WO2014185321A1 - ジクロロメタンの精製方法およびそれを用いるジフルオロメタンの製造方法 - Google Patents

ジクロロメタンの精製方法およびそれを用いるジフルオロメタンの製造方法 Download PDF

Info

Publication number
WO2014185321A1
WO2014185321A1 PCT/JP2014/062299 JP2014062299W WO2014185321A1 WO 2014185321 A1 WO2014185321 A1 WO 2014185321A1 JP 2014062299 W JP2014062299 W JP 2014062299W WO 2014185321 A1 WO2014185321 A1 WO 2014185321A1
Authority
WO
WIPO (PCT)
Prior art keywords
difluoromethane
dichloromethane
catalyst
molecular sieve
producing
Prior art date
Application number
PCT/JP2014/062299
Other languages
English (en)
French (fr)
Inventor
大野 博基
大井 敏夫
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to RU2015153118A priority Critical patent/RU2015153118A/ru
Priority to US14/787,339 priority patent/US20160060193A1/en
Priority to CN201480025690.4A priority patent/CN105209413A/zh
Priority to KR1020157030062A priority patent/KR20150133789A/ko
Publication of WO2014185321A1 publication Critical patent/WO2014185321A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/389Separation; Purification; Stabilisation; Use of additives by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/206Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/383Separation; Purification; Stabilisation; Use of additives by distillation

Definitions

  • the present invention relates to a method for producing difluoromethane by reacting dichloromethane and hydrogen fluoride in a gas phase, and a method for purifying dichloromethane, which is one of its raw materials.
  • difluoromethane (CH 2 F 2 ) is a compound that does not contain chlorine, has an ozone depletion coefficient of zero, has a low global warming potential, and is excellent in refrigerating capacity. It is important.
  • Patent Document 1 a method for producing difluoromethane by reacting dichloromethane and hydrogen fluoride in a gas phase in the presence of a fluorination catalyst is known.
  • Patent Document 2 discloses a removal method for removing a stabilizer, which is an aromatic compound having a hydroxyl group in trichloroethylene, using a molecular sieve. In addition, it is described that it is possible to prevent a decrease in the activity of the catalyst used when reacting trichlorethylene and hydrogen fluoride by removing the stabilizer.
  • Patent Document 3 crude ethyl chloride containing a stabilizer and / or moisture is brought into contact with a zeolite and / or carbonaceous adsorbent having an average pore diameter of about 3 to 11 mm in a liquid phase, and the stabilizer and / or moisture is contacted.
  • An invention relating to a method for purifying ethyl chloride and a method for producing fluoroethane using the purified ethyl chloride is disclosed. According to this invention, a stabilizer and / or water can be efficiently removed by a simple method, It is described that fluoroethane can be produced economically by preventing deterioration of the catalyst during ethane production.
  • various stabilizers are often contained in the raw materials for producing hydrofluorocarbons.
  • dichloromethane which is a raw material for difluoromethane
  • the stabilizer can shorten the life of the catalyst or produce a by-product when the target difluoromethane is produced by reacting dichloromethane and hydrogen fluoride in the gas phase in the presence of a fluorination catalyst. It may cause generation of objects, so it must be removed and reduced as much as possible.
  • the present invention has been made under such a background, and provides a method for purifying dichloromethane which can reduce the stabilizer contained in dichloromethane, is easy to operate and can be industrially implemented. With the goal. Further, the present invention is a method for producing difluoromethane by reacting dichloromethane and hydrogen fluoride in the presence of a fluorination catalyst, which suppresses deterioration of the catalyst and generation of by-products, and has a high yield. It aims at providing the manufacturing method which can obtain difluoromethane by this.
  • the present inventors have found that the stabilizer can be reduced by bringing dichloromethane containing the stabilizer into contact with zeolites in a liquid phase state. Further, by removing or reducing the stabilizer by such a method after the dichloromethane is reacted with hydrogen fluoride in the gas phase in the presence of a fluorination catalyst, the deterioration of the catalyst and the generation of by-products are suppressed.
  • the inventors have found that difluoromethane can be produced with a high yield, and have completed the present invention.
  • the present invention includes, for example, the items shown in the following [1] to [11].
  • [1] Dichloromethane containing at least one stabilizer selected from the group consisting of 2-methyl-2-butene, hydroquinone and resorcinol is contacted with a zeolite having an average pore diameter of 3 to 11 mm in a liquid phase state, and the stabilizer Dichloromethane purification method to reduce
  • [4] (1) a step of purifying dichloromethane by the method described in any one of [1] to [3] above; and (2) fluorination of dichloromethane and hydrogen fluoride that have undergone the step (1) in a reactor.
  • a method for producing difluoromethane comprising a step of obtaining a gas containing difluoromethane by reacting in a gas phase in the presence of a catalyst.
  • the fluorination catalyst is a supported catalyst in which a catalyst component is supported on activated alumina, and the activated alumina has a center pore diameter of 50 to 400 mm and a pore having a distribution with a center diameter of ⁇ 50% is 70% or more.
  • the pore volume is in the range of 0.5 to 1.6 ml / g, the purity is 99.9% by mass or more, and the sodium content is 100 ppm by mass or less.
  • [7] (3) a step of liquefying and distilling the gas containing difluoromethane obtained in the step (2) and separating it into a high-boiling fraction and a low-boiling fraction containing difluoromethane, and (4) The method for producing difluoromethane according to any one of the above [4] to [6], further comprising a step of purifying difluoromethane from the low boiling fraction obtained in the step (3).
  • step (4) includes a step of removing the acid component by bringing difluoromethane into contact with a treatment agent containing water and / or an alkaline substance.
  • a molecular sieve type 3A zeolite molded body in which 20 to 60% of sodium ions in an ion equivalent ratio are exchanged with potassium ions is immersed in an aqueous solution of sodium silicate and / or potassium silicate, [7] or [8] including the step of adhering silica to the molded body, and then recovering the molded body from the aqueous solution, dehydrating and dehydrating the activated desiccant by contacting difluoromethane.
  • the method for purifying dichloromethane according to the present invention it is possible to purify dichloromethane by simply and efficiently reducing and removing the stabilizer contained in dichloromethane, and according to the method for producing difluoromethane according to the present invention. For example, it is possible to suppress the deterioration of the catalyst and the generation of by-products and produce difluoromethane with a high yield.
  • the obtained difluoromethane can be used as a refrigerant or an etching gas.
  • dichloromethane purification method In the method for purifying dichloromethane according to the present invention, dichloromethane, more specifically, dichloromethane containing a stabilizer (hereinafter also referred to as “crude dichloromethane”) is brought into contact with zeolites in a liquid phase state, and the stabilizer contained in the dichloromethane is obtained. It is characterized by reducing.
  • dichloromethane which is a raw material for the production of difluoromethane (CH 2 F 2 ), has 2-methyl-2-phenyl as a stabilizer to prevent decomposition due to water, temperature, light, etc. and maintain long-term stability. Butene, hydroquinone, resorcinol and the like are generally added. The amount added is several hundred to several thousand mass ppm. Dichloromethane contains several tens to several hundred mass ppm of water.
  • the above-mentioned stabilizer adversely affects the production important fluorination catalyst (decreased activity of the fluorination catalyst, short life) It is desirable that the amount be as small as possible, and that it should not be introduced into the reaction step between dichloromethane and hydrogen fluoride.
  • water causes hydrolysis of dichloromethane and generates undesirable by-products, and further causes corrosion of the material of the reaction apparatus.
  • the total amount of the stabilizer and water is preferably 20 mass ppm or less, more preferably 15 mass ppm or less, and most preferably 10 mass ppm or less.
  • the average pore diameter of the zeolites is 3 to 11 mm, preferably 3 to 10 mm.
  • a method for measuring the average pore diameter there is a gas adsorption method using Ar gas.
  • the average pore diameter is in the above range, zeolite exhibits a high adsorption capacity for stabilizers and water while suppressing adsorption of dichloromethane.
  • the silica / alumina ratio of the zeolites is preferably 3 or less.
  • zeolites examples include molecular sieve 3A (MS-3A), molecular sieve 4A (MS-4A), molecular sieve 5A (MS-5A), molecular sieve 10X (MS-10X), and molecular sieve 13X (MS-13X). Is preferred.
  • a batch method or a continuous method can be used as a method for bringing the crude dichloromethane into contact with the zeolite in a liquid phase.
  • a method for bringing the crude dichloromethane into contact with the zeolite in a liquid phase a batch method or a continuous method can be used.
  • the dichloromethane purification method of the present invention is industrially implemented, a method of continuously circulating the zeolites in a fixed bed is preferable, and the liquid-based space velocity (LHSV) of the crude dichloromethane is stable.
  • LHSV liquid-based space velocity
  • it can be appropriately selected depending on the concentration of the agent and water and the amount of crude dichloromethane treated, it is usually preferably in the range of 1 to 80 Hr- 1 .
  • dichloromethane purification method of the present invention when the dichloromethane purification method of the present invention is industrially implemented, it is preferable to use a method in which two adsorption towers using the zeolite as an adsorbent are provided and purification is continuously performed by switching the two towers. .
  • the temperature at which the crude dichloromethane is contacted with the zeolite in the liquid phase is preferably ⁇ 15 to 65 ° C., more preferably 2 to 55 ° C. If the temperature is in the above range, dichloromethane is suppressed without inhibiting the decomposition reaction of dichloromethane, and without specially increasing the pressure resistance of the adsorption vessel (adsorption device) or preventing the water from consolidating. Can be purified.
  • the pressure is preferably in the range of 0.05 to 1 MPa, more preferably in the range of 0.05 to 0.6 MPa.
  • dichloromethane can be purified without specially increasing the pressure resistance of the adsorption vessel (adsorption device).
  • the total amount of impurities is 20 mass ppm or less, more preferably 15 mass ppm or less, and even more preferably Dichloromethane reduced to 10 mass ppm or less can be obtained.
  • the method for producing difluoromethane of the present invention is characterized by including the following steps. (1) The step of purifying dichloromethane by the above-described method for purifying dichloromethane of the present invention, and (2) The dichloromethane and hydrogen fluoride having undergone the step (1) are gasified in the reaction vessel in the presence of a fluorination catalyst. Reacting in phase to obtain a gas containing difluoromethane.
  • the gas containing difluoromethane obtained in step (2) mainly contains difluoromethane, and may further contain impurities such as by-products such as hydrogen chloride, chlorofluoromethane, unreacted dichloromethane, and hydrogen fluoride. is there.
  • a catalyst component (hereinafter referred to as “catalyst”) containing chromium (III) oxide as a main component and optionally further containing at least one element selected from the group consisting of In, Zn, Ni, Co, Mg, and Al.
  • a supported or bulk catalyst comprising component a ”) is preferred.
  • the proportion of chromium (III) oxide in the entire supported catalyst is preferably 10 to 30% by mass.
  • the support for the fluorination catalyst has a center pore diameter of 50 to 400 mm, pores having a distribution with a center diameter of ⁇ 50% occupy 70% or more, and a pore volume in the range of 0.5 to 1.6 ml / g.
  • An activated alumina having a purity of 99.9% by mass or more and a sodium content of 100 ppm by mass or less is preferable.
  • a supported catalyst (hereinafter also referred to as “catalyst b”) in which the catalyst component a is supported on the activated alumina is more preferable.
  • the loading ratio of the catalyst component a in the catalyst b (the mass of the catalyst component a / the mass of the catalyst b) is preferably 10 to 30% by mass.
  • fluorination catalysts those at least partially subjected to fluorination treatment (that is, activation of the catalyst) with hydrogen fluoride or the like are preferable.
  • the temperature range during the reaction in the step (2) is preferably 170 ° C. to 350 ° C., more preferably 200 to 330 ° C. When the reaction temperature is within the above range, generation of by-products and catalyst deterioration can be suppressed, and difluoromethane can be produced with a high reaction yield.
  • the molar ratio (HF / CH 2 Cl 2 ) between hydrogen fluoride as a reaction raw material and dichloromethane is preferably in the range of 3 to 30, and more preferably in the range of 5 to 20.
  • difluoromethane can be produced economically with high selectivity by suppressing the generation of by-products.
  • the pressure range during the reaction is preferably 0.1 to 1.0 MPa, more preferably 0.1 to 0.7 MPa. When the pressure is in the above range, difluoromethane can be produced easily and economically without particularly increasing the pressure resistance of the reaction vessel (reaction apparatus).
  • the method for producing difluoromethane of the present invention further comprises: (3) a step of liquefying and distilling the gas containing difluoromethane obtained in the step (2) and separating it into a high-boiling fraction and a low-boiling fraction containing difluoromethane, and (4) A step of purifying difluoromethane from the low-boiling fraction obtained in the step (3) may be included.
  • the method for producing difluoromethane of the present invention includes the step (3) and the step (4), high-purity difluoromethane can be obtained.
  • a method for introducing the gas containing the difluoromethane obtained in the step (2) into the distillation column is, for example, cooling the gas.
  • a method of introducing the gas into the distillation column using a pump, and a method of introducing the gas into the distillation column using a compressor In consideration of equipment costs, operation, etc., a method of cooling the gas and introducing it into a distillation column with a pump is preferable.
  • the operation pressure of the distillation column is preferably 0.1 to 5 MPa, more preferably 0.3 to 3 MPa from the viewpoints of economy and operability.
  • step (3) the gas containing difluoromethane obtained in step (2), that is, difluoromethane and impurities as main components are obtained.
  • the gas containing the mixture is cooled and liquefied, and then introduced into the first distillation column.
  • a distillate containing mainly the target difluoromethane and further containing by-product hydrogen chloride (the top of the column).
  • the column top fraction may be introduced into the second distillation column, hydrogen chloride may be extracted from the column top, and the target difluoromethane may be recovered from the column bottom.
  • Difluoromethane that has undergone the step (3) specifically, difluoromethane in the low-boiling fraction, or difluoro that is the bottom fraction of the second distillation column if a second distillation column is used.
  • methane contains a small amount of acid (such as HF or HCl)
  • the acid is preferably removed by contacting difluoromethane with a treating agent containing water and / or alkali.
  • the treatment agent containing an alkali include an aqueous alkali solution and a solid material containing an alkali (for example, soda lime).
  • the acid concentration in difluoromethane after the acid removal treatment is preferably 1.0 mass ppm or less (measurement: ion chromatograph).
  • a step of dehydrating (drying) the difluoromethane is preferably provided.
  • this dehydration (drying) step when molecular sieve 3A, molecular sieve 4A or molecular sieve 5A is used as a dehydrating agent, difluoromethane is adsorbed by these dehydrating agents because of its small molecular diameter, and is decomposed by heat of adsorption or the like. End up.
  • a dehydrating agent desiccant
  • a molecular sieve type 3A zeolite molded body in which 20 to 60% of sodium ions in an ion equivalent ratio are exchanged with potassium ions is used as sodium silicate and / or silica.
  • a dehydrating agent (drying agent) obtained by immersing in an aqueous solution of potassium acid to adhere silica to the molded body, then recovering the molded body from the aqueous solution, dehydrating and activating it is preferable.
  • the water concentration in difluoromethane dehydrated (dried) using this dehydrating agent (drying agent) is preferably 10 ppm by mass or less (measurement: Karl Fischer method).
  • the high boiling fraction obtained in the step (3) includes difluoromethane raw materials dichloromethane, hydrogen fluoride, intermediate chlorofluoromethane, and the like.
  • the step (2) and the step (3) are repeated after the step (3).
  • the high boiling point distillation is performed. Minutes may be fed to the reactor.
  • the high boiling fraction When supplying the high boiling fraction to the reactor, the high boiling fraction may be supplied as it is, or only a specific component contained in the high boiling fraction may be supplied.
  • the central pore diameter is 50 to 400 mm, the pores having a distribution of the central diameter ⁇ 50% occupy 70% or more, and the pore volume is in the range of 0.5 to 1.6 ml / g.
  • Activated alumina having a purity of 99.9 mass% or more and a sodium content of 100 mass ppm or less was used.
  • chromium chloride (CrCl 3 .6H 2 O) was put into 132 ml of pure water and dissolved by heating to 70 to 80 ° C. on a hot water bath. After cooling the obtained solution to room temperature, 400 g of the activated alumina was immersed in the solution, and the activated alumina was allowed to absorb the entire amount of the solution. Subsequently, the activated alumina in a wet state was dried on a hot water bath at 90 ° C., and further dried for 3 hours in an air circulation type hot air dryer.
  • the obtained dried product was charged into an Inconel reactor, and fluorination treatment (activation of the catalyst) was performed in a hydrogen fluoride stream diluted with nitrogen at 330 ° C. under normal pressure and then in a 100% hydrogen fluoride stream. As a result, a fluorination catalyst 1 was obtained.
  • Catalyst Preparation Example 2 A fluorination catalyst 2 was obtained in the same manner as in Catalyst Preparation Example 1, except that 191.5 g of chromium chloride and 16.57 g of zinc chloride (ZnCl 2 ) were used instead of 191.5 g of chromium chloride.
  • Example 4 An Inconel 600 type reactor having an inner diameter of 2.54 cm and a length of 1 m was charged with 80 ml of the catalyst (fluorination catalyst 1) prepared in Catalyst Preparation Example 1, and the temperature in the reactor was adjusted to 250 ° C. while flowing nitrogen gas. The pressure was kept at 0.3 MPa. Thereafter, hydrogen fluoride was supplied into the reactor at 72.85 NL / hr, the supply of nitrogen gas was stopped, and then dichloromethane obtained by the same operation as in Example 1 was vaporized except that the scale-up was performed. To 6.10 NL / hr to start the reaction between dichloromethane and hydrogen fluoride.
  • Example 5 the dichloromethane was changed to dichloromethane obtained by the same operation as in Example 2 except that the scale-up was performed, and the reaction was continued under the same reaction conditions as above. After about 24 hours from the change of dichloromethane, the reactor outlet was The gas was brought into contact with an aqueous alkali solution to remove the acid content, and then analyzed by gas chromatography. The results are shown below. CH 2 F 2 91.3526 CH 2 ClF 7.9205 CH 2 Cl 2 0.7119 Other 0.0150 (Unit:% by volume)
  • Example 6 and Comparative Example 2 (Example 6) An Inconel 600 type reactor having an inner diameter of 2.54 cm and a length of 1 m is filled with 80 ml of the catalyst (fluorination catalyst 2) prepared in Catalyst Preparation Example 2, and the temperature is raised while flowing nitrogen gas, and the temperature is 250 ° C. and the pressure is increased. After maintaining the pressure at 0.3 MPa, hydrogen fluoride was supplied at 73.85 NL / hr, the supply of nitrogen gas was stopped, and the dichloromethane obtained in the same manner as in Example 1 except that the scale-up was performed. The reaction was started by feeding at 10 NL / hr.
  • Example 7 The same operation as in Examples 4 and 5 was performed, and then the reactor outlet gas was recovered in a container equipped with a cooler, cooled and liquefied, and the recovered product was introduced into a distillation apparatus and subjected to a pressure of 0.65 MPa. Distilled at The distillation apparatus is a distillation column equipped with a condenser and having 20 theoretical plates (36 actual plates), mainly recovering hydrogen chloride and difluoromethane from the top of the distillation column, and mainly fluoridating high boiling content from the bottom of the column. Hydrogen, chlorofluoromethane, and dichloromethane were recovered.
  • Hydrogen chloride and difluoromethane collected from the top of the column are contacted with a 2% aqueous potassium hydroxide solution at a temperature of about 5 ° C. to remove the acid content, and then the concentration of acid (HF + HCl) in difluoromethane is measured by ion chromatography. As a result, the acid concentration was 0.7 mass ppm.
  • the difluoromethane was further brought into contact with an alkaline aqueous solution and then brought into contact with a column filled with a desiccant, and then the moisture in the difluoromethane was analyzed by the Karl Fischer method. The amount of moisture was 5 ppm by mass. .
  • this desiccant 100 g of 3A-type zeolite compact having a potassium ion exchange rate of 33% and an average particle diameter of 2.1 mm ⁇ and a zeolite content of 80% was added to 100 parts by mass of a 40% by mass sodium silicate aqueous solution.
  • a high-purity product of difluoromethane which is industrially important as a refrigerant or the like can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)

Abstract

[課題]ジクロロメタン中に含まれる安定剤を低減することができ、操作が容易で工業的に実施可能なジクロロメタンの精製方法を提供すること。 [解決手段]2-メチル-2-ブテン、ヒドロキノンおよびレゾルシノールからなる群から選ばれる少なくとも1種の安定剤を含むジクロロメタンを液相状態下で平均細孔径が3~11Åであるゼオライト類と接触させて前記安定剤を低減させるジクロロメタンの精製方法。

Description

ジクロロメタンの精製方法およびそれを用いるジフルオロメタンの製造方法
 本発明は、ジクロロメタンとフッ化水素とを気相で反応させてジフルオロメタンを製造する方法、およびその原料の一つであるジクロロメタンを精製する方法に関する。
 クロロフルオロカーボン類による成層圏のオゾン層破壊が深刻な問題となり、その使用が国際的に禁止され、さらに、ハイドロクロロフルオロカーボン類の生産および使用も規制の対象とされている。他方、ジフルオロメタン(CH22)は、塩素を含まない化合物であり、オゾン層破壊係数がゼロであり、地球温暖化係数も小さく、冷凍能力にも優れていることから、代替冷媒化合物として重要視されている。
 従来、このジフルオロメタンの製造方法に関しては、ジクロロメタンとフッ化水素とを気相でフッ素化触媒の存在下で反応させてジフルオロメタンを製造する方法(特許文献1)が知られている。
 一方、ハイドロフルオロカーボン類の製造に於ける原料の精製方法として、特許文献2には、トリクロロエチレン中の水酸基を有する芳香族化合物である安定剤を、モレキュラーシーブを用いて除去する除去方法が開示されており、安定剤を除去することによってトリクロロエチレンとフッ化水素とを反応させる際に用いられる触媒の活性低下を防ぐことができると記載されている。
 また、特許文献3には、安定剤および/または水分を含む粗塩化エチルを平均細孔径が3~11Å程度のゼオライトおよび/または炭素質吸着剤と液相で接触させ、安定剤および/または水分を低減させる塩化エチルの精製方法および精製された塩化エチルを用いるフルオロエタンの製造方法に関する発明が開示されており、この発明により、安定剤および/または水分を簡便な方法で効率よく除去し、フルオロエタン製造の際の触媒の劣化等を防止して経済的にフルオロエタンを製造できると記載されている。
特表平8-508028号公報 特開平5-286875号公報 国際公開2006/030656号
 一般にハイドロフルオロカーボン類を製造するための原料の中には、種々の安定剤が含有されることが多い。例えば、ジフルオロメタンの原料である市販のジクロロメタンには、光、水、温度等の条件によりジクロロメタンが分解してホルムアルデヒド、塩化水素、塩化メチル等が生じるのを防ぐため、安定剤が数十~数千ppm添加されている。しかし、安定剤は、ジクロロメタンとフッ化水素とを気相でフッ素化触媒の存在下にて反応させて目的物であるジフルオロメタンを製造する際に、前記触媒の寿命を短くしたり、副生成物の発生の原因となったりするため、除去して極力低減させなければならない。
 本発明は、このような背景の下になされたものであって、ジクロロメタン中に含まれる安定剤を低減することができ、操作が容易で工業的に実施可能なジクロロメタンの精製方法を提供することを目的とする。また、本発明は、ジクロロメタンとフッ化水素とをフッ素化触媒の存在下で反応させてジフルオロメタンを製造する方法であって、前記触媒の劣化および副生成物の発生を抑制し、高い収率でジフルオロメタンを得ることのできる製造方法を提供することを目的とする。
 本発明者らは、この課題を解決すべく鋭意検討した結果、安定剤を含むジクロロメタンを液相状態でゼオライト類と接触させることにより安定剤を低減することができることを見出した。さらに、ジクロロメタンを、このような方法により安定剤を除去ないし低減してからフッ化水素と気相でフッ素化触媒の存在下に反応させることにより、触媒の劣化および副生成物の発生を抑制し、高い収率でジフルオロメタンを製造できることを見出し、本発明を完成させるに至った。
 よって、本発明は、例えば、以下の[1]~[11]に示される事項からなる。
 [1]
 2-メチル-2-ブテン、ヒドロキノンおよびレゾルシノールからなる群から選ばれる少なくとも1種の安定剤を含むジクロロメタンを液相状態下で平均細孔径が3~11Åであるゼオライト類と接触させて前記安定剤を低減させるジクロロメタンの精製方法。
 [2]
 前記ゼオライト類が、モレキュラーシーブ3A、モレキュラーシーブ4A、モレキュラーシーブ5A、モレキュラーシーブ10Xおよびモレキュラーシーブ13Xからなる群から選ばれる少なくとも1種である上記[1]に記載のジクロロメタンの精製方法。
 [3]
 前記ジクロロメタンを液相状態下で前記ゼオライト類と接触させる際の温度が-15~65℃である上記[1]または[2]に記載のジクロロメタンの精製方法。
 [4]
(1)上記[1]~[3]のいずれかに記載の方法によりジクロロメタンを精製する工程、および
(2)前記工程(1)を経たジクロロメタンとフッ化水素とを、反応器内でフッ素化触媒の存在下、気相で反応させてジフルオロメタンを含むガスを得る工程
を含むジフルオロメタンの製造方法。
 [5]
 前記フッ素化触媒が、酸化クロム(III)を含む触媒成分を含む、担持型または塊状型の触媒である上記[4]に記載のジフルオロメタンの製造方法。
 [6]
 前記フッ素化触媒が、触媒成分が活性アルミナに担持された担持型触媒であり、前記活性アルミナが、中心細孔径が50~400Åであり、中心径±50%に分布を有する孔が70%以上を占め、細孔の容積が0.5~1.6ml/gの範囲であり、純度が99.9質量%以上であり、かつ、ナトリウム含有量が100質量ppm以下である活性アルミナである上記[4]または[5]に記載のジフルオロメタンの製造方法。
 [7]
(3)前記工程(2)で得られた前記ジフルオロメタンを含むガスを、液化した後、蒸留し、高沸点留分とジフルオロメタンを含む低沸点留分とに分離する工程、および
(4)前記工程(3)で得られた前記低沸点留分からジフルオロメタンを精製する工程
をさらに含む上記[4]~[6]のいずれかに記載のジフルオロメタンの製造方法。
 [8]
 前記工程(4)が、ジフルオロメタンを水および/またはアルカリ性物質を含む処理剤に接触させて酸成分を除去する工程を含む上記[7]に記載のジフルオロメタンの製造方法。
 [9]
 前記工程(4)が、イオン当量比で20~60%のナトリウムイオンがカリウムイオンにより交換されたモレキュラーシーブ3A型ゼオライト成形体を、ケイ酸ナトリウムおよび/またはケイ酸カリウムの水溶液に浸漬させて、該成形体にシリカを付着させ、次いで該成形体を該水溶液から回収し、脱水し、活性化して得られた乾燥剤にジフルオロメタンを接触させて脱水する工程を含む上記[7]または[8]に記載のジフルオロメタンの製造方法。
 [10]
 前記工程(3)における蒸留が、0.1~5MPaの圧力範囲内で行われる上記[7]~[9]のいずれかに記載のジフルオロメタンの製造方法。
 [11]
 前記工程(3)の後に前記工程(2)および前記工程(3)を繰り返すジフルオロメタンの製造方法であって、前記工程(3)の後の前記工程(2)において前記高沸点留分を前記反応器に供給する、上記[7]~[10]のいずれかに記載のジフルオロメタンの製造方法。
 本発明に係るジクロロメタンの精製方法によれば、ジクロロメタン中に含まれる安定剤を簡便に効率よく低減、除去してジクロロメタンを精製することができ、また、本発明に係るジフルオロメタンの製造方法によれば、触媒の劣化および副生成物の発生を抑制し、高い収率でジフルオロメタンを製造することができる。得られたジフルオロメタンは冷媒やエッチングガスとして使用することができる。
 以下、本発明について詳しく説明する。
         [ジクロロメタンの精製方法]
 本発明のジクロロメタンの精製方法は、ジクロロメタン、より詳細には安定剤を含むジクロロメタン(以下「粗ジクロロメタン」ともいう。)を液相状態下でゼオライト類と接触させて前記ジクロロメタンに含まれる安定剤を低減させることを特徴としている。
 ジフルオロメタン(CH22)製造用の原料である市販のジクロロメタンには、水、温度や光等による分解等を防止し長期間の安定性を保つための安定剤として2-メチル-2-ブテン、ヒドロキノンやレゾルシノール等が一般的に添加されている。その添加量は、数百~数千質量ppmである。また、ジクロロメタンには、水分が数十~数百質量ppm含まれている。
 ジクロロメタンをフッ素化触媒の存在下でフッ化水素と反応させてジフルオロメタンを製造する際に、前述の安定剤は、製造上重要なフッ素化触媒に悪影響(フッ素化触媒の活性の低下、短寿命化等)を与え、また、好ましくない微量の副生成物の発生等を引き起こすため、極力少ないことが望まれ、ジクロロメタンとフッ化水素との反応の工程に導入されないことがさらに望まれる。また、水は、ジフルオロメタンを製造する際に、ジクロロメタンを加水分解させて好ましくない副生成物を発生させる原因となり、さらに反応装置の材料の腐食等を引き起こすため、極力少ないことが好ましい。例えば、安定剤および水の合計量としては、20質量ppm以下が好ましく、15質量ppm以下がさらに好ましく、10質量ppm以下が最も好ましい。
 前記ゼオライト類の平均細孔径は3~11Åであり、好ましくは3~10Åである。この平均細孔径の測定方法としては、Arガスを用いるガス吸着法が挙げられる。平均細孔径が上記範囲にあると、ゼオライトは、ジクロロメタンの吸着を抑えつつ、安定剤および水に対して高い吸着能力を発揮する。また、前記ゼオライト類のシリカ/アルミナ比(すなわち、ゼオライト類を構成するSiO2およびAl23のモル比)は3以下であることが好ましい。前記ゼオライト類としては、モレキュラーシーブ3A(MS-3A)、モレキュラーシーブ4A(MS-4A)、モレキュラーシーブ5A(MS-5A)、モレキュラーシーブ10X(MS-10X)およびモレキュラーシーブ13X(MS-13X)が好ましい。
 粗ジクロロメタンをゼオライト類と液相で接触させる方法としては、回分式または連続式の方法を用いることができる。
 本発明のジクロロメタンの精製方法を工業的に実施する場合には、前記ゼオライト類を固定床にて連続的に流通させる方法が好ましく、また、粗ジクロロメタンの液体基準の空間速度(LHSV)は、安定剤や水の濃度および粗ジクロロメタンの処理量により適宣選択できるが、通常は1~80Hr-1の範囲が好ましい。また、本発明のジクロロメタンの精製方法を工業的に実施する場合には、前記ゼオライトを吸着剤とする吸着塔を2塔設け、2塔を切り替えて連続的に精製を行う方法を用いることが好ましい。
 粗ジクロロメタンを液相でゼオライト類と接触させる際の温度は、好ましくは-15~65℃であり、より好ましくは2~55℃である。温度が上記範囲にあると、ジクロロメタンの分解反応を抑制しつつ、かつ吸着容器(吸着装置)の耐圧性を特別に高めたり、水の固結等を防止する装置を設けたりすることなく、ジクロロメタンを精製することができる。
 また、圧力は0.05~1MPaの範囲が好ましく、より好ましくは0.05~0.6MPaの範囲がよい。圧力が上記範囲にあると、吸着容器(吸着装置)の耐圧性を特別に高めることなくジクロロメタンを精製することができる。
 安定剤を含むジクロロメタンを前記のゼオライト類と液相で接触させることにより、不純物の総量(安定剤および水の合計量)が20質量ppm以下に、より好ましくは15質量ppm以下に、さらに好ましくは10質量ppm以下に低減されたジクロロメタンを得ることができる。
         [ジフルオロメタンの製造方法]
 次に本発明のジフルオロメタンの製造方法について説明する。
 本発明のジフルオロメタンの製造方法は、次の工程を含むことを特徴とする。
(1)上述した本発明のジクロロメタンの精製方法によりジクロロメタンを精製する工程、および
(2)前記工程(1)を経たジクロロメタンとフッ化水素とを、反応容器内でフッ素化触媒の存在下、気相で反応させてジフルオロメタンを含むガスを得る工程。
 前記工程(1)を経てから、前記工程(2)を実施すると、前記工程(2)で使用されるフッ素化触媒の劣化を抑制し(フッ素化触媒を長寿命化し)、副生成物の発生を抑制して、ジフルオロメタンの収率を向上させ、より効率的かつ経済的にジフルオロメタンを製造することができる。工程(2)で得られるジフルオロメタンを含むガスは、主としてジフルオロメタンを含んでおり、さらに副生成物である塩化水素、クロロフルオロメタン、未反応のジクロロメタン、フッ化水素などの不純物を含む場合がある。
 前記フッ素化触媒としては、酸化クロム(III)を主成分とし、任意にIn、Zn、Ni、Co、MgおよびAlからなる群より選ばれる少なくとも1種の元素をさらに含む触媒成分(以下「触媒成分a」ともいう。)を含む、担持型または塊状型の触媒が好ましい。前記触媒成分aを含む担持型触媒において、担持型触媒全体に占める酸化クロム(III)の割合は、好ましくは10~30質量%である。
 前記フッ化触媒の担体としては、中心細孔径が50~400Å、中心径±50%に分布を有する孔が70%以上を占め、細孔の容積が0.5~1.6ml/gの範囲であり、純度が99.9質量%以上であり、かつ、ナトリウム含有量が100質量ppm以下である活性アルミナが好ましい。
 前記フッ素化触媒としては、前記触媒成分aが前記活性アルミナに担持されてなる担持型触媒(以下「触媒b」ともいう。)がより好ましい。前記触媒bにおける前記触媒成分aの担持率(触媒成分aの質量/触媒bの質量)は、好ましくは10~30質量%である。
 また、これらのフッ素化触媒としては、少なくとも一部がフッ化水素等によりフッ素化処理(すなわち、触媒の活性化)されたものが好ましい。
 前記工程(2)における反応の際の温度範囲は、好ましくは170℃~350℃であり、より好ましくは200~330℃である。反応温度が上記範囲にあると、副生成物の発生や触媒の劣化を抑え、高い反応収率でジフルオロメタンを製造することができる。
 反応原料であるフッ化水素とジクロロメタンとのモル比(HF/CH2Cl2)は、好ましくは3~30の範囲にあり、より好ましくは5~20の範囲にある。モル比が上記範囲にあると、副生成物の発生を抑えて高い選択率で、かつ経済的にジフルオロメタンを製造することができる。
 反応原料供給容積速度(F)の反応器触媒容積(V)に対する比の値である空間速度(SV)は50~100000h-1である。
 反応の際の圧力範囲は、好ましくは0.1~1.0MPaであり、より好ましくは0.1~0.7MPaである。圧力が上記範囲にあると、反応容器(反応装置)の耐圧性を特別に高めることなく、容易な操作でかつ経済的にジフルオロメタンを製造することができる。
 本発明のジフルオロメタンの製造方法は、さらに、
(3)前記工程(2)で得られた前記ジフルオロメタンを含むガスを、液化した後、蒸留し、高沸点留分とジフルオロメタンを含む低沸点留分とに分離する工程、および
(4)前記工程(3)で得られた前記低沸点留分からジフルオロメタンを精製する工程
を含んでいてもよい。
 本発明のジフルオロメタンの製造方法が前記工程(3)および工程(4)を含むと、純度の高いジフルオロメタンを得ることができる。
 前記工程(3)における蒸留を蒸留塔で実施する場合であれば、前記工程(2)で得られた前記ジフルオロメタンを含むガスを蒸留塔に導入する方法としては、たとえば、前記ガスを冷却し、ポンプで蒸留塔に導入する方法、前記ガスをコンプレッサーを用いて蒸留塔に導入する方法が挙げられる。設備費、操作等を考慮すると、前記ガスを冷却し、ポンプで蒸留塔に導入する方法が好ましい。蒸留塔の操作圧力は、経済性、操作性の観点から、好ましくは0.1~5MPaであり、より好ましくは0.3~3MPaである。
 本発明のジフルオロメタンの製造方法では、2つの蒸留塔を用い、まず工程(3)において、前記工程(2)で得られた前記ジフルオロメタンを含むガス、すなわち主成分であるジフルオロメタンおよび不純物を含むガスを、冷却し液化した後、第一蒸留塔に導入して、蒸留塔の塔頂より主として目的物であるジフルオロメタンを含み、さらに副生成物である塩化水素を含む留分(塔頂留分)を抜き出し、工程(4)においてこの塔頂留分を第二蒸留塔に導入して塔頂より塩化水素を抜き出し、塔底より目的物であるジフルオロメタンを回収してもよい。
 前記工程(3)を経たジフルオロメタン、具体的には、前記低沸点留分中のジフルオロメタン、あるいは第二蒸留塔を使用する場合であれば、第二蒸留塔の塔底留分であるジフルオロメタンの中には微量の酸分(HFやHCl等)が含まれるため、好ましくは、ジフルオロメタンを水および/またはアルカリを含む処理剤と接触させて、酸分を除去する。アルカリを含む処理剤としては、アルカリ水溶液、およびアルカリを含む固体材料(たとえば、ソーダライム)が挙げられる。酸分の除去処理後のジフルオロメタン中の酸分濃度は、好ましくは1.0質量ppm以下である(測定:イオンクロマトグラフ)。
 酸分の除去処理が施されたジフルオロメタンが水分を含有する場合には、好ましくはジフルオロメタンの脱水(乾燥)工程が設けられる。
 この脱水(乾燥)工程で、脱水剤としてモレキュラーシーブ3A、モレキュラーシーブ4Aまたはモレキュラーシーブ5Aを用いると、ジフルオロメタンは、分子径が小さいためこれらの脱水剤に吸着され、吸着熱等により分解されてしまう。この問題を解決するため、脱水剤(乾燥剤)としては、イオン当量比で20~60%のナトリウムイオンがカリウムイオンにより交換されたモレキュラーシーブ3A型ゼオライト成形体を、ケイ酸ナトリウムおよび/またはケイ酸カリウムの水溶液に浸漬させて、該成形体にシリカを付着させ、次いで該成形体を該水溶液から回収し、脱水、活性化して得られる脱水剤(乾燥剤)が好ましい。この脱水剤(乾燥剤)を用いて脱水(乾燥)されたジフルオロメタン中の水分濃度は、好ましくは10質量ppm以下である(測定:カールフィシャー法)。
 前記工程(3)で得られた前記高沸点留分には、ジフルオロメタンの原料のジクロロメタン、フッ化水素、中間体であるクロロフロオロメタンなどが含まれる。本発明のジフルオロメタンの製造方法では、前記工程(3)の後に前記工程(2)および前記工程(3)を繰り返し、前記工程(3)の後の前記工程(2)において、前記高沸点留分を前記反応器に供給してもよい。
 前記高沸点留分を前記反応器に供給する際には、前記高沸点留分をそのまま供給してもよく、前記高沸点留分に含まれる特定の成分のみを供給してもよい。
 以下、実施例により本発明をより詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。
 [原料例1]
 市販のジクロロメタン(安定剤入り)をガスクロマトグラフにて分析したところ、ジクロロメタン中の2-メチル-2-ブテン(慣用名:イソアミレン)含有量は318質量ppmであった。なお、p-ヒドロキノンおよび水は、無添加であった。
 [原料例2]
 市販のジクロロメタン(安定剤入り)をガスクロマトグラフでp-ヒドロキノンの量を、カールフィシャー法で水の量を分析したところ、ジクロロメタン中のp-ヒドロキノンの量は272質量ppm、水の量は129質量ppmであった。なお、2-メチル-2-ブテンは、無添加であった。
 <ジクロロメタンの精製方法>
 [実施例1]
 内容積100mlのステンレス製容器に、モレキュラーシーブ5A(ユニオン昭和株式会社製:平均細孔径4.2Å、シリカ/アルミナ比=2.0)を20g充填し、真空乾燥後、容器を冷却しながら、原料例1のジクロロメタンを80g充填し、室温(約23℃)に保ちながら時々撹拌し、ジクロロメタンの充填から約7時間後、液相の一部を採取して、ガスクロマトグラフで分析した。その結果、ジクロロメタン中の2-メチル-2-ブテンの量は、1質量ppm(検出下限:0.5質量ppm)にまで低減されていた。
 [実施例2]
 内容積100mlのステンレス製容器に、モレキュラーシーブ5A(ユニオン昭和株式会社製:平均細孔径4.2Å、シリカ/アルミナ比=2.0)を30g充填し、真空乾燥後、容器を冷却しながら、原料例2のジクロロメタンを70g充填し、室温(約25℃)に保ちながら時々撹拌し、ジクロロメタンの充填から約7時間後、液相の一部を採取して、ガスクロマトグラフおよびカールフィシャー法で分析を行った。その結果、p-ヒドロキノンの量は、1質量ppm(検出下限:0.5質量ppm)にまで低減されており、水の量は4質量ppm(検出下限:0.5質量ppm)にまで低減されていた。
 [実施例3]
 内容積200mlのステンレス製容器に、モレキュラーシーブ13X(ユニオン昭和株式会社製:平均細孔径10Å、シリカ/アルミナ比=2.5)を30gとモレキュラーシーブ3A(ユニオン昭和株式会社製:平均細孔径3Å、シリカ/アルミナ比=2.0)を15g充填し、真空乾燥後、容器を冷却しながら、原料例2のジクロロメタンを120g充填し、温度を10℃に保ちながら時々撹拌し、ジクロロメタンの充填から約7時間後、液相の一部を採取して、ガスクロマトグラフおよびカールフィシャー法で分析を行った。その結果、p-ヒドロキノンの量は、1質量ppmにまで低減されており、水の量は3質量ppmにまで低減されていた。
 <ジフルオロメタンの製造方法>
 [触媒調製例1]
 フッ素化触媒の担体として、中心細孔径が50~400Åであり、中心径±50%に分布を有する孔が70%以上を占め、細孔の容積が0.5~1.6ml/gの範囲で製造された、純度99.9質量%以上で、かつ、ナトリウム含有量が100質量ppm以下である活性アルミナ(日揮ユニバーサル(株)、商品名:NST-7)を使用した。
 塩化クロム(CrCl3・6H2O)191.5gを、純水132mlに投入し、湯浴上で70~80℃に加熱して溶解した。得られた溶液を室温まで冷却後、上記の活性アルミナ400gを前記溶液に浸漬して、活性アルミナに前記溶液を全量吸収させた。次いで、濡れた状態の活性アルミナを90℃の湯浴上で乾固させ、さらに空気循環型の熱風乾燥器内で3時間乾燥させた。得られた乾燥物を、インコネル製反応器に充填し、常圧下、330℃で、窒素希釈したフッ化水素気流中で、次いで100%フッ化水素気流中でフッ素化処理(触媒の活性化)し、フッ素化触媒1を得た。
 [触媒調製例2]
 塩化クロム191.5gに替えて塩化クロム191.5gおよび塩化亜鉛(ZnCl2)16.57gを用いて溶液を調製した以外は触媒調製例1と同様にして、フッ素化触媒2を得た。
 [実施例4、5および比較例1]
 (実施例4)
 内径2.54cm、長さ1mのインコネル600型反応器に、触媒調製例1で調製した触媒(フッ素化触媒1)80mlを充填し、窒素ガスを流しながら反応器内の温度を250℃に、圧力を0.3MPaに保持した。その後、反応器内にフッ化水素を72.85NL/hrで供給し、窒素ガスの供給を停止した後、スケールアップしたこと以外は実施例1と同様な操作で得られたジクロロメタンを気化させてから6.10NL/hrで供給し、ジクロロメタンとフッ化水素との反応を開始した。反応開始から約8時間後に、反応器出口のガスを、アルカリ水溶液と接触させて酸分を除去してからガスクロマトグラフにて分析した。結果を下記に示す。
 CH22   89.9557   CH2ClF  8.1014
 CH2Cl2   1.9281   その他     0.0148
                        (単位:体積%)
 その後、前記の反応を継続し、反応開始から約48時間後、反応器出口ガスを、アルカリ水溶液と接触させて酸分を除去してからガスクロマトグラフにて分析した。結果を下記に示す。
 CH22   90.9925   CH2ClF  8.0037
 CH2Cl2   0.9886   その他     0.0152
                        (単位:体積%)
 (実施例5)
 次いで、ジクロロメタンを、スケールアップしたこと以外は実施例2と同様な操作で得られたジクロロメタンに切り替えて上記と同様な反応条件で反応を継続し、ジクロロメタンの切り替えから約24時間後、反応器出口ガスを、アルカリ水溶液と接触させて酸分を除去してからガスクロマトグラフにて分析をした。結果を下記に示す。
 CH22   91.3526   CH2ClF  7.9205
 CH2Cl2   0.7119   その他     0.0150
                        (単位:体積%)
 (比較例1)
 次に、ジクロロメタン(精製品)を、原料例1のジクロロメタン(未精製品)に切り替えて上記と同様な反応条件で反応を継続し、切り替え後、約48時間後、反応器出口ガス中の酸分をアルカリ水溶液で除去し、ガスクロマトゲラフにて分析をした。結果を下記に示す。
 CH22   86.3325   CH2ClF  8.5829
 CH2Cl2   5.0404   その他     0.0442
                        (単位:体積%)
 結果から明らかなように、ジクロロメタンとして未精製品のジクロロメタンを用いた場合には目的物であるジフルオロメタンの収率が低下し、また、不純物(その他)が増加した。
 [実施例6および比較例2]
 (実施例6)
 内径2.54cm、長さ1mのインコネル600型反応器に、触媒調製例2で調製した触媒(フッ素化触媒2)80mlを充填し、窒素ガスを流しながら昇温し温度を250℃、圧力を0.3MPaに保持し、その後フッ化水素を73.85NL/hrで供給し、窒素ガスの供給を停止した後、スケールアップしたこと以外は実施例1と同様な操作で得られたジクロロメタンを6.10NL/hrで供給し、反応を開始した。反応開始から約8時間後、反応器出口ガスを、アルカリ水溶液と接触させて酸分を除去してからガスクロマトグラフにて分析した。結果を下記に示す。
 CH22   89.1226   CH2ClF   8.4255
 CH2Cl2   2.4365   その他      0.0154
                        (単位:体積%)
 (比較例2)
 その後、ジクロロメタン(精製品)を、原料例2のジクロロメタン(未精製品)に切り替えて上記と同様な反応条件で反応を継続し、切り替え後、約45時間後、反応器出口ガスを、アルカリ水溶液と接触させて酸分を除去してからガスクロマトグラフにて分析をした。結果を下記に示す。
 CH22   85.8890   CH2ClF  11.0225
 CH2Cl2   3.0446   その他      0.0439
                        (単位:体積%)
 結果から明らかなように、未精製品のジクロロメタンでは目的物であるジフルオロメタンの収率が低下し、また、不純物(その他)が増加した。
 [実施例7]
 実施例4、5と同様の操作を行い、次いで反応器出口ガスを冷却器を備えた容器に回収し、冷却して液化させ、回収物を、蒸留装置に導入して0.65MPaの圧力下で蒸留した。蒸留装置は凝縮器を備えた理論段数20段(実段数36段)の蒸留塔であり、蒸留塔の塔頂から主として塩化水素とジフルオロメタンを回収し、塔底から高沸分の主としてフッ化水素、クロロフロオロメタン、ジクロロメタンを回収した。塔頂から回収された塩化水素およびジフルオロメタンを、温度約5℃で2%水酸化カリウム水溶液に接触させて酸分を除去した後、ジフルオロメタン中の酸分(HF+HCl)濃度をイオンクロマトグラフにて分析したところ、酸分濃度は0.7質量ppmであった。
 次に、ジフルオロメタンをさらにアルカリ水溶液に接触させ、次いで乾燥剤を充填したカラムと接触させてから、カールフィシャー法によりジフルオロメタン中の水分を分析したところ、水分の量は5質量ppmであった。なお、この乾燥剤としては、カリウムイオン交換率33%、平均粒径2.1mmφのビーズ状で、ゼオライト分80%の3A型ゼオライト成形体100gを、40質量%ケイ酸ナトリウム水溶液100質量部に対して水20質量部を加えて得られた水溶液に完全に浸漬し、室温で24時間保持した後、成形体を取り出して水洗し、200℃で2時間乾燥し、さらに450℃で2時間加熱して活性化することにより得られた乾燥剤を用いた。
 本発明によれば、冷媒などとして産業上重要であるジフルオロメタンの高純度品を得ることができる。

Claims (11)

  1.  2-メチル-2-ブテン、ヒドロキノンおよびレゾルシノールからなる群から選ばれる少なくとも1種の安定剤を含むジクロロメタンを液相状態下で平均細孔径が3~11Åであるゼオライト類と接触させて前記安定剤を低減させるジクロロメタンの精製方法。
  2.  前記ゼオライト類が、モレキュラーシーブ3A、モレキュラーシーブ4A、モレキュラーシーブ5A、モレキュラーシーブ10Xおよびモレキュラーシーブ13Xからなる群から選ばれる少なくとも1種である請求項1に記載のジクロロメタンの精製方法。
  3.  前記ジクロロメタンを液相状態下で前記ゼオライト類と接触させる際の温度が-15~65℃である請求項1または2に記載のジクロロメタンの精製方法。
  4. (1)請求項1~3のいずれかに記載の方法によりジクロロメタンを精製する工程、および
    (2)前記工程(1)を経たジクロロメタンとフッ化水素とを、反応器内でフッ素化触媒の存在下、気相で反応させてジフルオロメタンを含むガスを得る工程
    を含むジフルオロメタンの製造方法。
  5.  前記フッ素化触媒が、酸化クロム(III)を含む触媒成分を含む、担持型または塊状型の触媒である請求項4に記載のジフルオロメタンの製造方法。
  6.  前記フッ素化触媒が、触媒成分が活性アルミナに担持された担持型触媒であり、前記活性アルミナが、中心細孔径が50~400Åであり、中心径±50%に分布を有する孔が70%以上を占め、細孔の容積が0.5~1.6ml/gの範囲であり、純度が99.9質量%以上であり、かつ、ナトリウム含有量が100質量ppm以下である活性アルミナである請求項4または5に記載のジフルオロメタンの製造方法。
  7. (3)前記工程(2)で得られた前記ジフルオロメタンを含むガスを、液化した後、蒸留し、高沸点留分とジフルオロメタンを含む低沸点留分とに分離する工程、および
    (4)前記工程(3)で得られた前記低沸点留分からジフルオロメタンを精製する工程をさらに含む請求項4~6のいずれかに記載のジフルオロメタンの製造方法。
  8.  前記工程(4)が、ジフルオロメタンを水および/またはアルカリ性物質を含む処理剤に接触させて酸成分を除去する工程を含む請求項7に記載のジフルオロメタンの製造方法。
  9.  前記工程(4)が、イオン当量比で20~60%のナトリウムイオンがカリウムイオンにより交換されたモレキュラーシーブ3A型ゼオライト成形体を、ケイ酸ナトリウムおよび/またはケイ酸カリウムの水溶液に浸漬させて、該成形体にシリカを付着させ、次いで該成形体を該水溶液から回収し、脱水し、活性化して得られた乾燥剤にジフルオロメタンを接触させて脱水する工程を含む請求項7または8に記載のジフルオロメタンの製造方法。
  10.  前記工程(3)における蒸留が、0.1~5MPaの圧力範囲内で行われる請求項7~9のいずれかに記載のジフルオロメタンの製造方法。
  11.  前記工程(3)の後に前記工程(2)および前記工程(3)を繰り返すジフルオロメタンの製造方法であって、前記工程(3)の後の前記工程(2)において前記高沸点留分を前記反応器に供給する、請求項7~10のいずれかに記載のジフルオロメタンの製造方法。
PCT/JP2014/062299 2013-05-13 2014-05-08 ジクロロメタンの精製方法およびそれを用いるジフルオロメタンの製造方法 WO2014185321A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2015153118A RU2015153118A (ru) 2013-05-13 2014-05-08 Способ очистки дихлорметана и способ получения дифторметана с его использованием
US14/787,339 US20160060193A1 (en) 2013-05-13 2014-05-08 Dichloromethane purification method and process for producing difluoromethane using the same
CN201480025690.4A CN105209413A (zh) 2013-05-13 2014-05-08 二氯甲烷的精制方法以及使用该精制方法的二氟甲烷的制造方法
KR1020157030062A KR20150133789A (ko) 2013-05-13 2014-05-08 디클로로메탄의 정제 방법 및 그것을 사용하는 디플루오로메탄의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-101207 2013-05-13
JP2013101207A JP2014221727A (ja) 2013-05-13 2013-05-13 ジクロロメタンの精製方法およびそれを用いるジフルオロメタンの製造方法

Publications (1)

Publication Number Publication Date
WO2014185321A1 true WO2014185321A1 (ja) 2014-11-20

Family

ID=51898299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062299 WO2014185321A1 (ja) 2013-05-13 2014-05-08 ジクロロメタンの精製方法およびそれを用いるジフルオロメタンの製造方法

Country Status (6)

Country Link
US (1) US20160060193A1 (ja)
JP (1) JP2014221727A (ja)
KR (1) KR20150133789A (ja)
CN (1) CN105209413A (ja)
RU (1) RU2015153118A (ja)
WO (1) WO2014185321A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023058370A1 (ja) * 2021-10-06 2023-04-13 株式会社レゾナック (e)-1,1,1,4,4,4-ヘキサフルオロ-2-ブテンの製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107597096B (zh) * 2017-08-22 2018-12-04 乳源东阳光氟有限公司 一种以氧化铝为载体的铬基催化剂及其制备方法
CN114057541B (zh) * 2021-12-09 2023-08-15 河南省化工研究所有限责任公司 一种废弃二氯甲烷超重力耦合膜脱水的精制回收方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5885826A (ja) * 1981-11-19 1983-05-23 Tokuyama Soda Co Ltd 塩化チレンの安定化方法
JPH05286875A (ja) * 1992-04-13 1993-11-02 Showa Denko Kk トリクロルエチレン中の安定剤の除去方法
JPH06327968A (ja) * 1993-05-24 1994-11-29 Union Showa Kk HFC−32、HFC−152a用乾燥剤
JPH08508028A (ja) * 1993-03-24 1996-08-27 インペリアル・ケミカル・インダストリーズ・ピーエルシー ジフルオロメタンの製造
WO2005026090A1 (ja) * 2003-09-10 2005-03-24 Showa Denko K.K. ハイドロフルオロカーボンの製造方法、その製品およびその用途
JP2006111611A (ja) * 2004-09-16 2006-04-27 Showa Denko Kk フルオロメタンの製造方法およびその製品
JP2009132756A (ja) * 2007-11-28 2009-06-18 Mitsubishi Chemicals Corp ポリカーボネート樹脂の製造方法
JP2009138102A (ja) * 2007-12-06 2009-06-25 Mitsubishi Chemicals Corp ポリカーボネート樹脂の製造方法
CN102442878A (zh) * 2010-10-12 2012-05-09 中国石油化工股份有限公司 一种二氯甲烷的提纯方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1904450A (en) * 1931-03-03 1933-04-18 Roessler & Hasslacher Chemical Stabilization of halogenated hydrocarbons
JP3103452B2 (ja) * 1993-01-22 2000-10-30 旭硝子株式会社 安定化された塩化メチレン
US5763708A (en) * 1995-09-20 1998-06-09 Allied Signal Inc. Process for the production of difluoromethane
CN100562510C (zh) * 2004-09-16 2009-11-25 昭和电工株式会社 氟甲烷的制备方法和产品
CN102452892B (zh) * 2010-10-15 2015-01-14 中国石油化工股份有限公司 一种萃取用农残级二氯甲烷提纯方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5885826A (ja) * 1981-11-19 1983-05-23 Tokuyama Soda Co Ltd 塩化チレンの安定化方法
JPH05286875A (ja) * 1992-04-13 1993-11-02 Showa Denko Kk トリクロルエチレン中の安定剤の除去方法
JPH08508028A (ja) * 1993-03-24 1996-08-27 インペリアル・ケミカル・インダストリーズ・ピーエルシー ジフルオロメタンの製造
JPH06327968A (ja) * 1993-05-24 1994-11-29 Union Showa Kk HFC−32、HFC−152a用乾燥剤
WO2005026090A1 (ja) * 2003-09-10 2005-03-24 Showa Denko K.K. ハイドロフルオロカーボンの製造方法、その製品およびその用途
JP2006111611A (ja) * 2004-09-16 2006-04-27 Showa Denko Kk フルオロメタンの製造方法およびその製品
JP2009132756A (ja) * 2007-11-28 2009-06-18 Mitsubishi Chemicals Corp ポリカーボネート樹脂の製造方法
JP2009138102A (ja) * 2007-12-06 2009-06-25 Mitsubishi Chemicals Corp ポリカーボネート樹脂の製造方法
CN102442878A (zh) * 2010-10-12 2012-05-09 中国石油化工股份有限公司 一种二氯甲烷的提纯方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIKKEN KAGAKU KOZA (ZOKU, vol. 2, 1967, pages 214 - 216 *
JIKKEN KAGAKU KOZA 4 -KISOHEN IV YUKI KOBUNSHI SEIKAGAKU-,5TH EDITION, 25 September 2003 (2003-09-25), pages 121 - 122 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023058370A1 (ja) * 2021-10-06 2023-04-13 株式会社レゾナック (e)-1,1,1,4,4,4-ヘキサフルオロ-2-ブテンの製造方法

Also Published As

Publication number Publication date
KR20150133789A (ko) 2015-11-30
CN105209413A (zh) 2015-12-30
US20160060193A1 (en) 2016-03-03
JP2014221727A (ja) 2014-11-27
RU2015153118A (ru) 2017-06-19

Similar Documents

Publication Publication Date Title
KR101879787B1 (ko) 2,3,3,3-테트라플루오로프로펜 제조방법
EP2970062B1 (en) Process to supress the formation of 3,3,3-trifluoropropyne in fluorocarbon manufacture
WO2012067980A2 (en) Process for producing 2,3,3,3-tetrafluoropropene
CN109937196B (zh) 1-氯-2,3,3-三氟丙烯的制造方法
US20040015022A1 (en) Production and use of hexafluoroethane
WO2014185321A1 (ja) ジクロロメタンの精製方法およびそれを用いるジフルオロメタンの製造方法
JP5899974B2 (ja) (e)−1−クロロ−3,3,3−トリフルオロプロペンの製造方法
US11555002B2 (en) Method to neutralize and remove HF from a crude stream containing hydrochlorofluoroolefin
JPH0372437A (ja) 1,1,1,2―テトラフルオロエタンの精製法
KR100839063B1 (ko) 1,1-디플루오로에탄의 정제방법
JP2010180134A (ja) 1,3,3,3−テトラフルオロプロペンの製造方法
KR20180065035A (ko) 1230xa 공정을 통한 1234yf 중 부산물인 무수 또는 수성 염산으로부터의 플루오르화 유기물의 제거 방법
JP4785532B2 (ja) ハイドロフルオロカーボンの製造方法、その製品およびその用途
JP4953819B2 (ja) 塩化エチルの精製方法およびそれを用いるフルオロエタンの製造方法
US11046630B2 (en) Method for producing 1-chloro-2,3,3,4,4,5,5-heptafluoro-1-pentene, and composition
JPH10287595A (ja) ヘキサフルオロエタンの精製方法
WO2006030677A1 (en) Fluoromethane production process and product
JPH0570381A (ja) 1,1−ジクロロ−1−フルオロエタンの精製方法
CN114040903A (zh) 烷烃的制造方法
JP2005336164A (ja) 1,1−ジクロロエタンの精製方法およびその方法を用いる1,1−ジフルオロエタンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14798404

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157030062

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14787339

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015153118

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14798404

Country of ref document: EP

Kind code of ref document: A1