WO2014184830A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2014184830A1
WO2014184830A1 PCT/JP2013/003149 JP2013003149W WO2014184830A1 WO 2014184830 A1 WO2014184830 A1 WO 2014184830A1 JP 2013003149 W JP2013003149 W JP 2013003149W WO 2014184830 A1 WO2014184830 A1 WO 2014184830A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
output
power supply
power
conversion device
Prior art date
Application number
PCT/JP2013/003149
Other languages
English (en)
French (fr)
Inventor
藤田 悟
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2014532179A priority Critical patent/JP5874835B2/ja
Priority to PCT/JP2013/003149 priority patent/WO2014184830A1/ja
Publication of WO2014184830A1 publication Critical patent/WO2014184830A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/10Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters

Definitions

  • the present invention relates to a power converter capable of selectively outputting a (2n + 1) level DC voltage and an AC voltage.
  • FIG. 11 is a diagram for explaining a circuit configuration of a power conversion device that can output a voltage of five levels.
  • a power conversion apparatus includes a DC power source 1 that outputs a voltage of five levels, and a five-level half bridge circuit 2 that includes a plurality of switching elements and a plurality of clamp diodes.
  • the DC power source 1 is generated using an AC power source (not shown).
  • the half bridge circuit 2 outputs a 5-level voltage to the output terminal U using the voltage of the DC power supply 1.
  • the five-level voltage output to the output terminal U is obtained by selectively turning on and off the switching elements Qu1 to Qu4 and Qx1 to Qx4.
  • FIG. 12 shows the voltage output from the half-bridge circuit 2 and the on / off state of the switching element.
  • the half bridge circuit 2 when a voltage of + 2E [V] is output to the output terminal U, the half bridge circuit 2 turns on the switching elements Qu1 to Qu4 and turns off the switching elements Qx1 to Qx4. In this way, the voltage (+ 2E [V]) of the terminal P2 of the DC power supply 1 is output from the input terminal A2 of the half-bridge circuit 2 to the output terminal U through the switching elements Qu4, Qu3, Qu2, and Qu1.
  • the half bridge circuit 2 turns on the switching elements Qu1 to Qu3 and the switching element Qx1, and turns off the switching element Qu4 and the switching elements Qx2 to Qx4. .
  • the voltage (+ 1E [V]) of the terminal P1 of the DC power supply 1 is output from the input terminal A1 of the half-bridge circuit 2 to the output terminal U via the diode Du3 and the switching elements Qu3, Qu2, and Qu1. .
  • the half-bridge circuit 2 when outputting a voltage of 0 [V] to the output terminal U, the half-bridge circuit 2 turns on the switching elements Qu1, Qu2, Qx1, Qx2, and turns off the switching elements Qu3, Qu4, Qx3, Qx4.
  • the voltage (0 [V]) of the output terminal O of the DC power supply 1 is output from the input terminal C of the half bridge circuit 2 to the output terminal U via the diode Du2 and the switching elements Qu2 and Qu1.
  • the voltage (0 [V]) of the output terminal O of the DC power supply 1 is output from the input terminal C of the half bridge circuit 2 to the output terminal U through the diode Dx2 and the switching elements Qx2 and Qx1.
  • the half bridge circuit 2 turns on the switching element Qu1 and the switching elements Qx1 to Qx3, and turns off the switching elements Qu2 to Qu4 and Qx4. In this way, the voltage ( ⁇ 1E [V]) of the terminal N1 of the DC power supply 1 is output from the input terminal B1 of the half-bridge circuit 2 to the output terminal U via the switching elements Qx3, Qx2, and Qx1.
  • the half bridge circuit 2 turns on the switching elements Qx1 to Qx4 and turns off the switching elements Qu1 to Qu4. In this way, the voltage ( ⁇ 2E [V]) of the terminal N2 of the DC power supply 1 is output from the input terminal B2 of the half bridge circuit 2 to the output terminal U via the switching elements Qx4, Qx3, Qx2, and Qx1. .
  • the half bridge circuit 2 When the half bridge circuit 2 outputs a voltage of + 2E [V] to the output terminal, the output current flows through the four elements of the switching elements Qu1 to Qu4. When the half bridge circuit 2 outputs a voltage of + 1E [V] to the output terminal, the output current flows through the four elements of the diode Du3 and the switching elements Qu1 to Qu3. In either case, conduction loss occurs in the four elements due to the current flowing through the switching element or the diode.
  • the half bridge circuit 2 when the half bridge circuit 2 outputs a voltage of ⁇ 1E [V] to the output terminal, the output current flows through the four elements of the switching elements Qx1 to Qx3 and the diode Dx1. Further, when the half bridge circuit 2 outputs a voltage of ⁇ 2E [V] to the output terminal, the output current flows through four elements of the switching elements Qx1 to Qx4. In either case, conduction loss occurs in the four elements due to the current flowing through the switching element or the diode.
  • the output current is the three elements of the diode Du2 and the switching elements Qu1 and Qu2, or the diode Dx2 and the switching elements Qx1 and Qx2. Flows through three elements. In either case, conduction loss occurs in the three elements due to the current flowing through the switching element or the diode.
  • an object of the present invention is to reduce conduction loss by reducing the number of elements that cause conduction loss.
  • one aspect of the present invention provides a DC power supply having (2n + 1) output terminals for outputting a DC voltage of (2n + 1) levels (n is an integer of 2 or more),
  • An AC power supply having one end connected to the intermediate potential terminal of the DC power supply, (2n + 1) input terminals and one output terminal, and corresponding to a (2n + 1) level DC voltage output from the DC power supply.
  • a power converter comprising: a half-bridge circuit that inputs to (2n + 1) input terminals; and a bidirectional switch connected between the other end of the AC power supply and the output terminal of the half-bridge circuit.
  • the bidirectional switch is preferably composed of a wide band gap semiconductor made of silicon carbide or gallium nitride.
  • the power conversion device includes a first voltage and a second voltage selected based on an output voltage command from a (2n + 1) level DC voltage and an AC power supply voltage for each predetermined switching period. And are output alternately.
  • the first voltage is equal to or higher than the output voltage command and is closest to the output voltage command among the (2n + 1) level DC voltage and the AC power supply voltage.
  • the second voltage is a voltage that is equal to or lower than the output voltage command and is closest to the output voltage command among the (2n + 1) level DC voltage and the AC power supply voltage.
  • the power conversion device to which the present invention is applied alternately outputs the first voltage and the second voltage selected based on the output voltage command for each switching period. Thereby, this power converter device can output the alternating voltage corresponding to an output voltage command. Moreover, this power converter device can output the voltage of AC power supply via a bidirectional switch. Therefore, this power conversion device can reduce the number of elements that cause conduction loss. Thereby, this power converter device can reduce conduction loss.
  • FIG. 3 is a diagram for explaining a control circuit 5.
  • FIG. It is a figure for demonstrating the relationship between control mode and operation
  • FIG. It is a figure for demonstrating an example of the output voltage Vo in the switching period T90. It is a figure for demonstrating an example of the output voltage Vo in control mode 0A. It is a figure for demonstrating other embodiment of the power converter device which concerns on this invention.
  • FIG. 1 is a diagram for explaining an embodiment of a power converter according to the present invention.
  • 1 is a DC power supply
  • 2 is a half-bridge circuit
  • 3 is a load
  • 4 is an AC power supply
  • S0 is a bidirectional switch
  • 5 is a control circuit. This power converter selects and outputs one of the five levels of DC voltage and the voltage of the AC power supply 4.
  • the DC power supply 1 is configured by connecting a positive DC power supply and a negative DC power supply in series.
  • the positive side DC power source and the negative side DC power source are each a DC power source formed by connecting two unit DC power sources in series.
  • a connection point between the positive side DC power source and the negative side DC power source is an intermediate potential point that outputs an intermediate potential (zero voltage) of the DC power source 1.
  • unit DC power sources Psp1 and Psp2 are connected in series in order from the intermediate potential point side.
  • unit DC power sources Psn1 and Psn2 are connected in series in order from the intermediate potential point side.
  • a connection point (intermediate potential point) between the positive side DC power source and the negative side DC power source is connected to an output terminal O for outputting an intermediate potential (zero voltage) of the DC power source 1.
  • the terminals that output the positive potentials of the unit DC power supplies Psp1 and Psp2 are sequentially connected to the output terminals P1 and P2 of the DC power supply 1, respectively.
  • the terminals that output the negative potentials of the unit DC power supplies Psn1 and Psn2 are sequentially connected to the output terminals N1 and N2 of the DC power supply 1, respectively.
  • the voltage of each unit DC power supply is E [V].
  • the output terminals P2, P1, O, N1, and N2 of the DC power supply 1 are supplied with voltages of + 2E [V], + 1E [V], 0 [V], -1E [V], and -2 E [V] in order. Output.
  • the half bridge circuit 2 includes input terminals A2, A1, C, B1, B2 and an output terminal U. Each input terminal of the half-bridge circuit 2 is connected to output terminals P2, P1, O, N1, and N2 of the DC power supply 1 in order. Therefore, the input terminals A2, A1, C, B1, and B2 of the half-bridge circuit 2 are sequentially connected to + 2E [V], + 1E [V], 0 [V], -1E [V], and -2E [V], respectively. A voltage is input.
  • the half bridge circuit 2 includes switching elements Qu1 to Qu4, Qx1 to Qx4 and diodes Du1, Du2, Dx1, and Dx2. Diodes are connected in antiparallel to the switching elements Qu1 to Qu4 and Qx1 to Qx4, respectively.
  • the switching elements Qu4, Qu3, Qu2, Qu1, Qx1, Qx2, Qx3, and Qx4 are connected in series between the input terminals A2 and B2 of the half bridge circuit 2 in order.
  • the diodes Du3 and Dx1 are sequentially connected in series between the connection point of the switching elements Qu4 and Qu3 and the connection point of the switching elements Qx1 and Qx2.
  • diodes Du2 and Dx2 are sequentially connected in series between the connection point of the switching elements Qu3 and Qu2 and the connection point of the switching elements Qx2 and Qx3.
  • diodes Du1 and Dx3 are sequentially connected in series between the connection point of the switching elements Qu2 and Qu1 and the connection point of the switching elements Qx3 and Qx4.
  • the connection point between the diodes Du3 and Dx1 is connected to the input terminal A1.
  • a connection point between the diodes Du2 and Dx2 is connected to the input terminal C.
  • a connection point between the diodes Du1 and Dx3 is connected to the input terminal B1.
  • the connection point between the switching elements Qu1 and Qx1 is connected to the output terminal U.
  • the AC power supply 4 is connected between the output terminal O of the DC power supply 1 and the output terminal U of the half bridge circuit 2 via the bidirectional switch S0.
  • the AC power supply 4 outputs an AC voltage Vi based on the potential of the output terminal O of the DC power supply 1.
  • the AC voltage Vi is a sine wave voltage that changes between the positive maximum voltage + 2E [V] and the negative maximum voltage ⁇ 2E [V] of the DC power supply 1.
  • the load 3 is connected between the output terminal O of the DC power source 1 and the output terminal U of the half bridge circuit 2. Therefore, any one of the five-level DC voltage output from the DC power supply 1 and the voltage Vi of the AC power supply 4 is applied to the load 3.
  • each unit DC power source of the DC power source 1 is detected by the voltage detectors 6-1, 6-2, 7-1, 7-2 and input to the control circuit 5.
  • the voltage Vi of the AC power supply 4 is detected by the voltage detector 8 and input to the control circuit 5.
  • the switching elements constituting the half bridge circuit 2 are IGBTs (Insulated Gate Bipolar Transistors).
  • the switching element is not limited to the IGBT, and may be any semiconductor element that can be turned on and off at a sufficiently high frequency with respect to the frequency of the AC power supply 4, such as a MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
  • the bidirectional switch S0 is configured by connecting IGBTs in antiparallel, and is a switch that can control bidirectional conduction. The configuration of this bidirectional switch is shown in FIG.
  • the bidirectional switch S0 is not limited to the configuration shown in FIG. 2A, and is a switch that can control bidirectional conduction, such as a circuit having the configuration shown in FIGS.
  • FIG. 2B is a circuit in which two sets of circuits in which an IGBT and a diode are connected in series are connected in antiparallel.
  • FIG. 2C is a circuit configured by connecting two sets of circuits in which a diode is connected in antiparallel to the IGBT in antiseries.
  • FIG. 2D is a circuit configured by replacing the IGBT with a MOSFET in the circuit of FIG.
  • the bidirectional switch S0 is applied with a voltage obtained by adding the voltage 2E [V] of the positive DC power supply or the negative DC power supply of the DC power supply 1 and the voltage Vi [V] of the AC power supply 4 at the maximum. Therefore, the bidirectional switch S0 needs to have a higher withstand voltage than each switching element.
  • the bidirectional switch S0 is preferably composed of a wide band gap semiconductor made of silicon carbide or gallium nitride. A wide band gap semiconductor has a feature that its breakdown voltage is higher than that of a semiconductor made of silicon.
  • the control circuit 5 generates control signals Gu1 to Gu4 and Gx1 to Gx4 for turning on and off the switching elements Qu1 to Qu4 and Qx1 to Qx4, respectively. Further, the control circuit 5 generates a control signal Gs0 for turning on and off the bidirectional switch S0. As described above, the bidirectional switch S0 is composed of two switching elements. Therefore, the control signal Gs0 of the bidirectional switch S0 is composed of two control signals.
  • FIG. 3 is a control block diagram for explaining the control circuit 5.
  • the control circuit 5 generates a control signal for turning on / off each switching element of the half-bridge circuit 2 and the both-side switch S0 every predetermined switching period.
  • the control signal for each element is generated based on the output voltage command Vo * of the power conversion device, the five-level DC voltage output from each output terminal of the DC power supply 1, and the voltage Vi of the AC power supply 4.
  • the output voltage command generation means 51 generates an output voltage command Vo *.
  • the output voltage command Vo * is input to the output voltage selection unit 52 and the control mode determination unit 53. Further, the voltage of each unit DC power source of the DC power source 1 detected by the voltage detectors 6-1, 6-2, 7-1, 7-2 and the voltage Vi of the AC power source 4 detected by the voltage detector 8. Are input to the output voltage selection means 52.
  • the output voltage selection means 52 calculates a five-level DC voltage output from each output terminal of the DC power supply 1 from the voltage of each unit DC power supply of the DC power supply 1.
  • a voltage group composed of a five-level DC voltage output from the DC power supply 1 and the voltage Vi of the AC power supply 4 is referred to as a first group voltage.
  • the output voltage selection means 52 selects the first voltage V1 and the second voltage V2 based on the first group voltage and the output voltage command Vo *.
  • the output voltage selection means 52 also calculates the output times t1 and t2 of the first voltage V1 and the second voltage V2.
  • the first voltage V1 is a voltage that is equal to or higher than the output voltage command Vo * and is closest to the output voltage command Vo * among the voltages included in the first group.
  • the second voltage V2 is a voltage that is equal to or lower than the output voltage command Vo * and is closest to the output voltage command Vo * among the voltages included in the first group.
  • (Vo * ⁇ Vi) / (2E ⁇ Vi) corresponds to the modulation rate in the pulse width modulation control.
  • the control mode determination unit 53 determines the control mode ⁇ of the power converter based on the first voltage V1 and the second voltage V2 output from the output voltage selection unit 52.
  • the control signal generation means 54 is based on the control mode ⁇ output from the control mode determination means 53, the first and second voltages V1, V2 output from the output voltage selection means 52, and their output times t1, t2.
  • the control signals Gu1 to Gu4, Gx1 to Gx4 and Gs0 for turning on and off the switching elements Qu1 to Qu4, Qx1 to Qx4 and the bidirectional switch S0 are generated.
  • the half-bridge circuit 2 and the bidirectional switch S0 operate based on a control signal output from the control signal generation means 54.
  • the first voltage having the time width t1 and the second voltage having the time width t2 are alternately output from the power conversion device every switching cycle.
  • the average value of the voltage Vo output from the power converter for each switching period is equal to the output voltage command Vo * in the switching period.
  • FIG. 4 is a diagram for explaining the relationship between the control mode ⁇ and the operation of the power converter.
  • This power conversion apparatus has a control mode 0 in addition to the control modes 1 to 5 shown in FIG.
  • the control mode 1 is a control mode for outputting + 2E [V] to the output terminal U.
  • the switching elements Qu1 to Qu4 are turned on, and the switching elements Qx1 to Qx4 and the bidirectional switch S0 are turned off.
  • the control mode 2 is a control mode in which + 1E [V] is output to the output terminal U.
  • the switching elements Qu1 to Qu3 and Qx1 are turned on, and the switching elements Qu4 and Qx2 to Qx4 and the bidirectional switch S0 are turned off.
  • the control mode 3 is a control mode for outputting 0 [V] to the output terminal U.
  • the switching elements Qu1, Qu2, Qx1, Qx2 are turned on, and the switching elements Qu3, Qu4, Qx3, Qx4 and the bidirectional switch S0 are turned off.
  • the control mode 4 is a control mode in which ⁇ 1E [V] is output to the output terminal U.
  • the switching elements Qu1, Qx1, Qx2, and Qx3 are turned on, and the switching elements Qu2 to Qu4, Qx4 and the bidirectional switch S0 are turned off.
  • the control mode 5 is a control mode for outputting ⁇ 2E [V] to the output terminal U.
  • control mode 5 switching elements Qx1 to Qx4 are turned on, and switching elements Qu1 to Qu4 and bidirectional switch S0 are turned off.
  • the control mode 0 is a mode in which the voltage Vi of the AC power supply 4 is output to the output terminal U.
  • the bidirectional switch S0 is turned on and all the switching elements are turned off.
  • FIG. 5 shows the relationship between the output voltage command Vo * and the voltage Vi of the AC power supply 4 in the switching period T90.
  • the switching cycle T90 is a switching cycle in which the output voltage command Vo * is in a phase (phase near 90 [degrees]) at which the maximum value on the positive side is reached.
  • the output voltage command Vo * is a sinusoidal voltage command for outputting a voltage higher than the voltage Vi of the AC power supply 4 in synchronization with the voltage Vi of the AC power supply 4.
  • the output voltage command Vo * and the voltage Vi of the AC power supply 4 are both the voltage + 1E [V] output from the output terminal P1 of the DC power supply 1 and the voltage + 2E [V] output from the output terminal P2. ] Between. In this case, details of the output voltage Vo in the switching period T90 are as shown in FIG.
  • the control circuit 5 selects, as the first voltage, the voltage + 2E [V] that is equal to or higher than the output voltage command Vo * and is closest to the output voltage command Vo * among the voltages of the first group.
  • the control mode for outputting the voltage of + 2E [V] is the control mode 1.
  • the control circuit 5 selects, as the second voltage, the voltage Vi of the AC power supply 1 that is equal to or lower than the output voltage command Vo * and is closest to the output voltage command Vo * among the voltages of the first group.
  • the control mode for outputting the voltage Vi of the AC power supply 1 is the control mode 0.
  • control circuit 5 generates a control signal for each element for turning on the switching elements Qu1 to Qu4 for the time t1, and turning off the switching elements Qx1 to Qx4 and the bidirectional switch S0 for the time t1. Further, the control circuit 5 generates a control signal for each element for turning on the bidirectional switch S0 for a time t2, and turning off the switching elements Qu1 to Qu4 and the switching elements Qx1 to Qx4 for a time t2.
  • the half bridge circuit 2 when the output voltage command Vo * and the voltage Vi of the AC power supply 4 are in the relationship shown in FIG. 5, the half bridge circuit 2 operates in a combination of the control mode 1 and the control mode 0 in the switching period T90. .
  • the voltage Vo including the first voltage V1 and the second voltage V2 is output to the output terminal U as shown in FIG.
  • the switching cycle T90 has been described as an example, but this power conversion device operates in the same manner in all switching cycles. As a result, an AC voltage Vo whose fundamental voltage corresponds to the output voltage command Vo * is output to the output terminal U.
  • the voltage Vi of the AC power supply 4 is selected as the first voltage or the second voltage in many switching cycles.
  • the change width of the output voltage Vo within the switching period becomes smaller than the voltage E [V] of the unit DC power supply.
  • the change width of the output voltage of the power converter operating only with the half-bridge circuit 2 shown in FIG. 11 is fixed to E [V] of the unit DC power supply. Therefore, the power conversion device of the present embodiment can reduce the waveform distortion of the output voltage Vo compared to the power conversion device that operates only with the half-bridge circuit 2.
  • control mode for outputting the voltage Vi of the AC power supply 4 is the control mode 0 as shown in FIG.
  • the bidirectional switch S0 is the only element that generates conduction loss due to the current flowing from the DC power supply 1 to the load 3.
  • conduction loss always occurs with three or four elements. Therefore, the power conversion device of the present embodiment having the control mode 0 can reduce conduction loss as compared with the power conversion device that operates only by the half bridge circuit 2.
  • the control mode 0A is a control mode in which the voltage Vi of the AC power supply 1 is output to the output terminal U when the voltage Vi of the AC power supply 4 is between (Vo * ⁇ V) and (Vo * + ⁇ V).
  • the value of ⁇ V is set to 5% of the rated voltage value of the output voltage command Vo *, for example.
  • the bidirectional switch S0 is turned on and all the switching elements are turned off.
  • the control circuit 5 In determining which control mode the switching cycle corresponds to, the control circuit 5 first determines whether the switching cycle corresponds to the control mode 0A. When the voltage Vi of the AC power supply 4 is between (Vo * ⁇ V) and (Vo * + ⁇ V), the switching cycle corresponds to the control mode 0A. At this time, the control circuit 5 sets the control mode to 0A. In the control mode 0A, the control circuit 5 generates a control signal for turning on and turning off the bidirectional switch S0 in both directions and turning off all the switching elements. On the other hand, when the switching cycle does not satisfy the condition of the control mode 0A, the control circuit 5 determines which of the control modes 0 to 5 the switching cycle is. Then, the control circuit 5 sets the control mode to any one of 0 to 5. In this case, the elements that are turned on and off in the switching period are as shown in FIG.
  • the element through which the output current flows is only the bidirectional switch S0.
  • this power conversion device can greatly increase the switching cycle in which only the bidirectional switch S0 is turned on. Therefore, this power conversion device can further reduce the conduction loss of the element as compared with the case where the half bridge circuit 2 is operated by combining two control modes of the control modes 0 to 5.
  • the switching element and the bidirectional switch do not generate a switching loss.
  • the above-described embodiment is a power converter that outputs the phase voltage Vo from the half-bridge circuit 2 shown in FIG. 1 to the load 3, but a single-phase power converter is configured using two sets of the half-bridge circuits 2.
  • the same effect can be obtained.
  • the same effect can be acquired even if it comprises a three-phase power converter device using multiple sets of the power converter devices shown in FIG. In this case, you may comprise a power converter device by making a part of component into a common component.
  • FIG. 8 is a diagram for explaining an embodiment of a power conversion device capable of selectively outputting a DC voltage of (2n + 1) level (n is an integer of 2 or more) and a voltage Vi of the DC power supply 4. is there.
  • 11 is a DC power supply
  • 21 is a half-bridge circuit.
  • Reference numeral 51 denotes a control circuit for generating control signals for the half-bridge circuit 21 and the bidirectional switch S0.
  • the same components as those of the power conversion device shown in FIG. The detailed description of the components given the same reference numerals as those of the power converter shown in FIG. 1 is omitted.
  • the DC power supply 11 has a configuration in which the DC power supply 1 that outputs a voltage of 5 levels shown in FIG. 1 is expanded to a DC power supply that outputs a voltage of (2n + 1) levels. That is, the positive side DC power source and the negative side DC power source of the DC power source 11 are each a DC power source formed by connecting n unit DC power sources in series. A connection point between the positive side DC power source and the negative side DC power source is an intermediate potential point of the DC power source 11. The intermediate potential point of the DC power supply 11 is connected to the output terminal O and outputs a zero voltage.
  • the positive side DC power source is configured by connecting unit DC power sources Psp1, Psp2,..., Psp (n-1), Psp (n) in series in order from the intermediate potential point.
  • the negative side DC power source is configured by connecting DC power sources Psn1, Psn2,..., Psn (n ⁇ 1), Psn (n) in series from the intermediate potential point in order.
  • the terminal voltage of each unit DC power supply
  • the DC power supply 11 includes output terminals P (n), P (n-1),..., P2, P1, O, N1, N2,..., N (n-1), N (n). ing.
  • the output terminal O outputs a zero voltage 0 [V] that is an intermediate voltage of the DC power supply 11.
  • the output terminals P1, P2,..., P (n ⁇ 1), P (n) are in order of + 1E [V], + 2E [V],. + (N) Outputs the voltage of E [V].
  • the output terminals N1, N2,..., N (n-1), N (n) are in order of -1E [V], -2E [V], ...,-(n-1) E [V ],-(N) E [V] is output.
  • the half-bridge circuit 21 has a configuration in which the half-bridge circuit 2 that inputs a five-level DC voltage shown in FIG. 1 is extended to a half-bridge circuit that inputs a (2n + 1) -level DC voltage.
  • the half-bridge circuit 21 has input terminals A (n), A (n-1),..., A2, A1, C, B1, B2, ..., B (n-1), B (n). Prepare.
  • the half bridge circuit 21 includes an output terminal U.
  • the circuit configuration of the half bridge circuit 21 is an extended circuit configuration of the half bridge circuit 2 shown in FIG.
  • Each input terminal of the half-bridge circuit 21 corresponds to a corresponding output terminal P (n), P (n ⁇ 1),..., P2, P1, O, N1, N2,. n-1) and N (n). Therefore, the input terminals A (n), A (n-1),..., A2, A1, C, B1, B2,..., B (n-1), B (n) of the half bridge circuit 21. , + (N) E [V], + (n ⁇ 1) E [V],..., + 2E [V], + 1E [V], 0 [V], ⁇ 1E [V], ⁇ 2E [V],..., ⁇ (N ⁇ 1) E [V], ⁇ (n) [V] are input.
  • the AC power supply 4 is connected between the output terminal O of the DC power supply 11 and the output terminal U of the half bridge circuit 21 via the bidirectional switch S0.
  • the AC power supply 4 outputs an AC voltage Vi based on the potential of the output terminal O of the DC power supply 11.
  • the AC voltage Vi is a sine wave voltage that changes between the positive maximum voltage + (n) E [V] and the negative maximum voltage ⁇ (n) E [V] of the DC power supply 11.
  • the switching element may be a semiconductor element having a withstand voltage of 1E [V] or higher.
  • a voltage obtained by adding the voltage (n) E [V] of the positive DC power supply or negative DC power supply of the DC power supply 11 and the voltage Vi [V] of the AC power supply 4 is applied to the bidirectional switch S0 at the maximum.
  • the bidirectional switch S0 needs to have a higher withstand voltage than each switching element.
  • the bidirectional switch S0 is preferably composed of a wide band gap semiconductor made of silicon carbide or gallium nitride.
  • the load 3 is connected between the output terminal O of the DC power supply 11 and the output terminal U of the half bridge circuit 21. Therefore, any one of the (2n + 1) level DC voltage output from the DC power supply 11 and the voltage Vi of the AC power supply 4 is applied to the load 3.
  • each unit DC power source of the DC power source 11 is detected by the voltage detectors 6-1,..., 6-n, 7-1,. .
  • the voltage Vi of the AC power supply 4 is detected by the voltage detector 8 and input to the control circuit 51.
  • a voltage group including a (2n + 1) level DC voltage output from the DC power supply 11 and the voltage Vi of the AC power supply 4 is referred to as a second group voltage.
  • the control circuit 51 generates control signals Gu1 to Gu (2n) and Gx1 to Gx (2n) for turning on and off the switching elements Qu1 to Qu (2n) and Qx1 to Qx (2n), respectively. Further, the control circuit 51 generates a control signal Gs0 for turning on and off the bidirectional switch S0. As described above, the control signal Gs0 of the bidirectional switch S0 includes two control signals.
  • the control circuit 51 operates with the same logic as the control circuit 5 shown in FIG. That is, in each switching cycle, the control circuit 51 selects the first voltage and the second voltage from the second group of voltages based on the output voltage command Vo *. That is, the control circuit 51 selects, as the first voltage, a voltage that is equal to or higher than the output voltage command Vo * and is closest to the output voltage command Vo * among the voltages included in the second group. Further, the control circuit 51 selects, as the second voltage, a voltage that is equal to or lower than the output voltage command Vo * and is closest to the output voltage command Vo * among the voltages included in the second group. The control circuit 51 further calculates an output time t1 of the first voltage and an output time t2 of the second voltage.
  • This power converter has control modes 1 to (2n + 1), 0, 0A as control modes.
  • the control circuit 51 determines a control mode for outputting the first voltage and a control mode for outputting the second voltage from the control modes. Based on the determined control mode and the output times t1 and t2 of the first and second voltages, the control circuit 51 outputs a control signal for turning on and off each switching element and the bidirectional switch S0 within each switching period. Generate.
  • the first voltage and the second voltage are alternately output based on the control signal in each switching period.
  • an AC voltage Vo whose fundamental voltage corresponds to the output voltage command Vo * is output to the output terminal U.
  • the voltage Vi of the AC power supply 4 is selected as the first voltage or the second voltage in many switching cycles.
  • the change width of the output voltage Vo within the switching period becomes smaller than the voltage E [V] of the unit DC power supply.
  • the change width of the output voltage of the half bridge circuit 21 is fixed to E [V] of the unit DC power supply. Therefore, the power converter of this embodiment can reduce the waveform distortion of the output voltage Vo compared to the power converter that operates only with the half-bridge circuit 21.
  • the bidirectional switch S0 In the control mode 0 in which the first voltage or the second voltage is the voltage Vi of the AC power supply 4, only the bidirectional switch S0 is turned on and all the switching elements are turned off. Therefore, in the control mode 0, the only element that causes conduction loss due to the current flowing from the DC power supply 11 to the load 3 is the bidirectional switch S0. On the other hand, in a power conversion device that operates only with the half-bridge circuit 21, conduction loss always occurs in three or more elements. Therefore, the power conversion device of the present embodiment having the control mode 0 can reduce conduction loss as compared with the power conversion device that operates only by the half bridge circuit 21.
  • the control mode 0A is set with priority over other control modes.
  • the element through which the output current flows can be only the bidirectional switch S0. Therefore, this power conversion device can further reduce the conduction loss of the element as compared with the power conversion device that operates by combining any one of the control modes 0 to (2n + 1).
  • the power converter operates in the control mode 0A, no switching loss occurs in the switching element and the bidirectional switch.
  • the positive maximum value of the AC voltage Vi is between the voltages output from both ends of the unit DC power supply Psp (n), and the negative maximum value is between the voltages output from both ends of the unit DC power supply Psn (n). In some cases, the effects of the power conversion device described above are more effectively exhibited.
  • the above-described embodiment is a power converter that outputs the phase voltage Vo from the half-bridge circuit 21 shown in FIG. 8 to the load 3, but a single-phase power converter is configured using two sets of the half-bridge circuits 21.
  • a single-phase power converter is configured using two sets of the half-bridge circuits 21.
  • the same effect can be obtained.
  • FIG. 9 is a diagram for explaining an embodiment of a power conversion device in which the half bridge circuit 2 shown in FIG. 1 is replaced with a half bridge circuit 22 having another circuit configuration. Control signals for the half-bridge circuit 22 and the bidirectional switch S0 are generated by the control circuit 52.
  • the same components as those of the power conversion device shown in FIG. 9 The detailed description of the components given the same reference numerals as those of the power converter shown in FIG. 1 is omitted.
  • the AC power supply 4 is connected between the output terminal O of the DC power supply 1 and the output terminal U of the half bridge circuit 22 via the bidirectional switch S0.
  • the AC power supply 4 outputs an AC voltage Vi based on the potential of the output terminal O of the DC power supply 1.
  • the AC voltage Vi is a sine wave voltage that changes between the positive maximum voltage + 2E [V] and the negative maximum voltage ⁇ 2E [V] of the DC power supply 1.
  • the load 3 is connected between the output terminal O of the DC power supply 1 and the output terminal U of the half bridge circuit 22. Therefore, one of the five levels of DC voltage output from the DC power supply 1 and the voltage Vi of the AC power supply 4 is selectively applied to the load 3.
  • a voltage group including a five-level DC voltage output from the DC power supply 1 and the voltage Vi of the AC power supply 4 is referred to as a first group voltage.
  • the half-bridge circuit 22 includes switching elements Qu1, Qu2, Qx1, Qx2 and bidirectional switches Su1, Sc, sx1. Between the input terminals A2 and B2 of the half-bridge circuit 22, switching elements Qu2, Qu1, Qx1, and Qx2 each having a diode connected in antiparallel are connected in series in order.
  • a bidirectional switch Su1 is connected between the connection point of the switching elements Qu2 and Qu1 and the input terminal A1.
  • a bidirectional switch Sc is connected between the output terminal U and the input terminal C.
  • a bidirectional switch Sx1 is connected between the connection point of the switching elements Qx1 and Qx2 and the input terminal B1.
  • each switching element should just be a semiconductor element which has a proof pressure of 1E [V] or more.
  • the bidirectional switches Su1, Sc, Sx1 have the same circuit configuration as the bidirectional switch S0.
  • a voltage of 1E [V] is applied to the bidirectional switches Su1, Sx1. Therefore, the bidirectional switches Su1 and Sx1 may be configured by a semiconductor element having a breakdown voltage comparable to that of the switching element.
  • a maximum voltage of 2E [V] is applied to the bidirectional switch Sc. Therefore, the bidirectional switch Sc needs to be formed of a semiconductor element having a breakdown voltage of 2E [V] or more.
  • the bidirectional switches S0 and Sc are preferably composed of a wide band gap semiconductor made of silicon carbide or gallium nitride.
  • the control circuit 52 generates control signals Gu1, Gu2, Gx1, Gx2 and Gsu1, Gsc, Gsx1 for turning on and off the switching elements Qu1, Qu2, Qx1, Qx2 and the bidirectional switches Su1, Sc, Sx1, respectively.
  • the control circuit 52 generates a control signal Gs0 for turning on and off the bidirectional switch S0.
  • the control signal Gs0 of the bidirectional switch S0 includes two control signals.
  • the control circuit 52 operates with the same logic as the control circuit 5 shown in FIG. That is, in each switching cycle, the control circuit 52 selects the first voltage and the second voltage from the first group of voltages based on the output voltage command Vo *. That is, the control circuit 52 selects, as the first voltage, a voltage that is equal to or higher than the output voltage command Vo * and is closest to the output voltage command Vo * among the voltages included in the first group. Further, the control circuit 52 selects, as a second voltage, a voltage that is equal to or lower than the output voltage command Vo * and is closest to the output voltage command Vo * among the voltages included in the first group. The control circuit 52 further calculates an output time t1 of the first voltage and an output time t2 of the second voltage.
  • This power conversion device has control modes 1 to 5, 0, 0A, similarly to the power conversion device shown in FIG.
  • the control circuit 52 determines a control mode for outputting the first voltage and a control mode for outputting the second voltage from the control modes. Based on the determined control mode and the output times t1 and t2 of the first and second voltages, the control circuit 52 outputs a control signal for turning on and off each switching element and each bidirectional switch in each switching period. Generate.
  • the first voltage and the second voltage are alternately output based on the control signal in each switching period.
  • an AC voltage Vo whose fundamental voltage corresponds to the output voltage command Vo * is output to the output terminal U.
  • the voltage Vi of the AC power supply 4 is selected as the first voltage or the second voltage in many switching cycles.
  • the change width of the output voltage Vo within the switching period becomes smaller than the voltage E [V] of the unit DC power supply.
  • the change width of the output voltage of the half bridge circuit 22 is fixed to E [V] of the unit DC power supply. Therefore, the power converter of this embodiment can reduce the waveform distortion of the output voltage Vo compared to the power converter operating only with the half bridge circuit 22.
  • the bidirectional switch S0 In the control mode 0 in which the first voltage or the second voltage is the voltage Vi of the AC power supply 4, only the bidirectional switch S0 is turned on, and all the switching elements and other bidirectional switches are turned off. Therefore, in the control mode 0, the only element that causes conduction loss due to the current flowing from the DC power source 1 to the load 3 is the bidirectional switch S0.
  • the power conversion device that operates only with the half-bridge circuit 22 conduction loss occurs in two elements in the control modes other than the control mode 3 in which the zero voltage is output by turning on the bidirectional switch Sc. Therefore, the power conversion device of the present embodiment having the control mode 0 can reduce conduction loss as compared with the power conversion device that operates only by the half-bridge circuit 22.
  • control mode 0A is set with priority over other control modes.
  • the element through which the output current flows can be only the bidirectional switch S0. Therefore, the conduction loss of the element can be further reduced as compared with the power conversion device that operates in any one of the control modes 0 to 5. In this case, no switching loss occurs in the switching element and the bidirectional switch.
  • the above-described embodiment is a power converter that outputs the phase voltage Vo from the half-bridge circuit 22 shown in FIG. 9 to the load 3, and a single-phase power converter is configured using two sets of the half-bridge circuits 22.
  • the same effect can be obtained.
  • the same effect can be acquired even if it comprises a three-phase power converter device using multiple sets of the power converter devices shown in FIG. In this case, you may comprise a power converter device by making a part of component into a common component.
  • FIG. 10 is a diagram for explaining another embodiment of the power conversion device capable of selectively outputting the DC voltage of (2n + 1) level (n is an integer of 2 or more) and the voltage Vi of the DC power supply 4.
  • FIG. 10 11 is a DC power supply, and 23 is a half-bridge circuit.
  • 53 is a control circuit for generating control signals for the half-bridge circuit 23 and the bidirectional switch S0.
  • the same components as those of the power conversion device shown in FIGS. 8 and 9 are given the same reference numerals.
  • the detailed description of the components given the same reference numerals as the components of the power conversion device shown in FIGS. 8 and 9 is omitted.
  • the half bridge circuit 23 includes input terminals A (n), A (n ⁇ 1),..., A1, C, B1,... B (n ⁇ 1), B (n) and an output terminal U. .
  • Each input terminal of the half-bridge circuit 23 corresponds to a corresponding output terminal P (n), P (n ⁇ 1),..., P1, O, N1,. Connected to N (n). Therefore, the input terminals A (n), A (n-1),..., A1, C, B1,...
  • B (n-1), B (n) of the half bridge circuit 23 are sequentially + (N) E [V], + (n-1) E [V], ..., + 1E [V], 0 [V],-1E [V], ...,-(n-1)
  • the voltage of E [V],-(n) [V] is input.
  • the half-bridge circuit 23 is a half-bridge circuit obtained by extending the 5-level half-bridge circuit 22 shown in FIG. 9 to (2n + 1) levels. Detailed description of the configuration of the half-bridge circuit 23 is omitted.
  • the AC power supply 4 is connected between the output terminal O of the DC power supply 11 and the output terminal U of the half bridge circuit 23 via the bidirectional switch S0.
  • the AC power supply 4 outputs an AC voltage Vi based on the potential of the output terminal O of the DC power supply 11.
  • the AC voltage Vi is a sine wave voltage that changes between the positive maximum voltage + (n) E [V] and the negative maximum voltage ⁇ (n ⁇ 1) E [V] of the DC power supply 11.
  • each switching element should just be a semiconductor element which has a proof pressure of 1E [V] or more.
  • the bidirectional switches Su1 to Su (n-1), Sc, Sx1 to Sx (n-1) have the same circuit configuration as that of the bidirectional switch S0.
  • a voltage of 1E [V] is applied to the bidirectional switches Su1 to Su (n-1) and Sx1 to Sx (n-1). Therefore, the bidirectional switches Su1 to Su (n-1) and Sx1 to Sx (n-1) may be configured by semiconductor elements having a breakdown voltage comparable to that of the switching elements.
  • a voltage of maximum (n) E [V] is applied to the bidirectional switch Sc.
  • the bidirectional switch Sc needs to be composed of a semiconductor element having a withstand voltage equal to or higher than (n) E [V].
  • a voltage obtained by adding the voltage (n) E [V] of the positive DC power supply or negative DC power supply of the DC power supply 11 and the voltage Vi of the AC power supply is applied to the bidirectional switch S0 at the maximum. Therefore, the bidirectional switches S0 and Sc are preferably composed of a wide band gap semiconductor made of silicon carbide or gallium nitride.
  • the load 3 is connected between the output terminal O of the DC power supply 11 and the output terminal U of the half bridge circuit 23. Therefore, any one of the (2n + 1) level DC voltage output from the DC power supply 11 and the voltage Vi of the AC power supply 4 is applied to the load 3.
  • a voltage group including a (2n + 1) level DC voltage output from the DC power supply 11 and the voltage Vi of the AC power supply 4 is referred to as a second group voltage.
  • the control circuit 53 controls the switching elements Qu1 to Qu (n), Qx1 to Qx (n) and the bidirectional switches Su1 to Su (n-1), Sc, Sx1 to Sx (n-1) to be turned on / off. Signals Gu1 to Gu (n), Gx1 to Gx (n) and Gsu1 to Gsu (n-1), Gsc, Gsx1 to Gsx (n-1) are generated.
  • the control circuit 53 generates a control signal Gs0 for turning on and off the bidirectional switch S0. As described above, the control signal Gs0 of the bidirectional switch S0 includes two control signals.
  • the control circuit 53 operates with the same logic as the control circuit 51 shown in FIG. That is, the control circuit 53 selects the first voltage and the second voltage from the second group of voltages based on the output voltage command Vo * in each switching period. That is, the control circuit 53 selects, as the first voltage, a voltage that is equal to or higher than the output voltage command Vo * and is closest to the output voltage command Vo * among the voltages included in the second group. Further, the control circuit 53 selects, as the second voltage, a voltage that is equal to or lower than the output voltage command Vo * and is closest to the output voltage command Vo * among the voltages included in the second group. The control circuit 53 further calculates the output time t1 of the first voltage and the output time t2 of the second voltage.
  • This power converter has control modes 1 to (2n + 1), 0, 0A as control modes.
  • the control circuit 53 determines a control mode for outputting the first voltage and a control mode for outputting the second voltage from the control modes. Then, the control circuit 53 generates a control signal for turning on / off each switching element and each bidirectional switch within each switching period based on the determined control mode and the first and second voltage output times t1, t2. To do.
  • the first voltage and the second voltage are alternately output based on the control signal in each switching period.
  • an AC voltage Vo whose fundamental voltage corresponds to the output voltage command Vo * is output to the output terminal U.
  • the voltage Vi of the AC power supply 4 is selected as the first voltage or the second voltage in many switching cycles.
  • the change width of the output voltage Vo within the switching period becomes smaller than the voltage E [V] of the unit DC power supply.
  • the change width of the output voltage of the half-bridge circuit 23 is fixed to E [V] of the unit DC power supply. Therefore, the power converter according to the present embodiment can reduce the waveform distortion of the output voltage Vo as compared with the power converter that operates with only the half-bridge circuit 23.
  • the bidirectional switch S0 In the control mode 0 in which the first voltage or the second voltage is the voltage Vi of the AC power supply 4, only the bidirectional switch S0 is turned on, and all the switching elements and other bidirectional switches are turned off. Therefore, the only element that causes conduction loss when the output current flows is the bidirectional switch S0.
  • conduction loss always occurs in two or more elements in control modes other than the control mode in which zero voltage is output by turning on the bidirectional switch Sc. Therefore, the power conversion device of the present embodiment having the control mode 0 can reduce conduction loss as compared with the power conversion device that operates only by the half-bridge circuit 23.
  • control mode 0A is set with priority over other control modes.
  • the element through which the output current flows can be only the bidirectional switch S0. Therefore, the conduction loss of the element can be further reduced as compared with the power conversion device that operates by combining any one of the control modes 0 to (2n + 1). In this case, no switching loss occurs in the switching element and the bidirectional switch.
  • the positive maximum value of the AC voltage Vi is between the voltages output from both ends of the unit DC power supply Psp (n), and the negative maximum value is between the voltages output from both ends of the unit DC power supply Psn (n). In some cases, the effects of the power conversion device described above are more effectively exhibited.
  • the above-described embodiment is a power converter that outputs the phase voltage Vo from the half-bridge circuit 23 shown in FIG. 10 to the load 3, but a single-phase power converter is configured using two sets of the half-bridge circuits 23.
  • the same effect can be obtained.
  • the same effect can be acquired even if it comprises a three-phase power converter device using multiple sets of the power converter devices shown in FIG. In this case, you may comprise a power converter device by making a part of component into a common component.
  • the present invention can be applied to an apparatus for supplying a stable voltage to a load even when a voltage fluctuation of the AC power supply or a power failure of the AC power supply occurs, such as an instantaneous voltage drop compensation device or an uninterruptible power supply device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

 各スイッチング周期において、出力電圧指令に対応する電圧を出力端子に出力する電力変換装置であって、(2n+1)個(nは2以上の整数)の出力端子を有する直流電源と、この直流電源の中間電位端子に一端が接続される交流電源と、(2n+1)個入力端子と一つの出力端子とを有し、直流電源に接続されるハーフブリッジ回路と、交流電源の他端とハーフブリッジ回路の出力端子との間に接続される双方向スイッチと、を備え、(2n+1)レベルの直流電圧および交流電源の電圧の中から、出力電圧指令以上であってかつ出力電圧指令に最も近い電圧(第1の電圧)と、(2n+1)レベルの直流電圧および交流電源の電圧のうち、出力電圧指令以下であってかつ出力電圧指令に最も近い電圧(第2の電圧)とを選択し、スイッチング周期内で、第1の電圧と第2の電圧とを交互に出力する。

Description

電力変換装置
 本発明は、(2n+1)レベルの直流電圧と交流電圧とを選択的に出力することができる電力変換装置に関する。
 図11は、5レベルの電圧を出力することができる電力変換装置の回路構成を説明するための図である。このような電力変換装置は、特許文献1に開示されている。この電力変換装置は、5レベルの電圧を出力する直流電源1と、複数のスイッチング素子と複数のクランプダイオードとからなる5レベルのハーフブリッジ回路2で構成されている。
 直流電源1は、図示しない交流電源を用いて生成される。ハーフブリッジ回路2は、直流電源1の電圧を用いて、出力端子Uに5レベルの電圧を出力する。出力端子Uに出力される5レベルの電圧は、スイッチング素子Qu1~Qu4およびQx1~Qx4を選択的にオンオフさせることにより得られる。図12は、このハーフブリッジ回路2から出力される電圧と、スイッチング素子のオンオフ状態を示している。
 例えば、出力端子Uに+2E[V]の電圧を出力するとき、ハーフブリッジ回路2は、スイッチング素子Qu1~Qu4をオンにし、スイッチング素子Qx1~Qx4をオフにする。このようにすると、ハーフブリッジ回路2の入力端子A2からスイッチング素子Qu4,Qu3,Qu2,Qu1を介して、出力端子Uに直流電源1の端子P2の電圧(+2E[V])が出力される。次に、出力端子Uに+1E[V]の電圧を出力するとき、ハーフブリッジ回路2は、スイッチング素子Qu1~Qu3およびスイッチング素子Qx1をオンにし、スイッチング素子Qu4およびスイッチング素子Qx2~Qx4をオフにする。このようにすると、ハーフブリッジ回路2の入力端子A1からダイオードDu3およびスイッチング素子Qu3,Qu2,Qu1を介して、出力端子Uに直流電源1の端子P1の電圧(+1E[V])が出力される。
 また、出力端子Uに0[V]の電圧を出力するとき、ハーフブリッジ回路2は、スイッチング素子Qu1,Qu2,Qx1,Qx2をオンにし、スイッチング素子Qu3,Qu4,Qx3,Qx4をオフにする。このようにすると、ハーフブリッジ回路2の入力端子CからダイオードDu2およびスイッチング素子Qu2,Qu1を介して、出力端子Uに直流電源1の出力端子Oの電圧(0[V])が出力される。または、ハーフブリッジ回路2の入力端子CからダイオードDx2およびスイッチング素子Qx2,Qx1を介して、出力端子Uに直流電源1の出力端子Oの電圧(0[V])が出力される。
 また、出力端子Uに-1E[V]の電圧を出力するとき、ハーフブリッジ回路2は、スイッチング素子Qu1およびスイッチング素子Qx1~Qx3をオンにし、スイッチング素子Qu2~Qu4およびQx4をオフにする。このようにすると、ハーフブリッジ回路2の入力端子B1からスイッチング素子Qx3,Qx2,Qx1を介して、出力端子Uに直流電源1の端子N1の電圧(-1E[V])が出力される。次に、出力端子Uに-2E[V]の電圧を出力するとき、ハーフブリッジ回路2は、スイッチング素子Qx1~Qx4をオンにし、スイッチング素子Qu1~Qu4をオフにする。このようにすると、ハーフブリッジ回路2の入力端子B2からスイッチング素子Qx4,Qx3,Qx2,Qx1を介して、出力端子Uに直流電源1の端子N2の電圧(-2E[V])が出力される。
特開2010-246267号公報
 ハーフブリッジ回路2が出力端子に+2E[V]の電圧を出力するとき、出力電流は、スイッチング素子Qu1~Qu4の4個の素子を流れる。また、ハーフブリッジ回路2が出力端子に+1E[V]の電圧を出力するとき、出力電流は、ダイオードDu3およびスイッチング素子Qu1~Qu3の4個の素子を流れる。いずれの場合も、スイッチング素子もしくはダイオードに電流が流れることにより、4素子で導通損失が発生する。
 また、ハーフブリッジ回路2が出力端子に-1E[V]の電圧を出力するとき、出力電流は、スイッチング素子Qx1~Qx3およびダイオードDx1の4個の素子を流れる。また、ハーフブリッジ回路2が出力端子に-2E[V]の電圧を出力するとき、出力電流は、スイッチング素子Qx1~Qx4の4個の素子を流れる。いずれの場合も、スイッチング素子もしくはダイオードに電流が流れることにより、4素子で導通損失が発生する。
 また、ハーフブリッジ回路2が出力端子に0[V]の電圧を出力するとき、出力電流は、ダイオードDu2およびスイッチング素子Qu1,Qu2の3個の素子、もしくは、ダイオードDx2およびスイッチング素子Qx1,Qx2の3個の素子を流れる。いずれの場合も、スイッチング素子もしくはダイオードに電流が流れることにより、3素子で導通損失が発生する。
 このように、ハーフブリッジ回路2が5レベルの電圧を組み合わせて、交流電圧を出力するとき、3素子もしくは4素子で導通損失が発生する。このように、多くの素子で導通損失が発生すると、電力変換装置の効率が低下するという問題がある。
 本発明は、このような従来技術が有している問題を解決するためになされたものである。すなわち、本発明の目的は、導通損失を発生させる素子の数を低減することにより、導通損失を低減することである。
 上記目的を達成するため、本発明の形態の一側面は、(2n+1)レベル(nは2以上の整数)の直流電圧を出力するための(2n+1)個の出力端子を有する直流電源と、この直流電源の中間電位端子に一端が接続される交流電源と、(2n+1)個の入力端子と一つの出力端子とを有し、直流電源から出力される(2n+1)レベルの直流電圧を、対応する(2n+1)個の入力端子に入力するハーフブリッジ回路と、交流電源の他端とハーフブリッジ回路の出力端子との間に接続される双方向スイッチと、を備える電力変換装置である。
 双方向スイッチは、炭化ケイ素または窒化ガリウムを材料とするワイドバンドギャップ半導体で構成するのが好ましい。
 そして、この電力変換装置は、あらかじめ定められたスイッチング周期ごとに、(2n+1)レベルの直流電圧および交流電源の電圧の中から、出力電圧指令に基づいて選択した第1の電圧と第2の電圧とを交互に出力する。
 第1の電圧は、(2n+1)レベルの直流電圧および交流電源の電圧のうち、出力電圧指令以上であって、かつ出力電圧指令に最も近い電圧である。第2の電圧は、(2n+1)レベルの直流電圧および交流電源の電圧のうち、出力電圧指令以下であって、かつ出力電圧指令に最も近い電圧である。
 本発明を適用した電力変換装置は、スイッチング周期ごとに、出力電圧指令に基づいて選択した第1の電圧と第2の電圧とを交互に出力する。これにより、この電力変換装置は、出力電圧指令に対応する交流電圧を出力することができる。また、この電力変換装置は、双方向スイッチを介して交流電源の電圧を出力することができる。したがって、この電力変換装置は、導通損失を発生させる素子の数を低減させることが可能となる。これにより、この電力変換装置は、導通損失を低減することができる。
本発明に係る電力変換装置の実施形態を説明するための図である。 双方向スイッチの実施形態を説明するための図である。 制御回路5を説明するための図である。 制御モードと図1に示す電力変換装置の動作の関係を説明するための図である。 図1に示す電力変換装置の出力電圧指令Vo*と、交流電源4の電圧Viの関係を説明するための図である。 スイッチング周期T90における出力電圧Voの一例を説明するための図である。 制御モード0Aにおける出力電圧Voの一例を説明するための図である。 本発明に係る電力変換装置の他の実施形態を説明するための図である。 本発明に係る電力変換装置の他の実施形態を説明するための図である。 本発明に係る電力変換装置の他の実施形態を説明するための図である。 従来技術に係る電力変換装置の構成を説明するための図である。 制御モードと図11に示す電力変換装置の動作の関係を説明するための図である。
 以下、本発明の実施形態について、詳細に説明する。図1は、本発明に係る電力変換装置の実施形態を説明するための図である。図において、1は直流電源、2はハーフブリッジ回路、3は負荷、4は交流電源、S0は双方向スイッチ、5は制御回路である。この電力変換装置は、5レベルの直流電圧と交流電源4の電圧のうち、いずれかの電圧を選択して出力する。
 直流電源1は、正側直流電源と負側直流電源とを直列に接続して構成されている。正側直流電源と負側直流電源とは、それぞれ2個の単位直流電源を直列接続してなる直流電源である。正側直流電源と負側直流電源との接続点は、直流電源1の中間電位(ゼロ電圧)を出力する中間電位点である。正側直流電源は、単位直流電源Psp1,Psp2が、中間電位点側から順に、直列接続されている。負側直流電源は、単位直流電源Psn1,Psn2が、中間電位点側から順に、直列接続されている。
 正側直流電源と負側直流電源との接続点(中間電位点)は、直流電源1の中間電位(ゼロ電圧)を出力するための出力端子Oに接続される。単位直流電源Psp1,Psp2それぞれの正側電位を出力する端子は、順に、直流電源1の出力端子P1,P2に接続される。単位直流電源Psn1,Psn2それぞれの負側電位を出力する端子は、順に、直流電源1の出力端子N1,N2に接続される。
 各単位直流電源の電圧は、それぞれE[V]である。したがって、直流電源1の出力端子P2,P1,O,N1,N2は、順に、+2E[V],+1E[V],0[V],-1E[V],-2E[V]の電圧を出力する。
 ハーフブリッジ回路2は、入力端子A2,A1,C,B1,B2および出力端子Uを備える。ハーフブリッジ回路2の各入力端子は、順に、直流電源1の出力端子P2,P1,O,N1,N2に接続される。したがって、ハーフブリッジ回路2の入力端子A2,A1,C,B1,B2には、順に、+2E[V],+1E[V],0[V],-1E[V],-2E[V]の電圧が入力される。
 ハーフブリッジ回路2は、スイッチング素子Qu1~Qu4,Qx1~Qx4およびダイオードDu1,Du2,Dx1,Dx2で構成されている。スイッチング素子Qu1~Qu4,Qx1~Qx4には、それぞれダイオードが逆並列に接続されている。スイッチング素子Qu4,Qu3,Qu2,Qu1,Qx1,Qx2,Qx3,Qx4は、ハーフブリッジ回路2の入力端子A2とB2との間に、順に直列接続されている。そして、スイッチング素子Qu4とQu3の接続点と、スイッチング素子Qx1とQx2の接続点との間に、ダイオードDu3とDx1とが、順に直列接続されている。また、スイッチング素子Qu3とQu2の接続点と、スイッチング素子Qx2とQx3の接続点との間に、ダイオードDu2とDx2とが、順に直列接続されている。さらに、スイッチング素子Qu2とQu1の接続点と、スイッチング素子Qx3とQx4の接続点との間に、ダイオードDu1とDx3とが、順に直列接続されている。
 そして、ダイオードDu3とDx1の接続点は、入力端子A1に接続されている。ダイオードDu2とDx2の接続点は、入力端子Cに接続されている。ダイオードDu1とDx3の接続点は、入力端子B1に接続されている。また、スイッチング素子Qu1とQx1の接続点は、出力端子Uに接続されている。
 交流電源4は、双方向スイッチS0を介して、直流電源1の出力端子Oとハーフブリッジ回路2の出力端子Uとの間に接続される。交流電源4は、直流電源1の出力端子Oの電位を基準に、交流電圧Viを出力する。交流電圧Viは、直流電源1の正側最大電圧+2E[V]と負側最大電圧-2E[V]との間で変化する正弦波電圧である。
 負荷3は、直流電源1の出力端子Oとハーフブリッジ回路2の出力端子Uとの間に接続される。したがって、負荷3には、直流電源1から出力される5レベルの直流電圧と交流電源4の電圧Viのうち、いずれかの電圧が印加される。
 直流電源1の各単位直流電源の電圧は、電圧検出器6-1,6-2,7-1,7-2で検出されて、制御回路5に入力される。また、交流電源4の電圧Viは、電圧検出器8で検出されて、制御回路5に入力される。
 ここで、ハーフブリッジ回路2を構成するスイッチング素子は、IGBT(Insulated Gate Bipolar Transistor)である。しかし、スイッチング素子は、IGBTに限られず、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)など、交流電源4の周波数に対して十分に高い周波数でオンオフ動作ができる半導体素子であれば良い。
 また、双方向スイッチS0は、IGBTを逆並列に接続して構成されており、双方向の導通を制御することができるスイッチである。この双方向スイッチの構成は図2(a)に示されている。しかし、双方向スイッチS0は図2(a)に示す構成に限られず、図2(b)~図2(d)に示す構成からなる回路など、双方向の導通を制御することができるスイッチであればよい。図2(b)は、IGBTとダイオードとを直列接続した2組の回路を逆並列に接続した回路である。図2(c)は、IGBTにダイオードを逆並列に接続した2組の回路を逆直列に接続して構成した回路である。図2(d)は、図2(c)の回路において、IGBTをMOSFETに置き換えて構成した回路である。
 各スイッチング素子には、1E[V]の電圧が印加される。したがって、各スイッチング素子は、1E[V]以上の耐圧を有する半導体素子であれば良い。双方向スイッチS0には、最大で、直流電源1の正側直流電源または負側直流電源の電圧2E[V]と交流電源4の電圧Vi[V]とを加算した電圧が印加される。したがって、双方向スイッチS0は、各スイッチング素子よりも高い耐電圧を有する必要がある。双方向スイッチS0は、炭化ケイ素または窒化ガリウムを材料とするワイドバンドギャップ半導体で構成するのが良い。ワイドバンドギャップ半導体は、シリコンを材料とする半導体よりも耐圧が高いという特徴を有する。
 制御回路5は、スイッチング素子Qu1~Qu4,Qx1~Qx4それぞれをオンオフさせるための制御信号Gu1~Gu4,Gx1~Gx4を生成する。また、制御回路5は、双方向スイッチS0をオンオフさせるための制御信号Gs0を生成する。双方向スイッチS0は、前述のとおり、2つのスイッチング素子で構成されている。したがって、双方向スイッチS0の制御信号Gs0は、2つの制御信号からなる。
 この電力変換装置は、双方向スイッチS0を介して、交流電源1の電圧Viを出力端子Uに出力することができる点に特徴を有している。以下、この電力変換装置の動作を説明する。
 図3は、制御回路5を説明するための制御ブロック図である。制御回路5は、あらかじめ定められたスイッチング周期ごとに、ハーフブリッジ回路2の各スイッチング素子および双方スイッチS0をオンオフ動作させるための制御信号を生成する。各素子の制御信号は、電力変換装置の出力電圧指令Vo*と直流電源1の各出力端子から出力される5レベルの直流電圧および交流電源4の電圧Viとに基づいて生成される。
 出力電圧指令生成手段51は、出力電圧指令Vo*を生成する。出力電圧指令Vo*は、出力電圧選択手段52と制御モード判定手段53とに、入力される。また、電圧検出器6-1,6-2,7-1,7-2で検出された直流電源1の各単位直流電源の電圧と、電圧検出器8で検出された交流電源4の電圧Viとが、出力電圧選択手段52に入力される。出力電圧選択手段52は、直流電源1の各単位直流電源の電圧から、直流電源1の各出力端子から出力される5レベルの直流電圧を算出する。以下では、直流電源1から出力される5レベルの直流電圧と交流電源4の電圧Viとからなる電圧群を、第1グループの電圧という。
 出力電圧選択手段52は、第1グループの電圧と出力電圧指令Vo*とに基づいて、第1の電圧V1と第2の電圧V2とを選択する。出力電圧選択手段52は、併せて、第1の電圧V1と第2の電圧V2の出力時間t1、t2とを算出する。第1の電圧V1は、第1グループに含まれる電圧のうち、出力電圧指令Vo*以上であって、かつ出力電圧指令Vo*に最も近い電圧である。第2の電圧V2は、第1グループに含まれる電圧のうち、出力電圧指令Vo*以下であって、かつ出力電圧指令Vo*に最も近い電圧である。第1の電圧の出力時間t1は、スイッチング周期をTs[s]として、t1=Ts×(Vo*-Vi)/(2E-Vi)で算出する。第2の電圧の出力時間t2は、t2=Ts-t1で算出することができる。ここで、(Vo*-Vi)/(2E-Vi)は、パルス幅変調制御における変調率に相当する。
 制御モード判定手段53は、出力電圧選択手段52から出力される第1の電圧V1と第2の電圧V2とに基づいて、電力変換装置の制御モードδを判定する。制御信号生成手段54は、制御モード判定手段53から出力される制御モードδと、出力電圧選択手段52から出力される第1と第2の電圧V1,V2およびこれらの出力時間t1、t2とから、スイッチング素子Qu1~Qu4,Qx1~Qx4および双方向スイッチS0をオンオフするための制御信号Gu1~Gu4,Gx1~Gx4およびGs0を生成する。
 ハーフブリッジ回路2および双方向スイッチS0は、制御信号生成手段54から出力される制御信号に基づいて動作する。この動作により、電力変換装置から、スイッチング周期ごとに、時間幅t1の第1の電圧と時間幅t2の第2の電圧とが交互に出力される。電力変換装置から出力される電圧Voのスイッチング周期ごとの平均値は、そのスイッチング周期における出力電圧指令Vo*に等しい。
 図4は、制御モードδと電力変換装置の動作の関係を説明するための図である。この電力変換装置は、図12に示す制御モード1~5に加えて、制御モード0を有している。制御モード1は、出力端子Uに+2E[V]を出力する制御モードである。制御モード1では、スイッチング素子Qu1~Qu4がオンし、スイッチング素子Qx1~Qx4および双方向スイッチS0がオフする。制御モード2は、出力端子Uに+1E[V]を出力する制御モードである。制御モード2では、スイッチング素子Qu1~Qu3,Qx1がオンし、スイッチング素子Qu4,Qx2~Qx4および双方向スイッチS0がオフする。制御モード3は、出力端子Uに0[V]を出力する制御モードである。制御モード3では、スイッチング素子Qu1,Qu2,Qx1,Qx2がオンし、スイッチング素子Qu3,Qu4,Qx3,Qx4および双方向スイッチS0がオフする。制御モード4は、出力端子Uに-1E[V]を出力する制御モードである。制御モード4では、スイッチング素子Qu1,Qx1,Qx2,Qx3がオンし、スイッチング素子Qu2~Qu4,Qx4および双方向スイッチS0がオフする。制御モード5は、出力端子Uに-2E[V]を出力する制御モードである。制御モード5では、スイッチング素子Qx1~Qx4がオンし、スイッチング素子Qu1~Qu4および双方向スイッチS0がオフする。制御モード0は、出力端子Uに交流電源4の電圧Viを出力するモードである。制御モード0では、双方向スイッチS0がオンし、すべてのスイッチング素子がオフする。
 電力変換装置から出力される電圧Voと、第1グループの電圧および出力電圧指令Vo*との関係の一例を、図5~図7を用いて説明する。図5は、スイッチング周期T90における、出力電圧指令Vo*と交流電源4の電圧Viとの関係を示している。スイッチング周期T90は、出力電圧指令Vo*が正側の最大値となる位相(90[度]付近の位相)にあるスイッチング周期である。
 出力電圧指令Vo*は、交流電源4の電圧Viに同期し、交流電源4の電圧Viよりも高い電圧を出力するための正弦波状の電圧指令である。スイッチング周期T90において、出力電圧指令Vo*と交流電源4の電圧Viとは、共に、直流電源1の出力端子P1から出力される電圧+1E[V]と出力端子P2から出力される電圧+2E[V]との間にある。この場合、スイッチング周期T90における出力電圧Voの詳細は、図6のようになる。
 この場合、制御回路5は、第1グループの電圧のうち出力電圧指令Vo*以上であって、かつ出力電圧指令Vo*に最も近い電圧+2E[V]を、第1の電圧として選択する。+2E[V]の電圧を出力する制御モードは、制御モード1である。また、制御回路5は、第1グループの電圧のうち出力電圧指令Vo*以下であって、かつ出力電圧指令Vo*に最も近い交流電源1の電圧Viを、第2の電圧として選択する。交流電源1の電圧Viを出力する制御モードは、制御モード0である。そして、制御回路5は、スイッチング素子Qu1~Qu4をt1の時間オンさせ、スイッチング素子Qx1~Qx4および双方向スイッチS0をt1の時間オフさせるための、各素子の制御信号を生成する。さらに、制御回路5は、双方向スイッチS0をt2の時間オンさせ、スイッチング素子Qu1~Qu4およびスイッチング素子Qx1~Qx4をt2の時間オフさせるための、各素子の制御信号を生成する。
 すなわち、出力電圧指令Vo*と交流電源4の電圧Viとが、図5に示した関係にある場合、ハーフブリッジ回路2は、スイッチング周期T90において、制御モード1と制御モード0の組合せで動作する。ハーフブリッジ回路2が制御モード1と制御モード0の組合せで動作すると、出力端子Uには、図6に示すように、第1の電圧V1と第2の電圧V2とからなる電圧Voが出力される。
 上記では、スイッチング周期T90を例にとって説明したが、この電力変換装置は、すべてのスイッチング周期において、同様に動作する。その結果、出力端子Uには、基本波電圧が出力電圧指令Vo*に対応する交流電圧Voが出力される。
 この電力変換装置では、多くのスイッチング周期で、交流電源4の電圧Viが、第1の電圧または第2の電圧として選択される。交流電源4の電圧Viが第1の電圧または第2の電圧として選択されると、スイッチング周期内における出力電圧Voの変化幅は、単位直流電源の電圧E[V]よりも小さくなる。一方、図11に示したハーフブリッジ回路2のみで動作する電力変換装置の出力電圧の変化幅は、単位直流電源のE[V]に固定される。したがって、本実施形態の電力変換装置は、ハーフブリッジ回路2のみで動作する電力変換装置に比べて、出力電圧Voの波形ひずみを低減することができる。
 また、交流電源4の電圧Viを出力する制御モードは、図4に示すとおり、制御モード0である。制御モード0では、双方向スイッチS0のみがオンし、すべてのスイッチング素子はオフしている。したがって、直流電源1から負荷3に流れる電流よって導通損失を発生させる素子は、双方向スイッチS0のみとなる。一方、図11に示したハーフブリッジ回路2のみで動作する電力変換装置では、常に、3素子もしくは4素子で導通損失が発生する。したがって、制御モード0を有する本実施形態の電力変換装置は、ハーフブリッジ回路2のみで動作する電力変換装置に比べて、導通損失を低減することができる。
 次に、図7を参照して、制御モード0Aの動作を説明する。制御モード0Aは、交流電源4の電圧Viが(Vo*-ΔV)と(Vo*+ΔV)の間にあるとき、交流電源1の電圧Viを出力端子Uに出力する制御モードである。ΔVの値は、例えば、出力電圧指令Vo*の定格電圧値の5%に設定する。制御モード0Aでは、制御モード0と同様、双方向スイッチS0がオンし、すべてのスイッチング素子がオフする。
 制御回路5は、スイッチング周期がどの制御モードに該当するかを判断するに際し、まず、スイッチング周期が制御モード0Aに該当するか否かを判断する。交流電源4の電圧Viが(Vo*-ΔV)と(Vo*+ΔV)の間にあるとき、そのスイッチング周期は、制御モード0Aに該当する。このとき、制御回路5は、制御モードを0Aに設定する。そして、制御モード0Aのとき、制御回路5は、双方向スイッチS0を双方向にオン(導通)させるとともに、すべてのスイッチング素子をオフさせるための制御信号を生成する。
 一方、スイッチング周期が制御モード0Aの条件を満たさない場合、制御回路5は、スイッチング周期が制御モード0~5のいずれであるかを判断する。そして、制御回路5は、制御モードを0~5のいずれかに設定する。この場合、スイッチング周期においてオンおよびオフする素子は、図4に示すとおりである。
 制御モード0Aでは、出力電流が流れる素子を双方向スイッチS0のみである。この電力変換装置は、制御モード0Aを設けることにより、双方向スイッチS0のみがオンとなるスイッチング周期を大幅に増やすことができる。したがって、この電力変換装置は、制御モード0~5のうちの2つの制御モードを組み合わせてハーフブリッジ回路2を動作させる場合に比べて、素子の導通損失を、さらに低減することができる。なお、電力変換装置が制御モード0Aで動作する場合、スイッチング素子および双方向スイッチは、スイッチング損失を発生しない。
 交流電圧Viの正側最大値が単位直流電源Psp2の両端から出力される電圧の間にあり、負側最大値が単位直流電源Psn2の両端から出力される電圧の間にある場合に、上述した電力変換装置の効果がより有効に発揮される。
 上述した実施形態は図1に示したハーフブリッジ回路2から負荷3に相電圧Voを出力する電力変換装置であるが、このハーフブリッジ回路2を2組用いて単相の電力変換装置を構成しても、同様の効果を得ることができる。また、図1に示した電力変換装置を複数組用いて三相の電力変換装置を構成しても、同様の効果を得ることができる。この場合、一部の構成要素を共通の構成要素として、電力変換装置を構成してもよい。
 次に、図8は、(2n+1)レベル(nは2以上の整数)の直流電圧と直流電源4の電圧Viとを選択的に出力可能な電力変換装置の実施形態を説明するための図である。図8において、11は直流電源、21はハーフブリッジ回路である。51は、ハーフブリッジ回路21および双方向スイッチS0の制御信号を生成するための制御回路である。図8に示した電力変換装置の構成において、図1に示した電力変換装置の構成要素と同じ構成要素には、同じ符号を付している。図1に示した電力変換装置の構成要素と同じ符号を付した構成要素の詳細説明は、省略する。
 直流電源11は、図1に示した5レベルの電圧を出力する直流電源1を、(2n+1)レベルの電圧を出力する直流電源に拡張した構成となっている。すなわち、直流電源11の正側直流電源と負側直流電源とは、それぞれn個の単位直流電源を直列接続してなる直流電源である。正側直流電源と負側直流電源の接続点は、直流電源11の中間電位点である。直流電源11の中間電位点は、出力端子Oに接続されて、ゼロ電圧を出力する。正側直流電源は、単位直流電源Psp1,Psp2,・・・,Psp(n-1),Psp(n)を、中間電位点から順に直列接続して構成されている。負側直流電源は、直流電源Psn1,Psn2,・・・,Psn(n-1),Psn(n)を、中間電位点から順に直列接続して構成されている。各単位直流電源の端子間電圧は、E[V]である。
 直流電源11は、出力端子P(n),P(n-1),・・・,P2,P1,O,N1,N2,・・・,N(n-1),N(n)を備えている。出力端子Oは、直流電源11の中間電圧であるゼロ電圧0[V]を出力する。出力端子P1,P2,・・・,P(n-1),P(n)は、順に、+1E[V],+2E[V],・・・,+(n-1)E[V],+(n)E[V]の電圧を出力する。出力端子N1,N2,・・・,N(n-1),N(n)は、順に、-1E[V],-2E[V],・・・,-(n-1)E[V],-(n)E[V]の電圧を出力する。
 ハーフブリッジ回路21は、図1に示した5レベルの直流電圧を入力するハーフブリッジ回路2を、(2n+1)レベルの直流電圧を入力するハーフブリッジ回路に拡張した構成となっている。ハーフブリッジ回路21は、入力端子A(n),A(n-1),・・・,A2,A1,C,B1,B2,・・・,B(n-1),B(n)を備える。また、ハーフブリッジ回路21は、出力端子Uを備える。ハーフブリッジ回路21の回路構成は、図1に示したハーフブリッジ回路2を拡張した回路構成であるので、その詳細説明は、省略する。
 ハーフブリッジ回路21の各入力端子は、直流電源11の対応する出力端子P(n),P(n-1),・・・,P2,P1,O,N1,N2,・・・,N(n-1),N(n)に接続される。したがって、ハーフブリッジ回路21の入力端子A(n),A(n-1),・・・,A2,A1,C,B1,B2,・・・,B(n-1),B(n)には、順に、+(n)E[V],+(n-1)E[V],・・・,+2E[V],+1E[V],0[V],-1E[V],-2E[V],・・・,-(n-1)E[V],-(n)[V]の電圧が入力される。
 交流電源4は、双方向スイッチS0を介して、直流電源11の出力端子Oとハーフブリッジ回路21の出力端子Uとの間に接続される。交流電源4は、直流電源11の出力端子Oの電位を基準に、交流電圧Viを出力する。交流電圧Viは、直流電源11の正側最大電圧+(n)E[V]と負側最大電圧-(n)E[V]との間で変化する正弦波電圧である。
 スイッチング素子は、印加される電圧が1E[V]であるため、1E[V]以上の耐圧を有する半導体素子であれば良い。双方向スイッチS0には、最大で、直流電源11の正側直流電源または負側直流電源の電圧(n)E[V]と交流電源4の電圧Vi[V]とを加算した電圧が印加される。したがって、双方向スイッチS0は、各スイッチング素子よりも高い耐電圧を有する必要がある。双方向スイッチS0は、炭化ケイ素または窒化ガリウムを材料とするワイドバンドギャップ半導体で構成するのが良い。
 負荷3は、直流電源11の出力端子Oとハーフブリッジ回路21の出力端子Uとの間に接続される。したがって、負荷3には、直流電源11から出力される(2n+1)レベルの直流電圧と交流電源4の電圧Viのうち、いずれかの電圧が印加される。
 直流電源11の各単位直流電源の電圧は、電圧検出器6-1,・・・,6-n,7-1,・・・,7-nで検出されて、制御回路51に入力される。また、交流電源4の電圧Viは、電圧検出器8で検出されて、制御回路51に入力される。以下では、直流電源11から出力される(2n+1)レベルの直流電圧と交流電源4の電圧Viとからなる電圧群を、第2グループの電圧という。
 制御回路51は、スイッチング素子Qu1~Qu(2n),Qx1~Qx(2n)それぞれをオンオフさせるための制御信号Gu1~Gu(2n),Gx1~Gx(2n)を生成する。また、制御回路51は、双方向スイッチS0をオンオフさせるための制御信号Gs0を生成する。双方向スイッチS0の制御信号Gs0は、前述のとおり、2つの制御信号からなる。
 制御回路51は、図1に示した制御回路5と同様の論理で動作する。すなわち、制御回路51は、各スイッチング周期において、出力電圧指令Vo*に基づいて、第2グループの電圧の中から第1の電圧と第2の電圧を選択する。すなわち、制御回路51は、第2グループに含まれる電圧のうち、出力電圧指令Vo*以上であって、かつ出力電圧指令Vo*に最も近い電圧を第1の電圧として選択する。また、制御回路51は、第2グループに含まれる電圧のうち、出力電圧指令Vo*以下であって、かつ出力電圧指令Vo*に最も近い電圧を第2の電圧として選択する。制御回路51は、さらに、第1の電圧の出力時間t1と第2の電圧の出力時間t2とを算出する。
 この電力変換装置は、制御モードとして、制御モード1~(2n+1),0,0Aを有している。制御回路51は、上記制御モードの中から、第1の電圧を出力するための制御モードと第2の電圧を出力するための制御モードとを決定する。そして、制御回路51は、決定した制御モードおよび第1と第2の電圧の出力時間t1,t2に基づいて、各スイッチング周期内における各スイッチング素子および双方向スイッチS0をオンオフさせるための制御信号を生成する。
 第1の電圧と第2の電圧とは、各スイッチング周期において、上記制御信号に基づいて交互に出力される。その結果、出力端子Uには、基本波電圧が出力電圧指令Vo*に対応する交流電圧Voが出力される。
 この電力変換装置では、スイッチング周期の多くで、交流電源4の電圧Viが、第1の電圧または第2の電圧として選択される。交流電源4の電圧Viが第1の電圧または第2の電圧として選択されると、スイッチング周期内における出力電圧Voの変化幅は、単位直流電源の電圧E[V]よりも小さくなる。一方、ハーフブリッジ回路21の出力電圧の変化幅は、単位直流電源のE[V]に固定される。したがって、本実施形態の電力変換装置は、ハーフブリッジ回路21のみで動作する電力変換装置に比べて、出力電圧Voの波形ひずみを低減することができる。
 また、第1の電圧または第2の電圧が交流電源4の電圧Viとなる制御モード0では、双方向スイッチS0のみがオンし、すべてのスイッチング素子はオフしている。したがって、制御モード0では、直流電源11から負荷3に流れる電流によって導通損失を発生させる素子は、双方向スイッチS0のみとなる。一方、ハーフブリッジ回路21のみで動作する電力変換装置では、常に、3以上の素子で導通損失が発生する。したがって、制御モード0を有する本実施形態の電力変換装置は、ハーフブリッジ回路21のみで動作する電力変換装置に比べて、導通損失を低減することができる。
 また、この電力変換装置において、制御モード0Aは、他の制御モードに優先して設定される。そして、制御モード0Aでは、出力電流が流れる素子を双方向スイッチS0のみにすることができる。したがって、この電力変換装置は、制御モード0~(2n+1)のいずれかの制御モードを組み合わせて動作する電力変換装置に比べて、素子の導通損失を、さらに低減することができる。なお、電力変換装置が制御モード0Aで動作する場合、スイッチング素子および双方向スイッチにおいて、スイッチング損失は発生しない。
 交流電圧Viの正側最大値が単位直流電源Psp(n)の両端から出力される電圧の間にあり、負側最大値が単位直流電源Psn(n)の両端から出力される電圧の間にある場合に、上述した電力変換装置の効果がより有効に発揮される。
 上述した実施形態は図8に示したハーフブリッジ回路21から負荷3に相電圧Voを出力する電力変換装置であるが、このハーフブリッジ回路21を2組用いて単相の電力変換装置を構成しても、同様の効果を得ることができる。また、図8に示した電力変換装置を複数組用いて三相の電力変換装置を構成しても、同様の効果を得ることができる。この場合、一部の構成要素を共通の構成要素として、電力変換装置を構成してもよい。
 次に、図9は、図1に示したハーフブリッジ回路2を他の回路構成からなるハーフブリッジ回路22に置き換えた電力変換装置の実施形態を説明するための図である。ハーフブリッジ回路22および双方向スイッチS0の制御信号は、制御回路52で生成される。図9に示した電力変換装置の構成において、図1に示した電力変換装置の構成要素と同じ構成要素には同じ符号を付している。図1に示した電力変換装置の構成要素と同じ符号を付した構成要素の詳細説明は、省略する。
 交流電源4は、双方向スイッチS0を介して、直流電源1の出力端子Oとハーフブリッジ回路22の出力端子Uとの間に接続される。交流電源4は、直流電源1の出力端子Oの電位を基準に、交流電圧Viを出力する。交流電圧Viは、直流電源1の正側最大電圧+2E[V]と負側最大電圧-2E[V]との間で変化する正弦波電圧である。
 負荷3は、直流電源1の出力端子Oとハーフブリッジ回路22の出力端子Uとの間に接続される。したがって、負荷3には、直流電源1から出力される5レベルの直流電圧と交流電源4の電圧Viのうち、いずれかの電圧が選択的に印加される。
 以下では、図1に示した電力変換装置と同様、直流電源1から出力される5レベルの直流電圧と交流電源4の電圧Viとからなる電圧群を、第1グループの電圧という。
 ハーフブリッジ回路22は、スイッチング素子Qu1,Qu2,Qx1,Qx2および双方向スイッチSu1,Sc,sx1で構成されている。ハーフブリッジ回路22の入力端子A2とB2の間に、それぞれダイオードを逆並列に接続したスイッチング素子Qu2,Qu1,Qx1,Qx2が、順に直列接続されている。そして、スイッチング素子Qu2とQu1の接続点と、入力端子A1との間に、双方向スイッチSu1が接続されている。出力端子Uと入力端子Cとの間に、双方向スイッチScが接続されている。スイッチング素子Qx1とQx2の接続点と、入力端子B1との間に、双方向スイッチSx1が接続されている。
 各スイッチング素子には、1E[V]の電圧が印加される。したがって、各スイッチング素子は、1E[V]以上の耐圧を有する半導体素子であれば良い。双方向スイッチSu1,Sc,Sx1は、双方向スイッチS0と同様の回路構成をとっている。双方向スイッチSu1,Sx1には、1E[V]の電圧が印加される。したがって、双方向スイッチSu1,Sx1は、スイッチング素子と同程度の耐圧を有する半導体素子で構成すれば良い。
 双方向スイッチScには、最大2E[V]の電圧が印加される。したがって、双方向スイッチScは、2E[V]以上の耐圧を有する半導体素子で構成する必要がある。また、双方向スイッチS0には、最大で、直流電源1の正側直流電源または負側直流電源の電圧2E[V]と交流電源の電圧Viとを加算した電圧が印加される。したがって、双方向スイッチS0,Scは、炭化ケイ素または窒化ガリウムを材料とするワイドバンドギャップ半導体で構成するのが良い。
 制御回路52は、スイッチング素子Qu1,Qu2,Qx1,Qx2および双方向スイッチSu1,Sc,Sx1それぞれをオンオフさせるための制御信号Gu1,Gu2,Gx1,Gx2およびGsu1,Gsc,Gsx1を生成する。また、制御回路52は、双方向スイッチS0をオンオフさせるための制御信号Gs0を生成する。双方向スイッチS0の制御信号Gs0は、前述のとおり、2つの制御信号からなる。
 制御回路52は、図1に示した制御回路5と同様の論理で動作する。すなわち、制御回路52は、各スイッチング周期において、出力電圧指令Vo*に基づいて、第1グループの電圧の中から第1の電圧と第2の電圧とを選択する。すなわち、制御回路52は、第1グループに含まれる電圧のうち、出力電圧指令Vo*以上であって、かつ出力電圧指令Vo*に最も近い電圧を第1の電圧として選択する。また、制御回路52は、第1グループに含まれる電圧のうち、出力電圧指令Vo*以下であって、かつ出力電圧指令Vo*に最も近い電圧を第2の電圧として選択する。制御回路52は、さらに、第1の電圧の出力時間t1と第2の電圧の出力時間t2とを算出する。
 この電力変換装置は、図1に示した電力変換装置と同様に、制御モード1~5,0,0Aを有する。制御回路52は、上記制御モードの中から、第1の電圧を出力するための制御モードと第2の電圧を出力するための制御モードとを決定する。そして、制御回路52は、決定した制御モードと第1と第2の電圧の出力時間t1,t2に基づいて、各スイッチング周期内における各スイッチング素子および各双方向スイッチをオンオフさせるための制御信号を生成する。
 第1の電圧と第2の電圧とは、各スイッチング周期において、上記制御信号に基づいて交互に出力される。その結果、出力端子Uには、基本波電圧が出力電圧指令Vo*に対応する交流電圧Voが出力される。
 この電力変換装置では、スイッチング周期の多くで、交流電源4の電圧Viが、第1の電圧または第2の電圧として選択される。交流電源4の電圧Viが第1の電圧または第2の電圧として選択されると、スイッチング周期内における出力電圧Voの変化幅は、単位直流電源の電圧E[V]よりも小さくなる。一方、ハーフブリッジ回路22の出力電圧の変化幅は、単位直流電源のE[V]に固定される。したがって、本実施形態の電力変換装置は、ハーフブリッジ回路22のみで動作する電力変換装置に比べて、出力電圧Voの波形ひずみを低減することができる。
 また、第1の電圧または第2の電圧が交流電源4の電圧Viとなる制御モード0では、双方向スイッチS0のみがオンし、すべてのスイッチング素子および他の双方向スイッチはオフしている。したがって、制御モード0では、直流電源1から負荷3に流れる電流によって導通損失を発生させる素子は、双方向スイッチS0のみとなる。一方、ハーフブリッジ回路22のみで動作する電力変換装置では、双方向スイッチScをオンさせることによりゼロ電圧を出力する制御モード3以外の制御モードでは、2素子で導通損失が発生する。したがって、制御モード0を有する本実施形態の電力変換装置は、ハーフブリッジ回路22のみで動作する電力変換装置に比べて、導通損失を低減することができる。
 また、この電力変換装置において、制御モード0Aは、他の制御モードに優先して設定される。そして、制御モード0Aでは、出力電流が流れる素子を双方向スイッチS0のみにすることができる。したがって、制御モード0~5のいずれかの制御モードで動作する電力変換装置に比べて、素子の導通損失を、さらに低減することができる。なお、この場合、スイッチング素子および双方向スイッチにおいて、スイッチング損失は発生しない。
 交流電圧Viの正側最大値が単位直流電源Psp2の両端から出力される電圧の間にあり、負側最大値が単位直流電源Psn2の両端から出力される電圧の間にある場合に、上述した電力変換装置の効果がより有効に発揮される。
 上述した実施形態は図9に示したハーフブリッジ回路22から負荷3に相電圧Voを出力する電力変換装置であるが、このハーフブリッジ回路22を2組用いて単相の電力変換装置を構成しても、同様の効果を得ることができる。また、図9に示した電力変換装置を複数組用いて三相の電力変換装置を構成しても、同様の効果を得ることができる。この場合、一部の構成要素を共通の構成要素として、電力変換装置を構成してもよい。
 次に、図10は、(2n+1)レベル(nは2以上の整数)の直流電圧と直流電源4の電圧Viとを選択的に出力可能な電力変換装置の他の実施形態を説明するための図である。図10において、11は直流電源、23はハーフブリッジ回路である。53は、ハーフブリッジ回路23および双方向スイッチS0の制御信号を生成するための制御回路である。図10に示した電力変換装置の構成において、図8および図9に示した電力変換装置と同じ構成要素には同じ符号を付している。図8および図9に示した電力変換装置の構成要素と同じ符号を付した構成要素の詳細説明は、省略する。
 ハーフブリッジ回路23は、入力端子A(n),A(n-1),・・・,A1,C,B1,・・・B(n-1),B(n)および出力端子Uを備える。ハーフブリッジ回路23の各入力端子は、直流電源11の対応する出力端子P(n),P(n-1),・・・,P1,O,N1,・・・N(n-1),N(n)に接続される。したがって、ハーフブリッジ回路23の入力端子A(n),A(n-1),・・・,A1,C,B1,・・・B(n-1),B(n)には、順に、+(n)E[V],+(n-1)E[V],・・・,+1E[V],0[V],-1E[V],・・・,-(n-1)E[V],-(n)[V]の電圧が入力される。
 ハーフブリッジ回路23は、図10から明らかなように、図9に示した5レベルのハーフブリッジ回路22を、(2n+1)レベルに拡張したハーフブリッジ回路である。ハーフブリッジ回路23の構成の詳細説明は、省略する。
 交流電源4は、双方向スイッチS0を介して、直流電源11の出力端子Oとハーフブリッジ回路23の出力端子Uとの間に接続される。交流電源4は、直流電源11の出力端子Oの電位を基準に、交流電圧Viを出力する。交流電圧Viは、直流電源11の正側最大電圧+(n)E[V]と負側最大電圧-(n-1)E[V]との間で変化する正弦波電圧である。
 各スイッチング素子には、1E[V]の電圧が印加される。したがって、各スイッチング素子は、1E[V]以上の耐圧を有する半導体素子であれば良い。双方向スイッチSu1~Su(n-1),Sc,Sx1~Sx(n-1)は、双方向スイッチS0と同様の回路構成をとっている。双方向スイッチSu1~Su(n-1),Sx1~Sx(n-1)には、1E[V]の電圧が印加される。したがって、双方向スイッチSu1~Su(n-1),Sx1~Sx(n-1)は、スイッチング素子と同程度の耐圧を有する半導体素子で構成すれば良い。
 双方向スイッチScには、最大(n)E[V]の電圧が印加される。したがって、双方向スイッチScは、(n)E[V]以上の耐圧を有する半導体素子で構成する必要がある。また、双方向スイッチS0には、最大で、直流電源11の正側直流電源または負側直流電源の電圧(n)E[V]と交流電源の電圧Viとを加算した電圧が印加される。したがって、双方向スイッチS0,Scは、炭化ケイ素または窒化ガリウムを材料とするワイドバンドギャップ半導体で構成するのが良い。
 負荷3は、直流電源11の出力端子Oとハーフブリッジ回路23の出力端子Uとの間に接続される。したがって、負荷3には、直流電源11から出力される(2n+1)レベルの直流電圧と交流電源4の電圧Viのうち、いずれかの電圧が印加される。
 以下では、図8に示した電力変換装置と同様、直流電源11から出力される(2n+1)レベルの直流電圧と交流電源4の電圧Viとからなる電圧群を、第2グループの電圧という。
 制御回路53は、スイッチング素子Qu1~Qu(n),Qx1~Qx(n)および双方向スイッチSu1~Su(n-1),Sc,Sx1~Sx(n-1)それぞれをオンオフさせるための制御信号Gu1~Gu(n),Gx1~Gx(n)およびGsu1~Gsu(n-1),Gsc,Gsx1~Gsx(n-1)を生成する。また、制御回路53は、双方向スイッチS0をオンオフさせるための制御信号Gs0を生成する。双方向スイッチS0の制御信号Gs0は、前述のとおり、2つの制御信号からなる。
 制御回路53は、図8に示した制御回路51と同様の論理で動作する。すなわち、制御回路53は、各スイッチング周期において、出力電圧指令Vo*に基づいて、第2グループの電圧の中から第1の電圧と第2の電圧を選択する。すなわち、制御回路53は、第2グループに含まれる電圧のうち、出力電圧指令Vo*以上であって、かつ出力電圧指令Vo*に最も近い電圧を第1の電圧として選択する。また、制御回路53は、第2グループに含まれる電圧のうち、出力電圧指令Vo*以下であって、かつ出力電圧指令Vo*に最も近い電圧を第2の電圧として選択する。制御回路53は、さらに、第1の電圧の出力時間t1と第2の電圧の出力時間t2を算出する。
 この電力変換装置は、制御モードとして、制御モード1~(2n+1),0,0Aを有する。制御回路53は、上記制御モードの中から、第1の電圧を出力するための制御モードと第2の電圧を出力するための制御モードを決定する。そして、制御回路53は、決定した制御モードと第1と第2の電圧出力時間t1,t2に基づいて、各スイッチング周期内における各スイッチング素子および各双方向スイッチをオンオフさせるための制御信号を生成する。
 第1の電圧と第2の電圧とは、各スイッチング周期において、上記制御信号に基づいて交互に出力される。その結果、出力端子Uには、基本波電圧が出力電圧指令Vo*に対応する交流電圧Voが出力される。
 この電力変換装置では、スイッチング周期の多くで、交流電源4の電圧Viが、第1の電圧または第2の電圧として選択される。交流電源4の電圧Viが第1の電圧または第2の電圧として選択されると、スイッチング周期内における出力電圧Voの変化幅は、単位直流電源の電圧E[V]よりも小さくなる。一方、ハーフブリッジ回路23の出力電圧の変化幅は、単位直流電源のE[V]に固定される。したがって、本実施形態の電力変換装置は、ハーフブリッジ回路23のみで動作する電力変換装置に比べて、出力電圧Voの波形ひずみを低減することができる。
 また、第1の電圧または第2の電圧が交流電源4の電圧Viとなる制御モード0では、双方向スイッチS0のみがオンし、すべてのスイッチング素子および他の双方向スイッチはオフしている。したがって、出力電流が流れることによって導通損失を発生させる素子は、双方向スイッチS0のみとなる。一方、ハーフブリッジ回路23のみで動作する電力変換装置では、双方向スイッチScをオンさせることによりゼロ電圧を出力する制御モード以外の制御モードでは、常に、2以上の素子で導通損失が発生する。したがって、制御モード0を有する本実施形態の電力変換装置は、ハーフブリッジ回路23のみで動作する電力変換装置に比べて、導通損失を低減することができる。
 また、この電力変換装置において、制御モード0Aは、他の制御モードに優先して設定される。そして、制御モード0Aでは、出力電流が流れる素子を双方向スイッチS0のみにすることができる。したがって、制御モード0~(2n+1)のいずれかの制御モードを組み合わせて動作する電力変換装置に比べて、素子の導通損失を、さらに低減することができる。なお、この場合、スイッチング素子および双方向スイッチにおいて、スイッチング損失は発生しない。
 交流電圧Viの正側最大値が単位直流電源Psp(n)の両端から出力される電圧の間にあり、負側最大値が単位直流電源Psn(n)の両端から出力される電圧の間にある場合に、上述した電力変換装置の効果がより有効に発揮される。
 上述した実施形態は図10に示したハーフブリッジ回路23から負荷3に相電圧Voを出力する電力変換装置であるが、このハーフブリッジ回路23を2組用いて単相の電力変換装置を構成しても、同様の効果を得ることができる。また、図10に示した電力変換装置を複数組用いて三相の電力変換装置を構成しても、同様の効果を得ることができる。この場合、一部の構成要素を共通の構成要素として、電力変換装置を構成してもよい。
 本発明は、瞬時電圧低下補償装置または無停電電源装置など、交流電源の電圧変動および交流電源の停電が発生しても、負荷に安定な電圧を供給するための装置に適用することができる。
1,11    直流電源
2,21~23 ハーフブリッジ回路
3       負荷
4       交流電源
5,51~53 制御回路

Claims (11)

  1.  (2n+1)レベル(nは2以上の整数)の直流電圧を出力するための(2n+1)個の出力端子を有する直流電源と、
     前記直流電源の中間電位端子に一端が接続される交流電源と、
     (2n+1)個の入力端子と一つの出力端子とを有し、前記直流電源から出力される(2n+1)レベルの直流電圧を、対応する前記(2n+1)個の入力端子に入力するハーフブリッジ回路と、
     前記交流電源の他端と前記ハーフブリッジ回路の前記出力端子との間に接続される双方向スイッチと、
    を備えたことを特徴とする電力変換装置。
  2.  前記双方向スイッチは、前記ハーフブリッジ回路を構成する半導体素子よりも高い耐電圧を有していることを特徴とする請求項1に記載の電力変換装置。
  3.  前記双方向スイッチは、炭化ケイ素または窒化ガリウムのいずれか一方を材料とするワイドバンドギャップ半導体で構成されていることを特徴とする請求項1に記載の電力変換装置。
  4.  前記直流電源は、
     単位電圧を出力する単位直流電源を中間電位端子側から順にn個直列接続してなる正側直流電源と、
     前記中間電位端子側から順にn個直列接続してなる負側直流電源と、
    を直列接続して構成されており、
     前記(2n+1)レベルの直流電圧は、
     前記中間電位端子から出力されるゼロ電圧と、
     前記正側直流電源から出力されるnレベルの正側直流電圧と、
     前記負側直流電源から出力されるnレベルの負側直流電圧と、
    からなることを特徴とする請求項1に記載の電力変換装置。
  5.  前記交流電源から出力される正弦波電圧の振幅は、前記正側直流電源と前記負側直流電源とが出力する電圧の最大値よりも小さいことを特徴とする請求項4に記載の電力変換装置。
  6.  前記交流電源から出力される正弦波電圧の正側最大値は、前記正側直流電圧を構成するn番目の単位直流電源の両端から出力される電圧の間にあり、
     前記交流電源から出力される正弦波電圧の負側最大値は、前記負側直流電圧を構成するn番目の単位直流電源の両端から出力される電圧の間にある、
    ことを特徴とする請求項4に記載の電力変換装置。
  7.  請求項4に記載の電力変換装置を複数組用いて構成されていることを特徴とする三相の電力変換装置。
  8.  あらかじめ定められたスイッチング周期ごとに、前記(2n+1)レベルの直流電圧および前記交流電源の電圧の中から、出力電圧指令に基づいて選択した第1の電圧と第2の電圧とを、前記出力端子に交互に出力することを特徴とする請求項1に記載の電力変換装置。
  9.  前記第1の電圧は、前記(2n+1)レベルの直流電圧および前記交流電源の電圧のうち、前記出力電圧指令以上であって、かつ前記出力電圧指令に最も近い電圧であり、
     前記第2の電圧は、前記(2n+1)レベルの直流電圧および前記交流電源の電圧のうち、前記出力電圧指令以下であって、かつ前記出力電圧指令に最も近い電圧である、
    ことを特徴とする請求項8に記載の電力変換装置。
  10.  請求項9に記載の電力変換装置を複数組用いて構成されていることを特徴とする三相の電力変換装置。
  11.  前記第1の電圧と第2の電圧のうち、いずれか一方の電圧は、前記交流電源の電圧であることを特徴とする請求項9または請求項10のいずれかに記載の電力変換装置。
PCT/JP2013/003149 2013-05-17 2013-05-17 電力変換装置 WO2014184830A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014532179A JP5874835B2 (ja) 2013-05-17 2013-05-17 電力変換装置
PCT/JP2013/003149 WO2014184830A1 (ja) 2013-05-17 2013-05-17 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/003149 WO2014184830A1 (ja) 2013-05-17 2013-05-17 電力変換装置

Publications (1)

Publication Number Publication Date
WO2014184830A1 true WO2014184830A1 (ja) 2014-11-20

Family

ID=51897852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003149 WO2014184830A1 (ja) 2013-05-17 2013-05-17 電力変換装置

Country Status (2)

Country Link
JP (1) JP5874835B2 (ja)
WO (1) WO2014184830A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016220507A (ja) * 2015-05-26 2016-12-22 シシド静電気株式会社 電源装置及びイオン生成装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012120407A (ja) * 2010-12-03 2012-06-21 Toshiba Mitsubishi-Electric Industrial System Corp 無停電電源装置
JP2012165539A (ja) * 2011-02-04 2012-08-30 Mitsubishi Electric Corp 電源変換装置および空気調和機
JP2012222968A (ja) * 2011-04-08 2012-11-12 Panasonic Corp 電力変換装置
JP2012253981A (ja) * 2011-06-07 2012-12-20 Fuji Electric Co Ltd 5レベル変換回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012120407A (ja) * 2010-12-03 2012-06-21 Toshiba Mitsubishi-Electric Industrial System Corp 無停電電源装置
JP2012165539A (ja) * 2011-02-04 2012-08-30 Mitsubishi Electric Corp 電源変換装置および空気調和機
JP2012222968A (ja) * 2011-04-08 2012-11-12 Panasonic Corp 電力変換装置
JP2012253981A (ja) * 2011-06-07 2012-12-20 Fuji Electric Co Ltd 5レベル変換回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016220507A (ja) * 2015-05-26 2016-12-22 シシド静電気株式会社 電源装置及びイオン生成装置

Also Published As

Publication number Publication date
JP5874835B2 (ja) 2016-03-02
JPWO2014184830A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
US9142956B2 (en) Multilevel power converter
US9660482B2 (en) Power conversion device with momentary voltage drop compensation
JP4904534B2 (ja) マトリックスコンバータのパルス幅変調制御
US10250159B2 (en) Five-level inverter topology with high voltage utilization ratio
EP2357720B1 (en) Power conversion device
JP2014079145A (ja) 双方向dc/dcコンバータ
JP5880628B2 (ja) マトリックスコンバータ
JPWO2014125697A1 (ja) 三相電力変換装置
US11159160B2 (en) AC switch, and uninterruptible power supply and voltage sag compensator including AC switch
WO2014030181A1 (ja) 電力変換装置
JP5610107B1 (ja) インバータ装置
WO2013136378A1 (ja) 電力変換装置
CN105900328A (zh) 功率转换装置
JP5548421B2 (ja) 電圧増大回路を備えたパワーコンバータ回路の動作方法
JP5652454B2 (ja) 電力変換装置
JP5874835B2 (ja) 電力変換装置
WO2012164788A1 (ja) 電源装置
JP2009095159A (ja) 電力変換装置
JP5849632B2 (ja) 電力変換装置
JP4870019B2 (ja) マトリックスコンバータ制御装置
JP2017169250A (ja) マルチレベル電力変換装置
JP4870025B2 (ja) マトリックスコンバータ制御装置
JPWO2017034028A1 (ja) インバータの制御方法
JP2016015883A (ja) 電力変換装置
JP2015181343A (ja) マトリックスコンバータ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014532179

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13884818

Country of ref document: EP

Kind code of ref document: A1