WO2014185671A1 - 고기능성 폴리아미드 중합체, 이를 포함하는 방사 도프 조성물 및 그의 성형물 - Google Patents

고기능성 폴리아미드 중합체, 이를 포함하는 방사 도프 조성물 및 그의 성형물 Download PDF

Info

Publication number
WO2014185671A1
WO2014185671A1 PCT/KR2014/004216 KR2014004216W WO2014185671A1 WO 2014185671 A1 WO2014185671 A1 WO 2014185671A1 KR 2014004216 W KR2014004216 W KR 2014004216W WO 2014185671 A1 WO2014185671 A1 WO 2014185671A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
spinning dope
group
polyamide
dope composition
Prior art date
Application number
PCT/KR2014/004216
Other languages
English (en)
French (fr)
Inventor
주식회사 에스케이이노베이션
정지원
김용훈
Original Assignee
에스케이종합화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이종합화학 주식회사 filed Critical 에스케이종합화학 주식회사
Priority to EP14798094.0A priority Critical patent/EP2998338B1/en
Priority to US14/787,412 priority patent/US9803054B2/en
Priority to JP2016510631A priority patent/JP6203377B2/ja
Priority to BR112015028620A priority patent/BR112015028620A2/pt
Priority to CN201480028020.8A priority patent/CN105229053B/zh
Priority to RU2015153220A priority patent/RU2647598C2/ru
Publication of WO2014185671A1 publication Critical patent/WO2014185671A1/ko
Priority to US15/710,472 priority patent/US10233288B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/32Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from aromatic diamines and aromatic dicarboxylic acids with both amino and carboxylic groups aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • C08G69/30Solid state polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0683Polycondensates containing six-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0694Polycondensates containing six-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only two nitrogen atoms in the ring, e.g. polyquinoxalines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/10Polyamides derived from aromatically bound amino and carboxyl groups of amino-carboxylic acids or of polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • D01F6/605Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides from aromatic polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/59Polyamides; Polyimides

Definitions

  • High functional polyamide polymers spin dope compositions comprising the same and moldings thereof
  • the present invention relates to a high functional polyamide polymer, a spinning dope composition comprising the same, and a molding obtained therefrom, and more particularly, to a polyamide polymer which is a functional fiber of high strength and high modulus of elasticity and a dope composition containing the same.
  • Fiber is emerging as a core material in various industries such as aerospace, aviation, ship, building materials, sporting goods as well as clothing, and it is a high-performance fiber that can withstand high heat and is stronger than general clothing fiber of nylon and polyester.
  • the demand for is increasing.
  • Such high performance fibers include carbon fiber and aramid fiber.
  • Carbon fiber refers to a filament made of non-combustible carbon obtained by stabilizing and carbonizing a precursor fiber prepared by spinning an organic material such as an organic fiber or a resin pitch, or stretching a draw at 250 ° C. or more.
  • Carbon fiber has the advantages of high elasticity and strength, low coefficient of thermal expansion and high electrical and thermal conductivity.
  • aramid fiber was developed by DuPont in the 1970s, and has more than twice the strength of conventional islands, and has an elongation at break compared to carbon fiber having excellent creep resistance in addition to strength and elastic modulus. ) Is 3 ⁇ 4%, so it has the advantage of excellent bending fatigue and shock absorption characteristics, but it is not strong for acid as can be seen from the fact that strong acid such as sulfuric acid is used as the radiosolvent. Therefore, long-term exposure to outdoor ultraviolet rays, etc. are not very durable compared to general fibers such as polyester, there is a problem that the dyeability is poor.
  • the moisture absorption rate is relatively high, such as 4 to 6%, and if it is in a high amount of silver for a long time, it causes mechanical degradation due to hydrolysis.
  • Korean Patent Application No. KR 1994-5840 and Korean Patent Registration No. KR0171994 disclose polyamides containing nitrile-substituted monomers, but have a disadvantage of not being spun at high draw ratios and low draw ratios. Breaks occur frequently during radiation, even in In addition, there is a disadvantage in that it is difficult to have commercial applicability because it is required to further improve mechanical properties.
  • the present invention is a diamine monomer comprising an aromatic diamine monomer containing a nitrile substituent and an aromatic diamine monomer having a primary amide (-C0NH 2 ) substituents as a result of a lot of research to solve such a conventional problem
  • the present invention has been found to be able to solve the above problem.
  • the present invention provides a spinning dope composition capable of spinning at a higher draw ratio than that of the related art and spinning under mild conditions and a novel polyamide polymer capable of providing the same.
  • the present invention can also provide a liquid crystal dope of the aforementioned novel polyamide polymer, in particular an aromatic liquid crystal dope, and a method for producing the same.
  • the present invention is excellent in the radioactivity capable of spinning at high elongation ratio, at least 15, preferably 20 times, more preferably at least 30 times higher elongation ratio from the spinning dope composition made of the novel polyamide polymer described above. And aromatic amide fibers having a high modulus of elasticity and a method of manufacturing the same.
  • the present invention can provide a novel polyamide fiber having excellent dyeability.
  • the present invention can provide molded products such as amide fibers, especially aromatic polyamide fibers, in an extremely environmentally friendly manner without complex processes such as sulfuric acid treatment and neutralization of sulfuric acid.
  • the polyamide polymer according to the present invention is selected from (a) at least one aromatic diamine monomer selected from formula (1) and (b) at formula (2) One or two or more aromatic diamine monomers (c) one or two or more aromatic divalent organic acid derivative monomers selected from the following general formula (3): It is a polymer prepared by polymerizing the polymerization monomer comprising a, the present invention Spinning dope composition comprising and a molding prepared therefrom.
  • Ar 2 and ⁇ ⁇ 3 are independently of each other a C 6 ⁇ C 34 substituted or unsubstituted aromatic group or -Ar 4 -Z-Ar 5- , wherein Ar 4 and 5 is C 6 to C 34 is a substituted or unsubstituted aromatic group, and Z is a single bond, -C (0) NH-, -NH-C (O)-, -CO-, -C00-, -S0 2 ⁇ , -SO -Or a substituted or unsubstituted linear or branched alkylene group of d-do, X is an alkoxy group selected from hydroxy, halogen: or (: ⁇ , and a and b are each independently selected from 1 to 4 Is an integer selected)
  • the monomer of Formula 1 is preferably such that at least one or more -C0NH 2 substituent is substituted at the ortho position of the primary amine group of the aromatic diamine monomer, more preferably- It is preferable that all of the C0N 3 substituents are located at the olso position of the amine group of the aromatic diamine monomer.
  • the aromatic diamine monomer having the -C0NH 2 substituent of Formula 1 may use 0.001 to 50 mol3 ⁇ 4, preferably 0.01 to 20 mol% of the total diamine monomer including Formula 1 and Formula 2.
  • the aromatic diamine of the present invention may use only a mixture of -C0NH 2 substituted aromatic diamine and an aromatic diamine substituted with a nitrile group.
  • other diamine monomers other than the aromatic diamines of Formulas 1 and 2 may be used.
  • the physical properties of the polymer can be controlled and are also within the scope of the present invention.
  • the molar ratio is 0.001 to 0.5 mole ratio, preferably 0.3 mole ratio, relative to 1 mole of the aromatic diamine monomers represented by the general formulas (1) and (2). It can be used in the range up to but not limited to.
  • the ratio of the organic dicarboxylic acid derivative monomer including 3 is economical to use in 1: 0.9 to 1.1 molar ratio, but is not limited thereto.
  • the content of the -C0N3 ⁇ 4 substituted aromatic diamine monomer of Formula 1 exceeds 50 mol 3 ⁇ 4 "of the total diamine monomer content, the viscosity rises excessively in the polymerization step, resulting in poor heat transfer, and thus control of the rainproof. It may not be easy, and if the spinning dope is made by using the polymerized body, the spinning may be difficult because it may be an isotropic dope composition rather than anisotropic.
  • the polymer of the present invention 0.001 to 50 mol% of the aromatic diamine monomer substituted with the -C0N3 ⁇ 4 substituent of Formula 1 and 99.99-50 mol% of the diamine of the aromatic diamine monomer substituted with the nitro group of Formula 2
  • the monomer is polymerized in an equivalence ratio with the aromatic organic diacid-based monomer of formula (3).
  • the polymer prepared is When the molded article is manufactured, the mechanical properties such as the mechanical strength and the elastic modulus of the molded article can be adjusted, and the viscosity may be adjusted even when the radiation dope is prepared.
  • the present invention since an amide group or a nitrile group in the diamine monomer may be substituted with one aromatic diamine monomer at the same time, the present invention is not excluded from the present invention as long as the monomer has a nitrile group or an amide group.
  • aromatic diamine having an amide functional group of the present invention include, but are not limited to, the following ones, but are not limited thereto.
  • examples of the aromatic diamine monomer having a primary amide group represented by the general formula (1) as a substituent include the following compounds, but not limited thereto.
  • A is -H, -CI, -Br, -I'-N0 2> -CN or a C1-4 alkyl or alkoxy group
  • B is -CO-, -C (0) NH- ⁇ -NH-C (O)-, -C00- ⁇ -S0 2- , -SO- or C1-C10 straight or branched alkylene group.
  • examples of the aromatic diamine monomer having a nitrile group represented by Chemical Formula 2 as a substituent of the present invention include, but are not limited to, compounds of the following structural formulas-
  • A is -H ⁇ -CI, -Br, -I, -N0 2 , -CN, -CONH 2 or an alkyl or alkoxy group having 1 to 4 carbon atoms
  • B is -C0-, —C (0) NH-, -NH-C (O)-, -C00-, -S0 2- , -SO- or C1-C10 linear or branched alkylene group.
  • aromatic organic diacid derivative monomer of Chemical Formula 3 may be any aromatic organic diacid derivative monomer of Chemical Formula 3.
  • the present invention includes that in addition to the aromatic organic diacid derivative monomer of the formula (3) can be used additionally dicarboxylic acid monomers other than the formula (3) for the control of physical properties.
  • dicarboxylic acid monomers other than the formula (3) for the control of physical properties.
  • the aromatic dicarboxylic acid monomer of the formula (3) Add other dicarboxylic acid compounds (e.g., unsubstituted nitrile groups or aliphatic dicarboxylic acid compounds, etc.) to 50 mol% of the total dicarboxylic acid monomers, more preferably 0.01 to 30 mol3 ⁇ 4. It is also good.
  • aromatic dicarboxylic acid compound belonging to the general formula (3) of the present invention for example In terms of salvage, terephthalic acid, C1-C4 terephthalate or terephthaloyl halide, naphthalene dicarboxylic acid, naphthalene dicarboxylic acid halide, isophthalic acid, isophthalic acid halide, diphenyldicarboxylic acid and its halide or ester monomers For example,. It is also possible for these monomers to have one or more substituents selected from CI, Br, I, NO 2 or alkyl having 1 to 4 carbon atoms or alkoxy groups, and are not limited thereto.
  • dicarboxylic acid monomers other than the aromatic dicarboxylic acid monomers of Formula 3 include aliphatic dicarboxylic acids such as adipic acid and sebacic acid, and cyclonucleic acid -1,4-.
  • Alicyclic dicarboxylic acids such as dicarboxylic acids, halides thereof, or ester monomers thereof may be mentioned, but are not limited thereto.
  • the primary amide group which is a substituent of the amine group of the aromatic diamine of Formula 1
  • the primary amide group include a monomer in which the amine group of the aromatic diamine is substituted in place, but the cause is not clear.
  • the amide linkage formed by polymerization in the backbone of the polymer reacts with the amide group substituted in the aromatic diamine to form a quinazolinone ring represented by the following formula (4).
  • the mechanical strength is significantly increased, and in addition, the spinnability is predominantly interacted with the nitrile substituents present in the polymerization unit.
  • the weight average molecular weight of the above was measured using ⁇ , ⁇ -dimethylacetamide (DMAc) having a lithium chloride (LiCl) concentration of 0.05 M as Eluent, and the sample was injected by dilution at 0.1 g / L. After passing through 1 guard column (PLgel Olexis Guard 50 * 7.5 mm, Agilent) and 2 main columns (PLgel Olexis 300 * 7.5mm, Agilent) at a rate of ml / min, the RI (Refractive Index) equipment Detect ion was used to measure polystyrene as a standard.
  • DMAc ⁇ , ⁇ -dimethylacetamide having a lithium chloride (LiCl) concentration of 0.05 M as Eluent
  • the polymer unit is expressed as a single breakfast for convenience, the actual polymer is apparent to those skilled in the art that the following units are randomly polymerized.
  • the chemical structural formula includes the structure of Chemical Formula 6 as follows. This is because the primary amide group substituent substituted at the olso position of the aromatic diamine which is the monomer of the polymer reacts with the amide group of the polymer backbone by polymerization to form a quinazolinone ring.
  • the present invention also provides spin dope comprising the various polymers described above.
  • the aromatic diamine and the chemical The aromatic dicarboxylic acid-based monomer polymer of Formula 3 may have the advantage that the radiation is smooth by showing the liquid crystal characteristics, but may further include a monomer other than the above formula in order to control the radiation characteristics, liquid crystal characteristics or processability.
  • the solvent used in the polymerization step of the present invention is not particularly limited as long as it can dissolve monomers or polymers, and examples thereof include, for example, ⁇ , ⁇ -dimethylacetamide (DMAc) and N-methyl—2-pyridone. (NMP), nucleated methylphosphoamide (HMPA), ⁇ , ⁇ -dimethylformamide (DMF), ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethyl urea (TMU), dimethylsulfoxide (DMS0) or theirs It is a complex, but is not limited thereto.
  • the viscosity of the polymer may be lowered, and the polymerization may be further progressed, and the fluidity may be increased within the range of the solid content to prepare the spinning dope, thereby making it possible to smooth spinning.
  • the salt it is preferable to neutralize hydrochloric acid which is a banban male product when a chloride such as terephthaloyl chloride is used as the aromatic organic diacid-based monomer.
  • the inorganic salt may include LiCl and Li 2 CO 3 but are not limited thereto.
  • the addition of tertiary amines in addition to the inorganic salts or mixed administration of the inorganic salts has an effect of increasing the fluidity substantially similar to that of the inorganic salts. It can be improved.
  • an organic solvent may be further added in the preparation of the spinning dope.
  • the mixed solvent include ⁇ , ⁇ -dimethylacetamide (DMAc), N-methyl-2-pyridone (XP), Hexamethylphosphoamide (HMPA), ⁇ , ⁇ -dimethylformamide (DMF), ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethyl urea (TMU), dimethylsulfoxide (DMS0) or combinations thereof
  • DMAc ⁇ , ⁇ -dimethylacetamide
  • XP N-methyl-2-pyridone
  • HMPA Hexamethylphosphoamide
  • DMF ⁇ , ⁇ -dimethylformamide
  • TNU dimethylsulfoxide
  • DMS0 dimethylsulfoxide
  • the content of solids in the spinning dope composition is not particularly limited if spinning or working is possible, but preferably 5 to 30% solids.
  • the spinning method may use a conventional spinning method and apparatus of the fiber, which is well known to those skilled in the art, and will not be further described.
  • the polymerization method of the present invention will be described by way of example.
  • a diamine monomer comprising an aromatic diamine monomer of the following general formula (1) and the general formula (2) is dissolved in a solvent to prepare a solution, followed by or simultaneously with solution preparation.
  • the angle temperature is not limited, but is usually reduced to about -50 to 30V, preferably -20 to 10 ° C, but is not limited thereto.
  • Ar ⁇ Ar 2 and Ar 3 are independently of each other a C 6 ⁇ C 34 substituted or unsubstituted aromatic group or -Ar 4 -Z-Ar 5- , Ar 4 And Ar 5 It is C 6 to C 34 is a substituted or unsubstituted aromatic group and Z is a single bond, -C (0) NH-, -NH-C (O)-, -CO-, -C00-, -S0 2- , -SO — Or a substituted or unsubstituted linear or branched alkylene group of Crdo, X is an alkoxy group selected from hydroxyl, halogen or d ⁇ C 4 , wherein a and b are each independently selected from 1 to 4 Is an integer)
  • one or more aromatic organic diacid monomer solution selected from the above formula (3) is added in a batch or by dividing.
  • the aromatic organic diacid-based monomer may be added as it is or dissolved in a solvent.
  • the input amount in each division step is not greatly limited.
  • the two input amounts are about 10 to 90 weight 3 ⁇ 4, but are not limited thereto.
  • the reaction temperature may be increased by increasing the reaction temperature. It is not limited.
  • the present invention relates to alkali metal carbonates and alkalis during and / or after the polymerization.
  • One or more inorganic salts or tertiary amines selected from metal oxides, alkali metal hydrides, alkali metal hydroxides, alkaline earth metal carbonates, alkaline earth metal hydrides, alkaline earth metal oxides or alkaline earth metal hydroxides are added.
  • the amount of the inorganic salt or the tertiary amine is not limited to the fluidity, but preferably 0.9 to 1.3 molar ratio per 1 mole of the diamine monomer. More preferably, the 1.0-1.1 molar ratio is good without waste of raw materials.
  • the content of solids (polymer content) in the spinning dope is not limited, but may be, for example, 5 to 30 3 ⁇ 4, and the spinning dope is polymerized after ' injecting an inorganic salt to increase fluidity.
  • the spinning dope may be prepared by additionally adding an additional solvent.
  • a typical example is the manufacture of the spinning dope by polymerizing and then pulverizing the polymer and stirring the mixture with an inorganic salt.
  • the present invention also includes a spinning dope composition comprising a quinazolinone unit as described in the above polymer.
  • one example of the preparation method of the present invention is 1) dissolving an aromatic diamine monomer comprising monomers of an aromatic diamine substituted with a primary amide group of Formula 1 and an aromatic diamine substituted with a nitro group of Formula 2 in a polymerization solvent.
  • the present invention comprises at least one of 3) alkali metal carbonate, alkali metal oxide, alkali metal hydride, alkali metal hydroxide, alkaline earth metal carbonate, alkaline earth metal hydride, alkaline earth metal oxide or alkaline earth metal hydroxide. It may include a method of preparing a polymer further comprising the step of adding at least one selected from inorganic salts or tertiary amine characterized in that the stirring at 0 ⁇ 100 ° C with the polymer.
  • the organic solvent is ⁇ , ⁇ -dimethylacetamide.
  • DMAc N-methyl-2-pyrrolidone
  • HMPA nuxamethylphosphoramide
  • TMU dimethyl sulfoxide
  • DMS0 dimethyl sulfoxide
  • Partially adding the aromatic organic diacid derivative monomer in the second step of the method for preparing the spinning dope composition of the polyamide polymer may be caused by heterogeneous polymerization to prevent generation of ultra high molecular weight which is unsuitable for spinning.
  • polymerization may be performed by first adding 45 to 55% of the total input amount and post-adding the remaining amount, but the present invention is not limited thereto.
  • the third step of the method for preparing the spinning dope composition of the polyamide polymer is
  • the inorganic salts are not limited in kind, but particularly in the case of Li 2 CO 3 alone or in combination, the spinning properties of the spinning dope composition of the polyamide polymer produced showed particularly excellent effects.
  • the aromatic diamine monomer in which the primary amide group is substituted at the olso position of the amine group is made of a polymer
  • the primary amide structure substituted in the process of stirring with Li 2 CO 3 is present in the backbone of the polymer. Structural conversion of the backbone amide group to some reaction to the quinazolinone structure was also observed, and an increase in mechanical strength and elongation was observed.
  • the present invention encompasses both polyamide fibers, films or casts produced by spinning with the spinning dope (composition) or films or other shaped bodies obtained by other processing methods.
  • the present invention has an increased fluidity so that the tensile strength is significantly higher than 15 g / d, preferably higher than 20 g / d, and the tensile modulus of 450 g / d or higher, preferably 480 g / d. It may include a fiber having a high strength, high elastic properties. In addition, the present invention may be a polyamide fiber which is hardly cut to produce fibers up to Denier 1.5 or less, preferably 1.2 or less.
  • the spinning method for producing a fiber using the spinning dope of the present invention is a wet type (Wet Spinning, Dry Spinning or Dry-jet Wet Spinning)
  • the spinning process can be carried out, but the wet spinning is preferred, but not limited thereto.
  • the optical properties of the dope are Good anisotropy can be shown.
  • the polyamide spinning dope exhibiting optical anisotropy in the present invention may be a polymer containing a repeating unit of at least one of the following formula (7) or (8).
  • R 2 in Formula 7 or Formula 8 may be one selected from Formulas 9 to 13.
  • D or D 2 is any one selected from -H, -CN, -C0NH 2 , and B is -CO-, -C (0) NH-, -NH-C (O)-, -C00-, -S0 2- ⁇ -SO- or C1-C4 linear or branched alkylene group, at least one of I or D 2 for Ri is -C0NH 2 , and for 3 ⁇ 4 or D 2 At least one is -CN.
  • the amide group or the nitrile group is substituted at the oliso position, and it is better in terms of mechanical properties, thermal stability, and radiation characteristics that the polymer is a linear structure bonded to the backbone at the para position.
  • the present invention provides a molded article of the group consisting of fibers, films or films of polyamide obtained by spinning and solidifying the spinning dope composition of the polyamide polymer having the optical anisotropy described above.
  • the spinning dope composition of the polyamide polymer is
  • the present invention is a fiber produced using the above-described spinning dope has a tensile strength of 15g / d
  • More than 20g / d is preferably good, provides a molded article having a high modulus of elasticity of 450g / d or more, preferably 480g / d or more, and / or Denier 1.5 or less, preferably 1.2 or less.
  • the novel polyamide polymer of the present invention has a structure comprising a CN functional group and a C0NH 2 functional group, and the fibers using the spinning dope composition including the same have significantly superior strength and elasticity than conventional fibers.
  • the spinning ratio using the spinning dope of the present invention has the advantage of achieving a draw ratio of 10 or more, preferably 20 or more, more preferably 30 or more, due to the draw ratio characteristics, the implementation of high-gloss fiber production This is possible.
  • the polymer of the present invention can be dyed using a dye (dye), there is an advantage that can be produced in a variety of color fibers, it can be applied to a variety of fields of high strength and high functionality.
  • FIG. 1 is a photograph of a fiber filament produced by spinning the spinning dope according to the first embodiment of the present invention.
  • Figure 2 is a photograph of the dyed fiber filaments prepared by Example 1 of the present invention.
  • FIG. 3 is an infrared spectroscopy absorption spectrum diagram of the radiation dope composition of Comparative Example 1 and Example 3.
  • FIG. 3 is an infrared spectroscopy absorption spectrum diagram of the radiation dope composition of Comparative Example 1 and Example 3.
  • the fineness value is an average value of ten or more times measured by ASTM D 1577 Option C test method for single strands, and the value of tensile strength, elongation and tensile elasticity of single strands is KS K 0327. This is the average value of 10 or more measurements.
  • the weight average molecular weight was measured by GPC gilent Infinity 1260 series. The measurement conditions were obtained by using ⁇ , ⁇ -dimethylacetamide (DMAc) having a lithium chloride (LiCl) concentration of 0.05 M as Eluent, and diluting the sample at 0.1 g / L and injecting one at a rate of 1 ml / min.
  • DMAc ⁇ , ⁇ -dimethylacetamide
  • LiCl lithium chloride
  • the gel-like solid was pulverized with a blender, and then 5.585 g (75.6 mmol) of lithium carbonate (Li 2 C0 3 ) was added to neutralize the HC1 produced in the reaction, while flowing fluid within 1 hour.
  • a spinning dope composition having a silvery white gloss was obtained. ;
  • GPC Gel Infinity 1260 series
  • ⁇ , ⁇ -dimethylacetamide (DMAc) having a lithium chloride (LiCl) concentration of 0.05M
  • LiCl lithium chloride
  • One guard column PLgel Olexis Guard 50 * 7.5 mm, Agilent
  • two main columns PLgel Olexis 300 * 7.5mm, Agilent
  • RI Refractive Index
  • the spinning dope composition prepared in Example 1 After degassing the spinning dope composition prepared in Example 1 while aging at 55 ° C for several hours, filtered through a stainless steel mesh of 100, 250, 400 mesh, through a spinneret to the air layer of 0.1 ⁇ 3ciri Simultaneously with the extrusion spraying, it is wound in a distilled water bath maintained at about 0 to 1 (TC) and wound in a lor at a rate of draw ratio 30.
  • the polyamide fiber After washing with distilled water, the polyamide fiber is produced by drying at 150 ° C. The fineness of the fiber was 1.1 denier, the tensile strength was 26.3 g / d, the elongation was 3.7, and the tensile modulus (3%) was 576 g / d.
  • FIG. 1 is a photograph of a fiber filament prepared by spinning a spinning dope composition including an aromatic amide polymer according to Example 1 of the present invention at a draw ratio of 30. High draw ratio. Stretching is possible, and it can be confirmed that the filament is high gloss.
  • 2 is a photograph of dyed fiber filaments spun at a draw ratio of 30 by adding various dyes to a spinning dope composition comprising a polyamide polymer according to Example 1 of the present invention. After stirring and adding 1.6 wt3 ⁇ 4 of dye to the polymer 3 ⁇ 4 of the finished dope, the filament yarn of various colors can be obtained through a spinning process. At this time, as the dye used, various colors of acid dyes, basic dyes, semi-ungseong dyes and the like can be used. It can be seen that the dye of the present invention can be easily dyed to produce fibers of various colors.
  • TPC primary terephthaloyl chloride
  • the gel-like solid was pulverized with a blender, and then 5.585 g (75.6 mmol) of lithium carbonate (Li 2 C0 3 ) was added to neutralize HC1 produced during the reaction, while having a flowable silver white color within 1 hour.
  • the spinning dope composition which has the gloss of was obtained.
  • the spinning dope composition prepared in Example 2 After degassing the spinning dope composition prepared in Example 2 while aging at 55 ° C for several hours, filtered through a stainless steel mesh of 100, 250, 400 mesh, extruded and sprayed into the air layer of 0.1 ⁇ 3cm through the spinneret At the same time, the mixture is decanted in a distilled water bath maintained at about 0 to 1 C and wound in a lor at a rate of draw ratio 30. After washing with distilled water, the polyamide fiber is produced by drying at 15 C C. 1.0 denier, tensile strength was 27.7 g / d, elongation was 3.9, and tensile modulus (3%) was 649 g / d.
  • the spinning dope composition prepared in Comparative Example 1 After degassing the spinning dope composition prepared in Comparative Example 1 while aging at 55 ° C for several hours, filtered through a stainless steel mesh of 100, 250, 400 mesh and extruded into an air layer of 0.1 ⁇ 3 cm through a spinneret At the same time as the spray was attempted to wind in the distilled water bath maintained at about 0 ⁇ 10 ° C to the lor at a speed of 10 or more elongation ratio, the spinning dope composition prepared in Comparative Example 1 of the effective length Disadvantages were shown in that the spinning ability to obtain the polyamide fibers was inferior and the surface of the fibers was not uniform.
  • the gel-like solid was pulverized with a mixer and then lithium carbonate (Li 2 C 0 3 )
  • the dope composition After immersing the spinning dope compositions of Example 3 and Comparative Example 1 in distilled water and sequentially washed with water and dried with methanol and acetone, the dope composition is infrared spectrometer
  • a quinazolinone structure can not be confirmed, it is believed that such a ring is formed when a lithium dope is added to prepare a spin dope.
  • a polyamide polymer having a weight average molecular weight of 3,120,000 g / mol and a molecular weight distribution of 5.22 was obtained.
  • the spinning dope composition prepared in Example 3 After degassing the spinning dope composition prepared in Example 3 while aging at 55 ° C for several hours, filtered through a stainless steel mesh of 100, 250, 400 mesh, and then to the air layer of 0.1 ⁇ 3 cm through spinneret Simultaneously with the extrusion spray, the mixture is rolled into a distilled water bath maintained at about 0 to 10 ° C. and wound on a roller at a draw ratio of 10. After washing with distilled water, polyamide fiber is produced by drying at 150 ° C. The fineness of the fiber was 2.3 denier, the tensile strength was 14.3 g / d, the elongation was 6.1%, and the tensile modulus (3%) was 394 g / d.
  • the spinning dope composition prepared in Example 3 After degassing the spinning dope composition prepared in Example 3 while aging at 55 ° C. for several hours, filtered through a stainless steel mesh of 100, 250, 400 mesh, through spinneret While extruding and spraying into the air layer of 0.1 ⁇ 3cm, it is cooled in a distilled water bath maintained at about 0 ⁇ 10 ° C and wound on the lor at the rate of draw ratio 30. After washing gently with distilled water, drying at 150 ° C. produces polyamide fibers. The fineness of the fiber is 1.5 denier, the tensile strength is
  • TPC primary terephthaloyl chloride
  • a polyamide polymer having 4,150,000 g / mol and a molecular weight distribution of 5.95 was obtained, and it was confirmed by POM (Polarized Optical Microscope) that it was a nematic liquid crystal phase having a Schlieren texture:
  • a silver-white glossy dope composition was obtained having:
  • the spinning dope composition prepared in Example 5 was dehydrated at 55 ° C. for several hours. After filtering, filter with stainless steel mesh of 100, 250, 400 mesh, extruding by spraying into air layer of 0.1 ⁇ 3cm through spinneret and coagulating in distilled water bath maintained at about 0 ⁇ 10 ° C. Wind it up to the speed. After washing gently with distilled water, drying at 150 ° C. produces polyamide fibers. The fineness of the fiber was 2.0 denier, the tensile strength was 17.4 g / d, the elongation was 5.2%, and the tensile modulus (33 ⁇ 4 was 402 g / d).
  • the spinning dope composition prepared in Example 5 After degassing the spinning dope composition prepared in Example 5 while aging for several hours at 55 ° C., filtered through a stainless steel mesh of 10 250, 400 mesh, through a spinneret in the air layer of 0.1 ⁇ 3 cm Simultaneously extruding and blowing in a distilled water bath maintained at about 0 to 1 C is wound into a lor at a rate of draw 30. Wash thoroughly with distilled water and then dry at 150 ° C to produce polyamide fibers. The fineness of the fiber was 1.3 denier, the tensile strength was 25.3 g / d, the elongation was 4.1%, and the tensile modulus (33 ⁇ 4 was 562 g / d).
  • TPC Primary terephthaloyl chloride
  • TPC Primary terephthaloyl chloride
  • the spinning dope composition prepared in Example 7 After degassing the spinning dope composition prepared in Example 7 while aging at 55 ° C for several hours, filtered through a stainless steel mesh of 100, 250, 400 mesh and extruded into an air layer of 0.1 ⁇ 3 cm through a spinneret Simultaneously spray and distill in a distilled water bath maintained at approximately 0 to 10'C. Wind the lor at a rate of 30 draw ratio. After washing sufficiently with distilled water, drying at 150 ° C. produces polyamide fibers. The fiber had a fineness of 1.3 denier, a tensile strength of 25.5 g / d, and an elongation of 3.3% 'tensile modulus (3%) of 608 g / d.
  • the gel-like solid was pulverized with a blender, and then 5.572 g (75.4 mmol) of lithium carbonate (Li 2 C0 3 ) was added to neutralize HC1 produced in the reaction and a silver-white gloss in 1 hour.
  • 2 '5-diaminoben Zamide-terephthalamide) [poly (2,5-clianiinobenzaiiiide-terephthalamide)] spinning dope composition was obtained.
  • Elongation ratio refers to the ratio of the speed of the filament passing through the unsupervised bath at the time of stretching to the initial speed without stretching of the extrudate passing through the spinneret when spinning the spinning dope composition.
  • the novel polyamide-liamide polymer of the present invention has a structure containing a CN functional group and a C0N3 ⁇ 4 functional group, and fibers using the spinning dope composition including the same have superior strength and elasticity to those of conventional fibers. .
  • the structure is also resistant to prolonged exposure to ultraviolet rays, and has excellent durability without prolonged hydrolysis, such as hydrolysis.
  • the spinning ratio using the spinning dope of the present invention has the advantage of achieving a draw ratio of 10 or more, preferably 20 or more, more preferably 30 or more. This is possible.
  • the polymer of the present invention can be dyed by using a dye, and has the advantage of producing various colors of fibers, and is applicable to various fields of high strength and high functionality. It is possible.

Abstract

본 발명은 니트릴기 및 아미드기로 치환된 방향족 디아민과 방향족 이가산 화합물을 포함하는 단량체를 중합하여 얻어지는 새로운 폴리아미드 중합체 및 이의 방사도프 및 이를 이용한 성형품에 관한 것이다. 본 발명의 새로운 폴리아미드 중합체를 이용한 섬유, 특히 본발명의 중합체를 방사하여 얻어지는 섬유는 고강도, 고탄력성으로 다양한 산업 분야에 적용할 수 있다.

Description

【명세서】
【발명의 명칭】
고기능성 폴리아미드 중합체, 이를 포함하는 방사 도프 조성물 및 그의 성형 물
【기술분야】
<1> 본 발명은 고기능성 폴리아미드 중합체 및 이를 포함하는 방사 도프 조성물 및 그로부터 얻어지는 성형물에 관한 것으로, 보다 상세하게는 고강도, 고탄성률의 기능성 섬유인 폴리아미드 중합체 및 이를 포함하는 도프 조성물에 관한 것이다. 【배경기술】
<2> 최근 섬유가 의류뿐만 아니라, 우주, 항공, 선박, 건축자재, 스포츠 용품 등 다양한 산업 분야의 핵심 소재로 부상하면서, 나일론, 폴리에스테르의 일반 의 류용 섬유보다 강하고 고열에 견딜 수 있는 고성능 섬유에 대한 요구가 증대하고 있다.
<3> 이러한 고성능 섬유로는 탄소섬유 (carbon fiber), 아라미드 섬유 (Aramid fiber):등이 있다. 탄소섬유는 유기섬유나 수지 피치 등과 같은 유기재료를 방사 하여 제조한 전구체 섬유를 안정화 및 탄화, 250°C 이상에서의 연신 혹연화를 시켜 얻어진 비혹연질 탄소로 이루어진 필라멘트를 지칭한다. 탄소섬유는 탄성계수와 강 도가 크고 열팽창계수가 낮으며 높은 전기 및 열 전도도를 가지고 있는 장점이 있 으나, 아직까지 제조 공정상의 미세기공 형성 가능성 등에 의한 장기 신뢰성에 대 한 문제점이 지적되고 있다.
<4> 또한, 아라미드 섬유는 1970년대 듀풍 (DuPont)사가 개발한 섬유로, 종래 섬 유의 2배 이상의 강도를 지니며, 강도, 탄성률 외에도 내크레이프성이 우수한 카본 섬유 등과 비교해 파단신도 (Elongation at Break)가 3~4%로 비교적 높기 때문에 굴곡 피로성이나 충격 흡수 특성이 뛰어나다는 장점이 있으나, 방사 용제가 황산 등의 강산이 사용되는 점에서 알 수 있듯이 산에는 강하지 않다. 따라서, 장기간 옥외의 자외선 등의 노출에는 폴리에스터와 같은 일반 섬유에 비해 내구성이 그다 지 좋지 않으며, 염색성이 떨어지는 문제가 있다. 또한, 흡습율이 4~6%로 비교적 높고 장시간 고은에 있으면 가수분해에 의한 역학저하를 초래하기 때문에, 그 장 기간 보존 및 사용에 불리한 특성이 있다.
<5> :또한 한국특허출원번호 KR 1994-5840호 및 한국특허등록번호 KR0171994호에 서는 니트릴기 치환된 단량체를 함유하는 폴리아미드를 공지하고 있지만, 고연신비 로 방사되지 않은 단점이 있고, 저연신비에서 조차도 방사 시에 끊어짐이 자주발생 하고 또한 기계적 물성을 더 개선함이 요구되어 실재로 상업적인 이용가능성을 가 지기는 어려운 단점이 있었다.
<6> 이에, 섬유의 피로 특성을 향상시키거나 보다 강도를 높인 품목 등의 다양 화, 염색성이나 권축 특성이 우수하고, 친환경의 섬유 및 이의 제조방법에 대한 연 구가 계속 되고 있다.
【발명의 상세한 설명】
【기술적 과제】
<7> 본 발명은 이와 같은 종래의 문제점을 해결하기 위하여 많은 연구를 한 결 과 1차 아미드 (-C0NH2) 치환체를 가지는 방향족 디아민단량체 및 니트릴치환체를 포함하는 방향족 디아민단량체를 포함하는 디아민계단량체와 방향족 유기이가산 유 도체를 포함하는 유기이가산 유도체 단량체를 중합하는 경우, 상기 문제점을 해결 할 수 있음을 알게 되어 본 발명을 완성하게 되었다.
<8> 그러므로, 본 발명은 종래보다 고연신비로 방사가 가능하고 마일드 한 조건 에서 방사가 가능한 방사 도프 조성물 및 이를 제공할 수 있는 신규한 폴리아미드 중합체를 제공한다.
<9> 본 발명은 또한, 상기한 신규의 폴리아미드 중합체의 액정 도프, 특히 방향 족 액정 도프 및 이의 제조방법을 제공할 수 있다.
<10> 본 발명은 상기한 신규의 폴리아미드 중합체로 제조한 방사 도프 조성물로부 터 고연신비, 15이상, 좋게는 20배, 더욱 좋게는 30배 이상의 고연신비로 방사 가 능한 방사성이 우수하며, 고강도 및 고탄성율을 가지는 방향족 아미드 섬유 및 이 의 제조방법을 제공할 수 있다.
<π> 또한, 본 발명은 염색성이 우수한 신규한 폴리아미드 섬유를 제공할 수 있 다 ·
<12> 또한 본 발명은 황산 처리, 황산의 중화 과정이 등의 복잡한 공정 없이도 매우 친환경적으로 아미드 섬유, 특히 방향족 폴리아미드 섬유 등의 성형품을 제공 할 수 있다.
<13>
【기술적 해결방법】
<14> 상기한목적들을 달성하기 위하여, 본 발명에 따른 폴리아미드 중합체는 (a) 하기 화학식 (1)에서 선택되는 1종 또는 2종이상의 방향족 디아민 단량체와 (b) 하기 화학식 (2)에서 선택되는 1종 또는 2종이상의 방향족 디아민 단량체 (c) 하기 화학식 (3)로부터 선택되는 1종 또는 2종 이상의 방향족 이가유기산 유도체 단량체 를 포함하는 중합 단량체들을 중합하여 제조되는 중합체이며, 또한 본 발명은
Figure imgf000004_0001
포함하는 방사도프 조성물 및 이로부터 제조되는 성형물이다.
<i5> H2N-Ar1(C0NH2)a-NH2 (화학식 1)
<i6> H2N-Ar2(CN)b-NH2 (화학식 2)
<i7> X-C0-Ar3-C0-X (화학식 3)
<18> (상기 화학식에서, An, Ar2 및 Αι·3는 서로 독립적으로 C6~C34 치환 또는 비치 환 방향족기 또는 -Ar4-Z-Ar5- 이고, 상기 Ar45는 C6~C34 의 치환 또는 비치환 방향족기이고 상기 Z는 단일결합, -C(0)NH -, -NH-C(O)-, -CO-, -C00-, -S02ᅳ, -SO-, 또는 d-do의 치환 또는 비치환의 직쇄 또는 분지형 알킬렌기이며, X 는 히드록시, 할로겐:또는 (:广이에서 선택되는 알콕시기이고, 상기 a 및 b는 서로 독립적으로 1 내지 4에서 선택되는 정수이다)
<19>
<20> 좋게는 본 발명에서 상기 화학식 1의 단량체는 최소한 1개 이상의 -C0NH2 치 환체가 방향족 디아민 단량체의 일차 아민기의 올소 (ortho) 위치에 치환되도록 하 는 것이 좋으며, 더욱 좋게는 상기 -C0N¾ 치환체 모두가 방향족 디아민 단량체의 아민기의 올소 위치에 모두 위치하도록 하는 것이 좋다.
<2i> 본 발명에서 상기 화학식 1의 -C0NH2 치환체를 갖는 방향족디아민 단량체는 화학식 1 및 화학식 2를 포함하는 전체 디아민 단량체의 0.001 내지 50몰¾, 좋게는 0.01 내지 20몰%를 사용하는 것이 좋다, 본 발명의 방향족 디아민은 -C0NH2 치환된 방향족디아민과 니트릴기로 치환된 방향족 디아민의 흔합물만을 사용하는 것도 좋 지만, 상기 화학식 1 및 화학식 2의 방향족 디아민 이외의 다른 디아민 단량체를 . 추가하는 경우, 중합체의 물성을 조절할 수 있어서 또한 본 발명의 범주에 속한다.
<22> 본 발명에서 상기 화학식 1 및 화학식 2 이외의 디아민 단량체를 더 추가하 는 경우, 화학식 1 및 화학식 2로 표시되는 방향족 디아민 단량체 전체 1몰에 대하 여 0.001 내지 0.5 몰 비, 좋게는 0.3몰비 까지의 범위로 사용할 수 있지만 이에 한정하는 것은 아니다.
<23> . 본 발명에서 화학식 1 및 화학식 2를 포함하는 디아민단량체 전체와 화학식
3을 포함하는 유기디카르복실산 유도체 단량체의 비는 1:0.9 내지 1.1몰비로 사용 하는 것이 경제적이지만 이에 한정하는 것은 아니다. <24> 본 발명에서 상기 -C0N¾ 치환된 상기 화학식 1의 방향족 디아민 단량체의 함량이 전체 디아민 단량체 함량의 50몰 ¾»를 넘는 경우에는 중합단계에서 점도가 지 나치게 상승하여 열전달이 불량해서 방웅제어가 용이하게 되지 않을 수가 있고, 또 한 상기 증합물체를 이용하여 방사도프를 만들었을 경우 이방성이 아닌 등방성 도 프 조성물이 될 수 있기 때문에 방사가 어려워 질 수 있다.
<25> 본 발명의 중합체의 일예로, 상기 화학식 1의 -C0N¾ 치환체가 치환된 방향 족 디아민계 단량체 0.001 내지 50몰%와 화학식 2의 니트로기 치환된 방향족 디아 민계 단량체 99.99-50몰 %의 디아민 단량체를 화학식 3의 방향족 유기이가산계 단량 체와 당량비로 중합하는 것을 예로들 수 있다.
<26> 상기에서 화학식 1과 화학식 2의 방향족 디아민 단량체와, 상기 화학식 1과 화학식 2 이외의 방향족 디아민 단량체 및 /또는 지방족 디아민단량체들과의 흔합 단량체를 이용하여 중합하는 경우에는, 제조된 중합체를 이용하여 성형품을 제조할 때 성형품의 기계적 강도나 탄성율 등의 기계적 특성을 조절할 수 있고, 또한 방 사도프를 제조하는 경우에도 점도를 조절할 수 있어서 좋다.
<27> !또한 본 발명에서 디아민 단량체에서 아미드기나 니트릴기가 동시에 하나의 방향족 디아민 단량체에 치환된 것을 채택할 수도 있으므로, 본 발명에서 단량체가 니트릴기나 아미드기를 가지고 있는 한 본 발명에서 제외되지 않는다.
<28>
<29> 본 발명의 아미드 관능기를 가지는 방향족 디아민의 구체적인 예를 든다면, 제한되지 않지만 하기의 것을 예로 들 수 있으며 이에 한정하는 것은 아니다.
<30> 먼저 화학식 1의 1차 아미드기를 치환체로 가지는 방향족 디아민 단량체의 예로는 하기와 같은 것을 예로 들 수:있지만 여기에 한정하지 않는다.
Figure imgf000006_0001
<32> (상기 A 는 -H, -CI, -Br, -Iᅳ -N02> -CN 또는 탄소수 1-4 알킬 또는 알콕시 기이고, B 는 -CO-, -C(0)NH-ᅳ -NH-C(O)-, -C00-ᅳ -S02-, -SO- 또는 C1-C10 직쇄 또 는 분지형 알킬렌기이다.)
<33> ·
<34> 또한 본 발명의 상기 화학식 2의 니트릴기를 치환체로 가지는 방향족 디아민 단량체의 예를 들면, 하기 구조식의 화합물을 예로 들 수 있지만 이에 한정되는 것 이 아니다 -
Figure imgf000007_0001
<36> (상기 A 는 -Hᅳ -CI, -Br, -I, -N02, -CN, -CONH2또는 탄소수 1~4의 알킬 또 는 알콕시기이고, B 는 -C0-, — C(0)NH -, -NH-C(O)-, -C00-, -S02-, -SO- 또는 C1~C10의 직쇄 또는 분지형 알킬렌기이다.)
<37>
<38> 본 발명에서 화학식 3의 방향족 유기 이가산 유도체 단량체로는 상기 화학식
3에서 선택되는 1종 또는 2종 이상의 것이라면 제한되지 않는다.
<39> 또한 본 발명에서는 상기 화학식 3의 방향족 유기이가산 유도체 단량체 이외 에 물성의 조절을 위하여 상기 화학식 3 이외의 디카르복실산계 단량체를 추가적으 로 사용할 수 있는 것도 포함한다. 물론 화학식 3의 방향족 디카르복실산계 단량체 에서 선택되는 1종 또는 2종이상을 채택하는 것이 물성 면에서 가장 유리하지만, 유동성이나 작업성 등을 고려할 때, 상기 화학식 3의 방향족 디카르복실산계 단량 체 이외의 디카르복실산계 화합물 (예를 들면 니트릴기를 치환하지 않은 것이나 또 는 지방족 디카르복실산계 화합물 등)을 전체 디카르복실산계 단량체의 50몰%까지, 더욱 좋게는 0.01 내지 30몰¾까지 추가하는 것도 좋다.
<40> 본 발명의 화학식 3에 속하는 방향족 디카르복실산계 화합물로는 예를 들어 살피면, 테레프탈산, C1-C4 테레프탈레이트 또는 테레프탈로일할라이드, 나프탈렌 디카르복실산, 나프탈렌디카르복실산할라이드, 이소프탈산, 이소프탈산 할라이드, 디페닐디카르복실산 및 이의 할라이드나 에스테르계 단량체 등을 예로들 수 있고, . 또한 이들 단량체가 치환체로서 CI, Br, I, N02 또는 탄소수 1~4의 알킬 또는 알콕 시기 둥에서 선택되는 하나 이상의 치환체를 가지는 것도 가능하며, 또한 이에 한 정하는 것도 아니다.
<41> 상기 화학식 3의 방향족 디카르복신산계 단량체 이외의 다른 디카르복실산 단량체의 구체적인 예로는 아디프산 과 세바크산 (sebacic acid)같은 지방족 디카 • 로복실산과 시클로핵산 -1,4-디카르복실산 같은 지환족 디카르복실산, 이의 할라이 드 또는 이의 에스테르계 단량체를 예로들 수 있지만 이에 한정하는 것은 아니다.
<42>
<43> 본 발명에서 화학식 1의 방향족 디아민의 아민기의 치환체인 1차 아미드기가 방향족 디아민의 아민기 을소위치에 치환된 단량체를 포함하는 것이 좋은 이유는, 원인이 명확하지 않지만 니트릴기로 치환된 방향족 디아민 단량체와 함께 중합됨으 로써, 방사도프의 가방성 (spinnability)이 월등하게 우수하여 높은 연신비의 달성 가능하고, 특히 기계적 물성의 현저한 향상을 달성할 수 있는 효과가 있기 때문이 다. 이러한 원인은, 중합체의 백본 (back-bone)에 있는 중합에 의해 형성된 아미드 연결고리가 방향족디아민에 치환된 아미드기와 서로 반응하여 하기 화학식 4와 같 은 퀴나졸론 (quinazolinone)링을 형성하는 것도 하나의 원인으로 생각되며, 이럴 경우, 기계적 강도가 월등히 상승하게 되고, 더불어 중합단위 내에 존재하는 니트 릴기 치환체와 상호작용하여 가방성 (spinnability)이 월등하게 우세해 지는 것으로 생각된다.
<44> [화학식 4]
Figure imgf000008_0001
<46> 이하에서는 본 병명의 중합체의 하나의 예로서, 하기의 방향족디아민 단량체 와 테레프탈로일클로리드를 중합하여 생성되는 화학식 5의 중합체를 이용하여 상세 히 설명한다.
Figure imgf000008_0002
<48>
<49> [화학식 5]
Figure imgf000009_0001
: 99.99~50몰¾> 이고, 중량평균분자량이 1만 내지 1500만인 중합체이다.)
<52> 상기의 중량평균분자량은 리튬 클로리드 (LiCl) 농도가 0.05M인 Ν,Ν-디메틸아 세트아미드 (DMAc)를 Eluent로 사용하고, 시료는 0.1g/L로 회석하여 주입한 후 1 ml/min의 속도로 1개의 가드컬럼 (PLgel Olexis Guard 50*7.5 mm, Agilent) 및 2 개의 메인컬럼 (PLgel Olexis 300*7.5mm, Agilent)을 연속해서 통과한 후, RI (Refractive Index) 장비로 Detect ion하여 폴리스티렌 (polystyrene)를 표준물질로 하여 측정한 것이다.
<53> 또한 상기 구조식올 포함한 본 발명에서는 편의상 중합체 단위를 하나의 구 조식으로 표현하였지만, 실재 중합체는 하기 단위들이 랜덤하게 중합되어 있음은 당업자에게 자명하다.
<54>
<55> 또한 본 발명에서 상기 화학식 5의 중합체를 이용하여 방사도프를 제조한 경 우, 화학구조식은 다음과 같은 화학식 6의 구조를 포함함을 알 수 있다. 이는 중합 체의 단량체인 방향족 디아민의 올소 위치에 치환된 1차 아미드기 치환체가 중합 에 의해서 중합체 백본의 아미드기와 반웅하여 퀸나졸리논 (quinazolinone)링을 형 성하기 때문이다.
<56> [화학식 6]
Figure imgf000009_0002
<58> (1, η 및 m은 중합한 단량체의 몰분율로서 1+n : m =0.001~50몰% : 99.99-50 몰¾이고, 상기에 기재한 분자량측정 방법으로 측정한 중량평균분자량이 1만 내지 1500만 이다.)
<59>
<60> 본 발명은 또한 상기의 다양한 중합체를 포함하는 방사도프를 제공한다.
<61> 본 발명에 따른 방사도프에서 화학식 1 및 화학식 2의 방향족 디아민과 화학 식 3의 방향족디카르복실산계 단량체 중합체가 액정특성을 나타내어 방사가 원활히 되는 장점을 가져서 좋지만, 방사 특성이나 액정 특성 또는 가공성 등을 조절하기 위하여 상기 화학식들 이외의 단량체를 더 포함하는 것도 좋다.
<62>
<«> 본 발명의 중합단계에 사용하는 용매는 단량체나 또는 중합체를 용해할 수 있는 것이라면 크게 제한되지 않지만 예를 들면 Ν,Ν-디메틸아세트아미드 (DMAc), N-메틸— 2-피를리돈 (NMP), 핵사메틸포스포아미드 (HMPA), Ν,Ν-디메틸포름아미드 (DMF) , Ν,Ν,Ν' ,Ν'-테트라메틸 우레아 (TMU), 디메틸설폭사이드 (DMS0) 또는 이들의 흔합물이지만 이에 제한되지 않는다.
<64> 본 발명에서는 상기 중합단계 또는 중합한 후 방사도프를 제조하는 단계에서 알칼리금속 탄산염, 알칼리금속산화물, 알칼리금속수산화물, 알칼리금속수소화물, 알칼리토금속탄산염, 알칼리토금속산화물, 알칼리토금속수소화물, 알칼리토금속수 산화물을 투입하는 경우, 중합체의 점도가 떨어져 중합을 추가적으로 진행할 수 있 을 뿐만 아니라 방사도프를 제조하는 고형분의 범주 내에서 유동성이 증가하여 방 사 (spinning)을 원할히 할 수 있어서 좋다. 또한 상기 염을 투입하는 경우, 방향족 유기이가산계 단량체를 테레프탈로일클로리드 등의 염화물을 사용하였올 경우 부반 웅 생성물인 염산을 중화시키는 점에서 좋다.
<65> 상기 무기염의 구체적인 예로는 LiCl, Li2C03둥을 예로들 수 있지만 이에 한 정되는 것은 아니다.
<66> 또한 본 발명에서는 상기 무기염 외에 3차 아민을 투입하거나 흔합투여하여 도 상기 무기염을 투입하는 것과 거의 유사한 유동성의 증가효과를 가지지만, 상기 무기염의 경우 소량 사용하는 것에 의해서도 층분한 유동성을 향상시킬 수 있어서 좋다.
<67> 본 발명에서는 방사도프 제조 시 유기용매를 더 첨가할 수 있는데, 흔합용매 로는 예를 들면 Ν,Ν-디메틸아세트아미드 (DMAc), N-메틸 -2-피를리돈 (魔 P) , 헥사메 틸포스포아미드 (HMPA), Ν,Ν-디메틸포름아미드 (DMF), Ν,Ν,Ν' ,Ν'-테트라메틸 우레 아 (TMU), 디메틸설폭사이드 (DMS0) 또는 이들의 흔합물을 사용할 수 있지만 이에 한정하는 것은 아니다.
<68> 본 발명에서 상기 방사도프 조성물에서 고형분의 함량은 방사나 작업이 가능 하다면 크게 제한되지 않지만 좋게는 고형분 5~30 %를 포함하는 것이 유리하다. 방사 방법은 통상의 섬유의 방사방법 및 장치를 사용할 수 있고 이는 당업자에게는 잘 알려져 있으므로 더 이상 설명을 생략한다. 이하에서는 본 발명의 중합방법에 대하여 예를 들어 설명한다.
본 발명의 중합방법의 일 예로는 먼저, 하기 화학식 (1) 및 화학식 (2)의 방 향족 디아민 단량체를 포함하는 디아민단량체를 용매에 용해하여 용액을 제조한 후 , 이어서 또는 용액제조와 동시에 넁각한다. 상기 넁각은 하기 화학식 (3)의 방향 족 유기이가산 유도체 단량체를 포함하는 유기이가산 유도체 단량체를 투입할 때, 발열에 의한 반응을 제어할 필요가 있기 때문이다. 본 발명의 상기 냉각단계에서 넁각온도는 제한되지 않지만 통상 -50 - 30V, 좋게는 -20~10°C 정도로 넁각하는 것이 좋지만 이에 한정되는 것은 아니다.
<72> .
<73> Η2Ν-ΑΓι(ωΝΗ2)3-ΝΗ2 (화학식 1)
<74> H2N-Ar2(CN)b-NH2 (화학식 2)
<?5> X-C0-Ar3-C0-X (화학식 3)
<76> (상기 화학식에서, Ar^ Ar2 및 Ar3는 서로 독립적으로 C6~C34 치환 또는 비치 환 방향족기 또는 -Ar4-Z-Ar5- 이고, 상기 Ar4 및 Ar5는 C6~C34 의 치환 또는 비치환 방향족기이고 상기 Z는 단일결합, -C(0)NH-, -NH-C(O)-, -CO-, -C00-, -S02-, -SO—, 또는 Crdo의 치환 또는 비치환의 직쇄 또는 분지형 알킬렌기이며, X 는 히드록 시, 할로겐 또는 d~C4에서 선택되는 알콕시기이고, 상기 a 및 b는 서로 독립적으로 1 내지 4에서 선택되는 정수이다)
<77> 1
<78> 이어서 상기 화학식 (3)로부터 선택되는 1종 이상의 방향족 유기이가산 단량 체 용액을 일괄 또는 분할 투입하여 증합한다. 이 때 방향족 유기이가산계 단량체 는 그대로 또는 용매에 용해하여 투입할 수도 있다. 상기 분할 투입 시 각 분할 단 계에서의 투입량은 크게 제한하지 않지만, 예를 들어 2회 분할 투입하는 경우는 2 회 투입량이 10~90중량 ¾ 정도이지만 이에 제한되지 않는다.
<79> 또한 본 발명에서 상기 중합 계에서 공중합체를 제조하기 위하여 상기 화학 식 1, 2 및 3 이외의 다양한 디아민 및 /또는 이가산단량체를 흔합하는 경우 승온하 여 반홍하는 경우도 있으므로 반웅온도를 한정하는 것은 아니다.
<80>
<81> 본 발명은 상기 중합 중에 및 /또는 중합한 후에 알칼리금속 탄산염, 알칼리 금속산화물, 알칼리금속수소화물, 알칼리금속수산화물, 알칼리토금속탄산염, 알칼 리토금속수소화물, 알칼리토금속산화물 또는 알칼리토금속수산화물에서 선택되는 어느 하나 이상의 무기염이나 3차 아민 중에서 선택되는 어느 하나 이상을 투입하 여 중합할 수도 있으며, 이로부터 또한 방사도프를 제조할 수도 있다.
<82> 본 발명에서 상기 무기염이나 3차 아민의 투입량은 유동성을 위해서 크게 제 한되지 않지만 좋게는 디아민단량체 1몰에 대하여 0.9~1.3몰비로 사용하는 것이 좋 다. 더욱 좋게는 1.0~1.1몰비로 투입하는 것이 원료의 낭비 없이 좋다.
<83> 본 발명에서 방사도프에서 고형분 (중합체의 함량)의 함량은 제한되지 않지 만, 5~30 ¾인 것을 예로들 수 있으며, 상기 방사도프는 중합한 후' 무기염을 투입 하여 유동성을 증가시켜 방사도프로 할 때도 있고, 별도로 추가의 용매를 투입하여 방사도프를 제조할 수도 있다.
<84> 방사도프 제조 시에는, 중합한 후, 중합체를 분쇄하고 무기염을 투입하여 교 반 함으로서 방사도프를 제조하는 것이 전형적인 하나의 예이다.
<85> 또한 본 발명은 상기 중합체에서 설명하는 바와 같이 방사도프의 중합체는 퀴나졸리논 단위를 포함하는 방사 도프 조성물도 포함한다.
<86> :
<87> ;이하에서는 추가적으로 본 발명의 중합체 및 방사도프를 제조하는 방법을 좀 더 구체적으로 설명한다.
<88>
<89> 즉 본 발명의 제조방법의 일예는 1) 중합용매에 화학식 1의 1차아미드기로 치환된:방향족 디아민, 및 화학식 2의 니트로기로 치환된 방향족 디아민의 단량체 들을 포함하는 방향족 디아민 단량체를 용해는 단계,
<90> 2) 상기 용액을 -50~30°C로 냉각하고 강하게 교반 하면서 화학식 3의 방향족 유기이가산 유도체 단량체를 일괄또는 분할 투입하여 중합체를 제조하는 단계, <91> 를 포함하여 제조한다.
<92> 본 발명은 상기 중합단계에서 3) 알칼리금속 탄산염, 알칼리금속산화물, 알 칼리금속수소화물, 알칼리금속수산화물, 알칼리토금속탄산염, 알칼리토금속수소화 물, 알칼리토금속산화물 또는 알칼리토금속수산화물 중 적어도 하나인 것을 특징으 로 하는 무기염이나 3차 아민에서 선택되는 1종 이상을 투입하여 중합체와 함께 0~100°C에서 교반하는 단계를 더 포함하여 중합체를 제조하는 방법을 포함할 수 있 다.
<93> 본 발명의 제조방법에 있어서 상기의 유기용매는 Ν,Ν-디메틸아세트아미드 (DMAc) , N-메틸 -2-피롤리돈 (NMP), 핵사메틸포스포아미드 (HMPA) , Ν,Ν-디메틸포름 아미드 ^MF), Ν,Ν,Ν' ,Ν'-테트라메틸 우레아 (TMU), 디메틸설폭사이드 (DMS0) 또는 이들의 흔합물을 사용하는 것이 바람직하지만 이에 한정하는 것은 아니다.
<94>
<95> 상기한 폴리아미드 중합체의 방사 도프 조성물의 제조방법 중 2)번째 중합단 계에서 상기 방향족 유기이가산 유도체 단량체를 분할 첨가하는 것은 불균일 중합 에 의하여 발생되어 방사에 부적합한 초고분자량의 생성을 방지할 수 있기 때문에 좋다ᅳ 예를 들어 분할 첨가하는 경우 1차로 전체투입량의 45~55%를 선첨가하고 잔 여량을 후첨가하는 방법에 의하여 중합하는 방법 등이 있지만 이에 한정하는 것은 아니다
<96>
<97> 상기한 폴리아미드 중합체의 방사 도프 조성물의 제조방법 중 3)번째 공정은
2)번째 공정 중에서 방향족 디아민과 방향족유기이가산 유도체 단량체 (예를들면 방 향족 디에시드 할라이드)를 포함하는 단량체의 중축합 반웅에 의하여 발생되는 할 라이드화 수소 부산물을 중화하고 유동성을 증가시키기 위한 과정이다. 상기 무기 염은 종류에 제한 없지만, 특히 Li2C03의 단독 또는 흔합물일 때, 제조되는 폴리아 미드 중합체의 방사 도프 조성물의 방사성이 특히 우수한 효과를 나타내었다.
<98> 또한 1차 아미드기가 아민기의 올소 위치에 치환된 방향족 디아민 단량체가 중합체로 제조된 후, 상기 Li2C03와 함께 교반되는 과정에서 치환된 1차 아미드 구 조가 중합체의 백본에 존재하는 백본 아미드기와 일부 반웅하여 퀴나졸리논 구조로 변환되는 구조적 변환도 관찰되며, 이 때 기계적 강도나 연신성이 더욱 증가되는 효과가 관찰되었다.
<99>
<100> 본 발명은 상기 방사도프 (조성물)를 이용하아 방사하여 제조되는 폴리아미드 섬유, 필프 또는 케스팅이나 또는 다른 가공방법에 의해 얻어지는 필름이나 기타 성형체 모두를 포함한다.
<ιοι> 전형적인 하나의 예로서 본 발명은 유동성이 증가되어 인장강도가 15g/d 이 상, 좋게는 20g/d 이상의 현저히 높은 값을 가지면서 인장 탄성율 450g/d 이상, 좋 게는 480g/d의 고강도, 고탄성의 특성을 가지는 섬유를 포함할 수 있다. 또한 본 발명은 Denier 1.5 이하, 좋게는 1.2 이하로 매우 가는 크기로까지 섬유를 제조할 수 있는 절사가 잘 일어나지 않는 폴리아미드 섬유일 수 있다.
<102> 본 발명의 방사 도프를 이용한 섬유 제조를 위한 방사 방법으로는 습연식 (Wet Spinning), 건연식 (Dry Spinning) 또는 기격습식 (Dry-jet Wet Spinning) 공정 으로 방사 공정을 수행할 수 있으며, 기격습식이 바람직하지만 이에 제한되지 않는 다.
본 발명에서 폴리아미드 증합체의 방사 도프 조성물에서 중합체가 액정 특성 을 나타내는 경우, 도프의 고형분의 함량이' 5~30중량 %, 좋게는 10~25 중량 %의 범위 일 때, 도프의 광학적 특성이 이방성을 잘 나타내어서 좋다.
본 발명에서 광학적 이방성을 나타내는 폴리아미드 방사도프의 전형적인 예 로는 하기 화학식 7 또는 하기 화학식 8 중 적어도 하나의 반복단위를 포함하는 중 합체를 예로들 수 있다.
[화학식 7]
Figure imgf000014_0001
[화학식 8]
Figure imgf000014_0002
상기 화학식 7 또는 화학식 8에서 ¾ 또는 R2는 하기 화학식 9 내지 13 중 에서 선택되는 하나 일 수 있다.
[화학식 9]
Figure imgf000014_0003
I 쒜
Di D 2
[화학식 11]
Figure imgf000014_0004
<ii6> [화학식 12]
Figure imgf000015_0001
<ii8> 상기 화학식에서 D 또는 D2 는 -H, -CN, -C0NH2에서 선택되는 어느 하나이 고, B는 -CO-, -C(0)NH -, -NH-C(O)-, -C00-, -S02-ᅳ -SO- 또는 C1-C4의 직쇄 또는 분지형 알킬렌기이며, Ri의 경우에는 I 또는 D2 중 최소한 하나는 -C0NH2이고, ¾의 경우에는 또는 D2 중 최소한 하나는 -CN 이다.
<] 19>
<120> 상기 구조식에서 아미드기나 또는 니트릴 기가 올소위치에 치환되는 것이 더욱 좋고 또한 파라위치에서 백본에 결합되어 리니어 (linear) 구조의 중합체로 존재하는 것이 기계적 물성이나 열적안정성 및 방사특성에서 더욱 좋다.
<121> . 본 발명은 상기한 광학적 이방성을 가지는 폴리아미드 중합체의 방사 도프 조성물을 방사, 응고하여 얻어지는 폴리아미드의 섬유, 필프 또는 필름으로 이루어 지는 군의 성형물을 제공한다.
<122> 상기 성형물의 예로서 폴리아미드 중합체의 방사 도프 조성물은 방사 공정시
' 10 이상, 좋게는 15 이상의 고연신비로 방사되수 있는 특징을 또한 가진디-.
<123> 또한 본 발명은 상기한 방사도프를 이용하여 제조된 섬유는 인장강도 15g/d
이상, 좋게는 20g/d 이상이 좋고, 인장탄성율 450g/d 이상, 좋게는 480g/d 이상의 고강도, 고탄성의 특성 및 /또는 Denier 1.5 이하, 좋게는 1.2이하의 미소 특성을 가지는 성형물을 제공한다.
<124> ί
【유리한 효과】
<125> 본 발명에 본 발명의 신규한 폴리아미드 중합체는 CN 관능기 및 C0NH2 관능 기를 포함하고 있는 구조로, 이를 포함한 방사 도프 조성물을 이용한 섬유는 강도 및 탄성력이 종래의 섬유에 비해 현저히 우수하다.
<126> 상기 구조에 의해 장기간 자와선 등의 노출에도 강하며, 장기간 사용에도 가 수분해와 같은 역학 저하가 없이 내구성이 우수하다.
<127> 또한 본 발명의 방사도프를 이용한 방사 시 10 이상, 바람직하게는 20이상, 더 바람직하게는 30이상의 연신비를 구현할 수 있다는 장점이 있으며, 이러한 연신 비 특성으로 인하여, 고광택의 섬유 생산의 구현이 가능하다. <i28> 또한 본발명의 중합체는 염료 (dye)를 이용하여 염색이 가능하여, 다양한 색 상의 섬유 생산이 가능한 장점이 있으며, 고강도 고기능성의 다양한 분야에 적용이 가능하다.
<129>
【도면의 간단한 설명】
<130> 도 1은 본 발명의 실시예 1에 의한 방사 도프를 방사하여 제조한 섬유 필라 멘트의 사진이다.
<i3i> 도 2는 본 발명의 실시예 1에 의해 제조한 염색된 섬유 필라멘트의 사진이 다.
<132> 도 3은 비교예 1 및 실시예 3에서 방사 도프 조성물의 적외선 분광기 흡수 스펙트럼 도면이다.
<133> :
【발명의 실시를 위한 형태】
<134> 이하에서는 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법을 실시 예 및 비교예를 통하여 구체적으로 설명한다. 본 발명은 첨부되는 도면과 함께 상 세하게 후술되어 있는 실시예 및 비교예들을 참조하면 명확해질 것이다.
<135> 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며 단지 본 실시예들은 본 발명의 개시가 완전하도 록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주 를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정 의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다. 본 명세서에서 사용된 용어는 실시예 및 비교예들을 설명하기 위한 것이며 본 발명 을 제한하고자 하는 것은 아니다.
<136> 이하, 본 발명의 실시예들에 의하여 본 발명의 폴리아미드 중합체 및 방사 도프 조성물의 제조방법에 대해 설명하도톡 한다 .
<137> 하기 실시예 및 비교예에서 섬도 값은 단일 가닥을 ASTM D 1577 Option C시 험방법으로 10번 이상 측정한 값의 평균치이고, 인장강도, 신도 및 인장탄성를 값 은 단일가닥을 KS K 0327 시험방법으로 10번 이상 측정한 값의 평균치이다. 또한 중량평균분자량은 GPC gilent Infinity 1260 series)를 측정하였다. 측정 조건은 리튬 클로리드 (LiCl) 농도가 0.05M인 Ν,Ν-디메틸아세트아미드 (DMAc)를 Eluent로 사용하고 시료는 0.1g/L로 희석하여 주입한 후 1 ml/min의 속도로 1개의 가드컬럼 (PLgel Olexis Guard 50*7.5 匪, Agilent) 및 2개의 메인컬럼 (PLgel Olexis 300*7.5mm, Agilent)을 연속해서 통과한 후, RI (Refractive Index) 장비로 Detect ion하였으며 표준물질은 풀리스티렌을 사용하였다.
<138>
<139> 실시예 1
<140> 중합체 및 방사도프의 제조
<i4i> 질소 분위기하에서 교반기가 장착된 250mL의 사구의 등근 플라스크에
10.054g (75.5 mmol)의 2,5-디아미노 벤조니트릴 (2,5-diaminobenzonitr le, DAN)과 0.01143g (0.0756 mmol)의 2,5-디아미노벤즈아미드 (2,5— diaminobenzamide, DM)와 DMAc lOOmL를 넣은 후, 실온에서 완전히 용해시킨다. 이 용액을 아이스배스 (ice bath)를 이용하여 0°C로 넁각한다. 이 용액에 테레프탈로일클로라이드 (terephthaloyl chloride, TPC) 7.672g (37.8 mmol)을 첨가하여 1분간 교반한 후, 이어서 ; TPC 7.672g (37.8 mmol)을 추가 첨가한다. 이때 점도가 빠르게 증가하면서 10~20초 내에 겔상의 고형물이 생성된다.
<142> 이 겔상의 고형물을 믹서기로 분쇄한 후 리튬카본네이트 (lithium carbonate, Li2C03) 5.585g (75.6 mmol)을 첨가하여, 반웅중에 생성된 HC1을 중화시 키면서 1시간 내에 유동성 있는 은백색의 광택을 가지는 방사 도프 조성물을 얻었 다. ;
<143> 상기 얻어진 겔상의 고형물을 이용하여 GPC(Agilent Infinity 1260 series) 를 측정하였다. 측정 조건은 리튬 클로리드 (LiCl) 농도가 0.05M인 Ν,Ν-디메틸아세 트아미드 (DMAc)를 Eluent로 사용하고, 시료는 0.1g/L로 희석하여 주입한 후 1 ml/min의 속도로 1개의 가드컬럼 (PLgel Olexis Guard 50*7.5 mm, Agilent) 및 2 개의 메인컬럼 (PLgel Olexis 300*7.5mm, Agilent)을 연속해서 통과한 후, RI (Refractive Index) 장비로 Detection하였다. 측정 결과 (폴리스티렌 기준), 중량평 균분자량 4,360,000g/m 이고 분자량분포 6.22인 폴리아미드 중합체가 얻어졌으며, POM (Polarized Optical Microscope)로 확인한 결과 Schlieren texture를 가지는 네마틱 액정상임을 알 수 있었다. 또한 상기 리튬카보네이트를 투입하기 전의 겔상 을 이용하여 동일하게 분자량을 측정한 결과 중량평균분자량이 257만으로 나타났으 며, 폴리아미드의 생성을 적외선분광장치 (IR)과 1H-NMR을 이용하여 확인하였다. 리 튬염의 투입에 따른 분자량증가는 점도가 낮아져 추가 중합이 일어남을 알 수 있었 다.
<144>
<145> ^々ᅵ비에 10으로 와인딩할 때 폴리아미드의 섞유의 제조 및 물성 <i46> 실시예 1에서 제조된 방사 도프 조성물을 55°C에서 수시간 숙성시키면서 탈 포한 후, 100, 250, 400메쉬의 스테인레스 스틸망으로 여과한 후, 방사구금을 통해 0.1~3cm의 공기층에 압출 분사함과 동시에 약 0~10°C로 유지된 증류수 욕조에서 웅 고하여 연신비 10의 속도로 를러에 감는다. 증류수로 충분히 수세한 뒤 150°C에서 의 건조로 폴리아미드 섬유를 생산한다. 섬유의 섬도는 1.7 데니어, 인장 강도는 18.0 g/d, 신도는 4.6 %' 인장탄성율 (3%)은 451 g/d이었다
<147>
<148> 연^비 30으로 와이딩할 때의 폴리아미드 섬유의 제조 및 물성
<149> 실시예 1에서 제조된 방사 도프 조성물을 55°C에서 수시간 숙성시키면서 탈 포한 후, 100, 250, 400메쉬의 스테인레스 스틸망으로 여과한 후, 방사구금을 통해 0.1~3ciri의 공기층에 압출 분사함과 동시에 약 0~1(TC로 유지된 증류수 욕조에서 웅 고하여 연신비 30의 속도로 를러에 감는다. 증류수로 층분히 수세한 뒤 150°C에서 의 건조로 폴리아미드 섬유를 생산한다. 섬유의 섬도는 1.1 데니어, 인장 강도는 26.3 g/d, 신도는 3.7 , 인장탄성율 (3%)은 576 g/d이었다.
<150> '
<151> 도 1은 본 발명의 실시예 1에 의한 방향족 아미드 중합체를 포함한 방사 도 프 조성물을 방사하여 연신비 30으로 제조한 섬유 필라멘트의 사진이다. 고연신비 . 로 연신이 가능하여, 필라멘트가 고광택임을 확인할 수 있다. 도 2는 본 발명의 실 시예 1에 의한 폴리아미드 중합체를 포함한 방사 도프 조성물에 다양한 염료를 첨 가하여 연신비 30으로 방사한 염색된 섬유 필라멘트의 사진이다. 완성된 도프의 중 합체 ¾에 대하여 1.6 wt¾의의 염료를 상기 도프에 첨가하여 교반한 후, 방사공 정을 거쳐서 다양한 색상의 필라멘트사를 얻을 수 있다. 이때 사용되어지는 염료로 는 다양한 색상의 산성염료, 염기성 염료, 반웅성 염료 등을 사용할 수 있다. 본 발명의 염료를 이용하여 용이하게 염색할 수 있어 다양한 색상의 섬유를 생산할 수 있음을 알 수 있었다.
<152>
<153> 실시예 2
<154> 중합체 및 방사도프의 제조
<155> 질소 분위기하에서 교반기가 장착된 250mL의 사구의 등근 플라스크에
10.034g (75.4 隱 ol)의 2,5-디아미노 벤조니트릴 (2,5-diaminobenzonitrle, DAN)과 0.03428g (0. 227 mmol)의 2, 5-디아미노 벤즈아미드 (2,5-diaminobenzamide, DAA) 와 DMAc 100mL를 넣은 후, 실온에서 완전히 용해시킨다. 이 용액을 아이스배스 (ice bath)를 이용하여 0°C로 냉각한다.
이 용액에 1차의 테레프탈로일클로라이드 (terephthaloyl chloride, TPC) 7.673g (37.8 誦 ol)을 첨가하여 1분간 교반한 후, 이어서 TPC 7.673g (37.8 mmol) 을 추가 첨가한다. 이때 점도가 빠르게 증가하면서 10~20초 내에 겔상의 고형물이 생성된다.
이 겔상의 고형물을 믹서기로 분쇄한 후, 리튬카본네이트 (lithium carbonate, Li2C03) 5.585g(75.6 mmol)을 첨가하여, 반응중에 생성된 HC1을 중화시 키면서 1시간 내에 유동성을 가지는 은백색의 광택을 가지는 방사 도프 조성물을 얻었다.
상기 얻어진 겔상의 고형물올 실시예 1과 같이 분석한 결과 중량평균분자량 3,220,000g/m 이고 분자량분포 5.69인 폴리아미드 중합체가 얻어졌음을 알 수 있 었으며, POM (Polarized Optical Microscope)로 확인한 결과 Schlieren texture를 가지는 네마틱 액정상임을 알 수 있었다. 연^비 10으로 와이딩할 때의 폴리아미드 섬유의 제조 및 물성
실시예 2에서 제조된 방사 도프 조성물을 55°C에서 수시간 숙성시키면서 탈 포한 후, 100, 250, 400메쉬의 스테인레스 스틸망으로 여과한 후, 방사구금을 통해 0.1~3cm의 공기층에 압출 분사함과 동시에 약 0~10°C로 유지된 증류수 욕조에서 응 고하여 연신비 10의 속도로 를러에 감는다. 증류수로 층분히 수세한 뒤 15CTC에서 의 건조로 폴리아미드 섬유를 생산한다. 섬유의 섬도는 1.8 데니어, 인장 강도는 19.0 g/d, 신도는 5.1 %, 인장탄성율 (3%)은 410 g/d이었다. 연^비 30으로 와?ᅵ딩할 때의 폴리아미드 섬유의 제조 및 물성
실시예 2에서 제조된 방사 도프 조성물을 55°C에서 수시간 숙성시키면서 탈 포한 후, 100, 250, 400메쉬의 스테인레스 스틸망으로 여과한 후, 방사구금을 통해 0.1~3cm의 공기층에 압출 분사함과 동시에 약 0~1( C로 유지된 증류수 욕조에서 웅 고하여 연신비 30의 속도로 를러에 감는다. 증류수로 층분히 수세한 뒤 15C C에서 의 건조로 폴리아미드 섬유를 생산한다. 섬유의 섬도는 1.0 데니어, 인장 강도는 27.7 g/d, 신도는 3.9 , 인장탄성율 (3%)은 649 g/d이었다. 비교예 1
중합체 및 방사도프의 제조 <i68> 질소 분위기하에서 교반기가 장착된 250mL의 사구의 등근 플라스크에
10.064g (75.6 隱 ol)의 2, 5-디아미노 벤조니트릴 (2,5-diaminobenzonitrle, DAN)과 DMAc lOOmL를 넣은 후, 실은에서 완전히 용해시킨다. 이 용액을 아이스배스 (ice bath)를 이용하여 0°C로 넁각한다. 이 용액에 1차의 테레프탈로일클로라이드 (terephthaloyl chloride, TPC) 7.673g (37.8 mmol)을 첨가하여 1분간 교반한 후 2 차의 TPC 7.673g (37.8 mmol)을 첨가한다. 이때 점도가 빠르게 증가하면서 10-20초 내에 겔상의 고형물이 생성된다. 이 겔상의 고형물을 믹서기로 분쇄한 후 리튬카본 네이트 (lithium carbonate, Li2C03) 5.585g (75.6 mmol)을 첨가하여, 반응 중에 생 성된 HC1을 중화시키면서 1시간 내에 은백색의 광택을 가지는 폴리 (2,5-디아미노벤 조니트릴 -테레프탈아미드) [poly(2,5-diarninobenzonitrile-terephthalaniicle)] 방사 도프 조성물을 얻었다.
<169> 상기 얻어진 겔상의 고형물을 실시예 1과 같이 분석한 결과 중량평균분자량
4,100,000g/n Dl이고 분자량분포 6.48인 폴리아미드 중합체가 얻어졌음을 알 수 있 었으며, 알 수 있었으며, POM (Polarized Optical Microscope)로 확인한 결과 Schlieren texture를 가지는 네마틱 액정상임을 알 수 있었다.
<170>
<171> 연신비 10으로 와이딩할 때의 폼리아미드 섬유의 제조 및 물성
<172> 비교예 1에서 제조된 방사 도프 조성물을 55°C에서 수시간 숙성시키면서 탈 포한 후, 100, 250, 400메쉬의 스테인레스 스틸망으로 여과한 후 방사구금을 통해 0.1~3cm의 공기층에 압출 분사함과 동시에 약 0~10°C로 유지된 증류수 욕조에서 웅 고하여 연신비 10이상의 속도로 를러에 감는 시도를 하였으나, 비교예 1에서 제조 된 방사 도프 조성물은 실시예들과 비교하여 유효한 길이의 폴리아미드의 섬유를 얻을 수 있는 방사성이 현저하게 떨어지고 섬유의 표면이 균일하지 않은 등의 단점 이 나타났으며, 유효한 길이의 폴리아미드 섬유를 얻을수 있다 하여도 연신비 10이 상의 방사는 불가능하였다. 즉, 연신비 12 및 15 그리고 30으로 하여도 모두 유효 길이 연신이 되지 않는 단점이 있었다. 또한 끊어짐이 발생한 섬유를 일부 이용하 여 실시예 1에서와 같이 동일한 염료를 이용하여 염색평가를 한 결과 염색이 잘 되 지 않고 또한 종이에 염색제가묻어 나음을 관찰할 수 있었다.
<173>
<174> :심시예 3
<175> 질소 분위기하에서 교반기가 장착된 250mL의 사구의 등근 플라스크에 9.500g
(71.3 睡 ol)의 2,5-디아미노 벤조니트릴 (2,5-diaminobenzonitrle, DAN)과 0.568g (3.76 瞧 ol)의 2,5-디아미노 벤즈아미드 (2,5-diaminobenzamide, DM)와 DMAc lOOmL를 넣은 후, 실온에서 완전히 용해시킨다. 이 용액을 아이스배스 (ice bath) 를 이용하여 0°C로 냉각한다. 이 용액에 테레프탈로일클로라이드 (terephthaloyl chloride, TPC) 7.624g (37.6 画 ol)을 첨가하여 1분간 교반한 후, TPC 7.624g (37.6 mmol)을 추가하여 첨가한다.
<176> 이때 점도가 빠르게 증가하면서 10~20초 내에 겔상의 고형물이 생성된다. 이 겔상의 고형물을 믹서기로 분쇄한 후 리튬카본네이트 (lithium carbonate, Li2C03)
5.549g(75.1 隱 ol)을 첨가하여, 반웅 중에 생성된 HC1을 중화시키면서 1시간 내에 은백색의 광택을 가지는 방사 도프 조성물을 얻었다.
<177> 상기 실시예 3 및 비교예 1의 방사 도프 조성물을 증류수에 침지시킨 후 메 탄올 및 아세톤으로 순차적으로 수세 및 건조한 후의 도프 조성물을 적외선 분광기
(도 3)로 측정하였을 때, 실시예 3에서 락탐 (Lactam) 피크의 N-C=N 스트레칭 영역 인 1365 cmᅳ1에서의 피크가 증가되는 것을 확인함을 통해 퀴나졸리논 구조가 형성되 었고 폴리 (2, 5-디아미노벤조니트릴-테레프탈아미드-코 -2,5- 디아미노벤즈아미드 테레프탈아미드-코 -4-퀴나졸리논 아미드) 구조 (화학식 6)가 생성됨을 확인하였다. 한편, 상기 리튬염을 첨가하지 않은 겔상의 고형물을 분석한 결과 상기와 같은 퀴 나졸리논 구조를 확인할 수 없어 리튬염을 추가하여 방사도프를 제조할 때 이러한 링이 형성되는 것으로 생각된다. 상기 얻어진 겔상의 고형물을 실시예 1과 같이 분 석한 결과 중량평균분자량 3,120,000g/mol이고 분자량분포 5.22인 폴리아미드 중합 체가 얻어졌음을 알 수 있었다.
<178>
<179> 연^비 10으로 와인딩할 때의 폴리아미드 섬유의 제조 및 물성
<180> 실시예 3에서 제조된 방사 도프 조성물을 55°C에서 수시간 숙성시키면서 탈 포한 후, 100, 250, 400메쉬의 스테인레스 스틸망으로 여과한 후, 방사구금을 통해 0.1~3cm의 공기층에 압출 분사함과 동시에 약 0~10°C로 유지된 증류수 욕조에서 웅 고하여 연신비 10의 속도로 롤러에 감는다. 증류수로 층분히 수세한 뒤 150°C에서 의 건조로 폴리아미드 섬유를 생산한다. 섬유의 섬도는 2.3 데니어, 인장 강도는 14.3 g/d, 신도는 6.1 %, 인장탄성율 (3%)은 394 g/d이었다.
<181>
<182> :연신비 30으로 와인딩할 때의 폴리아미드 섬유의 제조 및 물성
<183> 실시예 3에서 제조된 방사 도프 조성물을 55°C에서 수시간 숙성시키면서 탈 포한 후, 100, 250, 400메쉬의 스테인레스 스틸망으로 여과한 후, 방사구금을 통해 0.1~3cm의 공기층에 압출 분사함과 동시에 약 0~10°C로 유지된 증류수 욕조에서 웅 고하여 연신비 30의 속도로 를러에 감는다. 증류수로 층분히 수세한 뒤 150°C에서 의 건조로 폴리아미드 섬유를 생산한다. 섬유의 섬도는 1.5 데니어, 인장 강도는
24.5 g/d, 신도는 4.2 , 인장탄성율 (3%)은 535 g/d이었다.
< 184>
<185> 실시여
<186> 중합체 및 방사도프의 제조
<187> 질소 분위기하에서 교반기가 장착된 250mL의 사구의 둥근 플라스크에
10.034g (75.4 mmol)의 2ᅳ 5-디아미노 벤조니트릴 (2,5-di minobenzonitr le, DAN)과 0.03428g (0. 227 誦 ol)의 2,5-디아미노 벤즈아미드 (2,5-diaminobenzamide, DM) 와 NMP lOOmL를 넣은 후, 실온에서 완전히 용해시킨다. 이 용액을 아이스배스 (ice bath)를 이용하여 0°C로 넁각한다.
<188> 이 용액에 1차의 테레프탈로일클로라이드 (terephthaloyl chloride, TPC)
7.673g (37.8 画 ol)을 첨가하여 1분간 교반한 후, 이어서 TPC 7.673g (37.8 mmol) 을 추가 첨가한다. 이때 점도가 빠르게 증가하면서 10~20초 내에 겔상의 고형물이 생성된다.
<189> 이 겔상의 고형물을 믹서기로 분쇄한 후, 리튬카본네이트 (lithium carbonate, Li2C03) 5.585g(75.6 mmol)을 첨가하여, 반웅중에 생성된 HC1을 중화시 키면서 1시간 내에 유동성을 가지는 은백색의 광택을 가지는 방사 도프 조성물을 얻었다.
<190> 상기 얻어진 겔상의 고형물을 실시예 1과 같이 분석한 결과 중량평균분자량
4,150,000g/mol이고 분자량분포 5.95인 폴리아미드 중합체가 얻어졌음을 알 수 있 었으며, POM (Polarized Optical Microscope)로 확인한 결과 Schlieren texture를 가지는 네마틱 액정상임을 알 수 있었다:
<191>
<192> 연신비 10으로 와? ΐ딩할 때의 폴리아미드 섬유의 제조 및 물성
<193> 실시예 4에서 제조된 방사 도프 조성물을 55°C에서 수시간 숙성시키면서 탈 포한 후, 100, 250, 400메쉬의 스테인레스 스틸망으로 여과한 후, 방사구금을 통해 0.1~3cm의 공기층에 압출 분사함과 동시에 약 0~10°C로 유지된 증류수 욕조에서 웅 고하여 연신비 10의 속도로 를러에 감는다. 증류수로 충분히 수세한 뒤 150°C에서 의 건조로 폴리아미드 섬유를 생산한다. 섬유의 섬도는 1.7 데니어, 인장 강도는
18.6 g/d, 신도는 4.8 %, 인장탄성율 (3%)은 457 g/d이었다. <194>
<195> 연신비 30으로 와?ᅵ딩할 때의 폴리아미드 섞유의 제조 및 물성
<196> 실시예 4에서 제조된 방사 도프 조성물을 55°C에서 수시간 숙성시키면서 탈 포한 후, 100, 250, 400메쉬의 스테인레스 스틸망으로 여과한 후, 방사구금을 통해 0.1~3cm의 공기층에 압출 분사함과 동시에 약 0~10°C로 유지된 증류수 욕조에서 웅 고하여 연신비 30의 속도로 를러에 감는다. 증류수로 층분히 수세한 뒤 15CTC에서 의 건조로 폴리아미드 섬유를 생산한다. 섬유의 섬도는 1.1 데니어, 인장 강도는 27.5 g/d, 신도는 3.7 %, 인장탄성을 (3%)은 631 g/d이었다.
<197>
<198> 실시예 5
<199> 중합체 및 방사도프의 제조
<200> 질소 분위기하에서 교반기가 장착된 250mL의 사구의 등근 플라스크에 9.000g
(67.6 mmol)의 2, 5-디아미노 벤조니트릴 (2,5-diaminobenzonitr le, DAN)과, 0.788g (7.29 醒 ol)의 1,4_디아미노 벤젠 (l,4-diaminobenzene, DAB)과, 0.03406g (0. 225 mmol)의 2,5-디아미노 벤즈아미드 (2,5-diaminobenzamide, DM)와 DMAc lOOmL를 넣 은 후, 실온에서 완전히 용해시킨다. 이 용액을 아이스배스 (ice bath)를 이용하여 ◦ °C로 넁각한다. i
<20i> 이 용액에 1차의 테레프탈로일클로라이드 (terephthaloyl chloride, TPC)
7.624g (37.6 mmol)을 첨가하여 1분간 교반한 후, 이어서 TPC 7.624g (37.6 mmol) 을 추가 첨가한다. 이때 점도가 빠르게 증가하면서 10~20초 내에 겔상의 고형물이 생성된다.
<202> 이 겔상의 고형물을 믹서기로 분쇄한 후, 리륨카본네이트 (lithium carbonate, Li2C03) 5.549g(75.1 mmol)을 첨가하여, 반응중에 생성된 HC1을 증화시 키면서 1시간 내에 유동성을 가지는 은백색의 광택을 가지는 방사 도프 조성물을 얻었다:
<203> 상기 얻어진 겔상의 고형물을 실시예 1과 같이 분석한 결과 중량평균분자량
5,080,00Og/nK)l이고 분자량분포 6.28인 폴리아미드 중합체가 얻어졌음을 알 수 있 었으며, POM (Polarized Optical Microscope)로 확인한 결과 Schlieren texture를 가지는 네마틱 액정상임을 알 수 있었다.
<204>
<205> 연신비 10으로 와이딩할 때의 폴리아미드 섞유의 제조 및 물성
<206> 실시예 5에서 제조된 방사 도프 조성물을 55°C에서 수시간 숙성시키면서 탈 포한 후, 100, 250, 400메쉬의 스테인레스 스틸망으로 여과한 후, 방사구금을 통해 0.1~3cm의 공기층에 압출 분사함과 동시에 약 0~10°C로 유지된 증류수 욕조에서 응 고하여 연신비 10의 속도로 를러에 감는다. 증류수로 층분히 수세한 뒤 150°C에서 의 건조로 폴리아미드 섬유를 생산한다. 섬유의 섬도는 2.0 데니어, 인장 강도는 17.4 g/d, 신도는 5.2 %, 인장탄성율 (3¾ 은 402 g/d이었다.
<207>
<208> 연^비 30으로 와 1딩할 때의 폴리아미드 섬유의 제조 및 물성
<209> 실시예 5에서 제조된 방사 도프 조성물을 55°C에서 수시간 숙성시키면서 탈 포한 후, 10으 250, 400메쉬의 스테인레스 스틸망으로 여과한 후, 방사구금을 통해 0.1~3cm의 공기층에 압출 분사함과 동시에 약 0~1( C로 유지된 증류수 욕조에서 웅 고하여 연신비 30의 속도로 를러에 감는다. 증류수로 층분히 수세한 뒤 150°C에서 의 건조로 폴리아미드 섬유를 생산한다. 섬유의 섬도는 1.3 데니어, 인장 강도는 25.3 g/d, 신도는 4.1 %, 인장탄성율 (3¾ 은 562g/d이었다.
<210>
<211> 실시예 6
<212> 중합체 및 방사도프의 제조
<213> 질소 분위기하에서 교반기가 장착된 250mL의 사구의 등근 플라스크에
13.000g (51.5 mmol)의 4,4'-디아미노 -6'-시아노벤즈아닐라이드 (4,4'— diamino-61- benzanilide, DACaB)와 0.0419g (0.155 匪 οθ의 4,4'—디아미노 -6'—카바모일벤즈아 닐라이드 (4,4'-diamino-6'— carbamoylbenzanilide, DACyB)와 이 c lOOmL를 넣은 후 , 실온에서.완전히 용해시킨다. 이 용액을 아이스배스 (ice bath)를 이용하여 0°C 로 냉각한다.
<214> 이 용액에 1차의 테레프탈로일클로라이드 (terephthaioyl chloride, TPC)
5.247g (25.8 mmol)을 첨가하여 1분간 교반한 후, 이어서 TPC 5.247g (25.8 mmol) . 을 추가 첨가한다. 이때 점도가 빠르게 증가하면서 10~20초 내에 겔상의 고형물이 생성된다.
<215> 이 겔상의 고형물을 믹서기로 분쇄한 후, 리튬카본네이트 (lithium carbonate, Li2C03) 3.819g(51.7 mmoU을 첨가하여, 반응중에 생성된 HC1을 중화시 키면서 1시간 내에 유동성을 가지는 은백색의 광택을 가지는 방사 도프 조성물을 얻었다:
<216> 상기 얻어진 겔상의 고형물을 실시예 1과 같이 분석한 결과 중량평균분자량 !!!이이고 분자량분포 5.42인 폴리아미드 중합체가 얻어졌음을 알 수 있 었으며, POM (Polarized Optical Microscope)로 확인한 결과 Schlieren texture를 가지는 네마틱 액정상임을 알 수 있었다.
<217>
<218> 연시비 10으로 와인딩할 때의 폴리아미드 섬유의 제조 및 물성
<219> 실시예 6에서 제조된 방사 도프 조성물을 55°C에서 수시간 숙성시키면서 탈 포한 후, 100, 250, 400메쉬의 스테인레스 스틸망으로 여과한 후, 방사구금을 통해 0.1~3cm의 공기층에 압출 분사함과 동시에 약 0~10°C로 유지된 증류수 욕조에서 응 고하여 연신비 10의 속도로 를러에 감는다. 증류수로 층분히 수세한 뒤 15( C에서 의 건조로 폴리아미드 섬유를 생산한다. 섬유의 섬도는 1.8 데니어, 인장 강도는
18.2 g/d, 신도는 4.2 , 인장탄성율 (3%)은 465 g/d이었다.
<220>
<221> 연신비 30으로 와인딩할 때의 폴리아미드 섬유의 제조 및 물성
<222> 실시예 6에서 제조된 방사 도프 조성물을 55°C에서 수시간 숙성시키면서 탈 포한 후, 100, 250, 400메쉬의 스테인레스 스틸망으로 여과한 후, 방사구금을 통해 0.1~3cm의 공기층에 압출 분사함과 동시에 약 0~10°C로 유지된 증류수 욕조에서 웅 고하여 연신비 30의 속도로 롤러에 감는다. 증류수로 충분히 수세한 뒤 150°C에서 의 건조로 폴리아미드 섬유를 생산한다. 섬유의 섬도는 1.2 데니어, 인장 강도는
26.3 g/d, 신도는 3.6 %, 인장탄성율 (3%)은 624 g/d이었다.
<223>
<224> 실시예 7
<225> 중합체 및 방사도프의 제조
<226> 질소 분위기하에서 교반기가 장착된 250mL의 사구의 등근 플라스크에 리튬카 본네이트 (lithium carbonate, Li2C03) 5.585g(75.6 瞧 ol)와 DMAc lOOmL를 넣은 후
70도에서 3hr교반한다. 실온으로 넁각한 후 10.034g (75.4 瞧 ol)의 2, 5-디아미노 벤조니트릴 (2,5-diaminobenzonitrle)과 0.03428g (0. 227 mmol)의 2,5-디아미노 벤즈아미드 (2,5-diaminobenzamide)를 투입한다. 이 용액을 아이스배스 (ice bath) 를 이용하여 0°C로 냉각한다.
<227> 이 용액에 1차의 테레프탈로일클로라이드 (terephthaloyl chloride, TPC)
7.673g (37.8 mmol)을 첨가하여 1분간 교반한 후, 이어서 TPC 7.673g (37.8 mmol) 을 추가 첨가한다. 이때 10~60초 내에 중화에 의해 기포가 발생하면서 점도가 빠르 게 증가하고, 1시간 동안의 교반을 통해 유동성을 가지는 은백색의 광택을 가지는 방사 도프 조성물을 얻었다. <228> 상기 얻어진 조성물을 실시예 1과 같이 분석한 결과 중량평균분자량
3,950,000g/m 이고 분자량분포 6.34인 폴리아미드 중합체가 얻어졌음을 알 수 있 었으며, POM (Polarized Optical Microscope)로 확인한 결과 Schlieren texture를 가지는 네마틱 액정상임을 알 수 있었다.
<229>
<230> 연^비 10으로 와이딩함 때의 폴리아미드 섬유의 체조 및 물성
<231> 실시예 7에서 제조된 방사 도프 조성물을 55°C에서 수시간 숙성시키면서 탈 포한 후 100, 250, 400메쉬의 스테인레스 스틸망으로 여과한 후, 방사구금을 통해 0.1~3cm의 공기층에 압출 분사함과 동시에 약 0~101:로 유지된 증류수 욕조에서 웅 고하여 연신비 10의 속도로 를러에 감는다. 증류수로 층분히 수세한 뒤 150°C에서 의 건조로 폴리아미드 섬유를 생산한다. 섬유의 섬도는 2.0 데니어, 인장 강도는 17.6 g/d, 신도는 4.8 %, 인장탄성율 (3%)은 397 g/d이었다.
<232>
<233> 여시비 30으로 와? 1딩할 때의 폴리아미드 섞유의 제조 및 물성
<234> 실시예 7에서 제조된 방사 도프 조성물을 55°C에서 수시간 숙성시키면서 탈 포한 후, 100, 250, 400메쉬의 스테인레스 스틸망으로 여과한 후 방사구금을 통해 0.1~3cm의 공기층에 압출 분사함과 동시에 약 0~10'C로 유지된 증류수 욕조에서 웅 고하여 :연신비 30의 속도로 를러에 감는다. 증류수로 충분히 수세한 뒤 150°C에서 의 건조로 폴리아미드 섬유를 생산한다. 섬유의 섬도는 1.3 데니어, 인장 강도는 25.5 g/d, 신도는 3.3 %' 인장탄성율 (3%)은 608 g/d이었다.
<235> !
<236> 비교예 2
<237> 중합체 및 방사도프의 제조
<238> 질소 분위기하에서 교반기가 장착된 250mL의 사구의 등근 플라스크에
11.400g (75.4 mmol)의 2,5-디아미노 벤즈아미드 (2,5-diaminobenzamide, DM)와 DMAc lOOmL를 넣은 후, 실온에서 완전히 용해시킨다. 이 용액을 아이스배스 (ice bath)를 이용하여 0°C로 냉각한다. 이 용액에 1차의 테레프탈로일클로라이드 (terephthaioyl chloride, TPC) 7.655g (37.7瞧 ol)을 첨가하여 1분간 교반한 후 2 차의 TPC 7.655g (37.7睡 ol)을 첨가한다. 이때 점도가 빠르게 증가하면서 10~20초 내에 겔상의 고형물이 생성된다. 이 겔상의 고형물을 믹서기로 분쇄한 후 리튬카본 네이트 (lithium carbonate, Li2C03) 5.572g (75.4 mmol)을 첨가하여, 반웅 중에 생 성된 HC1을 중화시키면서 1시간 내에 은백색의 광택을 가지는 폴리 (2ᅳ 5-디아미노벤 즈아미드 -테레프탈아미드) [poly(2,5-clianiinobenzaiiiide-terephthalamide)] 방사 도 프 조성물을 얻었다.
<239> 상기 얻어진 겔상의 고형물을 실시예 1과 같이 분석한 결과 중량평균분자량
5,670,000g/m 이고 분자량분포 6.75인 폴리아미드 중합체가 얻어졌음을 알 수 있 었으며, 알 수 있었으며, POM (Polarized Optical Microscope)로 확인한 결과 등방 성임을 알 수 있었다. 따라서 방사가 원할하지 못하고 또한 끊어짐이 일어남을 확 인하여 실재적으로 방사가불가능하였다.
<240>
<241> 상기 결과와 같이 -C0N 관능기로 치환된 단량체가 공증합되지 않은 비교예
1에 대비하예 -C0NH2 관능기로 치환된 단량체가 공중합된 실시예 1, 실시예 2, 실시 예 3ᅳ 실시예 4, 실시예 5ᅳ 실시예 6, 및 실시예 7의 폴리아미드 중합체는 중합체 내애 존재하는 아미드 및 퀴나졸리논 작용기로 인하여 우수한 방사성을 가지며, 연신성 이 현저히 우수한 연신비 10이상, 좋게는 15이상, 더욱 바람직하게 30이상, 50의 연신비로 방사가 수행될 수 있는 놀라운 연신성을 가지는 것을 알 수 있었다. 또한 연신된 섬유의 인장강도도 25g/d 이상으로 매우 우수하고, 더쇽 좋게는 30g/d를 넘 는 것도 제조할 수 있으며, 인장탄성율에 있어서는 30배 이상 연신시에 모두 500g/d 이상의 매우 현저히 향상된 물성을 나타냄을 알 수 있었다. 연신비는 방사 도프 조성물의 방사 시, 방사 구금을 통과하는 압출물의 연신이 없는 초기속도에 대한 연신시 웅고욕을 통과하는 필라멘트의 속도 비율을 의미한다.
<242>
, 【산업상 이용가능성】
<243> 본 발명에 본 발명의 신규한 폴;리아미드 중합체는 CN 관능기 및 C0N¾ 관능 기를 포함하고 있는 구조로, 이를 포함한 방사 도프 조성물을 이용한 섬유는 강도 및 탄성력이 종래의 섬유에 비해 현저히 우수하다.
<244> 상기 구조에 의해 장기간 자외선 둥의 노출에도 강하며 , 장기간 사용에도 가 수분해와 같은 역학 저하가 없이 내구성이 우수하다.
<245> 또한 본 발명의 방사도프를 이용한 방사 시 10 이상, 바람직하게는 20이상, 더 바람직하게는 30이상의 연신비를 구현할 수 있다는 장점이 있으며, 이러한 연신 비 특성으로 인하여, 고광택의 섬유 생산의 구현이 가능하다.
<246> 또한 본발명의 중합체는 염료 (dye)를 이용하여 염색이 가능하여, 다양한 색 상의 섬유 생산이 가능한 장점이 있으며, 고강도 고기능성의 다양한 분야에 적용이 가능하다.

Claims

【청구의 범위】
【청구항 1]
(a) 하기 화학식 (1) 에서 선택되는 1종 또는 2종이상의 방향족 디아민,
(b) 하기 화학식 (2) 에서 선택되는 1종 또는 2종이상의 방향족 디아민 및
(c) 하기 화학식 (3)로부터 선택되는 1종 또는 2종 이상의 방향족 이가유기 산 유도체 단량체를 포함하여 중합되는 폴리아미드 중합체.
H2N-Ar1(C0NH2)a-NH2 (화학식 1)
H2N-Ar2(CN)b-NH2 (화학식 2)
X-CO-Ara-CO-X (화학식 3)
(상기 화학식에서, A , Ar2 및 Ar3는 서로 독립적으로 C6~C34 치환 또는 비치 환 방향족기 또는 -Ar4-Z-Ar5- 이고, 상기 Ar4 및 Ar5는 C6~C34 의 치환 또는 비치환 방향족기이고 상기 Z는 단일결합, -C(0)NH-, -NH-C(O)-, -CO-, -COO—, -S02-, -SO-, 또는 (:广^의 치환 또는 비치환의 직쇄 또는 분지형 알킬렌기이며, X 는 히드록 시, 할로겐 또는 (:广(:4에서 선택되는 알콕시기이고, 상기 a 및 b는 서로 독립적으로
1 내지 4에서 선택되는 정수이다)
【청구항 2】 !
제 1항에 있어서, ,
상기 화학식 1의 -C0NH2 치환체중 하나 이상은 화학식 1의 방향족 디아민 단 량체의 일차 아민기의 올소위치에 치환된 것인 폴리아미드 중합체.
【청구항 3】
제 1항에 있어서,
상기 화학식 1 및 화학식 2는; 0.001 내지 50몰% : 99.99~50몰%의 비로 중합 되는 리아미드. 중합체 .
【청구항 4】
제 3항에 있어서,
상기 디아민 단량체는 화학식 1 및 화학식 2의 단량체 1몰에 대하여 상기 CN또는 -C0NH2 치환기 모두를 가지지 않은 디아민 단량체 0.01 내지 0.5몰비 포 함하는 폴리아미드 중합체.
【청구항 5】
제 2항에 있어서, 상기 화학식 1의 -C0NH2 치환체를 가지는 방향족 디아민 단량체가 하기 구조 서 선택되는 어느 하나 이상의 것인 폴리아미드 중합체.
Figure imgf000030_0001
H2NOC A
H Nᄉ丫쭈숴 Ί H
Figure imgf000030_0002
(상기 A 는 -H, -CI, -Br, -I, -N02> -CN또는 탄소수 1-4 알킬 또는 알콕시 기이고, B 는 -CO-, -C(0)NH-, -NH-C(O)-, -C00-, -S02-( -SO- 또는 C1~C10 직쇄 또 는 분지형 알킬렌기이다.)
【청구항 6】
제 1항에 있어서,
상기 화학식 2의 니트릴기를 가지는 방향족 디아민 단량체는 하기 구조의 화 합물에서 선택되는 어느 하나의 폴리아미드 중합체.
Figure imgf000031_0001
(상기 A 는 -H, -CI, -Br, -1, -N02, — CN, -C0NH2또는 탄소수 1~4의 알킬 또 는 알콕시기이고, B 는 -CO-, -C(0)NH-, -NH-C(O)-, -C00-, -S02-, -SO- 또는 C1~C4 의 직쇄 또는 분지형 알킬렌기이다.)
【청구항 7】
제 1항에 있어서,
상기 화학식 3의 방향족 유기 이가산 유도체 단량체는 테레프탈산, C1~C4 테 레프탈레이트 또는 테레프탈로일할라이드에서 선택되는 폴리아미드 중합체.
【청구항 8]
제 1항에 있어서,
상기 중합체는 퀴나졸론기를 포함하는 폴리아미드 중합체.
[화학식 4]
Figure imgf000031_0002
【청구항 9】 제 1항에 있어서,
상기 중합체는 1 또는 m은 몰분율로서 1 : m =0.001~50몰 ¾ : 99.99~50몰 %。 고, 중량평균분자량이 1만 내지 1500만인 하기 화학식 5의 폴리아미드 중합체.
[화학식 5]
Figure imgf000032_0001
【청구항 10]
제 1항에 있어서,
상기 폴리아미드는 1+n : m =0.001~50몰% : 99.99~50몰%이며 중량평균분자량 이 1만 내지 1500만인 하기 화학식 6의 퀴나졸론기를 포함하는 폴리아미드 중합 체 .
[화학식 6]
Figure imgf000032_0002
(1, n 및 m은 몰분율이다)
【청구항 11]
제 1항 내지 제 10항에서 선택되는 어느 한 항의 폴리아미드 공중합체를 포 함하는 방사 도프 조성물.
【청구항 12]
제 11항에 있어서,
상기 방사 도프 조성물은 무기염, 3차 아민 또는 이들의 흔합물을 포함하는 방사 도프 조성물.
【청구항 13】
제 12항에 있어서,
상기 무기염은 알칼리금속 탄산염, 알칼리금속산화물, 알칼리금속수산화물, 알칼리금속수소화물, 알칼리토금속탄산염, 알칼리토금속산화물, 알칼리토금속수소 화물, 알칼리토금속수산화물 중 적어도 하나인 방사 도프 조성물.
【청구항 14]
제 13항에 있어서, 상기 무기염이 Li2C03 인 방사 도프 조성물.
【청구항 15】
제 11항에 있어서,
상기 방사도프 조성물은 폴리마미드 중합체 5~30 ¾를 방사 도프 조성물.
【청구항 16]
제 11항의 방사도프를 방사하여 제조되는 폴리아미드 섬유.
【청구항 17]
(a) 하기 화학식 (1) 및 화학식 (2)를 포함하는 디아민단량체 용액을 제조 하는 단계,
(b) 상기 용액에 하기 화학식 (3)을 포함하는 유기이가산 유도체 단량체를 투입하여 중합하는 단계,
H2N-Ar1(CONH2)a-NH2 (화학식 1)
H2N-Ar2(CN)b-NH2 (화학식 2)
X-C0-Ar3-C0-X (화학식 3)
(상기 화학식에서 , A , Ar2 및 Ar3는 서로 독립적으로 C6~C34 치환 또는 비치 환 방향족기 또는 -Ar4-Z-Ar5- 이고, 상기 Ar4 및 Ar5는 C6~C34 의 치환 또는 비치환 방향족기이고 상기 Z는 단일결합, -C(0)NH-ᅳ - H-C(O)-, -CO-, -C00-, -S02-, -SO-, 또는 Crdo의 치환 또는 비치환의 직쇄 또는 분지형 알킬렌기이며, X 는 히드록 시, 할로겐 또는 d- 에서 선택되는 알콕시기이고, 상기 a 및 b 는 서로 독립적으 로 1 내지 4에서 선택되는 정수이다)
를 포함하여 제조되는 폴리아미드 중합체의 제조방법 .
【청구항 18】
제 17항에 있어서,
상기 용액 제조단계에서 -50 ~ '3C C로 넁각하는 단계를 더 포함하는 폴리아 미드 중합체의 제조방법 .
【청구항 19】
(a) 하기 화학식 (1) 및 화학식 (2)를 포함하는 디아민 단량체의 용액을 제조하 ^ 단계,
(b) 상기 용액에 하기 화학식 (3)을 포함하는 유기이가산 유도체 단량체를 투입하여 중합하는 단계, H2N-Ar1(C0NH2)a-NH2 (화학식 1)
H2N-Ar2(CN)b-NH2 (화학식 2)
X-C0-Ar3-C0-X (화학식 3)
(상기 화학식에서, A , Ar2 및 Ar3는 서로 독립적으로 C6~C34 치환 또는 비치 환 방향족기 또는 -Ar4-Z-Ar5- 이고, 상기 Ar4 및 Ar5는 C6~C34 의 치환 또는 비치환 방향족기이고 상기 Z는 단일결합, -C(0)NH-, -NH-C(O)-, -CO-, -C00-, -S02-, -SO-, 또는 d-do의 치환 또는 비치환의 직쇄 또는 분지형 알킬렌기이며, X 는 히드록 시, 할로겐 또는 (:广(:4에서 선택되는 알콕시기이고 상기 a 및 b는 서로 독립적으로
1 내지 4에서 선택되는 정수이다)
(c) 상기 증합단계 후 중합체에 알칼리금속 탄산염, 알칼리금속산화물, 알 칼리금속수소화물, 알칼리금속수산화물, 알칼리토금속탄산염ᅳ 알칼리토금속수소화 물, 알칼리토금속산화물 또는 알칼리토금속수산화물에서 선택되는 어느 하나 이상 의 무기염, 3차 아민 또는 이들의 흔합물을 투입하여 방사도프를 제조하는 단계, 를 포함하여 제조되는 방사도프 조성물의 제조방법 .
【청구항 20】
제 19항에 있어서,
상기 3차 아민, 무기염 또는 이들의 흔합물을 중합단계에 투입하여 중합하는 방사 도프 조성물의 제조방법 .
【청구항 21】
제 17항에 있어서, I
상기 흔합단계에 사용하는 용매는 Ν,Ν-디메틸아세트아미드 (DMAc), N-메틸- 2-피를리돈 (NMP), 핵사메틸포스포아미드 (HMPA), Ν,Ν-디메틸포름아미드 (DMF), Ν,Ν,Ν Ν'-테트라메틸 우레아 (TMU), 디메틸설폭사이드 (DMS0) 또는 이들의 흔합물 로 이루어지는 군에서 선택되어지는 방사 도프 조성물의 제조방법.
【청구항 22】
제 19항에 있어서,
상기 중합단계에서 화학식 3의 단량체를 분할 첨가하여 중합하는 방사 도프 조성물의 제조방법 .
【청구항 23】
제 20항에 있어서, 상기 무기염이 Li2C03 를 포함하는 방사 도프 조성물의 제조방법 .
【청구항 24】
제 19항에 있어서,
상기 방사도프는 폴리아미드 중합체 고형분의 함량이 5~30 %인 방사 도프 조성물의 제조방법 .
【청구항 25】
제 19항에 있어서,
상기 화학식 1의 -C0NH2 치환체를 가지는 방향족 디아민 단량체가 하기 구조 식에서 선택되는 어느 하나 이상의 것인 방사 도프 조성물의 제조방법 .
Figure imgf000035_0001
(상기 A 는 -H, -CI, -Br, -I, -N02, -CN 또는 탄소수 1~4 알킬 또는 알콕시 기이고 B 는 -CO-, -C(0)NH-, -NH-C(O)-, -C00-, -S02— , -SO- 또는 C1-C10 직쇄 또 는 분지형 알킬렌기이다.)
【청구항 26】
제 19항에 있어서,
상기 화학식 2의 니트릴기를 가지는 방향족 디아민 단량체는 하기 구조의 화 합물에서 선택되는 어느 하나의 방사 도프 조성물의 제조방법 .
Figure imgf000036_0001
(상기 A 는 -H, -CI, -Br, -1, -N02, -CN, -C0NH2또는 탄소수 1~4의 알킬 또 는 알콕시기이고, B 는 -CO-, -C(0)NH -, -NH-C(O) -, -C00-, -S02_, -SO- 또는 C1~C4 의 직쇄 또는 분지형 알킬렌기이다.)
【청구항 27]
제 19항에 있어서,
상기 니트릴기로 치환된 디아민단량체와 상기 1차 아미노기로 치환된 방향족 디아민 단량체가 하기 구조식의 화합물인 방사 도프 조성물의 제조방법 .
Figure imgf000036_0002
【청구항 28】
제 19항에 있어서,
상기 화학식 3의 단량체가 테레프탈산클로라이드, 나프탈렌디카르복실산 클 로라이드 또는 이들의 C1ᅳ Br, I, N02 또는 탄소수 1~4의 알킬 또는 알콕시기의 치 환체로 이루어지는 군에서 선택되어지는 어느 하나 이상의 것인 방사 도프 조성물 의 제조방법.
【청구항 29]
제 19항 내지 제 28항에서 선택되는 어느 한 항의 중합체가 퀴나졸리논 구조 를 포함하는 방사 도프 조성물의 제조방법.
【청구항 30]
제 19항 내지 제 28항에서 선택되는 어느 한 항에 제조방법에 의해 제조되는 방사 도프 조성물을 방사하는 단계, 상기 방사된 섬유를 웅고하는 단계를 포함하여 제조되는 폴리아미드 성형품.
【청구항 31]
제 30항에 있어서,
상기 성형품이 섬유, 펄프 또는 필름에서 선택되는 어느 하나인 폴리아미드 성형품:
【청구항 32]
제 30항에 있어서,
상기 방사 단계는 30 이상의 연신비로 방사되는 폴리아미드 성형품.
【청구항 33】
:제 30항에 있어서,
상기한 성형품은 인장강도 15g/d 이상, 인장탄성율 450g/d 이상의 특성을 가 지는 섬유인 플리아미드 성형물.
【청구항 34]
제 30항에 있어서, '
상기 성형품은 Denier 1.5 이하인 섬유인 폴리아미드 성형물.
PCT/KR2014/004216 2013-05-13 2014-05-12 고기능성 폴리아미드 중합체, 이를 포함하는 방사 도프 조성물 및 그의 성형물 WO2014185671A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP14798094.0A EP2998338B1 (en) 2013-05-13 2014-05-12 Highly functional polyamide polymer, spinning dope composition containing same, and molded product thereof
US14/787,412 US9803054B2 (en) 2013-05-13 2014-05-12 Highly functional polyamide polymer, spinning dope composition containing same, and molded product thereof
JP2016510631A JP6203377B2 (ja) 2013-05-13 2014-05-12 高機能性ポリアミド重合体、それを含む紡糸ドープ組成物、およびその成形物
BR112015028620A BR112015028620A2 (pt) 2013-05-13 2014-05-12 poliamida de alto desempenho, composição de lubrificação de fiação e molde compreendendo os mesmos
CN201480028020.8A CN105229053B (zh) 2013-05-13 2014-05-12 高性能聚酰胺聚合物、包括其的纺丝涂料组合物及其成型品
RU2015153220A RU2647598C2 (ru) 2013-05-13 2014-05-12 Ультравысокомолекулярный полиамид, густая композиция для прядения и формовое изделие из нее
US15/710,472 US10233288B2 (en) 2013-05-13 2017-09-20 Highly functional polyamide polymer, spinning dope composition containing same, and molded product thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0053614 2013-05-13
KR20130053614 2013-05-13
KR1020140055478A KR102104658B1 (ko) 2013-05-13 2014-05-09 고기능성 폴리아미드 중합체, 이를 포함하는 방사 도프 조성물 및 그의 성형물
KR10-2014-0055478 2014-05-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/787,412 A-371-Of-International US9803054B2 (en) 2013-05-13 2014-05-12 Highly functional polyamide polymer, spinning dope composition containing same, and molded product thereof
US15/710,472 Division US10233288B2 (en) 2013-05-13 2017-09-20 Highly functional polyamide polymer, spinning dope composition containing same, and molded product thereof

Publications (1)

Publication Number Publication Date
WO2014185671A1 true WO2014185671A1 (ko) 2014-11-20

Family

ID=52456388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004216 WO2014185671A1 (ko) 2013-05-13 2014-05-12 고기능성 폴리아미드 중합체, 이를 포함하는 방사 도프 조성물 및 그의 성형물

Country Status (9)

Country Link
US (2) US9803054B2 (ko)
EP (1) EP2998338B1 (ko)
JP (1) JP6203377B2 (ko)
KR (1) KR102104658B1 (ko)
CN (1) CN105229053B (ko)
BR (1) BR112015028620A2 (ko)
RU (1) RU2647598C2 (ko)
TW (1) TWI621661B (ko)
WO (1) WO2014185671A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102400545B1 (ko) * 2015-08-07 2022-05-20 코오롱인더스트리 주식회사 고탄성 공중합 아라미드 섬유
KR102089122B1 (ko) 2016-08-25 2020-03-13 주식회사 엘지화학 디아민 화합물 및 이를 이용하여 제조된 플렉시블 소자용 기판
TWI647253B (zh) * 2016-12-29 2019-01-11 大東樹脂化學股份有限公司 利用芳香族氨甲酸酯透過異氰酸鹽作為前驅物之經催化熱反應路徑以製備醯胺或聚醯胺的方法及由芳香胺製備芳香族氨甲酸酯前驅物的方法
KR101915433B1 (ko) 2018-02-13 2018-11-05 씨제이제일제당 (주) 시트레이트 신타아제 (Citrate synthase)의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 L-아미노산 생산방법
TWI740758B (zh) * 2020-12-25 2021-09-21 律勝科技股份有限公司 聚醯胺醯亞胺共聚物及含其之薄膜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3541054A (en) * 1968-08-05 1970-11-17 Gen Electric Polymers containing quinazolone rings
US4018735A (en) * 1974-07-10 1977-04-19 Teijin Limited Anisotropic dopes of aromatic polyamides
KR0171994B1 (ko) 1995-07-13 1999-03-30 구광시 방향족 폴리아미드, 광학적 이방성 도우프와 성형물, 및 이들의 제조방법
KR100744169B1 (ko) * 2006-10-13 2007-08-06 경북대학교 산학협력단 방향족 폴리아미드 화합물과 그 제조방법, 및 이를 이용한광학 필름
KR20100114767A (ko) * 2009-04-16 2010-10-26 경북대학교 산학협력단 방향족 폴리아미드와 비결정성 고분자의 분자 혼화성 블렌드 용액과 그 제조방법, 이를 이용한 방향족 폴리아미드 블렌드 섬유 및 그 염색방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3907752A (en) * 1973-06-28 1975-09-23 Westinghouse Electric Corp Aromatic nitrile amide polymers
US4021415A (en) * 1974-02-14 1977-05-03 Chang William J H Nitrile containing aromatic polyamide polymers
DE4217419C1 (de) 1992-05-26 1993-11-18 Terrot Strickmaschinen Gmbh Strickmaschine
KR0118208B1 (ko) * 1992-07-20 1997-09-30 하기주 방향족 폴리아미드 및 그의 제조방법
US5292856A (en) * 1993-04-08 1994-03-08 E. I. Du Pont De Nemours And Company Aromatic condensation polyamides with pendant ester and amide groups
KR970007489B1 (ko) 1994-03-18 1997-05-09 오태진 광학적 이방성 방향족 폴리아미드 도우프, 성형물 및 이들의 제조방법
US6472471B2 (en) * 1997-12-16 2002-10-29 Cabot Corporation Polymeric products containing modified carbon products and methods of making and using the same
US6497953B1 (en) * 1998-10-09 2002-12-24 Cabot Corporation Polymeric fibers and spinning processes for making said polymeric fibers
DE10058292A1 (de) * 2000-11-23 2002-05-29 Basf Ag Polyamide
DE10217439A1 (de) * 2002-04-18 2003-10-30 Basf Ag Verfahren zur Herstellung von Polyamiden

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3541054A (en) * 1968-08-05 1970-11-17 Gen Electric Polymers containing quinazolone rings
US4018735A (en) * 1974-07-10 1977-04-19 Teijin Limited Anisotropic dopes of aromatic polyamides
KR0171994B1 (ko) 1995-07-13 1999-03-30 구광시 방향족 폴리아미드, 광학적 이방성 도우프와 성형물, 및 이들의 제조방법
KR100744169B1 (ko) * 2006-10-13 2007-08-06 경북대학교 산학협력단 방향족 폴리아미드 화합물과 그 제조방법, 및 이를 이용한광학 필름
KR20100114767A (ko) * 2009-04-16 2010-10-26 경북대학교 산학협력단 방향족 폴리아미드와 비결정성 고분자의 분자 혼화성 블렌드 용액과 그 제조방법, 이를 이용한 방향족 폴리아미드 블렌드 섬유 및 그 염색방법

Also Published As

Publication number Publication date
RU2647598C2 (ru) 2018-03-16
US9803054B2 (en) 2017-10-31
KR102104658B1 (ko) 2020-04-27
US20180009946A1 (en) 2018-01-11
CN105229053A (zh) 2016-01-06
EP2998338A1 (en) 2016-03-23
US10233288B2 (en) 2019-03-19
TWI621661B (zh) 2018-04-21
CN105229053B (zh) 2017-05-10
EP2998338B1 (en) 2018-04-11
TW201500461A (zh) 2015-01-01
JP6203377B2 (ja) 2017-09-27
JP2016518495A (ja) 2016-06-23
RU2015153220A (ru) 2017-06-14
BR112015028620A2 (pt) 2017-07-25
US20160083515A1 (en) 2016-03-24
EP2998338A4 (en) 2017-03-01
KR20140135915A (ko) 2014-11-27

Similar Documents

Publication Publication Date Title
US10233288B2 (en) Highly functional polyamide polymer, spinning dope composition containing same, and molded product thereof
US7015303B1 (en) Polyketone solution
JP6629296B2 (ja) 高強度共重合アラミド繊維及びその製造方法
EP0045934B1 (en) Wholly aromatic polyamide fiber and film and process for preparation thereof
US8604121B2 (en) Molecular miscible blend solution of aromatic polyamide and non-crystalline polymer, method for preparing the same, aromatic polyamide blend fiber using the same and method for dying the same
JP2607816B2 (ja) ポリアミドイミド繊維および同繊維の製造方法
KR0151718B1 (ko) 전방향족 코폴리아미드, 이의 제조방법 및 이로부터 형성된 성형구조물
US3804791A (en) Polyamide spinning dope
JP2858869B2 (ja) 芳香族ポリアミドとポリ―n―ビニルピロリドンの均質アロイを原料とする繊維材料、その製造及びその用途
CN100549248C (zh) 改进的含盐芳族聚酰胺聚合物的湿法纺丝方法
JPH0680775A (ja) 繊維形成用メタ−アラミドの調製
EP1988114A1 (en) Polyamide
KR101587048B1 (ko) 공중합 아라미드 섬유의 제조방법 및 이로 제조된 공중합 아라미드 섬유
KR20120075924A (ko) 방향족 폴리아미드 필라멘트의 제조방법
KR970007489B1 (ko) 광학적 이방성 방향족 폴리아미드 도우프, 성형물 및 이들의 제조방법
IE910515A1 (en) Wholly aromatic polyamides, preparation thereof and shaped structures therefrom
JP2732879B2 (ja) 全芳香族共重合ポリアミド
KR930002419B1 (ko) 신규 전방향족 코폴리아미드의 제조 방법
RU2487969C1 (ru) Комплексная высокопрочная высокомодульная термостойкая нить из гетероциклического ароматического сополиамида и способ ее получения (варианты)
JPS64422B2 (ko)
JP2023078567A (ja) 高耐熱性高タフネス繊維、およびその製造方法
JPH03143923A (ja) 全芳香族ポリアミド及びその成型物
JPH02269156A (ja) 新規成形用ドープ
JPH0774271B2 (ja) 全芳香族共重合ポリアミド及びその成型物
DE4228619A1 (de) Aromatische Copolyamide, Verfahren zu ihrer Herstellung und daraus geformte Gebilde

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480028020.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798094

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014798094

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016510631

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14787412

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015028620

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2015153220

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015028620

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151113