WO2014185323A1 - 磁気共鳴イメージング装置および磁気共鳴イメージング方法 - Google Patents
磁気共鳴イメージング装置および磁気共鳴イメージング方法 Download PDFInfo
- Publication number
- WO2014185323A1 WO2014185323A1 PCT/JP2014/062306 JP2014062306W WO2014185323A1 WO 2014185323 A1 WO2014185323 A1 WO 2014185323A1 JP 2014062306 W JP2014062306 W JP 2014062306W WO 2014185323 A1 WO2014185323 A1 WO 2014185323A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- blade
- phase correction
- data
- correction amount
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/4818—MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space
- G01R33/4824—MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space using a non-Cartesian trajectory
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/565—Correction of image distortions, e.g. due to magnetic field inhomogeneities
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/565—Correction of image distortions, e.g. due to magnetic field inhomogeneities
- G01R33/56509—Correction of image distortions, e.g. due to magnetic field inhomogeneities due to motion, displacement or flow, e.g. gradient moment nulling
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/565—Correction of image distortions, e.g. due to magnetic field inhomogeneities
- G01R33/56563—Correction of image distortions, e.g. due to magnetic field inhomogeneities caused by a distortion of the main magnetic field B0, e.g. temporal variation of the magnitude or spatial inhomogeneity of B0
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/565—Correction of image distortions, e.g. due to magnetic field inhomogeneities
- G01R33/56572—Correction of image distortions, e.g. due to magnetic field inhomogeneities caused by a distortion of a gradient magnetic field, e.g. non-linearity of a gradient magnetic field
Definitions
- the present invention relates to a magnetic resonance imaging (hereinafter referred to as “MRI”) technique, and more particularly to an MRI technique using a non-orthogonal sampling method.
- MRI magnetic resonance imaging
- the MRI device measures NMR signals generated by the spins of the subject, especially the tissues of the human body, and visualizes the form and function of the head, abdomen, limbs, etc. in two or three dimensions Device.
- different phase encoding is given by a gradient magnetic field, and a frequency-encoded NMR signal is measured as time-series data.
- the measured NMR signal is reconstructed into an image by two-dimensional or three-dimensional Fourier transform.
- Non-orthogonal sampling methods such as the radial sampling method and the hybrid radial method perform sampling by scanning the measurement space radially at various rotation angles with the rotation point as the center of the measurement space (generally the origin). The data necessary for image reconstruction for one sheet is obtained. Since sampling is performed in a radial manner, it is known to be strong against artifacts due to body movement. However, since scanning trajectories (blades) overlap in the measurement space, the image quality of the reconstructed image deteriorates if the positional relationship between the blades is inappropriate or if there is a phase difference at the intersection between the blades. .
- one linear locus in the radial sampling method, a plurality of parallel linear locus in the hybrid radial method, and these are collectively referred to as a blade.
- Patent Document 1 does not correct the phase difference at the intersection between the blades. If there is a phase difference at the location where the blades overlap in the measurement space, the signals cancel each other out, resulting in uneven pixel values in the image and a decrease in image formation.
- the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a technique for reducing deterioration in image quality due to a phase difference of intersections between scanning trajectories (blades) in measurement by a non-orthogonal sampling method. .
- correction is performed to reduce (reduce) the phase difference of intersections between a plurality of scanning trajectories (blades) measured by a non-orthogonal sampling method.
- the reduction of the phase difference is made by matching the phases of the intersections between the blades, and by matching the phase of each blade at the position including the shift amount in the frequency direction between all the blades. This is done by canceling the amount.
- the present invention it is possible to reduce image quality deterioration due to a phase difference between scanning trajectories (blades) in measurement using a non-orthogonal sampling method.
- Functional block diagram of the control processing system of the first embodiment (a) is an explanatory diagram for explaining the peak shift of the echo signal of the first embodiment, (b) is an enlarged view of the vicinity of the k-space origin of (a). (a) is an explanatory diagram for explaining the phase correction amount calculation method of the first embodiment, (b) is an enlarged view of the vicinity of the k-space origin of (a).
- FIG. 1 is a block diagram showing the overall configuration of one embodiment of the MRI apparatus of this embodiment.
- the MRI apparatus 100 of the present embodiment obtains a tomographic image of a subject using an NMR phenomenon.
- the static magnetic field generator 120 generates a uniform static magnetic field in the direction perpendicular to the body axis in the space around the subject 101 if the vertical magnetic field method is used, and in the body axis direction if the horizontal magnetic field method is used.
- the apparatus includes a permanent magnet type, normal conducting type or superconducting type static magnetic field generating source disposed around the subject 101.
- the gradient magnetic field generation unit 130 includes a gradient magnetic field coil 131 wound in the three-axis directions of X, Y, and Z, which is a coordinate system (device coordinate system) of the MRI apparatus 100, and a gradient magnetic field power source that drives each gradient magnetic field coil 132, and by applying the gradient magnetic field power supply 132 of each gradient coil 131 in accordance with a command from the sequencer 140 described later, gradient magnetic fields Gx, Gy, and Gz are applied in the X, Y, and Z axis directions. .
- the transmitter 150 irradiates the subject 101 with a high-frequency magnetic field pulse (hereinafter referred to as “RF pulse”) in order to cause nuclear magnetic resonance to occur in the nuclear spins of the atoms constituting the biological tissue of the subject 101.
- RF pulse high-frequency magnetic field pulse
- the high frequency oscillator 152 generates an RF pulse.
- the modulator 153 amplitude-modulates the output RF pulse in accordance with a command from the sequencer 140.
- the high-frequency amplifier 154 amplifies the amplitude-modulated RF pulse and supplies the amplified RF pulse to the transmission coil 151 disposed close to the subject 101.
- the transmission coil 151 irradiates the subject 101 with the supplied RF pulse.
- the receiving unit 160 detects a nuclear magnetic resonance signal (echo signal, NMR signal) emitted by nuclear magnetic resonance of the nuclear spin constituting the biological tissue of the subject 101, and receives a high-frequency coil (receiving coil) on the receiving side. 161, a signal amplifier 162, a quadrature detector 163, and an A / D converter 164.
- the reception coil 161 is disposed in the vicinity of the subject 101 and detects an NMR signal in response to the subject 101 induced by the electromagnetic wave irradiated from the transmission coil 151.
- the detected NMR signal is amplified by the signal amplifier 162 and then divided into two orthogonal signals by the quadrature phase detector 163 at the timing according to the command from the sequencer 140, and each is digitally converted by the A / D converter 164. The amount is converted and sent to the control processing unit 170.
- the sequencer 140 applies an RF pulse and a gradient magnetic field pulse in accordance with an instruction from the control processing unit 170. Specifically, in accordance with instructions from the control processing unit 170, various commands necessary for collecting tomographic image data of the subject 101 are transmitted to the transmission unit 150, the gradient magnetic field generation unit 130, and the reception unit 160.
- the control processing unit 170 controls the entire MRI apparatus 100, performs various data processing operations, displays and stores processing results, and includes a CPU 171, a storage device 172, a display device 173, and an input device 174.
- the storage device 172 includes an internal storage device such as a hard disk and an external storage device such as an external hard disk, an optical disk, and a magnetic disk.
- the display device 173 is a display device such as a CRT or a liquid crystal.
- the input device 174 is an interface for inputting various control information of the MRI apparatus 100 and control information of processing performed by the control processing unit 170, and includes, for example, a trackball or a mouse and a keyboard.
- the input device 174 is disposed in the vicinity of the display device 173. The operator interactively inputs instructions and data necessary for various processes of the MRI apparatus 100 through the input device 174 while looking at the display device 173.
- the CPU 171 realizes each process of the control processing unit 170 such as control of the operation of the MRI apparatus 100 and various data processes by executing a program stored in the storage device 172 in advance according to an instruction input by the operator.
- the command to the sequencer 140 is performed according to a pulse sequence stored in the storage device 172 in advance.
- the CPU 171 executes signal processing, image reconstruction processing, and the like, and displays the tomographic image of the subject 101 as a result thereof on the display device 173. And stored in the storage device 172.
- the transmission coil 151 and the gradient magnetic field coil 131 are opposed to the subject 101 in the static magnetic field space of the static magnetic field generation unit 120 into which the subject 101 is inserted if the vertical magnetic field method is used, and if the horizontal magnetic field method is used. It is installed so as to surround the subject 101. Further, the receiving coil 161 is installed so as to face or surround the subject 101.
- the nuclide to be imaged by the MRI apparatus which is widely used clinically, is a hydrogen nucleus (proton) which is a main constituent material of the subject 101.
- the MRI apparatus 100 by imaging information on the spatial distribution of proton density and the spatial distribution of relaxation time in the excited state, the form or function of the human head, abdomen, limbs, etc. can be expressed two-dimensionally or three-dimensionally. Take an image.
- the control processing unit 170 of the present embodiment measures echo signals along a plurality of scanning trajectories in a predetermined measurement space (k space) according to a pulse sequence of a non-orthogonal sampling method, A measurement unit 210 that is arranged on the scanning locus as a data string, and an image reconstruction unit 220 that reconstructs an image from a plurality of echo signals and obtains a reconstructed image.
- the measurement unit 210 controls the operations of the static magnetic field generation unit 120, the gradient magnetic field generation unit 130, the high frequency magnetic field generation unit 150, and the high frequency magnetic field detection unit 160 according to the pulse sequence of the non-orthogonal sampling method, and samples the echo signal.
- the obtained data string is arranged on a scanning locus in k space.
- each scanning locus is hereinafter referred to as a blade.
- the image reconstruction unit 220 reduces (reduces) the phase difference in the low spatial frequency region between the data strings on each blade in the k space, and obtains a reconstructed image.
- the image reconstruction unit 220 includes a phase correction amount calculation unit 221 that calculates a phase correction amount (phase correction amount) for each data sequence on a plurality of blades, and a calculated phase correction.
- a phase correction unit 222 that corrects the phase of each of the data sequences on the plurality of blades using the amount, and a reconstruction unit 223 that calculates a reconstructed image from the corrected data sequence on the plurality of blades.
- the phase correction amount calculated by the phase correction amount calculation unit 221 is calculated so as to reduce the phase difference between the data strings on the plurality of blades.
- the phase correction amount calculation unit 221 calculates the phase correction amount so that the phases of the data at predetermined positions on the blade are aligned in each of the plurality of data strings.
- the predetermined position is determined by reflecting a peak shift amount that is a shift amount from the k-space origin of the center (peak position) of the echo signal.
- the predetermined position is an intersection of a plurality of blades.
- the phase correction amount calculation unit 221 uses the data on the blades other than the reference blade as the intersection of a predetermined reference blade (reference blade) among a plurality of blades and a blade other than the reference blade. The phase correction amount is calculated so that the phase at the intersection of the rows matches the phase at the intersection of the data rows on the reference blade.
- the phase correction amount calculation unit 221 of the present embodiment calculates the position of the intersection using the peak shift amount for each data string on the blades other than the reference blade, and uses the calculated information on the position of the intersection from the intersection. Calculate the distance to the midpoint of the data string and the distance to the midpoint of the data string on the reference blade (reference data string), and use the calculated distances to determine the phase at the intersection of the data string and the reference data. Calculate the phase at the intersection of the columns.
- the peak shift amount of the echo signal is used when calculating the phase correction amount.
- the peak shift which is the shift of the peak position of the echo signal, is caused by the nonuniformity of the static magnetic field and the output error of the gradient magnetic field. Further, the peak position of the echo signal changes according to the area of the dephase pulse applied before the readout gradient magnetic field pulse is applied. This is because the timing at which the phases of the echo signals are aligned by the application of the readout gradient magnetic field pulse predetermined by the pulse sequence after dephasing is the peak position.
- the deviation amount (peak shift amount) of the echo signal is calculated separately by performing pre-scanning in advance. Thereby, it can prevent that imaging time is prolonged. For example, as described in Japanese Patent Application Laid-Open No. 2005-152175, the calculation is performed by acquiring an echo signal by a pulse sequence for acquiring only a specific echo signal and using the echo signal.
- FIG. 3 (a) is a diagram for explaining the shift of the blade 301, which is the scanning locus, due to the peak shift of the echo signal in the k space.
- the white circle position 305 is the position of the data constituting each blade 301 when there is no shift (displacement) in the blade 301
- the black circle position 304 is data when there is a shift (actual). Position.
- the blade center 301c of the blade 301 arranged on the kx axis is the position 303 of the origin of the k space. However, since there is a shift, the blade center 301c is actually the position 301c.
- the shift amount of the blade 301 the value (coordinate value) of the coordinate Pdn on the k-space coordinates of the shifted blade center 301c is calculated.
- the shift amount in the X-axis direction is ⁇ D'x
- the shift amount in the Y-axis direction is ⁇ D'y due to the non-uniformity of the static magnetic field, the peak shift caused by the output error of the gradient magnetic field, etc.
- Fig. 3 (b) As shown, the shift amount ⁇ D'x_d in the kx direction and the shift amount ⁇ D'y_d in the ky direction of the d-th blade (d is an integer equal to or greater than 1) are expressed by the following equations (1) and (2). expressed.
- ⁇ d is an angle formed by the d-th blade 301 with the X axis.
- FIG. 4A and FIG. 4B are diagrams for explaining a method of calculating the phase correction amount according to the present embodiment.
- FIG. 4 (b) is an enlarged view of the vicinity of the center of the k space in FIG. 4 (a).
- the first blade 311 is arranged on the kx axis in the k space, and this is used as the reference blade 311.
- the reference blade 311 is not limited to the blade on the kx axis, and may be any blade.
- intersection point of the b-th blade (where b is an integer of 2 or more) 312 and the reference blade 311 is defined as an intersection point 313.
- a position 315 indicated by a white circle is an ideal data position when there is no positional shift (shift) in the blade
- a position 314 indicated by a black circle is actual data reflecting the shift of the blade. Is the position.
- the b-th blade 312 intersects the reference blade 311 at the origin 316 of the k space.
- the two intersect at a position (intersection) 313 indicated by a white cross (cross).
- phase correction is performed so that the phase at the intersection point 313 of the b-th blade 312 is aligned with the phase at the intersection point 313 of the reference blade.
- the phase correction amount calculation unit 221 of the present embodiment obtains the coordinates of the intersection point 313, obtains the distances ⁇ Db1 and ⁇ Dbb between the intersection point 313 and the midpoints (blade centers) 311c and 312c of the blades 311 and 312, and each blade
- the phase values (Phase_1, Phase_b) of 311 and 312 at the intersection 313 are obtained.
- the difference (phase difference) between the phase value of the b-th blade 312 at the intersection point 313 and the phase value at the intersection point 313 of the reference blade 311 is calculated as the phase correction amount PhC_b.
- the distances ⁇ Db1 and ⁇ Dbb between the intersection point 313 and the respective blade centers 311c and 312c are obtained from the peak shift amounts ⁇ D′x and ⁇ D′y in the X-axis direction and the Y-axis direction and the blade angle ⁇ b of the b-th blade 312.
- the blade angle ⁇ b is an angle formed by the b-th blade 312 and the X axis.
- the coordinates PIb ⁇ x, y ⁇ of the intersection point 313 can be expressed by the following equation (3) when expressed using the peak shift amounts ⁇ D′x and ⁇ D′y and the blade angle ⁇ b: 4) and formula (5).
- ⁇ Db1 ⁇ D'x ⁇ 1-cos ( ⁇ b) ⁇ + ⁇ D'ycos ( ⁇ b) (7)
- ⁇ Dbb ⁇ D'y (8) ⁇
- Blade_1 () and Blade_b () are data strings of the reference blade 311 and the b-th blade 312
- Real () is real part data
- Imaginary () is imaginary part data
- N is each blade.
- CENTER represents the positions of the middle points 311c and 312c, respectively.
- phase correction amount (phase difference) PhC_b is obtained by the following equation (12).
- PhC_b Phase_b-Phase_1 (12) By applying this phase correction amount PhC_b to the data string of the b-th blade 312 and correcting the phase value, the phase values of the first blade 311 and the b-th blade 312 at the intersection 313 are matched.
- the number of b-th blade 312 is 1 or more. If there is a peak shift (shift at the center of the blade), the intersection of the reference blade 311 and each b-th blade 312 does not concentrate on one point. Therefore, the phase correction amount calculation unit 221 calculates the position of the intersection point 313 with the reference blade indicated by the white cross for each b-th blade 312, the distance ⁇ Db1 from the midpoint 311c of the reference blade 311, and the blade The distance ⁇ Dbb from the midpoint 312c of 312 is calculated by the above procedure, the phase values Phase_1 and Phase_b of the midpoints 311c and 312c are obtained, and the phase correction amount PhC_b is calculated.
- phase correction unit 222 corrects the phases of all data constituting the b-th blade 312 using the calculated phase correction amount PhC_b.
- phase correction is performed on all data constituting the blade 312 using the same phase correction amount. That is, the corrected complex data sequence Blade_b (x) of the b-th blade 312 is expressed by the following equation (13).
- Blade_b (x)
- represents the amplitude of the complex data string of the b-th blade. I is an imaginary unit.
- the reconstruction unit 223 reconstructs an image using the corrected data sequence of each blade.
- FIG. 6 is a processing flow of the phase correction processing of this embodiment.
- the first acquired blade (first blade) is used as a reference blade.
- b is used as a counter for counting blades.
- the total number of blades is M (M is an integer of 1 or more).
- the phase correction amount calculation unit 221 determines whether or not the phase correction processing has been completed for all the blades (step S1104). Here, it is determined whether or not the counter b has exceeded the blade number M. If it is determined that all the blades 312 have been processed, the processing ends.
- the phase correction amount calculation unit 221 first calculates the coordinates PIb ⁇ x of the intersection point 313 with the reference blade 311 for the b-th blade 312 acquired by the measurement unit 210. , Y ⁇ is calculated (step S1105).
- phase correction amount calculation unit 221 calculates the phase Phase_1 of the intersection point 313 of the reference blade 311 and the phase Phase_b of the intersection point 313 of the b-th blade 312 (step S1106). Then, the phase correction amount PhC_b of the b-th blade is calculated as both phase differences (step S1107).
- phase correction unit 222 corrects the phase of the b-th blade according to the above equation (13) using the calculated phase correction amount PhC_b (step S1108).
- the phase correction amount calculation unit 221 returns to step S1103 and repeats the process.
- the phase correction amount is determined so that the phases of the intersections of the blades are aligned for the data sequence of the plurality of blades acquired according to the non-orthogonal pulse sequence, and the phase correction is performed.
- a reference blade is defined among a plurality of blades, and the phase correction amount is determined so that the phase of each of the other blades coincides with the reference blade, and each blade is configured with the phase correction amount. Correct the phase of the data. As a result, the phase difference is reduced at the point where the blades overlap with each other, and signal cancellation due to this is also reduced. At this time, the phase is corrected with the amount of phase change taking into account the deviation of the center of the reception echo of the blade.
- each blade intersects the reference blade in a low spatial frequency region. Therefore, the phase difference in the low spatial frequency region that most affects the image quality is reduced by matching the phase of the intersection with the reference blade for each blade to the phase of the reference blade. Thereby, image quality degradation can be reduced.
- the phase at the intersection point 313 is matched, the interpolation value of only one intersection point is used, but the present invention is not limited to this.
- the phase may be matched using the average value of the intersection 313 and the surrounding points.
- the phase correction is performed in the k space, but the space in which the phase correction is performed may be an image space.
- the following equation (14) is followed.
- FT [Blade_b (x)]
- FT [] represents a Fourier transform.
- the data to be held may be all data of the reference blade, or may be data for several points around the origin of the reference blade in order to reduce the memory used.
- Second Embodiment a second embodiment of the present invention will be described.
- the reference blade is determined, and the phase of other blades is corrected so as to match the phase of the reference blade at the intersection with the reference blade.
- correction is performed so that the phases at the origin offset position POb of each blade described later match. Therefore, in this embodiment, setting of the reference blade is unnecessary.
- the MRI apparatus of the present embodiment has basically the same configuration as the MRI apparatus 100 of the first embodiment. However, the calculation method of the phase correction amount is different as described above. Therefore, the processing of the phase correction amount calculation unit 221 is different. Hereinafter, the present embodiment will be described focusing on the configuration different from the first embodiment. Also in the present embodiment, the measurement unit 210 measures echo signals along a plurality of scanning trajectories in a predetermined measurement space (k space) in accordance with a pulse sequence of a non-orthogonal sampling method, as a data string They are arranged on the scanning locus.
- k space predetermined measurement space
- the phase correction amount is calculated so that the phases of data at predetermined positions on the blade of each of the plurality of data strings are aligned.
- the predetermined position is an origin offset position that is an intersection of perpendicular lines drawn from the origin of the k space to each of the plurality of blades, and the phase correction amount calculation unit 221 has all phases of the origin offset positions of the plurality of data strings.
- the phase correction amount is calculated as follows.
- the phase correction amount calculation unit 221 of the present embodiment calculates an offset position using a peak shift amount for each of a plurality of data strings, and uses the calculated offset position information to calculate the data string from the offset position. The distance to the midpoint is obtained, and the phase at the offset position of the data string is calculated using the distance.
- the shift amount (peak shift amount) of the echo signal is separately calculated by performing pre-scanning in advance.
- phase correction amount calculation processing by the phase correction amount calculation unit 221 of the present embodiment will be described with reference to the drawings.
- FIG. 7 (a) shows the positional relationship between the b-th blade 322 of this embodiment and the kx axis and ky axis.
- FIG. 7 (b) is an enlarged view of the vicinity of the center of the k space in FIG. 7 (a).
- b is an integer of 1 or more.
- a position 325 indicated by a white circle is an ideal data position when there is no positional shift (shift) in the blade 322, and a position 324 indicated by a black circle is actual data reflecting the shift of the blade 322. Is the position.
- each blade 322 is located at the origin 326 of the k space indicated by a white circle.
- it shifts due to the output response of the gradient magnetic field, and becomes a position 322c indicated by a black circle.
- the intersection point 323 when a perpendicular is drawn from the origin of the k space to the b-th blade 322 is referred to as an origin offset position. In the figure, it is indicated by white cross.
- the phase of each blade 322 is corrected so that the phases of the origin offset positions of the blades 322 are aligned.
- the phase of the origin offset position 323 of each blade 322 is calculated by obtaining a distance (error) ⁇ Db in the k space between the blade center 322c of each blade 322 and the origin offset position 323.
- the distance ⁇ Db in the k space from the origin offset position 323 is referred to as a shift amount in the frequency direction.
- ⁇ D′x and ⁇ D′y are blade shift amounts in the X-axis direction and the Y-axis direction, as in the first embodiment.
- ⁇ b is an angle formed by the b-th blade 322 and the X axis.
- the coordinate value ⁇ x, y ⁇ of the coordinate POb of the origin offset 323 has the relationship of the following expressions (16) and (17).
- the shift amount ⁇ Db in the frequency direction of the b-th blade 322 is calculated using the following equation (19) from the equation (20) using the coordinate position POb of the origin offset position 323 and the coordinate Pbn of the blade center 322c of the b-th blade 322. ).
- ⁇ Db ⁇ D'xcos 2 ( ⁇ b) + ⁇ D'ysin 2 ( ⁇ b) (19) ⁇
- Phase_b is calculated by the following equation (21).
- Blade_b is the data string of the b-th blade 322
- Real () is the real part data
- Imaginary () is the imaginary part data
- N is the number of data points of each blade
- CENTER is the middle point.
- Each position is represented.
- phase correction amount PhC_b is expressed by the following equation (22).
- PhC_b Phase_b- ⁇ (22) For example, 0 is used for ⁇ .
- the phase correction amount calculation unit 221 obtains the phase value Phase_b of the origin offset position 323 for each b-th blade and calculates the position correction amount.
- phase correction unit 222 corrects the phases of all the data constituting the b-th blade 322 using the calculated phase correction amount PhC_b.
- the corrected complex data sequence Blade_b (x) of the b-th blade 322 is expressed by the following equation (23), as in the first embodiment.
- Blade_b (x)
- represents the amplitude of the complex data string of the b-th blade. I is an imaginary unit.
- FIG. 9 is a processing flow of the phase correction processing of this embodiment.
- b is used as a counter for counting blades.
- the total number of blades is M (M is an integer of 1 or more).
- the phase correction amount calculation unit 221 determines whether or not the phase correction processing has been completed for all the blades (step S1202). Here, it is determined whether or not the counter b has exceeded the blade number M. If it is determined that all the blades 312 have been processed, the processing ends.
- the phase correction amount calculation unit 221 calculates the shift amount ⁇ Db in the frequency direction for the b-th blade 322 acquired by the measurement unit 210 (step S1203).
- the phase correction amount calculation unit 221 calculates the phase of the origin offset position 323 using the calculated shift amount in the frequency direction (step S1204), and calculates the phase correction amount PhC_b of the b-th blade 322 (step S1205).
- the phase correction unit 222 corrects the b-th blade according to the above equation (23) using the calculated phase correction amount PhC_b (step S1206).
- the phase correction amount calculation unit 221 increments the counter b by 1 (step S1207), returns to step S1202, and repeats the process.
- the data sequence of each blade is corrected so that the phase at the origin offset position of each blade is aligned for the data sequence of a plurality of blades acquired according to the non-orthogonal pulse sequence. To do. Thereby, in the low spatial frequency region, the phase shift between the blades is eliminated, and cancellation of signals generated by the phase shift can be reduced. Therefore, image quality deterioration can be suppressed.
- the phase may be adjusted using an average value of positions around the position 324 as in the first embodiment.
- the phase correction may be performed in the image space as in the first embodiment.
- the phase correction amount is determined by calculating the phase value at the center of each blade from the change in the reception frequency during off-center imaging.
- the MRI apparatus of the present embodiment has basically the same configuration as the MRI apparatus 100 of the first embodiment. However, the calculation method of the phase correction amount is different as described above. Therefore, the processing of the phase correction amount calculation unit 221 is different. Hereinafter, the present embodiment will be described focusing on the configuration different from the first embodiment. Also in the present embodiment, the measurement unit 210 measures echoes respectively along a plurality of scanning trajectories in a predetermined k space according to the pulse sequence of the non-orthogonal sampling method, and as a data string on the scanning trajectory (blade). To place. At this time, off-center imaging is performed by changing the reception frequency.
- the phase correction amount calculation processing by the phase correction amount calculation unit 221 of the present embodiment will be described.
- the phase correction amount calculation unit 221 of the present embodiment calculates the phase change amount at the midpoint of each of the plurality of data strings using the off-center distance in the k space, and uses the calculated phase change amount as the phase correction amount. That is, the phase value of the blade center is calculated from the amount of phase change during echo signal acquisition (between A / D) during off-center imaging.
- phase correction amount calculation unit 221 of the present embodiment uses the calculated phase rotation amount as the phase correction amount.
- the specific calculation procedure is as follows.
- the reception frequency Rf is obtained by the following equation (24).
- Rf BW ⁇ OffcD / FOV ... (24)
- BW is a reception frequency band [Hz]
- OffcD is an off-center distance [m]
- FOV is a visual field size [m].
- phase rotation amount (phase change amount) in the blade is expressed by the following (25).
- n is an element number of a data string constituting the blade.
- phase change amount ⁇ x in the kx axis direction of the k space and the phase change amount ⁇ y in the ky axis direction at the center of the blade are expressed by the following equations (26) and (27), respectively.
- OffcD_X and OffcD_Y are the off-center distances [m] in the X-axis direction and Y-axis direction, respectively
- FOV_X and FOV_Y are the field sizes [m] in the X-axis direction and Y-axis direction, respectively
- CENTER is the midpoint Position.
- phase change amount ⁇ b at the b-th blade center is expressed by the following equation (28).
- the phase correction amount calculation unit 221 of the present embodiment obtains the blade center phase change amount ⁇ b of each blade according to the reception frequency shift amount by the above procedure, and determines the phase correction amount PhC_b so that all of them are aligned. To do. For example, if the blade center phases are all ⁇ [rad], the phase correction amount PhC_b is expressed by the following equation (29).
- PhC_b ⁇ b- ⁇ ... (29) For example, 0 is used for ⁇ .
- phase of all data constituting the b-th blade is corrected using the calculated phase correction amount PhC_b.
- the corrected complex data string Blade_b (x) of the b-th blade 322 is expressed by the following equation (30), as in the first embodiment.
- Blade_b (x)
- the phase rotation amount at the blade center of each blade is obtained by calculation, and the phase of each blade is corrected so as to reduce the phase difference between the blades. Thereby, the phase shift between the blades is reduced. Accordingly, it is possible to suppress image quality degradation caused by the phase shift between the blades.
- the phase correction may be performed in the image space as in the first embodiment.
- the peak shift amount of the echo signal is not used, but the peak shift due to the static magnetic field inhomogeneity and the area error of the gradient magnetic field waveform can be considered.
- the phase change amounts ⁇ ′x and ⁇ ′y of each blade in this case are expressed by the following equations (31) and (32).
- phase change amount ⁇ ′b at the blade center of the b-th blade is expressed by the following equation (33).
- phase correction amount PhC_b is determined using the phase change amount ⁇ ′b.
- the imaging cross section is the XY plane of the apparatus coordinate system
- the imaging cross section may be an arbitrary cross section.
- the peak shift amount in each axis of the apparatus coordinate system is developed in the measurement coordinate system according to the angle of each blade, and the distance (deviation amount) ⁇ Db1 from the intersection with the reference blade to the midpoint of each blade ⁇ Dbb is calculated.
- the specific development and calculation methods are as follows.
- the coordinate k R in the measurement coordinate system reflecting the peak shift amount of each of the XYZ axes is expressed by the following equation (34).
- k RA is a coordinate in the apparatus coordinate system
- G RR (bl) is a readout gradient magnetic field [T] of each axis of XYZ
- d A is a peak shift amount of each axis of XYZ
- b is a blade number
- ⁇ b is a blade number.
- n is the data point number in the blade
- Nc is the data number of the middle point position
- e is the unit matrix
- ⁇ is the magnetic rotation ratio [rad / T]
- ⁇ t is the sampling interval [s] of the data string
- G is the gradient magnetic field strength [T].
- ROM is a rotation matrix for converting the measurement coordinate system to the apparatus coordinate system, and is defined by the following equation (35).
- sx, sy, and sz are projection components of the gradient magnetic field in the slice axis direction in the measurement coordinate system onto the XYZ axes of the apparatus coordinate system
- px, py, and pz are in the phase encode axis (ky) direction in the measurement coordinate system.
- Projection components of the gradient magnetic field on the XYZ axis of the apparatus coordinate system fx, fy, and fz are projection components on the XYZ axis of the apparatus coordinate system of the gradient magnetic field in the readout gradient magnetic field axis (kx) direction in the measurement coordinate system.
- K R (b, n) is the coordinate in the measurement coordinate system of the nth data point of the bth blade. The same shall apply hereinafter.
- equations (10) to (13) are calculated to perform phase correction.
- the embodiment of the present invention is not limited to the above-described embodiment.
- the radial sampling method that scans the k-space radially among the non-orthogonal sampling methods is illustrated and described as an example, but the sampling method used is not limited thereto. Any sampling method that draws a locus in which each blade overlaps in the k space may be used.
- a hybrid radial method in which phase encoding is combined with a radial sampling method may be used.
- the phase correction amount PhC_b is calculated by the method of each of the above embodiments using one central locus among a plurality of parallel linear loci, and the phase correction amount PhC_b is used to calculate 1
- the phase of data on all the parallel linear trajectories constituting the blade is corrected.
- 100 MRI apparatus 101 subject, 120 static magnetic field generation unit, 130 gradient magnetic field generation unit, 131 gradient magnetic field coil, 132 gradient magnetic field power supply, 140 sequencer, 150 high frequency magnetic field generation unit, 150 transmission unit, 151 transmission coil, 152 high frequency oscillator , 153 modulator, 154 high frequency amplifier, 160 high frequency magnetic field detection unit, 160 reception unit, 161 reception coil, 162 signal amplifier, 163 quadrature phase detector, 164 A / D converter, 170 control processing unit, 171 CPU, 172 storage Device, 173 display device, 174 input device, 210 measurement unit, 220 image reconstruction unit, 221 phase correction amount calculation unit, 222 phase correction unit, 223 reconstruction unit, 301 blade, 301c blade center, 303 position, 304 position, 305 position, 311 reference blade, 311c midpoint, 312 blade, 312c midpoint, 313 intersection, 314 position, 315 position, 316 origin, 322 blade, 322c blade center, 323 origin offset Position, 324 position, 325 position, 3
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- High Energy & Nuclear Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
以下、添付図面に従って本発明に係る好ましい実施形態について詳説する。なお、発明の実施形態を説明するための全図において、特に明示しない限り、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。
ΔD’y_d=ΔD’ysin(θd)・・・(2)
よって、d番目のブレード中心301cの、k空間上での座標Pdn{x,y}は、以下の式(3)で表される。
ここで、θdは、d番目のブレード301が、X軸と成す角度である。
y=0・・・(5)
従って、交点313の座標PIb{x、y}は、b番目のブレード312のブレード角度θbとピークシフト量とを用い、以下の式(6)で表される。
交点313の座標値を用い、基準ブレード311の中点311cから交点313までの距離ΔDb1と、b番目のブレード312の中点312cから交点313までの距離ΔDbbとは、それぞれ、以下の式(7)、式(8)および式(9)で求められる。
ΔDbb=ΔD’y ・・・(8)
∵|ΔDbb|2=[cos(θb)・(ΔD’y-ΔD’x)+ΔD’xcos(θb)]2+[ΔD’ysin(θb)]2=(ΔD’y)2 ・・・(9)
そして、算出した交点313の位置の実虚の信号値を補間により取得し、基準ブレード311の交点313における位相値Phase_1と、b番目のブレード312の交点313における位相値Phase_bとを、以下の式(10)および式(11)に従って得る。
Phase_b=tan-1(Blade_b(Imaginary(CENTER+ΔDbb))/Blade_b(Real(N/2+ΔDbb)))・・・(11)
ここで、Blade_1()およびBlade_b()は、それぞれ、基準ブレード311およびb番目のブレード312のデータ列を、Real()は実部データを、Imaginary()は虚部データを、Nは各ブレードのデータ点数を、CENTERは中点311c,312cの位置を、それぞれ表す。
この位相補正量PhC_bをb番目のブレード312のデータ列に適用し、その位相値を補正することにより、交点313における1番目のブレード311およびb番目のブレード312それぞれの位相値が合致する。
ここで、|Blade_b(x)|は、b番目のブレードの複素データ列の振幅を表す。またiは虚数単位である。
次に、位相補正量算出部221は、計測部210が取得したブレードのデータ列を基準ブレードデータとして保存する(ステップS1102)。そして、カウンタbを1インクリメント(b=1+1)する(ステップS1103)。
全てのブレード312について処理を終えたと判別された場合、処理を終了する。
ここでFT[]はフーリエ変換を表す。
このとき、保持するデータは、基準ブレードの全データであってもよいし、また、使用メモリを削減するため、基準ブレードの原点周りの数点分のデータであってもよい。
次に、本発明の第二の実施形態を説明する。第一の実施形態では、基準ブレードを決定し、その他のブレードについて、基準ブレードとの交点で基準ブレードの位相と合致するよう、位相を補正している。これに対し、本実施形態では、後述する各ブレードの原点オフセット位置PObにおける位相が合致するよう補正を行う。従って、本実施形態では、基準ブレードの設定は、不要である。
なお、本実施形態では、bは1以上の整数である。本図において、白丸で示した位置325は、ブレード322に位置ずれ(シフト)が無い場合の理想的なデータの位置、黒丸で示した位置324は、ブレード322のシフトを反映した、実際のデータの位置である。
ΔD’x、ΔD’yは、第一の実施形態同様、X軸方向およびY軸方向のブレードのシフト量である。また、θbは、b番目のブレード322がX軸と成す角度である。
y=-x/tan(θb)・・・(17)
従って、原点オフセット位置323の座標PObは、以下の式(18)で表される。
b番目のブレード322の、周波数方向のシフト量ΔDbは、原点オフセット位置323の座標位置PObとb番目のブレード322のブレード中心322cの座標Pbnとを用い式(20)から、以下の式(19)のように算出される。
∵|ΔDb|2=[cos(θb)・sin2(θb)・(ΔD’y-ΔD’x)+ΔD’xcos(θb)]2+[cos2(θb)・sin(θb)・(ΔD’x-ΔD’y)+ΔD’ysin(θb)]2
=(ΔD’x)2・cos4(θb)+2ΔD’x・ΔD’ycos2(θb)・sin2(θb)+(ΔD’y)2・sin4(θb)
=[ΔD’xcos2(θb)+ΔD’ysin2(θb)]2・・・(20)
そして、第一の実施形態同様、算出した原点オフセット位置323の実虚の信号値を補間により取得し、b番目のブレード322の原点オフセット位置323の位相値Phase_bを算出する。Phase_bは、以下の式(21)で算出される。
ここで、Blade_b()は、b番目のブレード322のデータ列を、Real()は実部データを、Imaginary()は虚部データを、Nは各ブレードのデータ点数を、CENTERは中点の位置を、それぞれ表す。
αには、例えば、0を用いる。
ここで、|Blade_b(x)|は、b番目のブレードの複素データ列の振幅を表す。またiは虚数単位である。
次に、本発明の第三の実施形態を説明する。本実施形態では、オフセンタ撮像時の受信周波数の変化から、計算によって各ブレード中心の位相値を算出し、位相補正量を決定する。ただし、本実施形態では、静磁場の不均一がなく、傾斜磁場波形の面積誤差が時間と共に変化しないものとする。
ここで、BWは受信周波数帯域[Hz]、OffcDはオフセンタ距離[m]、FOVは視野サイズ[m]である。
ここで、nはブレードを構成するデータ列の要素番号である。
ΔΦy=OffcD_Y/FOV_Y・π・CENTER ・・・(27)
ここで、OffcD_XおよびOffcD_Yは、それぞれ、X軸方向およびY軸方向のオフセンタ距離[m]、FOV_XおよびFOV_Yは、それぞれ、X軸方向およびY軸方向の視野サイズ[m]、CENTERは中点の位置である。
本実施形態の位相補正量算出部221は、以上の手順により受信周波数のシフト量に応じて、各ブレードの、ブレード中心の位相変化量ΔΦbを求め、これが全て揃うよう、位相補正量PhC_bを決定する。例えば、ブレード中心の位相が、全てα〔rad〕になるとすると、位相補正量PhC_bは、以下の式(29)で表される。
αには、例えば、0を用いる。
以上説明したように、本実施形態では、各ブレードのブレード中心の位相回転量を計算により求め、ブレード間の当該位相差を低減するよう各ブレードの位相を補正する。これにより、ブレード間の位相ずれが低減する。従って、ブレード間の位相ずれにより発生する画質劣化を抑えることができる。
ΔΦ'y=OffcD_Y/FOV_Y・π・(CENTER+ΔD'y)・・・(32)
従って、b番目のブレードのブレード中心の位相変化量ΔΦ’bは、以下の式(33)のように表される。
ピークシフトを考慮する場合は、この位相変化量ΔΦ’bを用いて、位相補正量PhC_bを決定する。
具体的な展開、算出手法は以下のとおりである。
Claims (12)
- 非直交系サンプリング法のパルスシーケンスに従って、予め定めたk空間の複数の走査軌跡に沿ってそれぞれエコーを計測し、データ列として当該走査軌跡上に配置する計測部と、
前記複数の走査軌跡上のデータ列から画像を再構成し、再構成画像を得る画像再構成部と、を備え、
前記画像再構成部は、
前記複数の走査軌跡上のデータ列各々の位相補正量を算出する位相補正量算出部と、
前記算出した位相補正量を用い、前記複数の走査軌跡上のデータ列各々の位相を補正する位相補正部と、
前記補正後の前記複数の走査軌跡上のデータ列から前記再構成画像を生成する再構成部と、を備え、
前記位相補正量算出部は、前記複数の走査軌跡上のデータ列間の位相差を低減するよう前記位相補正量を算出すること
を特徴とする磁気共鳴イメージング装置。 - 請求項1記載の磁気共鳴イメージング装置であって、
前記位相補正量算出部は、前記複数の走査軌跡各々の所定位置の位相が揃うよう前記位相補正量を算出し、
前記所定位置は、前記エコーのエコー中心のk空間原点からのシフト量であるピークシフト量を反映して決定されること
を特徴とする磁気共鳴イメージング装置。 - 請求項2記載の磁気共鳴イメージング装置であって、
前記所定位置は、前記複数の走査軌跡の中の予め定めた基準とする走査軌跡である基準走査軌跡と、その他の走査軌跡との交点であり、
前記位相補正量算出部は、前記その他の走査軌跡上のデータ列の前記交点における位相が、前記基準走査軌跡上のデータ列の前記交点における位相に合致するよう前記位相補正量を算出すること
を特徴とする磁気共鳴イメージング装置。 - 請求項2記載の磁気共鳴イメージング装置であって、
前記所定位置は、k空間の原点から前記複数の走査軌跡各々に下ろした垂線の交点である原点オフセット位置であり、
前記位相補正量算出部は、前記複数のデータ列の前記原点オフセット位置の位相が、全て揃うよう前記位相補正量を算出すること
を特徴とする磁気共鳴イメージング装置。 - 請求項1記載の磁気共鳴イメージング装置であって、
前記計測部は、オフセンタ撮像を行い、
前記位相補正量算出部は、k空間上のオフセンタ距離を用いて前記複数のデータ列各々の中点の位相変化量を算出し、当該位相変化量を、前記位相補正量とすること
を特徴とする磁気共鳴イメージング装置。 - 請求項3記載の磁気共鳴イメージング装置であって、
前記位相補正量算出部は、前記その他の走査軌跡上のデータ列各々について、前記ピークシフト量を用いて前記交点の位置を算出し、算出した交点の位置の情報を用いて前記交点から当該データ列の中点までの距離および前記基準走査軌跡上のデータ列の中点までの距離をそれぞれ得、各々の前記距離を用い、当該データ列の前記交点における位相と前記基準走査軌跡上のデータ列の前記交点における位相とを算出すること
を特徴とする磁気共鳴イメージング装置。 - 請求項4記載の磁気共鳴イメージング装置であって、
前記位相補正量算出部は、前記複数のデータ列各々について、前記ピークシフト量を用いて前記オフセット位置を算出し、算出した前記オフセット位置の情報を用いて、当該オフセット位置から当該データ列の中点までの距離を得、当該距離を用い、当該データ列の前記オフセット位置における位相を算出すること
を特徴とする磁気共鳴イメージング装置。 - 請求項5記載の磁気共鳴イメージング装置であって、
前記位相補正量算出部は、前記複数のデータ列各々の中点の前記位相変化量に、前記ピークシフト量を反映させること
を特徴とする磁気共鳴イメージング装置。 - 請求項1記載の磁気共鳴イメージング装置であって、
前記非直交系サンプリング法は、ラディアルサンプリング法、ハイブリッドラディアル法のいずれかであること
を特徴とする磁気共鳴イメージング装置。 - 非直交系サンプリング法のパルスシーケンスに従って、予め定めたk空間の複数の走査軌跡それぞれに沿って計測したエコーから得、当該k空間の前記走査軌跡上に配置されたデータ列各々について、各データ列間のk空間の低空間周波数帯域の位相差を低減するよう、前記データ列各々の位相を補正する位相補正処理を行い、
補正後のエコー信号から画像を再構成すること
を特徴とする磁気共鳴イメージング方法。 - 請求項10記載の磁気共鳴イメージング方法であって、
前記複数のデータ列の中の1のデータ列を基準データ列として保存し、
その他のデータ列各々について、当該データ列の走査軌跡と前記基準データ列の走査軌跡との交点を算出し、当該データ列の前記交点の位相と前記基準データ列の前記交点の位相とを算出し、前記両位相の位相差を位相補正量として算出し、算出した位相補正量で、当該データ列の位相を補正することにより、前記位相補正処理を行うこと
を特徴とする磁気共鳴イメージング方法。 - 請求項10記載の磁気共鳴イメージング方法であって、
前記複数のデータ列各々について、当該データ列の中点の原点オフセット位置の位相を算出し、算出した前記位相が所定の値となるよう位相補正量を算出し、算出した位相補正量で当該データ列の位相を補正することにより前記位相補正処理を行い、
前記原点オフセット位置は、k空間の原点から前記走査軌跡に下ろした垂線の交点位置であること
を特徴とする磁気共鳴イメージング方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015517044A JP6410715B2 (ja) | 2013-05-17 | 2014-05-08 | 磁気共鳴イメージング装置および磁気共鳴イメージング方法 |
CN201480022131.8A CN105120745B (zh) | 2013-05-17 | 2014-05-08 | 磁共振成像装置以及磁共振成像方法 |
US14/785,454 US10048343B2 (en) | 2013-05-17 | 2014-05-08 | Magnetic resonance imaging apparatus and magnetic resonance imaging method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-104955 | 2013-05-17 | ||
JP2013104955 | 2013-05-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014185323A1 true WO2014185323A1 (ja) | 2014-11-20 |
Family
ID=51898301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/062306 WO2014185323A1 (ja) | 2013-05-17 | 2014-05-08 | 磁気共鳴イメージング装置および磁気共鳴イメージング方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10048343B2 (ja) |
JP (1) | JP6410715B2 (ja) |
CN (1) | CN105120745B (ja) |
WO (1) | WO2014185323A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021515648A (ja) * | 2018-03-13 | 2021-06-24 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | スパイラル獲得によるmr像形成 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6410715B2 (ja) * | 2013-05-17 | 2018-10-24 | 株式会社日立製作所 | 磁気共鳴イメージング装置および磁気共鳴イメージング方法 |
JP6464088B2 (ja) * | 2013-09-03 | 2019-02-06 | 株式会社日立製作所 | 磁気共鳴イメージング装置および磁気共鳴イメージング方法 |
WO2016125572A1 (ja) * | 2015-02-06 | 2016-08-11 | 株式会社日立製作所 | 磁気共鳴イメージング装置および磁気共鳴イメージング方法 |
KR102259846B1 (ko) * | 2018-07-03 | 2021-06-03 | 가천대학교 산학협력단 | 자기공명 영상장치의 기계 학습 기반의 경사자계 오차 보정 시스템 및 방법 |
CN110244246B (zh) * | 2019-07-03 | 2021-07-16 | 上海联影医疗科技股份有限公司 | 磁共振成像方法、装置、计算机设备和存储介质 |
US10884086B1 (en) * | 2019-07-29 | 2021-01-05 | GE Precision Healthcare LLC | Systems and methods for accelerated multi-contrast propeller |
DE102020209382A1 (de) * | 2020-07-24 | 2022-01-27 | Siemens Healthcare Gmbh | Verfahren zur Aufnahme von Messdaten mittels einer Magnetresonanzanlage mit einer Korrektur der verwendeten k-Raumtrajektorien |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005021691A (ja) * | 2003-07-02 | 2005-01-27 | Ge Medical Systems Global Technology Co Llc | 位相エンコード配置のためのシステム及び方法 |
WO2005023108A1 (ja) * | 2003-09-05 | 2005-03-17 | Hitachi Medical Corporation | 磁気共鳴イメージング装置 |
WO2007013423A1 (ja) * | 2005-07-27 | 2007-02-01 | Hitachi Medical Corporation | 磁気共鳴イメージング装置 |
WO2008152937A1 (ja) * | 2007-06-14 | 2008-12-18 | Hitachi Medical Corporation | 磁気共鳴イメージング装置及び傾斜磁場に起因する誤差補正方法 |
WO2009093517A1 (ja) * | 2008-01-23 | 2009-07-30 | Hitachi Medical Corporation | 磁気共鳴イメージング装置及びマルチコントラスト画像取得方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6188219B1 (en) * | 1999-01-22 | 2001-02-13 | The Johns Hopkins University | Magnetic resonance imaging method and apparatus and method of calibrating the same |
US7023207B1 (en) * | 2005-02-16 | 2006-04-04 | General Electric Company | Method and system of MR imaging with reduced radial ripple artifacts |
DE102005046732B4 (de) * | 2005-04-18 | 2010-04-15 | Siemens Ag | Verbessertes Rekonstruktionsverfahren bei der Propellerbildgebung in der Magnetresonanztomographie |
DE102005019214B4 (de) * | 2005-04-25 | 2007-01-11 | Siemens Ag | Kalibrier-Verfahren zur artefaktreduzierten MRT-Bildgebung bei Verschiebung des FOV sowie Computersoftwareprodukt |
US7382127B2 (en) * | 2006-09-15 | 2008-06-03 | General Electric Company | System and method of accelerated MR propeller imaging |
US7482806B2 (en) * | 2006-12-05 | 2009-01-27 | Siemens Aktiengesellschaft | Multi-coil magnetic resonance data acquisition and image reconstruction method and apparatus using blade-like k-space sampling |
DE102007044463B4 (de) * | 2007-09-18 | 2009-05-14 | Bruker Biospin Mri Gmbh | Verfahren zur Bestimmung der räumlichen Verteilung von Magnetresonanzsignalen durch mehrdimensionale HF-Anregungspulse |
JP5575385B2 (ja) * | 2007-11-02 | 2014-08-20 | 株式会社東芝 | 磁気共鳴イメージング装置 |
EP2526439B1 (en) * | 2010-01-18 | 2014-07-30 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Method and device for magnetic resonance spectroscopic imaging |
WO2012043311A1 (ja) * | 2010-09-27 | 2012-04-05 | 株式会社 日立メディコ | 磁気共鳴イメージング装置および磁気共鳴イメージング方法 |
DE102011077197B4 (de) * | 2011-06-08 | 2013-05-16 | Siemens Aktiengesellschaft | Verzeichnungskorrektur bei einer Magnetresonanz-Bildgebung |
WO2013047275A1 (ja) * | 2011-09-29 | 2013-04-04 | 株式会社 日立メディコ | 磁気共鳴イメージング装置および磁気共鳴イメージング方法 |
DE102012204434B3 (de) * | 2012-03-20 | 2013-07-11 | Siemens Aktiengesellschaft | Mehrschicht-MRI-Anregung mit simultaner Refokussierung aller angeregten Schichten |
JP6410715B2 (ja) * | 2013-05-17 | 2018-10-24 | 株式会社日立製作所 | 磁気共鳴イメージング装置および磁気共鳴イメージング方法 |
-
2014
- 2014-05-08 JP JP2015517044A patent/JP6410715B2/ja active Active
- 2014-05-08 US US14/785,454 patent/US10048343B2/en active Active
- 2014-05-08 WO PCT/JP2014/062306 patent/WO2014185323A1/ja active Application Filing
- 2014-05-08 CN CN201480022131.8A patent/CN105120745B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005021691A (ja) * | 2003-07-02 | 2005-01-27 | Ge Medical Systems Global Technology Co Llc | 位相エンコード配置のためのシステム及び方法 |
WO2005023108A1 (ja) * | 2003-09-05 | 2005-03-17 | Hitachi Medical Corporation | 磁気共鳴イメージング装置 |
WO2007013423A1 (ja) * | 2005-07-27 | 2007-02-01 | Hitachi Medical Corporation | 磁気共鳴イメージング装置 |
WO2008152937A1 (ja) * | 2007-06-14 | 2008-12-18 | Hitachi Medical Corporation | 磁気共鳴イメージング装置及び傾斜磁場に起因する誤差補正方法 |
WO2009093517A1 (ja) * | 2008-01-23 | 2009-07-30 | Hitachi Medical Corporation | 磁気共鳴イメージング装置及びマルチコントラスト画像取得方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021515648A (ja) * | 2018-03-13 | 2021-06-24 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | スパイラル獲得によるmr像形成 |
JP7209007B2 (ja) | 2018-03-13 | 2023-01-19 | コーニンクレッカ フィリップス エヌ ヴェ | スパイラル獲得によるmr像形成 |
Also Published As
Publication number | Publication date |
---|---|
CN105120745A (zh) | 2015-12-02 |
US20160054415A1 (en) | 2016-02-25 |
US10048343B2 (en) | 2018-08-14 |
JP6410715B2 (ja) | 2018-10-24 |
JPWO2014185323A1 (ja) | 2017-02-23 |
CN105120745B (zh) | 2017-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6410715B2 (ja) | 磁気共鳴イメージング装置および磁気共鳴イメージング方法 | |
US7622926B2 (en) | Magnetic resonance imaging apparatus | |
US7372269B2 (en) | Magnetic resonance imaging method and apparatus | |
JP6464088B2 (ja) | 磁気共鳴イメージング装置および磁気共鳴イメージング方法 | |
US8473028B2 (en) | K-space sample density compensation for magnetic resonance image reconstruction | |
CN106419917B (zh) | 磁共振成像中用体积导航做前瞻性运动校正的方法和装置 | |
JP2000060821A (ja) | 系統誤差を補正する方法及びシステム | |
US9513356B2 (en) | Magnetic resonance imaging apparatus and reconstructed image acquisition method | |
JP5683984B2 (ja) | 磁気共鳴イメージング装置および非線形性歪み補正方法 | |
EP4092439A1 (en) | System and method for reconstruction using a high-resolution phase in magnetic resonance images | |
JP5978430B2 (ja) | 磁気共鳴イメージング装置、及びエコー信号計測方法 | |
WO2018020905A1 (ja) | 磁気共鳴イメージング装置及びその制御方法 | |
JP4707558B2 (ja) | 磁気共鳴イメージング装置 | |
US20040160221A1 (en) | Method to excite planar slices in a magnetic resonance tomography device, accounting for nonlinear gradient fields | |
JP5637694B2 (ja) | 磁気共鳴イメージング装置及び非直交座標系走査法 | |
JP5064685B2 (ja) | 磁気共鳴イメージング装置 | |
JP6579908B2 (ja) | 磁気共鳴イメージング装置及び拡散強調画像計算方法 | |
JP5484001B2 (ja) | 磁気共鳴イメージング装置及び画像補正方法 | |
US11914017B2 (en) | Magnetic resonance imaging apparatus and image processing method | |
JP5638324B2 (ja) | 磁気共鳴イメージング装置及び画像補正方法 | |
JP4318837B2 (ja) | 磁気共鳴イメージング装置 | |
JP2018186892A (ja) | 磁気共鳴イメージング装置 | |
JP2018186942A (ja) | 磁気共鳴イメージング装置及びパルス設計方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480022131.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14797920 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015517044 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14785454 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14797920 Country of ref document: EP Kind code of ref document: A1 |