WO2014188938A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2014188938A1
WO2014188938A1 PCT/JP2014/062904 JP2014062904W WO2014188938A1 WO 2014188938 A1 WO2014188938 A1 WO 2014188938A1 JP 2014062904 W JP2014062904 W JP 2014062904W WO 2014188938 A1 WO2014188938 A1 WO 2014188938A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
tread
tire
protrusion
difference
Prior art date
Application number
PCT/JP2014/062904
Other languages
English (en)
French (fr)
Inventor
一夫 浅野
慎太郎 富田
田中 進
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to US14/892,902 priority Critical patent/US10052916B2/en
Priority to EP14800770.1A priority patent/EP2998128B1/en
Publication of WO2014188938A1 publication Critical patent/WO2014188938A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C3/00Tyres characterised by the transverse section
    • B60C3/04Tyres characterised by the transverse section characterised by the relative dimensions of the section, e.g. low profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0083Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the curvature of the tyre tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C13/00Tyre sidewalls; Protecting, decorating, marking, or the like, thereof
    • B60C13/003Tyre sidewalls; Protecting, decorating, marking, or the like, thereof characterised by sidewall curvature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2012Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel with particular configuration of the belt cords in the respective belt layers
    • B60C2009/2022Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel with particular configuration of the belt cords in the respective belt layers comprising cords at an angle of 60 to 90 degrees to the circumferential direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2038Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel using lateral belt strips at belt edges, e.g. edge bands

Definitions

  • the present invention relates to a pneumatic tire.
  • Japanese Patent Laid-Open No. 2-106404 proposes a pneumatic tire in which the tread radius of curvature and the amount of protrusion of the tread when filled with air are defined to improve the crack resistance of the tread groove.
  • the difference between the amount of protrusion at the center of the tread and the amount of protrusion at the outer side in the axial direction of the tread is within a predetermined range.
  • the amount of protrusion of the tread and the amount of change in the radius of curvature of the tread are reduced between the low internal pressure state and the standard internal pressure state.
  • Japanese Laid-Open Patent Publication No. 58-112804 proposes a pneumatic tire in which the radius of curvature of the tread and the shape of the shoulder side wall are defined to improve the uneven wear of the tread and the crack resistance of the groove of the tread.
  • the difference between the shape of the tread and the shoulder side wall in a state where the air is filled and the shape of the tread and the shoulder side wall due to the molding die shape of the tire is set within a predetermined range. Propose that. In this tire, the change in shape is small between the mold shape and the state filled with air.
  • the member of the pneumatic tire is an elastic body.
  • the shape of the tire is deformed into a shape in which stress is generated and a balanced state is obtained.
  • This shape change is unavoidable in a pneumatic tire. Therefore, the inventors have developed a tire whose shape changes so as not to impair the wear resistance and the crack resistance of the grooves when filled with air.
  • An object of the present invention is to provide a pneumatic tire excellent in uneven wear and groove crack resistance.
  • the pneumatic tire according to the present invention has a tread whose outer surface forms a tread surface, a pair of sidewalls that extend substantially inward in the radial direction from the end of the tread, and the inner side of the tread and sidewalls.
  • the passed carcass and a belt laminated on the outer side in the radial direction of the carcass are provided.
  • the belt includes an inner layer and an outer layer superimposed on the inner layer. Grooves are formed on the tread surface.
  • the position of the tread surface on the equator plane is a point Pa
  • the position on the tread surface 0.8 times the axial width Wb where the inner and outer layers of the belt are overlapped is a point Ph
  • the maximum width The position of the outer side surface in the side wall axial direction is a point Pe
  • the position on the outer side surface in the side wall axial direction is a point Pd
  • the nominal width is W ( mm).
  • the amount of protrusion when the internal pressure is increased from the internal pressure state 0.05 times the normal internal pressure P to the internal pressure state of the normal internal pressure P is expressed by the protrusion amount Da (mm) at the point Pa and the protrusion amount Dh and the point Pd.
  • Fs ((Dd ⁇ De) / W) ⁇ 100 (1)
  • Fa ((Dd + De) / W) ⁇ 100 (2) 0.02626 ⁇ A-1.8615 ⁇ Fa (3) Fa ⁇ 0.02626 ⁇ A-0.6615 (4)
  • Gs ((Da ⁇ Dh) / W) ⁇ 100 (5) ⁇ 0.010819 ⁇ A ⁇ 0.084658 ⁇ Gs (6) Gs ⁇ 0.010819 ⁇ A + 0.6713 (7)
  • the protruding difference Gs of the tire satisfies Expressions (8) and (9). ⁇ 0.010819 ⁇ A + 0.1008321 ⁇ Gs (8) Gs ⁇ 0.010819 ⁇ A + 0.478321 (9)
  • the tire includes a band laminated on the outer side in the radial direction of the belt.
  • This band includes a first band and a second band laminated on the first band.
  • This first band consists of a cord and a topping rubber.
  • the cord extends substantially in the circumferential direction.
  • the second band consists of a cord and a topping rubber.
  • the absolute value of the inclination angle of the cord with respect to the equator plane is 80 ° or more and 90 ° or less.
  • the flatness ratio A of this tire is 70%.
  • the protruding sum Fa is greater than ⁇ 0.02 and smaller than 1.18.
  • the protrusion difference Gs is larger than ⁇ 0.84 and smaller than ⁇ 0.09.
  • the flatness ratio A of this tire is 40%.
  • the protruding sum Fa is greater than ⁇ 0.81 and smaller than 0.39.
  • the protruding difference Gs is larger than ⁇ 0.52 and smaller than 0.24.
  • a method for evaluating durability of a pneumatic tire according to the present invention includes a tread whose outer surface forms a tread surface, a pair of sidewalls each extending substantially inward in the radial direction from the end of the tread, and the tread and sidewalls Durability evaluation of a tire including a carcass extending along the inner side and a belt laminated on the outer side in the radial direction of the carcass, and the belt including an inner layer and an outer layer superimposed on the inner layer Is the method.
  • the position of the tread surface on the equator plane is a point Pa
  • the position on the tread surface 0.8 times the axial width Wb where the inner and outer layers of the belt are overlapped is a point Ph
  • the maximum width The position of the outer side surface in the side wall axial direction is a point Pe
  • the position on the outer side surface in the side wall axial direction is a point Pd
  • the nominal width is W ( mm).
  • the amount of protrusion when the internal pressure is increased from the internal pressure state 0.05 times the normal internal pressure P to the internal pressure state of the normal internal pressure P is expressed by the protrusion amount Da (mm) at the point Pa and the protrusion amount Dh and the point Pd.
  • the side wall protrusion difference Fs obtained by the mathematical formula (1) is larger than ⁇ 0.4 and smaller than 0.5;
  • the protruding sum Fa of the sidewall is obtained by the formula (2), the protruding sum Fa satisfies the formulas (3) and (4) as the flatness ratio A,
  • the protruding difference Gs of the tread is obtained by Expression (5), and when the protruding difference Gs satisfies Expressions (6) and (7), it is determined that the wear resistance of the tread and the crack resistance of the groove are good. .
  • Fs ((Dd ⁇ De) / W) ⁇ 100 (1)
  • Fa ((Dd + De) / W) ⁇ 100 (2) 0.02626 ⁇ A-1.8615 ⁇ Fa (3) Fa ⁇ 0.02626 ⁇ A-0.6615 (4)
  • Gs ((Da ⁇ Dh) / W) ⁇ 100 (5) ⁇ 0.010819 ⁇ A ⁇ 0.084658 ⁇ Gs (6) Gs ⁇ 0.010819 ⁇ A + 0.6713 (7)
  • the good judgment is made when the protruding difference Gs satisfies Expressions (8) and (9). ⁇ 0.010819 ⁇ A + 0.1008321 ⁇ Gs (8) Gs ⁇ 0.010819 ⁇ A + 0.478321 (9)
  • a method for manufacturing a pneumatic tire according to the present invention includes a tread whose outer surface forms a tread surface, a pair of sidewalls each extending substantially inward in the radial direction from an end of the tread, and along the inside of the tread and sidewalls. And a belt laminated on the outer side in the radial direction of the carcass, and the belt is a method for manufacturing a tire comprising an inner layer and an outer layer superimposed on the inner layer.
  • This manufacturing method includes a determination step in which the durability of the prototype tire is evaluated.
  • the position of the tread surface on the equator plane is a point Pa
  • the position on the tread surface that is 0.8 times the axial width Wb where the inner layer and the outer layer of the belt are overlapped is a point Ph.
  • the position of the outer side surface in the sidewall axis direction at the maximum width is a point Pe
  • the position on the outer side surface in the sidewall axis direction is a point Pd
  • the nominal width is W (mm).
  • the amount of protrusion when the internal pressure is increased from the internal pressure state 0.05 times the normal internal pressure P to the internal pressure state of the normal internal pressure P is expressed by the protrusion amount Da (mm) at the point Pa and the protrusion amount Dh and the point Pd.
  • the protrusion amount Dd (mm) and the point Pe are the protrusion amount De (mm)
  • the protruding difference Fs of the sidewall is obtained by the formula (1), and the protruding difference Fs is larger than ⁇ 0.4 and smaller than 0.5.
  • the protruding sum Fa of the sidewall is obtained by the formula (2), the protruding sum Fa satisfies the formulas (3) and (4) as the flatness ratio A,
  • the protruding difference Gs of the tread is obtained by Expression (5), and it is determined that the protruding difference Gs satisfies Expressions (6) and (7). Based on these determinations, the wear resistance and groove of the tread are determined. Has been evaluated for crack resistance. In this manufacturing method, the tire is designed and manufactured based on the evaluation result of the determination step.
  • Fs ((Dd ⁇ De) / W) ⁇ 100 (1)
  • Fa ((Dd + De) / W) ⁇ 100 (2) 0.02626 ⁇ A-1.8615 ⁇ Fa (3) Fa ⁇ 0.02626 ⁇ A-0.6615 (4)
  • Gs ((Da ⁇ Dh) / W) ⁇ 100 (5) ⁇ 0.010819 ⁇ A ⁇ 0.084658 ⁇ Gs (6) Gs ⁇ 0.010819 ⁇ A + 0.6713 (7)
  • the occurrence of cracks at the groove bottom is suppressed.
  • the occurrence of uneven wear on the tread is suppressed.
  • the durability evaluation method according to the present invention the durability of a pneumatic tire can be easily evaluated.
  • a tire having excellent durability can be easily manufactured.
  • FIG. 1 is a cross-sectional view showing a part of a pneumatic tire according to an embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view showing a part of the tire of FIG.
  • FIG. 3 is an enlarged cross-sectional view showing still another part of the tire of FIG.
  • FIG. 4 is a cross-sectional view showing a part of a pneumatic tire according to another embodiment of the present invention.
  • FIG. 5 is a graph showing a relationship between the sidewall protrusion difference Fs and the protrusion sum Fa.
  • FIG. 6 is a graph showing the relationship between the flatness ratio and the protrusion sum Fa.
  • FIG. 7 is a graph showing the relationship between the flatness ratio and the tread protrusion difference Gs.
  • FIG. 1 shows a pneumatic tire 2.
  • the vertical direction is the radial direction of the tire 2
  • the horizontal direction is the axial direction of the tire 2
  • the direction perpendicular to the paper surface is the circumferential direction of the tire 2.
  • a dashed-dotted line CL in FIG. 1 represents the equator plane of the tire 2.
  • the shape of the tire 2 is symmetrical with respect to the equator plane except for the tread pattern.
  • a two-dot chain line BL represents a bead base line of the tire 2.
  • the tire 2 includes a tread 4, a sidewall 6, a bead 8, a carcass 10, a belt 12, a band 14, an inner liner 16, and a chafer 18.
  • the tire 2 is a tubeless type.
  • the tire 2 is mounted on a passenger car.
  • the tread 4 has a shape protruding outward in the radial direction.
  • the tread 4 includes a center region C and a shoulder region S.
  • the center region C is located at the center in the axial direction of the tire 2.
  • the pair of shoulder regions S are located outside the center region C in the axial direction.
  • the tread 4 forms a tread surface 20 that contacts the road surface.
  • a groove 22 is carved in the tread surface 20.
  • the groove 22 forms a tread pattern.
  • the tread 4 has a base layer and a cap layer (not shown).
  • the cap layer is located on the radially outer side of the base layer.
  • the cap layer is laminated on the base layer.
  • the base layer is made of a crosslinked rubber having excellent adhesiveness.
  • a typical base rubber for the base layer is natural rubber.
  • the cap layer is made of a crosslinked rubber having excellent wear resistance, heat resistance and grip properties.
  • the sidewall 6 extends from the end of the tread 4 substantially inward in the radial direction. A radially outer end of the sidewall 6 is joined to the tread 4. This sidewall 6 is made of a crosslinked rubber having excellent cut resistance and weather resistance. The sidewall 6 prevents the carcass 10 from being damaged.
  • the bead 8 is located inside the sidewall 6 in the radial direction.
  • the bead 8 includes a core 24 and an apex 26 that extends radially outward from the core 24.
  • the core 24 has a ring shape and includes a wound non-stretchable wire. A typical material for the wire is steel.
  • the apex 26 is tapered outward in the radial direction.
  • the apex 26 is made of a highly hard crosslinked rubber.
  • the carcass 10 includes a carcass ply 28.
  • the carcass ply 28 is spanned between the beads 8 on both sides, and extends along the tread 4 and the sidewall 6.
  • the carcass ply 28 is folded around the core 24 from the inner side to the outer side in the axial direction. By this folding, the carcass ply 28 is formed with a main portion 28a and a folded portion 28b.
  • the carcass ply 28 is composed of a large number of cords arranged in parallel and a topping rubber.
  • the absolute value of the angle formed by each cord with respect to the equator plane is 75 ° to 90 °.
  • the carcass 10 has a radial structure.
  • the cord is made of organic fiber. Examples of preferable organic fibers include polyester fibers, nylon fibers, rayon fibers, polyethylene naphthalate fibers, and aramid fibers.
  • the carcass 10 may be formed from two or more plies.
  • the belt 12 is located inside the tread 4 in the radial direction.
  • the belt 12 is laminated with the carcass 10.
  • the belt 12 reinforces the carcass 10.
  • the belt 12 includes an inner layer 30 and an outer layer 32 superimposed on the outer side in the radial direction of the inner layer 30.
  • the width of the inner layer 30 is slightly larger than the width of the outer layer 32 in the axial direction.
  • each of the inner layer 30 and the outer layer 32 includes a large number of cords arranged in parallel and a topping rubber. Each cord is inclined with respect to the equator plane.
  • the absolute value of the tilt angle is usually 10 ° to 35 °.
  • the direction of inclination of the cord of the inner layer 30 with respect to the equator plane is opposite to the direction of inclination of the cord of the outer layer 32 with respect to the equator plane.
  • a preferred material for the cord is steel.
  • An organic fiber may be used for the cord.
  • the width Wb of the bald 12 is measured as a linear distance in the axial direction of the tire 2.
  • the width Wb is measured as the width of the range in which the inner layer 30 and the outer layer 32 are overlapped. In the tire 2, it is measured as the width of the outer layer 32.
  • the width Wb is preferably not less than 0.58 times and not more than 0.85 times the maximum width of the tire 2.
  • the band 14 is located outside the belt 12 in the radial direction. In the axial direction, the width of the band 14 is larger than the width of the belt 12.
  • the band 14 includes a first band 34 and a second band 36.
  • the first band 34 and the second band 36 are full bands that cover the belt 12 larger than the width of the belt 12 in the axial direction.
  • the first band 34 is composed of a cord and a topping rubber.
  • the cord of the first band 34 is spirally wound.
  • the first band 34 has a so-called jointless structure.
  • the cord of the first band 34 extends substantially in the circumferential direction.
  • the angle of the cord with respect to the circumferential direction is 5 ° or less, and further 2 ° or less.
  • the second band 36 is made of a cord and a topping rubber.
  • the cord of the second band 36 extends in the axial direction.
  • the angle formed by the cord of the second band 36 and the equator plane on the equator plane is referred to as the inclination angle of the cord of the second band 36.
  • the absolute value ⁇ of the inclination angle of the cord of the second band 36 is 60 ° or more. This absolute value ⁇ is 90 ° or less.
  • cords are made of organic fibers.
  • preferable organic fibers include nylon fibers, polyester fibers, rayon fibers, polyethylene naphthalate fibers, and aramid fibers.
  • the band 14 may include the first band 34 without including the second band 36.
  • the band 14 does not include an edge band, but may include a pair of edge bands instead of the second band 36.
  • the band 14 may include a first band 34 and a pair of edge bands that are positioned at the axial end of the belt 12 and cover the end without covering the center in the axial direction.
  • the belt 12 and the band 14 constitute a reinforcing layer.
  • the reinforcing layer may be formed only from the belt 12.
  • the inner liner 16 is located inside the carcass 10.
  • the inner liner 16 is made of a crosslinked rubber.
  • rubber having excellent air shielding properties is used.
  • a typical base rubber of the inner liner 16 is butyl rubber or halogenated butyl rubber.
  • the inner liner 16 maintains the internal pressure of the tire.
  • the chafer 18 is located in the vicinity of the bead 8. When the tire 2 is incorporated into the rim, the chafer 18 comes into contact with the rim. By this contact, the vicinity of the bead 8 is protected.
  • the chafer 18 is made of cloth and rubber impregnated in the cloth.
  • a point Ph indicates an intersection between the straight line Lh and the tread surface 20.
  • the two-dot chain line Le is a straight line extending in the axial direction through the maximum width of the tire 2.
  • This maximum width means the axial width of the tire at a position where the main portion 28a of the carcass 10 passes the outermost side in the axial direction.
  • the point Pe is an intersection of the straight line Le and the axially outer side surface 6 a of the sidewall 6.
  • the maximum width of the tire 2 is measured as the distance from this point Pe to the other point Pe (not shown).
  • a double-headed arrow D indicates the distance from the point Pa to the point Pe in the radial direction.
  • a two-dot chain line Ld indicates a straight line extending in the axial direction through the midpoint of the distance D.
  • the point Pd is an intersection of the straight line Ld and the axially outer side surface 6a of the sidewall 6. This point Pd is a midpoint between the point Pa and the point Pe in the radial direction.
  • FIG. 2 shows an enlarged view of a part of the tire 2.
  • the outer side surface 6a in the axial direction of the tire 2 shows a state in which the tire 2 is incorporated in a regular rim and filled with air having a regular internal pressure P.
  • An alternate long and two short dashes line 6 a ′ also indicates the outer surface in the axial direction of the tire 2.
  • This outer side surface 6a ' shows a state in which the tire 2 is incorporated in a normal rim and is filled with 0.05 times the air pressure 0.05 ⁇ P of the normal internal pressure P.
  • the point Pd ' indicates the intersection of the normal line of the axially outer side surface 6a passing through the point Pd and the outer side surface 6a'.
  • a double-headed arrow Dd indicates the distance from the point Pd 'to the point Pd.
  • This distance Dd is the protruding amount of the tire 2 at the point Pd.
  • the amount of protrusion Dd represents the distance from the point Pd 'to the point Pd when the air pressure is increased from 0.05 ⁇ P to the air pressure P.
  • the protruding amount Dd is expressed as positive movement amount in the axial direction and negative movement in the axial direction.
  • the point Pe ′ indicates the intersection of the straight line Le and the outer surface 6a ′.
  • a double-headed arrow De indicates the distance from the point Pe ′ to the point Pe.
  • This distance De is the protruding amount of the tire 2 at the point Pe.
  • the protruding amount De represents the distance from the point Pe ′ to the point Pe when the air pressure is increased from the state of air pressure 0.05 ⁇ P to the state of air pressure P.
  • the protruding amount De represents the amount of movement outward in the axial direction as positive and the amount of movement inward in the axial direction as negative.
  • FIG. 3 shows an enlarged view of another part of the tire 2.
  • the tread surface 20 of the tire 2 shows a state in which the tire 2 is incorporated in a regular rim and filled with air having a regular internal pressure P.
  • a two-dot chain line 20 ′ also indicates the tread surface of the tire 2.
  • the tread surface 20 ′ shows a state in which the tire 2 is incorporated in a normal rim and is filled with air having an air pressure of 0.05 ⁇ P that is 0.05 times the normal internal pressure P.
  • the point Pa ′ indicates the intersection of the equator plane and the tread surface 20 ′.
  • a double-headed arrow Da indicates the distance from the point Pa ′ to the point Pa.
  • This distance Da is the protruding amount of the tire 2 at the point Pa.
  • the protruding amount Da represents the distance from the point Pa ′ to the point Pa when the air pressure is increased from the state of 0.05 ⁇ P to the state of the air pressure P.
  • the protruding amount Da represents the amount of movement outward in the radial direction as positive, and the amount of movement inward in the radial direction as negative.
  • the point Ph ′ indicates the intersection of the normal line of the tread surface 20 passing through the point Ph and the tread surface 20 ′.
  • a double-headed arrow Dh indicates a distance from the point Ph ′ to the point Ph.
  • This distance Dh is the protruding amount of the tire 2 at the point Ph.
  • the protruding amount Dh represents the distance from the point Ph ′ to the point Ph when the air pressure is increased from the state of air pressure 0.05 ⁇ P to the state of air pressure P.
  • the protruding amount Dh is represented by a positive amount of movement outward in the radial direction and a negative amount of movement inward in the radial direction.
  • the tire 2 is assembled into a regular rim, filled with air, and brought into a state of air pressure 0.05 ⁇ P.
  • the profile of the tire 2 having an air pressure of 0.05 ⁇ P is measured by a profile measuring machine. Further, the air is filled and the air pressure P is obtained.
  • the profile of the tire 2 with the air pressure P is measured by a profile measuring machine.
  • a point Pa, a point Ph, a point Pe, and a point Pd are obtained from the profile of the tire 2 with the air pressure P.
  • the profile of the tire 2 with the air pressure P and the profile of the tire 2 with the air pressure 0.05 ⁇ P are overlapped with the bead position (rim flange position) matched.
  • a point Pa ′, a point Ph ′, a point Pe ′, and a point Pd ′ are obtained from the profile of the tire 2 having an air pressure of 0.5 ⁇ P.
  • the protruding amounts Da and Dh of the tread 4 and the protruding amounts Dd and De of the sidewall 6 are obtained.
  • the protruding difference Fs of the sidewall 6 is obtained by the following expression from the difference between the protruding amount Dd and the protruding amount De and the nominal width W of the tire 2.
  • Fs ((Dd ⁇ De) / W) ⁇ 100 (1)
  • the protrusion difference Fs satisfies the following relational expression. ⁇ 0.4 ⁇ Fs ⁇ 0.5
  • the opening of the groove 22 is easily expanded.
  • the opening of the circumferentially extending groove 22 is easy to expand.
  • the opening of the groove 22 located in the shoulder region S is likely to expand.
  • a tensile stress acts in the groove width direction on the bottom of the groove 22 extending in the circumferential direction. This tensile stress tends to cause cracks at the bottom of the groove 22.
  • the groove 22 extending in the circumferential direction includes a groove extending partially in the circumferential direction in addition to a main groove that circulates around the tread surface 20 in the circumferential direction.
  • the protrusion difference Fs is larger than ⁇ 0.4, it is suppressed that the protrusion amount Dd becomes too small with respect to the protrusion amount De. In the tire 2, the occurrence of cracks at the bottom of the groove 22 is suppressed.
  • the shoulder region S of the tread 4 protrudes outward in the radial direction.
  • the contact pressure of the tread 4 is increased.
  • the tread surface 20 in the shoulder region S where the contact pressure is high is likely to wear.
  • the protrusion difference Fs is smaller than 0.5, it is suppressed that the protrusion amount Dd is too large with respect to the protrusion amount De.
  • the protrusion of the shoulder region S is suppressed.
  • uneven wear in the shoulder region S is suppressed.
  • the difference between the protrusion amount Dd and the protrusion amount De is indicated by a ratio with the nominal width W of the tire 2.
  • the protrusion difference Fs can be applied to tires having different nominal widths W.
  • the flatness of the tire 2 is 70%.
  • the protrusion sum Fa satisfies the following relational expression. ⁇ 0.02 ⁇ Fa ⁇ 1.18
  • the shoulder region S of the tread 4 is likely to protrude outward in the radial direction.
  • the opening of the groove 22 is suppressed.
  • the protruding sum Fa is larger than ⁇ 0.02
  • the opening of the groove 22 is suppressed.
  • occurrence of cracks at the groove bottom is suppressed.
  • the high aspect ratio here refers to an aspect ratio of 65% or more.
  • both the protruding amount Dd and the protruding amount De become too large, the shoulder region S of the tread 4 protrudes outward in the radial direction.
  • the ground contact pressure is increased in the shoulder region S.
  • the tread surface 20 is easily worn.
  • the protrusion sum Fa is smaller than 1.18, a large protrusion of the shoulder region S is suppressed.
  • uneven wear of the shoulder region S is suppressed.
  • This protruding sum Fa is also indicated by a ratio to the nominal width W of the tire 2. This protrusion difference Fa is also applicable to tires having different nominal widths W.
  • the protruding difference Gs of the tread 4 is obtained by the following expression from the difference between the protruding amount Da and the protruding amount Dh and the nominal width of the tire 2 as W.
  • Gs ((Da ⁇ Dh) / W) ⁇ 100 (5)
  • the protruding difference Gs satisfies the following relational expression. ⁇ 0.84 ⁇ Gs ⁇ 0.09
  • the opening of the groove 22 is easily expanded.
  • the opening of the groove 22 extending in the circumferential direction is easy to expand.
  • the opening of the groove 22 located in the shoulder region S is likely to expand.
  • a tensile stress acts in the groove width direction on the bottom of the circumferentially extending groove 22. This tensile stress tends to cause cracks at the bottom of the groove 22.
  • the contact pressure of the tread surface 20 in the shoulder region S is increased. Uneven wear of the tread surface 20 in the shoulder region S is promoted.
  • the protrusion difference Gs is larger than ⁇ 0.84, the protrusion amount Da is suppressed from being too small with respect to the protrusion amount Dh.
  • the occurrence of cracks at the bottom of the groove 22 is suppressed. Uneven wear of the tread surface 20 in the shoulder region S is suppressed.
  • the center region C of the tread 4 protrudes outward in the radial direction.
  • the contact pressure of the tread 4 is increased.
  • wear easily proceeds on the tread surface 20 in the center region C where the contact pressure is high.
  • the tread surface 20 in the shoulder region S where the ground pressure is low is easy to slip. Thereby, the wear of the tread surface 20 of the shoulder region S easily proceeds.
  • the protrusion difference Gs is smaller than ⁇ 0.09 ( ⁇ 0.086), it is suppressed that the protrusion amount Da is too large with respect to the protrusion amount Dh.
  • the protrusion of the center region C is suppressed.
  • uneven wear of the tread surface 20 is suppressed.
  • This protruding difference Gs is also shown as a ratio to the nominal width W of the tire 2. This protruding difference Gs is also applicable to tires having different nominal widths W.
  • Tire 2 is obtained by vulcanization molding. After vulcanization molding, the tire 2 contracts due to a decrease in temperature. In particular, the outer diameter of the shoulder region S of the tread surface 20 tends to be reduced by contracting from the sidewall 6 to the bead 8. By this contraction, the belt 12 also contracts in the radial direction of the tire 2. Due to this contraction, a compressive force in the circumferential direction of the tire 2 acts on the belt 12. A tensile force in the axial direction of the tire 2 acts on the belt 12. The belt 12 extends in the axial direction. Due to the expansion of the belt 12, an axial tensile force acts on the tread 4. This tensile force promotes the generation of cracks at the bottom of the groove 22 of the tread 4.
  • the absolute value ⁇ of the inclination angle of the cord of the second band 36 is preferably 60 ° or more, and more preferably 80 ° or more.
  • the maximum value of the absolute value ⁇ of the cord angle is 90 °, and the absolute value ⁇ is 90 ° or less.
  • the dimensions and angles of each member of the tire 2 are measured in a state where the tire 2 is incorporated in a regular rim and filled with air so as to have a regular internal pressure unless otherwise specified.
  • the normal rim means a rim defined in a standard on which the tire 2 depends.
  • “Standard rim” in the JATMA standard, “Design Rim” in the TRA standard, and “Measuring Rim” in the ETRTO standard are regular rims.
  • the normal internal pressure means an internal pressure defined in a standard on which the tire depends.
  • FIG. 4 shows another pneumatic tire 42 according to the present invention.
  • the tire 42 includes a tread 44, a sidewall 46, a bead 48, a carcass 50, a belt 52, a band 54, an inner liner 56, and a chafer 58.
  • the tread 44 forms a tread surface 60 that contacts the road surface.
  • a groove 62 is carved on the tread surface 60.
  • the bead 48 includes a core 64 and an apex 66 that extends radially outward from the core 64.
  • the carcass 50 includes a first ply 68 and a second ply 70.
  • the first ply 68 and the second ply 70 are bridged between the beads on both sides, and extend along the tread 44 and the sidewall 46.
  • the first ply 68 is folded around the core 64 from the inner side to the outer side in the axial direction. By this folding, the main portion 68a and the folding portion 68b are formed in the first ply 68.
  • the second ply 70 is folded around the core 64 from the inner side to the outer side in the axial direction. By this folding, the main portion 70a and the folding portion 70b are formed in the second ply 70.
  • the end of the folded portion 68b of the first ply 68 is located outside the end of the folded portion 70b of the second ply 70 in the radial direction.
  • Each carcass ply, the first ply 68 and the second ply 70 are composed of a large number of cords arranged in parallel and a topping rubber.
  • the absolute value of the angle formed by each cord with respect to the equator plane is 75 ° to 90 °. In other words, this carcass has a radial structure.
  • the cord is made of organic fiber. Examples of preferable organic fibers include polyester fibers, nylon fibers, rayon fibers, polyethylene naphthalate fibers, and aramid fibers.
  • the carcass may be formed from a single ply.
  • the belt 52 is located inside the tread 44 in the radial direction.
  • the belt 52 is laminated with the carcass 50.
  • the belt 52 includes an inner layer 72 and an outer layer 74.
  • each of the inner layer 72 and the outer layer 74 is composed of a large number of cords arranged in parallel and a topping rubber.
  • Each cord is inclined with respect to the equator plane.
  • the absolute value of the tilt angle is usually 10 ° to 35 °.
  • the inclination direction of the cord of the inner layer 72 with respect to the equator plane is opposite to the inclination direction of the cord of the outer layer 74 with respect to the equator plane.
  • the band 54 is located outside the belt 52 in the radial direction. In the axial direction, the width of the band 54 is larger than the width of the belt 52.
  • the band 54 includes a first band 76 and a second band 78.
  • the first band 76 is composed of a cord and a topping rubber.
  • the cord of the first band 76 is spirally wound.
  • the first band 76 has a so-called jointless structure.
  • the cord of the first band 76 extends substantially in the circumferential direction.
  • the second band 78 includes a cord and a topping rubber.
  • the cord of the second band 78 extends in the axial direction.
  • the belt 52 and the band 54 constitute a reinforcing layer.
  • the protrusion difference Fs satisfies the following relational expression. ⁇ 0.4 ⁇ Fs ⁇ 0.5
  • the protrusion difference Fs is smaller than 0.5, the protrusion amount Dd is suppressed from becoming too large with respect to the protrusion amount De.
  • the protrusion of the shoulder region S is suppressed.
  • uneven wear in the shoulder region S is suppressed.
  • the protrusion difference Fs is larger than ⁇ 0.4, the occurrence of cracks at the bottom of the groove 62 is suppressed.
  • the protrusion difference Fs is smaller than 0.5, the protrusion of the shoulder region S is suppressed. In the tire 42, uneven wear of the shoulder region S is suppressed.
  • the flatness of the tire 42 is 40%.
  • the protrusion sum Fa satisfies the following relational expression. -0.81 ⁇ Fa ⁇ 0.39
  • the low aspect ratio means an aspect ratio of 50% or less.
  • the radial distance of the sidewall 46 is small. Since the radial distance is small, when both the protruding amount Dd and the protruding amount De become small, the shoulder region S of the tread 44 tends to protrude outward in the radial direction. In the shoulder region S, the contact pressure of the tread 44 is increased. In the shoulder region S, the tread surface 60 is easily worn.
  • the protruding difference Gs satisfies the following relational expression. -0.52 ⁇ Gs ⁇ 0.24
  • the protrusion difference Gs is larger than ⁇ 0.52, it is suppressed that the protrusion amount Dh becomes too large with respect to the protrusion amount Da.
  • the occurrence of cracks at the bottom of the groove 62 is suppressed. Further, uneven wear of the tread surface 60 in the shoulder region S is suppressed.
  • the protrusion difference Gs is smaller than 0.24, the protrusion amount Da is suppressed from becoming too large with respect to the protrusion amount Dh.
  • the protrusion of the center region C is suppressed.
  • uneven wear of the tread surface 60 is suppressed.
  • the inventors prototyped various tires having an aspect ratio of 40% to 70%.
  • the relationship between the protrusion difference Fs, the protrusion sum Fa, and the protrusion difference Gs, the occurrence of cracks in the groove bottom, and the occurrence of uneven wear in the shoulder region S was investigated.
  • the graph of FIG. 5 shows the distribution of the tires prototyped based on the protrusion sum Fa and the protrusion difference Fs.
  • A40 indicates a tire with a flatness ratio of 40%
  • A45 indicates a tire with a flatness ratio of 45%.
  • A55, A60, A65, and A70 indicate tires with flatness ratios of 55%, 60%, 65%, and 70%.
  • the horizontal axis of this graph is the protrusion difference Fs
  • the vertical axis is the protrusion sum Fa.
  • the preferable ranges of the protrusion sum Fa and the protrusion difference Gs differ depending on the flatness as described with the tire 2 and the tire 42 as an example.
  • the distribution of the prototype tires based on the flatness ratio A and the protrusion sum Fa is shown.
  • the circles in this graph indicate the distribution of the prototype tires in which the occurrence of cracks and the occurrence of uneven wear in the shoulder region S were good.
  • the X mark in this graph indicates the distribution of tires in which at least one of the occurrence of cracks and the occurrence of uneven wear in the shoulder region S is defective. From this graph, it was confirmed that in the prototype tire having the value Fa smaller than the straight line Lv and larger than the straight line Lw, the occurrence of cracks at the groove bottom and the occurrence of uneven wear were particularly good.
  • the graph of FIG. 7 shows the distribution of prototype tires based on the flatness A and the protrusion difference Gs.
  • the circles in this graph indicate the distribution of the prototype tires in which the occurrence of cracks and the occurrence of uneven wear in the shoulder region S were good.
  • the X mark in this graph indicates the distribution of tires in which at least one of the occurrence of cracks and the occurrence of uneven wear in the shoulder region S is defective. From this graph, it was confirmed that the occurrence of cracks at the bottom of the groove and the occurrence of uneven wear were particularly good in a prototype tire having a protruding difference Gs smaller than the straight line Lt and larger than the straight line Lu.
  • the protrusion difference Fs is set to be larger than ⁇ 0.4 and smaller than 0.5, so that occurrence of cracks in the groove bottom and uneven wear of the tread 4 are suppressed.
  • the protruding sum Fa satisfies the above formulas (3) and (4)
  • the occurrence of cracks at the groove bottom and uneven wear of the tread 4 can be suppressed.
  • the protruding difference Gs of the tread 4 satisfies the above formulas (6) and (7)
  • generation of cracks at the groove bottom and uneven wear of the tread 4 can be suppressed.
  • the protruding difference Gs of the tread 4 satisfies the above formulas (8) and (9)
  • generation of cracks at the groove bottom and uneven wear of the tread 4 can be further suppressed.
  • the protrusion difference Fs is made larger than ⁇ 0.4 and smaller than 0.5
  • the protrusion sum Fa satisfies the above expressions (3) and (4)
  • the protrusion difference Gs of the tread 44 is equal to the above expression.
  • This manufacturing method includes a determination step in which the durability of the prototype tire is evaluated.
  • a prototype tire for obtaining the tire 2 is prepared.
  • the quality based on the protrusion difference Fs, the protrusion sum Fa, and the protrusion difference Gs is determined.
  • the tire 2 is designed based on the evaluation result of this determination process. For example, when the prototype tire is determined to be defective, for example, the carcass line is adjusted so that the protrusion difference Fs, the protrusion sum Fa, and the protrusion difference Gs are within a predetermined range.
  • the adjustment of the carcass line is made, for example, by adjusting the vulcanization mold shape.
  • the radius of curvature of the carcass line near the point Pd and the radius of curvature of the carcass line near the point Pe are adjusted by the mold shape.
  • the tire 2 is manufactured by the molding die of the prototype tire. In this manner, the tire 2 is designed and manufactured based on the prototype tire, so that the tire 2 having excellent durability can be easily manufactured.
  • the method of adjusting the carcass line is exemplified as a method of setting the protrusion difference Fs, the protrusion sum Fa, and the protrusion difference Gs within predetermined ranges, but is not limited to this method.
  • this can be achieved by adjusting the rubber thickness of the sidewall 6 near the point Pd and the rubber thickness of the sidewall 6 near the point Pe.
  • the structure of the band 14 of the tire 2 may be changed as a method of setting the protrusion difference Fs, the protrusion sum Fa, and the protrusion difference Gs within predetermined ranges.
  • This evaluation method includes a step of obtaining a tire assembly, a low internal pressure step, a normal internal pressure step, and a determination step.
  • a regular rim is incorporated into the tire 2 to obtain a tire assembly.
  • the tire assembly is filled with air at an internal pressure of 0.05 ⁇ P which is 0.05 times the normal internal pressure P.
  • the profile of the tire 2 is obtained in a state where the air is filled with the air pressure of 0.05 ⁇ P.
  • the positions of point Pa, point Ph, point Pd and point Pe are obtained from the profile of the normal internal pressure step. Further, the positions of the points Pa ′, Ph ′, Pd ′, and Pe ′ are obtained from the profile of the low internal pressure process.
  • the protruding amounts Da and Dh of the tread 4 and the protruding amounts De and Dd of the sidewall 6 are calculated.
  • the protrusion difference Gs of the tread 4, the protrusion difference Fs of the sidewall 6, and the protrusion sum Fa are calculated. It is evaluated whether or not the protrusion difference Fs, the protrusion sum Fa, and the protrusion difference Gs are within a predetermined range. When it is within the predetermined range, a good judgment is made. When it is not within the predetermined range, a failure is determined.
  • the durability of the tire 2 can be efficiently determined from the viewpoint of occurrence of cracks at the bottom of the groove 22 and occurrence of uneven wear of the tread 4.
  • Example 1 A tire having the basic structure shown in FIG. 1 was prototyped.
  • the tire size was “185 / 70R14”. That is, the nominal width W of this tire was 185 (mm), and the flatness ratio A was 70%.
  • This tire was incorporated into a regular rim of 14 ⁇ 5.5J.
  • the tire was filled with air so that the internal pressure was 12 kPa. Then, it filled with air so that it might become regular internal pressure 240kPa.
  • the protruding amount Da (mm), the protruding amount Dh (mm), the protruding amount Dd (mm), the protruding amount De (mm), the protruding difference Gs, the protruding difference Fs, and the protruding sum Fa were obtained. The results are shown in Table 1.
  • Example 2-9 and Comparative 1-8 A tire was prototyped in the same manner as in Example 1 except that the band structure was changed and the carcass line was adjusted.
  • the protruding amounts (Da (mm), Dh (mm), Dd (mm) and De (mm)), the protruding difference Gs, the protruding difference Fs and the protruding sum Fa of these tires were determined. The results are shown in Tables 1 to 3.
  • Example 2 and Example 1 are tires obtained in the same manner except that the band structure was changed.
  • Example 4 and Comparative Example 2 Example 5 and Comparative Example 4, Example 6 and Comparative Example 3, Example 7 and Comparative Example 1 are the same except that the band structure is changed. This is the tire obtained.
  • Example 10 A tire having the basic structure shown in FIG. 4 was prototyped.
  • the tire size was “225 / 40R18”. That is, the nominal width W of this tire was 225 (mm), and the flatness A was 40%.
  • This tire was incorporated into a regular rim of 18 ⁇ 8J.
  • the tire was filled with air so that the internal pressure was 12 kPa. Then, it filled with air so that it might become regular internal pressure 240kPa.
  • the protruding amount Da (mm) and the protruding amount Dh (mm) of the tread, the protruding amount Dd (mm) and the protruding amount De (mm) of the sidewall are obtained, and the protruding difference Gs, the protruding difference Fs, and the protruding sum Fa was requested.
  • the results are shown in Table 4.
  • Example 11-18 Comparative 9-16 A tire was prototyped in the same manner as in Example 10 except that the band structure was changed and the carcass line was adjusted.
  • the protruding amounts (Da (mm), Dh (mm), Dd (mm) and De (mm)), the protruding difference Gs, the protruding difference Fs and the protruding sum Fa of these tires were determined. The results are shown in Tables 4-6.
  • Example 10 and Example 11 are tires obtained in the same manner except that the band structure was changed. Similarly, Example 13 and Comparative Example 10, Example 14 and Comparative Example 12, Example 15 and Comparative Example 11, Example 16 and Comparative Example 9 are the same except that the band structure is changed. This is the tire obtained.
  • a tire assembly was obtained by incorporating the prototype tire into a regular rim. This tire assembly was filled with air of normal internal pressure. The bottom of the main groove formed in the circumferential direction in the shoulder region of the tire was cut in the circumferential direction. Using a razor blade having a thickness of 0.25 mm, the bottom of the main groove was cut to a depth of 2 mm and a length of 8 mm. The cut opening was molded and the opening amount of the cut opening was measured. The measurement results are indexed and listed in Tables 1 to 6. The smaller the opening of the cut opening, the larger the index. As the index is larger, the occurrence of cracks is suppressed.
  • a tire assembly was obtained by incorporating the prototype tire into a regular rim. This tire assembly was filled with air of normal internal pressure. The tire assembly was attached to a table wear energy measuring device. This tire assembly was set in a rotatable state. The slip angle was set to 1 °. The tire was loaded with 80% of the load index standard MAX load. It was grounded to the grounding stand of the tabletop wear energy measuring device. In this way, the wear energy of each tire in the turning state was measured.
  • the wear energy Es in the shoulder region on the outer side in the turning radius direction and the wear energy Ec in the center region were measured.
  • the wear energy ratio (Es / Ec) between the wear energy Es and the wear energy Ec was determined.
  • the wear energy ratio (Es / Ec) was indexed and the results are shown in Tables 1-6. The smaller the wear energy ratio (Es / Ec), the larger this index. As the index is larger, the occurrence of uneven wear in the shoulder region is suppressed.
  • a tire having a tread protrusion difference Gs satisfying the above-described formulas (8) and (9) is more resistant to cracking at the groove bottom and uneven wear of the tread than a tire satisfying the above-described formulas (6) and (7). Both suppression and balance are excellent. This is illustrated in Examples 4-7 and Examples 13-16.
  • the tire with the band structure “1F” is looser in the tread shoulder region than the tire with the band structure “1E + 1F”.
  • a tire with a band structure “1F” tends to have a larger radius of curvature than a tire with a band structure “1E + 1F”. This suppresses shoulder wear during braking. This is shown in the comparison between Comparative Example 2 and Example 4, the comparison between Comparative Example 4 and Example 5, the comparison between Comparative Example 10 and Example 13, and the comparison between Comparative Example 12 and Example 14. ing.
  • the tire with the band structure “1F + 1F ′” has a smaller protruding amount (Da, Dh, Dd, and De) than the tire with the band structure “1E + 1F”. Thereby, the crack resistance of the groove bottom is improved.
  • This is the comparison between Example 1 and Example 2, comparison between Example 6 and Comparative Example 3, comparison between Example 7 and Comparative Example 1, comparison between Example 10 and Example 11, Example 15 and Comparative Example 11 and Example 16 and Comparative Example 9 are shown.
  • the tire of the example has a higher evaluation than the tire of the comparative example. From this evaluation result, the superiority of the present invention is clear.
  • the tire and the durability test method described above can be applied to various pneumatic tires such as passenger cars, light trucks, light trucks, trucks and buses, and two-wheeled vehicles, and durability tests thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tires In General (AREA)
  • Tyre Moulding (AREA)

Abstract

このタイヤ(2)では、サイドウォール(6)のせり出し差Fs=((Dd-De)/W)×100が-0.4より大きく0.5より小さく、サイドウォール(6)のせり出し和Fa=((Dd+De)/W)×100は、扁平率をAとして数式(3)及び(4)を満たし、トレッド(4)のせり出し差Gs=((Da-Dh)/W)×100は、数式(6)及び(7)を満たしている。0.02626×A-1.8615 < Fa (3) Fa < 0.02626×A-0.6615 (4) -0.010819×A-0.084658 < Gs (6) Gs < -0.010819×A+0.6713 (7)

Description

空気入りタイヤ
 本発明は、空気入りタイヤに関する。
 トレッドの耐摩耗性を改善した空気入りタイヤや、トレッド面の溝の耐クラック性を改善した空気入りタイヤが種々提案されている。
 特開平2-106404公報には、トレッドの曲率半径と空気が充填されたときのトレッドのせり出し量とを規定して、トレッドの溝の耐クラック性を改善した空気入りタイヤが提案されている。このタイヤでは、トレッド中央のせり出し量とトレッドの軸方向外側のせり出し量との差を所定の範囲内にすることを提案している。このタイヤでは、低内圧状態から標準内圧状態に至る間で、トレッドのせり出し量とトレッドの曲率半径の変化量とが小さくされている。
 特開昭58-112804公報には、トレッドの曲率半径とショルダー側壁部の形状とを規定して、トレッドの偏摩耗とトレッドの溝の耐クラック性を改善した空気入りタイヤが提案されている。このタイヤでは、空気が充填された状態でのトレッドの形状及びショルダー側壁部の形状と、このタイヤの成型金型形状によるトレッドの形状及びショルダー側壁部の形状との差を所定の範囲内にすることを提案している。このタイヤでは、金型形状と空気が充填された状態との間で、形状変化が小さくされている。
特開平2-106404公報 特開昭58-112804公報
 空気入りタイヤの部材は、弾性体である。空気が充填されると、応力が発生して釣合状態となる形状に、タイヤの形状が変形する。この形状変化は、空気入りタイヤにおいてやむ得ないものである。そこで、発明者らは、空気が充填された際に、耐摩耗性及び溝の耐クラック性が損なわれないように形状変化するタイヤの開発を進めた。
 本発明の目的は、偏摩耗性及び溝の耐クラック性に優れた空気入りタイヤの提供にある。
 本発明に係る空気入りタイヤは、その外面がトレッド面をなすトレッドと、それぞれが上記トレッドの端から半径方向略内向きに延びる一対のサイドウォールと、このトレッド及びサイドウォールの内側に沿って架け渡されたカーカスと、このカーカスの半径方向外側に積層されるベルトとを備えている。このベルトは、内側層と内側層に重ね合わされた外側層とを備えている。このトレッド面に溝が形成されている。
 このトレッド面の赤道面上の位置を点Paとし、このベルトの内側層と外側層とが重ね合わされた軸方向幅Wbの0.8倍のトレッド面上の位置を点Phとし、最大幅におけるサイドウォール軸方向外側面の位置を点Peとし、この点Paと点Peとの半径方向の中点であり、かつこのサイドウォール軸方向外側面上の位置を点Pdとし、呼び幅をW(mm)とする。
 正規内圧Pの0.05倍の内圧状態から正規内圧Pの内圧状態まで内圧が高められたときのせり出し量を、点Paでせり出し量Da(mm)と点Phでせり出し量Dhと点Pdでせり出し量Dd(mm)と点Peでせり出し量De(mm)とすると、
 サイドウォールのせり出し差Fsが数式(1)で求められるときに、このせり出し差Fsが-0.4より大きく0.5より小さく、
 サイドウォールのせり出し和Faが数式(2)で求められるときに、扁平率Aとして数式(3)及び(4)を満たしており、
 トレッドのせり出し差Gsが数式(5)で求められるときに、数式(6)及び(7)を満たしている。
 Fs=((Dd-De)/W)×100        (1)
 Fa=((Dd+De)/W)×100        (2)
 0.02626×A-1.8615 < Fa     (3)
 Fa < 0.02626×A-0.6615     (4)
 Gs=((Da-Dh)/W)×100        (5)
 -0.010819×A-0.084658 < Gs (6)
 Gs < -0.010819×A+0.6713   (7)
 好ましくは、このタイヤの上記せり出し差Gsは、数式(8)及び(9)を満たしている。
 -0.010819×A+0.108321 < Gs (8)
 Gs < -0.010819×A+0.478321 (9)
 好ましくは、このタイヤは、上記ベルトの半径方向外側に積層されるバンドを備えておいる。このバンドは、第一バンドと第一バンドに積層された第二バンドとを備えている。この第一バンドは、コードとトッピングゴムとからなる。このコードは、実質的に周方向に延びている。第二バンドは、コードとトッピングゴムとからなる。このコードの赤道面に対する傾斜角度の絶対値は、80°以上90°以下である。
 好ましくは、このタイヤの上記扁平率Aは、70%である。上記せり出し和Faは、-0.02より大きく1.18より小さい。上記せり出し差Gsは、-0.84より大きく-0.09より小さい。
 好ましくは、このタイヤの上記扁平率Aは、40%である。上記せり出し和Faは、-0.81より大きく0.39より小さい。上記せり出し差Gsは、-0.52より大きく0.24より小さい。
 本発明に係る空気入りタイヤの耐久性評価方法は、その外面がトレッド面をなすトレッドと、それぞれが上記トレッドの端から半径方向略内向きに延びる一対のサイドウォールと、このトレッド及びサイドウォールの内側に沿って架け渡されたカーカスと、このカーカスの半径方向外側に積層されるベルトとを備えており、このベルトが内側層と内側層に重ね合わされた外側層とを備えるタイヤの耐久性評価方法である。
 このトレッド面の赤道面上の位置を点Paとし、このベルトの内側層と外側層とが重ね合わされた軸方向幅Wbの0.8倍のトレッド面上の位置を点Phとし、最大幅におけるサイドウォール軸方向外側面の位置を点Peとし、この点Paと点Peとの半径方向の中点であり、かつこのサイドウォール軸方向外側面上の位置を点Pdとし、呼び幅をW(mm)とする。
 正規内圧Pの0.05倍の内圧状態から正規内圧Pの内圧状態まで内圧が高められたときのせり出し量を、点Paでせり出し量Da(mm)と点Phでせり出し量Dhと点Pdでせり出し量Dd(mm)と点Peでせり出し量De(mm)とすると、
 数式(1)で求められるサイドウォールのせり出し差Fsが-0.4より大きく0.5より小さいことと、
 サイドウォールのせり出し和Faが数式(2)で求められて、このせり出し和Faが扁平率Aとして数式(3)及び(4)を満たすことと、
 トレッドのせり出し差Gsが数式(5)で求められて、このせり出し差Gsが数式(6)及び(7)を満たすことと
でトレッドの耐摩耗性と溝の耐クラック性が良好と判定される。
 Fs=((Dd-De)/W)×100        (1)
 Fa=((Dd+De)/W)×100        (2)
 0.02626×A-1.8615 < Fa     (3)
 Fa < 0.02626×A-0.6615     (4)
 Gs=((Da-Dh)/W)×100        (5)
 -0.010819×A-0.084658 < Gs (6)
 Gs < -0.010819×A+0.6713   (7)
 好ましくは、この耐久性評価方法では、上記せり出し差Gsが数式(8)及び(9)を満たしていることで良好判定される。
 -0.010819×A+0.108321 < Gs (8)
 Gs < -0.010819×A+0.478321 (9)
 本発明に係る空気入りタイヤの製造方法は、その外面がトレッド面をなすトレッドと、それぞれが上記トレッドの端から半径方向略内向きに延びる一対のサイドウォールと、トレッド及びサイドウォールの内側に沿って架け渡されたカーカスと、このカーカスの半径方向外側に積層されるベルトとを備えており、このベルトが内側層と内側層に重ね合わされた外側層とを備えるタイヤの製造方法である。この製造方法は、試作タイヤの耐久性が評価される判定工程を備えている。
 この判定工程では、このトレッド面の赤道面上の位置を点Paとし、このベルトの内側層と外側層とが重ね合わされた軸方向幅Wbの0.8倍のトレッド面上の位置を点Phとし、最大幅におけるサイドウォール軸方向外側面の位置を点Peとし、この点Paと点Peとの半径方向の中点であり、かつこのサイドウォール軸方向外側面上の位置を点Pdとし、呼び幅をW(mm)とする。正規内圧Pの0.05倍の内圧状態から正規内圧Pの内圧状態まで内圧が高められたときのせり出し量を、点Paでせり出し量Da(mm)と点Phでせり出し量Dhと点Pdでせり出し量Dd(mm)と点Peでせり出し量De(mm)とすると、
 サイドウォールのせり出し差Fsが数式(1)で求められて、このせり出し差Fsが-0.4より大きく0.5より小さいことと、
 サイドウォールのせり出し和Faが数式(2)で求められて、このせり出し和Faが扁平率Aとして数式(3)及び(4)を満たすことと、
 トレッドのせり出し差Gsが数式(5)で求められて、このせり出し差Gsが数式(6)及び(7)を満たしていることが判定され、これらの判定に基づいてトレッドの耐摩耗性と溝の耐クラック性が評価されている。
 この製造方法では、判定工程の評価結果に基づいてタイヤが設計されて製造されている。
 Fs=((Dd-De)/W)×100        (1)
 Fa=((Dd+De)/W)×100        (2)
 0.02626×A-1.8615 < Fa     (3)
 Fa < 0.02626×A-0.6615     (4)
 Gs=((Da-Dh)/W)×100        (5)
 -0.010819×A-0.084658 < Gs (6)
 Gs < -0.010819×A+0.6713   (7)
 本発明に係る空気入りタイヤでは、溝底のクラックの発生が抑制されている。このタイヤでは、トレッドの偏摩耗の発生が抑制されている。本発明にかかる耐久性評価方法では、空気入りタイヤの耐久性を容易に評価し得る。本発明にかかるタイヤの製造方法では、耐久性に優れたタイヤを容易に製造し得る。
図1は、本発明の一実施形態に係る空気入りタイヤの一部が示された断面図である。 図2は、図1のタイヤの一部が示された拡大断面図である。 図3は、図1のタイヤの更に他の一部が示された拡大断面図である。 図4は、本発明の他の実施形態に係る空気入りタイヤの一部が示された断面図である。 図5は、サイドウォールのせり出し差Fsとせり出し和Faとの関係が示されたグラフである。 図6は、扁平率とせり出し和Faとの関係が示されたグラフである。 図7は、扁平率とトレッドのせり出し差Gsとの関係が示されたグラフである。
 以下、適宜図面が参照されつつ、好ましい実施形態に基づいて本発明が詳細に説明される。
 図1には、空気入りタイヤ2が示されている。図1において、上下方向がタイヤ2の半径方向であり、左右方向がタイヤ2の軸方向であり、紙面との垂直方向がタイヤ2の周方向である。図1の一点鎖線CLはタイヤ2の赤道面を表わす。このタイヤ2の形状は、トレッドパターンを除き、赤道面に対して対称である。二点鎖線BLは、タイヤ2のビードベースラインを表す。
 このタイヤ2は、トレッド4、サイドウォール6、ビード8、カーカス10、ベルト12、バンド14、インナーライナー16及びチェーファー18を備えている。このタイヤ2は、チューブレスタイプである。このタイヤ2は、乗用車に装着される。
 トレッド4は、半径方向外向きに凸な形状を呈している。トレッド4は、センター領域C及びショルダー領域Sを備えている。センター領域Cは、タイヤ2の軸方向中央に位置している。一対のショルダー領域Sは、センター領域Cの軸方向外側に位置している。トレッド4は、路面と接地するトレッド面20を形成する。トレッド面20には、溝22が刻まれている。この溝22により、トレッドパターンが形成されている。
 トレッド4は、図示されないが、ベース層とキャップ層とを有している。キャップ層は、ベース層の半径方向外側に位置している。キャップ層は、ベース層に積層されている。ベース層は、接着性に優れた架橋ゴムからなる。ベース層の典型的な基材ゴムは、天然ゴムである。キャップ層は、耐摩耗性、耐熱性及びグリップ性に優れた架橋ゴムからなる。
 サイドウォール6は、トレッド4の端から半径方向略内向きに延びている。このサイドウォール6の半径方向外側端は、トレッド4と接合されている。このサイドウォール6は、耐カット性及び耐候性に優れた架橋ゴムからなる。このサイドウォール6は、カーカス10の損傷を防止する。
 ビード8は、サイドウォール6の半径方向内側に位置している。ビード8は、コア24と、このコア24から半径方向外向きに延びるエイペックス26とを備えている。コア24はリング状であり、巻回された非伸縮性ワイヤーを含む。ワイヤーの典型的な材質は、スチールである。エイペックス26は、半径方向外向きに先細りである。エイペックス26は、高硬度な架橋ゴムからなる。
 カーカス10は、カーカスプライ28からなる。カーカスプライ28は、両側のビード8の間に架け渡されており、トレッド4及びサイドウォール6に沿っている。カーカスプライ28は、コア24の周りを、軸方向内側から外側に向かって折り返されている。この折り返しにより、カーカスプライ28には、主部28aと折り返し部28bとが形成されている。
 このカーカスプライ28は、並列された多数のコードとトッピングゴムとからなる。それぞれのコードが赤道面に対してなす角度の絶対値は、75°から90°である。換言すれば、このカーカス10はラジアル構造を有する。コードは、有機繊維からなる。好ましい有機繊維として、ポリエステル繊維、ナイロン繊維、レーヨン繊維、ポリエチレンナフタレート繊維及びアラミド繊維が例示される。カーカス10が、2枚以上の複数枚のプライから形成されてもよい。
 ベルト12は、トレッド4の半径方向内側に位置している。ベルト12は、カーカス10と積層されている。ベルト12は、カーカス10を補強する。ベルト12は、内側層30と内側層30の半径方向外側に重ね合わされた外側層32からなっている。図1から明らかなように、軸方向において、内側層30の幅は外側層32の幅よりも若干大きい。図示されていないが、内側層30及び外側層32のそれぞれは、並列された多数のコードとトッピングゴムとからなる。各コードは、赤道面に対して傾斜している。傾斜角度の絶対値は、通常は10°以上35°以下である。内側層30のコードの赤道面に対する傾斜方向は、外側層32のコードの赤道面に対する傾斜方向とは逆である。コードの好ましい材質は、スチールである。コードに、有機繊維が用いられてもよい。
 図1の両矢印Wbは、ベルト12の幅を示している。このバルト12の幅Wbは、タイヤ2の軸方向の直線距離として測られる。この幅Wbは、内側層30と外側層32とが重ね合わされた範囲の幅として測られる。このタイヤ2では、外側層32の幅として測られる。この幅Wbは、タイヤ2の最大幅の0.58倍以上0.85倍以下が好ましい。
 バンド14は、ベルト12の半径方向外側に位置している。軸方向において、バンド14の幅はベルト12の幅よりも大きい。バンド14は、第一バンド34と第二バンド36とからなっている。この第一バンド34及び第二バンド36は、軸方向のおいてベルト12の幅より大きくベルト12を覆うフルバンドである。図示されていないが、この第一バンド34は、コードとトッピングゴムとからなる。第一バンド34のコードは、螺旋状に巻かれている。この第一バンド34は、いわゆるジョイントレス構造を有する。第一バンド34のコードは、実質的に周方向に延びている。周方向に対するコードの角度は、5°以下、さらには2°以下である。
 第二バンド36は、コードとトッピングゴムとからなる。第二バンド36のコードは、軸方向に延びている。赤道面において第二バンド36のコードが赤道面とのなす角度を第二バンド36のコードの傾斜角度と称する。この第二バンド36のコードの傾斜角度の絶対値θは、60°以上である。この絶対値θば、90°以下である。
 第一バンド34のコードと第二バンド36のコードとによりベルト12が拘束されるので、ベルト12のリフティングが抑制される。これらのコードは、有機繊維からなる。好ましい有機繊維としては、ナイロン繊維、ポリエステル繊維、レーヨン繊維、ポリエチレンナフタレート繊維及びアラミド繊維が例示される。
 このタイヤ2では、バンド14は、第二バンド36を備えず、第一バンド34からなってもよい。また、バンド14は、エッジバンドを備えていないが、第二バンド36に代えて一対のエッジバンドを備えていてもよい。バンド14が第一バンド34と、ベルト12の軸方向端部に位置して、軸方向中央を覆うことなく端部を覆う一対のエッジバンドとを備えていてもよい。
 ベルト12及びバンド14は、補強層を構成している。ベルト12のみから、補強層が構成されてもよい。
 インナーライナー16は、カーカス10の内側に位置している。インナーライナー16は、架橋ゴムからなる。インナーライナー16には、空気遮蔽性に優れたゴムが用いられている。インナーライナー16の典型的な基材ゴムは、ブチルゴム又はハロゲン化ブチルゴムである。インナーライナー16は、タイヤの内圧を保持する。
 チェーファー18は、ビード8の近傍に位置している。タイヤ2がリムに組み込まれると、このチェーファー18がリムと当接する。この当接により、ビード8の近傍が保護される。例えば、チェーファー18が、布とこの布に含浸したゴムとからなっている。
 図1の点Paは、赤道面とトレッド面20と交点を示している。二点鎖線Lhは、半径方向に延びる直線を示している。両矢印Whは、軸方向一方の直線Lhと図示されない他方の直線Lhまでの幅を示している。この幅Whは、幅Wbの0.8倍の幅、即ち0.8・Wbの幅を示している。点Phは、この直線Lhとトレッド面20との交点を示している。
 二点鎖線Leは、タイヤ2の最大幅を通って軸方向に伸びる直線である。この最大幅は、カーカス10の主部28aが軸方向において、最も外側を通る位置のタイヤの軸方向幅を意味する。点Peは、この直線Leとサイドウォール6の軸方向外側面6aとの交点である。タイヤ2の最大幅は、この点Peから図示されない他方の点Peまでの距離として測られる。両矢印Dは、半径方向における点Paから点Peまでの距離を示している。二点鎖線Ldは、距離Dの中点を通って、軸方向に伸びる直線を示している。点Pdは、直線Ldとサイドウォール6の軸方向外側面6aとの交点である。この点Pdは、点Paと点Peとの、半径方向における中点である。
 図2には、タイヤ2の一部分の拡大図が示されている。タイヤ2の軸方向外側面6aは、タイヤ2が正規リムに組み込まれて、正規内圧Pの空気が充填された状態を示している。二点鎖線6a’も、タイヤ2の軸方向外側面を示している。この外側面6a’は、タイヤ2が正規リムに組み込まれて、正規内圧Pに対して0.05倍の空気圧0.05・Pの空気が充填された状態を示している。
 点Pd’は、点Pdを通る軸方向外側面6aの法線と、外側面6a’との交点を示している。両矢印Ddは、点Pd’から点Pdまでの距離を示している。この距離Ddは、点Pdにおける、タイヤ2のせり出し量である。このせり出し量Ddは、空気圧0.05・Pの状態から空気圧Pの状態に加圧されたときの、点Pd’から点Pdまでの距離を表している。せり出し量Ddは、軸方向外側への移動量をプラスとし、軸方向内側への移動をマイナスとして表す。
 点Pe’は、直線Leと外側面6a’との交点を示している。両矢印Deは、点Pe’から点Peまでの距離を示している。この距離Deは、点Peにおける、タイヤ2のせり出し量である。このせり出し量Deは、空気圧0.05・Pの状態から空気圧Pの状態に加圧されたときの、点Pe’から点Peまでの距離を表している。せり出し量Deは、軸方向外側への移動量をプラスとし、軸方向内側への移動をマイナスとして表す。
 図3には、タイヤ2の他の一部分の拡大図が示されている。タイヤ2のトレッド面20は、タイヤ2が正規リムに組み込まれて、正規内圧Pの空気が充填された状態を示している。二点鎖線20’も、タイヤ2のトレッド面を示している。このトレッド面20’は、タイヤ2が正規リムに組み込まれて、正規内圧Pに対して0.05倍の空気圧0.05・Pの空気が充填された状態を示している。
 点Pa’は、赤道面とトレッド面20’との交点を示している。両矢印Daは、点Pa’から点Paまでの距離を示している。この距離Daは、点Paにおける、タイヤ2のせり出し量である。このせり出し量Daは、空気圧0.05・Pの状態から空気圧Pの状態に加圧されたときの、点Pa’から点Paまでの距離を表している。せり出し量Daは、半径方向外側への移動量をプラスとし、半径方向内側への移動をマイナスとして表す。
 点Ph’は、点Phを通るトレッド面20の法線とトレッド面20’との交点を示している。両矢印Dhは、点Ph’から点Phまでの距離を示している。この距離Dhは、点Phにおける、タイヤ2のせり出し量である。このせり出し量Dhは、空気圧0.05・Pの状態から空気圧Pの状態に加圧されたときの、点Ph’から点Phまでの距離を表している。せり出し量Dhは、半径方向外側への移動量をプラスとし、半径方向内側への移動をマイナスとして表す。
 タイヤ2が正規リムに組み込まれて、空気が充填されて空気圧0.05・Pの状態にされる。この空気圧0.05・Pのタイヤ2のプロファイルがプロファイル測定機で測定される。更に、空気が充填されて空気圧Pの状態にされる。空気圧Pのタイヤ2のプロファイルがプロファイル測定機で測定される。空気圧Pのタイヤ2のプロファイルから、点Pa、点Ph、点Pe及び点Pdが求められる。この空気圧Pのタイヤ2のプロファイルと空気圧0.05・Pのタイヤ2のプロファイルとがビード位置(リムフランジ位置)を一致させて重ね合わされる。空気圧0.5・Pのタイヤ2のプロファイルから、点Pa’、点Ph’、点Pe’及び点Pd’が求められる。この様にして、トレッド4のせり出し量Da及びDhと、サイドウォール6のせり出し量Dd及びDeとが求められる。
 サイドウォール6のせり出し差Fsが、せり出し量Ddとせり出し量Deとの差と、タイヤ2の呼び幅Wとから、以下の式で求められる。
 Fs=((Dd-De)/W)×100        (1)
 このタイヤ2では、せり出し差Fsは、以下の関係式を満たしている。
 -0.4 < Fs < 0.5
 このせり出し量Ddが小さくなり、せり出し量Deが大きくなると、溝22の開口が拡がり易い。周方向の延びる溝22の開口が拡がり易い。特に、ショルダー領域Sに位置する溝22の開口が拡がり易い。溝22の開口が拡がると、周方向に延びる溝22の底部に溝幅方向に引張応力が作用する。この引張応力により溝22の底部にクラックが発生し易い。この周方向の延びる溝22には、トレッド面20を周方向に一周する主溝の他、部分的に周方向に延びる溝が含まれる。
 このタイヤ2では、せり出し差Fsが-0.4より大きくされているので、このせり出し量Ddが、せり出し量Deに対して小さくなりすぎることが抑制されている。このタイヤ2では、溝22の底部のクラックの発生が抑制されている。
 一方で、せり出し量Ddが大きくなり、せり出し量Deが小さくなると、トレッド4のショルダー領域Sが半径方向外向きにせり出す。ショルダー領域Sにおいて、トレッド4の接地圧が高くなる。接地圧が高いショルダー領域Sのトレッド面20は、摩耗が進行し易い。
 このタイヤ2では、せり出し差Fsが0.5より小さくされているので、このせり出し量Ddが、せり出し量Deに対して大きくなりすぎることが抑制されている。このタイヤ2では、ショルダー領域Sのせり出しが抑制されている。このタイヤ2では、ショルダー領域Sにおける偏摩耗が抑制されている。
 このせり出し差Fsは、せり出し量Ddとせり出し量Deとの差が、タイヤ2の呼び幅Wとの比で示されている。これにより、せり出し差Fsは呼び幅Wの異なるタイヤにも適用可能にされている。
 サイドウォール6のせり出し和Faは、せり出し量Ddとせり出し量Deとの和と、タイヤ2の呼び幅をWとから、以下の式で求められる。
 Fa=((Dd+De)/W)×100        (2)
 このタイヤ2の扁平率は、70%である。このタイヤ2では、せり出し和Faが、以下の関係式を満たす。
 -0.02 < Fa < 1.18
 この高扁平率のタイヤ2では、せり出し量Ddとせり出し量Deとが共に大きくなると、トレッド4のショルダー領域Sが半径方向外向きにせり出し易い。このショルダー領域Sのせり出しにより、溝22の開口の開きが抑制される。このタイヤ2では、せり出し和Faが-0.02より大きくされているので、溝22の開口の開きが抑制されている。このタイヤ2では、溝底のクラックの発生が抑制されている。ここでいう高扁平率とは、65%以上の扁平率をいう。
 一方で、このせり出し量Ddとせり出し量Deとが共に大きくなりすぎると、トレッド4のショルダー領域Sが半径方向外向きに大きくせり出す。このショルダー領域Sで接地圧が高くなる。接地圧が高いショルダー領域Sでは、トレッド面20が摩耗し易い。このタイヤ2では、せり出し和Faが1.18より小さくされているので、ショルダー領域Sの大きなせり出しが抑制されている。このタイヤ2では、ショルダー領域Sの偏摩耗が抑制されている。
 このせり出し和Faも、タイヤ2の呼び幅Wとの比で示されている。このせり出し差Faも、呼び幅Wの異なるタイヤにも適用可能にされている。
 トレッド4のせり出し差Gsは、せり出し量Daとせり出し量Dhとの差と、タイヤ2の呼び幅をWとから、以下の式で求められる。
 Gs=((Da-Dh)/W)×100        (5)
 このタイヤ2では、せり出し差Gsが、以下の関係式を満たす。
 -0.84 < Gs < -0.09
 このせり出し量Daが小さくなり、せり出し量Dhが大きくなると、溝22の開口が拡がり易い。周方向に延びる溝22の開口が拡がり易い。特に、ショルダー領域Sに位置する溝22の開口が拡がり易い。溝22の開口が拡がると、周方向の延びる溝22の底部に溝幅方向に引張応力が作用する。この引張応力により溝22の底部にクラックが発生し易い。また、ショルダー領域Sのトレッド面20の接地圧が高くなる。ショルダー領域Sのトレッド面20の偏摩耗が助長される。
 このタイヤ2では、せり出し差Gsが-0.84より大きくされているので、このせり出し量Daが、せり出し量Dhに対して小さくなりすぎることが抑制されている。このタイヤ2では、溝22の底部のクラックの発生が抑制されている。ショルダー領域Sのトレッド面20の偏摩耗が抑制されている。
 一方で、せり出し量Daが大きくなり、せり出し量Dhが小さくなると、トレッド4のセンター領域Cが半径方向外向きにせり出す。センター領域Cにおいて、トレッド4の接地圧が高くなる。このタイヤ2が駆動輪に装着されると、接地圧が高いセンター領域Cのトレッド面20で、摩耗が進行し易い。このタイヤ2が従動輪(遊動輪)に装着されると、接地圧が低いショルダー領域Sのトレッド面20が滑り易い。これにより、ショルダー領域Sのトレッド面20の摩耗が進行し易い。
 このタイヤ2では、せり出し差Gsが-0.09(-0.086)より小さくされているので、このせり出し量Daが、せり出し量Dhに対して大きくなりすぎることが抑制されている。このタイヤ2では、センター領域Cのせり出しが抑制されている。このタイヤ2では、トレッド面20の偏摩耗が抑制されている。
 このせり出し差Gsも、タイヤ2の呼び幅Wとの比で示されている。このせり出し差Gsも、呼び幅Wの異なるタイヤにも適用可能にされている。
 タイヤ2は、加硫成型で得られている。加硫成型後に、タイヤ2は、温度の低下により収縮する。特に、サイドウォール6からビード8に亘って収縮することで、トレッド面20のショルダー領域Sの外径が小さくなり易い。この収縮により、ベルト12もタイヤ2の半径方向に収縮する。この収縮により、ベルト12にタイヤ2の周方向の圧縮力が働く。ベルト12にタイヤ2の軸方向の引張力が働く。ベルト12は、軸方向に拡張する。このベルト12の拡張により、トレッド4に軸方向の引張力が働く。この引張力は、トレッド4の溝22の底部のクラックの発生を助長する。
 このタイヤ2では、第二バンド36のコードが軸方向に延びているので、トレッド4の軸方向の引張力が軽減されている。これにより、トレッド4の溝22の底部のクラックの発生が抑制される。この観点から、第二バンド36のコードの傾斜角度の絶対値θは、好ましくは60°以上であり、更に好ましくは80°以上である。一方で、このコードの角度の絶対値θの最大値は90°であり、この絶対値θは90°以下である。
 この第二バンド36を備えるタイヤ2では、トレッド面20のショルダー領域Sの半径方向の収縮が抑制されてる。このタイヤ2では、空気が充填されて正規内圧にされたときに、ショルダー領域Sのせり出しが小さい。第二バンド36を備えるタイヤ2では、せり出し量Dhが大きくなることが抑制されている。
 本発明では、タイヤ2の各部材の寸法及び角度は、特に言及されない限り、タイヤ2が正規リムに組み込まれ、正規内圧となるようにタイヤ2に空気が充填された状態で測定される。測定時には、タイヤ2には荷重がかけられない。本明細書において正規リムとは、タイヤ2が依拠する規格において定められたリムを意味する。JATMA規格における「標準リム」、TRA規格における「Design Rim」、及びETRTO規格における「Measuring Rim」は、正規リムである。本明細書において正規内圧とは、タイヤが依拠する規格において定められた内圧を意味する。JATMA規格における「最高空気圧」、TRA規格における「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」に掲載された「最大値」、及びETRTO規格における「INFLATION PRESSURE」は、正規内圧である。
 図4には、本発明にかかる他の空気入りタイヤ42が示されている。ここでは、タイヤ2と異なる構成について主に説明がされ、同様の構成についてはその説明が省略される。このタイヤ42は、トレッド44、サイドウォール46、ビード48、カーカス50、ベルト52、バンド54、インナーライナー56及びチェーファー58を備えている。
 トレッド44は、路面と接地するトレッド面60を形成する。トレッド面60には、溝62が刻まれている。ビード48は、コア64と、このコア64から半径方向外向きに延びるエイペックス66とを備えている。
 カーカス50は、第一プライ68と第二プライ70とからなる。第一プライ68及び第二プライ70は、両側のビードの間に架け渡されており、トレッド44及びサイドウォール46に沿っている。第一プライ68は、コア64の周りを、軸方向内側から外側に向かって折り返されている。この折り返しにより、第一プライ68には、主部68aと折り返し部68bとが形成されている。第二プライ70は、コア64の周りを、軸方向内側から外側に向かって折り返されている。この折り返しにより、第二プライ70には、主部70aと折り返し部70bとが形成されている。第一プライ68の折り返し部68bの端は、半径方向において、第二プライ70の折り返し部70bの端よりも外側に位置している。
 それぞれのカーカスプライ、第一プライ68と第二プライ70とは、並列された多数のコードとトッピングゴムとからなる。それぞれのコードが赤道面に対してなす角度の絶対値は、75°から90°である。換言すれば、このカーカスはラジアル構造を有する。コードは、有機繊維からなる。好ましい有機繊維として、ポリエステル繊維、ナイロン繊維、レーヨン繊維、ポリエチレンナフタレート繊維及びアラミド繊維が例示される。カーカスが、1枚のプライから形成されてもよい。
 ベルト52は、トレッド44の半径方向内側に位置している。ベルト52は、カーカス50と積層されている。ベルト52は、内側層72及び外側層74からなる。図示されていないが、内側層72及び外側層74のそれぞれは、並列された多数のコードとトッピングゴムとからなる。各コードは、赤道面に対して傾斜している。傾斜角度の絶対値は、通常は10°以上35°以下である。内側層72のコードの赤道面に対する傾斜方向は、外側層74のコードの赤道面に対する傾斜方向とは逆である。
 バンド54は、ベルト52の半径方向外側に位置している。軸方向において、バンド54の幅はベルト52の幅よりも大きい。バンド54は、第一バンド76と第二バンド78とからなっている。図示されていないが、この第一バンド76は、コードとトッピングゴムとからなる。第一バンド76のコードは、螺旋状に巻かれている。この第一バンド76は、いわゆるジョイントレス構造を有する。第一バンド76のコードは、実質的に周方向に延びている。第二バンド78は、コードとトッピングゴムとからなる。第二バンド78のコードは、軸方向に延びている。ベルト52及びバンド54は、補強層を構成している。
 このタイヤ42でも、せり出し差Fsは、以下の関係式を満たしている。
 -0.4 < Fs < 0.5
 このタイヤ42では、せり出し差Fsが0.5より小さくされているので、このせり出し量Ddが、せり出し量Deに対して大きくなりすぎることが抑制されている。このタイヤ42では、ショルダー領域Sのせり出しが抑制されている。このタイヤ42では、ショルダー領域Sにおける偏摩耗が抑制されている。
 このタイヤ42では、せり出し差Fsが-0.4より大きくされているので、この溝62の底部のクラックの発生が抑制されている。このタイヤ42では、せり出し差Fsが0.5より小さくされているので、ショルダー領域Sのせり出しが抑制されている。このタイヤ42では、ショルダー領域Sの偏摩耗が抑制されている。
 このタイヤ42の扁平率は、40%である。このタイヤ42では、せり出し和Faは、以下の関係式を満たしている。
 -0.81 < Fa < 0.39
 この低扁平率のタイヤ42では、せり出し量Ddとせり出し量Deとが共に大きくなっても、トレッド44のショルダー領域Sの半径方向外向きへせり出しが小さい。溝62の開口の開きを抑制する効果は小さい。せり出し量Ddとせり出し量Deとが共に大きくなると、トレッド44のショルダー領域Sが軸方向外向きに引かれる。これにより、このタイヤ42では、周方向に延びる溝62の開口が拡げられる。ここでいう低扁平率とは、50%以下の扁平率をいう。
 このタイヤ44では、せり出し和Faが0.39より小さくされているので、周方向に延びる溝62の開口の開きが抑制されている。このタイヤ2では、溝底のクラックの発生が抑制されている。
 このタイヤ42では、サイドウォール46の半径方向距離が小さい。この半径方向距離が小さいので、このせり出し量Ddとせり出し量Deとが共に小さくなると、トレッド44のショルダー領域Sが半径方向外向きにせり出し易い。ショルダー領域Sでトレッド44の接地圧が高くなる。ショルダー領域Sにおいて、トレッド面60が摩耗し易い。
 このタイヤ42では、せり出し和Faが-0.81より大きくされているので、ショルダー領域Sの大きなせり出しが抑制されている。このタイヤ42では、ショルダー領域Sの偏摩耗が抑制されている。
 このタイヤ42では、せり出し差Gsが、以下の関係式を満たす。
 -0.52 < Gs < 0.24
 このタイヤ42では、せり出し差Gsが-0.52より大きくされているので、このせり出し量Dhが、せり出し量Daに対して大きくなりすぎることが抑制されている。このタイヤ42では、溝62の底部のクラックの発生が抑制されている。また、ショルダー領域Sのトレッド面60の偏摩耗が抑制されている。
 一方で、このタイヤ42では、せり出し差Gsが0.24より小さくされているので、このせり出し量Daが、せり出し量Dhに対して大きくなりすぎることが抑制されている。このタイヤ42では、センター領域Cのせり出しが抑制されている。このタイヤ42では、トレッド面60の偏摩耗が抑制されている。
 発明者らは、扁平率が40%から70%の種々のタイヤを試作した。これらのタイヤについて、せり出し差Fs、せり出し和Fa及びせり出し差Gsと、溝底のクラックの発生状況及びショルダー領域Sの偏摩耗の発生状況との関係を調査した。
 図5のグラフには、せり出し和Faとせり出し差Fsとに基づく、試作したタイヤの分布が示されている。A40は扁平率40%のタイヤを示しており、A45は扁平率45%のタイヤを示している。以下同様に、A55、A60、A65、A70は、扁平率55%、60%、65%、70%のタイヤを示している。このグラフの横軸はせり出し差Fsであり、この縦軸はせり出し和Faである。この試作タイヤにより、せり出し差Fsが-0.4より大きいタイヤでは、溝底のクラックが発生し難いことが確認された。また、せり出し差Fsが0.5より小さいタイヤでは、偏摩耗が発生し難いことが確認された。
 せり出し差Fsは、以下の関係式を満たすことで、溝底のクラックの発生が抑制され、ショルダー領域の偏摩耗の発生が抑制され得る。
 -0.4 < Fs < 0.5
 せり出し和Fa及びせり出し差Gsの好ましい範囲は、タイヤ2及びタイヤ42を例に説明したように、扁平率により異なっている。
 図6のグラフには、扁平率Aとせり出し和Faとに基づく、試作タイヤの分布が示されている。このグラフの丸印は、クラックの発生状況及びショルダー領域Sの偏摩耗の発生状況が良好であった試作タイヤの分布を示している。このグラフのX印は、クラックの発生状況及びショルダー領域Sの偏摩耗の発生状況のうち、少なくともいずれかが不良であったタイヤの分布を示している。このグラフから、値Faが直線Lvより小さく、且つ直線Lwより大きい試作タイヤで、溝底のクラックの発生状況及び偏摩耗の発生状況が特に良好であることが確認された。
 この直線Lvは、扁平率Aとすると、以下の式で表せる。
 Fa = 0.2626×A-0.6615
 一方、この直線Lwは、以下の式で表せる。
 Fa = 0.2626×A-1.8615
 このせり出し和Faが、以下の関係式を満たすとき、溝底のクラックの発生が抑制され、且つトレッドの偏摩耗が抑制され得る。
 0.2626×A-1.8615 < Fa      (3)
 Fa < 0.2626×A-0.6615      (4)
 図7のグラフには、扁平率Aとせり出し差Gsとに基づく、試作したタイヤの分布が示されている。このグラフの丸印は、クラックの発生状況及びショルダー領域Sの偏摩耗の発生状況が良好であった試作タイヤの分布を示している。このグラフのX印は、クラックの発生状況及びショルダー領域Sの偏摩耗の発生状況のうち、少なくともいずれかが不良であったタイヤの分布を示している。このグラフから、せり出し差Gsが直線Ltより小さく、且つ直線Luより大きい試作タイヤで、溝底のクラックの発生状況及び偏摩耗の発生状況が特に良好であることが確認された。
 この直線Ltは、扁平率Aとすると、以下の式で表せる。
 Gs = -0.010819×A+0.6713
 一方、この直線Luは、以下の式で表せる。
 Gs = -0.010819×A-0.084658
 このせり出し差Gsが、以下の関係式を満たすとき、溝底のクラックの発生が抑制され、且つトレッドの偏摩耗が抑制され得る。
 -0.010819×A-0.084658 < Gs (6)
 Gs < -0.010819×A+0.6713   (7)
 このせり出し差Gsは、以下の関係式を満たすとき、更に、溝底のクラックの発生が抑制され、且つトレッドの偏摩耗が抑制され得る。
 -0.010819×A+0.108321 < Gs (8)
 Gs < -0.010819×A+0.478321 (9)
 本発明に係るタイヤ2では、せり出し差Fsが-0.4より大きくされ、0.5より小さくされているので、溝底のクラックの発生とトレッド4の偏摩耗が抑制されている。せり出し和Faが、上記数式(3)及び(4)を満たすことで、溝底のクラックの発生とトレッド4の偏摩耗とが、抑制され得る。更に、トレッド4のせり出し差Gsが上記数式(6)及び(7)を満たすことで、溝底のクラックの発生とトレッド4の偏摩耗とが抑制され得る。トレッド4のせり出し差Gsが上記数式(8)及び(9)を満たすことで、更に一層、溝底のクラックの発生とトレッド4の偏摩耗とが抑制され得る。
 また、タイヤ42でも、せり出し差Fsが-0.4より大きくされ0.5より小さくされ、せり出し和Faが、上記数式(3)及び(4)を満たし、トレッド44のせり出し差Gsが上記数式(6)及び(7)を満たすことで、タイヤ2と同様の効果を得られる。トレッド44のせり出し差Gsが上記数式(8)及び(9)を満たすことで、更に一層、溝底のクラックの発生とトレッド44の偏摩耗とが抑制され得る。
 次に、タイヤ2を例に、本発明に係る製造方法が説明される。この製造方法は、試作タイヤの耐久性が評価される判定工程を備える。この判定工程では、タイヤ2を得るための試作タイヤが準備される。この試作タイヤについて、せり出し差Fs、せり出し和Fa及びせり出し差Gsに基づく良否が判定される。この判定工程の評価結果に基づいてタイヤ2が設計される。例えば、試作タイヤが不良判定である場合、せり出し差Fs、せり出し和Fa及びせり出し差Gsが所定の範囲内になるように、例えば、カーカスラインが調整される。
 このカーカスラインの調整は、例えば、加硫成型の金型形状を調整することでなされる。このカーカスラインの調整は、例えば、点Pd近傍でのカーカスラインの曲率半径と点Pe近傍でのカーカスラインの曲率半径とが、金型形状により調整される。このようにして、このせり出し差Fs、せり出し和Fa及びせり出し差Gsが良好な試作タイヤが得られる。この試作タイヤの成型金型により、タイヤ2が製造される。この様にして、この試作タイヤに基づいて、タイヤ2が設計されて製造されることで、耐久性に優れたタイヤ2の製造が容易にされている。
 ここでは、せり出し差Fs、せり出し和Fa及びせり出し差Gsを所定の範囲内にする方法として、カーカスラインの調整方法が例示されたが、この方法に限られない。例えば、点Pd近傍でのサイドウォール6のゴムの厚みと点Pe近傍でのサイドウォール6のゴムの厚みとを調整することによってもなし得る。また、せり出し差Fs、せり出し和Fa及びせり出し差Gsを所定の範囲内にする方法として、タイヤ2のバンド14の構造が変更されてもよい。
 更に、タイヤ2を例に、本発明に係る評価方法の一例が説明される。この評価方法は、タイヤ組立体を得る工程、低内圧工程、正規内圧工程及び判定工程を含む。
 このタイヤ組立体を得る工程では、タイヤ2に正規リムが組み込まれてタイヤ組立体が得られる。
 この低内圧工程では、タイヤ組立体に正規内圧Pの0.05倍の空気圧0.05・Pの内圧で空気が充填される。この空気圧0.05・Pで空気が充填された状態で、タイヤ2のプロファイルが得られる。
 正規内圧工程では、この低内圧工程の後に、正規内圧で空気が充填される。この正規内圧Pで空気が充填された状態で、タイヤ2のプロファイルが得られる。
 判定工程では、正規内圧工程のプロファイルから点Pa、点Ph、点Pd及び点Peの位置が得られる。更に、低内圧工程のプロファイルから、点Pa’、点Ph’、点Pd’及び点Pe’の位置が得られる。トレッド4のせり出し量Da及びDhと、サイドウォール6のせり出し量De及びDdとが算出される。次に、トレッド4のせり出し差Gs、サイドウォール6のせり出し差Fs及びせり出し和Faが算出される。このせり出し差Fs、せり出し和Fa及びせり出し差Gsが所定の範囲にあるか否かが評価される。所定の範囲にあるとき、良好判定がされる。所定の範囲にないとき、不良判定がされる。
 この評価方法によれば、溝22の底部のクラックの発生とトレッド4の偏摩耗の発生との観点から、タイヤ2の耐久性が効率的に判定し得る。
 以下、実施例によって本発明の効果が明らかにされるが、この実施例の記載に基づいて本発明が限定的に解釈されるべきではない。
 以下の実施例及び比較例のバンド構造は、表中に記号を用いて示している。この記号の意味内容は以下の通りである。
「1F+1F’」:コードが周方向の延びるフルバンド1枚とコードが軸方向に延びるフルバンド1枚の2枚からなる構造
「1F」:コードが周方向の延びるフルバンド1枚からなる構造
「1E+1F」:コードが周方向の延びる一対のエッジバンドとコードが周方向に延びるフルバンド1枚とからなる構造
 [実施例1]
 図1に示される基本構造を備えたタイヤが試作された。このタイヤサイズは、「185/70R14」であった。即ち、このタイヤの呼び幅Wは185(mm)であり、扁平率Aは、70%であった。このタイヤを14×5.5Jの正規リムに組み込んだ。このタイヤに内圧が12kPaとなるように空気を充填した。その後、正規内圧240kPaとなるように空気を充填した。このせり出し量Da(mm)、せり出し量Dh(mm)、せり出し量Dd(mm)、せり出し量De(mm)、せり出し差Gs、せり出し差Fs及びせり出し和Faとが求められた。その結果が表1に示されている。
 [実施例2-9及び比較1-8]
 バンド構造が変更されて、カーカスラインが調整された他は、実施例1と同様にして、タイヤが試作された。これらのタイヤのせり出し量(Da(mm)、Dh(mm)、Dd(mm)及びDe(mm))、せり出し差Gs、せり出し差Fs及びせり出し和Faが求められた。その結果が表1から3に示されている。
 この実施例2と実施例1とは、バンド構造を変更した他は同様にして得られたタイヤである。同様に、実施例4と比較例2と、実施例5と比較例4と、実施例6と比較例3と、実施例7と比較例1とは、それぞれバンド構造を変更した他は同様にして得られたタイヤである。
 [実施例10]
 図4に示される基本構造を備えたタイヤが試作された。このタイヤサイズは、「225/40R18」であった。即ち、このタイヤの呼び幅Wは225(mm)であり、扁平率Aは、40%であった。このタイヤを18×8Jの正規リムに組み込んだ。このタイヤに内圧が12kPaとなるように空気を充填した。その後、正規内圧240kPaとなるように空気を充填した。このトレッドのせり出し量Da(mm)及びせり出し量Dh(mm)と、サイドウォールのせり出し量Dd(mm)及びせり出し量De(mm)とが求められ、せり出し差Gs、せり出し差Fs及びせり出し和Faが求められた。その結果が表4に示されている。
 [実施例11-18比較9-16]
 バンド構造が変更されて、カーカスラインが調整された他は、実施例10と同様にして、タイヤが試作された。これらのタイヤのせり出し量(Da(mm)、Dh(mm)、Dd(mm)及びDe(mm))、せり出し差Gs、せり出し差Fs及びせり出し和Faが求められた。その結果が表4から6に示されている。
 この実施例10と実施例11とは、バンド構造を変更した他は同様にして得られたタイヤである。同様に、実施例13と比較例10と、実施例14と比較例12と、実施例15と比較例11と、実施例16と比較例9とは、それぞれバンド構造を変更した他は同様にして得られたタイヤである。
[カット口開き評価]
 試作されたタイヤを正規リムに組み込んでタイヤ組立体を得た。このタイヤ組立体に正規内圧の空気が充填された。このタイヤのショルダー領域に周方向に形成された主溝の底が周方向にカットされた。厚み0.25mmのカミソリ刃を用いて、主溝の底が、深さ2mm、長さ8mmでカットされた。このカット口が型取りされて、カット口の開き量が測定された。その測定結果が指数化されて、表1から6に記載されている。カット口の開き量が小さいほど、この指数は大きい。指数が大きいほど、クラックの発生が抑制されている。
[ショルダー摩耗評価]
 試作されたタイヤを正規リムに組み込んでタイヤ組立体を得た。このタイヤ組立体に正規内圧の空気が充填された。このタイヤ組立体が台上摩耗エネルギー測定装置に取り付けられた。このタイヤ組立体が回転自在の状態でセットされた。スリップ角は1°にセットされた。このタイヤにロードインデックス規格MAX荷重の80%の荷重が負荷された。台上摩耗エネルギー測定装置の接地台に接地させられた。このようにして、それぞれのタイヤの旋回走行状態の摩耗エネルギーが測定された。
 この摩耗エネルギーの測定で、旋回半径方向外側のショルダー領域の摩耗エネルギーEsと、センター領域の摩耗エネルギーEcとが測定された。この摩耗エネルギーEsと摩耗エネルギーEcとの摩耗エネルギー比(Es/Ec)が求められた。この摩耗エネルギー比(Es/Ec)が大きいほど、ショルダー領域がセンター領域に比べて摩耗し易く、偏摩耗が進行し易い。摩耗エネルギー比(Es/Ec)が指数化されて、その結果が表1から6に示されている。摩耗エネルギー比(Es/Ec)が小さいほど、この指数は大きい。指数が大きいほど、ショルダー領域の偏摩耗の発生が抑制されている。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 トレッドのせり出し差Gsが前述の数式(8)及び(9)を満たすタイヤは、前述の数式(6)及び(7)を満たすタイヤに比べて、溝底の耐クラック性とトレッドの偏摩耗の抑制とが共にバランスよく優れている。このことは、実施例4-7及び実施例13-16に示されている。
 バンド構造が「1F」のタイヤは、バンド構造が「1E+1F」のタイヤに比べて、トレッドのショルダー領域での押さえが緩くなっている。バンド構造が「1F」のタイヤは、バンド構造が「1E+1F」のタイヤに比べて曲率半径が大きくなり易い。これにより、制動時のショルダー摩耗が抑制される。このことは、比較例2と実施例4との比較、比較例4と実施例5との比較、比較例10と実施例13との比較及び比較例12と実施例14との比較に示されている。
 バンド構造が「1F+1F’」のタイヤは、バンド構造が「1E+1F」のタイヤに比べて、せり出し量(Da、Dh、Dd及びDe)が小さくされている。これにより、溝底の耐クラック性が向上している。このことは、実施例1と実施例2との比較、実施例6と比較例3との比較、実施例7と比較例1との比較、実施例10と実施例11との比較、実施例15と比較例11との比較及び実施例16と比較例9との比較に示されている。
 表1から6に示されるように、実施例のタイヤでは、比較例のタイヤに比べて評価が高い。この評価結果から、本発明の優位性は明らかである。
 以上説明されたタイヤ及びその耐久性試験方法は、乗用車、軽トラック、小型トラック、トラック・バス、2輪自動車等、種々の空気入りタイヤ及びその耐久性試験にも適用され得る。
 2、42・・・タイヤ
 4、44・・・トレッド
 6、46・・・サイドウォール
 8、48・・・ビード
 10、50・・・カーカス
 12、52・・・ベルト
 14、54・・・バンド
 16、56・・・インナーライナー
 18、58・・・チェーファー
 20、60・・・トレッド面
 22、62・・・溝
 24、64・・・コア
 26、66・・・エイペックス
 28・・・カーカスプライ
 30、72・・・内側層
 32、74・・・外側層
 34、76・・・第一バンド
 36、78・・・第二バンド
 68・・・第一プライ
 70・・・第二プライ

Claims (8)

  1.  その外面がトレッド面をなすトレッドと、それぞれが上記トレッドの端から半径方向略内向きに延びる一対のサイドウォールと、このトレッド及びサイドウォールの内側に沿って架け渡されたカーカスと、このカーカスの半径方向外側に積層されるベルトとを備えており、
     このベルトが内側層と内側層に重ね合わされた外側層とを備えており、
     このトレッド面に溝が形成されており、
     このトレッド面の赤道面上の位置を点Paとし、このベルトの内側層と外側層とが重ね合わされた軸方向幅Wbの0.8倍のトレッド面上の位置を点Phとし、最大幅におけるサイドウォール軸方向外側面の位置を点Peとし、この点Paと点Peとの半径方向の中点であり、かつこのサイドウォール軸方向外側面上の位置を点Pdとし、呼び幅をW(mm)とし、
     正規内圧Pの0.05倍の内圧状態から正規内圧Pの内圧状態まで内圧が高められたときのせり出し量を、点Paでせり出し量Da(mm)と点Phでせり出し量Dhと点Pdでせり出し量Dd(mm)と点Peでせり出し量De(mm)とすると、
     サイドウォールのせり出し差Fsが数式(1)で求められるときに、このせり出し差Fsが-0.4より大きく0.5より小さく、
     サイドウォールのせり出し和Faが数式(2)で求められるときに、扁平率Aとして数式(3)及び(4)を満たしており、
     トレッドのせり出し差Gsが数式(5)で求められるときに、数式(6)及び(7)を満たしている空気入りタイヤ。
     Fs=((Dd-De)/W)×100        (1)
     Fa=((Dd+De)/W)×100        (2)
     0.02626×A-1.8615 < Fa     (3)
     Fa < 0.02626×A-0.6615     (4)
     Gs=((Da-Dh)/W)×100        (5)
     -0.010819×A-0.084658 < Gs (6)
     Gs < -0.010819×A+0.6713   (7)
  2.  上記せり出し差Gsが数式(8)及び(9)を満たしている請求項1に記載の空気入りタイヤ。
     -0.010819×A+0.108321 < Gs (8)
     Gs < -0.010819×A+0.478321 (9)
  3.  上記ベルトの半径方向外側に積層されるバンドを備えており、
     このバンドが第一バンドと第一バンドに積層された第二バンドとを備えており、
     この第一バンドがコードとトッピングゴムとからなり、このコードが実質的に周方向の延びており、第二バンドがコードとトッピングゴムとからなり、このコードの赤道面に対する傾斜角度の絶対値が80°以上90°以下である請求項1又は2に記載のタイヤ。
  4.  上記扁平率Aが70%であり、
     上記せり出し和Faが-0.02より大きく1.18より小さく、
     上記せり出し差Gsが-0.84より大きく-0.09より小さい請求項1から3のいずれかに記載のタイヤ。
  5.  上記扁平率Aが40%であり、
     上記せり出し和Faが-0.81より大きく0.39より小さい、
     上記せり出し差Gsが-0.52より大きく0.24より小さい請求項1から3のいずれかに記載のタイヤ。
  6.  その外面がトレッド面をなすトレッドと、それぞれが上記トレッドの端から半径方向略内向きに延びる一対のサイドウォールと、このトレッド及びサイドウォールの内側に沿って架け渡されたカーカスと、このカーカスの半径方向外側に積層されるベルトとを備えており、このベルトが内側層と内側層に重ね合わされた外側層を備えるタイヤの耐久性評価方法であって、
     このトレッド面の赤道面上の位置を点Paとし、このベルトの内側層と外側層とが重ね合わされた軸方向幅Wbの0.8倍のトレッド面上の位置を点Phとし、最大幅におけるサイドウォール軸方向外側面の位置を点Peとし、この点Paと点Peとの半径方向の中点であり、かつこのサイドウォール軸方向外側面上の位置を点Pdとし、呼び幅をW(mm)とし、
     正規内圧Pの0.05倍の内圧状態から正規内圧Pの内圧状態まで内圧が高められたときのせり出し量を、点Paでせり出し量Da(mm)と点Phでせり出し量Dhと点Pdでせり出し量Dd(mm)と点Peでせり出し量De(mm)とすると、
     数式(1)で求められるサイドウォールのせり出し差Fsが-0.4より大きく0.5より小さいことと、
     サイドウォールのせり出し和Faが数式(2)で求められて、このせり出し和Faが扁平率Aとして数式(3)及び(4)を満たすことと、
     トレッドのせり出し差Gsが数式(5)で求められて、このせり出し差Gsが数式(6)及び(7)を満たすことと
    でトレッドの耐摩耗性と溝の耐クラック性が良好と判定される耐久性評価方法。
     Fs=((Dd-De)/W)×100        (1)
     Fa=((Dd+De)/W)×100        (2)
     0.02626×A-1.8615 < Fa     (3)
     Fa < 0.02626×A-0.6615     (4)
     Gs=((Da-Dh)/W)×100        (5)
     -0.010819×A-0.084658 < Gs (6)
     Gs < -0.010819×A+0.6713   (7)
  7.  上記せり出し差Gsが数式(8)及び(9)を満たしていることで良好判定される請求項6に記載の耐久性評価方法。
     -0.010819×A+0.108321 < Gs (8)
     Gs < -0.010819×A+0.478321 (9)
  8.  その外面がトレッド面をなすトレッドと、それぞれが上記トレッドの端から半径方向略内向きに延びる一対のサイドウォールと、トレッド及びサイドウォールの内側に沿って架け渡されたカーカスと、このカーカスの半径方向外側に積層されるベルトとを備えており、このベルトが内側層と内側層の半径方向外側に重ね合わされた外側層とを備えるタイヤの製造方法であって、
     試作タイヤの耐久性が評価される判定工程を備えており、
     この判定工程では、このトレッド面の赤道面上の位置を点Paとし、このベルトの内側層と外側層とが重ね合わされた軸方向幅Wbの0.8倍のトレッド面上の位置を点Phとし、最大幅におけるサイドウォール軸方向外側面の位置を点Peとし、この点Paと点Peとの半径方向の中点であり、かつこのサイドウォール軸方向外側面上の位置を点Pdとし、呼び幅をW(mm)とし、
     正規内圧Pの0.05倍の内圧状態から正規内圧Pの内圧状態まで内圧が高められたときのせり出し量を、点Paでせり出し量Da(mm)と点Phでせり出し量Dhと点Pdでせり出し量Dd(mm)と点Peでせり出し量De(mm)とすると、
     サイドウォールのせり出し差Fsが数式(1)で求められて、このせり出し差Fsが-0.4より大きく0.5より小さいことと、
     サイドウォールのせり出し和Faが数式(2)で求められて、このせり出し和Faが扁平率Aとして数式(3)及び(4)を満たすことと、
     トレッドのせり出し差Gsが数式(5)で求められて、このせり出し差Gsが数式(6)及び(7)を満たしていることが判定され、これらの判定に基づいてトレッドの耐摩耗性と溝の耐クラック性が評価されており、
     この判定工程の評価結果に基づいてタイヤが設計されて製造されているタイヤの製造方法。
     Fs=((Dd-De)/W)×100        (1)
     Fa=((Dd+De)/W)×100        (2)
     0.02626×A-1.8615 < Fa     (3)
     Fa < 0.02626×A-0.6615     (4)
     Gs=((Da-Dh)/W)×100        (5)
     -0.010819×A-0.084658 < Gs (6)
     Gs < -0.010819×A+0.6713   (7)
PCT/JP2014/062904 2013-05-21 2014-05-15 空気入りタイヤ WO2014188938A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/892,902 US10052916B2 (en) 2013-05-21 2014-05-15 Pneumatic tire
EP14800770.1A EP2998128B1 (en) 2013-05-21 2014-05-15 Pneumatic tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013106756A JP6006166B2 (ja) 2013-05-21 2013-05-21 空気入りタイヤ
JP2013-106756 2013-05-21

Publications (1)

Publication Number Publication Date
WO2014188938A1 true WO2014188938A1 (ja) 2014-11-27

Family

ID=51933498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062904 WO2014188938A1 (ja) 2013-05-21 2014-05-15 空気入りタイヤ

Country Status (4)

Country Link
US (1) US10052916B2 (ja)
EP (1) EP2998128B1 (ja)
JP (1) JP6006166B2 (ja)
WO (1) WO2014188938A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3310589B1 (fr) * 2015-06-16 2019-10-09 Compagnie Générale des Etablissements Michelin Pneumatique avec un sommet comportant une nappe de rigidification et une bande de roulement à forte adhérence
CN109477734B (zh) 2016-07-07 2022-10-04 富士胶片株式会社 编码器信号处理装置、打印机、带打印机的摄像装置及编码器信号处理方法
JP2018008664A (ja) * 2016-07-15 2018-01-18 横浜ゴム株式会社 空気入りタイヤ
EP4225591A1 (fr) * 2020-10-09 2023-08-16 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant deux couches de carcasse
JP2023544751A (ja) * 2020-10-09 2023-10-25 コンパニー ゼネラール デ エタブリッスマン ミシュラン 2つのカーカス層を備えるタイヤ
KR20230082023A (ko) * 2020-10-09 2023-06-08 꽁빠니 제네날 드 에따블리세망 미쉘린 공압 타이어를 포함하는 장착된 조립체

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58112804A (ja) 1981-12-28 1983-07-05 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
JPH02106404A (ja) 1988-10-14 1990-04-18 Sumitomo Rubber Ind Ltd 空気入りラジアルタイヤ
WO2009093325A1 (ja) * 2008-01-24 2009-07-30 Bridgestone Corporation 空気入りタイヤ
JP2009214760A (ja) * 2008-03-11 2009-09-24 Yokohama Rubber Co Ltd:The 重荷重用空気入りタイヤ
WO2013111679A1 (ja) * 2012-01-26 2013-08-01 住友ゴム工業株式会社 空気入りタイヤ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093326A1 (ja) 2008-01-25 2009-07-30 Menicon Co., Ltd. コンタクトレンズ包装製品及びコンタクトレンズの包装方法
JP4972017B2 (ja) 2008-03-12 2012-07-11 株式会社ニフコ 蓋体の開閉機構
JP5669943B2 (ja) * 2011-07-15 2015-02-18 株式会社王樹製薬 抗菌剤とその製造方法
EP2965924B1 (en) 2013-03-05 2019-04-10 Sumitomo Rubber Industries, Ltd. Pneumatic tire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58112804A (ja) 1981-12-28 1983-07-05 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
JPH02106404A (ja) 1988-10-14 1990-04-18 Sumitomo Rubber Ind Ltd 空気入りラジアルタイヤ
WO2009093325A1 (ja) * 2008-01-24 2009-07-30 Bridgestone Corporation 空気入りタイヤ
JP2009214760A (ja) * 2008-03-11 2009-09-24 Yokohama Rubber Co Ltd:The 重荷重用空気入りタイヤ
WO2013111679A1 (ja) * 2012-01-26 2013-08-01 住友ゴム工業株式会社 空気入りタイヤ

Also Published As

Publication number Publication date
JP6006166B2 (ja) 2016-10-12
JP2014226988A (ja) 2014-12-08
EP2998128A1 (en) 2016-03-23
EP2998128B1 (en) 2019-10-23
EP2998128A4 (en) 2016-11-02
US20160082775A1 (en) 2016-03-24
US10052916B2 (en) 2018-08-21

Similar Documents

Publication Publication Date Title
EP3127717B1 (en) Pneumatic tire
US20160236521A1 (en) Pneumatic tire
JP6006166B2 (ja) 空気入りタイヤ
US20160052342A1 (en) Pneumatic tire
JP2020083053A (ja) 空気入りタイヤ及び加硫金型
JP6270224B2 (ja) 空気入りタイヤ
JP6121338B2 (ja) 空気入りタイヤ
US11279179B2 (en) Pneumatic tire
US20160297246A1 (en) Pneumatic tire
JP6052762B2 (ja) ライトトラック用空気入りタイヤ
JP2017013564A (ja) 空気入りタイヤおよびその製造方法
JP2013067350A (ja) 空気入りタイヤ
EP2786881A2 (en) Run flat tire
JP6177282B2 (ja) 空気入りタイヤ
US20230382162A1 (en) Tire
JP5944657B2 (ja) 空気入りタイヤ
EP3189988B1 (en) Pneumatic tire
JP2017056791A (ja) 空気入りタイヤ
JP2017001432A (ja) 空気入りタイヤ
JP6462271B2 (ja) 空気入りタイヤ
JP2017121906A (ja) 空気入りタイヤ
JP2017128257A (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14800770

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14892902

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014800770

Country of ref document: EP