WO2014188765A1 - 燃料噴射弁 - Google Patents

燃料噴射弁 Download PDF

Info

Publication number
WO2014188765A1
WO2014188765A1 PCT/JP2014/056390 JP2014056390W WO2014188765A1 WO 2014188765 A1 WO2014188765 A1 WO 2014188765A1 JP 2014056390 W JP2014056390 W JP 2014056390W WO 2014188765 A1 WO2014188765 A1 WO 2014188765A1
Authority
WO
WIPO (PCT)
Prior art keywords
anchor
valve
valve body
fixed core
fuel injection
Prior art date
Application number
PCT/JP2014/056390
Other languages
English (en)
French (fr)
Inventor
威生 三宅
明靖 宮本
安部 元幸
清隆 小倉
貴敏 飯塚
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201480030004.2A priority Critical patent/CN105431626A/zh
Priority to EP14801701.5A priority patent/EP3006720A4/en
Priority to US14/892,948 priority patent/US20160097358A1/en
Publication of WO2014188765A1 publication Critical patent/WO2014188765A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0635Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding
    • F02M51/066Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a plate-shaped or undulated armature not entering the winding the armature and the valve being allowed to move relatively to each other or not being attached to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0017Valves characterised by the valve actuating means electrical, e.g. using solenoid using electromagnetic operating means
    • F02M63/0021Valves characterised by the valve actuating means electrical, e.g. using solenoid using electromagnetic operating means characterised by the arrangement of mobile armatures
    • F02M63/0022Valves characterised by the valve actuating means electrical, e.g. using solenoid using electromagnetic operating means characterised by the arrangement of mobile armatures the armature and the valve being allowed to move relatively to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0075Stop members in valves, e.g. plates or disks limiting the movement of armature, valve or spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/50Arrangements of springs for valves used in fuel injectors or fuel injection pumps

Definitions

  • the present invention relates to a fuel injection valve used in an internal combustion engine, and more particularly, to a fuel injector that opens and closes a fuel passage by an electromagnetically driven mover.
  • the internal combustion engine is provided with a fuel injection control device that performs a calculation to convert an appropriate amount of fuel according to the operating state into an injection time of the fuel injection valve and drives the fuel injection valve that supplies the fuel.
  • the fuel injection valve injects fuel by operating a mover constituting the fuel injection valve by a magnetic force generated by a current flowing through an internal solenoid, and opening and closing the valve body.
  • the amount of fuel to be injected is determined mainly by the pressure difference between the fuel pressure and the atmospheric pressure at the injection port of the fuel injection valve, and the time during which fuel is injected while the valve body is kept open.
  • the fuel injection valve includes, for example, a mover including a cylindrical anchor, a plunger rod positioned at the center of the anchor, and a valve body provided at the tip of the plunger rod.
  • a magnetic gap is provided between the end face of the fixed core having a fuel introduction hole for introducing fuel and the end face of the anchor, and an electromagnetic coil for supplying magnetic flux to the magnetic path including the magnetic gap is provided.
  • the magnetic attraction generated between the end face of the anchor and the end face of the fixed core by the magnetic flux passing through the magnetic gap drives the mover by attracting the anchor to the fixed core side, pulling the valve element away from the valve seat and moving it to the valve seat
  • the provided fuel passage is configured to open.
  • a structure in which a gap is provided between the plunger rod and the anchor when the valve is closed, and the force due to the difference between the fuel pressure applied to the seat portion of the valve body and the atmospheric pressure starts energizing the electromagnetic coil.
  • a technique is disclosed in which a magnetic attractive force is generated between the stator and the anchor, and the anchor is not applied at the beginning of the movement.
  • a fuel injection valve in which the mover is rigidly coupled to the valve needle or the mover is movable relative to the valve needle, but in a non-acting position, is significantly shorter than a fuel injection valve that contacts the valve needle stopper It is known that a more precise metering of the fuel and thus the opening time is achieved.
  • One of the causes is that when the end face of the anchor and the end face of the fixed core begin to separate and the magnetic attraction gap gradually expands, a fluid adhesion phenomenon occurs between the end face of the anchor and the end face of the fixed core. To occur.
  • the magnitude of the fluid force that attempts to attach the anchor to the fixed core is proportional to the moving speed of the anchor and inversely proportional to the cube of the size of the fluid gap.
  • the fluid gap is small, so that the fuel is difficult to flow into the fluid gap from the outside, and the anchor is very small due to the inertial mass of the fluid surrounding the anchor. Because of the movement at a high moving speed, the end face of the anchor and the end face of the fixed core adhere to each other under the influence of the above phenomenon.
  • At least one collision section provided in the mover has a width b that forms only a part of a region where the end face of the core and the end face of the mover come into contact with each other.
  • the step b section having a width b between 20 ⁇ m and 500 ⁇ m and lower than the collision section has a step bottom, and this step section is at a position lower by 5 ⁇ m to 15 ⁇ m than the collision section.
  • a certain fuel injection valve is known (for example, refer to Patent Document 1).
  • this fuel injection valve at least one of the components that collide with each other is configured so that the collision surface is not undesirably enlarged due to wear even after a long operation time after the formation of the wear-resistant surface. Therefore, the time for moving the mover by being attracted to the fixed core and the time for moving the mover in the direction away from the attracting force of the fixed core and moving away from the fixed core are maintained substantially constant. Optimal optimization can be obtained.
  • the anchor is formed with a recess formed at a position facing the end of the fuel introduction hole of the fixed core at the center thereof, and is formed at the end surface so as to jump in the circumferential direction.
  • a convex region that contacts the end surface, a concave region formed in the remaining portion of the convex region on the end surface, one end opened in the concave region, and the other end is the end surface of the anchor on the side opposite to the fixed core of the anchor.
  • a fuel injection valve having a plurality of through-holes that open to the periphery is known (for example, see Patent Document 2).
  • the flow of fuel around the anchor is smooth when the mover shifts from the valve-opening position to the valve-closing operation, and the fuel quickly flows into the gap between the end face of the anchor and the end face of the fixed core. Since the anchor can be quickly separated from the fixed core, the valve closing delay time can be shortened.
  • valve opening and closing operations are completed with a delay from the time when the fuel injection control device is truly open and closed, and with variations.
  • Patent Document 1 has a problem that the squeeze force generated in the fluid gap between the core and the anchor cannot be reduced at the same time, and the response delay of the valve closing cannot be reduced.
  • the present invention provides a second valve body in which a valve body of an electromagnetic fuel injection valve is in contact with an anchor when the valve is closed, and a first valve in contact with the anchor during the valve opening.
  • the second valve element abuts against a stroke stopper disposed on the inner periphery of the fixed core, and even when the valve is opened, the fixed core and the anchor do not directly abut so that a gap is secured.
  • the length of the valve body and the second valve body are defined, and the plating process for the fixed core and anchor is eliminated.
  • the end face of the anchor and the end face of the fixed core are not closed when the valve is closed, while the structure is such that the fluid force generated in the valve seat is not transmitted to the anchor at the initial generation of the magnetic attractive force.
  • An internal structure of a fuel injection valve is provided that prevents sticking phenomenon from occurring and prevents sticking, and can realize opening / closing operation of a valve body with higher response and less variation than conventional ones. As a result, the control range of the fuel injection amount is expanded, and a smaller injection amount can be injected in the internal combustion engine, which can contribute to the reduction of the fuel consumption.
  • FIG. 1 is an overall cross-sectional view of a fuel injection valve according to an embodiment of the present invention. It is a detailed sectional view of a fuel injection valve by an embodiment of the present invention. It is detail drawing of the fuel injection valve by embodiment of this invention. It is a detailed sectional view of a fuel injection valve by an embodiment of the present invention. It is the figure which showed typically the time change of the electric current by the embodiment of this invention, the force which acts on a valve body, and a valve body displacement. It is detail sectional drawing of the fuel injection valve by conventional embodiment. It is a partial detailed sectional view of a fuel injection valve according to a conventional embodiment. It is a detailed sectional view of a fuel injection valve by an embodiment of the present invention. It is the figure which showed typically the squeeze force which acts on a fixed core and an anchor.
  • FIG. 1 is a longitudinal sectional view of a fuel injection valve in the present embodiment.
  • 2, 4 and 6 are partially enlarged views of FIG. 1, showing details of the fuel injection valve in this embodiment.
  • the size of parts and gaps is exaggerated from the actual ratio for easy understanding of the structure, and unnecessary parts are omitted to explain the function.
  • the nozzle holder 101 includes a small diameter cylindrical portion 22 having a small diameter and a large diameter cylindrical portion 23 having a large diameter.
  • a fixed core 107 is press-fitted into the inner peripheral portion of the large-diameter cylindrical portion 23 of the nozzle holder 101, and is welded and joined at the press-fit contact position.
  • a gap formed between the inside of the large-diameter cylindrical portion 23 of the nozzle holder 101 and the outside air is sealed by this welding joint.
  • An orifice cup 116 having a guide portion 115 and a fuel injection port 10 is inserted into the distal end portion of the small diameter cylindrical portion 22 and welded to the small diameter cylindrical portion 22 along the outer peripheral portion of the distal end surface of the orifice cup cup 116. Fixed.
  • the guide part 115 guides the outer periphery of a valve body 114B provided at the tip of a plunger rod 114A that constitutes a movable element 114 described later.
  • a conical valve seat 39 is formed on the orifice cup 116 on the side facing the guide member 115.
  • a valve body 114B provided at the tip of the plunger 114A abuts on the valve seat 39 to guide or block the fuel flow to the fuel injection port 10.
  • a groove is formed on the outer periphery of the nozzle holder 101, and a seal member typified by a resin-made chip seal 131 is fitted into the groove.
  • the elongated plunger rod 114A has a head 114C having an outer diameter larger than the diameter of the plunger rod 114A at the end opposite to the end where the valve body 114B is provided.
  • a second valve body 152 which is a separate member from the plunger rod 114A, is disposed on the upper portion of the head portion 114C so as to cover the outer diameter portion of the head portion 114C, and a seating surface of the spring 110 is provided on the upper end surface. Is provided.
  • the plunger rod 114A Since the outer peripheral portion of the second valve body 152 is guided by the inner peripheral portion of the fixed core 107 and guides the head portion 114C of the plunger rod 114A by the inner peripheral portion, the plunger rod 114A is guided by the guide portion 115 of the orifice cup 116. It is guided to reciprocate straight in the longitudinal direction by the inner periphery of the.
  • the lower end of the initial load setting spring 110 is in contact with the spring receiving surface formed on the upper end surface of the second valve body 152, and the other end of the spring 110 is press-fitted into the fixed core 107. It is held between the second valve body 152 by being received by the concave portion 151 of 150.
  • the mover 114 has an anchor 102 having a through hole 128 through which the plunger rod 114A passes in the center.
  • a zero spring 112 is held between the anchor 102 and the shoulder 113 of the nozzle holder 101. The zero spring 112 urges the anchor in the valve opening direction, and this urging force acts on the anchor in a direction opposite to the urging force by the spring 110.
  • FIG. 2 shows a partially enlarged view of the fuel injection valve when the valve body 114B is in the closed state. Since the diameter of the through hole 128 is smaller than the diameter of the second valve body 152, the biasing force of the spring 110 that presses the second valve body 152 toward the valve seat 39 of the orifice cup 116 or the action of gravity. The upper surface of the anchor 102 held by the zero spring 112 and the lower end surface of the second valve body 131 are in contact with each other, and both are engaged. Thus, the two cooperate with each other with respect to the upward movement of the anchor 102 against the urging force or gravity of the zero spring 112 or the downward movement of the second valve body 152 along the urging force of the spring 110 or gravity. Will move. However, when the force that moves the second valve body 152 upward or the force that moves the anchor 102 downward acts on both independently regardless of the urging force or gravity of the zero spring 112, both move in different directions. be able to.
  • the anchor 102 is not centered between the inner peripheral surface of the large-diameter cylindrical portion 23 of the nozzle holder 101 and the outer peripheral surface of the anchor 102, but by the inner peripheral surface of the through hole 128 of the anchor 102 and the outer peripheral surface of the plunger rod 114A.
  • the position is maintained. That is, the outer peripheral surface of the plunger rod 114A functions as a guide when the anchor 102 moves alone in the axial direction.
  • the zero spring 112 is interposed so that they do not contact each other.
  • a side gap 130 is provided between the outer peripheral surface of the anchor 102 and the inner peripheral surface of the large-diameter cylindrical portion 23 of the nozzle holder 101. This side gap 130 is for allowing the axial movement of the anchor 102 and the movement of the fuel in the fuel injection valve, and its size is determined in consideration of the magnetic resistance.
  • FIG. 2B shows a schematic view of the second valve body 152 as viewed from the fixed core 107 direction.
  • the outer diameter of the second valve body 152 is provided with a plurality of circularly chamfered portions 250, which serve as a passage through which fuel flows through the through hole 107D.
  • the second valve body 152 is made of a nonmagnetic material.
  • a cup-shaped housing 103 is fixed to the outer periphery of the large-diameter cylindrical portion 23 of the nozzle holder 101 in FIG.
  • a through hole is provided in the center of the bottom of the housing 103, and the large diameter cylindrical portion 23 of the nozzle holder 101 is inserted through the through hole.
  • a portion of the outer peripheral wall of the housing 103 forms an outer peripheral yoke portion facing the outer peripheral surface of the large-diameter cylindrical portion 23 of the nozzle holder 101.
  • An annular or cylindrical electromagnetic coil 105 is disposed in a cylindrical space formed by the housing 103.
  • the electromagnetic coil 105 is formed by an annular coil bobbin 104 having a U-shaped groove that opens outward in the radial direction, and a copper wire wound in the groove.
  • a rigid conductor 109 is fixed at the beginning and end of winding of the coil 105, and is drawn out from a through hole provided in the fixed core 107.
  • the outer periphery of the large diameter cylindrical portion 23 of the conductor 109, the fixed core 107, and the nozzle holder 101 is molded by injecting an insulating resin from the inner periphery of the upper end opening of the housing 103, and is covered with the resin molded body 121.
  • a plug for supplying power from a high-voltage power source and a battery power source is connected to the connector 43A formed at the tip of the conductor 109, and energization and de-energization are controlled by a controller (not shown).
  • a controller not shown.
  • magnetic attraction between the anchor 102 of the mover 114 and the fixed core 107 in the magnetic attraction gap G3 of FIG. 2a due to magnetic flux passing through the magnetic circuit formed by the core 107, the housing 103, and the anchor 102.
  • a force is generated, and the anchor 102 moves upward by being attracted by a force exceeding the set load of the spring 110.
  • the second valve body comes into contact with the upper surface of the anchor 102 and overcomes the force of the zero spring 112 to move the anchor 102 toward the shoulder 113 of the rod guide.
  • the valve body 114B collides with the valve seat, the anchor 102 is separate from the plunger rod 114A, and therefore the movement of the rod guide in the direction of the shoulder 113 is continued by inertial force.
  • friction due to fluid is generated between the outer periphery of the plunger rod 114A and the inner periphery of the anchor 102, and the kinetic energy of the anchor 102 is attenuated.
  • the rebound energy itself of the plunger rod 114A that rebounds again from the valve seat 39 in the valve opening direction is small.
  • the anchor 102 that has absorbed the rebound energy of the plunger rod 114A due to friction caused by the fluid reduces its inertial force, and the repulsive force received after compressing the zero spring 112 also decreases.
  • the phenomenon that the plunger rod 114A is moved again in the valve opening direction is less likely to occur.
  • the rebound of the plunger rod 114A is minimized, and the so-called secondary injection phenomenon in which the valve is opened after the energization of the electromagnetic coils (104, 105) is cut off and the fuel is injected randomly is suppressed.
  • a gap G1 is secured between the lower end surface of the head 114C of the plunger rod 114A and the upper end surface of the anchor 102.
  • a gap G2 is secured between the lower end surface of the stroke stopper 153 press-fitted into the inner diameter portion of the fixed core 107 and the upper end surface of the second valve body 152.
  • a gap G ⁇ b> 3 is secured between the lower end surface of the fixed core 107 and the upper end surface of the anchor 102.
  • FIG. 3 schematically shows the current applied to the electromagnetic coil 105, the force acting on the valve body 114B, and the operation when the valve body of the fuel injection valve operates from opening to closing, with the horizontal axis as time.
  • the current shown in FIG. 3a is applied to the electromagnetic coil 105 of the fuel injector.
  • a force (magnetic attractive force) attracted toward the fixed core acts on the anchor 102 as shown by F1 in FIG. 3b.
  • the urging force F2 of the spring 110 acts on the anchor 102 in the direction of pulling the anchor 102 away from the fixed core via the second valve body 152. Therefore, in order for the anchor 102 to start moving toward the fixed core, it is necessary that the attractive force F1 due to the electromagnetic coil exceeds the urging force F2 of the spring 110.
  • the anchor 102 When the magnetic attractive force F1 exceeds the spring biasing force F2 at time T1 shown in FIG. 3C, the anchor 102 starts to move toward the fixed core 107 as indicated by a line 300 shown in FIG. 3c. However, the anchor 102 does not co-operate with the plunger rod 114A until the gap G1 formed with the head portion 114C of the plunger rod 114A becomes zero.
  • a state in which only the anchor 102 moves in the direction of the fixed core by the magnetic attractive force F1 is referred to as a preliminary stroke.
  • the gap G1, that is, the preliminary stroke amount is, for example, 20 um.
  • FIG. 2c shows a state where the anchor 102 has moved 20 ⁇ m at time T3 and engaged with the lower end surface of the head 114C of the plunger rod 114A.
  • the anchor 102 and the plunger rod 114A move together, and the valve body 114B is separated from the valve seat 39 of the orifice cup 116. 10 starts to be injected into the combustion chamber of the internal combustion engine.
  • the state in which the valve body 114B is separated from the valve seat 39 and the main stroke are used.
  • FIG. 4 shows a partially enlarged view of the fuel injection valve when the valve body 114B of the conventional fuel injection valve is in a closed state.
  • the upper end surface of the anchor 102 and the lower end surface of the head portion 114C of the plunger rod 114A are engaged, and no gap is formed.
  • valve body 114B When the valve body 114B is closed, the fuel is sealed by the valve seat 39 of the orifice cup 116.
  • the attractive force F1 by the electromagnetic coil exceeds the sum of the spring biasing force F2 and the fluid force F3. Therefore, in the conventional fuel injection valve, as shown in FIG. 3c, the time when the anchor 102 starts to move is T2, which is later than the time T1 of the fuel injection valve to which the structure of this embodiment is applied.
  • the preliminary stroke start timing T1 does not depend on the fuel pressure inside the fuel injection valve. Also, at time T3 in FIG. 3c when the anchor 102 and the plunger rod 114A jointly start the main stroke, a magnetic attractive force is applied to the plunger rod 114A, and the momentum of the anchor during the preliminary stroke is applied to the head 114C as an impact force. . Therefore, when the conventional fuel injection valve at time T2, the suction force F1 generated by the electromagnetic coil exceeds the sum of the spring biasing force F2 and the fluid force F3, and the anchor 102 and the plunger when the anchor 102 and the plunger rod 114A start this stroke It is larger than the initial speed of the rod 114A. Therefore, the time at which this stroke of the fuel injection valve of this embodiment is completed is time T4 in FIG. 3c, which is earlier than time T5 of the conventional fuel injection valve.
  • the fuel injection valve of this embodiment can reduce the variation in the preliminary stroke operation start timing due to the change in fuel pressure, and can quickly perform the valve opening operation of the valve body 114B by this stroke.
  • a gap G1 between the lower end surface of the head 114C of the plunger rod 114A and the upper end surface of the anchor 102 is defined by the depth of the recess of the second valve body 152 and the thickness of the head 114C of the plunger rod 114A.
  • the gap G1 is equal to the preliminary stroke amount.
  • a gap G3 is formed between the lower end surface of the fixed core 107 and the upper end surface of the anchor 102 when the orifice cup 116 is press-fitted into the small diameter cylindrical portion 22 of the nozzle holder 101 before the stroke stopper 153 is inserted into the fixed core 107. It is specified by the amount of movement. Specifically, a magnetic attractive force is generated by applying a current to the electromagnetic coil 105, and the lower end surface of the fixed core 107 and the upper end surface of the anchor 102 are caused to collide with each other.
  • the movement amount of the second valve body 152 is measured from the fixed core through hole 107D, and the desired gap G3 is defined by feeding back to the movement amount of the orifice cup 116. can do.
  • a gap G2 between the lower end surface of the stroke stopper 153 and the upper end surface of the second valve body 152 that is press-fitted into the inner diameter portion of the fixed core 107 causes a current to flow to the electromagnetic coil 105 when the stroke stopper 153 is inserted into the fixed core 107.
  • a magnetic attractive force is generated, and the lower end surface of the stroke stopper 153 and the upper end surface of the second valve body 152 are caused to collide with each other.
  • a desired gap G2 can be defined by measuring the amount of movement of the second valve body 152 from the fixed core through hole 107D and feeding back to the amount of movement of the stroke stopper 153.
  • the gap G2 is equal to the actual stroke amount.
  • FIG. 5 shows an enlarged view of the fixed core 107 and the anchor 102 in the conventional fuel injection valve.
  • the electromagnetic coil 105 is energized, and the upper end surface of the anchor 102 and the lower end surface of the fixed core 107 are in contact with each other.
  • the lower end surface of the core 107 and the upper end surface of the anchor 102 are plated 501 to improve the durability of the collision portion. Accordingly, even when relatively soft soft magnetic stainless steel is used for the anchor 102 and the fixed core 107, it is possible to ensure the durability reliability of the collision portion between the fixed core 107 and the anchor 102 by using hard chrome plating or the like. did it.
  • the plating 501 attached to the fixed core 107 and the anchor 102 needs to have a certain thickness or more. Since the plating is a non-magnetic material, even when the fixed core 107 and the anchor 102 are in contact with each other, the magnetic gap between the two parts is 502, which is obtained by adding the plating thickness to the fluid gap 136. The suction force is reduced as compared with the case where the plating 502 is not adhered.
  • the fuel injection valve is required to be able to quickly open and close in response to the input valve opening signal. That is, the delay time from the rise of the valve opening pulse signal to the actual valve opening state (valve opening delay time), or the delay time from the end of the valve opening pulse signal to the actual valve closing state (closed) It is important from the viewpoint of reducing the minimum controllable injection amount (minimum injection amount) to shorten the valve delay time.
  • minimum controllable injection amount minimum injection amount
  • shortening the valve closing delay time is effective in reducing the minimum injection amount.
  • One method of shortening the valve closing delay time is to increase the set load of the spring 110 that applies a force to the movable element 114 to shift the valve body 114B from the open state to the closed state.
  • a large magnetic attractive force F1 is required when the valve is opened, and the electromagnetic coil becomes large. For this reason, there is a design limit, and the valve opening delay time cannot be sufficiently shortened only by this method.
  • the fuel that is used and pushed away by the movement of the anchor 102 quickly flows from the fuel passage 118 into the fluid gap 136 and the gap (side gap) 130 on the anchor side, and the lower end surface of the fixed core 107 and the upper end surface of the anchor 102.
  • Means for shortening the valve closing delay by reducing the sticking force (squeeze force) due to the squeeze effect generated during the period is known.
  • FIG. 6 shows an enlarged schematic diagram of the opened state of the fuel injection valve of the present embodiment.
  • the upper end surface of the second valve body 152 is in contact with the lower end surface of the stroke stopper 153 inserted and fixed in the inner diameter portion of the fixed core 107, and the position thereof is defined.
  • the anchor 112 is attracted to the fixed core 102 by a magnetic attraction force, but is regulated by the second valve body 152 at a position where the gap G4 is left. Since fuel flows from the injection hole 10 to the combustion chamber of the internal combustion engine through the valve body 114B of the plunger rod 114A and the valve seat 39 of the orifice cup 116, the plunger rod 114A flows in the valve closing direction (downward in FIG. 6). Physical strength is applied, and the position of the plunger rod 114A is restricted by the upper end surface of the anchor 112 supporting the head portion 114C.
  • the magnetic gap 502 is larger than the fluid gap 136 by the thickness of the plating 501. That is, when the fluid gap 136 is enlarged to reduce the squeeze force, the magnetic gap 502 is also enlarged, the magnetic attractive force is lowered, and the responsiveness of the valve body at the time of opening the valve is problematic.
  • the magnetic gap and the fluid gap are equal to G4, so that the magnetic gap is reduced while expanding the fluid gap as compared with the conventional case. be able to.
  • the stroke stopper is provided with a low-rigidity portion 201 so as to reduce the impact force when the second valve element collides with the fixed core 107 without being press-fitted.
  • FIG. 8 shows the relationship between the gap between the fixed core 107 and the anchor 112 and the squeeze force.
  • the squeeze force can be reduced by about 50%.
  • the change in the movement of the anchor 102 due to the reduction of the squeeze force is shown in FIG.
  • the current is cut off as shown in FIG.
  • the magnetic attractive force F1 decreases as shown in FIG. 3b.
  • the magnetic attractive force F1 falls below the sum of the urging force F2 and the fluid force F3 of the spring 110 at time T6
  • the anchor 102 starts to close toward the shoulder 113 of the nozzle holder.
  • the plunger rod 114A returns to the valve closing position in contact with the valve seat 39 at time T7, and is earlier than the valve closing time T8 of the conventional fuel injection valve. Therefore, the squeeze force at the time of closing the valve can be reduced and the valve closing response can be improved without reducing or improving the magnetic attractive force.
  • the preliminary stroke at the time of valve opening and the abolition of plating could not be realized with a simple configuration.
  • the mover is divided into three parts, an anchor, a first valve body, and a second valve body, and the position of the mover is determined by a stroke stopper different from the fixed core, thereby forming a complicated part structure. Therefore, the present invention proposes a structure of a fuel injection valve that can realize the preliminary stroke at the time of valve opening and the abolition of plating.
  • both the valve body response delay at the time of valve opening due to the acting force of the fluid inside the fuel injection valve and the sticking force due to the squeeze effect at the time of valve closing are reduced.
  • the opening and closing delay time can be shortened, and the minimum controllable injection amount (minimum injection amount) can be further reduced.
  • a present Example is not limited to the said embodiment. Moreover, each component is not limited to the said structure unless the characteristic function of a present Example is impaired.
  • the fuel used in the fuel injection valve is not specifically described in the present embodiment, but the present invention can be applied to all fuels used in the internal combustion engine, such as gasoline, light oil, and alcohol.
  • the present embodiment is based on the viewpoint of the viscous resistance of the fluid. No matter what kind of fuel is used, viscous resistance exists and the principle of this embodiment can be applied, so that the effect can be exhibited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

 燃料噴射弁の噴射量精度を向上させるためには、弁体の開閉動作を迅速に行わせる必要がある。可動子の運動開始直後に、弁体のシート部に発生する流体力が伝達しない構造としながら、アンカーの端面と固定コアの端面との密着現象を起き難くして貼り付きを防止する必要がある。 上記課題を解決するために、本発明は、電磁式燃料噴射弁の弁体が、閉弁時にアンカーと当接している第2の弁体と、開弁途中でアンカーと当接する第1の弁体からなり、開弁時には第2の弁体が固定コアの内周に配置されたストロークストッパと当接し、開弁時も固定コアとアンカーが直接当接することなくギャップが確保されるよう第1の弁体と第2の弁体の長さを規定し、固定コアとアンカーのメッキ処理を廃止した構造とする。

Description

燃料噴射弁
 本発明は、内燃機関に用いられる燃料噴射弁に関し、特に電磁的に駆動される可動子によって、燃料通路を開閉するものに関する。
 内燃機関には、運転状態に応じた適切な燃料量を燃料噴射弁の噴射時間に変換する演算を行い、燃料を供給する燃料噴射弁を駆動させる燃料噴射制御装置が備えられている。燃料噴射弁は、内部のソレノイドに流れる電流によって発生する磁気力によって燃料噴射弁を構成している可動子を動作させ、弁体を開閉させることで燃料の噴射を行う。噴射される燃料量は、主に燃料の圧力と燃料噴射弁の噴口部の雰囲気圧力との差圧、並びに弁体を開いた状態に維持し、燃料が噴射されている時間により決定される。
 近年、燃料消費量低減という観点から、内燃機関の出力が不要な場合に燃料の噴射を行わない燃料カットを行う機会が増加し、併せて燃料の噴射を再開する頻度も増加している。燃料噴射を再開する際には無負荷相当の少ない燃料量を噴射する必要がある。また、出力の増加や排気性能の向上を目的として、分割噴射が行われている。これは本来1回の噴射に必要な燃料を複数回に分割して、適切な時期に噴射することで内燃機関の性能を向上させようとするもので、1回当たりの燃料噴射量を少なくすることが求められている。
 また、内燃機関においては、ダウンサイジングにより車両搭載時の燃料消費量を低減させる試みも実施されている。この場合、吸入空気の過給等により比出力の向上が求められるため、最小噴射量を増加させることなく、あるいは減少させた上で、最大噴射量を増加させることが求められている。よって燃料噴射弁に求められるダイナミックレンジ(最大噴射量を最小噴射で除算した値)は増加する傾向にある。
 燃料噴射弁は、例えば、可動子が円筒状のアンカーとこのアンカーの中心部に位置するプランジャロッドと、さらにプランジャロッドの先端に設けられた弁体とを含んで構成されており、中心部に燃料を導く燃料導入孔を有する固定コアの端面とアンカーの端面との間に磁気ギャップが設けられており、さらにこの磁気ギャップを含む磁気通路に磁束を供給する電磁コイルを備えている。磁気ギャップを通る磁束によってアンカーの端面と固定コアの端面との間に生起された磁気吸引力でアンカーを固定コア側に引き付けて可動子を駆動し、弁体を弁座から引き離して弁座に設けた燃料通路を開くように構成されている。
 このように構成された従来の燃料噴射弁では、弁体が閉弁位置にある際に、シート部より上流の燃料圧力と、シートより下流の雰囲気圧力と差で、弁体を弁座に押し付ける力が常に加わっており、前記電磁コイルに通電後も可動子ならびに弁体の開弁動作が遅れるという問題を有している。近年ガソリン内燃機関に搭載される燃料噴射弁の使用燃料圧力も増加傾向にあり、この開弁遅れも増大することになる。
 原因として弁体のシート部に作用している燃圧力と雰囲気圧力の差による力が、プランジャロッドを経由して常にアンカーに伝達する構造となっているためである。
 従来技術においては上記問題を緩和するために、閉弁状態においてプランジャロッドとアンカーにギャップを設ける構造とし、弁体のシート部に加わる燃料圧力と雰囲気圧力の差による力が、電磁コイル通電開始し、固定子とアンカーに磁気吸引力が発生し、アンカーが移動を始める初期には加わらないようにする技術が開示されている。
 従来技術の一例として、可動子が弁ニードルに設けられた第1のストッパに達する前に、つまり弁ニードルを連行する前にまず予備加速され、可動子は弁ニードルを連行する前にすでに、可動子が弁ニードルに伝達するインパルスに達する。可動子が弁ニードルと剛性的に結合されている燃料噴射弁又は可動子が弁ニードルに対し可動であるがしかし不作用位置では弁ニードルのストッパに接触する燃料噴射弁に比較して、著しく短い開放時間ひいては燃料のより正確な調量が達成されることが知られている。(例えば、特許文献1参照)
 さらに従来の燃料噴射弁では、弁体が完全に開弁位置に到達した後、アンカーの端面と固定コアの端面との間の衝突面が互いに貼りつき、弁体を閉弁位置に戻すべく電磁コイルへの通電を終了させ、磁気通路の磁力が消滅した後でも、アンカーが初期位置、つまり両者が完全に離れて、弁体が弁座に押付けられた状態に復帰するまでの時間が長くなるという問題を有する。
 この原因の一つとして、アンカーの端面と固定コアの端面とが離れ始めて磁気吸引ギャップが徐々に拡大していく際に、アンカーの端面と固定コアの端面との間に流体的な密着現象が発生することが挙げられる。
 具体的には、アンカーを固定コアに貼り付けようとする流体力の大きさは、アンカーの移動速度に比例し、流体ギャップの大きさの3乗に反比例するという性質がある。開弁状態から、閉弁開始状態に切り替わった直後においては流体ギャップが小さいため、この流体ギャップ内に外部から燃料が流れ込みにくいことと、アンカーを取り巻く流体の慣性質量のためにアンカーは非常に微小な移動速度で動くという理由で、上記の現象の影響を受けてアンカーの端面と固定コアの端面とが貼りついたような挙動を示す。
 この現象を和らげるためには、アンカーの端面と固定コアの端面との間及びアンカーの周囲に生じる燃料の流れを阻害しないこと、ひいては、その流れを助長することが重要である。
 従来技術においては上記問題を緩和するために、アンカーの端面と固定コアの端面との間の衝突面を部分的な接触面として、密着現象を起き難くして貼り付きを防止する技術が開示されている。
 従来技術の一例として、可動子に設けられた少なくとも1つの衝突区分が、コアの端面と可動子の端面との当接し合う領域の一部だけを成す幅bを有していて、該衝突区分の幅bが20μm~500μmの間であって、衝突区分よりも低い位置にある段部区分が段部底部を有していて、この段部区分が衝突区分よりも5μm~15μmだけ低い位置にある燃料噴射弁が知られている(例えば、特許文献1参照)。この燃料噴射弁では、互いに衝突し合う構成部分のうちの少なくともどちらか一方が、耐摩耗性表面の形成後に衝突面が長い運転時間後においても摩耗によって不都合に拡大されることがないように構成されているので、可動子が固定コアに吸引されて移動する時間及び可動子が固定コアの吸引力から解放されて固定コアから離れる方向に移動する時間がほぼ一定に維持され、磁気的又は液圧的な最適性を得られる。
 別の従来技術の一例として、アンカーに、その中央部で固定コアの燃料導入孔の端部に対面する位置に形成された凹所と、その端面に周方向に飛び飛びに形成され、固定コアの端面に接触する凸部区域と、その端面に凸部区域の残余の部分に形成された凹部区域と、この凹部区域に一端が開口し、他端がアンカーの反固定コア側端面で前記プランジャの周囲に開口する複数の貫通孔とを有する燃料噴射弁が知られている(例えば、特許文献2参照)。この燃料噴射弁では、可動子が開弁位置から閉弁動作に移行する状態でのアンカー周囲の燃料の流れがスムースになり、アンカーの端面と固定コアの端面との間のギャップに燃料がすばやく供給でき、アンカーを固定コアから速やかに引き離すことができるので、閉弁遅れ時間を短縮できる。
特表2003-511602号公報 特開2007-187167号公報 国際公開2008/038395号明細書
 燃料噴射弁から適切な量の燃料噴射を精度良く行うには、弁体の開閉動作を迅速にかつばらつきをできるだけ小さくして行わせる必要があるが、燃料噴射弁の開、閉弁時には、磁束や流体の作用による応答遅れによって、燃料噴射制御装置が真に開、閉弁させたい時期よりも遅れて、かつばらつきを持って弁の開、閉弁動作が完了する。
 この応答遅れを改善する一つの手段として、磁気吸引力発生初期に、アンカーに弁体シート部に発生する流体力が伝達しない構造とすることが挙げられる。
 しかしながら、特許文献1に開示されているような構造では同時にコアとアンカーの流体ギャップに生じるスクイーズ力を低減できず、閉弁の応答遅れを小さくできないといった課題が発生する。
 上記課題を解決するために、本発明は、電磁式燃料噴射弁の弁体が、閉弁時にアンカーと当接している第2の弁体と、開弁途中でアンカーと当接する第1の弁体からなり、開弁時には第2の弁体が固定コアの内周に配置されたストロークストッパと当接し、開弁時も固定コアとアンカーが直接当接することなくギャップが確保されるよう第1の弁体と第2の弁体の長さを規定し、固定コアとアンカーのメッキ処理を廃止した構造とする。
 燃料噴射弁の弁体を高応答化させる為に、磁気吸引力発生初期のアンカーに弁体シート部に発生する流体力が伝達しない構造としながらも、閉弁時にアンカーの端面と固定コアの端面との密着現象を起き難くして貼り付きを防止し、従来よりも高応答かつばらつきの小さい弁体の開閉動作を実現できる、燃料噴射弁の内部構成を提供する。その結果燃料噴射量の制御領域が拡大し、内燃機関においてより少ない噴射量を噴射することが可能となり、燃料消費量の削減に貢献できる。
本発明の実施形態による燃料噴射弁の全体断面図である。 本発明の実施形態による燃料噴射弁の詳細断面図である。 本発明の実施形態による燃料噴射弁の詳細図である。 本発明の実施形態による燃料噴射弁の詳細断面図である。 本発明の実施形態による電流、弁体に作用する力、弁体変位の時間変化を模式的に示した図である。 従来の実施形態による燃料噴射弁の詳細断面図である。 従来の実施形態による燃料噴射弁の一部詳細断面図である。 本発明の実施形態による燃料噴射弁の詳細断面図である。 固定コアとアンカーに作用するスクイーズ力を模式的に示した図である。
 以下、図1~7図を用いて、本発明に係る燃料噴射弁の一実施例の構成について説明する。図1は本実施例における燃料噴射弁の縦断面図である。図2、4、6は図1の部分拡大図で、本実施例における燃料噴射弁の詳細を示したものである。本図では構造を分かり易くするために部品や隙間の大きさは実際の比率よりも誇張されており、機能を説明するために不要な部品は省略されている。
 ノズルホルダ101は直径が小さい小径筒状部22と直径が大きい大径筒状部23とを備えている。ノズルホルダ101の大径筒状部23の内周部には固定コア107が圧入され、圧入接触位置で溶接接合されている。この溶接接合によりノズルホルダ101の大径筒状部23の内部と外気との間に形成される隙間が密閉される。小径筒状部22の先端部分の内部に、ガイド部115,燃料噴射口10を備えたオリフィスカップ116が挿入され、オリフィスプカップ116の先端面の外周部に沿って小径筒状部22に溶接固定される。ガイド部115は後述する可動子114を構成するプランジャロッド114Aの先端に設けられた弁体114Bの外周をガイドする。オリフィスカップ116にはガイド部材115に面する側に円錐状の弁座39が形成されている。この弁座39にはプランジャ114Aの先端に設けた弁体114Bが当接し、燃料の流れを燃料噴射口10に導いたり遮断したりする。ノズルホルダ101の外周には溝が形成されており、この溝に樹脂材製のチップシール131に代表されるシール部材が嵌め込まれている。
 細長い形状のプランジャロッド114Aは、弁体114Bが設けられている端部とは反対の端部にはプランジャロッド114Aの直径より大きい外径を有する頭部114Cが設けられている。頭部114Cの上部には、プランジャロッド114Aとは別部材となっている第二の弁体152が頭部114Cの外径部を覆うように配置され、上端面にはスプリング110の着座面が設けられている。第二の弁体152の外周部は固定コア107の内周部によってガイドされ、かつ内周部でプランジャロッド114Aの頭部114Cをガイドするため、プランジャロッド114Aはオリフィスプカップ116のガイド部115の内周部によって長手方向まっすぐに往復運動するようガイドされる。
 第二の弁体152の上端面に形成されたスプリング受け面には初期荷重設定用のスプリング110の下端が当接しており、スプリング110の他端が固定コア107に圧入される第二のコア150の凹部151で受け止められることで、第二の弁体152との間に保持されている。
 可動子114はプランジャロッド114Aが貫通する貫通孔128を中央に備えたアンカー102を有する。アンカー102とノズルホルダ101の肩部113との間にゼロスプリング112が保持されている。ゼロスプリング112はアンカーを開弁方向に付勢しており、この付勢力はスプリング110による付勢力とは逆向きにアンカーに作用している。
 図2に弁体114Bが閉弁状態にあるときの燃料噴射弁の部分拡大図を示す。第二の弁体152の直径より貫通孔128の直径の方が小さいので、第二の弁体152をオリフィスカップ116の弁座39に向かって押付けるスプリング110の付勢力もしくは重力の作用下においては、ゼロスプリング112によって保持されたアンカー102の上側面と第二弁体131の下端面が当接し、両者は係合している。これによりゼロスプリング112の付勢力もしくは重力に逆らう上方へのアンカー102の動きあるいは、スプリング110の付勢力もしくは重力に沿った下方への第二の弁体152の動きに対して両者は協働して動くことになる。しかし、ゼロスプリング112の付勢力もしくは重力に関係なく第二の弁体152を上方へ動かす力、あるいはアンカー102を下方へ動かす力が独立して両者に作用したとき、両者は別々の方向に動くことができる。
 アンカー102は、ノズルホルダ101の大径筒状部23の内周面とアンカー102の外周面との間ではなく、アンカー102の貫通孔128の内周面とプランジャロッド114Aの外周面とによって中心位置が保持されている。つまり、プランジャロッド114Aの外周面はアンカー102が、単独で軸方向に移動するときのガイドとして機能している。アンカー102の下端面はロッドガイドの肩部113の上端面に対面しているが、ゼロスプリング112が介在していることで両者が接触することはない。アンカー102の外周面とノズルホルダ101の大径筒状部23の内周面との間にはサイドギャップ130が設けられている。このサイドギャップ130はアンカー102の軸方向の動きと燃料噴射弁内の燃料の移動を許容するためであるが、磁気抵抗との兼ね合いでその大きさが決定される。
 固定コア107は中心に第二の弁体152の直径よりわずかに大きい直径Dの貫通孔107Dが燃料導入通路として設けられている。貫通孔107Dの下端部内周には第二の弁体152が摺動状態で挿通されている。図2bに第二の弁体152を固定コア107方向から見た模式図を示す。第二の弁体152の外径は円形の一部を面取りした部位250が複数設けられており、貫通孔107Dの燃料を下流に流す通路となっている。固定コア107から第二の弁体152への磁束漏洩防止として、第二の弁体152は非磁性材で構成される。
 図1のノズルホルダ101の大径筒状部23の外周にはカップ状のハウジング103が固定されている。ハウジング103の底部には中央に貫通孔が設けられており、貫通孔にはノズルホルダ101の大径筒状部23が挿通されている。ハウジング103の外周壁の部分はノズルホルダ101の大径筒状部23の外周面に対面する外周ヨーク部を形成している。ハウジング103によって形成される筒状空間内には環状若しくは筒状の電磁コイル105が配置されている。電磁コイル105は半径方向外側に向かって開口する断面がU字状の溝を持つ環状のコイルボビン104と、この溝の中に巻きつけられた銅線で形成される。コイル105の巻き始め、巻き終わり端部には剛性のある導体109が固定されており、固定コア107に設けた貫通孔より引き出されている。この導体109と固定コア107、ノズルホルダ101の大径筒部23の外周はハウジング103の上端開口部内周から絶縁樹脂を注入して、モールド成形され、樹脂成形体121で覆われる。
 導体109の先端部に形成されたコネクタ43Aには高電圧電源、バッテリ電源より電力を供給するプラグが接続され、図示しないコントローラによって通電,非通電が制御される。コイル105に通電中は、コア107、ハウジング103、アンカー102で形成される磁気回路を通る磁束によって、図2aの磁気吸引ギャップG3において可動子114のアンカー102と固定コア107との間に磁気吸引力が発生し、アンカー102がスプリング110の設定荷重を超える力で吸引されることで上方へ動く。このときアンカー102によって、プランジャロッド114Aが上方へ移動することでプランジャ114Aの先端の弁体114Bが弁座39より離間し、燃料が燃料通路118を通り、オリフィスカップ116先端にある噴射口10から内燃機関の燃焼室内に噴出される。
 電磁コイル105への通電が断たれると、磁気回路の磁束が消滅し、磁気吸引ギャップG3における磁気吸引力も消滅する。この状態では、第二の弁体152を磁気吸引力とは反対方向に押す初期荷重設定用のスプリング110のばね力がゼロスプリング112の力に打ち勝って可動子114全体(アンカー102,プランジャロッド114A)に作用する。その結果、アンカー102はスプリング110のばね力によって、弁体114Bが弁座39に接触する閉位置に押し戻される。このとき、第二の弁体がアンカー102の上面に当接してアンカー102を、ゼロスプリング112の力に打ち勝ってロッドガイドの肩部113側へ移動させる。弁体114Bが弁座に衝突すると、アンカー102はプランジャロッド114Aと別体であるため、慣性力によってロッドガイドの肩部113方向への移動を継続する。このときプランジャロッド114Aの外周とアンカー102の内周との間に流体による摩擦が発生し、アンカー102の運動エネルギが減衰する。慣性質量の大きなアンカー102がプランジャロッド114Aから切り離されているので、弁座39から再度開弁方向に跳ね返るプランジャロッド114Aの跳ね返りエネルギ自体も小さい。また、流体による摩擦でプランジャロッド114Aの跳ね返りエネルギを吸収したアンカー102は自らの慣性力がその分だけ減少し、ゼロスプリング112を圧縮した後に受ける反発力も小さくなるため、アンカー102自体の跳ね返り現象によってプランジャロッド114Aが開弁方向に再び動かされる現象は発生し難くなる。かくして、プランジャロッド114Aの跳ね返りは最小限に抑えられ、電磁コイル(104,105)への通電が断たれた後に弁が開いて、燃料が不作為に噴射される、いわゆる二次噴射現象が抑制される。
 以下、本実施例の特徴について説明する。図2aの部分拡大図において、プランジャロッド114Aの頭部114Cの下端面とアンカー102の上端面には隙間G1が確保されている。固定コア107内径部に圧入されているストロークストッパ153の下端面と第二の弁体152の上端面には隙間G2が確保されている。固定コア107の下端面とアンカー102の上端面には隙間G3が確保されている。弁体114Bの閉弁時に可動子114をこのような部品構成と隙間を確保することで、本実施例の燃流噴射弁の特徴的な動作を実現することができる。以下、動作の詳細と効果について説明する。
 図3に燃料噴射弁の弁体が開弁から閉弁に動作する際の、電磁コイル105に印加する電流、弁体114Bに作用する力、動作を、横軸を時間として模式的に示す。燃料噴射弁を駆動させるために、図3aに示す電流を燃料噴射弁の電磁コイル105に印加する。アンカー102には固定コア方向に吸引される力(磁気吸引力)が図3bのF1に示すように働く。一方、アンカー102にはスプリング110の付勢力F2が第二の弁体152を介して、アンカー102を固定コアから引き離す方向に作用している。よってアンカー102が固定コア方向に動き出すためには、電磁コイルのよる吸引力F1がスプリング110の付勢力F2を上回ることが条件となる。
 図3Cに示す時刻T1にて磁気吸引力F1がスプリング付勢力F2を上回ると、アンカー102は図3cに示す線300のように固定コア107に向かって動き始める。ただしアンカー102はプランジャロッド114Aの頭部114Cとの間で形成されている隙間G1が0になるまではプランジャロッド114Aと共同運動することはない。この磁気吸引力F1によってアンカー102のみが固定コア方向に動く状態を予備ストロークと呼ぶ。なおここでは説明のために隙間G1、つまり予備ストローク量を例えば20umとする。
 時刻T3においてアンカー102が20um移動し、プランジャロッド114Aの頭部114Cの下端面に係合した状態を図2cに示す。アンカー102の上端面とプランジャロッド114Aの頭部114Cの下端面が接触することで、アンカー102とプランジャロッド114Aが共動し、弁体114Bがオリフィスカップ116の弁座39から離間し、噴射口10から内燃機関の燃焼室内に噴出され始める。弁体114Bが弁座39から離間している状態と本ストロークとする。
 比較のために、図4に従来の燃料噴射弁の弁体114Bが閉弁状態にあるときの燃料噴射弁の部分拡大図を示す。アンカー102の上端面とプランジャロッド114Aの頭部114Cの下端面が係合しており、隙間は形成されていない。
 弁体114Bが閉弁時、オリフィスカップ116の弁座39で燃料をシールしている。燃料噴射弁内部の燃料圧力と噴射孔10に通じる外部の圧力差とシート面積の積に比例する流体力(F3とする)が、弁体114Bを弁座39に押し付ける向き(閉弁方向、図4下向き)に作用する。アンカー102の上端面とプランジャロッド114Aの頭部114Cの下端面が係合しており、隙間は形成されていないため、アンカー102にも下向きの流体力F3が伝達している。そのためアンカー102が固定コア方向に動き出すためには、図3bに示すように、電磁コイルのよる吸引力F1がスプリング付勢力F2と流体力F3の和を上回ることが条件となる。よって従来の燃料噴射弁では図3cに示すようにアンカー102が動き出す時刻はT2となり、本実施例の構造を適用した燃料噴射弁の時刻T1よりも遅い。
 以上より、本実施例の燃料噴射弁は予備ストローク開始タイミングT1が燃料噴射弁内部の燃料圧力に依存しない。またアンカー102とプランジャロッド114Aが共同し本ストロークを開始する図3cの時刻T3において、プランジャロッド114Aには磁気吸引力加え、予備ストローク中のアンカーの運動量が衝撃力として頭部114Cに印加される。よって従来の燃料噴射弁が時刻T2で電磁コイルのよる吸引力F1がスプリング付勢力F2と流体力F3の和を上回り、アンカー102およびプランジャロッド114Aが本ストロークを開始する際の、アンカー102、プランジャロッド114Aの初速よりも大きい。よって本実施例の燃料噴射弁の本ストロークが終了する時刻は図3cの時刻T4であり、従来の燃料噴射弁の時刻T5よりも早い。
 以上より本実施例の燃料噴射弁は燃料圧力の変化による予備ストローク動作開始タイミングのばらつきを低減し、かつ本ストロークによる弁体114Bの開弁動作を素早く行うことができる。
 燃料噴射弁製作時に、図2aの部分拡大図に示される、各部品間の隙間G1、G2、G3を形成する方法の一例を説明する。プランジャロッド114Aの頭部114Cの下端面とアンカー102の上端面には隙間G1は第二の弁体152の凹部の深さと、プランジャロッド114Aの頭部114Cの厚さで規定される。なおこの隙間G1は予備ストローク量に等しい。
 固定コア107の下端面とアンカー102の上端面には隙間G3は、ストロークストッパ153を固定コア107に挿入する前に、オリフィスカップ116をノズルホルダ101の小径筒状部22への圧入する際の移動量で規定する。詳細には電磁コイル105に電流を印加することで磁気吸引力を発生させ、固定コア107の下端面とアンカー102の上端面を衝突させる。第二の弁体152もアンカー102と共同するため、固定コア貫通孔107Dより第二の弁体152の移動量を計測し、オリフィスカップ116の移動量にフィードバックすることで所望の隙間G3を規定することができる。
 固定コア107内径部に圧入されているストロークストッパ153の下端面と第二の弁体152の上端面の隙間G2は、ストロークストッパ153を固定コア107に挿入する際に、電磁コイル105に電流を印加することで磁気吸引力を発生させ、ストロークストッパ153の下端面と第二の弁体152の上端面を衝突させる。固定コア貫通孔107Dより第二の弁体152の移動量を計測し、ストロークストッパ153の移動量にフィードバックすることで所望の隙間G2を規定することができる。なおこの隙間G2は本ストローク量に等しい。
 図5に従来の燃料噴射弁における固定コア107とアンカー102の拡大図を示す。本図では電磁コイル105に通電し、アンカー102の上端面と固定コア107の下端面が接している状態を表している。従来の燃料噴射弁ではコア107の下端面や、アンカー102の上端面にメッキ501を施して、衝突部の耐久性を向上させている。これによりアンカー102や固定コア107に比較的軟らかい軟磁性ステンレス鋼を用いた場合においても、硬質クロムメッキ等を用いることで、固定コア107とアンカー102の衝突部位の耐久信頼性を確保することができた。
 しかしながら衝突部位の耐久信頼性を確保するためには固定コア107とアンカー102に付着させるメッキ501をある一定以上の厚みにする必要がある。メッキは非磁性材であるため、固定コア107とアンカー102が接触している場合でも、両部品間の磁気ギャップは流体ギャップ136にメッキ厚さを加えた502となり、両部品間に作用する磁気吸引力はメッキ502を付着させない場合に比べて低下する。
 一方で、燃料噴射弁には、入力された開弁信号に対して素早く応答して開閉弁できることが求められる。すなわち、開弁パルス信号の立ち上りから実際に開弁状態になるまでの遅れ時間(開弁遅れ時間)や、開弁パルス信号が終了してから実際に閉弁状態になるまでの遅れ時間(閉弁遅れ時間)を短縮することが、最小の可制御噴射量(最小噴射量)をより小さくするという観点から重要である。とりわけ閉弁遅れ時間の短縮は最小噴射量の低減に有効であることが知られている。閉弁遅れ時間短縮の方法の1つに、弁体114Bを開状態から閉状態に移行させる力を可動子114に付与するスプリング110の設定荷重を大きくすることであるが、この力を大きくすると開弁時に大きな磁気吸引力F1が必要となり、電磁コイルが大型になるという相反する問題がある。このため設計上の限界があり、この方法だけで開弁遅れ時間を十分短縮できない。
 従来から閉弁遅れを低減する手段は種々考案されているが、有効な手段としてアンカー102に凸部503を設け、固定コア107とアンカー102が接触した状態でも流体ギャップ136を形成させる手法がある。閉弁時に固定コア107の電磁吸引力により吸引されていたアンカー102をスプリング110で押下げたとき、固定コア107の下端面とアンカー102の上端面との間の流体ギャップ136の負圧状態を利用し、アンカー102移動によって押しのけられた燃料が、燃料通路118から速やかに流体ギャップ136、アンカー側方の隙間(サイドギャップ)130に流れ込むようにし、固定コア107の下端面とアンカー102の上端面の間に生ずるスクイーズ効果による貼り付き力(スクイーズ力)を低減することで閉弁遅れを短縮する手段が知られている。
 本実施例の燃料噴射弁の開弁状態の拡大模式図を図6に示す。第二の弁体152の上端面は固定コア107の内径部に挿入、固定されたストロークストッパ153の下端面に接触し、その位置が規定されている。アンカー112は磁気吸引力で固定コア102に引き付けられるも、第二の弁体152によって隙間G4を残した位置に規制される。プランジャロッド114Aの弁体114Bとオリフィスカップ116の弁座39を通過して噴孔10から内燃機関の燃焼室には燃料が流れるため、プランジャロッド114Aには閉弁方向(図6下向き)の流体力が加わり、プランジャロッド114Aの位置はアンカー112の上端面が頭部114Cを支持することで規制される。
 本構成では燃料噴射弁が開弁状態にある際にも固定コア107とアンカー112が直接衝突することがないため、比較的軟らかい軟磁性ステンレス鋼を用いた場合においても、メッキを用いる必要がないという利点を有している。
 図5の従来の燃料噴射弁ではメッキ501が非磁性材であるため、メッキ501の厚さ分磁気ギャップ502が流体ギャップ136よりも大きい。つまりスクイーズ力を低減するために流体ギャップ136を拡大すると、磁気ギャップ502も拡大され、磁気吸引力が低下し、開弁時の弁体の応答性が低下するという問題を抱えていた。
 メッキを用いないことで、図6に示す本実施例の燃料噴射弁に示すように、磁気ギャップと流体ギャップは等しくG4となるため、従来よりも流体ギャップを拡大しつつ、磁気ギャップを低減することができる。またストロークストッパには固定コア107に対して非圧入、かつ第二の弁体が衝突する際の衝撃力を緩和できるように低剛性部201を設けてある。本構造によりストロークストッパ153を固定コア107に圧入するのみで第二の弁体が衝突する際の衝撃力に耐えて保持することができ、溶接による変形で本ストローク量の精度が悪化する問題を解決できる。また低剛性部で衝撃力が緩和されるため、ストロークストッパ153や第二の弁体152の衝突部にメッキ等の処理も不要となる。
 図8に固定コア107とアンカー112のギャップとスクイーズ力の関係を示す。例えばギャップをAからBに拡大させることで、スクイーズ力は約50%低減することができる。スクイーズ力の低減によるアンカー102の運動の変化を図3cに示す。時刻0.6msで図3aに示すように電流を遮断する。磁気吸引力F1は図3bのように低下し、時刻T6でスプリング110の付勢力F2と流体力F3の和を下回ると、アンカー102はノズルホルダの肩部113に向かって閉弁を開始する。本実施例の燃料噴射弁ではスクイーズ力が低減されているため、時刻T7でプランジャロッド114Aは弁座39に接触する閉弁位置に戻り、従来の燃料噴射弁の閉弁時刻T8よりも早い。よって磁気吸引力を低下させることなく、あるいは向上させつつも、閉弁時のスクイーズ力を低減し、閉弁応答性を向上させることができる。
 公知となっている従来の発明では開弁時の予備ストロークとメッキ廃止を、簡便な構成で実現することができなかった。本実施例は、可動子をアンカー、第一の弁体、第二の弁体の3部品に分割し、固定コアとは別のストロークストッパで可動子の位置を決めることで、複雑な部品構成とすることなく、開弁時の予備ストロークとメッキ廃止を実現できる燃料噴射弁の構造を提案するものである。
 以上のように本実施例では、燃料噴射弁内部の流体の作用力による開弁時の弁体応答遅れと、閉弁時のスクイーズ効果による貼り付き力の両方を低減することとで、従来技術以上に開、閉弁遅れ時間を短縮でき、最小の可制御噴射量(最小噴射量)をより小さく出来る。
 なお、本実施例は、前記実施形態に限定されるものではない。また、本実施例の特徴的な機能を損なわない限り、各構成要素は上記構成に限定されるものではない。
 例として、本実施例では燃料噴射弁に使用される燃料について特に述べていないが、ガソリン、軽油、アルコール等、内燃機関に使用される燃料すべてにおいて適用することができる。これは、本実施例が流体の有する粘性抵抗の観点に立脚して為されているためである。どのような燃料を用いたとしても粘性抵抗は存在し、本実施例の原理が適用できるため、効果を発揮することができる。
22…ノズルホルダ小径筒状部
23…ノズルホルダ大径筒状部
39…弁座
43A…コネクタ
101…ノズルホルダ
102…アンカー
103…ハウジング
104…コイルボビン
105…電磁コイル
107…固定コア
107D…固定コア貫通孔(燃料通路)
109…導体
110…スプリング
112…ゼロスプリング
113…肩部
114…可動子
114A…プランジャロッド
114B…弁体
114C…プランジャロッド頭部
115…ガイド部材
116…オリフィスカップ
118…燃料通路
121…樹脂成形体
126…燃料通路
128…貫通孔
130…サイドギャップ(燃料通路)
150…第二のコア
151…凹部
152…第二の弁体
201…非圧入部
250…面取り部位
300…本実施例の燃料噴射弁のアンカーの変位
301…従来の燃料噴射弁のアンカーの変位
501…メッキ
502…磁気ギャップ
503…凸部

Claims (4)

  1.  固定コアと、前記固定コアの外周側に配置されたソレノイドと、前記固定コアの下端部に対面するアンカーと、前記アンカーに係合した弁体と、前記ソレノイドに通電することにより磁気吸引力を発生させて、前記アンカーと前記弁体を前記固定コアへ吸引し開弁するよう構成した燃料噴射弁において、
     前記弁体は、閉弁時には、前記アンカーの上面と第2の弁体の下面が当接し、前記アンカーの上面と第1の弁体の上部にある太径部の下面の間には所定の隙間が設けられ、開弁時には前記第2の弁体の上面が固定コアの内周に配置されたストロークストッパの下面と当接し、前記アンカーの上面には前記第2の弁体の下面と前記第1の弁体の上部にある太径部の下面が当接し、前記アンカーの上面と前記固定コアの下面には所定の隙間が設けられることを特徴とする燃料噴射弁。
  2.  固定コアと、前記固定コアの外周側に配置されたソレノイドと、前記固定コアの下端部に対面するアンカーと、前記アンカーに係合した弁体と、前記ソレノイドに通電することにより磁気吸引力を発生させて、前記アンカーと前記弁体を前記固定コアへ吸引し開弁するよう構成した燃料噴射弁において、
     前記弁体は、閉弁時には、前記アンカーの上面と当接している第2の弁体と、開弁途中で前記アンカーの上面と当接する第1の弁体からなり、開弁時には前記第2の弁体の上面が固定コアの内周に配置されたストロークストッパと当接し、前記アンカーの上面と前記固定コアの下面には所定の隙間が設けられることを特徴とする燃料噴射弁。
  3.  請求項1に記載の燃料噴射弁において、前記アンカーの上面と固定コアの下面にメッキ処理等の表面硬化処理が施されていないことを特徴とする燃料噴射弁。
  4.  請求項2に記載の燃料噴射弁において、前記アンカーの上面と固定コアの下面にメッキ処理等の表面硬化処理が施されていないことを特徴とする燃料噴射弁。
PCT/JP2014/056390 2013-05-24 2014-03-12 燃料噴射弁 WO2014188765A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480030004.2A CN105431626A (zh) 2013-05-24 2014-03-12 燃料喷射阀
EP14801701.5A EP3006720A4 (en) 2013-05-24 2014-03-12 Fuel injection valve
US14/892,948 US20160097358A1 (en) 2013-05-24 2014-03-12 Fuel Injection Valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-109472 2013-05-24
JP2013109472A JP6087210B2 (ja) 2013-05-24 2013-05-24 燃料噴射弁

Publications (1)

Publication Number Publication Date
WO2014188765A1 true WO2014188765A1 (ja) 2014-11-27

Family

ID=51933331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056390 WO2014188765A1 (ja) 2013-05-24 2014-03-12 燃料噴射弁

Country Status (5)

Country Link
US (1) US20160097358A1 (ja)
EP (1) EP3006720A4 (ja)
JP (1) JP6087210B2 (ja)
CN (1) CN105431626A (ja)
WO (1) WO2014188765A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180080420A1 (en) * 2015-04-07 2018-03-22 Denso Corporation Fuel injection valve
CN107850021A (zh) * 2015-08-06 2018-03-27 株式会社电装 燃料喷射装置
EP3343079A4 (en) * 2015-08-25 2019-03-27 Hitachi Automotive Systems, Ltd. MAGNETIC VALVE
WO2020039955A1 (ja) * 2018-08-24 2020-02-27 日立オートモティブシステムズ株式会社 燃料噴射弁

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6511925B2 (ja) * 2014-08-26 2019-05-15 株式会社デンソー 燃料噴射弁
US20170254304A1 (en) * 2014-09-17 2017-09-07 Denso Corporation Fuel injection valve
JP2016125362A (ja) * 2014-12-26 2016-07-11 株式会社日本自動車部品総合研究所 燃料噴射弁
JP2016125360A (ja) * 2014-12-26 2016-07-11 株式会社日本自動車部品総合研究所 燃料噴射弁
JP6471618B2 (ja) 2015-06-10 2019-02-20 株式会社デンソー 燃料噴射装置
JP6304156B2 (ja) * 2015-07-15 2018-04-04 株式会社デンソー 内燃機関の燃料噴射制御装置
JP6483574B2 (ja) * 2015-08-25 2019-03-13 株式会社デンソー 燃料噴射装置
JP6449741B2 (ja) * 2015-09-02 2019-01-09 株式会社デンソー 燃料噴射装置
JP6421730B2 (ja) * 2015-09-08 2018-11-14 株式会社デンソー 燃料噴射装置
JP6380323B2 (ja) * 2015-10-02 2018-08-29 株式会社デンソー 燃料噴射装置
EP3263884B8 (en) * 2016-06-30 2019-12-18 CPT Group GmbH Injection valve with a magnetic ring element
CN110945231B (zh) * 2017-09-15 2021-09-14 罗伯特·博世有限公司 燃油喷射器及其控制阀
JP6708235B2 (ja) 2017-09-29 2020-06-10 株式会社デンソー 燃料噴射弁
JP6741052B2 (ja) 2017-09-29 2020-08-19 株式会社デンソー 燃料噴射弁
JP6708236B2 (ja) * 2017-09-29 2020-06-10 株式会社デンソー 燃料噴射弁
WO2019065412A1 (ja) 2017-09-29 2019-04-04 株式会社デンソー 燃料噴射弁
JP6913816B2 (ja) * 2018-02-23 2021-08-04 日立Astemo株式会社 燃料噴射弁及びその組立方法
JP6547885B2 (ja) * 2018-07-26 2019-07-24 株式会社デンソー 燃料噴射装置
JP6669282B2 (ja) * 2019-01-21 2020-03-18 株式会社デンソー 燃料噴射装置
US11428196B1 (en) * 2021-11-30 2022-08-30 Caterpillar Inc. Fuel system and control strategy limiting component separation in pushrod actuation train

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08218970A (ja) * 1995-02-08 1996-08-27 Nippondenso Co Ltd 電磁弁
JP2003511602A (ja) 1999-09-29 2003-03-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 燃料噴射弁
JP2007187167A (ja) 1993-12-09 2007-07-26 Robert Bosch Gmbh 電磁操作式の弁
WO2008038395A1 (fr) 2006-09-25 2008-04-03 Hitachi, Ltd. Soupape d'injection de carburant
JP2011241701A (ja) * 2010-05-14 2011-12-01 Keihin Corp 電磁式燃料噴射弁
JP2012097728A (ja) * 2010-10-05 2012-05-24 Denso Corp 燃料噴射弁
JP2012149648A (ja) * 2010-02-17 2012-08-09 Denso Corp 燃料噴射弁

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007011790A1 (de) * 2007-03-12 2008-09-18 Robert Bosch Gmbh Steuerventileinrichtung
ATE523687T1 (de) * 2009-02-16 2011-09-15 Fiat Ricerche Verfahren zur herstellung eines kraftstoffeinspritzservoventils
DE102010064105A1 (de) * 2010-12-23 2012-01-19 Robert Bosch Gmbh Ventil zum Einspritzen von Kraftstoff

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187167A (ja) 1993-12-09 2007-07-26 Robert Bosch Gmbh 電磁操作式の弁
JPH08218970A (ja) * 1995-02-08 1996-08-27 Nippondenso Co Ltd 電磁弁
JP2003511602A (ja) 1999-09-29 2003-03-25 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 燃料噴射弁
WO2008038395A1 (fr) 2006-09-25 2008-04-03 Hitachi, Ltd. Soupape d'injection de carburant
JP2012149648A (ja) * 2010-02-17 2012-08-09 Denso Corp 燃料噴射弁
JP2011241701A (ja) * 2010-05-14 2011-12-01 Keihin Corp 電磁式燃料噴射弁
JP2012097728A (ja) * 2010-10-05 2012-05-24 Denso Corp 燃料噴射弁

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3006720A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180080420A1 (en) * 2015-04-07 2018-03-22 Denso Corporation Fuel injection valve
US10428778B2 (en) * 2015-04-07 2019-10-01 Denso Corporation Fuel injection valve
US11047352B2 (en) 2015-04-07 2021-06-29 Denso Corporation Fuel injection valve
CN107850021A (zh) * 2015-08-06 2018-03-27 株式会社电装 燃料喷射装置
US10309356B2 (en) * 2015-08-06 2019-06-04 Denso Corporation Fuel injection device
US10941739B2 (en) 2015-08-06 2021-03-09 Denso Corporation Fuel injection device
EP3343079A4 (en) * 2015-08-25 2019-03-27 Hitachi Automotive Systems, Ltd. MAGNETIC VALVE
US10690097B2 (en) 2015-08-25 2020-06-23 Hitachi Automotive Systems, Ltd. Electromagnetic valve
WO2020039955A1 (ja) * 2018-08-24 2020-02-27 日立オートモティブシステムズ株式会社 燃料噴射弁
JPWO2020039955A1 (ja) * 2018-08-24 2021-03-11 日立オートモティブシステムズ株式会社 燃料噴射弁

Also Published As

Publication number Publication date
JP2014227958A (ja) 2014-12-08
CN105431626A (zh) 2016-03-23
JP6087210B2 (ja) 2017-03-01
US20160097358A1 (en) 2016-04-07
EP3006720A1 (en) 2016-04-13
EP3006720A4 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
JP6087210B2 (ja) 燃料噴射弁
EP2574768A1 (en) Fuel injector
EP2067982B1 (en) Fuel injection valve
JP4887369B2 (ja) 燃料噴射弁
JP5822269B2 (ja) 電磁式燃料噴射弁
EP1878908B1 (en) Electromagnetic fuel injection valve
JP5982210B2 (ja) 電磁式燃料噴射弁
JP2010084552A (ja) 電磁式燃料噴射弁
JP6219533B2 (ja) 燃料噴射弁
JP6571410B2 (ja) 電磁弁
JP2012188977A (ja) 燃料噴射装置
JPWO2016042896A1 (ja) 燃料噴射弁
JP2015161210A (ja) 燃料噴射弁
WO2019216202A1 (ja) 燃料噴射装置
JPWO2018037748A1 (ja) 燃料噴射弁
WO2017154815A1 (ja) 燃料噴射装置
JP2013151915A (ja) 燃料噴射弁
JP6557608B2 (ja) 燃料噴射装置の制御装置
JP2015121188A (ja) 燃料噴射弁
JP6595701B2 (ja) 燃料噴射装置
JP6338662B2 (ja) 燃料噴射弁
WO2019054036A1 (ja) 流量制御装置、および流量制御装置の製造方法
US11629678B2 (en) Fuel injection valve and method for assembling same
JP2018105271A (ja) 燃料噴射弁

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480030004.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801701

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014801701

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014801701

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14892948

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE