WO2014188989A1 - 検出装置および検出方法 - Google Patents

検出装置および検出方法 Download PDF

Info

Publication number
WO2014188989A1
WO2014188989A1 PCT/JP2014/063167 JP2014063167W WO2014188989A1 WO 2014188989 A1 WO2014188989 A1 WO 2014188989A1 JP 2014063167 W JP2014063167 W JP 2014063167W WO 2014188989 A1 WO2014188989 A1 WO 2014188989A1
Authority
WO
WIPO (PCT)
Prior art keywords
collection substrate
collection
substrate
detection
heating
Prior art date
Application number
PCT/JP2014/063167
Other languages
English (en)
French (fr)
Inventor
伴 和夫
大樹 奥野
藤岡 一志
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2014188989A1 publication Critical patent/WO2014188989A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0606Investigating concentration of particle suspensions by collecting particles on a support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/01Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/075Investigating concentration of particle suspensions by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00356Holding samples at elevated temperature (incubation)

Definitions

  • the present invention relates to a detection device and a detection method, and more particularly to a detection device and a detection method for detecting biological particles in the air.
  • microorganisms in the air are collected by methods such as the falling bacteria method, collision method, slit method, perforated plate method, centrifugal collision method, impinger method, and filter method, and then cultured. Count the colonies that appear.
  • this method requires 2 to 3 days for culturing and is difficult to detect in real time. Therefore, in recent years, as disclosed in JP 2008-508527A (Patent Document 1), JP 2009-501907 (Patent Document 2), and JP 2010-513847 (Patent Document 3), There has been proposed an apparatus for measuring the number of microorganisms by irradiating them with ultraviolet light and detecting fluorescence emitted from the microorganisms.
  • Patent Documents 1 to 3 it is necessary to separate a fluorescent signal from a biological particle from a noise component.
  • a threshold value is set in advance, and a signal having a peak value larger than the threshold value is extracted as a fluorescence signal from a biological particle.
  • the present invention has been made in view of such a problem, and provides a detection apparatus and a detection method that can detect biologically-derived particles with high sensitivity and accuracy in real time using fluorescence. It is aimed.
  • the detection device is a detection device for detecting biological particles, a collection substrate for collecting biological particles, and a collection substrate.
  • An electrode disposed at a position facing the collection substrate, a heating unit for heating the collection substrate, and a collection means for performing a collection operation for collecting biological particles using the collection substrate
  • a detecting means for detecting a biologically-derived particle from the collection substrate, and the particles collected from the surface of the collection substrate are removed by bringing an object into contact with the surface of the collection substrate.
  • a refresh means for performing a cleaning operation on the surface of the collection substrate.
  • the collection means executes the collection operation after the detection operation by the detection means with the cleaning operation by the refresh means in between.
  • the cleaning operation in the refresh means includes a step of applying a predetermined voltage between the collection substrate and the electrode and heating the collection substrate at a predetermined temperature, and a step of cooling the collection substrate after the heating. And contacting an object with the surface of the collection substrate after cooling.
  • the collection operation in the collection means includes a step of applying a voltage with a predetermined polarity between the collection substrate and the electrode, and the refresh means is arranged between the collection substrate and the electrode in the cleaning operation.
  • a predetermined voltage is applied with the same polarity as the predetermined polarity.
  • the collection operation in the collection means includes a step of applying a voltage with a predetermined polarity between the collection substrate and the electrode, and the refresh means is arranged between the collection substrate and the electrode in the cleaning operation.
  • a predetermined voltage is applied with a polarity opposite to the predetermined polarity.
  • the refresh unit repeatedly executes the steps from the step of applying and heating to the step of contacting with alternating polarity of a predetermined voltage applied between the collection substrate and the electrode.
  • the detection device further includes a light emitting element installed to irradiate light on the surface of the collection substrate and a light receiving element for receiving fluorescence from the surface of the collection substrate, and the detection means includes a heating unit.
  • Calculation means for calculating the amount of biological particles collected by the collection substrate based on the difference in the amount of fluorescence from the collection substrate irradiated by the light emitting element before and after.
  • the detection method is a method for detecting particles derived from living organisms, and a voltage is applied between the collection substrate and an electrode disposed at a position facing the collection substrate.
  • the step of refreshing includes the steps of applying a predetermined voltage between the collection substrate and the electrode and heating the collection substrate at a predetermined temperature, cooling the collection substrate after heating, cooling And a step of bringing an object into contact with the surface of the collection substrate. After the refreshing step, the process returns to the collection step.
  • the detection device in the present embodiment is a device for detecting particles derived from organisms such as pollen, microorganisms, and mold.
  • the principle of detecting biologically-derived particles with the detection device in the present embodiment is not limited to a specific principle.
  • the principle disclosed in International Publication 2011/104770 can be adopted.
  • the above document discloses that the fluorescence intensity from biological particles is found to increase by subjecting biological particles collected on the surface of the collecting jig to heat treatment. .
  • the following description will be made assuming that the detection apparatus according to the present embodiment performs a detection method employing this principle. First, the principle will be described.
  • FIG. 1 is a graph showing changes in fluorescence intensity of biological particles and changes in dust fluorescence intensity before and after heating.
  • the fluorescence intensity before and after heating is measured for particles in which biological particles and dust are mixed, and the difference is obtained to identify the amount of biological particles.
  • ⁇ Device configuration> 2 to 4 are diagrams showing an outline of the detection apparatus 100 according to the present embodiment.
  • the detection apparatus 100 includes a cabinet 3, and includes a collection mechanism unit 101, a detection mechanism unit 102, and a refresh mechanism unit 103 therein.
  • the detection apparatus 100 includes a signal processing unit 30 for treating a signal representing fluorescence intensity, which will be described later, outside or inside the cabinet 3, and particles derived from living organisms in the air introduced by measuring the fluorescence intensity.
  • a measurement unit 40 for detecting The measurement unit 40 also controls each unit for the detection operation.
  • the collection mechanism unit 101 and the detection mechanism unit 102 are disposed adjacent to each other, and the refresh mechanism unit 103 is disposed therebetween (adjacent portion). As will be described later, a passage (not shown) through which the movable collection substrate 12 can pass is provided at the boundary between the adjacent collection mechanism unit 101 and the detection mechanism unit 102.
  • the collection mechanism 101 has a housing having an inner space, and is provided with an introduction hole 10 at one end and a discharge hole 11 at the other end.
  • the introduction hole 10 may be provided with a filter (prefilter) or a cyclone classifier that removes particles larger than the size of the microorganism to be detected.
  • a fan 50 as an example of an air introduction mechanism is disposed in the vicinity of the discharge hole 11.
  • a driving mechanism (not shown) of the fan 50 is controlled by the measuring unit 40, and its rotation is controlled.
  • the fan 50 rotates, as shown in FIG. 2, outside air is introduced from the introduction hole 10 into the housing of the collection mechanism unit 101 and is exhausted from the discharge hole 11.
  • the flow rate of the air introduced by the fan 50 is 0.1 L (liter) / min to 5 m 3 / min.
  • the air introduction mechanism As an example of the air introduction mechanism, a pump installed outside the detection device 100 and a drive mechanism thereof may be used. As another example, a heat heater, a micro pump, a micro fan, and a driving mechanism thereof incorporated in the detection apparatus 100 may be used. In addition, when the detection device 100 is incorporated in an air purifier, an air conditioner, or the like, the air introduction mechanism may be configured in common with the air introduction mechanism of the air purification device portion such as an air purifier. Good.
  • a needle-like discharge electrode 1 and a collection substrate 12 are arranged as an example of a collection mechanism.
  • the collection substrate 12 is a support substrate made of a glass plate or the like on which a conductive transparent film is formed.
  • the support substrate is not limited to a glass plate, but may be a metal such as ceramic or tungsten.
  • the film formed on the surface of the support substrate is not limited to being transparent.
  • the support substrate may be configured by forming DLC (diamond-like carbon) or a metal film on an insulating material such as ceramic or a metal substrate such as silicon. Further, when the support substrate is a metal material such as silicon, it is not necessary to form a film on the surface.
  • the high voltage power source 2 is arranged inside or outside the housing, and the discharge electrode 1 is electrically connected to the negative electrode of the high voltage power source 2.
  • the collection substrate 12 is electrically connected to the positive electrode or ground of the high-voltage power supply 2. Thereby, a potential difference is generated between the discharge electrode 1 and the surface of the collection substrate 12, and an upward electric field is formed between them in FIG. These electrical connections / disconnections are also controlled by the measurement unit 40.
  • the discharge electrode 1 emits electrons due to a potential difference from the surface of the collection substrate 12. As a result, airborne particles introduced from the introduction hole 10 are negatively charged in the vicinity of the discharge electrode 1.
  • the negatively charged particles move toward the collection substrate 12 by electrostatic force.
  • the charged particles are collected on the collection substrate 12 by being adsorbed by the conductive film.
  • the discharge electrode 1 is preferably a needle-like electrode as shown in FIG.
  • the needle-like electrode By using the needle-like electrode, the charged particles are adsorbed in a narrow range facing the discharge electrode 1 on the collection substrate 12. Thereby, in the detection process mentioned later, biologically derived particles can be efficiently detected from the collected particles.
  • a diaphragm plate 13 is provided to have a hole in the approximate center on the collection substrate 12 and to install the discharge electrode 1 so as to pass through the hole.
  • the flow path of the air introduced from the introduction hole 10 is narrowed to the diameter of the hole of the diaphragm plate 13, and particles in the air are discharged to the discharge electrode when passing through the diaphragm plate 13. 1 is charged. And since it reaches the collection substrate 12 with the narrowed flow path, the charged particles are adsorbed to a certain narrow range on the collection substrate 12.
  • a heater 15 and a temperature sensor are disposed on the surface of the collection substrate 12 opposite to the discharge electrode 1.
  • a ceramic heater is preferably used as the heater 15.
  • the temperature sensor is used to control the heating temperature of the substrate surface, and the installation location is not limited to a specific location.
  • the temperature sensor is electrically connected to the measurement unit 40 and inputs a sensor signal to the measurement unit 40.
  • the heater 15 is electrically connected to the measuring unit 40, and the heating amount (heating time, heating temperature, etc.) is controlled.
  • the collection substrate 12 is fixed by a collection jig 51 to a rotation base 52 that is an example of a mechanism for moving the collection substrate 12 and can be rotated by using the motor 14 as a driving force.
  • the collection substrate 12 is fixed by a collection jig 51 at a position shifted from the rotation center of the rotation base 52 by the motor 14. Thereby, the position of the collection substrate 12 is variable by the rotation of the rotation base 52 by the motor 14.
  • FIG. 5 is a diagram illustrating a specific example of the positional relationship between the collection mechanism unit 101, the detection mechanism unit 102, and the refresh mechanism unit 103 and an outline of the movement of the collection substrate 12.
  • the collection mechanism unit 101 and the detection mechanism unit 102 are arranged in parallel on a substantially straight line in the cabinet 3 as an example, and the refresh mechanism unit 103 includes the collection mechanism unit 101 and the detection mechanism unit. It is located at the center of 102 and not on the straight line.
  • the rotation base 52 is formed by a rectangular plate-like member as an example, and the vicinity of one end in the longitudinal direction is the rotation center of the motor 14.
  • a collection substrate 12 is fixed by a collection jig 51 in the vicinity of the other end.
  • the center of rotation of the rotation base 52 is located between the collection mechanism unit 101 and the detection mechanism unit 102, and the collection substrate 12 is converted into the collection mechanism unit 101, the refresh mechanism unit 103, and the detection by the rotation of the rotation base 52.
  • the mechanism unit 102 moves in the order (A ⁇ C ⁇ B in FIG. 5).
  • the refresh mechanism unit 103 includes the brush 16 disposed at a position in contact with the collection substrate 12, so that each time the collection substrate 12 passes through the refresh mechanism unit 103 due to the rotation of the rotation base 52, the surface of the refresh mechanism unit 103. Is refreshed.
  • FIG. 2 shows a state in which the collection substrate 12 is located in the collection mechanism unit 101. This state represents a state during the collection operation, and the position of the collection substrate 12 during the collection operation (position A in FIG. 5) is also referred to as a “collection position”.
  • FIG. 3 shows a state in which the collection substrate 12 is located in the detection mechanism unit 102. This state represents a state during the detection operation, and the position of the collection substrate 12 during the detection operation (position B in FIG. 5) is also referred to as “detection position”.
  • FIG. 4 shows a state in which the collection substrate 12 passes through the refresh mechanism unit 103 disposed between the collection mechanism unit 101 and the detection mechanism unit 102.
  • This state represents a state during a refresh operation, which will be described later, and the position of the collection substrate 12 during the refresh operation (position C in FIG. 5) is also referred to as a “refresh position”.
  • the measuring unit 40 is electrically connected to the motor 14 and controls the rotation thereof, thereby controlling the movement of the collection substrate 12.
  • a position sensor (not shown) for detecting the position of the collection substrate 12 may be provided, and the sensor signal may be input to the measurement unit 40.
  • the detection mechanism unit 102 also has a housing having an inner sky, and includes a light emitting element 6 and a light receiving unit 9 which are light sources.
  • the light-emitting element 6 is preferably a semiconductor laser and irradiates a laser beam.
  • an LED (Light Emitting Diode) element may be included.
  • the wavelength may be in the ultraviolet or visible region as long as it excites biological particles and emits fluorescence.
  • the wavelength is from 300 nm to 450 nm, which is contained in a microorganism and excites fluorescent tryptophan, NaDH, riboflavin, and the like efficiently.
  • the light receiving unit 9 may be a conventionally used photodiode, image sensor, photomultiplier tube, or the like. A photodiode is preferably used.
  • the collection substrate 12 is moved into the housing of the detection mechanism unit 102 by the above-described mechanism for moving, and is in a detection operation state.
  • the light emitting element 6 is disposed in a direction in which the irradiation direction is toward the collection substrate 12 in this state, and at a position where the irradiation light reaches the surface of the collection substrate 12.
  • the shape of the irradiation region on the collection substrate 12 by the irradiation from the light emitting element 6 is not limited to a specific shape, and may be a circle, an ellipse, a rectangle, or the like.
  • the irradiation area is not limited to a specific size, but preferably the diameter of the circle, the length of the ellipse in the long axis direction, or the length of one side of the rectangle is about 0.05 mm to 50 mm.
  • the light emitting element 6 is electrically connected to the measuring unit 40, and light emission and extinction are controlled.
  • the light receiving unit 9 is installed in a direction and position where the light emission from the collection substrate 12 is a light receiving range.
  • the light receiving unit 9 is electrically connected to the signal processing unit 30 and inputs a current signal corresponding to the amount of received light to the signal processing unit 30.
  • the signal processing unit 30 is electrically connected to the measurement unit 40 and inputs the result of processing the current signal to the measurement unit 40. Therefore, the signal processing unit 30 detects the amount of light received by the light receiving unit 9 when the light is emitted from the light emitting element 6 to the surface of the collection substrate 12.
  • the light-receiving unit 9 receives stray light due to light emitted from the light-emitting element 6 in a state where particles are hardly attached to the surface of the collection substrate 12. That is, in a state in which the adhesion of the particles to the surface of the collection substrate 12 is extremely small, the light received by the light receiving unit 9 is received by the light receiving unit 9 as the light emitted from the light emitting element 6 is reflected in the apparatus. The light and the minute fluorescence from the component of the collection substrate 12 are included.
  • the light receiving unit 9 When particles are attached (collected) to the surface of the collection substrate 12, the light receiving unit 9 receives particles or scattered light from between the particles, fluorescence from the particles, the stray light, and the like. Become.
  • the refresh mechanism unit 103 includes a brush 16 as an example of a member that is supported by the brush fixing unit 17 and the brush presser 18 and that refreshes particles attached to the surface of the collection substrate 12.
  • the brush 16 is formed from a fiber assembly.
  • the brush 16 is formed from a fiber assembly having conductivity. More preferably, the brush 16 is made of carbon fiber.
  • the fiber aggregate forming the brush 16 has a diameter of 0.05 mm or more and 0.2 mm or less.
  • the member for refreshing the particles adhering to the surface of the collection substrate 12 may be a flat wiper that contacts the surface of the collection substrate 12 in addition to the brush, or toward the surface of the collection substrate 12. It may be a nozzle that blows out air.
  • the collection substrate 12 is positioned in the refresh mechanism unit 103 between the collection mechanism unit 101 and the detection mechanism unit 102 by the above-described mechanism for moving and is in a refreshing operation state. It becomes.
  • One of the brushes 16 is a support end 16q, and the other is a free end 16p.
  • the support end 16q is supported by the brush fixing portion 17 and the brush presser 18.
  • the brush 16 is installed in a direction in which the direction from the support end 16q to the free end 16p is directed downward. Referring to FIG. 4, when the collection substrate 12 is positioned between the collection mechanism unit 101 and the detection mechanism unit 102, that is, below the brush fixing unit 17, the free end 16 p of the brush 16 is It contacts the surface of the collector substrate 12.
  • the collection substrate 12 is moved by the mechanism for moving the collection substrate 12 in the state in which the free end 16p of the brush 16 is in contact with the surface of the collection substrate 12 (A ⁇ C ⁇ B in FIG. 5). Particles adhering to the surface are removed.
  • the collection substrate 12 may be repeatedly moved so that the brush 16 reciprocates several times on its surface.
  • the collection substrate 12 can also move between the detection position and the collection position without contacting the free end 16p of the brush 16 by the rotation of the rotation base 52.
  • the collection substrate 12 is rotated by rotation of the rotation base 52. Can be moved from B to A in FIG. That is, there is a method of moving between the detection position and the collection position through the lower side of FIG.
  • the collection base 12 is moved in the order of A ⁇ C ⁇ B in FIG. 5 by the rotation of the rotary base 52, and the brush 16 is moved by the drive mechanism (not shown) when the free end 16q passes through the refresh position.
  • substrate 12 is mentioned.
  • the detection device 100 performs, as detection operations, a collection operation that is an operation for collecting particles in the air and a measurement operation for measuring the amount of biologically-derived particles in the collected particles. Do. During these operations, the detection apparatus 100 performs a refresh operation for refreshing the surface of the collection substrate 12. Furthermore, in order to repeat the collection operation and the measurement operation, the detection apparatus 100 performs a cleaning operation for cleaning the surface of the collection substrate 12 after the measurement operation.
  • FIG. 6 is a block diagram illustrating a specific example of a functional configuration for performing the above operation in the detection apparatus 100.
  • FIG. 6 shows an example in which the function of the signal processing unit 30 is realized by a hardware configuration that is mainly an electric circuit. However, at least a part of these functions may be a software configuration that is realized by the signal processing unit 30 including a CPU (not shown) and executing a predetermined program by the CPU.
  • the configuration of the measurement unit 40 is a software configuration is shown. However, at least some of these functions may be realized by a hardware configuration such as an electric circuit.
  • the signal processing unit 30 includes a current-voltage conversion circuit 34 connected to the light receiving unit 9 and an amplification circuit 35 connected to the current-voltage conversion circuit 34.
  • the measurement unit 40 includes a control unit 41, a storage unit 42, and a clock generation unit 43. Furthermore, the measurement unit 40 includes a drive unit 48 for driving the motor 14, the heater 15, and the fan 50.
  • the fluorescence from the particles in the irradiation region is collected on the light receiving unit 9.
  • a current signal corresponding to the amount of received light is output to the signal processing unit 30.
  • the current signal is input to the current-voltage conversion circuit 34.
  • the current-voltage conversion circuit 34 detects the peak current value H representing the fluorescence intensity from the current signal input from the light receiving unit 9, and converts it into the voltage value Eh.
  • the voltage value Eh is amplified to a preset amplification factor by the amplifier circuit 35 and is output to the measurement unit 40.
  • the control unit 41 of the measurement unit 40 receives the input of the voltage value Eh from the signal processing unit 30 and sequentially stores it in the storage unit 42.
  • the clock generation unit 43 generates a clock signal and outputs it to the control unit 41.
  • the control unit 41 outputs a control signal for driving the motor 14, the heater 15, and the fan 50 to the drive unit 48 at a timing based on the clock signal, and controls these operations.
  • the control part 41 is electrically connected with the light emitting element 6 and the light-receiving part 9, and controls those ON / OFF.
  • the control unit 41 is electrically connected to a mechanism (not shown) for electrically connecting the high-voltage power supply 2 to the discharge electrode 1 and the collection substrate 12, and applies a voltage to the discharge electrode 1 and the collection substrate 12. And control the polarity.
  • the control unit 41 includes a calculation unit 411.
  • the amount of living organism-derived particles in the introduced air is calculated using the voltage value Eh stored in the storage unit.
  • the particle amount calculated by the calculation unit 411 may be output from the control unit 41 to an external device, may be displayed on a display device (not shown), or may be recorded on a recording medium (not shown).
  • FIG. 7 is a flowchart showing a specific example of the operation flow in the detection apparatus 100.
  • step S ⁇ b> 1 the control unit 41 of the measurement unit 40 performs the collection operation with the collection substrate 12 as the collection position. That is, in step S1, the control unit 41 drives the fan 50 in the forward rotation direction to introduce outside air into the housing of the collection mechanism unit 101, and connects the high-voltage power supply 2 to the discharge electrode 1 and the collection substrate 12 respectively. A potential difference is generated between the discharge electrode 1 and the collection substrate 12 by electrical connection. Thereby, particles in the air are collected on the surface of the collection substrate 12.
  • step S3 the control unit 41 moves the collection substrate 12 to the detection position without bringing the surface into contact with the free end 16p of the brush 16.
  • the control unit 41 drives the motor 14 by a specified amount in a direction in which the rotation base 52 rotates downward in FIG. As a result, the rotation base 52 rotates downward in FIG. 5, and the collection substrate 12 moves from the collection mechanism unit 101 to a detection position that is a predetermined position of the detection mechanism unit 102 without passing through the refresh position C.
  • the control unit 41 moves the collection substrate 12 upward in FIG. 5, and when passing through the refresh position, the free end 16q causes the collection end of the brush 16 by the drive mechanism (not shown). You may make it raise to the position which does not contact the surface of 12. This moving method is the same in step S7 and step S13, which will be described later.
  • step S5 the control unit 41 measures the fluorescence amount S1 before heating. That is, in step S5, the control unit 41 illuminates the light emitting element 6 and irradiates the particles collected on the collection substrate 12 at the detection position with the excitation light. Fluorescence from is received for a predetermined time. This fluorescence is emitted from particles on the surface of the collection substrate 12 with the irradiation of excitation light. Based on the current signal from the light receiving unit 9, the measuring unit 40 measures the fluorescence intensity S ⁇ b> 1 before heating of the particles collected on the collection substrate 12.
  • step S7 the control unit 41 returns the collection substrate 12 to the collection position.
  • the control of the control unit 41 in step S7 is the same as the control in step S3. That is, as an example, in step S7, the control unit 41 drives the motor 14 by a specified amount in the direction in which the rotation base 52 rotates in the lower direction of FIG. As a result, the rotation base 52 rotates, and the collection substrate 12 moves from the detection mechanism unit 102 to a collection position, which is a predetermined position of the collection mechanism unit 101, without the surface thereof being in contact with the free end 16p of the brush 16. To do.
  • step S9 the control unit 41 performs a heating operation. That is, in step S9, the control unit 41 energizes the heater 15 for a predetermined time. Thereby, the particles collected on the collection substrate 12 are heated.
  • step S11 the control unit 41 performs a cooling operation. That is, in step S ⁇ b> 11, the control unit 41 cools the collection substrate 12 by stopping energization to the heater 15. Furthermore, preferably, the control unit 41 drives the fan 50 for a predetermined time. As a result, outside air is introduced into the collection mechanism 101 and cooling of the collection substrate 12 is promoted.
  • step S13 the control unit 41 moves the collection substrate 12 to the detection position.
  • the control of the control unit 41 in step S13 is the same as the control in step S3. That is, as an example, in step S13, the control unit 41 drives the motor 14 by a specified amount in the direction in which the rotation base 52 rotates in the lower direction of FIG. As a result, the rotation base 52 rotates, and the collection substrate 12 moves from the collection mechanism unit 101 to a detection position that is a predetermined position of the detection mechanism unit 102 without the surface thereof being in contact with the free end 16p of the brush 16. .
  • step S15 the control unit 41 measures the fluorescence amount S2 after heating. That is, in step S15, the control unit 41 turns on the light emitting element 6 to irradiate excitation light toward the particles collected on the collection substrate 12 at the detection position, and the surface of the collection substrate 12 on the light receiving unit 9. Fluorescence from is received for a predetermined time. Based on the current signal from the light receiving unit 9, the control unit 41 measures the fluorescence intensity S ⁇ b> 2 after heating of the particles collected on the collection substrate 12.
  • step S17 the control unit 41 moves the collection substrate 12 to the refresh position. That is, in step S17, the control unit 41 drives the motor 14 by a specified amount. As a result, the rotation base 52 rotates and the collection substrate 12 moves to a refresh position, which is a predetermined position of the refresh mechanism unit 103.
  • step S19 the control unit 41 performs a refresh operation. That is, in step S19, the control unit 41 drives the motor 14 alternately by a specified amount in the normal rotation direction and the reverse rotation direction. Thereby, the rotation base 52 rotates alternately in the normal rotation direction and the reverse direction in a state where the brush 16 is in contact with the surface of the collection substrate 12, so that particles are removed from the surface of the collection substrate 12.
  • control unit 41 may drive the fan 50 for a predetermined time. Thereby, particles removed from the collection substrate 12 and scattered in the air are discharged from the discharge hole 11 to the outside of the cabinet 3.
  • the detection device 100 may include a filter between the discharge hole 11 and the fan 50 in order to collect particles discharged from the discharge hole 11 to the outside of the cabinet 3.
  • step S21 the control unit 41 returns the collection substrate 12 to the collection position. That is, in step S21, the control unit 41 performs the same operation as in step S7. After that, the control unit 41 performs a cleaning operation described later in step S23, and then repeats the operations in and after step S1, thereby continuously detecting organism-derived particles in the air.
  • control unit 41 repeats the above operation including the refresh operation, an increase in stray light intensity associated with the number of measurements can be suppressed as compared with the case where the refresh operation is not performed. However, the increase is expected to increase depending on the measurement environment.
  • stray light generated by irradiating the collection substrate 12 from the light emitting element 6 is caused by microorganisms and dust remaining on the surface of the collection substrate 12, and fluorescence from the microorganisms and scattered light from the microorganisms and dust. It is thought that the occupies the majority. As the number of measurements increases, the number of microorganisms and dust remaining on the surface of the collection substrate 12 increases, and the stray light intensity increases. The increase in remaining microorganisms and dust becomes larger as the measurement environment is worse (an environment in which more dust and microorganisms are contained in the outside air). Therefore, the worse the measurement environment, the more fluorescence from microorganisms and the like is accumulated. Therefore, the worse the measurement environment, the more limited the number of measurement operations that can be performed continuously.
  • the detection apparatus 100 performs a cleaning operation in step S23 after step S21.
  • FIG. 8 is a flowchart showing the flow of the cleaning operation in step S23.
  • step S31 the control unit 41 operates the electric power for a predetermined time in a predetermined relationship with the discharge electrode 1 and the collection substrate 12 without operating the fan 50.
  • the specified time is, for example, 1 minute to 1 hour, and preferably about 1 minute to 30 minutes.
  • This prescribed time is defined by the detection environment and the like. That is, it can be obtained by actually repeatedly measuring with the detection apparatus 100 and experimentally determining conditions under which the increase in stray light intensity is small.
  • the control unit 41 connects the negative electrode side of the high-voltage power supply 2 to the discharge electrode 1 and connects the positive electrode side to the collection substrate 12, so that the same polarity as that during the collection operation is applied to the discharge electrode 1 and the collection substrate 12.
  • the high pressure is applied.
  • the control unit 41 connects the positive electrode side of the high-voltage power supply 2 to the discharge electrode 1 and connects the negative electrode side to the collection substrate 12, so that the discharge electrode 1 and the collection substrate 12 are opposite to those during the collection operation.
  • a polar high voltage is applied. Which polarity is applied depends on the detection environment. That is, it can be obtained by actually repeatedly measuring with the detection apparatus 100 and experimentally determining conditions under which the increase in stray light intensity is small.
  • step S33 the control unit 41 energizes the heater 15 for a predetermined time and a predetermined amount of heat without moving the collection substrate 12.
  • the predetermined amount of heat is, for example, 180 ° C. to 350 ° C., preferably 180 ° C. to 250 ° C.
  • the predetermined time is, for example, 1 minute to 1 hour, preferably 1 minute to 30 minutes.
  • the predetermined time and the predetermined amount of heat are defined by the detection environment and the like. That is, it can be obtained by actually repeatedly measuring with the detection apparatus 100 and experimentally determining conditions under which the increase in stray light intensity is small.
  • step S35 the control unit 41 cools the collection substrate 12 by stopping energization of the heater 15. Furthermore, preferably, the control unit 41 drives the fan 50 for a predetermined time. As a result, outside air is introduced into the collection mechanism 101 and cooling of the collection substrate 12 is promoted.
  • step S37 the control unit 41 moves the collection substrate 12 to the refresh position. In step S37, the control unit 41 performs the same operation as in step S17.
  • step S39 the control unit 41 performs a refresh operation.
  • step S39 the control unit 41 performs the same operation as in step S19.
  • step S41 the control unit 41 returns the collection substrate 12 to the collection position.
  • step S21 the control unit 41 performs the same operation as in step S7.
  • the control unit 41 repeats the operations of steps S31 to S41 a predetermined number of times. That is, the control unit 41 continuously performs an operation of removing particles remaining on the surface of the collection substrate 12 by repeating the above operation a predetermined number of times.
  • the prescribed number of times is, for example, 1 to 50 times.
  • the specified number of times is specified by the detection environment and the like. That is, it can be obtained by actually repeatedly measuring with the detection apparatus 100 and experimentally determining conditions under which the increase in stray light intensity is small.
  • control unit 41 ends the series of cleaning operations, returns the operation to step S1 in FIG. 7, and repeats the subsequent operations.
  • control unit 41 does not necessarily have to perform the cleaning operation in step S23 every time a series of detection operations. That is, the control unit 41 may perform the cleaning operation every time the series of detection operations in FIG. 7 is repeated a predetermined number of times.
  • the frequency of the cleaning operation may be determined according to the measurement environment and measurement conditions. For example, when the measurement environment is extremely microbial or dusty, the control unit 41 may perform a cleaning operation instead of the refresh operation in step S19. For example, when the detection operation is continuously performed for a specified period such as normal business hours from morning to evening, the cleaning process is performed the specified number of times after the specified period after the business hours. Also good.
  • Example 1 In the first experiment, the inventors measured an increase change in stray light intensity for each detection operation using the detection apparatus 100 shown in FIGS. As the first case, the cleaning operation is skipped and the detection operation of FIG. 7 is performed, and as the second case, the cleaning operation is performed at a predetermined frequency with respect to the detection operation. Note that the cleaning operation in the second case of the first experiment is performed with the same polarity as the collection operation as the predetermined polarity in step S31.
  • the irradiation light of the light emitting element 6 is blue laser light having a peak wavelength of 405 nm, and the laser output of the light emitting element 6 is 18 mW.
  • the number of refreshes in the refresh operation in step S19 is 10 round trips.
  • negative polarity was applied at 4 KV for 15 minutes, and heating was performed at 220 ° C. for 10 minutes.
  • the number of refreshes in the refresh operation in step S39 was 10 reciprocations, and the number of cleaning operations was repeated 3 times. The cleaning operation is executed once for every 24 detection operations.
  • FIG. 9 is a diagram showing the relationship between the number of measurements and the increase in stray light intensity obtained in the first experiment.
  • the result shown in Case 1 is the measurement result in the first case in which the cleaning operation is skipped, and as a result of repeated measurement 150 times, the stray light intensity increases by about 1.7 V / sec. ing.
  • the result shown in Case 2 is the measurement result in the second case in which the cleaning operation is performed once per 24 detection operations, and the measurement is repeated 150 times. As a result, about 1.1 V / sec stray light is obtained. Strength is increasing.
  • FIG. 10 which is an experimental result disclosed in the above-mentioned document is a result of measuring changes in heating amount and fluorescence intensity using mold bacteria as a sample.
  • substrate at the time of further heating to 250 degreeC after heating to 200 degreeC and when heating to 300 degreeC is shown.
  • the horizontal axis in FIG. 10 represents the heating holding time (minutes), and the vertical axis represents the ratio of the fluorescence intensity after the treatment to the fluorescence intensity before the treatment. From the results of FIG. 10, it was found that the fluorescent light emission ability of the bio-derived particles decreases depending on the heating temperature when heated at 200 ° C. or higher.
  • Example 2 In the second experiment, the inventors used the detection apparatus shown in FIG. Referring to FIG. 11, in the detection apparatus used in this experiment, two high-voltage power supplies 2 a and 2 b having different polarities that can be connected to discharge electrode 1 are prepared, and positive or negative voltage is applied to discharge electrode 1. Can be applied individually. The rest is the same as the detection apparatus 100 shown in FIGS.
  • the detection operation was performed under substantially the same conditions as in the first experiment. That is, as a first case, the cleaning operation was skipped and the detection operation of FIG. 7 was repeatedly performed, and the 150th stray light was measured. As a second case, a cleaning operation was performed once per 24 detection operations, and the 150th stray light was measured. However, the cleaning operation in the second experiment has a polarity opposite to that of the collection operation, that is, a positive polarity as the predetermined polarity in step S31.
  • FIG. 12 is a diagram showing the relationship between the number of measurements and the increase in stray light intensity obtained in the second experiment.
  • the result shown in case 1 is the measurement result in the first case in which the cleaning operation is skipped, and as a result of repeating measurement 150 times, the stray light intensity increases by about 1.6 V / sec. ing.
  • the result shown in case 2 is the measurement result in the second case in which the cleaning operation is performed once per 24 detection operations, and the measurement is repeated 150 times. As a result, about 1.3 V / sec stray light is obtained. Strength is increasing.
  • Some particles are easily charged with a positive charge and others are easily charged with a negative charge. Which particles are collected on the collection substrate 12 depends on the applied potential at the time of collection and the measurement environment. Due to Therefore, whether the polarity of the applied potential as the predetermined polarity in the cleaning operation is positive or negative may be determined according to an experimental result in which an increase in stray light intensity is suppressed.
  • the cleaning operation was skipped and the detection operation of FIG. 7 was repeatedly performed, and the 150th stray light was measured.
  • a cleaning operation was performed once per 24 detection operations, and the 150th stray light was measured.
  • the cleaning operation in the third experiment is performed by applying the same polarity (negative polarity) as that of the collecting operation as the predetermined polarity in step S31, and then performing a series of cleaning operations, and then the reverse operation.
  • a series of cleaning operations were performed under the same conditions except that polarity (positive polarity) was applied.
  • FIG. 13 is a diagram showing the relationship between the number of measurements and the increase in stray light intensity obtained in the third experiment.
  • the result shown in Case 1 is the measurement result in the first case in which the cleaning operation is skipped. As a result of repeating measurement 150 times, the stray light intensity increases by about 1.7 V / sec. ing.
  • the result shown in Case 2 is the measurement result in the second case where the cleaning operation is performed once per 24 detection operations, and the measurement is repeated 150 times. As a result, about 0.6 V / sec stray light is obtained. Strength is increasing.
  • the cleaning operation is performed every time a series of detection operations or at a predetermined frequency with respect to the detection operations, so that particles remaining on the surface of the collection substrate 12 are efficiently removed.
  • the stray light in the light received by the light receiving unit 9 can be suppressed. For this reason, it becomes possible to repeatedly detect the biological particles with high accuracy.
  • the refresh operation is performed by moving the collection substrate 12 while the brush 16 of the refresh mechanism unit 103 is stationary. There is no need to provide it. For this reason, size reduction and cost reduction of the detection apparatus 100 can be achieved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 検出装置では、捕集基板表面に粒子を吸着させて捕集し、加熱前後での蛍光量に基づいて吸着された粒子から生物由来の粒子を検出するものであって、加熱の後、クリーニング動作を行なって捕集基板の表面をリフレッシュし、繰り返し検出する。クリーニング動作は、捕集基板と電極との間に所定電圧を印加するステップ(S31)と、印加の後、捕集基板を所定温度で加熱するステップ(S33)と、加熱の後、捕集基板を冷却するステップ(S35)と、冷却の後、捕集基板の表面に接触可能なリフレッシュ部材を捕集基板の表面に接触させるステップ(S39)とを含む。

Description

検出装置および検出方法
 この発明は検出装置および検出方法に関し、特に、空気中の生物由来の粒子を検出する検出装置および検出方法に関する。
 従来、空気中の微生物の検出においては、落下菌法、衝突法、スリット法、多孔板法、遠心衝突法、インピンジャ法、およびフィルタ法などの方法で空気中の微生物を採取した後、培養し、出現するコロニーの計数を行なう。しかしながら、この方法では、培養に2日から3日が必要であり、リアルタイムでの検出は難しい。そこで、近年、特表2008-508527号公報(特許文献1)、特表2009-501907号公報(特許文献2)、および特表2010-513847号公報(特許文献3)のように、空気中の微生物に紫外光を照射して、微生物からの蛍光発光を検出して個数を計測する装置が提案されている。
 これら文献で提案されているような従来装置では、浮遊粒子が生物由来のものかどうかを判定する手段として、紫外線の照射により蛍光を発光するかどうかを判断する手法が採用されている。
特表2008-508527号公報 特表2009-501907号公報 特表2010-513847号公報
 上記特許文献1~3に開示されている方法では、生物由来の粒子からの蛍光信号をノイズ成分から分離する必要がある。その方法として予めしきい値を設定し、当該しきい値よりも大きいピーク値を持つ信号を生物由来の粒子からの蛍光信号として抽出する方法が挙げられる。
 しかしながら、生物由来の粒子からの蛍光は微少であるため、上記しきい値を小さく設定する必要がある。そのため、生物由来の粒子からの蛍光をノイズ成分から分離することが難しくなり、検出精度が低下するという問題があった。
 生物由来の粒子を検出するための検出装置は、バイオテロ対策や薬剤工場などに応用することが考えられる。このとき、空気中の生物由来の粒子が所定の濃度を超えた場合に警報を出すなどの応用が考えられるが、上記特許文献1~3に開示されている方法を利用すると上述のように生物由来の粒子からの蛍光量を表わす信号値が小さく、感度が低いことから、誤動作が生ずる場合があるという問題があった。
 本発明はこのような問題に鑑みてなされたものであって、蛍光を利用して、生物由来の粒子をリアルタイムに高感度で精度よく検出することのできる検出装置および検出方法を提供することを目的としている。
 上記目的を達成するために、本発明のある局面に従うと、検出装置は生物由来の粒子を検出するための検出装置であって、生物由来の粒子を捕集するための捕集基板と、捕集基板と対抗する位置に配された電極と、捕集基板を加熱するための加熱部と、捕集基板を用いて生物由来の粒子を捕集する捕集動作を実行するための捕集手段と、捕集基板から生物由来の粒子を検出する検出動作を実行するための検出手段と、捕集基板の表面に物を接触させることで捕集基板の表面から捕集された粒子を除去する、捕集基板の表面に対する清掃動作を実行するためのリフレッシュ手段とを備える。捕集手段は、リフレッシュ手段での清掃動作を間に挟んで、検出手段での検出動作の後に捕集動作を実行する。リフレッシュ手段での清掃動作は、捕集基板と電極との間における所定電圧での印加と捕集基板に対する所定温度での加熱とを実行するステップと、加熱の後の捕集基板を冷却するステップと、冷却の後の捕集基板の表面に物を接触させるステップとを含む。
 好ましくは、捕集手段での捕集動作は捕集基板と電極との間に所定の極性で電圧を印加するステップを含み、リフレッシュ手段は清掃動作において、捕集基板と電極との間に上記所定の極性と同じ極性で所定電圧を印加する。
 好ましくは、捕集手段での捕集動作は捕集基板と電極との間に所定の極性で電圧を印加するステップを含み、リフレッシュ手段は清掃動作において、捕集基板と電極との間に上記所定の極性とは逆の極性で所定電圧を印加する。
 好ましくは、リフレッシュ手段は清掃動作において、捕集基板と電極との間に印加する所定電圧の極性を交互にして、印加および加熱を実行するステップから接触させるステップまでを繰り返し実行する。
 好ましくは、検出装置は、捕集基板の表面に光を照射するように設置された発光素子と捕集基板の表面からの蛍光を受光するための受光素子とをさらに備え、検出手段は、加熱前後の、発光素子で照射された捕集基板からの蛍光量の差に基づいて、捕集基板で捕集された生物由来の粒子の量を算出するための算出手段を含む。
 本発明の他の局面に従うと、検出方法は生物由来の粒子を検出する方法であって、捕集基板と捕集基板に対して対抗する位置に配された電極との間に電圧を印加することで、空気中の粒子を捕集基板の表面に吸着させて捕集するステップと、捕集基板の表面に対して発光素子で照射した状態で、その表面からの蛍光を受光するステップと、捕集基板を加熱することで、捕集基板の表面に吸着された粒子を加熱するステップと、加熱の後の捕集基板の表面に対して発光素子で照射した状態で、その表面からの蛍光を受光するステップと、捕集基板の表面をリフレッシュするステップとを備える。リフレッシュするステップは、捕集基板と電極との間における所定電圧での印加と捕集基板に対する所定温度での加熱とを実行するステップと、加熱の後、捕集基板を冷却するステップと、冷却の後、捕集基板の表面に物を接触させるステップとを含み、リフレッシュするステップの後、捕集するステップに戻る。
 この発明によると、高精度で、生物由来粒子の検出を繰返し行なうことが可能となる。
加熱前後における、生物由来の粒子の蛍光強度の変化と粉塵の蛍光強度の変化とを示すグラフである。 実施の形態にかかる検出装置の概略を表わした図である。 実施の形態にかかる検出装置の概略を表わした図である。 実施の形態にかかる検出装置の概略を表わした図である。 検出装置における、捕集機構部、検出機構部、およびリフレッシュ機構部の位置関係の具体例と、捕集基板の移動の概略とを表わした図である。 検出装置の機能構成の具体例を示すブロック図である。 検出装置での動作の流れの具体例を表わしたフローチャートである。 クリーニング動作の流れを表わしたフローチャートである。 第1の実験で得られた、測定回数と迷光強度の増加変化との関係を表わした図である。 加熱温度ごとの、捕集基板からの蛍光強度の時間変化の測定結果を示した図である。 第2の実験および第3の実験に用いた検出装置の概略を表わした図である。 第2の実験で得られた、測定回数と迷光強度の増加変化との関係を表わした図である。 第3の実験で得られた、測定回数と迷光強度の増加変化との関係を表わした図である。
 以下に、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付してある。それらの名称および機能も同じである。したがって、これらの説明は繰り返さない。
 <生物由来の粒子の検出原理について>
 本実施の形態における検出装置は、花粉や微生物、カビといった生物由来の粒子を検出するための装置である。本実施の形態における検出装置での生物由来の粒子を検出する原理は特定の原理に限定されるものではない。一例として、国際公開2011/104770号に開示されている原理を採用することができる。上記文献は、捕集治具表面に捕集した生物由来の粒子に対して加熱処理を施すことで、生物由来の粒子からの蛍光強度が増加することが見出されたことを開示している。以下、本実施の形態における検出装置がこの原理を採用した検出方法を行なうものとして説明する。最初に、上記原理について説明する。
 図1は、加熱前後における、生物由来の粒子の蛍光強度の変化と粉塵の蛍光強度の変化とを示すグラフである。
 空気中に浮遊する生物由来の粒子に紫外光または青色光を照射すると、生物由来の粒子は蛍光を発する。しかしながら、空気中には化学繊維の埃など(以下、粉塵とも言う)の、同様に蛍光を発する粒子が浮遊しており、蛍光を検出するのみでは、生物由来の粒子からのものであるのか粉塵からのものであるのかが区別されない。
 一方、生物由来の粒子および粉塵に対してそれぞれ加熱処理を施し、加熱前後における蛍光強度(蛍光量)の変化を測定すると、図1中に破線で示すように、粉塵から発せられる蛍光強度が加熱処理によって変化しないのに対して、図1中に実線で示すように、生物由来の粒子から発せられる蛍光強度は、加熱処理によって増加する。
 本実施の形態における検出装置では、生物由来の粒子と粉塵とが混合する粒子に対して、加熱前後の蛍光強度を測定し、その差分を求めることにより、生物由来の粒子の量を特定する。
 <装置構成>
 図2~図4は、本実施の形態にかかる検出装置100の概略を表わした図である。
 図2~図4を参照して、検出装置100はキャビネット3を有し、その内部に、捕集機構部101と、検出機構部102と、リフレッシュ機構部103とを含む。また、検出装置100は、キャビネット3の外部または内部に、後述する蛍光強度を表わす信号を処置するための信号処理部30と、蛍光強度を測定することで導入された空気中の生物由来の粒子を検出するための測定部40とを含む。測定部40は、検出動作のための各部の制御も行なう。
 捕集機構部101と検出機構部102とは隣接して配置され、その間(隣接部分)にリフレッシュ機構部103が配される。隣接した捕集機構部101と検出機構部102との境には、後述するように可動式の捕集基板12が通過可能な図示しない通路が設けられる。
 捕集機構部101は、内空を有する匡体を有し、その一方端に導入孔10、他方端に排出孔11が設けられている。導入孔10にはフィルタ(プレフィルタ)または検出対象である微生物のサイズより大きな粒子を除去するサイクロン式の分級装置が設けられてもよい。
 排出孔11近傍には、空気導入機構の一例としてのファン50が配される。ファン50の図示しない駆動機構は測定部40によって制御され、その回転が制御される。ファン50が回転することによって、図2に表わされたように、外気が導入孔10から捕集機構部101の匡体内に導入され、排出孔11から排気される。好ましくは、ファン50で導入する空気の流速は0.1L(リットル)/minから5m3/minである。
 空気導入機構の例としては、検出装置100外に設置されたポンプおよびその駆動機構などであってよい。また他の例として、検出装置100内に組み込まれた熱ヒータやマイクロポンプ、マイクロファン、およびその駆動機構などであってもよい。また、当該検出装置100が空気清浄機や空気調和機などに組み込まれるものである場合、空気導入機構は、空気清浄機等の空気清浄装置部分の空気導入機構と共通とする構成であってもよい。
 匡体内部には、捕集機構の一例として針状の放電電極1と捕集基板12とが配備されている。
 捕集基板12は、導電性の透明の皮膜が形成されたガラス板などからなる支持基板である。支持基板はガラス板には限定されず、その他、セラミック、タングステン等の金属等であってもよい。また、支持基板表面に形成される皮膜は、透明に限定されない。他の例として、支持基板は、DLC(ダイヤモンドライクカーボン)や金属皮膜をセラミック等の絶縁材料またはシリコン等の金属基板の上に形成して構成されてもよい。また、支持基板がシリコン等の金属材料の場合は、その表面に皮膜を形成する必要もない。
 匡体内部、または外部に高圧電源2が配され、放電電極1は高圧電源2の負極に電気的に接続される。捕集基板12は、高圧電源2の正極またはグランドに電気的に接続される。これにより、放電電極1と捕集基板12表面との間に電位差が発生し、これらの間に図2では上向きの電界が構成される。これらの電気的な接続/非接続も、測定部40によって制御される。
 放電電極1は、捕集基板12表面との間の電位差によって電子を放出する。これにより、導入孔10から導入された空気中の浮遊粒子は、放電電極1付近にて負に帯電される。
 負に帯電した粒子は、静電気力で捕集基板12の方向に移動する。帯電した粒子が導電性の皮膜に吸着されることで、捕集基板12上に捕集される。
 放電電極1は、図2に表わされたように、好ましくは針状の電極が用いられる。針状の電極が用いられることで、帯電した粒子が捕集基板12上の放電電極1に対面する狭い範囲に吸着する。これにより、後述する検出工程において、捕集された粒子から生物由来の粒子を効率的に検出することができる。
 なお、さらに図2の例では、捕集基板12の上の略中央に孔を有し、放電電極1をその孔をくぐるように設置するための、絞り板13が設けられている。この絞り板13が配置されることにより、導入孔10から導入された空気の流路は絞り板13の孔の径に狭められ、空気中の粒子は、絞り板13を通過する際に放電電極1にて帯電される。そして、その狭められた流路のまま捕集基板12に到達するため、帯電した粒子が捕集基板12上のある程度狭い範囲に吸着することになる。
 捕集基板12の放電電極1の反対側の面にはヒータ15と図示しない温度センサとが配されている。ヒータ15としては、好適にはセラミックヒータが用いられる。温度センサは、基板表面の加熱温度を制御するために用いられ、設置個所は特定の箇所に限定されない。
 温度センサは電気的に測定部40と接続され、センサ信号を測定部40に入力する。ヒータ15は電気的に測定部40と接続され、加熱量(加熱時間、加熱温度等)が制御される。
 捕集基板12は、捕集治具51によって、捕集基板12を移動させるための機構の一例である、モータ14を駆動力として回転可能な回転ベース52に固定されている。捕集基板12を移動させるための機構の一例として、捕集基板12は、捕集治具51によって、回転ベース52のモータ14による回転中心からずれた位置に固定される。これにより、捕集基板12は、モータ14による回転ベース52の回転によって、位置が可変となる。
 図5は、捕集機構部101、検出機構部102、およびリフレッシュ機構部103の位置関係の具体例と、捕集基板12の移動の概略とを表わした図である。
 図5を参照して、捕集機構部101および検出機構部102は、一例としてキャビネット3内の略直線上に並列して配置され、リフレッシュ機構部103は、捕集機構部101および検出機構部102の中央であって、上記直線上にはない位置に配置される。
 回転ベース52は一例として矩形の板状部材で形成され、長手方向の一端の近傍がモータ14の回転中心となる。他方の端部の近傍に捕集基板12が捕集治具51によって固定されている。
 回転ベース52の回転中心は、捕集機構部101と検出機構部102との間に位置し、回転ベース52の回転によって捕集基板12が、捕集機構部101、リフレッシュ機構部103、および検出機構部102の順(図5のA→C→Bの順)に移動する。
 リフレッシュ機構部103は後述するように、捕集基板12に接する位置に配置されたブラシ16を含むため、回転ベース52の回転によって捕集基板12がリフレッシュ機構部103を通過するたびに、その表面がリフレッシュされる。
 図2は、捕集基板12が捕集機構部101内に位置している状態を表わしている。この状態は捕集動作中の状態を表わしており、捕集動作中の捕集基板12の位置(図5のAの位置)を「捕集位置」とも称する。
 図3は、捕集基板12が検出機構部102内に位置している状態を表わしている。この状態は検出動作中の状態を表わしており、検出動作中の捕集基板12の位置(図5のBの位置)を「検出位置」とも称する。
 図4は、捕集基板12が捕集機構部101と検出機構部102との間に配されたリフレッシュ機構部103を通過している状態を表わしている。この状態は、後述するリフレッシュ動作中の状態を表わしており、リフレッシュ動作中の捕集基板12の位置(図5のCの位置)を「リフレッシュ位置」とも称する。
 測定部40は、モータ14に電気的に接続されてその回転を制御することで、捕集基板12の移動を制御する。捕集基板12の位置を検出するための図示しない位置センサが設けられ、そのセンサ信号が測定部40に入力されてもよい。
 検出機構部102もまた内空を有する匡体を有し、その内部に、光源である発光素子6と受光部9とを含む。
 発光素子6は好適には半導体レーザが用いられ、レーザ光を照射する。またはLED(Light Emitting Diode)素子を含んでもよい。波長は、生物由来の粒子を励起して蛍光を発させるものであれば、紫外または可視いずれの領域の波長でもよい。好ましくは、特表2008-508527号公報に開示されているように、微生物中に含まれ、蛍光を発するトリプトファン、NaDH、リボフラビン等が効率よく励起される300nmから450nmである。
 受光部9は、従来用いられている、フォトダイオード、イメージセンサ、光電子増倍管などが用いられる。好適にはフォトダイオードが用いられる。
 図3に表わされたように、捕集基板12は上記の移動させるための機構によって検出機構部102の匡体内に移動して検出動作中の状態となる。発光素子6は、照射方向がこの状態の捕集基板12に向かう方向、捕集基板12表面に照射光が届く位置に配置される。
 発光素子6からの照射による捕集基板12上の照射領域の形状は特定の形状に限定されず、円形、楕円形、四角形などであってよい。照射領域は特定のサイズに限定されないが、好ましくは、円の直径または楕円の長軸方向の長さまたは四角形の1辺の長さが約0.05mmから50mmである。
 発光素子6は測定部40に電気的に接続されて、発光、消灯が制御される。
 受光部9は、捕集基板12からの発光を受光範囲とする向き、位置に設置される。
 受光部9は、信号処理部30に電気的に接続されて、受光量に応じた電流信号を信号処理部30に入力する。信号処理部30は、測定部40に電気的に接続されて、電流信号を処理した結果を測定部40に入力する。したがって、捕集基板12表面に発光素子6から光が照射されたときに受光部9において受光される光量が、信号処理部30において検出される。
 受光部9は、捕集基板12表面に粒子の付着が極めて少ない状態では発光素子6から発光された光による迷光を受光する。すなわち、捕集基板12表面に粒子の付着が極めて少ない状態では、受光部9によって受光される光には発光素子6から発光された光が装置内で反射することで受光部9で受光される光や捕集基板12の成分からの微少蛍光などが含まれる。
 捕集基板12表面に粒子が付着している(捕集されている)場合には、受光部9は、粒子または粒子間からの散乱光、粒子からの蛍光、上記迷光などを受光することになる。
 リフレッシュ機構部103は、ブラシ固定部17およびブラシ押さえ18により支持される、捕集基板12表面に付着した粒子をリフレッシュするための部材の一例としてのブラシ16を含む。
 ブラシ16は、繊維集合体から形成されている。好ましくは、ブラシ16は、導電性を有する繊維集合体から形成されている。より好ましくは、ブラシ16は、カーボンファイバから形成されている。また、好ましくは、ブラシ16を形成する繊維集合体の線径は、直径0.05mm以上、0.2mm以下である。
 捕集基板12表面に付着した粒子をリフレッシュするための部材は、ブラシの他、捕集基板12の表面と接触する平板状のワイパーであってもよいし、捕集基板12の表面に向けて空気を噴き出すノズルであってもよい。
 図4に表わされたように、捕集基板12は上記の移動させるための機構によって捕集機構部101と検出機構部102との間のリフレッシュ機構部103に位置してリフレッシュ動作中の状態となる。
 ブラシ16は、一方が支持端16qであり、他方が自由端16pである。支持端16qは、ブラシ固定部17およびブラシ押さえ18により支持されている。ブラシ16は、支持端16qから自由端16pへの方向が下方に向かう方向に設置される。図4を参照して、捕集基板12が捕集機構部101と検出機構部102との間、つまりブラシ固定部17の下方に位置しているときに、ブラシ16の自由端16pは、捕集基板12の表面に接触する。
 ブラシ16の自由端16pが捕集基板12の表面に接触した状態で捕集基板12が上記の移動させるための機構によって移動することにより(図5のA→C→B)、捕集基板12表面に付着している粒子が除去される。捕集基板12は、ブラシ16がその表面を数回往復するように、反復移動されてもよい。
 なお、捕集基板12は、回転ベース52の回転によって、表面がブラシ16の自由端16pと接触せずに検出位置と捕集位置との間で移動することも可能である。捕集基板12の表面をブラシ16の自由端16pと接触させないで捕集基板12を検出位置と捕集位置との間で移動させる方法の一例として、回転ベース52の回転によって、捕集基板12を図5においてB→Aと移動させる方法が挙げられる。つまり、リフレッシュ位置Cを経ずに図5の下側を通過して検出位置と捕集位置との間で移動させる方法が挙げられる。また、他の例として、回転ベース52の回転によって捕集基板12を図5においてA→C→Bの順に移動させ、リフレッシュ位置を通過する際に図示しない駆動機構によってブラシ16を自由端16qが捕集基板12の表面に接触しない位置に引き上げる方法が挙げられる。
 <動作概要>
 検出装置100は、検出動作として、空気中の粒子を捕集するための動作である捕集動作と、捕集された粒子の中の生物由来の粒子の量を測定するための測定動作とを行なう。それら動作の間に、検出装置100は、捕集基板12の表面をリフレッシュするためのリフレッシュ動作を行なう。さらに、検出装置100は、上記捕集動作と測定動作とを繰り返すために、測定動作の後に捕集基板12の表面をクリーニングするためのクリーニング動作を行なう。
 <機能構成>
 図6は、検出装置100で上記動作を行なうための機能構成の具体例を示すブロック図である。図6では、信号処理部30の機能が主に電気回路であるハードウェア構成で実現される例が示されている。しかしながら、これら機能のうちの少なくとも一部は、信号処理部30が図示しないCPUを備え、該CPUが所定のプログラムを実行することによって実現される、ソフトウェア構成であってもよい。また、測定部40の構成がソフトウェア構成である例が示されている。しかしながら、これら機能のうちの少なくとも一部は、電気回路などのハードウェア構成で実現されてもよい。
 図6を参照して、信号処理部30は、受光部9に接続される電流-電圧変換回路34と、電流-電圧変換回路34に接続される増幅回路35とを含む。
 測定部40は、制御部41、記憶部42、およびクロック発生部43を含む。さらに、測定部40は、モータ14、ヒータ15、およびファン50を駆動させるための駆動部48を含む。
 捕集基板12上に捕集された粒子に対して発光素子6から照射されることで、照射領域にある当該粒子からの蛍光が、受光部9に集光される。受光部9から、受光量に応じた電流信号が信号処理部30に対して出力される。電流信号は、電流-電圧変換回路34に入力される。
 電流-電圧変換回路34は、受光部9から入力された電流信号より蛍光強度を表わすピーク電流値Hを検出し、電圧値Ehに変換する。電圧値Ehは増幅回路35で予め設定した増幅率に増幅され、測定部40に対して出力される。測定部40の制御部41は信号処理部30から電圧値Ehの入力を受け付けて、順次、記憶部42に記憶させる。
 クロック発生部43はクロック信号を発生させ、制御部41に対して出力する。制御部41は、クロック信号に基づいたタイミングで、モータ14、ヒータ15、およびファン50を駆動させるための制御信号を駆動部48に対して出力して、これらの動作を制御する。また、制御部41は発光素子6および受光部9と電気的に接続され、それらのON/OFFを制御する。また、制御部41は、高圧電源2を放電電極1および捕集基板12それぞれと電気的に接続するための図示しない機構と電気的に接続され、放電電極1および捕集基板12に対する電圧の印加や極性を制御する。
 制御部41は計算部411を含み、計算部411において、記憶部42に記憶された電圧値Ehを用いて、導入された空気中の生物由来の粒子量が算出される。
 計算部411で算出された粒子量は、制御部41から外部装置に対して出力されてもよいし、図示しない表示装置に表示されてもよいし、図示しない記録媒体に記録されてもよい。
 <動作フロー>
 図7は、検出装置100での動作の流れの具体例を表わしたフローチャートである。
 図7を参照して、ステップS1で、測定部40の制御部41は、捕集基板12を捕集位置にして捕集動作を行なう。すなわち、ステップS1で制御部41は、ファン50を正転方向に駆動させることによって捕集機構部101の匡体に外気を導入するとともに、高圧電源2を放電電極1および捕集基板12それぞれと電気的に接続することによって放電電極1と捕集基板12との間に電位差を発生させる。これにより、空気中の粒子が捕集基板12の表面に捕集される。
 ステップS3で制御部41は、捕集基板12を、表面をブラシ16の自由端16pと接触させずに検出位置に移動させる。ステップS3で制御部41は、一例として、モータ14を、回転ベース52が図5の下周りに回転する方向で、規定量、駆動させる。これによって、回転ベース52が図5の下周りに回転し、捕集基板12がリフレッシュ位置Cを経ずに捕集機構部101から検出機構部102の所定の位置である検出位置に移動する。なお、上記したように、ステップS3で制御部41は図5の上周りに捕集基板12を移動させ、リフレッシュ位置を通過する際に図示しない駆動機構によってブラシ16を自由端16qが捕集基板12の表面に接触しない位置に引き上げるようにしてもよい。この移動方法は、後述する、ステップS7およびステップS13でも同様である。
 ステップS5で制御部41は、加熱前の蛍光量S1を測定する。すなわち、ステップS5で制御部41は、発光素子6を点灯させて検出位置にある捕集基板12に捕集された粒子に向けて励起光を照射するとともに、受光部9によって捕集基板12表面からの蛍光を所定時間、受光させる。この蛍光は、励起光の照射に伴って捕集基板12表面の粒子から発せられるものである。受光部9からの電流信号よって、測定部40は、捕集基板12に捕集された粒子の加熱前の蛍光強度S1を測定する。
 ステップS7で制御部41は、捕集基板12を捕集位置に戻す。ステップS7での制御部41の制御は、ステップS3での制御と同様である。すなわち、一例として、ステップS7で制御部41は、モータ14を、回転ベース52が図5の下周りに回転する方向で、規定量、駆動させる。これによって、回転ベース52が回転し、捕集基板12がその表面がブラシ16の自由端16pと接触せずに検出機構部102から捕集機構部101の所定の位置である捕集位置に移動する。
 ステップS9で制御部41は加熱動作を行なう。すなわち、ステップS9で制御部41は、ヒータ15を所定時間、通電させる。これにより、捕集基板12に捕集された粒子を加熱する。
 ステップS11で制御部41は冷却動作を行なう。すなわち、ステップS11で制御部41は、ヒータ15への通電を停止することで、捕集基板12を冷却する。さらに、好ましくは、制御部41は、所定時間、ファン50を駆動させる。これにより、捕集機構部101に外気が導入されて、捕集基板12の冷却が促進される。
 ステップS13で制御部41は、捕集基板12を検出位置に移動する。ステップS13での制御部41の制御は、ステップS3での制御と同様である。すなわち、一例として、ステップS13で制御部41は、モータ14を、回転ベース52が図5の下周りに回転する方向で、規定量、駆動させる。これによって、回転ベース52が回転し、捕集基板12がその表面がブラシ16の自由端16pと接触せずに捕集機構部101から検出機構部102の所定の位置である検出位置に移動する。
 ステップS15で制御部41は、加熱後の蛍光量S2を測定する。すなわち、ステップS15で制御部41は、発光素子6を点灯させて検出位置にある捕集基板12に捕集された粒子に向けて励起光を照射するとともに、受光部9に捕集基板12表面からの蛍光を所定時間、受光させる。受光部9からの電流信号よって、制御部41は、捕集基板12に捕集された粒子の加熱後の蛍光強度S2を測定する。
 ステップS17で制御部41は、捕集基板12をリフレッシュ位置に移動する。すなわち、ステップS17で制御部41は、モータ14を規定量、駆動させる。これによって、回転ベース52が回転し、捕集基板12がリフレッシュ機構部103の所定の位置であるリフレッシュ位置に移動する。
 ステップS19で制御部41は、リフレッシュ動作を行なう。すなわち、ステップS19で制御部41は、モータ14を規定量、正転方向と反転方向とを交互に駆動させる。これにより、捕集基板12の表面にブラシ16が接触した状態で回転ベース52が正転方向と反転方向と交互に回転するので、捕集基板12表面から粒子が除去される。
 さらにこのとき、制御部41は、所定時間、ファン50を駆動させてもよい。これにより、捕集基板12から除去されて空気中を飛散する粒子が排出孔11からキャビネット3の外部に排出される。なお、検出装置100は、排出孔11からキャビネット3の外部に排出された粒子を回収するため、排出孔11とファン50との間にフィルタを有してもよい。
 ステップS21で制御部41は、捕集基板12を捕集位置に戻す。すなわち、ステップS21で制御部41は、上記ステップS7と同じ動作を行なう。その後、制御部41はステップS23で後述するクリーニング動作を行なった上で、ステップS1以降の動作を繰り返すことで、連続的に空気中の生物由来の粒子を検出する。
 制御部41が上記リフレッシュ動作を含む上記動作を繰り返すことで、リフレッシュ動作を行なわない場合と比較して測定回数に伴う迷光強度の増加を抑えることができる。ただ、測定環境によっては、その増加は大きくなると考えられる。
 すなわち、捕集基板12に発光素子6からの照射することにより生じる迷光は、捕集基板12表面に残存した微生物および埃に起因するものであり、微生物からの蛍光と微生物および埃からの散乱光とが主が大部分を占めると考えられる。測定回数が増えるに連れて捕集基板12表面に残存する微生物や埃は増加するために、迷光強度は増加する。残存する微生物や埃の増加は、測定環境が劣悪である(外気に埃や微生物が多く含まれる環境)ほど大きくなる。そのため、測定環境が劣悪であるほど微生物等からの蛍光が累積されることになる。そのため、測定環境が劣悪であるほど、連続して実施可能な測定動作の回数が制約されてしまう。
 そこで、本実施の形態にかかる検出装置100は、上記ステップS21の後、ステップS23でクリーニング動作を行なう。
 図8は、上記ステップS23でのクリーニング動作の流れを表わしたフローチャートである。
 図8を参照して、ステップS31で制御部41は、ファン50を動作させずに、高圧電源2を放電電極1および捕集基板12それぞれと予め規定した関係で、予め規定した時間、電気的に接続することによって放電電極1と捕集基板12との間に所定の極性の電位差を発生させる。上記規定した時間は、たとえば1分~1時間であり、好ましくは、1分~30分程度とする。この規定の時間は検出環境等により規定される。すなわち、検出装置100で実際に繰返し測定を行なって、実験的に迷光強度の増加が少ない条件を決定することで得られる。
 制御部41が、高圧電源2の負極側を放電電極1に接続し、正極側を捕集基板12に接続することで、放電電極1および捕集基板12に対して捕集動作時と同じ極性の高圧が印加されることになる。制御部41が、高圧電源2の正極側を放電電極1に接続し、負極側を捕集基板12に接続することで、放電電極1および捕集基板12に対して捕集動作時と逆の極性の高圧が印加されることになる。いずれの極性で印加させるかについては、検出環境等により規定される。すなわち、検出装置100で実際に繰返し測定を行なって、実験的に迷光強度の増加が少ない条件を決定することで得られる。
 ステップS33で制御部41は、捕集基板12を移動させずに、ヒータ15を所定時間、また、所定熱量で通電させる。上記所定熱量は、たとえば180℃~350℃であり、好ましくは180℃~250℃の加熱温度となる熱量である。また、上記所定時間はたとえば1分~1時間であり、好ましくは1分~30分である。上記所定時間および所定熱量は検出環境等により規定される。すなわち、検出装置100で実際に繰返し測定を行なって、実験的に迷光強度の増加が少ない条件を決定することで得られる。
 ステップS35で制御部41は、ヒータ15への通電を停止することで、捕集基板12を冷却する。さらに、好ましくは、制御部41は、所定時間、ファン50を駆動させる。これにより、捕集機構部101に外気が導入されて、捕集基板12の冷却が促進される。
 ステップS37で制御部41は、捕集基板12をリフレッシュ位置に移動する。ステップS37で制御部41は、上記ステップS17と同じ動作を行なう。
 ステップS39で制御部41は、リフレッシュ動作を行なう。ステップS39で制御部41は、上記ステップS19と同じ動作を行なう。
 ステップS41で制御部41は、捕集基板12を捕集位置に戻す。ステップS21で制御部41は、上記ステップS7と同じ動作を行なう。
 クリーニング動作で、制御部41は、上記ステップS31~S41の動作を予め規定した回数繰り返す。すなわち、制御部41は、規定回数上記動作を繰り返すことによって捕集基板12表面に残留する粒子を除去する動作を連続的に実行する。上記規定回数は、たとえば1回~50回である。上記規定回数は検出環境等により規定される。すなわち、検出装置100で実際に繰返し測定を行なって、実験的に迷光強度の増加が少ない条件を決定することで得られる。
 上記動作が規定回数行なわれると(ステップS43でYES)、制御部41は一連のクリーニング動作を終了して図7のステップS1に動作を戻し、以降の動作を繰り返す。
 なお、制御部41は、上記ステップS23のクリーニング動作を必ずしも一連の検出動作の都度、行なわなくてもよい。すなわち、制御部41は、図7の一連の検出動作を所定回数繰り返すごとにクリーニング動作を行なうようにしてもよい。
 クリーニング動作の頻度は測定環境や測定状況によって決定されてよい。たとえば、測定環境が非常に微生物や埃が多い場合は、制御部41は、上記ステップS19のリフレッシュ動作に替えてクリーニング動作を行なってもよい。また、たとえば朝から夕方の通常業務時間、などの規定された期間、連続して検出動作を行なう場合、業務時間後である規定された期間の後にクリーニング工程を上記の規定回数実行するようにしてもよい。
 <実験の説明>
 発明者らは、本実施の形態にかかる検出装置100の効果を検証するため、検出装置100をさまざまな条件で用いて検出動作を行なわせる実験を行なった。以下に、発明者らによる実験について説明する。
 (実験1)
 第1の実験で発明者らは、図2~図4に示された検出装置100を用いて、検出動作ごとの迷光強度の増加変化を測定した。第1のケースとしてクリーニング動作をスキップして図7の検出動作を行ない、第2のケースとして検出動作に対して所定の頻度でクリーニング動作を行なっている。なお、第1の実験の第2のケースでのクリーニング動作は、上記ステップS31での所定の極性として、捕集動作と同じ極性で行なうこととした。
 詳しくは、捕集動作で放電電極1に対して負極性で4KV、15分間印加した。検出動作で発光素子6の照射光はピーク波長405nmの青色レーザ光であり、発光素子6のレーザ出力を18mWとした。上記ステップS19のリフレッシュ動作でのリフレッシュ回数は10往復とした。クリーニング動作で、負極性で4KVで15分印加し、220℃で10分間、加熱した。上記ステップS39のリフレッシュ動作でのリフレッシュ回数は10往復とし、クリーニング動作の繰り返し回数は3回とした。そして、検出動作24回につき1回クリーニング動作を実行するものとした。
 図9は、第1の実験で得られた、測定回数と迷光強度の増加変化との関係を表わした図である。
 図9において、ケース1で示された結果がクリーニング動作をスキップした第1のケースでの測定結果であって、150回繰返して測定を行なった結果、約1.7V/sec迷光強度が増大している。ケース2で示された結果が検出動作24回につき1回、クリーニング動作を行なった第2のケースでの測定結果であって、150回繰返して測定を行なった結果、約1.1V/sec迷光強度が増大している。
 第1の実験の結果より、クリーニング動作を行なった場合、行なわなかった場合と比較して迷光強度の増大が約65%となっている。そのため、クリーニング動作を行なうことで迷光強度の増大が抑えられることがわかった。
 第1の実験でのクリーニング動作では、ファン50が動作せずに放電電極1に対して負の電圧が印加される。そのため、捕集基板12表面の粒子の中で正電荷に帯電しやすいものは正電荷に帯電する。その後、220℃に加熱されることで、正電荷に帯電した粒子間に生じる反発と熱対流とにより、一部の粒子は捕集基板12表面から除去される。また、捕集基板12表面に残留した生物由来の粒子の蛍光発光能力は減少する。
 なお、加熱と生物由来の粒子の蛍光発光能力との関係については特開2012-249593号公報に開示されている。すなわち、上記文献に開示されている実験結果である図10は、カビ菌をサンプルとして用いて、加熱量と蛍光強度との変化を測定した結果であって、カビ菌を付着させ捕集基板を200℃に加熱した後、さらに、250℃まで加熱した場合、および300℃まで加熱した場合の、捕集基板からの蛍光強度の時間変化の測定結果を示している。図10の横軸は加熱保持時間(分)を表わし、縦軸は処理前の蛍光強度に対する処理後の蛍光強度の比率を表わしている。図10の結果より、生物由来の粒子は200℃以上の加熱により加熱温度に応じて蛍光発光能力が減少することがわかった。
 (実験2)
 第2の実験で発明者らは、図11に示された検出装置を用いた。図11を参照して、本実験に用いた検出装置では、放電電極1にそれぞれ接続可能な、極性の異なる2つの高圧電源2a,2bが用意されており、放電電極1に正極または負極の電圧が個別に印加可能となっている。その他は図2~図4に示された検出装置100と同様である。
 第2の実験では、上記第1の実験と概ね同じ条件で検出動作を行なわせた。すなわち、第1のケースとしてクリーニング動作をスキップして繰り返し図7の検出動作を行なって、150回目の迷光を測定した。第2のケースとして検出動作24回につき1回クリーニング動作を実行し、150回目の迷光を測定した。ただし、第2の実験でのクリーニング動作は、上記ステップS31での所定の極性として、捕集動作とは逆の極性、すなわち、正極性とした。
 図12は、第2の実験で得られた、測定回数と迷光強度の増加変化との関係を表わした図である。
 図12において、ケース1で示された結果がクリーニング動作をスキップした第1のケースでの測定結果であって、150回繰返して測定を行なった結果、約1.6V/sec迷光強度が増大している。ケース2で示された結果が検出動作24回につき1回、クリーニング動作を行なった第2のケースでの測定結果であって、150回繰返して測定を行なった結果、約1.3V/sec迷光強度が増大している。
 第2の実験の結果より、クリーニング動作を行なった場合、クリーニング動作を行なわなかった場合と比較して迷光強度の増大が約80%になっている。そのため、第2の実験での方法でも、クリーニング動作を行なうことで迷光強度の増大が抑えられることがわかった。
 なお、粒子によっては正電荷に帯電しやすいものと、負電荷に帯電しやすいものがあり、いずれの粒子が多く捕集基板12に捕集されるかは、捕集時の印加電位、測定環境に因る。そこで、クリーニング動作で上記所定の極性としての印加電位の極性を正にするか負にするかは、迷光強度の増加が抑えられる実験結果に応じて決定すればよい。
 (実験3)
 第3の実験で発明者らは、図11に示された、第2の実験と同じ検出装置を用いて、上記第1の実験と概ね同じ条件で検出動作を行なわせた。
 すなわち、第1のケースとしてクリーニング動作をスキップして繰り返し図7の検出動作を行なって、150回目の迷光を測定した。第2のケースとして検出動作24回につき1回クリーニング動作を実行し、150回目の迷光を測定した。
 ただし、第3の実験でのクリーニング動作は、上記ステップS31での所定の極性として、まずは捕集動作と同じ極性(負極性)を印加して一連のクリーニング動作を行なった後、引き続き、逆の極性(正極性)を印加して、極性以外は同じ条件で一連のクリーニング動作を行なうこととした。
 図13は、第3の実験で得られた、測定回数と迷光強度の増加変化との関係を表わした図である。
 図13において、ケース1で示された結果がクリーニング動作をスキップした第1のケースでの測定結果であって、150回繰返して測定を行なった結果、約1.7V/sec迷光強度が増大している。ケース2で示された結果が検出動作24回につき1回、クリーニング動作を行なった第2のケースでの測定結果であって、150回繰返して測定を行なった結果、約0.6V/sec迷光強度が増大している。
 第3の実験の結果より、クリーニング動作を行なった場合、クリーニング動作を行なわなかった場合と比較して迷光強度の増大が約35%になっている。そのため、第3の実験での方法でも、クリーニング動作を行なうことで迷光強度の増大が抑えられることがわかった。
 <実施の形態の効果>
 本実施の形態にかかる検出装置100では、一連の検出動作の都度、または検出動作に対して所定の頻度でクリーニング動作が行なわれるため、捕集基板12表面に残留する粒子が効率的に除去される。これにより、捕集基板12表面に残留する粒子による散乱光や、先の捕集動作で捕集されて捕集基板12表面に残留している生物由来の粒子による蛍光を抑えることができるため、受光部9での受光のうちの迷光を抑えることができる。そのため、高精度で生物由来粒子の検出を繰返し行なうことが可能となる。
 さらに、本実施の形態にかかる検出装置100では、リフレッシュ機構部103のブラシ16を静止させたまま捕集基板12の移動によってリフレッシュ動作を実施するため、リフレッシュ動作のための移動機構部を別途、設ける必要がない。このため、検出装置100の小型化や低コスト化を図ることができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 放電電極、2,2a,2b 高圧電源、3 キャビネット、6 発光素子、9 受光部、10 導入孔、11 排出孔、12 捕集基板、13 絞り板、14 モータ、15 ヒータ、16 ブラシ、16p 自由端、16q 支持端、17 ブラシ固定部、18 ブラシ押さえ、30 信号処理部、34 電圧変換回路、35 増幅回路、40 測定部、41 制御部、42 記憶部、43 クロック発生部、48 駆動部、50 ファン、51 捕集治具、52 回転ベース、100 検出装置、101 捕集機構部、102 検出機構部、103 リフレッシュ機構部、411 計算部。

Claims (6)

  1.  生物由来の粒子を検出するための検出装置であって、
     前記生物由来の粒子を捕集するための捕集基板と、
     前記捕集基板と対抗する位置に配された電極と、
     前記捕集基板を加熱するための加熱部と、
     前記捕集基板を用いて前記生物由来の粒子を捕集する捕集動作を実行するための捕集手段と、
     前記捕集基板から前記生物由来の粒子を検出する検出動作を実行するための検出手段と、
     前記捕集基板の表面に物を接触させることで前記捕集基板の表面から捕集された粒子を除去する、前記捕集基板の表面に対する清掃動作を実行するためのリフレッシュ手段とを備え、
     前記捕集手段は、前記リフレッシュ手段での前記清掃動作を間に挟んで、前記検出手段での前記検出動作の後に前記捕集動作を実行し、
     前記リフレッシュ手段での前記清掃動作は、
      前記捕集基板と前記電極との間における所定電圧での印加と前記捕集基板に対する所定温度での加熱とを実行するステップと、
      前記加熱の後の前記捕集基板を冷却するステップと、
      前記冷却の後の前記捕集基板の表面に前記物を接触させるステップとを含む、検出装置。
  2.  前記捕集手段での前記捕集動作は、前記捕集基板と前記電極との間に所定の極性で電圧を印加するステップを含み、
     前記リフレッシュ手段は前記清掃動作において、前記捕集基板と前記電極との間に前記所定の極性と同じ極性で前記所定電圧を印加する、請求項1に記載の検出装置。
  3.  前記捕集手段での前記捕集動作は、前記捕集基板と前記電極との間に所定の極性で電圧を印加するステップを含み、
     前記リフレッシュ手段は前記清掃動作において、前記捕集基板と前記電極との間に前記所定の極性とは逆の極性で前記所定電圧を印加する、請求項1に記載の検出装置。
  4.  前記リフレッシュ手段は前記清掃動作において、前記捕集基板と前記電極との間に印加する前記所定電圧の極性を交互にして、前記印加および加熱を実行するステップから前記接触させるステップまでを繰り返し実行する、請求項1に記載の検出装置。
  5.  前記捕集基板の表面に光を照射するように設置された発光素子と、
     前記捕集基板の表面からの蛍光を受光するための受光素子とをさらに備え、
     前記検出手段は、加熱前後の、前記発光素子で照射された前記捕集基板からの蛍光量の差に基づいて、前記捕集基板で捕集された生物由来の粒子の量を算出するための算出手段を含む、請求項1に記載の検出装置。
  6.  生物由来の粒子を検出する方法であって、
     捕集基板と前記捕集基板に対して対抗する位置に配された電極との間に電圧を印加することで、空気中の粒子を前記捕集基板の表面に吸着させて捕集するステップと、
     前記捕集基板の表面に対して発光素子で照射した状態で、その表面からの蛍光を受光するステップと、
     前記捕集基板を加熱することで、前記捕集基板の表面に吸着された粒子を加熱するステップと、
     前記加熱の後の前記捕集基板の表面に対して発光素子で照射した状態で、その表面からの蛍光を受光するステップと、
     前記捕集基板の表面をリフレッシュするステップとを備え、
     前記リフレッシュするステップは、
      前記捕集基板と前記電極との間における所定電圧での印加と前記捕集基板に対する所定温度での加熱とを実行するステップと、
      前記加熱の後、前記捕集基板を冷却するステップと、
      前記冷却の後、前記捕集基板の表面に物を接触させるステップとを含み、
     前記リフレッシュするステップの後、前記捕集するステップに戻る、検出方法。
PCT/JP2014/063167 2013-05-21 2014-05-19 検出装置および検出方法 WO2014188989A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013106906 2013-05-21
JP2013-106906 2013-05-21

Publications (1)

Publication Number Publication Date
WO2014188989A1 true WO2014188989A1 (ja) 2014-11-27

Family

ID=51933542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063167 WO2014188989A1 (ja) 2013-05-21 2014-05-19 検出装置および検出方法

Country Status (1)

Country Link
WO (1) WO2014188989A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014615A (ja) * 2008-07-04 2010-01-21 Ngk Insulators Ltd 粒子状物質検出装置
WO2012165036A1 (ja) * 2011-06-03 2012-12-06 シャープ株式会社 検出装置および検出方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010014615A (ja) * 2008-07-04 2010-01-21 Ngk Insulators Ltd 粒子状物質検出装置
WO2012165036A1 (ja) * 2011-06-03 2012-12-06 シャープ株式会社 検出装置および検出方法

Similar Documents

Publication Publication Date Title
US20120315666A1 (en) Detection apparatus and method for detecting airborne biological particles
WO2012150672A1 (ja) 検出装置および検出方法
JP2011083214A (ja) 微生物検出装置および検出方法
WO2014034355A1 (ja) 粒子検出装置
JP2012072946A (ja) 空気調和機
WO2012165036A1 (ja) 検出装置および検出方法
JP2011097861A (ja) 微生物検出装置および検出方法
JP2012127726A (ja) 検出装置および検出方法
EP2755020A1 (en) Particle detector
JP5748687B2 (ja) 粒子検出装置および空調機器
WO2015029673A1 (ja) 捕集装置および検出装置
JP2012047427A (ja) 空気清浄機および空気清浄機における表示方法
JP5925519B2 (ja) 粒子検出装置
WO2013035405A1 (ja) 粒子検出装置
WO2014188989A1 (ja) 検出装置および検出方法
JP5755949B2 (ja) 検出装置および検出方法
JP5997532B2 (ja) 粒子検出装置
JP5923016B2 (ja) 微生物検出システム及び微生物の検出方法
WO2012081358A1 (ja) 検出装置および検出方法
JP2013247900A (ja) 検出装置および検出方法
JP2013250135A (ja) 検出装置および検出方法
JP2013130362A (ja) 空気清浄機
WO2012029649A1 (ja) 空気清浄機、空気清浄機における表示方法、および空気調和機
WO2014192787A1 (ja) 検出装置
JP2017029075A (ja) 捕集検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14800980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14800980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP