WO2014188820A1 - 医療用撮像記録装置 - Google Patents

医療用撮像記録装置 Download PDF

Info

Publication number
WO2014188820A1
WO2014188820A1 PCT/JP2014/060771 JP2014060771W WO2014188820A1 WO 2014188820 A1 WO2014188820 A1 WO 2014188820A1 JP 2014060771 W JP2014060771 W JP 2014060771W WO 2014188820 A1 WO2014188820 A1 WO 2014188820A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
unit
image
movement
image data
Prior art date
Application number
PCT/JP2014/060771
Other languages
English (en)
French (fr)
Inventor
中村 正一
Original Assignee
日本エー・シー・ピー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013106011A external-priority patent/JP5411380B1/ja
Priority claimed from JP2013191660A external-priority patent/JP5530015B1/ja
Application filed by 日本エー・シー・ピー株式会社 filed Critical 日本エー・シー・ピー株式会社
Priority to US14/892,010 priority Critical patent/US10057547B2/en
Publication of WO2014188820A1 publication Critical patent/WO2014188820A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/14Special procedures for taking photographs; Apparatus therefor for taking photographs during medical operations
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/48Details of cameras or camera bodies; Accessories therefor adapted for combination with other photographic or optical apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B29/00Combinations of cameras, projectors or photographic printing apparatus with non-photographic non-optical apparatus, e.g. clocks or weapons; Cameras having the shape of other objects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6811Motion detection based on the image signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/74Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/765Interface circuits between an apparatus for recording and another apparatus
    • H04N5/77Interface circuits between an apparatus for recording and another apparatus between a recording apparatus and a television camera
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/804Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components
    • H04N9/8042Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components involving data reduction
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2217/00Details of cameras or camera bodies; Accessories therefor
    • G03B2217/005Blur detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/144Movement detection
    • H04N5/145Movement estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/82Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only
    • H04N9/8205Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only involving the multiplexing of an additional signal and the colour video signal

Definitions

  • the present invention relates to a medical imaging / recording apparatus that captures and records the content of a medical treatment.
  • an imaging device such as a digital video camera equipped with a CCD-type or CMOS-type imaging device is attached to the body of a worker who performs the work, and the state of the work is photographed with a moving image.
  • a medical imaging device that attaches an imaging device to a binocular loupe or headband that an operator wears on the head or face during an operation, and that uses the imaging device to image a treatment target site that the operator stares at.
  • an imaging device attaches an imaging device to a binocular loupe or headband that an operator wears on the head or face during an operation, and that uses the imaging device to image a treatment target site that the operator stares at.
  • camera shake when shooting an object included in the imaging range by the imaging device.
  • the term “camera shake” as used herein means that the image pickup apparatus shakes due to the movement of the operator's body or head during medical treatment, and the image is blurred.
  • the movement of small hands is accompanied by small movements, and if the imaging device attached to the operator's body is moved while the shutter is open, the image will be blurred and the image will be blurred. It becomes unclear.
  • camera shake information is acquired by using an acceleration sensor or by detecting an image shift between two consecutive frames of a moving image, and the image data is corrected.
  • it is known to correct “camera shake” see, for example, Patent Document 3).
  • an imaging apparatus including at least an optical lens and an imaging element that photoelectrically converts light introduced from a subject through the optical lens during imaging to generate an imaging signal is provided by an operator at the time of medical treatment.
  • a medical imaging recording apparatus that wears images on the body, and that controls the video to be displayed on a display unit from image data generated for each frame constituting the video based on the imaging signal;
  • the information recording unit that sequentially records the image data and the image data between successive or adjacent frames are sequentially compared, and the movement for calculating the movement amount of the imaging device from the displacement of the main subject between the frames
  • a detection unit, a camera shake correction unit that corrects a shift of the moving image due to movement according to the movement amount when the movement amount is within a preset range, and the movement If it is greater than the upper limit of the range and a recording control section for controlling the stop of the recording of the image data to the information recording unit.
  • the imaging control unit stops displaying the moving image when the movement amount exceeds the upper limit of the range.
  • a predetermined time lag period may be set after the movement detection unit detects that the movement amount exceeds the upper limit of the range.
  • the imaging control unit controls to display the image data before the movement exceeds the upper limit of the range as a still image.
  • the imaging control unit performs control to display the still image after a predetermined time lag period after the movement detection unit detects that the movement amount exceeds the upper limit of the range. Good.
  • the recording control unit A restart of recording of the image data by the control unit, and the imaging control unit controls restart of the display of the moving image.
  • a camera shake correction unit combines the image data of a plurality of continuous or adjacent frames to generate corrected image data.
  • a medical imaging recording apparatus includes an imaging device having at least an optical lens and an imaging element that photoelectrically converts light introduced from a subject through the optical lens during imaging to generate an imaging signal during medical treatment.
  • An imaging control unit for medical imaging and recording that is mounted on an operator's body and that controls to display the moving image on a display unit from image data generated for each frame constituting the moving image based on the imaging signal.
  • An information recording unit that sequentially records the image data, an acceleration sensor that detects movement of the imaging device, a first movement detection unit that calculates a movement amount of the imaging device from a detection signal of the acceleration sensor,
  • the camera is continuously or close to a camera shake correction unit that controls to cancel the motion blur caused by the movement according to the movement amount calculated by the first movement detection unit.
  • a second movement detector that sequentially compares the image data between frames and calculates a movement amount of the imaging device from a shift of the main subject between the frames, and a movement calculated by the second movement detector
  • a recording control unit that controls the stop of recording of the image data when the amount exceeds a preset threshold value.
  • the medical imaging recording apparatus of the present invention when the imaging apparatus captures an image that is not directly related to the treatment process, this image is not recorded in the recording apparatus, so the operator needs to turn off imaging by the imaging apparatus each time. Therefore, it is possible to store an effective record of the treatment simply by mounting the imaging device on the operator's body.
  • Explanatory drawing of a binocular loupe provided with an imaging device and an illumination unit.
  • Explanatory drawing of the headband provided with the imaging device and the illumination part.
  • FIG. 7A is explanatory diagram schematically showing an image for each frame in the medical imaging recording apparatus according to the first embodiment of the present invention
  • FIG. 7B is an image recorded on the memory card.
  • (A) is explanatory drawing which shows typically the image for every frame in the medical imaging recording device which concerns on the 2nd Embodiment of this invention
  • (b) is explanatory drawing which shows typically the image data memorize
  • FIG. 4C is an explanatory diagram schematically showing image data recorded on the memory card.
  • FIG. 9A is an explanatory diagram schematically showing an image for each frame in the medical imaging recording apparatus according to the second embodiment of the present invention
  • FIG. 9B is image data stored in the RAM
  • FIG. 4C is an explanatory diagram schematically showing image data recorded on a memory card.
  • FIG. 1 is a block diagram showing a schematic configuration of a medical imaging recording apparatus according to the present invention in the first embodiment.
  • the imaging device 1 is a digital video camera that captures moving images, and photoelectrically converts an optical lens 2 that makes light from a subject incident during imaging, and reflected light from the subject through the optical lens 2 into an analog electrical signal.
  • the image pickup device 3 includes a CCD or CMOS image pickup device 3 that generates an image pickup signal, an acceleration sensor 4, an image pickup device displacement mechanism 5, and a lens adjustment mechanism 6.
  • the acceleration sensor 4 detects “camera shake”. For example, a three-axis type sensor is used to move in three axes directions of X, Y, and Z orthogonal to each other about the operator's neck axis. The angular velocity is detected by acceleration, and the detected signal is subjected to processing such as A / D conversion and output to the CPU 10.
  • the image pickup element displacement mechanism 5 prevents the image disturbance due to “camera shake” by moving the image pickup element 3 based on the movement amount of the image pickup apparatus 1 calculated from the acceleration detected by the movement detection unit 10b described later. To do.
  • the lens adjustment mechanism 6 moves the optical lens 2 by a built-in drive motor in order to perform focusing and zooming.
  • the optical lens 2 includes an aperture mechanism, and the intensity of subject light incident on the image sensor 3 is adjusted by adjusting the aperture by driving the drive motor.
  • the signal processing unit 7 amplifies the imaging signal input from the imaging device 3, converts it into a digital signal, and outputs it to the CPU 10.
  • the signal processing unit 7 generates image data for each frame and outputs the image data to the CPU 10 in order to capture a moving image of a subject at, for example, 30 frames / second.
  • the CPU 10 may be configured to have the function of generating image data for each frame.
  • the operation unit 8 includes a power switch for turning on / off the power supply to the imaging apparatus 1, a release switch for instructing moving image shooting, a zoom switch for performing a zoom operation of the optical lens 2, and the like.
  • the memory card 9 used as the information recording unit records a moving image file sent from the CPU 10 via the interface 9 a and reads the recorded image file to the CPU 10. This image file is recorded in the Motion JPEG format, and JPEG compressed images for each frame are collected together.
  • various recording media such as various disk types and memory types can be used for the information recording unit.
  • the display unit 13 includes a display panel 13a (FIG. 5) configured by liquid crystal or organic EL, and displays a moving image taken by the imaging device 1.
  • the display unit 13 is also used to reproduce and display a moving image of the image file stored in the memory card 9.
  • the illumination unit 15 is used to ensure the brightness of the treatment target location (subject), and is configured by, for example, a plurality of LED elements that emit light in respective colors, and is supplied with drive power from the illumination drive unit 14. .
  • a blue LED element having a band of 400 nm to 500 nm, which is harmful to eyes.
  • the RAM 12 is an SDRAM capable of reading and writing data at high speed, for example, and temporarily stores image data output from the signal processing unit 7 and data being processed by the CPU.
  • the CPU 10 controls the operation of the medical imaging / recording apparatus based on the control program and various setting data written in the ROM 11 and the operation of various switches of the operation unit 8. Therefore, the CPU 10 executes this control program to thereby calculate the movement amount of the imaging control unit 10a, the optical lens 2 or the imaging element 3, the camera shake correction unit 10c, the compression / decompression processing unit 10d, and the recording. It functions as a control unit 10e, a reproduction control unit 10f, an illumination control unit 10g, and the like.
  • the imaging control unit 10a performs autofocus processing, zoom processing, and exposure adjustment processing by controlling the driving of a motor included in the lens adjustment mechanism 6 based on a switch operation on the operation unit 8, and performs an object adjustment by the imaging device 1. Control video shooting. Further, the imaging control unit 10a performs image processing such as white balance adjustment, color interpolation processing, and aberration correction processing on the image data for each frame sent from the signal processing unit 7.
  • the movement detection unit 10b has a function as a first movement detection unit that detects “camera shake” based on a detection signal from the acceleration sensor 4, and image recognition by the subject recognition unit 101b. It has the function as a 2nd movement detection part which detects that imaging
  • the subject recognition unit 101b is a part of the function of the movement detection unit 10b realized by the CPU 10 through control program processing.
  • the subject recognition unit 101b corresponds to, for example, a subroutine, a function, a procedure, and the like.
  • the image of the image data between consecutive frames to be captured or between adjacent frames is analyzed, the contour of the subject is extracted as a feature point, and the portion where the feature points overlap is determined as the main subject. In this case, each image between adjacent frames at intervals of 1/30 seconds or images between adjacent frames, for example, every 1/3 second, is sequentially analyzed, and the common part is recognized as the main subject.
  • the first movement detection unit of the movement detection unit 10b determines the horizontal direction (X direction), the vertical direction (Y direction), and the front-rear direction of the imaging apparatus 1 from the X, Y, and Z acceleration components output from the acceleration sensor 4.
  • the amount of movement in the (Z direction) is calculated.
  • the camera shake correction unit 10c performs control to correct camera shake by operating the image sensor displacement mechanism 5 based on the movement amount calculated by the first movement detection unit.
  • the second movement detection unit of the movement detection unit 10b determines the movement of the shooting direction by the imaging device 1 by detecting a change in the main subject recognized by the subject recognition unit 101b. At this time, the movement detection unit 10b calculates a vertical and horizontal shift value on the XY axes of the main subject in each image between adjacent frames or each image between adjacent frames. Therefore, when the calculated deviation value exceeds a preset threshold value, the movement detection unit 10b determines that the procedure is interrupted when the direction of shooting by the imaging apparatus 1 moves from the procedure target location and the main subject changes. .
  • the compression / decompression processing unit 10 d performs JPEG compression on the image data captured in the RAM 12 for each frame, and generates a moving image file for recording on the memory card 9.
  • the compression / decompression processing unit 10d decompresses the compressed image data when reproducing the moving image of the image file recorded on the memory card 9.
  • the recording control unit 10e controls writing of the image data subjected to JPEG compression for each frame to the memory card 9.
  • the reproduction control unit 10f reads out the image stored in the memory card 9 and displays it on the display unit 13.
  • the illumination control unit 10g outputs a control signal to the illumination drive unit 14 to control the supply of drive power to the illumination unit 15 and the amount of current.
  • the imaging device 1 and the illumination unit 15 that illuminates the subject are attached to a binocular loupe 20 that the operator puts on the face during the treatment.
  • a binocular loupe 20 In addition to such a binocular loupe 20, a hat or a headband may be used.
  • the imaging device 1 and the illumination unit 15 are attached to the headband 21.
  • the headband 21 is made of a resin member, and is held and fixed to the operator's head by its elasticity.
  • the headband 21 is not limited to such a configuration, and there are various forms of materials such as cloth and rubber.
  • the operator wraps the battery holding belt 22 around the waist, and the battery holding belt 22 holds the battery power source that is the operation power source of the medical imaging recording apparatus.
  • the battery power source includes a plurality of rechargeable batteries 16 connected to each other, and the battery holding belt 22 includes a mounting portion 28 for detachably inserting the battery 16.
  • a control unit 24 is mounted on the battery holding belt 22 together with these batteries 16, and the battery 16 is connected to the control unit 24.
  • a display panel 13a made of liquid crystal or organic LE of the operation unit 8 and the display unit 13 is arranged on the surface of the unit case of the control unit 24, a display panel 13a made of liquid crystal or organic LE of the operation unit 8 and the display unit 13 is arranged.
  • the display panel 13a is used as a monitor screen for a photographed image, but another display panel 13b is provided so that a person around the patient such as a surgery assistant can monitor the state of the surgery.
  • an image data signal is transmitted wirelessly from the control unit 24 to the display panel 13a, it is possible to ensure the degree of freedom of action during the operation of the operator.
  • monitoring can be performed by distributing video to a terminal device having the display panel 13b through the Internet.
  • the terminal device can capture the image taken by the network camera in real time through the Internet by designating the URL of the network camera using a WEB browser.
  • Use of a wireless LAN in this way has an advantage that the treatment can be monitored in real time even in terminal devices in various places other than the place where the treatment is performed.
  • a slot 30 into which the memory card 9 is loaded is formed on the side surface of the unit case.
  • the control board on which the CPU 10, the ROM 11, the RAM 12, the signal processing unit 7, and the display unit 13 are mounted is housed in a unit case.
  • a power cord for supplying a driving current from the control unit 24 to the imaging device 1 and the illumination unit 15, a signal line of a control signal output from the CPU 10 to the imaging element displacement mechanism 5 and the lens adjustment mechanism 6, and the acceleration sensor 4 to the CPU 10, respectively. are bundled in a cable harness 25.
  • the control unit 24 can perform a photographing operation by the imaging device 1 and an illuminating operation by the illuminating unit 15 while charging the battery 16 by connecting the charger 26 into which the plug 27 is plugged into the outlet 27. Photographing can also be performed during the treatment.
  • the operation unit 8 of the control unit 24 When the operation unit 8 of the control unit 24 is operated to turn on the power of the medical imaging / recording apparatus, the CPU 10 loads the control program in the ROM 11 and starts the operation of the medical imaging / recording apparatus. At this time, when the operator turns his face to the treatment target portion which is the subject, the imaging control unit 10a performs autofocus processing and exposure adjustment processing on the subject, and when the zoom switch of the operation unit 8 is operated, The zoom of the optical lens 2 is adjusted accordingly.
  • the illumination control unit 10g controls the illumination drive unit 14 to cause the illumination unit 15 to turn on and drive a drive current that can ensure normal brightness.
  • the imaging control unit 10a starts moving image shooting.
  • the imaging control unit 10a sequentially captures image data for each frame from the signal processing unit 7 and stores the image data in the RAM 12, and performs image processing such as white balance adjustment, color interpolation processing, and aberration correction processing on the stored image data.
  • the imaging control unit 10a sequentially reads out the image processed image data stored in the RAM 12 and outputs the image data to the display unit 13.
  • the display unit 13 displays a moving image.
  • the function of sequentially generating image data for each frame of the signal processing unit 7 may be performed by the CPU 10 executing the control program in the ROM 11.
  • the compression / decompression processing unit 10 d performs JPEG compression on the image data after image processing stored in the RAM 12.
  • the compressed image data is sent to the memory card 9 and recorded in a moving image file.
  • FIG. 7A and FIG. 8A show signal processing of an image pickup signal of an image taken by the image pickup apparatus 1 attached to the head by the binocular loupe 20 or the headband 21 when the operator performs a treatment.
  • An image based on image data captured by the imaging control unit 10a from the signal processing unit 7 for each frame when output to the unit 7 is schematically shown.
  • the imaging control unit 10a actually captures image data at 30 frames / second because the imaging device 1 captures a moving image, but for convenience of explanation, FIG. 7A and FIG. In FIG. 1, only representative frame images during a series of treatments are illustrated.
  • the imaging control unit 10a directly stores the image data of each frame fetched from the signal processing unit 7 in the RAM 12, and performs image processing such as white balance adjustment, color interpolation processing, and aberration correction processing. Then, the imaging control unit 10 a sequentially reads out the image data after image processing stored in the RAM 12 and outputs the image data to the display unit 13, and the moving image is displayed on the display unit 13.
  • the compression / decompression processing unit 10 d performs JPEG compression for each image data sequentially stored in the RAM 12.
  • the compressed image data is sent to the memory card 9 and recorded in the image file.
  • FIGS. 7B and 8B schematically show image data recorded on the memory card 9.
  • the subject recognition unit 101b recognizes the main subject from the image data of each frame that is sequentially captured from the signal processing unit 7 by the imaging control unit 10a.
  • the second movement detection unit of the movement detection unit 10b is configured to detect images between adjacent frames at 1/30 second intervals recognized by the subject recognition unit 101b or between adjacent frames, for example, every 1/3 second frame.
  • the main subject is calculated by sequentially analyzing the images of the main subject, but there is no significant difference in the main subject between the frames to be analyzed, that is, the calculated deviation value does not exceed the threshold value, and imaging is performed.
  • the apparatus 1 determines that the same subject is being continuously photographed.
  • the movement detection unit 10b recognizes the organ exposed by laparotomy as the main subject at the time of the image F3.
  • the main subject recognized at the time of the image F1 is greatly different.
  • the imaging device 1 captures the image of the assistant, and the imaging control unit 10a performs the signal processing unit. 7 to fetch the frame of the image F4.
  • the imaging control unit 10a performs the signal processing unit. 7 to fetch the frame of the image F4.
  • the recording control unit 10e prohibits writing the image data compressed by the compression / decompression processing unit 10d into the memory card 9, and the image F4 in FIG. 7A is as shown in FIG. 7B. It is not recorded on the memory card 9.
  • the imaging control unit 10a continuously captures image data for each frame from the signal processing unit 7 into the RAM 12 and performs image processing such as white balance adjustment on the captured image data. Therefore, even when the treatment is interrupted, an image taken by the imaging device 1 can be displayed on the display unit 13 and monitored. At this time, when the movement detection unit 10b determines that the direction of imaging by the imaging device 1 has moved from the treatment target location, the imaging control unit 10a captures image data for each frame from the signal processing unit 7 into the RAM 12.
  • the image F3 may be displayed on the display unit 13 as a still image.
  • the illumination control unit 10g controls the illumination drive unit 14 to stop energizing the illumination unit 15, or The amount of current to be supplied is reduced to prevent the battery 16 from being consumed.
  • the movement detection unit 10b performs pattern matching processing on the image data of each frame captured by the imaging control unit 10a from the signal processing unit 7 by the subject recognition unit 101b even after the main subject greatly fluctuates due to the interruption of the operation, and performs the main subject. It is determined whether the recognized main subject is approximate to the main subject (that is, the treatment target location) before the deviation value exceeds the threshold value. When the movement detection unit 10b detects that the main subject recognized by the subject recognition unit 101b is close to the previous main subject, the movement detection unit 10b determines that the treatment by the operator has been resumed.
  • each image after the image F5 after the resumption of the treatment is compressed by the compression / decompression processing unit 10d, and the compressed image data is sequentially recorded on the memory card 9 by the recording control unit 10e. Therefore, only the state of the treatment performed by the operator is recorded on the memory card 9 in the moving image file. Further, the illumination control unit 10g controls the illumination drive unit 14 to resume energization to the illumination unit 15 or return the supply current to a normal current amount.
  • the operator does not intend to interrupt the operation and immediately turns away from the treatment target location and immediately changes to the treatment target location.
  • the unnaturalness that the image other than the treatment target part captured by the imaging device 1 in the very short time is displayed on the display unit 13 can be eliminated.
  • the control for stopping writing of image data to the memory card 9 by the recording control unit 10e and the control for stopping the energization of the illumination unit 15 by the illumination control unit 10g or reducing the amount of current to be supplied are also the above time lag. It is recommended to do it after a period of.
  • the imaging device 1 captures the image F6 (FIG. 8A).
  • the image F6 is stored in the RAM 12 by the imaging control unit 10a, but is not recorded in the memory card 9 by the recording control unit 10e (FIG. 8B).
  • the illumination control unit 10g performs control to turn off the illumination unit 15 or reduce the illuminance.
  • the image F7 captured by the imaging control unit 10a from the signal processing unit 7 has the same main subject as the image F5. Therefore, the compressed data of the image F7 is recorded in the memory card 9.
  • the illumination control unit 10g returns the illumination unit 15 to the normal state.
  • the first movement detection unit of the movement detection unit 10b When the acceleration sensor 4 detects that the operator's head moves during shooting of such a moving image, the first movement detection unit of the movement detection unit 10b outputs X, Y, and Z output from the acceleration sensor 4. From the angular velocity, the amount of movement of the imaging device 1 in the left-right direction (X direction), the up-down direction (Y direction), and the front-rear direction (Z direction) is calculated. Distortions such as ringing and overshoot / undershoot occur at the edge portion of the detection signal from the acceleration sensor 4. Therefore, the movement detection unit 10b calculates the movement amount of the imaging device 1 after a lapse of a delay time in advance of a period in which the distortion at the edge portion in the detection signal from the acceleration sensor 4 is attenuated.
  • the movement detection unit 10b determines whether the calculated movement amount value is equal to or less than a preset blur determination threshold value.
  • the blur determination threshold is a reference for determining that the blur detected by the acceleration sensor 4 does not affect the quality of the captured image. Therefore, the movement detection unit 10b determines that the camera shake has occurred when the calculated movement amount value exceeds the blur determination threshold value.
  • the image sensor displacement mechanism 5 is controlled so as to move the image sensor 3 in a direction to cancel the shake based on the movement amount calculated at this time. For example, if the imaging device 1 is shaken in the right direction, the camera shake correction unit 10c controls the image pickup device displacement mechanism 5 to move the image pickup device 3 in the left direction by the amount of movement.
  • the processing unit 7 can generate image data that is the same as when no camera shake has occurred. Therefore, the image data in each frame output from the signal processing unit 7 to the imaging control unit 10a is in a state in which “camera shake” is corrected.
  • a correction lens is incorporated in the optical lens 2, and the camera shake that corrects the optical axis by moving the correction lens in the direction to cancel the shake is equivalent to the movement of the imaging device 1.
  • a correction mechanism may be used.
  • the control unit 10 a displays an image of image data subjected to image processing such as white balance adjustment stored in the RAM 12 on the display unit 13.
  • the image pickup control unit 10a is stored in the RAM 12 while the camera shake correction unit 10c corrects this.
  • An image of image data that has undergone image processing such as white balance adjustment is displayed on the display unit 13.
  • the movement detection unit 10b second movement detection unit
  • the image data of the image at that time is detected by the recording control unit 10e. Is not recorded on the memory card 9, and only the state of the treatment performed by the operator is recorded on the memory card 9 as a moving image. Therefore, since only the state of the treatment performed by the operator is recorded as a moving image in the memory card 9, it is very effective as a record of the treatment.
  • the amount of movement is detected electronically without using the acceleration sensor 4 to correct “camera shake”, and the shooting direction of the imaging apparatus 1 has moved from the subject (the treatment target location). Is detected. Then, “camera shake” is corrected electronically without using the image sensor displacement mechanism 5.
  • FIG. 6 is a block diagram showing a schematic configuration of the medical imaging recording apparatus according to the second embodiment.
  • This configuration is the same as that of the embodiment shown in FIG. 1 except that the acceleration sensor 4 and the image sensor displacement mechanism 5 are not present.
  • the configuration of the control program stored in the ROM 11 executed by the CPU 10 is partially different. Therefore, the movement detection unit 10b ′ and the camera shake correction unit 10c ′ in the CPU 10 in FIG. 6 perform the following control.
  • the movement detection unit 10b ′ can detect the shift amount of the main subject captured by each image between adjacent frames at 1/30 second intervals, or between adjacent frames, for example, every 1/3 second. Control is performed to calculate the amount of movement of the imaging device 1 from the amount of displacement of the main subject in the displacement image of the main subject captured by each image.
  • the camera shake correction unit 10c ′ when the movement amount calculated by the movement detection unit 10b ′ exceeds a threshold value for determining “camera shake”, the camera shake correction unit 10c ′ generates a composite image from images of two frames that are consecutive or close to each other. And control to output the image data.
  • the imaging control unit 10a ′ is added with control for storing the composite image data in which “camera shake” is corrected in the RAM 12.
  • the imaging control unit 10 a ′ starts moving image shooting by operating the release switch of the operation unit 8, and sequentially captures image data for each frame from the signal processing unit 7.
  • FIGS. 9A and 10A show an image captured by the imaging apparatus 1 mounted on the head by the binocular loupe 20 and the headband 21 described above on the signal processing unit 7 when the operator performs a treatment.
  • An image output and captured by the imaging control unit 10a ′ from the signal processing unit 7 for each frame is schematically shown. Since the image capturing apparatus 1 captures a moving image, the signal processing unit 7 actually generates image data at 30 frames / second. However, for convenience of explanation, the image processing apparatus 7 is simplified and a representative frame during a series of treatments is displayed. Only the image is shown.
  • the movement detection unit 10b ′ analyzes an image between the previous frame and the subsequent frame of each image data captured by the imaging control unit 10a ′ by the pattern matching method. Then, the contour of the subject is extracted as a feature point, and the portion where the feature points overlap is determined as the main subject.
  • the movement detection unit 10b ′ calculates the shift amount in the vertical and horizontal directions on the XY axes of the main subject in each image between adjacent frames or in each adjacent frame, and the calculated shift amount It is determined whether (the amount of movement of the imaging device 1) is within a preset range.
  • the direction of shooting by the imaging apparatus 1 is greatly moved from the subject (the treatment target location), with the lower limit being a threshold value that determines that the subject shift is not blurred and does not affect the quality of the captured image.
  • the upper limit is set to the threshold value for determining that the above has occurred. Therefore, the movement detection unit 10b ′ determines that “shake” is present when the calculated movement amount value is within a preset range.
  • this range is referred to as “camera shake detection range”.
  • the movement detection unit 10b ′ There is no significant difference between the preceding and succeeding frames in order to sequentially analyze images between adjacent frames at 1/30 second intervals or images between adjacent frames, for example, every 1/3 second.
  • the imaging apparatus 1 determines that the same subject is being continuously photographed. That is, the movement detection unit 10b ′ determines that the imaging device 1 is continuously shooting the same subject because the calculated deviation value is less than or equal to the upper limit of the “camera shake detection range”.
  • the imaging control unit 10a ′ While the movement detection unit 10b ′ determines that the imaging device 1 continuously captures the treatment target location, the imaging control unit 10a ′ includes all the images including the images F1 ′ to F3 ′.
  • the image data of the frame is stored in the RAM 12 as it is, and image processing such as white balance adjustment, color interpolation processing, and aberration correction processing is performed.
  • the imaging control unit 10 a ′ sequentially reads out the image data after image processing stored in the RAM 12 and outputs the image data to the display unit 13, so that the moving image is displayed on the display unit 13.
  • FIGS. 9B and 10B schematically show image data for each frame stored in the RAM 12.
  • the compression / decompression processing unit 10 d performs JPEG compression for each image data sequentially stored in the RAM 12.
  • the compressed image data is sent to the memory card 9 and recorded.
  • FIG. 9C and FIG. 10C schematically show image data recorded on the memory card 9.
  • the movement detection unit 10b ′ analyzes the image between the frames and extracts the contour of the subject as a feature point, the amount of movement of the imaging device 1 is calculated based on the amount of positional deviation of the main subject on the coordinate axes in both images. Is calculated. Then, the movement detection unit 10b ′ determines that the movement amount is within the “hand shake detection range” as “hand shake”.
  • the position of the main subject is shifted in the horizontal (X-axis) direction, and the imaging device that is calculated by the movement detection unit 10b ′ Since the value of the moving amount of 1 is within the “camera shake detection range”, it is determined as “camera shake”.
  • the camera shake correction unit 10c ′ generates the superimposed composite image F4A by taking the average of the coordinates of the main subjects of the images F3 ′ and F4 ′.
  • the imaging control unit 10a ′ stores the composite image F4A generated by the camera shake correction unit 10c in the RAM 12 (FIG. 9B), and performs white balance adjustment. Then, image processing such as color interpolation processing and aberration correction processing is performed, and the image data of the composite image F4A after the image processing is output to the display unit 13. Further, the compression / decompression processing unit 10d performs JPEG compression on the image data of the composite image F4A. The compressed image data is sent to the memory card 9 and recorded (FIG. 9C).
  • the image F4 ′ in which “camera shake” has occurred is corrected to an image F4A.
  • the imaging device 1 captures the image of the assistant and controls imaging.
  • the unit 10a ′ takes in the image data of the image F5 ′ from the signal processing unit 7.
  • the imaging device calculates from the deviation The value of the movement amount of 1 exceeds the upper limit of the “camera shake detection range”, and it is determined that the shooting direction of the imaging apparatus 1 has moved from the subject.
  • the camera shake correction unit 10c ′ does not perform a process of generating a composite image of the images of both frames when the movement amount of the imaging device 1 exceeds the upper limit of the “camera shake detection range”.
  • the imaging control unit 10a ′ stores the image data as it is in the RAM 12 (FIG. 9B), reads out the image data after performing image processing such as white balance adjustment, color interpolation processing, and aberration correction processing on the display unit 13.
  • the imaging control unit 10a ′ stops the display of the captured image in real time by the imaging device 1, while the captured image F4A of the treatment target portion immediately before that imaged by the imaging device 1 is displayed as a still image. 13 may be displayed.
  • the recording control unit 10e ′ prohibits the operation of writing the subsequent frames to the memory card 9 (FIG. 9 ( c)). Further, the illumination control unit 10g controls the illumination drive unit 14 to stop energization to the illumination unit 15 or reduce the amount of current to be supplied.
  • the imaging control unit 10a ′ does not change the signal processing unit. Pattern matching processing is performed on the image data of each frame captured from No. 7, and it is determined whether the main subject (that is, the treatment target location) before the movement amount exceeds the upper limit of the “camera shake detection range” is approximate to the image data To do. Then, when the movement detection unit 10b detects that the main subject recognized by the subject recognition unit 101b approximates the main subject before the shooting direction of the imaging apparatus 1 moves, it is determined that the treatment by the operator has been resumed. To do.
  • each image after the image F6 ′ after the resumption of the operation is compressed by the compression / decompression processing unit 10d, and the compressed image data is sequentially recorded on the memory card 9 by the recording control unit 10e (FIG. 10C).
  • the illumination control unit 10g controls the illumination drive unit 14 to resume energization to the illumination unit 15 or return the supply current to a normal current amount.
  • a time lag period of, for example, 0.2 seconds to 0.5 seconds as described above, a movement in which the operator turns away from the treatment target portion for a moment and immediately turns the face to the treatment target portion.
  • Images other than the treatment target location by the imaging device 1 when the image is taken may not be displayed on the display unit 13.
  • the control for stopping the writing of image data to the memory card 9 by the recording control unit 10e and the control for stopping the energization of the illumination unit 15 by the illumination control unit 10g or reducing the amount of current to be supplied are also described above. You may make it carry out after the period.
  • the imaging device 1 captures the image F7 ′ (FIG. 10A).
  • the image F7 ′ is stored in the RAM 12 by the imaging control unit 10a ′ (FIG. 10B), but is not recorded in the memory card 9 by the recording control unit 10e (FIG. 10C). Since the operator's line of sight returns to the subject and the image F8 ′ output from the imaging device 1 has the same main subject as the image F6 ′, the compressed data of the image F6 is recorded in the memory card 9.
  • the position of the main subject is shifted in the vertical (Y-axis) direction with respect to the image F8 ′, and the movement detection unit 10b detects the image shift. If the value of the movement amount of the imaging apparatus 1 calculated from the deviation is within the “handshake detection range”, it is determined as “handshake”.
  • the camera shake correction unit 10c generates the composite image F9A by superimposing the average coordinates of the main subjects of the images F8 ′ and F9 ′.
  • the image data of the composite image F9A is stored in the RAM 12 (FIG. 10B), and the compressed image data is recorded on the memory card 9 (FIG. 10C).
  • the image data in each frame from the image 9 ′ to the image F10 ′ is also stored in the RAM 12 by the imaging control unit 10a ′ when “movement blur” is not detected by the movement detection unit 10b ′.
  • An image of image data subjected to image processing such as white balance adjustment is displayed on the display unit 13.
  • image data of the composite image generated from the image data of the previous and subsequent frames is subjected to image processing, stored in the RAM 12, and displayed on the display unit 13.
  • the image data of the image deviated from the main subject by the movement detection unit 10b ′ is not recorded in the memory card 9. Therefore, only the state of the treatment performed by the operator is recorded in the memory card 9 as a moving image, which is very effective as a record of the treatment.
  • the imaging device 1 captures an image of a subject (shooting a subject) while suppressing the “camera shake” by detecting the “camera shake” from the displacement of two frames of images that are continuous or close to each other. In the case where it is far from the treatment target location), it is possible to save only the effective recorded video by stopping the recording of the captured image of that portion.
  • the present invention relates to a medical imaging recording apparatus capable of photographing the progress of a procedure with an imaging device attached to the body of an operator and recording only a series of images directly related to the procedure, and has industrial applicability. Have.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Gynecology & Obstetrics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Studio Devices (AREA)

Abstract

 撮像装置の画像が施術の処理に直接関係しない画像を捉えたときこの画像を記録装置には記録しない医療用撮像記録装置の提供を目的とする。被写体からの反射光を撮像素子3で光電変換して撮像信号を生成する撮像装置1であって、撮像制御部10a´は、前記撮像信号を処理して動画を形成する1フレームごとに生成される画像データを表示部13に表示する。記録制御部10eは、メモリカード9にこの画像データを記録する。そして、移動検出部10b´は、連続又は近接している前記フレーム間の前記画像データを順次比較して、連続又は近接しているフレーム間での主要被写体のずれから撮像装置1の移動量を算出し、移動量が予め設定した範囲内の場合には、手ブレ補正部10c´はブレ補正を行って、移動量が前記範囲の上限を超える場合には、記録制御部10eは画像データのメモリカード9への記録を中止する。

Description

医療用撮像記録装置
 本発明は、医療施術の際の施術内容を撮影して記録する医療用撮像記録装置に関する。
 作業を行う作業者の身体に、CCD型やCMOS型の撮像素子を備えたデジタル・ビデオ・カメラ等の撮像装置を装着して、作業の様子を動画によって撮影することが一般に行われている。
 特に、医療施術の分野においては、オペレーターによって行われる施術対象箇所への手術内容を動画で撮影して画像を記録として残しておけば、施術後に手術内容を施術対象者や家族に対して行う際の説明の資料や、学会又は医学教育用の資料として使用することができ利用価値が高い。
 このような要望を満たすものとしては、施術時にオペレーターが頭部や顔に着用する双眼ルーペやヘッドバンドに撮像装置を取り付けて、オペレーターが凝視する施術対象箇所を撮像装置によって撮像する医療用撮像装置が知られている(例えば、特許文献1及び特許文献2を参照)。
 しかし、撮像装置によって撮像範囲に含まれる被写体を撮影する際、いわゆる「手ブレ」の問題がある。ここで言う「手ブレ」とは、医療施術時にオペレーターの身体や頭部の動きにより撮像装置が揺れて映像にブレを生じることを意味している。医療施術のような精緻な作業では細かい手の動きによる小刻みな動作を伴い、オペレーターの身体に装着されている撮像装置はシャッターが開いている間に動かされると、映像にブレを生じて映像が不鮮明となる。
 こうした「手ブレ」を抑制するには、デジタルカメラにおいては、加速度センサを用いたり、或いは動画の連続する2フレームの画像ずれを検出することにより手ブレ情報を取得して、画像データに補正を加えて「手ブレ」を修正することが知られている(例えば、特許文献3を参照)。
特開2003-204972号公報 特開2009-98570号公報 特開2009-77265号公報
 しかしながら、撮像結果を記録として残す撮像記録装置の場合は、「手ブレ」等による画像の乱れ以外にも、撮像して記録に残しておくべき被写体が撮影対象から外れると記録映像として不適となる。すなわち、オペレーターの頭部や顔に装着されて、医療施術中にオペレーターが凝視している施術対象箇所を撮像する医療用撮像装置においては、例えば、施術中に施術補助者に指示等を与えたり、或いは長い医療施術時間中にリラックスするために身体を軽く動かしたりして顔の向きが施術対象箇所から離れたとき、撮像装置は施術対象箇所以外をも撮影してしまいその画像が記録映像に紛れ込み不完全な記録映像となる。この場合、オペレーターがこうした施術の中断の都度、動画撮影のレリーズスイッチを操作するのは煩わしく、また手や指先には患者の血や体液が付着しているために操作するのも困難である。
 上記課題に鑑み、撮像装置による撮影の向きが移動して画像が被写体(施術対象箇所)から離れるような場合には、その部分の撮像画像の記録を停止することで、良好な記録映像を保存しておくことができる医療用撮像記録装置の提供を目的としている。
 上記課題を解決するために、少なくとも、光学レンズと、撮像時に前記光学レンズを通して被写体から導入される光を光電変換して撮像信号を生成する撮像素子とを有する撮像装置を医療施術時のオペレーターの身体に装着して撮像する医療用撮像記録装置であって、前記撮像信号に基づき動画を構成するフレームごとに生成される画像データから前記動画を表示部に表示するよう制御する撮像制御部と、前記画像データを順次記録する情報記録部と、連続又は近接しているフレーム間の前記画像データを順次比較して、前記フレーム間での主要被写体のずれから前記撮像装置の移動量を算出する移動検出部と、前記移動量が予め設定した範囲内の場合は前記移動量に応じた移動による前記動画のずれを補正する手ブレ補正部と、前記移動量が前記範囲の上限を超える場合は前記情報記録部への前記画像データの記録の中止を制御する記録制御部と、を備える。これにより、画像認識によって撮像装置による撮影の向きの変動を検出して、前記画像データの記録を中止することができる。
 このとき、前記撮像制御部は、前記移動量が前記範囲の上限を超える場合は前記動画の表示を停止する。この場合、前記移動量が前記範囲の上限を超えたことを前記移動検出部が検出してから所定のタイムラグの期間を置くとよい。
 また、前記撮像制御部は、前記動画の表示を停止した後は、前記移動が前記範囲の上限を超える前の前記画像データを静止画で表示するよう制御する。この場合、前記撮像制御部は、前記移動量が前記範囲の上限を超えていることを前記移動検出部が検出してから所定のタイムラグの期間を置いて、前記静止画を表示する制御を行うとよい。
 そして、前記移動量が前記範囲の上限を超えた後に、前記移動検出部が検出する主要被写体が前記範囲の上限を超える前の前記主要被写体に近似したとき、前記記録制御部は、前記情報記録部による前記画像データの記録の再開を制御し、前記撮像制御部は、前記動画の表示の再開を制御する。
 一方、前記移動量が前記範囲内の場合は手ブレとして、手ブレ補正部によって、連続又は近接している複数のフレームの前記画像データを合成して補正画像データを生成する。
 本発明による医療用撮像記録装置は、少なくとも、光学レンズと、撮像時に前記光学レンズを通して被写体から導入される光を光電変換して撮像信号を生成する撮像素子とを有する撮像装置を医療施術時のオペレーターの身体に装着して撮像する医療用撮像記録装置であって、前記撮像信号に基づき動画を構成するフレームごとに生成される画像データから前記動画を表示部に表示するよう制御する撮像制御部と、前記画像データを順次記録する情報記録部と、前記撮像装置の移動を検知する加速度センサと、前記加速度センサの検知信号から前記撮像装置の移動量を算出する第1の移動検出部と、前記第1の移動検出部が算出する移動量に応じた移動による前記動画のブレを打ち消すよう制御する手ブレ補正部と、連続又は近接しているフレーム間の前記画像データを順次比較して、前記フレーム間での主要被写体のずれから前記撮像装置の移動量を算出する第2の移動検出部と、前記第2の移動検出部が算出する移動量が予め設定した閾値以上となると前記画像データの記録の中止を制御する記録制御部と、を備える。
 本発明による医療用撮像記録装置によれば、撮像装置が施術の処理に直接関係しない画像を捉えたときにはこの画像が記録装置に記録されないために、オペレーターはその都度撮像装置による撮影をオフさせる必要がなく、オペレーターの身体に撮像装置を装着するだけで施術の有効な記録を保存しておくことができる。
本発明の第1の実施形態に係る医療用撮像記録装置の構成をブロックによって示す図。 撮像装置と照光部を備えた双眼ルーペの説明図。 撮像装置と照光部を備えたヘッドバンドの説明図。 本発明の実施形態に係る医療用撮像記録装置をオペレーターに装着した例を示す説明図。 本発明の実施形態に係る医療用撮像記録装置のコントロールユニットを示す説明図。 本発明の第2の実施形態に係る医療用撮像記録装置の電気回路をブロックによって示す図。 (a)は本発明の第1の実施形態に係る医療用撮像記録装置において1フレーム毎の画像を模式的に示す説明図、(b)はメモリカードに記録される画像データを模式的に示す説明図。 図7に引き続いて、(a)は本発明の第1の実施形態に係る医療用撮像記録装置において1フレーム毎の画像を模式的に示す説明図、(b)はメモリカードに記録される画像データを模式的に示す説明図。 (a)は本発明の第2の実施形態に係る医療用撮像記録装置において1フレーム毎の画像を模式的に示す説明図、(b)はRAMに記憶される画像データを模式的に示す説明図、(c)はメモリカードに記録される画像データを模式的に示す説明図。 図9に引き続いて、(a)は本発明の第2の実施形態に係る医療用撮像記録装置において1フレーム毎の画像を模式的に示す説明図、(b)はRAMに記憶される画像データを模式的に示す説明図、(c)はメモリカードに記録される画像データを模式的に示す説明図。
 以下、本発明の最適な実施形態について図面を参照しながら説明する。
[第1の実施形態]
 図1は、第1の実施形態での本発明に係る医療用撮像記録装置の概略構成をブロック図により示している。
 撮像装置1は動画を撮像するデジタル・ビデオ・カメラであり、撮像時に被写体からの光を入射させる光学レンズ2と、光学レンズ2を通しての被写体からの反射光をアナログの電気信号に光電変換して撮像信号を生成するCCDやCMOSによる撮像素子3と、加速度センサ4と、撮像素子変位機構5と、レンズ調整機構6とを有する。
 加速度センサ4は「手ブレ」を検出するもので、例えば、3軸タイプのものが使用されて、オペレーターの首の軸を中心とする互いに直交するX・Y・Zの3軸方向の移動の角速度を加速度で検出し、検出した信号をA/D変換等の処理を行ってCPU10に出力する。
 撮像素子変位機構5は、後述する移動検出部10bによって検出される加速度から算出された撮像装置1の移動量に基づいて撮像素子3を移動させることにより、「手ブレ」による映像の乱れを防止する。
 レンズ調整機構6は、ピント合わせ及びズーミングを行うために、内蔵している駆動モータにより光学レンズ2を移動させる。なお、図示しないが、光学レンズ2は絞り機構を備えており、この駆動モータの駆動により絞りを調節することで、撮像素子3に入射する被写体光の強度を調節する。
 信号処理部7は、撮像素子3から入力される撮像信号を増幅し、デジタル信号に変換してCPU10に出力する。本実施形態による医療用撮像記録装置では、例えば30フレーム/秒で被写体の動画撮像を行うために、信号処理部7は1フレームごとの画像データを生成してCPU10に出力する。この1フレームごとの画像データを生成する機能はCPU10に持たせて構成してもよい。
 操作部8は、撮像装置1への電源供給をオン/オフするための電源スイッチ、動画撮影を指示するレリーズスイッチ及び光学レンズ2のズーム操作を行うズームスイッチなどから構成される。
 情報記録部として利用するメモリカード9は、インターフェース9aを介して、CPU10から送られる動画の画像ファイルを記録すると共に、記録している画像ファイルをCPU10に読み出す。この画像ファイルは、Motion JPEG形式で記録するもので、1フレーム毎の画像をJPEG圧縮したものが連続してまとめられる。情報記録部には、メモリカード以外にも種々のディスクタイプやメモリタイプ等の各種の記録メディアが使用できる。
 表示部13は、液晶又は有機ELによって構成される表示パネル13a(図5)を備えて、撮像装置1が撮影した動画を表示する。また、表示部13は、メモリカード9に保存した画像ファイルの動画を再生表示するのにも用いられる。
 照光部15は、施術対象箇所(被写体)の明るさを確保するために用いられ、例えば、それぞれ各色で発光する複数のLED素子によって構成されており、照光駆動部14から駆動電源が供給される。この場合、目に有害とされる400nm乃至500nmの帯域の青色LED素子は避けるのが好ましい。
 RAM12は、例えば高速でのデータの読み出しと書き込みが可能なSDRAMであり、信号処理部7から出力される画像データやCPUによる処理中のデータが一時的に記録される。
 CPU10は、ROM11に書き込まれている制御プログラムや種々の設定データ、及び操作部8の各種スイッチの操作に基づき医療用撮像記録装置の動作を制御する。したがって、CPU10は、この制御プログラムを実行することで、撮像制御部10a、光学レンズ2又は撮像素子3の移動量を算出する移動検出部10b、手ブレ補正部10c、圧縮伸長処理部10d、記録制御部10e、再生制御部10f及び照光制御部10g等として機能する。
 ここで、CPU10によるこの各制御機能について説明する。
 撮像制御部10aは、操作部8でのスイッチ操作に基づき、レンズ調整機構6に含まれるモータの駆動を制御することで、オートフォーカス処理、ズーム処理及び露出調整処理を行って撮像装置1による被写体の動画撮影を制御する。また、撮像制御部10aは、信号処理部7から送られてくる1フレーム毎の画像データにホワイトバランス調整、色補間処理及び収差補正処理などの画像処理を行う。
 移動検出部10bは、図示していないが、加速度センサ4からの検知信号によって「手ブレ」を検出する第1の移動検出部としての機能と、被写体認識部101bでの画像認識により撮像装置1の撮影が施術対象箇所から切り換わったことを検出する第2の移動検出部としての機能を有している。被写体認識部101bは、CPU10が制御プログラム処理によって実現される移動検出部10bの機能の一部であり、例えばサブルーチン、関数、プロシージャ等に相当するもので、撮像制御部10aが信号処理部7から取り込む連続又は近接しているフレーム間の画像データの画像を解析して、被写体の輪郭を特徴点として抽出し、特徴点が重なる部分を主要被写体と判断する。この場合、1/30秒間隔での隣り合うフレーム間での各画像又は近接している例えば1/3秒ごとのフレーム間での画像を順次解析して、共通部分を主要被写体として認識する。
 移動検出部10bの第1の移動検出部は、加速度センサ4から出力されるX・Y・Zの加速度成分から、撮像装置1の左右方向(X方向)、上下方向(Y方向)及び前後方向(Z方向)の移動量を算出する。これにより、手ブレ補正部10cは、第1の移動検出部が算出した移動量に基づいて撮像素子変位機構5を動作させて手ブレを補正する制御を行う。
 一方、移動検出部10bの第2の移動検出部は、被写体認識部101bが認識する主要被写体の変化を検出することで撮像装置1による撮影の向きの移動を判定する。このとき、移動検出部10bは、隣り合うフレーム間での各画像又は近接しているフレーム間での各画像における主要被写体のX-Y軸で縦横方向のずれの値を算出している。したがって、移動検出部10bは、算出したずれの値が予め設定した閾値を超えると、撮像装置1による撮影の向きが施術対象箇所から移動して主要被写体が変化すると、施術が中断されたと判断する。
 圧縮伸長処理部10dは、RAM12に取り込まれた画像データを1フレーム毎にJPEG圧縮を行って、メモリカード9に記録するための動画の画像ファイルを生成する。また、圧縮伸長処理部10dは、メモリカード9に記録された画像ファイルの動画の再生時には、圧縮画像データを伸長処理する。
 記録制御部10eは、1フレーム毎にJPEG圧縮を行った画像データのメモリカード9への書き込みを制御する。
 再生制御部10fは、メモリカード9に保存した画像を読み出して表示部13に表示する。
 照光制御部10gは、照光駆動部14に制御信号を出力して照光部15への駆動電源の供給およびその電流量を制御する。
 次に、撮像装置1をオペレーターの身体に装着する実施例について説明する。図2に示す例では、オペレーターが施術時に顔面に掛ける双眼ルーペ20に撮像装置1と被写体を照らす照光部15とを取り付けている。このような双眼ルーペ20以外にも、帽子やヘッドバンドであっても良い。図3はヘッドバンド21に撮像装置1と照光部15とを取り付けている。このヘッドバンド21は樹脂部材で構成されており、オペレーターの頭部にその弾性により保持して固定される。ヘッドバンド21はこのような構成に限らず、また材質も布やゴム等による種々な形態がある。
 また、オペレーターは、図4及び図5に示すように腰にバッテリー保持ベルト22を巻いて、このバッテリー保持ベルト22によって本医療用撮像記録装置の動作電源となるバッテリー電源を保持している。バッテリー電源は互いに接続された複数の充電式のバッテリー16で構成されて、バッテリー保持ベルト22は、このバッテリー16を着脱自在に差し込むための装着部28を備えている。さらに、バッテリー保持ベルト22には、これらバッテリー16と共にコントロールユニット24が装着されていて、バッテリー16は、コントロールユニット24に繋がっている。
 コントロールユニット24のユニットケースの表面には、操作部8と表示部13の液晶又は有機LEによる表示パネル13aが配置されている。表示パネル13aは撮影画像のモニター画面として用いられるが、施術補助者等の周囲の人にも施術の様子がモニターできるように別の表示パネル13bが設けられる。この場合、コントロールユニット24から表示パネル13aに無線により画像データの信号を送るようにすれば、オペレーターの施術時における行動の自由度を確保できる。
 また、撮像装置1にWi-Fiによるネットワーク・カメラを使用すれば、インターネットを通じて表示パネル13bを備えた端末装置に映像を配信することでモニタリングができる。このとき、この端末装置は、WEBブラウザでネットワーク・カメラのURLを指定することで、施術の状況をリアルタイムでインターネットを通じて、ネットワーク・カメラの撮影画像を取り込むことができる。このように無線LANを使用すれば、施術を行う現場以外のいろいろな場所での端末装置においてもリアルタイムで施術のモニタリングができる利点がある。
 そして、このユニットケースの側面には、メモリカード9が着雑自在に装填されるスロット30が形成されている。そして、CPU10、ROM11、RAM12、信号処理部7及び表示部13が実装される制御基板は、ユニットケース内に収納されている。
 また、コントロールユニット24から撮像装置1及び照光部15へ駆動電流を供給する電源コード、CPU10から撮像素子変位機構5やレンズ調整機構6にそれぞれ出力する制御信号の信号線及び加速度センサ4からCPU10への入力信号線が束になってケーブルハーネス25にまとめられている。
 コントロールユニット24は、コンセント27にプラグが差し込まれる充電器26を接続すれば、バッテリー16への充電を行いながら撮像装置1による撮影動作と照光部15による照光動作を行うことができ、長時間の施術においても撮影を行うことができる。
 上記の医療用撮像記録装置の動作について説明する。コントロールユニット24の操作部8を操作して、医療用撮像記録装置の電源をオンにすると、CPU10はROM11の制御プログラムをロードして医療用撮像記録装置の動作が開始される。このとき、オペレーターが被写体である施術対象箇所に顔を向けると、撮像制御部10aは、被写体に対するオートフォーカス処理及び露出調整処理を行うと共に、操作部8のズームスイッチが操作されたときは、これに応じて光学レンズ2のズームを調整する。また、照光制御部10gは、照光駆動部14を制御して通常の明るさを確保できる駆動電流を照光部15に流して点灯させる。
 そして、操作部8のレリーズスイッチの操作により、撮像制御部10aは動画撮影を開始する。撮像制御部10aは、信号処理部7から1フレーム毎の画像データを順次取り込んでRAM12に記憶し、記憶した画像データにそれぞれホワイトバランス調整、色補間処理及び収差補正処理などの画像処理を行う。そして、撮像制御部10aは、RAM12に記憶している画像処理した画像データを順次読み出して表示部13に出力し、表示部13では動画が表示される。前述したように、信号処理部7の1フレーム毎の画像データを順次生成する機能を、CPU10がROM11の制御プログラムを実行することで行うようにしてもよい。
 一方、圧縮伸長処理部10dは、RAM12に記憶されている画像処理後の画像データにJPEG圧縮を行う。圧縮画像データは、メモリカード9に送られて動画の画像ファイルに記録される。
 図7(a)及び図8(a)は、オペレーターが施術を行うときに、前述の双眼ルーペ20やヘッドバンド21により頭部に装着された撮像装置1が撮影する画像の撮像信号を信号処理部7に出力したとき、撮像制御部10aが信号処理部7から1フレーム毎に取り込む画像データによる画像を模式的に示している。撮像制御部10aは、撮像装置1によって動画を撮影しているために、実際には30フレーム/秒で画像データを取り込んでいるが、説明の便宜上、図7(a)及び図8(a)では簡略化して一連の施術中の代表的なフレームの画像だけを例示している。
 撮像制御部10aは、信号処理部7から取り込む各フレームの画像データをそのままRAM12に記憶して、ホワイトバランス調整、色補間処理及び収差補正処理などの画像処理を行う。そして、撮像制御部10aは、RAM12が記憶している画像処理後の画像データを順次読み出して表示部13に出力し、表示部13に動画が表示される。
 一方、圧縮伸長処理部10dは、RAM12に順次記憶された画像データ毎にJPEG圧縮を行う。圧縮画像データは、メモリカード9に送られて画像ファイルに記録される。図7(b)及び図8(b)は、メモリカード9に記録される画像データを模式的に示している。
 図7及び図8を用いて動作を説明すると、被写体認識部101bは、撮像制御部10aが信号処理部7から順次取り込む各フレームの画像データから主要被写体を認識する。移動検出部10bの第2の移動検出部は、被写体認識部101bが認識する1/30秒間隔での隣り合うフレーム間での各画像又は近接している例えば1/3秒ごとのフレーム間での画像を順次解析して主要被写体のずれを算出するが、解析していく各フレーム間での主要被写体には大きな相違はなく、すなわち、算出するずれの値は閾値を超えておらず、撮像装置1は同じ被写体を継続して撮影しているものと判断する。しかしながら、厳密に言えば、主要被写体は施術の進行に伴い徐々に変化していくために、移動検出部10bは、画像F3の時点では、開腹により露出された臓器を主要被写体として認識しており、画像F1の時点で認識した主要被写体とは大きく異なることになる。
 このとき、例えば、オペレーターが施術補助者に指示を与えるために施術を中断して補助者に顔を向けたとすると、撮像装置1は補助者の画像を捉えて、撮像制御部10aは信号処理部7から画像F4のフレームを取り込むことになる。このように被写体が急に切り替わると、移動検出部10bがここまでに各フレームどうしを順次パターンマッチングを行って認識してきた主要被写体からは大きなずれを生じることになる。よって、主要被写体が大きく変動したときには、算出しているずれの値が予め設定した閾値を超えるために、移動検出部10bは、撮像装置1による撮影の向きが被写体(施術対象箇所)から移動したことを判断する。
 これにより、記録制御部10eは、圧縮伸長処理部10dが圧縮処理した画像データをメモリカード9へ書き込むのを禁止して、図7(a)の画像F4は、図7(b)で示すようにメモリカード9には記録されない。撮像制御部10aは、信号処理部7からの1フレーム毎の画像データのRAM12への取り込みと、取り込んだ画像データに対するホワイトバランス調整等の画像処理を継続して行う。したがって、施術が中断された状態でも撮像装置1による撮影画像は表示部13で表示されてモニターすることができる。このとき、移動検出部10bが撮像装置1による撮影の向きが施術対象箇所から移動したと判断したとき、撮像制御部10aは、信号処理部7からの1フレーム毎の画像データのRAM12への取り込みと、取り込んだ画像データに対するホワイトバランス調整等の画像処理を中止して、撮像装置1が施術対象箇所以外を撮影している間においては、撮像装置1が撮影したその直前の施術対象箇所の撮影画像F3を静止画で表示部13にて表示してもよい。
 移動検出部10bが撮像装置1による撮影の向きが施術対象箇所から移動したと判断したとき、照光制御部10gは照光駆動部14を制御して、照光部15への通電を停止するか、又は供給する電流量を低下させて、バッテリー16の消耗を防ぐ。
 移動検出部10bは、施術の中断により主要被写体が大きく変動してからも、被写体認識部101bによって撮像制御部10aが信号処理部7から取り込む各フレームの画像データのパターンマッチング処理を行って主要被写体を認識しており、認識した主要被写体がずれの値が閾値を超える前の主要被写体(すなわち施術対象箇所)に近似しているかを判定している。そして、移動検出部10bは、被写体認識部101bが認識した主要被写体が以前の主要被写体に近似していることを検出すると、オペレーターによる施術が再開されたと判断する。これにより、施術再開後の画像F5以降の各画像は圧縮伸長処理部10dによって圧縮処理されて、圧縮画像データは、記録制御部10eによってメモリカード9に順次記録される。したがって、メモリカード9には、オペレーターが行う施術の様子だけが動画の画像ファイルに記録されることになる。また、照光制御部10gは照光駆動部14を制御して、照光部15への通電を再開又は供給電流を通常の電流量に戻す。
 この場合に、例えば0.2秒から0.5秒のタイムラグの期間を設けることで、オペレーターが手術の中断を意図しておらず、施術対象箇所から一瞬顔を背けてまた直ぐに施術対象箇所に顔を向けるような動きをしたときは、撮像装置1がそのごく短い時間に捉えた施術対象箇所以外の画像が、表示部13で表示される不自然さを解消できる。そして、記録制御部10eによるメモリカード9への画像データの書き込み停止の制御と、照光制御部10gによる照光部15への通電を停止するか、又は供給する電流量を低下させる制御も上記のタイムラグの期間を置いて行うようにするとよい。
 次に、オペレーターが施術中に天井のライトに顔を向けたとすると、撮像装置1は画像F6(図8(a))を捉えることになる。この画像F6は撮像制御部10aによってRAM12に記憶されるが、記録制御部10eによってメモリカード9には記録されない(図8(b))。照光制御部10gも同様に、照光部15を消灯又は照度を低下させる制御を行う。
 そして、オペレーターの視線が施術対象箇所に戻ると、撮像制御部10aが信号処理部7から取り込む画像F7は、画像F5と主要被写体が共通するために、画像F7の圧縮データはメモリカード9に記録されると共に表示部13に表示させて、照光制御部10gは照光部15を通常に戻す。
 このような動画の撮影中に、オペレーターの頭部が動くのを加速度センサ4が検出すると、移動検出部10bの第1の移動検出部は、加速度センサ4から出力されるX・Y・Zの角速度から、撮像装置1の左右方向(X方向)、上下方向(Y方向)及び前後方向(Z方向)の移動量を算出する。加速度センサ4からの検知信号のエッジ部分にはリンギングやオーバーシュート/アンダーシュートなどのひずみが生じている。よって、移動検出部10bは、加速度センサ4からの検知信号におけるエッジ部でのひずみが減衰する期間を予め見越した遅延時間の経過後に撮像装置1の移動量を算出する。
 そして、移動検出部10bは、算出した移動量の値が予め設定したブレ判断閾値以下であるかを判定する。このブレ判断閾値は、加速度センサ4が検出したブレが撮影画像の品質に影響を与えない程度の移動と判断する基準となるものである。よって、移動検出部10bは、算出した移動量の値がこのブレ判断閾値を超えているときは「手ブレ」と判断する。
 移動検出部10bは「手ブレ」と判断すると、このとき算出した移動量に基づいて、そのブレを打ち消す方向に撮像素子3を移動させるように撮像素子変位機構5を制御する。例えば、撮像装置1が右方向にブレを生じているとすると、手ブレ補正部10cは撮像素子変位機構5に対し、撮像素子3を左方向に移動量分だけ動かす制御を行うことで、信号処理部7は「手ブレ」が生じていないときと同様な画像データを生成することができる。よって、信号処理部7が撮像制御部10aに出力する各フレームでの画像データは「手ブレ」が補正された状態となっている。尚、「手ブレ」を機構的に補正するには、光学レンズ2に補正レンズを組み込み、撮像装置1が移動した分、ブレを打ち消す方向に補正レンズを動かすことで光軸を補正する手ブレ補正機構を用いてもよい。
 このように、加速度センサ4からの検知信号によって移動検出部10bが算出する移動量が、「手ブレ」の発生を判断する閾値を超えたときは、手ブレ補正部10cにより補正しつつ、撮像制御部10aはRAM12に記憶されたホワイトバランス調整などの画像処理された画像データの画像を表示部13に表示する。
 以上のごとく、移動検出部10b(第1の移動検出部)が加速度センサ4によって「手ブレ」を検出すると、手ブレ補正部10cがこれを補正しつつ、撮像制御部10aはRAM12に記憶されたホワイトバランス調整などの画像処理された画像データの画像を表示部13に表示する。そして、移動検出部10b(第2の移動検出部)が被写体認識部101bによって撮像装置1による撮影が施術対象箇所から切り換わったことを検出すると、記録制御部10eによってそのときの画像の画像データはメモリカード9には記録されず、メモリカード9には、オペレーターが行う施術の様子だけが動画で記録される。したがって、メモリカード9には、オペレーターが行う施術の様子だけが動画で記録されるために施術の記録として大いに有効である。
[第2の実施形態]
 第2の実施形態では、加速度センサ4を用いずに電子的に移動量を検出して「手ブレ」を補正すると共に、撮像装置1による撮影の向きが被写体(施術対象箇所)から移動したことを検知するものである。そして、撮像素子変位機構5を用いずに電子的に「手ブレ」を補正する。
 図6は、第2の実施形態による医療用撮像記録装置の概略構成をブロック図で示している。この構成においては、加速度センサ4及び撮像素子変位機構5が存在しない以外は図1に示した実施形態と同じ構成である。しかし、加速度センサ4及び撮像素子変位機構5が存在しないため、CPU10が実行するROM11に格納された制御プログラムの構成が一部異なっている。よって、図6でのCPU10における、移動検出部10b´と手ブレ補正部10c´は、次の制御を行う。
 すなわち、移動検出部10b´は、1/30秒間隔での隣り合うフレーム間での各画像が捉えている主要被写体のずれ量、又は近接している例えば1/3秒ごとのフレーム間での各画像が捉えている主要被写体のずれ画像における主要被写体のずれ量から撮像装置1の移動量を算出する制御を行う。
 また、手ブレ補正部10c´は、移動検出部10b´が算出した移動量が「手ブレ」を判断する閾値を超えているとき、連続する又は近接している2つのフレームの画像から合成画像を生成して、その画像データを出力する制御を行う。
 そして、撮像制御部10a´は、撮像制御部10aで説明した制御に加えて、「手ブレ」を補正した合成画像データをRAM12に記憶させる制御が追加される。
 図6の医療用撮像記録装置の動作を説明する。撮像制御部10a´は、操作部8のレリーズスイッチの操作により動画撮影を開始し、信号処理部7から1フレーム毎の画像データを順次取り込む。
 図9(a)及び図10(a)は、オペレーターが施術を行うときに、前述の双眼ルーペ20やヘッドバンド21により頭部に装着された撮像装置1が撮影する画像を信号処理部7に出力し、撮像制御部10a´が信号処理部7から1フレーム毎に取り込む画像を模式的に示している。撮像装置1は動画を撮影しているために、信号処理部7は実際には30フレーム/秒で画像データを生成するが、説明の便宜上、簡略化して一連の施術中の代表的なフレームの画像のみを示している。
 移動検出部10b´は、図1で説明した被写体認識部101bと同様にパターンマッチングの手法により撮像制御部10a´が取り込むフレーム毎の各画像データの前フレームと後フレーム間での画像を解析して、被写体の輪郭を特徴点として抽出し、特徴点の重なる部分を主要被写体と判断する。
 そして、移動検出部10b´は、隣り合うフレーム間での各画像又は近接しているフレーム間での各画像における主要被写体のX-Y軸で縦横方向のずれ量を算出し、算出したずれ量(撮像装置1の移動量)が予め設定した範囲内にあるかを判定している。この範囲は、被写体のずれがブレと感じさせず撮影画像の品質に影響を与えない程度の移動と判断する閾値を下限として、撮像装置1による撮影の向きが被写体(施術対象箇所)から大きく移動したと判断する閾値を上限としている。よって、移動検出部10b´は、算出した移動量の値が予め設定した範囲内にあるときは「手ブレ」と判断する。以下、この範囲を「手ブレ検出範囲」という。
 図9(a)において代表的に示す施術前の状態の画像F1´、開腹処理中の画像F2´及び開腹後の画像F3´は画像が大きく相違しているが、移動検出部10b´は、この間の1/30秒間隔での隣り合うフレーム間での画像又は近接している例えば1/3秒ごとのフレーム間での画像を順次解析していくために前後のフレーム間では大きな相違はなく、撮像装置1は同じ被写体を継続して撮影しているものと判断する。すなわち、移動検出部10b´は、算出するずれの値は「手ブレ検出範囲」の上限以下であるために、撮像装置1は同じ被写体を継続して撮影しているものと判断する。
 撮像制御部10a´は、撮像装置1が施術対象箇所を継続して撮影していると移動検出部10b´が判断している間においては、画像F1´乃至F3´を含めてこの間の全てのフレームの画像データをそのままRAM12に記憶して、ホワイトバランス調整、色補間処理及び収差補正処理などの画像処理を行う。そして、撮像制御部10a´は、RAM12が記憶している画像処理後の画像データを順次読み出して表示部13に出力し、表示部13に動画が表示される。図9(b)及び図10(b)はRAM12に記憶させるフレーム毎の画像データを模式的に示している。
 一方、圧縮伸長処理部10dは、RAM12に順次記憶された画像データ毎にJPEG圧縮を行う。圧縮画像データは、メモリカード9に送られて記録される。図9(c)及び図10(c)は、メモリカード9に記録される画像データを模式的に示している。
 移動検出部10b´が各フレーム間での画像を解析して、被写体の輪郭を特徴点として抽出したとき、両方の画像での主要被写体の座標軸での位置のずれ量から撮像装置1の移動量を算出する。そして、移動検出部10b´は、この移動量が「手ブレ検出範囲」内であると「手ブレ」と判断する。
 図9(a)の画像F3´と画像F4´とは連続しているフレームの画像とすると主要被写体の位置が横(X軸)方向にずれており、移動検出部10b´が算出する撮像装置1の移動量の値は「手ブレ検出範囲」内であるため「手ブレ」と判断する。このとき、手ブレ補正部10c´は、画像F3´と画像F4´の主要被写体の座標の平均をとることで重ね合せ合成画像F4Aを生成する。
 そして、撮像制御部10a´は、移動検出部10b´が画像のずれを検出すると、手ブレ補正部10cが生成した合成画像F4AをRAM12に記憶して(図9(b))、ホワイトバランス調整、色補間処理及び収差補正処理などの画像処理を行い、画像処理後の合成画像F4Aの画像データを表示部13に出力する。また、圧縮伸長処理部10dは、合成画像F4Aの画像データにJPEG圧縮を行う。圧縮画像データは、メモリカード9に送られて記録される(図9(c))。このように、第3の実施形態においては、撮像素子変位機構5を用いて「手ブレ」を光学的に補正しないために、「手ブレ」が生じた画像F4´は画像F4Aに補正されて、表示部13で表示されると共にメモリカード9に記録される。
 こうした撮像装置1による撮影中において、例えば、オペレーターが施術補助者に指示を与えるために施術を中断して補助者に顔を向けたとすると、撮像装置1は補助者の画像を捉えて、撮像制御部10a´は信号処理部7から画像F5´の画像データを取り込む。このような場合、移動検出部10b´は、前のフレームで特定した主要被写体とは異なるために、パターンマッチングを行ってフレーム間での画像のずれを検出したとき、そのずれから算出する撮像装置1の移動量の値が「手ブレ検出範囲」の上限を超えることになり、撮像装置1の撮影の向きが被写体から移動したものと判断する。
 手ブレ補正部10c´は、撮像装置1の移動量が「手ブレ検出範囲」の上限を超えている場合には両フレームの画像の合成画像を生成する処理を行わない。しかし、撮像制御部10a´は、その画像データをそのままRAM12に記憶し(図9(b)、ホワイトバランス調整、色補間処理及び収差補正処理などの画像処理を行った後に読み出して表示部13に表示する。または、撮像制御部10a´は、撮像装置1によるリアルタイムでの撮影画像の表示は停止する一方、撮像装置1が撮影したその直前の施術対象箇所の撮影画像F4Aを静止画で表示部13にて表示してもよい。
 一方、記録制御部10e´は、撮像装置1の移動量が「手ブレ検出範囲」の上限を超えている場合には、これ以降のフレームについてメモリカード9へ書き込む動作を禁止する(図9(c))。また、照光制御部10gは照光駆動部14を制御して、照光部15への通電を停止するか、又は供給する電流量を低下させる。
 そして、移動検出部10b´は、移動量が「手ブレ検出範囲」の上限を超えて撮像装置1の撮影の向きが移動したことを判断してからも、撮像制御部10a´が信号処理部7から取り込む各フレームの画像データのパターンマッチング処理を行っており、移動量が「手ブレ検出範囲」の上限を超える前の主要被写体(すなわち施術対象箇所)が画像データに近似しているかを判定する。そして、移動検出部10bは、被写体認識部101bが認識した主要被写体が撮像装置1の撮影の向きが移動する前の主要被写体に近似していることを検出すると、オペレーターによる施術が再開されたと判断する。これにより、施術再開後の画像F6´以降の各画像は圧縮伸長処理部10dによって圧縮処理されて、圧縮画像データは、記録制御部10eによってメモリカード9に順次記録される(図10(c)。また、照光制御部10gは照光駆動部14を制御して、照光部15への通電を再開又は供給電流を通常の電流量に戻す。
 この実施形態においても、上記した例えば0.2秒から0.5秒のタイムラグの期間を設けることで、オペレーターが施術対象箇所から一瞬顔を背けてまた直ぐに施術対象箇所に顔を向けるような動きをしたときの撮像装置1による施術対象箇所以外の画像を表示部13に表示しないようにしてもよい。また、記録制御部10eによるメモリカード9への画像データの書き込み停止の制御と、照光制御部10gによる照光部15への通電を停止するか、又は供給する電流量を低下させる制御も上記のタイムラグの期間を置いて行うようにしてもよい。
 しかし、こんどはオペレーターが施術中に天井のライトに顔を向けたとすると、撮像装置1は画像F7´(図10(a))を捉えることになる。この画像F7´は撮像制御部10a´によってRAM12に記憶されるが(図10(b))、記録制御部10eによってメモリカード9には記録されない(図10(c))。そして、オペレーターの視線が被写体に戻り撮像装置1が出力する画像F8´は、画像F6´と主要被写体が共通するために画像F6の圧縮データはメモリカード9に記録される。
 そして、画像F8´に連続しているフレームの画像F9´は画像F8´に対して主要被写体の位置が上下(Y軸)方向にずれており、移動検出部10bが画像のずれを検出したとき、そのずれから算出する撮像装置1の移動量の値が「手ブレ検出範囲」内であると「手ブレ」と判断する。このとき、手ブレ補正部10cは、画像F8´と画像F9´の主要被写体の座標の平均をとることで重ね合せて合成画像F9Aを生成する。この合成画像F9Aの画像データはRAM12に記憶され(図10(b))、その圧縮画像データはメモリカード9に記録される(図10(c))。
 このようにして、画像9´から画像F10´までの各フレームでの画像データについても、移動検出部10b´によって「手ブレ」が検出されないときは、撮像制御部10a´によってRAM12に記憶されたホワイトバランス調整などの画像処理された画像データの画像は表示部13で表示される。そして、「手ブレ」が検出された場合には、前後のフレームの画像データから生成される合成画像の画像データが画像処理されてRAM12に記憶され、表示部13で表示される。
 また、移動検出部10b´によって主要被写体から外れた画像の画像データはメモリカード9には記録されない。したがって、メモリカード9には、オペレーターが行う施術の様子だけが動画で記録されて、施術の記録として大いに有効となる。
 上記実施態様の医療用撮像記録装置は、動画の連続又は近接する2フレームの画像のずれから「手ブレ」を検出することで「手ブレ」を抑制しつつ、撮像装置1の撮影が被写体(施術対象箇所)から大きく外れるような場合には、その部分の撮像画像の記録を停止することで、有効な記録映像のみを保存しておくことができる。
 以上、本発明を詳述したが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
 本発明は、オペレーターの身体に装着した撮像装置によって施術の進行を撮影すると共に施術に直接関係する一連の画像だけを記録に残すことができる医療用撮像記録装置に関し、産業上の利用可能性を有する。
1   撮像装置
2   光学レンズ
3   撮像素子
4   加速度センサ
7   信号処理部
9   メモリカード(情報記録部)
10  CPU
10a、10a´ 撮像制御部
10b、10b´ 移動検出部
10c、10c´ 手ブレ補正部
10e 記録制御部
15  照光部

Claims (19)

  1.  少なくとも、光学レンズと、撮像時に前記光学レンズを通して被写体から導入される光を光電変換して撮像信号を生成する撮像素子とを有する撮像装置を医療施術時のオペレーターの身体に装着して撮像する医療用撮像記録装置であって、
     前記撮像信号に基づき動画を構成するフレームごとに生成される画像データから前記動画を表示部に表示するよう制御する撮像制御部と、
     前記画像データを順次記録する情報記録部と、
     連続又は近接しているフレーム間の前記画像データを順次比較して、前記フレーム間での主要被写体のずれから前記撮像装置の移動量を算出する移動検出部と、
     前記移動量が予め設定した範囲内の場合は前記移動量に応じた移動による前記動画のずれを補正する手ブレ補正部と、
     前記移動量が前記範囲の上限を超える場合は前記情報記録部への前記画像データの記録の中止を制御する記録制御部と、
    を備えた医療用撮像記録装置。
  2.  前記撮像制御部は、前記移動量が前記範囲の上限を超える場合は前記動画の表示を停止することを特徴とする請求項1に記載の医療用撮像記録装置。
  3.  前記撮像制御部は、前記移動量が前記範囲の上限を超えていることを前記移動検出部が検出してから所定のタイムラグの期間を置いて、前記動画の表示を停止することを特徴とする請求項2に記載の医療用撮像記録装置。
  4.  前記撮像制御部は、前記動画の表示を停止した後は、前記移動量が前記範囲の上限を超える直前の前記フレームの前記画像データを静止画で表示するよう制御することを特徴とする請求項2又は3に記載の医療用撮像記録装置。
  5.  前記記録制御部は、前記移動量が前記範囲の上限を超えた後に、前記移動検出部が検出する主要被写体が前記範囲の上限を超える直前の前記主要被写体に近似したとき、前記情報記録部による前記画像データの記録の再開を制御することを特徴とする請求項1乃至4の何れかに記載の医療用撮像記録装置。
  6.  前記撮像制御部は、前記移動量が前記範囲の上限を超えた後に、前記移動検出部が検出する主要被写体が前記範囲の上限を超える直前の前記主要被写体に近似したとき、前記動画の表示の再開を制御することを特徴とする請求項2乃至5の何れかに記載の医療用撮像記録装置。
  7.  前記被写体に光を照射する照光部を備えて、前記照光部は、前記移動量が前記範囲の上限を超えると照光を停止又は照度を低下させることを特徴とする請求項1乃至6の何れかに記載の医療用撮像記録装置。
  8.  前記照光部は、前記移動量が前記範囲の上限を超えていることを前記移動検出部が検出してから所定のタイムラグの期間を置いて、照光を停止又は照度を低下させることを特徴とする請求項7に記載の医療用撮像記録装置。
  9.  前記照光部は、前記移動量が前記範囲の上限を超えた後に、前記移動検出部が検出する主要被写体が前記範囲の上限を超える直前の前記主要被写体に近似したとき、照光を再開又は照度を明るくすることを特徴とする請求項7又は8に記載の医療用撮像記録装置。
  10.  前記手ブレ補正部は、前記移動量が前記範囲内であると、連続又は近接している複数のフレームの前記画像データを合成して補正画像データを生成することを特徴とする請求項1に記載の医療用撮像記録装置。
  11.  少なくとも、光学レンズと、撮像時に前記光学レンズを通して被写体から導入される光を光電変換して撮像信号を生成する撮像素子とを有する撮像装置を医療施術時のオペレーターの身体に装着して撮像する医療用撮像記録装置であって、
     前記撮像信号に基づき動画を構成するフレームごとに生成される画像データから前記動画を表示部に表示するよう制御する撮像制御部と、
     前記画像データを順次記録する情報記録部と、
     前記撮像装置の移動を検知する加速度センサと、
     前記加速度センサの検知信号から前記撮像装置の移動量を算出する第1の移動検出部と、
     前記第1の移動検出部が算出する移動量に応じた移動による前記動画のブレを打ち消すよう制御する手ブレ補正部と、
     連続又は近接しているフレーム間の前記画像データを順次比較して、前記フレーム間での主要被写体のずれから前記撮像装置の移動量を算出する第2の移動検出部と、
     前記第2の移動検出部が算出する移動量が予め設定した閾値以上となると前記画像データの記録の中止を制御する記録制御部と、
    を備えた医療用撮像記録装置。
  12.  前記第1の移動検出部は、前記加速度センサの検知信号におけるエッジ部でのひずみが減衰する期間を予め見越した遅延時間の経過後に前記移動量を算出することを特徴とする請求項11に記載の医療用撮像記録装置。
  13.  前記撮像制御部は、前記第2の移動検出部が算出する移動量が前記閾値以上の場合は前記動画の表示を停止することを特徴とする請求項11に記載の医療用撮像記録装置。
  14.  前記撮像制御部は、前記第2の移動検出部が算出する移動量が前記閾値以上であることを検出してから所定のタイムラグの期間を置いて、前記動画の表示を停止することを特徴とする請求項13に記載の医療用撮像記録装置。
  15.  前記撮像制御部は、前記動画の表示を停止した後は、前記第2の移動検出部が算出する移動量が前記閾値以上となる直前の前記画像データを静止画で表示することを特徴とする請求項13又は14に記載の医療用撮像記録装置。
  16.  前記記録制御部は、前記第2の移動検出部が算出する移動量が前記閾値以上となった後に、前記第2の移動検出部が検出する主要被写体が前記閾値を超える直前の前記主要被写体に近似したとき、前記情報記録部による前記画像データの記録の再開を制御することを特徴とする請求項11乃至15の何れかに記載の医療用撮像記録装置。
  17.  前記撮像制御部は、前記第2の移動検出部が算出する移動量が前記閾値以上となった後に、前記第2の移動検出部が検出する主要被写体が前記閾値を超える直前の前記主要被写体に近似したとき、前記動画の表示の再開を制御することを特徴とする請求項13乃至15の何れかに記載の医療用撮像記録装置。
  18.  前記被写体に光を照射する照光部を備えて、前記照光部は、前記第2の移動検出部が算出する移動量が前記閾値以上となると照光を停止又は照度を低下させることを特徴とする請求項11乃至17の何れかに記載の医療用撮像記録装置。
  19.  前記照光部は、前記第2の移動検出部が算出する移動量が前記閾値を超えた後に、前記第2の移動検出部が検出する主要被写体が前記閾値を超える直前の前記主要被写体に近似したとき、照光を再開又は照度を明るくすることを特徴とする請求項18に記載の医療用撮像記録装置。
PCT/JP2014/060771 2013-05-20 2014-04-16 医療用撮像記録装置 WO2014188820A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/892,010 US10057547B2 (en) 2013-05-20 2014-04-16 Medical image recording device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-106011 2013-05-20
JP2013106011A JP5411380B1 (ja) 2013-05-20 2013-05-20 医療用撮像記録装置
JP2013191660A JP5530015B1 (ja) 2013-09-17 2013-09-17 医療用撮像記録装置
JP2013-191660 2013-09-17

Publications (1)

Publication Number Publication Date
WO2014188820A1 true WO2014188820A1 (ja) 2014-11-27

Family

ID=51933385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060771 WO2014188820A1 (ja) 2013-05-20 2014-04-16 医療用撮像記録装置

Country Status (2)

Country Link
US (1) US10057547B2 (ja)
WO (1) WO2014188820A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021509512A (ja) * 2017-12-28 2021-03-25 エシコン エルエルシーEthicon LLC 受信されたデータセットの検証並びにそのソース及び完全性の認証に基づく外科用ネットワーク、器具、及びクラウド応答

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020028777A1 (en) * 2018-08-03 2020-02-06 Intuitive Surgical Operations, Inc. System and method of displaying images from imaging devices
JP7289929B2 (ja) * 2019-11-29 2023-06-12 富士フイルム株式会社 撮像支援装置、撮像システム、撮像支援方法、及びプログラム
AU2021210962A1 (en) 2020-01-22 2022-08-04 Photonic Medical Inc. Open view, multi-modal, calibrated digital loupe with depth sensing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102378U (ja) * 1986-12-20 1988-07-04
JP2002171469A (ja) * 2000-12-04 2002-06-14 Sony Corp 動画像記録装置および動画像記録方法、ならびにプログラム記録媒体
JP2003032607A (ja) * 2001-07-13 2003-01-31 Canon Inc 画像記録装置
JP2003204972A (ja) * 2002-01-11 2003-07-22 Ganka Kikai No Makino:Kk 双眼ルーペおよびこれを用いた撮像システム
JP2005348178A (ja) * 2004-06-03 2005-12-15 Canon Inc 動画記録再生装置、画像表示方法、及びプログラム
JP2008288829A (ja) * 2007-05-17 2008-11-27 Fujifilm Corp 撮影装置および方法並びにプログラム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5596366A (en) * 1990-05-14 1997-01-21 Canon Kabushiki Kaisha Camera apparatus having camera movement detection
US6014169A (en) * 1990-06-19 2000-01-11 Canon Kabushiki Kaisha Pickup device apparatus including vibration correction means
AUPQ962800A0 (en) * 2000-08-23 2000-09-14 Royal Alexandra Hospital For Children, The Surgical head camera
US20030053536A1 (en) * 2001-09-18 2003-03-20 Stephanie Ebrami System and method for acquiring and transmitting environmental information
JP2007207345A (ja) * 2006-02-01 2007-08-16 Sony Corp ディスク式撮像装置
JP2009077265A (ja) 2007-09-21 2009-04-09 Fujifilm Corp 撮像装置
JP2009098570A (ja) 2007-10-19 2009-05-07 Mitaka Koki Co Ltd ヘッドマウント型双眼ルーペ装置
JP4483930B2 (ja) * 2007-11-05 2010-06-16 ソニー株式会社 撮像装置、その制御方法およびプログラム
KR100968974B1 (ko) * 2008-08-26 2010-07-14 삼성전기주식회사 손떨림 보정 장치
CN103763472B (zh) * 2009-02-19 2017-03-01 奥林巴斯株式会社 照相机、佩戴型图像显示装置、摄影系统以及摄影方法
US8964298B2 (en) * 2010-02-28 2015-02-24 Microsoft Corporation Video display modification based on sensor input for a see-through near-to-eye display
JP5067816B2 (ja) * 2010-05-21 2012-11-07 シャープ株式会社 携帯型電子機器およびその制御方法
JP4983961B2 (ja) * 2010-05-25 2012-07-25 株式会社ニコン 撮像装置
JP5780418B2 (ja) * 2011-05-30 2015-09-16 ソニー株式会社 撮影装置および方法、画像再生装置および方法、プログラム、並びに記録媒体
JP5806007B2 (ja) * 2011-06-15 2015-11-10 オリンパス株式会社 撮像装置
KR101578600B1 (ko) * 2013-03-22 2015-12-17 가시오게산키 가부시키가이샤 이미지 처리 장치, 이미지 처리 방법 및 컴퓨터로 읽을 수 있는 기록 매체

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102378U (ja) * 1986-12-20 1988-07-04
JP2002171469A (ja) * 2000-12-04 2002-06-14 Sony Corp 動画像記録装置および動画像記録方法、ならびにプログラム記録媒体
JP2003032607A (ja) * 2001-07-13 2003-01-31 Canon Inc 画像記録装置
JP2003204972A (ja) * 2002-01-11 2003-07-22 Ganka Kikai No Makino:Kk 双眼ルーペおよびこれを用いた撮像システム
JP2005348178A (ja) * 2004-06-03 2005-12-15 Canon Inc 動画記録再生装置、画像表示方法、及びプログラム
JP2008288829A (ja) * 2007-05-17 2008-11-27 Fujifilm Corp 撮影装置および方法並びにプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021509512A (ja) * 2017-12-28 2021-03-25 エシコン エルエルシーEthicon LLC 受信されたデータセットの検証並びにそのソース及び完全性の認証に基づく外科用ネットワーク、器具、及びクラウド応答
JP7301844B2 (ja) 2017-12-28 2023-07-03 エシコン エルエルシー 受信されたデータセットの検証並びにそのソース及び完全性の認証に基づく外科用ネットワーク、器具、及びクラウド応答

Also Published As

Publication number Publication date
US10057547B2 (en) 2018-08-21
US20160112680A1 (en) 2016-04-21

Similar Documents

Publication Publication Date Title
JP5411380B1 (ja) 医療用撮像記録装置
US20150248208A1 (en) Imaging apparatus, imaging method, and computer-readable storage medium providing a touch panel display user interface
JP5907738B2 (ja) 撮像装置、表示方法、プログラム
WO2014188820A1 (ja) 医療用撮像記録装置
US20160295107A1 (en) Imaging system, warning generation device and method, imaging device and method, and program
JP2007201534A (ja) 撮像装置
JP6179569B2 (ja) 画像処理装置、画像処理方法及びプログラム
JP2012065173A5 (ja) 撮影機器、画像表示方法及びプログラム
CN107734263B (zh) 显示装置以及显示方法
JP2016225799A (ja) 撮像装置、及び撮像装置の制御方法
JP5497955B1 (ja) 医療用撮像記録再生装置
JP5448868B2 (ja) 撮像装置および撮像装置の制御方法
JP6693071B2 (ja) 撮像装置、撮像制御方法及びプログラム
JP5530015B1 (ja) 医療用撮像記録装置
WO2014188821A1 (ja) 医療用撮像記録再生装置
JP2016066940A (ja) 撮像装置および電子補正方法
JP2007219069A (ja) 映像表示装置
JP2004104652A (ja) 撮像装置
JP2020115679A (ja) 物体検出装置、検出制御方法及びプログラム
JP2014158136A (ja) 医療用撮影システム
JP2015103918A (ja) 撮像装置及び撮像装置の制御方法
JP7228190B2 (ja) 額帯用撮像装置と画像制御方法
JP5603671B2 (ja) 電子機器、撮像方法、及び画像変換プログラム
JP6632314B2 (ja) 撮像装置、その制御方法、および制御プログラム
JP2006174248A (ja) 撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14800464

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14892010

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14800464

Country of ref document: EP

Kind code of ref document: A1