • the stroke simulator includes a stroke simulator housing in which a reaction force piston is accommodated.
  • the stroke simulator includes a piston that operates in the axial direction when brake fluid flows in, The axial direction of the master cylinder and the axial direction of the stroke simulator are arranged in the same direction.
  • the concrete structure of this invention is not limited to an Example,
  • the design change of the range which does not deviate from the summary of invention are included in the present invention.
  • the master cylinder and the stroke simulator may be formed using a common housing.
  • the master cylinder and the stroke simulator may be arranged separately (for example, separated from each other while being spatially close) instead of being integrated.
  • the vehicle mountability can be improved by arranging the master cylinder and the stroke simulator so as to overlap each other when viewed from the vertical direction. Further, as shown in FIG.
  • a spring (dish) serving as a damper is provided between the x-axis negative direction end of the master cylinder housing 40 (fitting portion 40c) and the flange portion 21 of the push rod 2 (the outer periphery of the piston 41P). It is good also as installing 23, such as a spring.
  • the flange portion 21 comes into contact with the end of the spring 23 in the x-axis negative direction, and the spring 23 is pressed and contracted by the flange portion 21 from the x-axis negative direction side.
  • the spring 23 that compresses and deforms adjusts the operating force of the brake pedal by applying a reaction force to the brake pedal via the push rod 2.
  • preferable characteristics can be exhibited in the entire range of the brake pedal operation amount.
  • a link type booster using a link mechanism is installed between the brake pedal and the clevis 20 instead of causing the actuator 8 to function as a booster.
  • Desirable braking characteristics such as excessive increase in lever ratio in the pedal stroke area at the later stage of brake operation, if the characteristics of the link mechanism are designed so that a predetermined boosting performance can be obtained under the constraint conditions when the vehicle is mounted. There is a possibility that (the relationship between the pedaling force, the stroke, and the deceleration) cannot be obtained.
  • the spring 23 when the spring 23 is installed, the spring 23 is compressed in the latter half of the brake operation, thereby increasing the pedal reaction force and attenuating the pedal force, thereby obtaining a preferable brake characteristic in the entire range of the brake pedal operation amount. It becomes possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Regulating Braking Force (AREA)
  • Transmission Of Braking Force In Braking Systems (AREA)

Abstract

 車両搭載性を向上することができるブレーキ装置を提供すること。 運転者のブレーキ操作によってブレーキ液圧を発生するマスタシリンダ4と、マスタシリンダ4から流出したブレーキ液が流入しブレーキ操作部材の擬似操作反力を生成するストロークシミュレータ5とを備え、マスタシリンダ4とストロークシミュレータ5は車両搭載時に鉛直方向に(鉛直方向から見て)互いに重なり合うよう一体的に配置されている。

Description

ブレーキ装置及びブレーキシステム
 本発明は、ブレーキ装置に関する。
 従来、車両用のブレーキ装置が知られている。例えば特許文献1に記載のブレーキ装置(車両用ブレーキシステムの入力装置)では、車両搭載時にストロークシミュレータがマスタシリンダの水平方向位置となるように配置されている。
特開2012-106638号公報
 しかし、従来のブレーキ装置では、上方から見たブレーキ装置の占有面積が比較的大きくなるため、車両搭載性を向上することができなかった。本発明の目的とするところは、車両搭載性を向上することができるブレーキ装置を提供することにある。
 上記目的を達成するため、本発明のブレーキ装置では、車両搭載時にマスタシリンダとストロークシミュレータが鉛直方向に(鉛直方向から見て)互いに重なり合うように配置されている。
 よって、車両搭載性を向上することができる。
実施例1のブレーキ装置1の斜視図である。 実施例1のブレーキ装置1の斜視図である。 実施例1のブレーキ装置1の上面図である。 実施例1のブレーキ装置1の下面図である。 実施例1のブレーキ装置1の側面図である。 実施例1のブレーキ装置1の側面図である。 実施例1のブレーキ装置1の正面図である。 実施例1のブレーキ装置1の背面図である。 図7のA-A視断面図である。 実施例1のアクチュエータ8の斜視図である。
 以下、本発明のブレーキ装置を実現する形態を、図面に基づき説明する。
 [実施例1]
 本実施例のブレーキ装置が適用される車両は、電動機により回生制動力を発生可能な電動車両である。電動車両としては、例えば、車輪を駆動する原動機としてエンジン(内燃機関)のほか電動式のモータ(ジェネレータ)を備えたハイブリッド車や、モータ(ジェネレータ)のみを備えた電気自動車等が挙げられる。本実施例の制動系(ブレーキシステム)は、車両の各車輪にブレーキ液圧を付与して制動力を発生させる液圧式ブレーキシステムである。車両の各車輪に設けられたホイルシリンダ(キャリパ)は、制動操作液圧や制御液圧の供給を受けてブレーキ作動液圧(ホイルシリンダ液圧)を発生する。ブレーキシステムは、運転者のブレーキ操作が入力される入力装置としてのブレーキ装置1と、運転者のブレーキ操作に応じた電気信号に基づいてブレーキ液圧を発生可能な電動ブレーキアクチュエータ(以下、アクチュエータ8という。)とを備えている。ブレーキ装置1は、運転者のブレーキ操作に応じて作動し、制動操作液圧としてのマスタシリンダ液圧を発生する。アクチュエータ8は、ブレーキ装置1とは別体に設けられ、ブレーキ操作状態又は車両の状態に応じてホイルシリンダ液圧(ブレーキ液圧)を制御する。
 図1~図9は、本実施例のブレーキ装置1の全体を各方向から示す。以下、説明の便宜上、直交座標系を設ける。ブレーキ装置1を車両に設置した状態で、車両の前後方向(マスタシリンダ4が作動する軸方向)にx軸を設ける。ブレーキ装置1が車両に設置される際、マスタシリンダ4の軸方向は車両の前後方向と略平行になるため、x軸方向は、車両の前後方向となる。車両前方(ブレーキペダルの踏込み操作に応じてマスタシリンダ4のピストン41がストロークする方向)をx軸正方向とする。車両の幅方向(左右方向ないし横方向)にy軸を設け、車両後方(x軸負方向側)から見て左側をy軸正方向とする。車両の上下方向(鉛直方向)にz軸を設け、車両上方(マスタシリンダ4に対してリザーバタンク3が設置される側)をz軸正方向とする。図1はブレーキ装置1をx軸負方向側かつy軸正方向側かつz軸正方向側から見た斜視図である。図2はブレーキ装置1をx軸正方向側かつy軸負方向側かつz軸正方向側から見た斜視図である。図3はブレーキ装置1をz軸正方向側から見た上面図である。図4はブレーキ装置1をz軸負方向側から見た下面図である。図5はブレーキ装置1をy軸正方向側から見た側面図である。図6はブレーキ装置1をy軸負方向側から見た側面図である。図7はブレーキ装置1をx軸正方向側から見た正面図である。図8はブレーキ装置1をx軸負方向側から見た背面図である。図9はブレーキ装置1をマスタシリンダ4の軸心を通る平面で切った断面図であり、図7を、図7のA-A線で破断し、矢印の方向から見た断面を示す。
 ブレーキ装置1は、プッシュロッド2と、リザーバタンク3と、マスタシリンダ4と、ストロークシミュレータ5と、ストロークシミュレータバルブ6とを備えている。すなわち、ブレーキ装置1は、マスタシリンダ4を内蔵したマスタシリンダユニットである。ブレーキシステムは、2系統(プライマリP系統及びセカンダリS系統)のブレーキ配管を有している。以下、各系統に対応して設けられた部材や構造にはその符号の末尾に添字P,Sを付して区別する。プッシュロッド2は、クレビス20を介して、ブレーキペダル(図示せず)に連結されている。ブレーキペダルは、運転者のブレーキ操作の入力を受ける入力部材(ブレーキ操作部材)である。プッシュロッド2は、ブレーキペダルに連動してx軸方向に作動する。例えばブレーキペダルの踏込み操作に応じてx軸正方向にストロークする。プッシュロッド2のx軸正方向端は、マスタシリンダ4のピストン41Pに当接している(図9参照)。プッシュロッド2は、ブレーキペダルに入力された運転者の操作力を受け、これをx軸方向の推力としてマスタシリンダ4に伝達する。プッシュロッド2のx軸正方向側の外周には、フランジ部21が設けられている。プッシュロッド2のx軸正方向端には、x軸正方向側の先端が凸球面状に形成された当接部材22が固定されている。本実施例のブレーキ装置1は、運転者のブレーキ操作力を低減するための倍力装置(ブレーキブースタ)として、ブレーキペダルとマスタシリンダとの間に介装される、車両のエンジンが発生する吸気圧(負圧)を用いて作動する形式のもの(マスターバック)を備える必要がない。
 リザーバタンク3は、ブレーキ液を貯留するブレーキ液源であり、マスタシリンダ4やアクチュエータ8へブレーキ液を供給する。リザーバタンク3は、供給口30と、補給口31P,31Sと、補給口32a,32bとを有している。供給口30は、リザーバタンク3のx軸正方向側でz軸正方向側に突出して外部に開口しており、蓋3aにより開閉自在に設けられている。補給口31P,31Sは、x軸方向に並ぶように設けられており、リザーバタンク3のz軸負方向側に突出してマスタシリンダ4側に開口する。補給口31Pは補給口31Sよりもx軸負方向側に設けられている。補給口32a,32bは、補給口31Pよりもx軸負方向側に設けられており、リザーバタンク3のy軸方向両側面に開口する。リザーバタンク3のz軸負方向側であって補給口31P,31S間には、締結部35が設けられている。締結部35には、リザーバタンク3をマスターシリンダ4に止めるためのピンを挿入するための孔がy軸方向に延びるように形成されている。リザーバタンク3内には、z軸負方向側の底面からz軸正方向へ延びるように2枚の仕切板33a,33bが設置されている。2枚の仕切板33a,33bにより、リザーバタンク3内は3つの領域に仕切られている。x軸正方向側の領域には補給口31Sが、x軸負方向側の領域には補給口32a,32bが、これら2つの領域に挟まれた領域には補給口31Pが、設けられている。補給口31S、補給口32a,32b、補給口31Pは、それぞれ開口部を有している。仕切板33は、例えば車両が傾いたり加減速したりしても各領域にブレーキ液を貯留し、これにより各補給口からのブレーキ液の補給を可能とする。補給口32aには、配管取付け部320aが接続されている(図1参照)。配管取付け部320aには、ブレーキ配管71の一端が取付けられている。配管取付け部320aは、リザーバタンク3のx軸負方向側かつy軸正方向側かつz軸負方向側の外面からy軸正方向側に突出し、途中でx軸正方向側に折れ曲がるように設けられている。ブレーキ配管71が取付けられる配管取付け部320aの先端は、x軸正方向側に開口する。補給口32bには、配管取付け部320bが接続されている(図2参照)。配管取付け部320bには、他のブレーキ配管の一端が取付けられる。配管取付け部320bは、リザーバタンク3のx軸負方向側かつy軸負方向側かつz軸負方向側の外面からy軸負方向側に突出し、途中でx軸正方向側に折れ曲がるように設けられている。ブレーキ配管が取付けられる配管取付け部320bの先端は、x軸正方向側に開口する。
 マスタシリンダ4は、運転者によるブレーキペダルの操作(ブレーキ操作)に応じて液圧(マスタシリンダ液圧)を発生する第1のブレーキ液圧発生源である。マスタシリンダ4は、図外の油路(ブレーキ配管)を介して、ホイルシリンダに接続している。マスタシリンダ液圧は、上記油路を介してホイルシリンダへ供給され、ホイルシリンダ液圧(ブレーキ液圧)を発生させる。マスタシリンダ4は、マスタシリンダハウジング(シリンダ)40と、ピストン41と、コイルスプリング42とを有している。マスタシリンダハウジング40は、本体部40aと、フランジ部40bと、嵌合部40cとを有している。本体部40aは、一端側(x軸正方向側)が閉塞してx軸方向に延びる有底円筒状に形成されている。フランジ部40bは、本体部40aのx軸負方向側の外周に設けられている。フランジ部40bのy軸方向両側には、x軸方向に延びるボルト孔が形成された締結部40d,40eが設けられている。締結部40d,40eは、本体部40aの軸心を挟んで略対称位置に設けられている。
 嵌合部40cは、フランジ部40bのx軸負方向側に隣接しており、フランジ部40bからx軸方向に延びる略円柱状に設けられている。嵌合部40cの外周を取り囲むように設けられたシール溝401内にはシール部材402が設置される。
 マスタシリンダハウジング40の内部には、x軸方向に延びる軸方向孔400が形成されている。孔400は、マスタシリンダハウジング40のx軸負方向側に開口する。マスタシリンダ4は、所謂タンデム型であり、孔400内には2つのピストン41P,41Sがx軸方向に作動(往復移動)可能に設けられている。P系統のピストン41Pのx軸負方向側には凹球面状の受け部410が形成されている。受け部410には、プッシュロッド2(当接部材22)の凸球面状に形成されたx軸正方向端が当接している。このようにして、プッシュロッド2は、受け部410に回動可能に嵌合されている。S系統のピストン41Sは、フリーピストンであり、ピストン41Pのx軸正方向側に設置される。各ピストン41p、41sには、x軸方向に延びてx軸正方向側に開口する凹部411p、411sが設けられている。各ピストン41p、41sには、凹部411p、411sの内周面と各ピストン41p、41sの外周面とを連通する連通孔412p、412sが径方向に延びるように設けられている。
 マスタシリンダハウジング40には、吐出ポート44p、44sと補給ポート45p、45sが形成されている。これらの吐出ポート44p、44sと、補給ポート45p、45sは、孔400の内周面に開口する。吐出ポート44p、44sは、y軸方向に延びてマスタシリンダハウジング40のy軸負方向側の側面に開口し(図2参照)、ブレーキ配管(図示せず)を介してアクチュエータ8(図10参照)に接続している。そして、吐出ポート44p、44sは、アクチュエータ8を介してホイルシリンダ(図示せず)と連通可能に設けられている。P系統の吐出ポート44Pは2つ設けられており、上記以外の他の吐出ポート44P(図1参照)は、y軸方向に延びてマスタシリンダハウジング40のy軸正方向側の側面に開口する。このy軸正方向側に開口する吐出ポート44Pは、ブレーキ配管70を介してストロークシミュレータ5に接続しており、ストロークシミュレータ5(主室54)と連通可能に設けられている。補給ポート45p、45sは、z軸方向に延びてマスタシリンダハウジング40のz軸正方向側の上面に開口し、リザーバタンク3に接続してこれと連通する。リザーバタンク3の補給口31P,31Sは、マスタシリンダハウジング40の上面の(補給ポート45が開口する)凹部48P、48Sにシール部材34P、34Sを介して嵌合し、それぞれ補給ポート45P,45Sに連通している。すなわち、リザーバタンク3は、マスタシリンダ4と一体的に設けられている。マスタシリンダ4は、リザーバタンク3から補給口31P,31S及び補給ポート45P,45Sを介して、ブレーキ液を補給される。y軸方向から見て、マスタシリンダハウジング40のz軸正方向端であって、凹部48P,48S間には、締結部49が設けられている。締結部49には、リザーバタンク3を止めるためのピンを挿入するための孔がy軸方向に延びるように形成されている。締結部49とリザーバタンク3の締結部35にピン(図示せず)が挿通されて、ピンを介してリザーバタンク3の締結部35がマスタシリンダハウジングの締結部49に締結されることで、リザーバタンク3がマスタシリンダハウジング40に対して固定される。
 孔400の内周面には、断面がカップ状のシール部材46P、46S、47P、47Sが固定設置されている。シール部材46P,47Pは、補給ポート45Pの開口をx軸方向で挟むように配置されている。シール部材46S,47Sは、補給ポート45Sの開口をx軸方向で挟むように配置されている。シール部材46P、46S、47P、47Sの内周側(リップ部)は各ピストン41P,Sの外周面に当接する。シール部材46P、46S、47P、47Sは、孔400の内周とピストン41P,Sの外周との間の隙間を通るブレーキ液の流れを一方向に規制する。P系統のシール部材46Pは、補給ポート45Pからx軸負方向側(マスタシリンダハウジング40の外部)へ向かうブレーキ液の流れを規制する。S系統のシール部材46Sは、補給ポート45Sからx軸負方向側へ向かうブレーキ液の流れのみを許容する。シール部材47P、47Sは、それそれ補給ポート45P、45Sからx軸正方向側へ向かうブレーキ液の流れのみを許容する。
 マスタシリンダハウジング40の内部(孔400)には、P系統の液圧室43PとS系統の液圧室43Sとを備える液圧室43が画成されている。両ピストン41P,41Sの間(シール部材47P,46Sによりシールされる領域)には、P系統の液圧室43Pが画成されている。ピストン41Sとマスタシリンダハウジング40の底部との間(シール部材47Sによりシールされる領域)には、S系統の液圧室43Sが画成されている。各液圧室43P、43S内には、それぞれ、ピストン41P、41Sの戻しばねとしてのコイルスプリング42P、42Sが押し縮められた状態で設置されている。各液圧室43P、43Sには、それぞれ吐出ポート44P、44Sが開口する。図9に示すように、ブレーキペダルが踏み込まれていない状態(プッシュロッド2のフランジ部21がストロークシミュレータハウジング50のストッパ部507に当接した状態)で、各ピストン41P、41Sは最もx軸負方向側に位置し、各ピストン41P、41Sの連通孔412P、412Sは、それぞれシール部材47P、47Sよりもx軸負方向側に位置する。よって、補給ポート45P、45Sは、それぞれ連通孔412P、412Sを介して、各ピストン41P、41Sの凹部411P、411Sの内周側すなわち液圧室43P、43Sに連通する。孔400内をx軸方向にピストン41P、41Sが作動することで、ブレーキ液圧が発生する。具体的には、運転者のブレーキ操作によって、プッシュロッド2のx軸正方向の推力がピストン41Pに伝達される。各ピストン41P、41Sがx軸正方向側にストロークすると、各液圧室43P、43Sの容積が縮小する。連通孔412P、412Sがそれぞれシール部材47P、47Sよりもx軸正方向側に位置するようになると、シール部材47P、47Sにより、連通孔412P、412Sを介した各液圧室43P、43Sから補給ポート45P、45S(リザーバタンク3)への連通が遮断され、各液圧室43P、43S内にブレーキ操作に応じた液圧(マスタシリンダ液圧)が発生する。なお、両液圧室43P、43Sには略同じ液圧が発生する。各液圧室43P、43Sから吐出ポート44P、44Sを介してアクチュエータ8(ホイルシリンダ)に向けてブレーキ液(マスタシリンダ液圧)が供給される。
 ストロークシミュレータ5は、マスタシリンダ4から流出したブレーキ液が流入可能に設けられており、ブレーキペダルの擬似操作反力を生成する操作反力発生源である。ストロークシミュレータ5は、油路(ブレーキ配管70)を介して、マスタシリンダ4に接続されていると共に、油路(ブレーキ配管71)を介してリザーバタンク3に接続dされている。ストロークシミュレータ5は、ストロークシミュレータハウジング50と、反力ピストン51と、コイルスプリング52とを有している。ストロークシミュレータハウジング50は、本体部50aと接続部50bとフランジ部50cとを一体に有している。
 本体部50aは、段付きの有底円筒状であり、大径の円筒部50dと小径の円筒部50eとフランジ部50fとを一体に有している。小径の円筒部50eは、大径の円筒部50dのx軸正方向側に、この円筒部50dと略同軸に設けられている。フランジ部50fは、小径の円筒部50eのx軸正方向側に、この円筒部50eと略同軸に設けられている。円筒部50eには、ストロークシミュレータ5内のエアを抜くためのエア抜き用ブリーダ57が設けられている。エア抜き用ブリーダ57は、円筒部50eのx軸正方向側かつz軸正方向側の外周面からy軸負方向側に突出するように設けられている。フランジ部50f(下記締結部50g,50hを除く本体)の外径は、円筒部50eの外径よりも大きく、円筒部50dの外径よりも小さい。
 フランジ部50fのy軸正方向側かつz軸負方向側には、x軸方向に延びるボルト孔が形成された締結部50gが設けられている。フランジ部50fのy軸負方向側かつz軸正方向側には、x軸方向に延びるボルト孔が形成された締結部50hが設けられている。締結部50g,50hは、本体部50aの軸心を挟んで略対称位置に設けられている。締結部50gのボルト孔と締結部50hのボルト孔にボルトを通すことにより、ストロークシミュレータ5とストロークシミュレータバルブ6とが連結されている。本体部50aの内部には、第1の軸方向孔501と、第2の軸方向孔502と、バルブ装着孔503と、油路55等が形成されている。第1の軸方向孔501は、大径の円筒部50dの内周側にx軸方向に延びるように形成されている。第2の軸方向孔502は、第1の軸方向孔501よりも小径であって、小径の円筒部50eの内周側に、第1の軸方向孔501に連続してx軸方向に延びるように形成されており、円筒部50dのx軸正方向側の底部に開口する。第2の軸方向孔502のx軸正方向端かつz軸正方向端には、エア抜き用ブリーダ57の油路が開口する。本体部50aの一端(第2の軸方向孔502のx軸正方向端)側は閉塞し、他端(第1の軸方向孔501のx軸負方向端)側は開口している。
 バルブ装着孔503は、フランジ部50f及び円筒部50eの内周側にx軸方向に延びるように形成されており、フランジ部50fのx軸正方向側に開口する。バルブ装着孔503は、x軸正方向側からx軸負方向側へ向かうにつれて小径となる段付き形状である。バルブ装着孔503のx軸負方向端と第2の軸方向孔502のx軸正方向端とは、x軸方向に延びる油路55を介して接続している。軸方向孔501,502と、バルブ装着孔503と、油路55は、略同軸に形成されている。円筒部50dのz軸正方向側であってy軸正方向側には、第1の軸方向孔501に連通する接続ポート58が設けられている。接続ポート58には、配管取付け部580が接続されている。配管取付け部580には、ブレーキ配管71の他端が取付けられる。配管取付け部580は、円筒部50dのややx軸正方向側かつy軸正方向側かつz軸正方向側の外面からy軸正方向側に突出し、途中でx軸正方向側に折れ曲がるように設けられている。ブレーキ配管71が取付けられる配管取付け部580の先端は、x軸正方向側に開口する。
 ブレーキ配管71は、鋼管ではなく、ゴム等の材料によりフレキシブルな配管として構成されている。図5に示すように、ブレーキ配管71はy軸正方向側から見てU字状に設置されている。ブレーキ配管71は、リザーバタンク3の配管取付け部320aからx軸正方向側に延び、(y軸正方向側に突出して開口する)吐出ポート44Pをその内周側に包むようにz軸負方向側へ曲がった後、x軸負方向側に折り返して、配管取付け部580に取り付けられる。第1の軸方向孔501は、ブレーキ配管71を介して、リザーバタンク3の補給口32aに接続され、リザーバタンク3に連通する。円筒部50eとフランジ部50fとの境界部位のy軸正方向側には、接続ポート59が設けられている。接続ポート59は、バルブ装着孔503に連通すると共に、ブレーキ配管70を介して、マスタシリンダ4のy軸正方向側に開口する吐出ポート44Pに接続され、マスタシリンダ4(液圧室43P)に連通する。ブレーキ配管70は、ブレーキ配管71よりも小径かつ高剛性の配管(例えば鋼管)として構成されている。図7に示すように、ブレーキ配管70はx軸方向から見てU字状に設置されている。ブレーキ配管70は、マスタシリンダ4のy軸正方向側に開口する吐出ポート44Pからy軸正方向側かつz軸負方向側に曲がって延び、ブレーキ配管71を内周側に包むようにy軸負方向側に折り返して、接続ポート59に接続される。
 接続部50bは、本体部50a(円筒部50d)のz軸正方向側に設けられている。接続部50bは、x軸方向に延びる有底円筒状である。接続部50bのy軸方向両側には、x軸方向に延びるボルト孔が形成された締結部50i,50jが設けられている。(締結部50i,50jを含む)接続部50bの外周面は、x軸方向から見て、マスタシリンダハウジング40の(締結部40d,40eを含む)フランジ部40bの外周面と形状及び寸法が略同じに設けられている。リザーバタンク3の配管取付け部320aは、接続部50b(締結部50i)のy軸正方向端縁よりもy軸負方向側に位置する(締結部50iよりもy軸正方向側へ突出しない)。リザーバタンク3の配管取付け部320bは、接続部50b(締結部50j)のy軸負方向端縁よりもy軸正方向側に位置する(締結部50jよりもy軸負方向側へ突出しない)。エア抜き用ブリーダ57のy軸負方向側の先端は、接続部50b(締結部50j)のy軸負方向端縁よりもy軸正方向側に位置する(締結部50jよりもy軸負方向側へ突出しない)。
 図9に示すように、接続部50bの内部には、第1の軸方向孔504と、第2の軸方向孔505と、第3の軸方向孔506とが形成されている。第1の軸方向孔504は、x軸方向に延びる略円筒状に形成されており、接続部50bのx軸正方向側に開口する。第1の軸方向孔504の径は、マスタシリンダハウジング40の嵌合部40cの径よりも僅かに大きく設けられている。第2の軸方向孔505は、第1の軸方向孔504よりも小径であって、第1の軸方向孔504に連続してx軸方向に延びるように形成されている。第3の軸方向孔506は、第2の軸方向孔505よりも小径であって、第2の軸方向孔505に連続してx軸方向に延びるように形成されており、ストロークシミュレータハウジング50のx軸負方向側(車両取り付け面508の側)に開口する。軸方向孔504~506は略同軸に形成されている。締結部50i,50jは、孔504~506の軸心を挟んで略対称位置に設けられている。接続部50bのx軸負方向側の底部には、第3の軸方向孔506を取り囲むようにストッパ部507が形成されている。ストッパ部507のx軸正方向側の面は、プッシュロッド2のフランジ部21のx軸負方向側の面と略平行なテーパ状に形成されており、フランジ部21のx軸負方向側の面と当接可能に設けられている。
 フランジ部50cは、ストロークシミュレータハウジング50のx軸負方向側に、yz平面に対して略平行に広がる板状に設けられている。フランジ部50cは、ストロークシミュレータハウジング50を車両に固定するための固定フランジである。フランジ部50cは、x軸方向から見て、y軸方向に延びる辺とz軸方向に延びる辺とを有する略長方形であり、その4隅にそれぞれスタッド軸(固定具としてのスタッドボルト)509がx軸負方向側に突出するように固定されている。フランジ部50cのy軸方向における略中央に、本体部50a(軸方向孔501等)の軸心及び接続部50b(軸方向孔504等)の軸心が位置する。フランジ部50cのz軸方向における略中央に、接続部50bの軸心が位置する。フランジ部50cのz軸負方向側の端部よりも若干下側(z軸負方向側)に、本体部50aの軸心が位置する(図7参照)。フランジ部50cの幅(y軸方向寸法)は、本体部50aの幅(y軸方向寸法)よりも大きく、マスタシリンダハウジング40の本体部40aの幅(y軸方向寸法)よりも大きく、かつリザーバタンク3の幅(y軸方向寸法)よりも大きく設けられている。また、フランジ部50cの幅(y軸方向寸法)は、接続部50bないしマスタシリンダハウジング40のフランジ部40bの幅(y軸方向寸法)と略同じに設けられている。具体的には、図3及び図7に示すように、接続部50bのy軸方向両端縁を構成する締結部50i,50jの外周縁と、フランジ部40bのy軸方向両端縁を構成する締結部40d,40eの外周縁は、フランジ部50cのy軸方向両端縁と略一致している(略同じy軸方向位置にある)。一方、図5に示されているように、フランジ部50cの高さ(z軸方向寸法)は、接続部50bの高さ(z軸方向寸法)よりも、また、マスタシリンダハウジング40(フランジ部40b)の高さ(z軸方向寸法)よりも大きく設けられている。
 図9に示すように、ストロークシミュレータハウジング50の本体部50aの第2の軸方向孔502内には、反力ピストン51がx軸方向に作動可能に設置されている。反力ピストン51は、第2の軸方向孔502のx軸負方向端から第1の軸方向孔501内に突出するように設置されている。第1の軸方向孔501内に突出する反力ピストン51のx軸負方向端には、スプリングリテーナ512が設けられている。スプリングリテーナ512は、第1の軸方向孔501内を反力ピストン51と一体的に移動可能に設けられている。反力ピストン51の外周にはシール溝510が設けられており、シール溝510にはシール部材511が設置されている。シール部材511は、第2の軸方向孔502の内周面に当接している。第1の軸方向孔501のx軸負方向側の開口には、この開口を閉塞する板状のスプリングリテーナ53が固定設置されている。スプリングリテーナ53の外周には、シール部材532が設置されている。シール部材532が第1の軸方向孔501の内周面に当接することで、第1の軸方向孔501の上記開口が液密に封止される。ストロークシミュレータハウジング50の内部には、反力ピストン51により主室54と副室56が画成されている。第2の軸方向孔502内であって反力ピストン51よりもx軸正方向側に主室54が画成されている。第1の軸方向孔501内であって反力ピストン51よりもx軸負方向側に副室56が画成されている。主室54と副室56との連通は、シール部材511によって抑制される。主室54には、油路55とエア抜き用ブリーダ57の油路が常時開口する。
 副室56内には、反力ピストン51の戻しばねとしてのコイルスプリング52が、押し縮められた状態で設置されている。コイルスプリング52は、反力ピストン51を主室54の側(主室54の容積を縮小し、副室56の容積を拡大する方向)に常時付勢する弾性部材である。コイルスプリング52のx軸正方向端はスプリングリテーナ512の外周側に当接して保持され、コイルスプリング52のx軸負方向端はスプリングリテーナ53の外周側に当接して保持される。スプリングリテーナ53のコイルスプリング52よりも内周側の部位には、x軸正方向側に開口する凹部530が形成されている。凹部530には、弾性部材531が設置されている。弾性部材531は、スプリングリテーナ53よりもx軸正方向側に突出している。弾性部材531は、スプリングリテーナ512のコイルスプリング52よりも内周側の部位に位置決めされ、x軸方向でスプリングリテーナ512の内周側の部位と対向している。反力ピストン51(スプリングリテーナ512)のx軸負方向側への移動量が所定以上になると、弾性部材531は、スプリングリテーナ512の上記内周側の部位に当接し、弾性変形する。これにより、反力ピストン51のx軸負方向側への移動を規制すると共に、弾性部材531は、その移動を規制する際の衝撃を吸収するダンパとして機能する。
 マスタシリンダユニットとしてのブレーキ装置1は、ストロークシミュレータバルブ6を内蔵したバルブユニットでもある。ストロークシミュレータバルブ6は、ストロークシミュレータ5へのブレーキ液の流入を制限可能に設けられた、常閉の(非通電状態で閉弁する)シミュレータ遮断弁である。ストロークシミュレータバルブ6は、ストロークシミュレータハウジング50(本体部50a)に形成されたバルブ装着孔503に装着される。バルブ装着孔503が開口する本体部50a(フランジ部50f)のx軸正方向側の面は、バルブ取付け面を構成する。ストロークシミュレータ5の主室54は、油路55を介してストロークシミュレータバルブ6に接続している。ストロークシミュレータバルブ6は、油路(ブレーキ配管70)を介して、マスタシリンダ4の液圧室43Pに接続している。
 図9に示すように、ストロークシミュレータバルブ6は、ソレノイド61と、バルブボディ62と、アーマチュア63と、プランジャ64と、コイルスプリング65と、弁座部材66と、複数の油路構成部材とを有している。ソレノイド61は、ストロークシミュレータハウジング50の本体部50aのx軸正方向端におけるフランジ部50f(締結部50g,50h)にボルトで締結される。アーマチュア63は、ソレノイド61の内周側に固定設置されており、ソレノイド61に通電されることにより電磁力(磁気吸引力)を発生する。ソレノイド61のx軸正方向端には、x軸正方向側へ開口するコネクタ部610が設けられている。コネクタ部610には、ソレノイド61に駆動電流を供給する配線(ハーネス)が接続される。バルブボディ62は、非磁性体の中空のシリンダであり、アーマチュア63の外周に嵌合するように固定設置され、アーマチュア63のx軸負方向側に延びる。プランジャ64は、バルブボディ62内をx軸方向に往復移動可能に収容されている。プランジャ64のx軸負方向側の先端には、球状の弁体640が設けられている。弁体640はx軸方向に作動する。コイルスプリング65は、アーマチュア63とプランジャ64との間に圧縮状態で設置され、プランジャ64をx軸負方向側に常時付勢する。弁座部材66は、本体部50aのバルブ装着孔503の内周側に設置されている。弁座部材66は有底筒状であり、そのx軸正方向側の底部には弁座が設けられている。上記底部にはx軸方向に延びるオリフィス660が貫通して設けられており、弁座の中央部位に開口する。プランジャ64がアーマチュア63の電磁力(x軸正方向側への吸引力)により駆動され、弁体640がオリフィス660を開閉することで、オリフィス660を含む油路(下記シミュレータ油路)の連通状態が制御される。
 油路構成部材は、ボディとしての第1部材67と、フィルタとしての第2、第3部材68,69と、シール部材60とを有している。第1部材67は、バルブ装着孔503のx軸正方向側の開口部にフランジにより固定される中空部材である。第1部材67の内周側には弁座部材66が固定設置され、第1部材67の内周と弁座部材66の外周との間には油路が形成される。第2部材68は、第1部材67のx軸負方向側に固定されるリング状のフィルタ部材である。第2部材68の内周側には弁座部材66が設置され、第2部材68の内周と弁座部材66の外周との間には油路が形成される。第3部材69は、バルブ装着孔503のx軸負方向側の底部に設置されるディスク状のフィルタ部材(シール部材60のリテーナ)であり、その内周側には弁座部材66が設置される。シール部材60は、シール部材46等と同様の断面カップ状のシール部材であり、第2部材68と第3部材69との間に設置される。シール部材60の内周側には弁座部材66が固定設置される。シール部材60の内周と弁座部材66の外周との間には油路が形成されていない。シール部材60の外周側のリップ部は、x軸正方向側に開くようにバルブ装着孔503の内周面に接する。シール部材60(リップ部)とバルブ装着孔503の内周面との間のブレーキ液の流通は、x軸負方向側からx軸正方向側への流れのみ許容され、逆方向の流れが抑制される。
 バルブ装着孔503の内周における第2部材68とシール部材60との間には、接続ポート59が開口している。バルブ装着孔503のx軸負方向側の底部には、ストロークシミュレータ5の主室54に連通する油路55が開口している。接続ポート59は、弁座部材66の外周と第1、第2部材67,68の内周との間の油路、及び、第1部材67のx軸正方向端に設けられた凹部を介して、オリフィス660に連通している。オリフィス660は、弁座部材66の内周側に設けられた油路661を介して油路55に連通している。以上の経路により、液圧室43Pと主室54とを接続しつつ、ストロークシミュレータバルブ6により連通・遮断が切り替えられるシミュレータ油路が構成される。
 すなわち、ストロークシミュレータ5の主室54は、油路55、ストロークシミュレータバルブ6、及びブレーキ配管70を介して液圧室43Pと連通する。ストロークシミュレータ5の副室56は、ブレーキ配管71を介してリザーバタンク3に接続している。副室56はリザーバタンク3と常時連通し、低圧(大気圧)に解放されており、ストロークシミュレータ5の背圧室を構成する。なお、副室56をリザーバタンク3に接続せず、低圧(大気圧)に直接に解放することとしてもよい。ストロークシミュレータバルブ6の開弁時、運転者のブレーキ操作によってマスタシリンダ4(液圧室43P)から流出したブレーキ液がシミュレータ油路を介してストロークシミュレータハウジング50の内部(主室54)に流入する。このブレーキ液により、孔502内を軸方向に反力ピストン51が作動する。これによりブレーキペダルの操作反力を擬似的に生成し、これをブレーキペダルに付与する。具体的には、ストロークシミュレータバルブ6は通電されることにより開弁してシミュレータ油路を連通させる。マスタシリンダ液圧が、シミュレータ油路を介してストロークシミュレータ5の主室54に作用する。主室54における反力ピストン51の受圧面に所定以上の油圧(マスタシリンダ液圧)が作用すると、この圧力により反力ピストン51がコイルスプリング52を押し縮めつつ副室56の側に軸方向に移動する。主室54の容積が拡大し、マスタシリンダ5(液圧室43P)からシミュレータ油路を介して主室54にブレーキ液が流入する。また、副室56からブレーキ配管71を介してリザーバタンク3へブレーキ液が排出される。
 このように、ストロークシミュレータ5は、運転者がブレーキ操作を行う(ブレーキペダルを踏込む)と、マスタシリンダ5からブレーキ液を吸入することでペダルストロークを創生し、ホイルシリンダの液剛性を模擬して、ブレーキペダルの踏込み感を再現する。ここで、ブレーキペダルの踏込み前期にコイルスプリング52のみが押し縮められている間は、ばね定数が低く、ペダル反力の増加勾配が低い。ブレーキペダルの踏込み後期にコイルスプリング52に加えて弾性部材531が押し縮められている間は、ばね定数が高く、ペダル反力の増加勾配が高い。これらばね定数を調整することにより、ペダル踏込み感が例えば既存のマスタシリンダと同様となるように設定する。なお、運転者がブレーキ操作を終了し(ブレーキペダルを踏戻し)、主室54内の圧力が所定未満に減少すると、コイルスプリング52の付勢力(弾性力)により反力ピストン51が初期位置に復帰する。
 なお、第3部材69に、その内周とx軸正方向端面とを連通する油路を形成し、この油路を介して、油路55が、シール部材60のx軸負方向側に連通するようにしてもよい。この場合、上記シミュレータ油路に並列に設けられ、シール部材60により流れの方向が規制されるバイパス油路が構成される。シール部材60は、上記バイパス油路において、ストロークシミュレータ5の主室54からマスタシリンダ4の液圧室43Pへ向かうブレーキ液の流れのみを許容する。上記バイパス油路は、主室54内にブレーキ液が流入した状態でストロークシミュレータバルブ6が閉故障(閉じた状態で固着)した場合であっても、主室54から上記バイパス油路を介してマスタシリンダ4側へブレーキ液を戻すことを可能にする。
 以下、ブレーキ装置1の取付け構造について説明する。マスタシリンダハウジング40は、ストロークシミュレータハウジング50に固定される。各ハウジング40,50は互いに一体的に固定される。各ハウジング40,50は互いに一体的に固定するための接合面を備えている。上記接合面は、マスタシリンダハウジング40の嵌合部40cの外周面と、フランジ部40bのx軸負方向端面と、ストロークシミュレータハウジング50の接続部50bの第1の軸方向孔504の内周面と、(第1の軸方向孔504が開口する)接続部50bのx軸正方向端面とを備える。この接合面は、印籠継手として機能する印籠部(嵌合部40cの外周面及び第1の軸方向孔504の内周面)を備える。すなわち、ストロークシミュレータハウジング50(接続部50b)の一部分を凹ませ、これにマスタシリンダハウジング40の突出部を嵌合させることで、両ハウジング40,50を接合する。具体的には、ストロークシミュレータハウジング50の第1の軸方向孔504に、マスタシリンダハウジング40の嵌合部40cを挿入し、両者を嵌合させる。両者をx軸方向に互いにスライドさせることで、マスタシリンダハウジング40のフランジ部40bのx軸負方向端面は、接続部50bのx軸正方向端面に当接する。マスタシリンダハウジング40(フランジ部40b)の締結部40d,40eとストロークシミュレータハウジング50(接続部50b)の締結部50i,50jにボルト10が挿通され、締結部40d,40eと締結部50i,50jとが締結されることで、マスタシリンダハウジング40とストロークシミュレータハウジング50とが一体的に締結固定される。なお、嵌合部40cに設置されたシール部材402が、第1の軸方向孔504の内周面に当接することで、第1の軸方向孔504の上記開口が液密に封止される。マスタシリンダハウジング40は、その嵌合部40cの内周側に、嵌合部40cよりもx軸負方向側に突出する部分を有している。マスタシリンダハウジング40のうち嵌合部40cよりもx軸負方向側に突出する部分は、第1の軸方向孔504内に収容される。マスタシリンダハウジング40の孔400からx軸負方向側に突出するピストン41Pは、第2の軸方向孔505内に収容される。
 一方、ブレーキ装置1は、ストロークシミュレータハウジング50(ブレーキ装置1)を車両に取付けるための車両取り付け面508を備えている。車両取り付け面508は、ストロークシミュレータハウジング50のx軸負方向側の面を備えている。ストロークシミュレータハウジング50のx軸負方向側の面は、フランジ部50cのx軸負方向側の面を含んでいる。ストロークシミュレータハウジング50は、スタッド軸509によって、図示しない車体のダッシュパネル(フロアパネル)の下部(地表側部)のx軸正方向側に締結固定される。ダッシュパネルは、エンジンルーム(ないし走行用モータ等のパワーユニットが設置されるモータルーム。以下、単にエンジンルームという)と車室とを仕切る車体側の隔壁部材である。ストロークシミュレータハウジング50は、スタッド軸509に螺合もしくは挿入されるスペーサ(図示せず)によりフランジ部50cとダッシュパネルとの間に若干のx軸方向隙間が形成されつつ、4つの留め点でダッシュパネルに固定される。フランジ部50cの大きさ(x軸方向の厚み、y軸方向の幅、z軸方向の高さ)は、ブレーキ装置1の車両への取り付け強度を十分に確保でき、かつ不必要に大きくならない程度に設定する。
 上記のようにマスタシリンダハウジング40はストロークシミュレータハウジング50に固定されることから、マスタシリンダハウジング40は、ストロークシミュレータハウジング50を介して車両に固定されることになる。ブレーキ装置1がダッシュパネルに固定された状態で、プッシュロッド2のx軸負方向側がダッシュパネルを貫通して車室内(x軸負方向側)に突出する。マスタシリンダ4やリザーバタンク3、ストロークシミュレータ5等がエンジンルーム内の車体前方側(x軸正方向側)に設置される。なお、ストロークシミュレータハウジング50のストッパ部507の一部は、車両取り付け面508よりもx軸負方向側に突出して係止部を形成している。この係止部にブーツ2aが取付けられてプッシュロッド2を覆っている。上記のようにストロークシミュレータハウジング50は、スタッド軸509によりダッシュパネルにリジッドに(弾性体を介さずに)固定できる。このため、ブレーキペダル(プッシュロッド2)に入力される運転者のブレーキ操作力(踏力)に対して良好な反力が発生すると共に、マスタシリンダ4のピストン41にブレーキ操作力が適切に伝達され、ブレーキ操作力に応じたマスタシリンダ液圧が発生する。もっとも、ストロークシミュレータハウジング50を、弾性体を介してダッシュパネルに固定してもよい。
 次に、ブレーキ装置1の配置について説明する。z軸方向で見ると、マスタシリンダ4とストロークシミュレータ5は、車両搭載時に上下の位置になるよう配置されている。すなわち、マスタシリンダ4とストロークシミュレータ5は、車両搭載時に鉛直方向から見て(鉛直方向に)互いに重なり合うよう一体的に配置されている。車両搭載時に上からリザーバタンク3、マスタシリンダ4、ストロークシミュレータ5の順になるよう配置されている。すなわち、リザーバタンク3はマスタシリンダ4の上側に配置され、ストロークシミュレータ5はマスタシリンダ4の下側に配置されている。また、マスタシリンダ4とストロークシミュレータ5は互いに並列に配置されている。言い換えると、マスタシリンダ4の軸方向とストロークシミュレータ5の軸方向とが互いに略同方向になるよう配置されている。これにより、車両搭載時にマスタシリンダ4とストロークシミュレータ5が軸方向を合わせた状態で上下の位置になる。
 図7に示すように、車両搭載時に、x軸方向から見て、リザーバタンク3のy軸方向中心と、マスタシリンダ4の軸と、ストロークシミュレータ5の軸とが、z軸に平行な略同一の直線上に並ぶように配置される。よって、車両搭載時に、リザーバタンク3とマスタシリンダ4とストロークシミュレータ5とが鉛直方向から見て互いに重なり合う範囲が最大となる。これにより、リザーバタンク3とマスタシリンダ4とストロークシミュレータ5とを鉛直方向で投影した面積が最小となる。図3及び図4に示すように、マスタシリンダ4(マスタシリンダハウジング40の本体部40a)及びストロークシミュレータ5(ストロークシミュレータハウジング50の本体部50a)は、リザーバタンク3の幅(y軸方向寸法)内に収まるように設けられている。また、ブレーキ配管70,71は、図5に示すように、リザーバタンク3、マスタシリンダハウジング40、及びストロークシミュレータハウジング50の全体の高さ(z軸方向寸法)内に収まるよう設けられている。例えば、ブレーキ配管71はリザーバタンク3よりもz軸正方向側へ突出しない。ブレーキ配管70はストロークシミュレータハウジング50よりもz軸負方向側へ突出しない。
 y軸方向で見ると、ブレーキ装置1の各部材や構造体は、ストロークシミュレータハウジング50のフランジ部50cの幅内に収まるように設けられている。例えば、図3及び図4に示すように、マスタシリンダ4(マスタシリンダハウジング40の締結部40d,40eを含むフランジ部40b等)及びストロークシミュレータ5(ストロークシミュレータハウジング50の締結部50i,50jを含む接続部50b等)は、フランジ部50cの幅(y軸方向寸法)内に収まるよう構成されている。また、ブレーキ配管71は、図3及び図7に示すように、フランジ部50cの幅(y軸方向寸法)内に収まるよう設けられている。すなわち、ブレーキ配管71はxz平面と略平行に配置されており、ブレーキ配管71(のy軸正方向端)はフランジ部50cのy軸正方向端縁よりもy軸負方向側に位置する(フランジ部50cよりもy軸正方向側へ突出しない)。
 ストロークシミュレータバルブ6は、ストロークシミュレータ5の軸方向位置に配置されている。すなわち、図7に示すように、ストロークシミュレータバルブ6は、ストロークシミュレータ5の軸方向一方側(x軸正方向側)に、ストロークシミュレータ5の軸方向(x軸方向)から見て互いに重なり合うように配置されている。また、ストロークシミュレータバルブ6の弁体640(プランジャ64)の作動方向とストロークシミュレータ5の反力ピストン51の作動方向とが、略同一方向になるよう配置されている。より具体的には、ストロークシミュレータバルブ6は、ストロークシミュレータ5と略同軸に配置されている。ストロークシミュレータバルブ6(バルブ装着孔503)の中心軸は、ストロークシミュレータ5(軸方向孔501,502)の中心軸と略同一直線上に設けられている。よって、ストロークシミュレータ5とストロークシミュレータバルブ6とが互いに軸方向で重なり合う範囲が最大となる。これにより、ストロークシミュレータ5とストロークシミュレータバルブ6とをx軸方向で投影した面積が最小となる。図7に示すように、ストロークシミュレータバルブ6(ストロークシミュレータハウジング50の締結部50g,50hを含むフランジ部50fやソレノイド61等)は、ストロークシミュレータ5(ストロークシミュレータハウジング50の本体部50a)の幅(y軸方向寸法)及び高さ(z軸方向寸法)内に収まるように設けられている。
 ストロークシミュレータバルブ6は、車両搭載時に、鉛直方向から見てマスタシリンダ4と重なり合うよう、マスタシリンダ4の下側に配置されている。また、マスタシリンダ4とストロークシミュレータバルブ6は、互いに並列に(軸方向が互いに略同方向になるよう)配置されている。これにより、マスタシリンダ4とストロークシミュレータバルブ6とが軸方向を合わせた状態で上下の位置になる。車両搭載時に、x軸方向から見て、マスタシリンダ4の軸とストロークシミュレータバルブ6の軸とが、z軸に平行な略同一の直線上に並ぶように配置される。よって、マスタシリンダ4とストロークシミュレータバルブ6とが鉛直方向から見て互いに重なり合う範囲が最大となる。図4及び図7に示すように、ストロークシミュレータバルブ6(ストロークシミュレータハウジング50の締結部50g,50hを含むフランジ部50fやソレノイド61等)は、マスタシリンダ4(マスタシリンダハウジング40の本体部40a)の幅(y軸方向寸法)内に収まるように設けられている。
 x軸方向で見ると、図3及び図4に示すように、ストロークシミュレータ5のx軸負方向端、具体的にはストロークシミュレータハウジング50の本体部50aのx軸負方向端は、フランジ部50cまで延びている。ストロークシミュレータバルブ6のx軸正方向端、具体的にはコネクタ部610を除くソレノイド61のx軸正方向端は、マスタシリンダハウジング40のx軸正方向端面よりもx軸負方向側に位置する(マスタシリンダハウジング40よりもx軸正方向側へ突出しない)。図3~図6に示すように、リザーバタンク3のx軸正方向端とマスタシリンダ4のx軸正方向端とストロークシミュレータバルブ6(コネクタ部610)のx軸正方向端とは、互いに略同じx軸方向位置にある。ブレーキ配管71は、図4及び図5に示すように、マスタシリンダハウジング40及びストロークシミュレータハウジング50の長さ(x軸方向寸法)内に収まるよう設けられている。例えば、ブレーキ配管71(のx軸正方向端)は、マスタシリンダハウジング40のx軸正方向端面よりもx軸負方向側に位置する(マスタシリンダハウジング40よりもx軸正方向側へ突出しない)。
 図8に示すように、ブレーキ装置1をx軸負方向側から見たとき、マスタシリンダ4、ストロークシミュレータ5、及びブレーキ配管71(のz軸負方向側の大部分)は、フランジ部50cの陰になって見えない。図3に示すように、ブレーキ装置1をz軸正方向側から見たとき、(マスタシリンダハウジング40のフランジ部40bの一部を除く)マスタシリンダ4と、(ストロークシミュレータハウジング50の接続部50bの一部とフランジ部50c等を除く)ストロークシミュレータ5は、リザーバタンク3の陰になって見えない。また、図6に示すように、ブレーキ装置1をy軸負方向側から見たとき、(ブレーキ配管71のz軸負方向側の一部及びブレーキ配管70の一部が、マスタシリンダハウジング40とストロークシミュレータハウジング50との間の隙間から見えることを除けば、)ブレーキ配管70、71は、リザーバタンク3、マスタシリンダ4及びストロークシミュレータ5の陰になって見えない。
 次に、アクチュエータ8について説明する。図10は、アクチュエータ8をx軸負方向側かつy軸負方向側かつz軸正方向側から見た斜視図である。アクチュエータ8は、マスタシリンダ4及びリザーバタンク3からブレーキ液の供給を受け、運転者によるブレーキ操作とは独立にブレーキ液圧を発生可能な第2のブレーキ液圧発生源である。アクチュエータ8は、各車輪のホイルシリンダとマスタシリンダ4との間に設けられており、各ホイルシリンダにマスタシリンダ液圧又は自ら発生させた制御液圧を個別に供給可能な液圧制御ユニットである。アクチュエータ8は、液圧ユニット8aと、液圧ユニット8aの作動を制御するコントローラ(電子制御ユニットECU)8bとを備えている。液圧ユニット8aとコントローラ8bは一体のユニットとして構成されている。
 液圧ユニット8aは、制御液圧を発生するための液圧機器として、液圧発生源であるポンプと、ハウジング80内に形成された油路の連通状態を切り換える複数の制御弁(電磁弁)とを有している。液圧ユニット8a(ハウジング80)には、ポンプを駆動するモータ8cが一体に取付けられている。液圧ユニット8aの具体的な液圧回路構成については、公知の液圧ユニットと同様であるため、説明を省略する。液圧ユニット8aには、油路の所定部位の液圧(マスタシリンダ液圧等)を検出する液圧センサが設けられており、その検出値はコントローラ8bに入力される。コントローラ8bは、入力される各種情報に基づき、液圧ユニット8aの各機器の作動を制御することで、運転者のブレーキ操作から独立して各ホイルシリンダの液圧を制御可能に設けられている。
 液圧ユニット8aは、ブレーキ配管を介してブレーキ装置1に接続される。液圧ユニット8aは、例えば、ブレーキ装置1の下側に、図10のx軸等の方向が図1のx軸等の方向とそれぞれ一致するように配置される。これにより、ブレーキシステム全体の鉛直方向(車両上下方向)での投影面積を少なくして、車両搭載性を向上することが可能である。液圧ユニット8aのハウジング80は、ダンパ8d及びブラケット8eを介して車体側(エンジンルームの床)へ固定設置される。ハウジング80の上側には、ハウジング80内に形成された油路の開口部として、P系統及びS系統のマスタシリンダポート81や、4つのホイルシリンダポート82が設けられている。P系統のマスタシリンダポート81Pは、ブレーキ配管を介して、マスタシリンダ4のP系統の(y軸負方向側の)吐出ポート44Pに接続され、液圧室43Pに連通する。S系統のマスタシリンダポート81Sは、他のブレーキ配管を介して、マスタシリンダ4のS系統の吐出ポート44Sに接続され、液圧室43Sに連通する。各ホイルシリンダポート82は、それぞれブレーキ配管を介して、各ホイルシリンダに接続されている。また、ハウジング80の他のポートは、ブレーキ配管を介して、リザーバタンク3の補給口32bに接続され、リザーバタンク3に連通する。
 コントローラ8bは、マスタシリンダ4とは別体に、言い換えるとブレーキ装置1(ストロークシミュレータバルブ6を含むマスタシリンダユニット)とは別体に、構成されている。コントローラ8bには、ハーネスが接続されるコネクタ83が設けられている。ストロークシミュレータバルブ6とコントローラ8bは、ハーネスを介して接続される。コントローラ8bには、ブレーキペダルの操作量を検出するペダルストロークセンサから送られる検出値と、ポンプの吐出圧やマスタシリンダ液圧を検出する液圧センサから送られる検出値と、車両から送られる走行状態に関する情報とが入力される。コントローラ8bは、これらの検出値や情報に基づき、内蔵されるプログラムに従い、液圧ユニット8aの各電磁弁の開閉やモータの回転数(ポンプの吐出量)を制御する。これによりホイルシリンダ液圧を制御することで、ブレーキ操作力を低減するための倍力制御や、制動による車輪のスリップを抑制(ロック傾向を緩和)するためのアンチロックブレーキ制御(ABS)や、車両の横滑り等を抑制して車両挙動を安定化するためのブレーキ制御(VDCやESCといった車両挙動制御)や、先行車追従制御等の自動ブレーキ制御や、回生ブレーキと協調して目標減速度(目標制動力)を達成するための回生協調ブレーキ制御等を実現する。例えば、倍力制御では、ブレーキ操作に応じて発生するマスタシリンダ液圧に対し、液圧ユニット8aを駆動して(ポンプの吐出圧を用いて)形成するアシスト液圧を加圧することで、マスタシリンダ液圧よりも高いホイルシリンダ液圧を創生する。
 液圧ユニット8aが非作動である状態では、マスタシリンダ4の液圧室43と各車輪のホイルシリンダとが連通した状態となる。このとき、運転者によるブレーキペダルの操作力(踏力)を用いて発生させたマスタシリンダ液圧によってホイルシリンダ液圧を発生する(踏力ブレーキ)。ブレーキペダルの踏込み操作に応じて、マスタシリンダ4の各系統の液圧室43から(液圧ユニット8a内の油路を経由して)各ホイルシリンダに向けてブレーキ液が供給される(増圧時)。すなわち、ブレーキペダルの踏込み操作に応じて発生するマスタシリンダ液圧がそのままホイルシリンダに供給される。また、ブレーキペダルが踏み戻されると、各ホイルシリンダから(液圧ユニット8a内の油路を経由して)マスタシリンダ4に向けてブレーキ液が戻される(減圧時)。このとき、シミュレータ油路上に設けられたストロークシミュレータバルブ6は非通電状態とされて閉弁する。よって、マスタシリンダ4(液圧室43P)とストロークシミュレータ5(主室54)との連通が遮断される。
 一方、液圧ユニット8aが作動した状態では、マスタシリンダ4の液圧室43と各ホイルシリンダとの連通を遮断しつつ、ポンプを用いて発生させた液圧によりホイルシリンダ液圧を創生することが可能である。これにより所謂ブレーキバイワイヤシステムを構成し、倍力制御や回生協調ブレーキ制御等を実現することができる。このとき、ストロークシミュレータバルブ6は通電状態とされて開弁する。よって、マスタシリンダ4(液圧室43P)とストロークシミュレータ5(主室54)とが連通する。運転者がブレーキ操作を行う(ブレーキペダルを踏込み又は踏み戻す)と、ストロークシミュレータ5がマスタシリンダ4からのブレーキ液を吸排して、ペダルストロークを創生する。コントローラ8bは、ストロークシミュレータバルブ6の作動(通電状態)を制御する。すなわち、コントローラ8bは、ホイルシリンダ液圧を制御するための液圧コントローラと、ストロークシミュレータバルブ6を制御するコントローラとを統合したものである。言い換えると、前者の液圧コントローラに後者のコントローラが含まれている。
 [実施例1の作用]
 次に、作用を説明する。本実施例のブレーキシステムでは、ブレーキ装置1とアクチュエータ8は別体に(分離して)設けられている。よって、各装置(ブレーキ装置1、アクチュエータ8)の汎用性が高く、ブレーキシステムを異なる車種にも適用しやすい。また、ブレーキ装置1とアクチュエータ8を一体に設けた場合に比べて、ブレーキ装置1を小型化することができる。一般にブレーキ操作が入力される入力装置としてのブレーキ装置の車両における設置スペースは限られているところ、ブレーキ装置1を小型化することで、ブレーキ装置1のレイアウト自由度を向上することができる。
 本実施例のブレーキシステムでは、アクチュエータ8がマスタシリンダ液圧よりも高いホイルシリンダ液圧を発生してブレーキ操作力を低減する倍力制御を実行可能に設けられている。言い換えると、ブレーキ装置1とは別体に設けられたホイルシリンダ液圧制御手段としてのアクチュエータ8を倍力装置としても機能させることが可能である。よって、従来の倍力装置、例えば車両のエンジンが発生する吸気圧(負圧)を用いてブレーキ操作力を倍力するマスターバックを省略可能である。また、入力装置としてのブレーキ装置1に、蓄圧手段(アキュムレータ)や電動モータ等を用いてブレーキ操作力を倍力するブースタを備えなくてもよい。よって、ブレーキシステム全体を簡素化することができ、車両への適用性が高い。また、ブレーキ装置1を小型化しつつ、車両の省スペース化を図ることができる。例えば、マスターバックの設置に必要であったスペースにブレーキ装置1を設置することができる。なお、アクチュエータ8を倍力装置としても機能させる代わりに、リンク機構を用いたリンク式や、電動モータ等を用いた電動式(液圧式)の倍力装置を備えてもよい。また、本実施例のブレーキ装置1(ブレーキシステム)は、回生制動力を発生可能な車両に好適であるが、それ以外の車両(エンジンのみを駆動源とする非電動車両)にも適用可能である。
 ブレーキ装置1では、リザーバタンク3と、マスタシリンダ4と、ストロークシミュレータ5とが、一体的に(1つのマスタシリンダユニットを構成するものとして)設けられている。よって、リザーバタンク3とマスタシリンダ4とストロークシミュレータ5との間を接続する油路を短縮化することができる。また、リザーバタンク3とマスタシリンダ4とストロークシミュレータ5とを備える入力装置としてのブレーキ装置1を小型化することができる。ブレーキ装置1を小型化することで、これを異なる車種に搭載しやすく、汎用性が高い。よって、製造コストを削減することができる。
 ここで、一般にマスタシリンダは、搭載される車両の車格に応じてバリエーションがある。仮にマスタシリンダとストロークシミュレータとを共通のハウジングを用いて形成した場合、マスタシリンダのバリエーション毎に上記共通のハウジングを設定する必要がある。よって、この場合、ブレーキ装置を異なる車種(車格)に適用しにくく、流用が困難であり、汎用性に欠けるおそれがある。これに対し、ブレーキ装置1では、マスタシリンダハウジング40をストロークシミュレータハウジング50に固定した。すなわち、ブレーキ装置1の組立て前は、マスタシリンダ4とストロークシミュレータ5とは別体であり(それぞれに固有のハウジング40,50を有しており)互いに分離した状態となっている。組立て時に互いのハウジング40,50を一体的に固定することで、ブレーキ装置1を完成させる。よって、マスタシリンダ4のバリエーション毎にブレーキ装置1全体のハウジングを新たに設ける必要がない。したがって、既存のマスタシリンダ4を利用できることから、異なる車種(車格)に対する汎用性が高い。いわば、マスタシリンダ4とストロークシミュレータ5をモジュール化して、搭載する車種(車格)に応じて各モジュール4,5を適宜組み合わせることを可能とした。よって、既存製品の流用が容易である。具体的には、所定のストロークシミュレータ5(ストロークシミュレータハウジング50)に対し、搭載される車両の車格に応じた既存のマスタシリンダ4(マスタシリンダハウジング40)を適宜組み合わせることで、車両に適合したブレーキ装置1を得ることができる。
 マスタシリンダハウジング40とストロークシミュレータハウジング50は、印籠部を備えた接合面(嵌合部40cの外周面等)により接合(印籠接合)し、互いに一体的に固定される。よって、既存の(汎用)マスタシリンダの流用がより容易になる。例えば、既存のマスタシリンダのハウジングに元々備えられた何らかの突出部(本実施例ではx軸負方向側の嵌合部40c)が嵌合するような凹形状(本実施例では第1の軸方向孔504)をストロークシミュレータハウジング50に設け、両者を印籠接合させれば、既存のマスタシリンダ4をそのまま利用することができる。
 ストロークシミュレータハウジング50は、車両取り付け面508を備え、車両取り付け面508により車両に取り付けられる。よって、ストロークシミュレータハウジング50を介して容易にマスタシリンダ4及びストロークシミュレータ5を車両に取り付けることができる。もっとも、ストロークシミュレータハウジング50ではなくマスタシリンダハウジング40を車両に取り付けることとしてもよい。しかし、この場合、(汎用性向上のため)既存のマスタシリンダハウジング40の形状をなるべく変更せずに、車両に取り付けられたマスタシリンダハウジング40にストロークシミュレータハウジング50を固定しようとすると、マスタシリンダハウジング40においてストロークシミュレータハウジング50を接合できる適当な部位が限られる。すなわち、マスタシリンダ4の汎用性を向上しつつ、(車両に取り付けられた)マスタシリンダハウジング40を介してストロークシミュレータ5を車両に取り付けることは、比較的容易でない。これに対し、形状を変更することに対する制約は、マスタシリンダハウジング40よりもストロークシミュレータハウジング50の方が少ない。よって、本実施例のようにストロークシミュレータハウジング50の方を車両に取り付け、ストロークシミュレータハウジング50を介してマスタシリンダ4を車両に取り付けるようにすれば、ストロークシミュレータハウジング50の形状を比較的自由に設定できるため、マスタシリンダハウジング40を接合できる部位を比較的容易に確保できる。すなわち、マスタシリンダ4の汎用性を向上しつつ、マスタシリンダ4及びストロークシミュレータ5を容易に車両に取り付けることができる。また、本実施例ではストロークシミュレータハウジング50の方を車両に取り付けるようにしたため、マスタシリンダハウジング40の方を車両に取り付けた場合に比べ、ストロークシミュレータハウジング50の汎用性を向上することもできる。すなわち、ストロークシミュレータハウジング50の方を車両に取り付けると、ストロークシミュレータハウジング50に接合するマスタシリンダハウジング40の部位として、既存のマスタシリンダハウジングに元々備えられた車両取り付け部(本実施例では嵌合部40c)を選択することができる。この車両取り付け部(嵌合部40c)はある程度規格化されている。この規格化された車両取り付け部(嵌合部40c)に応じた凹形状をストロークシミュレータハウジング50に設ければ、これを汎用のストロークシミュレータハウジング50として利用することができる。すなわち、任意のマスタシリンダハウジング40に対して上記汎用のストロークシミュレータハウジング50を組み合わせることが可能となるため、ストロークシミュレータ5の流用が容易になる。
 なお、組立て前にマスタシリンダ4(マスタシリンダハウジング40)とストロークシミュレータ5(ストロークシミュレータハウジング50)とを別体としたことに伴い、両者を接続する油路を構成するブレーキ配管70,71を設けることが好ましい。本実施例では、リザーバタンク3の配管取付け部320aとストロークシミュレータ5の接続ポート58を、ブレーキ装置1の同じ側面(y軸正方向側)に設けたことで、ブレーキ配管71を短縮しつつ、ブレーキ配管71の接続作業性や取り回し性を向上することができる。ブレーキ配管70についても同様である。また、各ブレーキ配管のうち、少なくとも高圧が作用しないブレーキ配管71を、フレキシブルな材質(ゴム等の材料)により形成した。よって、ブレーキ配管71を鋼管として構成した場合に比べ、ブレーキ配管71のレイアウト性や取り回し性を向上することができる。
 従来のマスタシリンダとストロークシミュレータが一体的に配置されたブレーキ装置では、車両搭載時にストロークシミュレータがマスタシリンダの水平方向位置に(水平方向に隣接して、ないし、水平方向から見て重なるように)配置されている。よって、上方から見たブレーキ装置の占有面積が大きくなるため、車両搭載性を向上することができなかった。これに対し、ブレーキ装置1では、車両搭載時に、マスタシリンダ4とストロークシミュレータ5は鉛直方向から見て互いに重なり合う(上下の位置になる)ように配置されている。よって、上方からのブレーキ装置1の投影面積を低減することができる。これにより、上方から見たときにエンジンルーム内でブレーキ装置1が占める領域(占有面積)を低減し、ブレーキ装置1の車両搭載性及びエンジンルーム内でのレイアウト性を向上することができる。また、エンジンルーム内へブレーキ装置1を設置する際の作業性を向上することができる。また、エンジンルーム内の省スペース化を図ることができる。例えば、上方から見たとき、マスターバックの設置に必要であったスペース(マスターバックを除外することで生じたスペース)に重ねてブレーキ装置1を設置することが可能である。よって、ブレーキ装置1を設置するためのスペースを別途設ける必要性が低くなる。なお、上下方向に投影したときマスタシリンダ4とストロークシミュレータ5とが部分的に重なる範囲があればよいが、ストロークシミュレータ5の半分以上がマスタシリンダ4と重なるようにすることが好ましい。本実施例では、ストロークシミュレータ5をマスタシリンダ4の真下に配置することで、上下方向で両者が重なる面積を大きくしたため、上記効果を高めることができる。
 具体的には、マスタシリンダ4の軸方向(x軸方向)において、マスタシリンダ4とストロークシミュレータ5とが互いに重なる(マスタシリンダ4の軸に対し直交する方向から見て両者4,5が重なる)ように配置されている。このように軸方向(長手方向)で重なるように両者4,5を配置することで、マスタシリンダ4の軸方向におけるブレーキ装置1の寸法の増大を抑制することができる。また、マスタシリンダ4の軸を車両の前後方向に延びるように設置した場合、上方から見たときにマスタシリンダ4とストロークシミュレータ5が重なるようにすることが可能になる。よって、ブレーキ装置1の上記占有面積を低減することができる。
 また、マスタシリンダ4の軸方向とストロークシミュレータ5の軸方向とが互いに同じ方向(互いに略平行)になるよう配置されている。言い換えると、マスタシリンダ4とストロークシミュレータ5の軸方向(長手方向)を合わせている(揃えている)。よって、両軸方向が互いにずれている(両軸間に角度がある)場合に比べ、マスタシリンダ4及びストロークシミュレータ5の全体をマスタシリンダ4の軸方向から投影した面積を小さくすることが可能である。言い換えると、マスタシリンダ4の軸に対し直交して広がる平面内でのブレーキ装置1の寸法(マスタシリンダ4の軸直方向における装置全体の寸法)の増大を抑制することができる。また、マスタシリンダ4及びストロークシミュレータ5の全体をマスタシリンダ4の軸直方向から見た場合であって両者4,5の軸が同一直線上に位置するような方向から見たときに、マスタシリンダ4の軸直方向における装置全体の寸法を最小とすることが可能である。
 マスタシリンダ4の軸方向(x軸方向)において互いに重なるようにマスタシリンダ4とストロークシミュレータ5を並列に(互いに略平行に)配置することで、マスタシリンダ4の軸直方向から見て両者4,5が重なる面積を大きくすることが可能になる(図4参照)。本実施例では、上方から見たときにマスタシリンダ4の軸とストロークシミュレータ5の軸とが略同一の直線上に位置するようにしたことで、両者4,5が重なる面積を大きくすることができる。よって、ブレーキ装置1の上記占有面積を更に低減することができる。
 本実施例では、マスタシリンダ4とストロークシミュレータ5とが上下方向で重なる面積が最大となるようにしたため、これら全体の上下方向での投影面積を最小にして、上記効果を高めることができる。図4に示すように、z軸方向から見たとき、(ストロークシミュレータハウジング50の接続部50bの一部とフランジ部50c等を除く)ストロークシミュレータ5はマスタシリンダ4(マスタシリンダハウジング40)の輪郭内に収まる。(フランジ部40bの一部を除く)マスタシリンダ4はリザーバタンク3の輪郭内に収まる。よって、図3に示すように、ブレーキ装置1の上下方向での投影面積は、(マスタシリンダハウジング40のフランジ部40b、ストロークシミュレータハウジング50の接続部50b、配管取付け部320、及びブレーキ配管70,71を除き、)リザーバタンク3の上下方向での投影面積と略等しい。よって、ブレーキ装置1の上下方向での投影面積を可及的に小さくすることができる。
 また、ストロークシミュレータバルブ6の弁体640(プランジャ64)の作動方向とストロークシミュレータ5の反力ピストン51の作動方向とが略同一方向になるように配置されている。言い換えると、ストロークシミュレータバルブ6とストロークシミュレータ5の軸方向を合わせている。よって、両軸方向が互いにずれている(両軸間に角度がある)場合に比べ、ストロークシミュレータバルブ6及びストロークシミュレータ5の全体のストロークシミュレータ5の軸方向からの投影面積を小さくすることが可能である。言い換えると、ストロークシミュレータ5の軸に対し直交して広がる平面内でのブレーキ装置1の寸法(ストロークシミュレータ5の軸直方向における装置全体の寸法)の増大を抑制することができる。よって、ストロークシミュレータ5の軸を車両の前後方向に延びるように設置した場合、前後方向から見たときにエンジンルーム内でブレーキ装置1が占める領域(占有面積)を低減し、ブレーキ装置1の車両搭載性を向上することができる。また、ストロークシミュレータバルブ6とストロークシミュレータ5の軸方向を合わせることで、結果的に、マスタシリンダ4とストロークシミュレータバルブ6の軸方向を合わせる(互いに略平行とする)ことになるため、上記のように、ブレーキ装置1の上方から見たときの占有面積を更に低減することができる。
 ストロークシミュレータバルブ6は、ストロークシミュレータ5の軸方向位置に配置されている。すなわち、ストロークシミュレータバルブ6は、軸方向(x軸方向)から見てストロークシミュレータ5と重なり合うように配置されている。これにより、ストロークシミュレータバルブ6及びストロークシミュレータ5の全体のストロークシミュレータ5の軸方向からの投影面積を小さくすることができる。本実施例では、ストロークシミュレータバルブ6は、ストロークシミュレータ5と略同軸に配置されている。よって、軸方向(x軸方向)から見たときに両者5,6が重なる面積を最大し、上記投影面積を最小とすることができる。
 さらに、マスタシリンダ4とストロークシミュレータバルブ6とがx軸方向で互いに重なるように配置されている。このように軸方向(長手方向)で重なるように両者4,6を配置することで、マスタシリンダ4の軸方向におけるブレーキ装置1の寸法の増大を抑制することができる。
 また、マスタシリンダ4の軸を車両の前後方向に延びるように設置した場合、鉛直方向から見てマスタシリンダ4とストロークシミュレータバルブ6が重なるようにすることが可能になる。よって、ブレーキ装置1の上方から見たときの占有面積を低減することができる。なお、上下方向に投影したときマスタシリンダ4とストロークシミュレータバルブ6とが部分的に重なる範囲があればよいが、ストロークシミュレータバルブ6の半分以上がマスタシリンダ4と重なるようにすることが好ましい。本実施例では、両者4,6が上下方向で重なる面積が最大となるようにし、上下方向での投影面積を最小にしたことで、上記効果を高めることができる。
 図4に示すように、z軸方向から見たとき、ストロークシミュレータバルブ6はマスタシリンダ4(マスタシリンダハウジング40)の輪郭内に収まる。ストロークシミュレータバルブ6(コネクタ部610)のx軸正方向端は、リザーバタンク3及びマスタシリンダ4のx軸正方向端と、x軸方向に関し略同じ位置にある。よって、ブレーキ装置1の上下方向での投影面積を可及的に小さくすることができる。
 ストロークシミュレータハウジング50において、ストロークシミュレータバルブ6のハウジングとストロークシミュレータ5のハウジングを一体化したことで、ブレーキ装置1の全体をより小型化して車両搭載性を向上することができる。また、両者5,6を接続するための構造やブレーキ配管が不要となるため、構成を簡素化して取付け作業性を向上しつつフェールセーフ性を向上できる。
 なお、ストロークシミュレータバルブ6を制御するコントローラ8bは、ブレーキ装置1とは別体で構成され、ハーネスを介してストロークシミュレータバルブ6と接続されている。よって、ブレーキ装置1とコントローラ8bを一体に設けた場合に比べて、ブレーキ装置1を小型化し、ブレーキ装置1のレイアウト自由度を向上することができる。言い換えると、ホイルシリンダ液圧を制御するための液圧コントローラと、ストロークシミュレータバルブ6を制御するコントローラとを、コントローラ8bとして統合することで、ブレーキ装置1のレイアウト性を向上することができる。
 マスタシリンダ4、ストロークシミュレータ5、及びストロークシミュレータバルブ6は、ブレーキ装置1(ストロークシミュレータハウジング50)を車両に取り付けるためのフランジ部50cの幅(y軸方向寸法)内に収まるよう構成されている。よって、車両の横方向(言い換えると上方から見たときのマスタシリンダ4やストロークシミュレータバルブ6の軸に対し直交する方向)におけるブレーキ装置1の小型化を図ることができる。これにより、ブレーキ装置1の車両搭載性を更に向上し、エンジンルーム内の省スペース化を図ることができる。例えば、車両の前後方向から見たとき、マスターバックの設置に必要であったスペース(マスターバックを除外することで生じたスペース)内に略収まるようにブレーキ装置1を設置することが可能である。よって、ブレーキ装置1を設置するためのスペースを別途設ける必要性が低くなる。
 また、リザーバタンク3とストロークシミュレータ5とを接続するブレーキ配管71は、フランジ部50cの幅(y軸方向寸法)内に収まるよう設けられている。よって、車両の横方向におけるブレーキ装置1の小型化を図り、ブレーキ装置1の車両搭載性をより向上することができる。
 具体的には、マスタシリンダハウジング40の締結部40d及びストロークシミュレータハウジング50の締結部50iは、y軸正方向側に突出しつつフランジ部50cの幅(y軸方向寸法)内に収まる。締結部40d,50iの上下のスペースにそれぞれ配管取付け部320a,580が配置されている。配管取付け部320a,580は共に(y軸正方向側ではなく)x軸正方向側に開口するように折れ曲がると共に、フランジ部50cの幅(y軸方向寸法)内に収まるように設けられている。配管取付け部320a,580に取り付けられるブレーキ配管71は、締結部40d,50i及び吐出ポート44Pを迂回するU字状に設置される。これにより、これら締結部40d等との干渉を排しつつ、ブレーキ配管71がフランジ部50cの幅(y軸方向寸法)内に収まる。ブレーキ配管71がフランジ部50cよりも幅方向外側に突出しないように設けることで、エンジンルーム内でのブレーキ配管71と他の部材との干渉を回避することができる。よって、ブレーキ配管71の損傷を抑制しつつ、ブレーキ装置1の車両搭載性を向上することができる。特に、ブレーキ配管71をフレキシブルな材質(ゴム等の材料)により形成した場合に、その損傷を効果的に抑制することができる。
 ストロークシミュレータ5はマスタシリンダ4の下側に配置され、リザーバタンク3はマスタシリンダ4の上側に配置されている(車両搭載時に上からリザーバタンク3、マスタシリンダ4、ストロークシミュレータ5の順になる)。このため、ブレーキ装置1のエア抜き性を向上することができる。すなわち、ブレーキ装置1の車両への取り付け時やメンテナンス(ブレーキ液交換)時に、ブレーキ装置1内のエア(空気)を抜く作業を行う。シミュレータ油路のうち、ストロークシミュレータバルブ6よりもストロークシミュレータ5側(主室54を含む)については、エアを、エア抜き用ブリーダ57により容易に抜くことができる。ここで、ブリーダ57は、ストロークシミュレータ5の主室54(円筒部50e)のz軸正方向側、すなわちエアが溜りやすい上方の部位に開口するよう設けられている。よって、エア抜き性を向上することができる。一方、シミュレータ油路のうち、ストロークシミュレータバルブ6よりもマスタシリンダ4側については、エアは、ブレーキ配管70を経由してマスタシリンダ4(液圧室43P)及びリザーバタンク3(供給口30)を介して抜くことができる。ここで、ストロークシミュレータ5はマスタシリンダ4の下側に配置され、リザーバタンク3はマスタシリンダ4の上側に配置されている。よって、エア(泡)が浮力により上昇してブレーキ配管70等を介しリザーバタンク3から抜かれることが容易となるため、エア抜き性を向上することができる。
 [実施例1の効果]
 以下、実施例1から把握される発明とその効果を列挙する。
(1)運転者のブレーキ操作によってブレーキ液圧を発生するマスタシリンダ4と、
 マスタシリンダ4から流出したブレーキ液が流入しブレーキ操作部材の擬似操作反力を生成するストロークシミュレータ5とを備え、
 マスタシリンダ4とストロークシミュレータ5は車両搭載時に鉛直方向に(鉛直方向から見て)互いに重なり合うよう一体的に配置されているブレーキ装置を提供する。
 よって、上方からのブレーキ装置1の投影面積を低減し、車両搭載性を向上することができる。
(2)前記ブレーキ装置において、
 マスタシリンダ4へブレーキ液を供給可能なリザーバタンク3を備え、
 ストロークシミュレータ5はマスタシリンダ4の下側に配置され、リザーバタンク3はマスタシリンダ4の上側に配置されている。
 よって、エア抜き性を向上することができる。
(3)前記ブレーキ装置において、
 ストロークシミュレータ5はブレーキ液が流入すると軸方向に作動する反力ピストン51(ピストン)を備え、
 マスタシリンダ4の軸方向とストロークシミュレータ5の軸方向とが互いに同方向になるよう配置されている。
 よって、両軸方向を合わせることで、上方からのブレーキ装置1の投影面積を更に低減することができる。
(4)前記ブレーキ装置において、
 ストロークシミュレータへのブレーキ液の流入を制限するためのストロークシミュレータバルブ6を備え、
 ストロークシミュレータバルブはストロークシミュレータと同軸に配置されている。
(5)前記ブレーキ装置において、
 ストロークシミュレータバルブ6は鉛直方向に(鉛直方向から見て)、マスタシリンダ4と重なり合うよう配置されている。
(6)前記ブレーキ装置において、
 車両に固定するためのフランジ部50c(フランジ)を備え、
 マスタシリンダ4及びストロークシミュレータ5はフランジ部50cの幅内に収まるよう構成されている。
 よって、車両の横方向におけるブレーキ装置1の小型化を図り、車両搭載性を更に向上することができる。
(7)前記ブレーキ装置において、
 マスタシリンダの上側に配置されブレーキ液を貯留するリザーバタンク3と、
 リザーバタンクとストロークシミュレータを接続するブレーキ配管71を備え、
 ブレーキ配管はフランジの幅内に収まるよう設けられている。
(8)前記ブレーキ装置において、
 マスタシリンダ4は内部にピストンを収容したマスタシリンダハウジング40を備え、
 ストロークシミュレータは内部にブレーキ液が流入すると軸方向に作動するピストンを収容したストロークシミュレータハウジング50を備え、
 各ハウジングは互いに一体的に固定されている。
(9)ピストンが軸方向に作動することでブレーキ液圧を発生可能なマスタシリンダ4と、
 運転者のブレーキ操作時にマスタシリンダから流出したブレーキ液が流入し、流入したブレーキ液によって反力ピストンが軸方向に作動することで擬似操作反力を生成するストロークシミュレータ5とを備え、
 車両搭載時に前記マスタシリンダと前記ストロークシミュレータが前記軸方向を合わせた状態で上下の位置になるよう配置されているブレーキ装置を提供する。
(10)前記ブレーキ装置において、
 マスタシリンダ内へブレーキ液を供給するリザーバタンク3を備え、
 車両搭載時に上からリザーバタンク、マスタシリンダ、ストロークシミュレータの順になるよう配置されている。
(11)前記ブレーキ装置において、
 ストロークシミュレータへのブレーキ液の流入を制限するためのストロークシミュレータバルブ6を備え、
 ストロークシミュレータバルブは前記ストロークシミュレータの軸方向位置に配置されている。
(12)前記ブレーキ装置において、
 ストロークシミュレータバルブは軸方向に作動する弁体640を有し、
 記弁体の作動方向と反力ピストンの作動方向とが同一方向になるよう配置されている。
(13)前記ブレーキ装置において、
 マスタシリンダは内部にピストンを収容したマスタシリンダハウジングを備え、
 ストロークシミュレータは内部に反力ピストンを収容したストロークシミュレータハウジングを備える。
(14)前記ブレーキ装置において、
 マスタシリンダハウジングとストロークシミュレータハウジングは互いに一体的に固定するための接合面を備え、
 接合面は印籠部を備える。
(15)前記のブレーキ装置において、
 ストロークシミュレータハウジングは車両に固定するための固定フランジを備え、
 マスタシリンダ及びストロークシミュレータは固定フランジの幅内に収まるよう構成されている。
(16)前記ブレーキ装置において、
 ブレーキ液を貯留するリザーバタンクとストロークシミュレータとを接続するブレーキ配管を備え、
 ブレーキ配管は固定フランジの幅内に収まるよう設けられている。
(17)ブレーキ操作状態または車両の状態に応じてホイルシリンダ液圧を制御するアクチュエータ8と、
 アクチュエータ8とは別体に設けられ、運転者のブレーキ操作に応じて作動するブレーキ装置1とを備えたブレーキシステムであって、
 ブレーキ装置1は、運転者のブレーキ操作によってブレーキ液圧を発生するマスタシリンダ4と、
 マスタシリンダ4から流出したブレーキ液が流入しブレーキ操作部材の擬似操作反力を生成するストロークシミュレータ5と、
 ストロークシミュレータ5へのブレーキ液の流入を制限するためのストロークシミュレータバルブ6と、
 ストロークシミュレータバルブ6を制御するコントローラ8bとを備え、
 マスタシリンダ4とストロークシミュレータ5は車両搭載時に鉛直方向に(鉛直方向から見て)互いに重なり合うよう一体的に配置され、
 コントローラ8bはマスタシリンダ4とは別体で構成され、ストロークシミュレータバルブ6とコントローラ8bはハーネスを介して接続されているブレーキシステムを提供する。
 よって、上記(1)と同様の効果を得る。また、コントローラ8bをマスタシリンダ4とは別体にしたことで、ブレーキ装置1を小型化し、レイアウト自由度を向上することができる。
(18)前記ブレーキシステムにおいて、
 アクチュエータはホイルシリンダ液圧を制御するための液圧コントローラを備え、
 コントローラは前記液圧コントローラに含まれている。
(19)前記ブレーキシステムにおいて、
 マスタシリンダは内部にピストンを収容したマスタシリンダハウジングを備え、
 ストロークシミュレータは内部に反力ピストンを収容したストロークシミュレータハウジングを備えている。
(20)前記ブレーキシステムにおいて、
 前記ストロークシミュレータはブレーキ液が流入すると軸方向に作動するピストンを備え、
 前記マスタシリンダの軸方向と前記ストロークシミュレータの軸方向とが互いに同方向になるよう配置されている。
 [他の実施例]
 以上、本発明を実現するための形態を、実施例に基づいて説明してきたが、本発明の具体的な構成は実施例に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても、本発明に含まれる。例えば、マスタシリンダとストロークシミュレータとを共通のハウジングを用いて形成することとしてもよい。また、マスタシリンダとストロークシミュレータを一体的ではなく別体に(例えば空間的に近接しつつ分離して)配置することとしてもよい。これらの場合も、車両搭載時にマスタシリンダとストロークシミュレータを鉛直方向から見て互いに重なり合うように配置することで、車両搭載性を向上することができる。また、図9に示すように、マスタシリンダハウジング40(嵌合部40c)のx軸負方向端とプッシュロッド2のフランジ部21との間(ピストン41Pの外周)に、ダンパとしてのばね(皿ばね等)23を設置することとしてもよい。ブレーキペダルの操作量が所定量以上になると、ばね23のx軸負方向端にフランジ部21が当接するようになり、ばね23は、フランジ部21によりx軸負方向側から押し縮められる。圧縮変形するばね23は、プッシュロッド2を介してブレーキペダルに反力を付与することで、ブレーキペダルの操作力を調整する。よって、ブレーキペダル操作量の全領域で好ましい特性を発揮することが可能となる。例えば、アクチュエータ8を倍力装置として機能させる代わりに、リンク機構を用いたリンク式倍力装置をブレーキペダルとクレビス20との間に設置した場合を想定する。リンク機構の特性を、車両搭載時の制約条件下で所定の倍力性能を得ることができるものにしようとすると、ブレーキ操作後期のペダルストローク領域でレバー比が過度に上昇する等、好ましいブレーキ特性(踏力とストロークと減速度の関係)を得ることができないおそれがある。これに対し、ばね23を設置すれば、ばね23がブレーキ操作後期に押し縮められることでペダル反力を増加させ、踏力を減衰させることで、ブレーキペダル操作量の全領域で好ましいブレーキ特性を得ることが可能となる。
 以上、本発明の幾つかの実施形態のみを説明したが、本発明の新規の教示や利点から実質的に外れることなく例示の実施形態に、多様な変更または改良を加えることが可能であることが当業者には容易に理解できるであろう。従って、その様な変更または改良を加えた形態も本発明の技術的範囲に含むことを意図する。
 本願は、2013年5月24日付出願の日本国特許出願第2013-109634号に基づく優先権を主張する。2013年5月24日付出願の日本国特許出願第2013-109634号の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。
1   ブレーキ装置
3   リザーバタンク
4   マスタシリンダ
5   ストロークシミュレータ
50c フランジ部(フランジ)
51  反力ピストン(ピストン)
6   ストロークシミュレータバルブ
8   アクチュエータ
8b  コントローラ

Claims (21)

  1.  運転者のブレーキ操作によってブレーキ液圧を発生するマスタシリンダと、
     前記マスタシリンダから流出したブレーキ液が流入しブレーキ操作部材の擬似操作反力を生成するストロークシミュレータとを備え、
     前記マスタシリンダと前記ストロークシミュレータは車両搭載時に鉛直方向に互いに重なり合うよう一体的に配置されていることを特徴とするブレーキ装置。
  2.  請求項1に記載のブレーキ装置において、
     前記マスタシリンダへブレーキ液を供給可能なリザーバタンクを備え、
     前記ストロークシミュレータは前記マスタシリンダの下側に配置され、前記リザーバタンクは前記マスタシリンダの上側に配置されていることを特徴とするブレーキ装置。
  3.  請求項1に記載のブレーキ装置において、
     前記ストロークシミュレータはブレーキ液が流入すると軸方向に作動するピストンを備え、
     前記マスタシリンダの軸方向と前記ストロークシミュレータの軸方向とが互いに同方向になるよう配置されていることを特徴とするブレーキ装置。
  4.  請求項3に記載のブレーキ装置において、
     前記ストロークシミュレータへのブレーキ液の流入を制限するためのストロークシミュレータバルブを備え、
     前記ストロークシミュレータバルブは前記ストロークシミュレータと同軸に配置されていることを特徴とするブレーキ装置。
  5.  請求項4に記載のブレーキ装置において、
     前記ストロークシミュレータバルブは鉛直方向に前記マスタシリンダと重なり合うよう配置されていることを特徴とするブレーキ装置。
  6.  請求項1に記載のブレーキ装置において、
     車両に固定するためのフランジを備え、
     前記マスタシリンダ及び前記ストロークシミュレータは前記フランジの幅内に収まるよう構成されていることを特徴とするブレーキ装置。
  7.  請求項4に記載のブレーキ装置において、
     前記マスタシリンダの上側に配置されブレーキ液を貯留するリザーバタンクと、
     前記リザーバタンクと前記ストロークシミュレータを接続するブレーキ配管を備え、
     前記ブレーキ配管は前記フランジの幅内に収まるよう設けられていることを特徴とするブレーキ装置。
  8. 請求項1に記載のブレーキ装置において、
     前記マスタシリンダは内部にピストンを収容したマスタシリンダハウジングを備え、
     前記ストロークシミュレータは内部にブレーキ液が流入すると軸方向に作動するピストンを収容したストロークシミュレータハウジングを備え、
     前記各ハウジングは互いに一体的に固定されていることを特徴とするブレーキ装置。
  9.  ピストンが軸方向に作動することでブレーキ液圧を発生可能なマスタシリンダと、
     運転者のブレーキ操作時に前記マスタシリンダから流出したブレーキ液が流入し、流入したブレーキ液によって反力ピストンが軸方向に作動することで擬似操作反力を生成するストロークシミュレータとを備え、
     車両搭載時に前記マスタシリンダと前記ストロークシミュレータが前記軸方向を合わせた状態で上下の位置になるよう配置されていることを特徴とするブレーキ装置。
  10.  請求項9に記載のブレーキ装置において、
     前記マスタシリンダ内へブレーキ液を供給するリザーバタンクを備え、
     車両搭載時に上から前記リザーバタンク、前記マスタシリンダ、前記ストロークシミュレータの順になるよう配置されていることを特徴とするブレーキ装置。
  11.  請求項9に記載のブレーキ装置において、
     前記ストロークシミュレータへのブレーキ液の流入を制限するためのストロークシミュレータバルブを備え、
     前記ストロークシミュレータバルブは前記ストロークシミュレータの軸方向位置に配置されていることを特徴とするブレーキ装置。
  12.  請求項11に記載のブレーキ装置において、
     前記ストロークシミュレータバルブは軸方向に作動する弁体を有し、
     前記弁体の作動方向と前記反力ピストンの作動方向とが同一方向になるよう配置されていることを特徴とするブレーキ装置。
  13.  請求項12に記載のブレーキ装置において、
     前記マスタシリンダは内部に前記ピストンを収容したマスタシリンダハウジングを備え、
     前記ストロークシミュレータは内部に前記反力ピストンを収容したストロークシミュレータハウジングを備えたことを特徴とするブレーキ装置。
  14.  請求項13に記載のブレーキ装置において、
     前記マスタシリンダハウジングと前記ストロークシミュレータハウジングは互いに一体的に固定するための接合面を備え、
     前記接合面は印籠部を備えたことを特徴とするブレーキ装置。
  15.  請求項9に記載のブレーキ装置において、
     前記ストロークシミュレータハウジングは車両に固定するための固定フランジを備え、
     前記マスタシリンダ及びストロークシミュレータは前記固定フランジの幅内に収まるよう構成されていることを特徴とするブレーキ装置。
  16.  請求項15に記載のブレーキ装置において、
     ブレーキ液を貯留するリザーバタンクとストロークシミュレータとを接続するブレーキ配管を備え、
     ブレーキ配管は固定フランジの幅内に収まるよう設けられていることを特徴とするブレーキ装置。
  17.  ブレーキ操作状態または車両の状態に応じてホイルシリンダ液圧を制御するアクチュエータと、
     前記アクチュエータとは別体に設けられ、運転者のブレーキ操作に応じて作動するブレーキ装置とを備えたブレーキシステムであって、
     前記ブレーキ装置は、運転者のブレーキ操作によってブレーキ液圧を発生するマスタシリンダと、
     前記マスタシリンダから流出したブレーキ液が流入しブレーキ操作部材の擬似操作反力を生成するストロークシミュレータと、
     前記ストロークシミュレータへのブレーキ液の流入を制限するためのストロークシミュレータバルブと、
     前記ストロークシミュレータバルブを制御するコントローラとを備え、
     前記マスタシリンダと前記ストロークシミュレータは車両搭載時に鉛直方向に互いに重なり合うよう一体的に配置され、
     前記コントローラは前記マスタシリンダとは別体で構成され、前記ストロークシミュレータバルブと前記コントローラはハーネスを介して接続されていることを特徴とするブレーキシステム。
  18. 請求項17に記載のブレーキシステムにおいて、
     前記アクチュエータはホイルシリンダ液圧を制御するための液圧コントローラを備え、
     前記コントローラは前記液圧コントローラに含まれていることを特徴とするブレーキシ
    ステム。
  19. 請求項17に記載のブレーキシステムにおいて、
     前記マスタシリンダは内部にピストンを収容したマスタシリンダハウジングを備え、
     前記ストロークシミュレータは内部に反力ピストンを収容したストロークシミュレータハウジングを備えたことを特徴とするブレーキシステム。
  20. 請求項18に記載のブレーキシステムにおいて、
     前記ストロークシミュレータはブレーキ液が流入すると軸方向に作動するピストンを備え、
     前記マスタシリンダの軸方向と前記ストロークシミュレータの軸方向とが互いに同方向になるよう配置されていることを特徴とするブレーキシステム。
  21.  運転者のブレーキ操作によって、リザーバタンクからのブレーキ液を圧送するマスタシリンダと、
     前記マスタシリンダから圧送されたブレーキ液が流入しブレーキ操作部材の擬似操作反力を生成するストロークシミュレータとを備え、
     前記ストロークシミュレータと前記リザーバタンクの間に、前記マスタシリンダの長手方向の軸線と前記ストロークシミュレータの長手方向の軸線が実質的に平行となるように、前記マスタシリンダが配置されていることを特徴とするブレーキ装置。
PCT/JP2014/063421 2013-05-24 2014-05-21 ブレーキ装置及びブレーキシステム WO2014189066A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480013262.XA CN105073525B (zh) 2013-05-24 2014-05-21 制动装置及制动系统
KR1020157023337A KR101719443B1 (ko) 2013-05-24 2014-05-21 브레이크 장치 및 브레이크 시스템
DE112014002556.9T DE112014002556T5 (de) 2013-05-24 2014-05-21 Bremsvorrichtung und Bremssystem
US14/774,553 US10202108B2 (en) 2013-05-24 2014-05-21 Brake apparatus and brake system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013109634A JP6115943B2 (ja) 2013-05-24 2013-05-24 ブレーキ装置及びブレーキシステム
JP2013-109634 2013-05-24

Publications (1)

Publication Number Publication Date
WO2014189066A1 true WO2014189066A1 (ja) 2014-11-27

Family

ID=51933619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063421 WO2014189066A1 (ja) 2013-05-24 2014-05-21 ブレーキ装置及びブレーキシステム

Country Status (6)

Country Link
US (1) US10202108B2 (ja)
JP (1) JP6115943B2 (ja)
KR (1) KR101719443B1 (ja)
CN (3) CN105073525B (ja)
DE (1) DE112014002556T5 (ja)
WO (1) WO2014189066A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6535952B2 (ja) * 2015-11-20 2019-07-03 日立オートモティブシステムズ株式会社 液圧制御装置およびブレーキシステム
JP6575025B2 (ja) * 2016-06-17 2019-09-18 日立オートモティブシステムズ株式会社 液圧制御装置およびブレーキシステム
US10668908B2 (en) * 2017-11-14 2020-06-02 Robert Bosch Gmbh Brake fluid reservoir
USD870618S1 (en) * 2017-11-17 2019-12-24 Global Horizons Enterprises Llc Canister
JP7143806B2 (ja) * 2019-04-03 2022-09-29 トヨタ自動車株式会社 車両
CN112277906B (zh) * 2019-12-31 2022-06-10 京西重工(上海)有限公司 踏板制动组件
DE102021202553A1 (de) * 2021-03-10 2022-09-15 Continental Teves Ag & Co. Ohg Bremsgerät mit einer Simulatoreinheit
USD973105S1 (en) 2022-06-02 2022-12-20 Joe R. Granatelli Automobile vacuum pump canister

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436554A (en) * 1987-07-31 1989-02-07 Nissin Kogyo Kk Tandem-type master cylinder
WO1999039956A1 (de) * 1998-02-07 1999-08-12 Continental Teves Ag & Co. Ohg Betätigungseinrichtung für ein elektronisch regelbares bremsbetätigungssystem
JP2001213295A (ja) * 1999-11-24 2001-08-07 Sumitomo Denko Brake Systems Kk 車両用液圧ブレーキ装置
JP2005104334A (ja) * 2003-09-30 2005-04-21 Hitachi Ltd マスタシリンダ装置
JP2007203891A (ja) * 2006-02-02 2007-08-16 Hitachi Ltd ソレノイドバルブおよびブレーキ液圧制御装置
JP2008238834A (ja) * 2007-03-24 2008-10-09 Hitachi Ltd ブレーキ制御装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4326379A (en) 1979-11-06 1982-04-27 Societe Anonyme Francaise Du Ferodo Hydraulic control device for a motor vehicle braking circuit
DE4430168B4 (de) * 1994-08-25 2004-12-02 Robert Bosch Gmbh Fahrzeugbremsanlage
GB2305478B (en) * 1995-09-26 1999-05-12 Delphi France Automotive Sys Brake system
DE19822411A1 (de) * 1998-02-07 1999-08-12 Itt Mfg Enterprises Inc Betätigungseinrichtung für ein elektronisch regelbares Bremsbetätigungssystem
US6464307B1 (en) * 1999-11-24 2002-10-15 Sumitomo (Sei) Brake Systems, Inc. Automotive hydraulic pressure brake system
JP2005104333A (ja) * 2003-09-30 2005-04-21 Hitachi Ltd マスタシリンダ装置
JP4589015B2 (ja) * 2004-02-26 2010-12-01 日立オートモティブシステムズ株式会社 マスタシリンダ装置
JP4380512B2 (ja) 2004-11-30 2009-12-09 日産自動車株式会社 車両用ブレーキ装置
JP4758225B2 (ja) * 2005-12-27 2011-08-24 日立オートモティブシステムズ株式会社 マスタシリンダ装置
JP4563931B2 (ja) * 2005-12-27 2010-10-20 日立オートモティブシステムズ株式会社 タンデム型マスタシリンダ装置
WO2010137059A1 (ja) * 2009-05-25 2010-12-02 トヨタ自動車株式会社 制動操作装置
KR101327205B1 (ko) * 2009-12-01 2013-11-11 주식회사 만도 하이브리드 제동장치
CN201597497U (zh) * 2010-02-12 2010-10-06 陕西同力重工股份有限公司 一种工程桥梁运输车
CN201777241U (zh) * 2010-08-19 2011-03-30 上海通用汽车有限公司 一种机动车制动液储液罐
EP2641793B1 (en) 2010-11-17 2015-08-19 Honda Motor Co., Ltd. Input device of vehicle brake system
JP5364077B2 (ja) 2010-11-17 2013-12-11 本田技研工業株式会社 車両用ブレーキシステムの入力装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436554A (en) * 1987-07-31 1989-02-07 Nissin Kogyo Kk Tandem-type master cylinder
WO1999039956A1 (de) * 1998-02-07 1999-08-12 Continental Teves Ag & Co. Ohg Betätigungseinrichtung für ein elektronisch regelbares bremsbetätigungssystem
JP2001213295A (ja) * 1999-11-24 2001-08-07 Sumitomo Denko Brake Systems Kk 車両用液圧ブレーキ装置
JP2005104334A (ja) * 2003-09-30 2005-04-21 Hitachi Ltd マスタシリンダ装置
JP2007203891A (ja) * 2006-02-02 2007-08-16 Hitachi Ltd ソレノイドバルブおよびブレーキ液圧制御装置
JP2008238834A (ja) * 2007-03-24 2008-10-09 Hitachi Ltd ブレーキ制御装置

Also Published As

Publication number Publication date
CN105073525A (zh) 2015-11-18
KR101719443B1 (ko) 2017-03-23
KR20150112009A (ko) 2015-10-06
US20160031425A1 (en) 2016-02-04
US10202108B2 (en) 2019-02-12
DE112014002556T5 (de) 2016-02-11
JP2014227097A (ja) 2014-12-08
JP6115943B2 (ja) 2017-04-19
CN105073525B (zh) 2018-06-29
CN108515953A (zh) 2018-09-11
CN108340897A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
JP6115944B2 (ja) ブレーキ装置及びブレーキシステム
JP6115943B2 (ja) ブレーキ装置及びブレーキシステム
US20170349155A1 (en) Brake unit
WO2015016302A1 (ja) ブレーキ装置
CN108349463B (zh) 液压控制装置以及制动系统
JP6616487B2 (ja) ブレーキ装置
JP6461388B2 (ja) ブレーキ装置
JP6288881B2 (ja) ブレーキ装置
JP6437068B2 (ja) ブレーキ装置
JP6214069B2 (ja) ブレーキ装置
JP7112467B2 (ja) ブレーキ装置
JP7526325B2 (ja) ブレーキ装置
JP7112462B2 (ja) ブレーキ装置
JP6650013B2 (ja) ブレーキ装置
JP6794561B2 (ja) ブレーキ装置
JP2012106639A (ja) 車両用ブレーキシステムの入力装置
JP6770628B2 (ja) ブレーキ装置
WO2017217488A1 (ja) 液圧制御装置およびブレーキシステム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480013262.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801320

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157023337

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14774553

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014002556

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14801320

Country of ref document: EP

Kind code of ref document: A1