WO2014183367A1 - 一种有机阻变存储器及制备方法 - Google Patents

一种有机阻变存储器及制备方法 Download PDF

Info

Publication number
WO2014183367A1
WO2014183367A1 PCT/CN2013/084764 CN2013084764W WO2014183367A1 WO 2014183367 A1 WO2014183367 A1 WO 2014183367A1 CN 2013084764 W CN2013084764 W CN 2013084764W WO 2014183367 A1 WO2014183367 A1 WO 2014183367A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
parylene
thickness
deposition
bottom electrode
Prior art date
Application number
PCT/CN2013/084764
Other languages
English (en)
French (fr)
Inventor
蔡一茂
刘业帆
白文亮
王宗巍
方亦陈
黄如
Original Assignee
北京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学 filed Critical 北京大学
Priority to US14/396,037 priority Critical patent/US9431620B2/en
Priority to DE112013007065.0T priority patent/DE112013007065T5/de
Publication of WO2014183367A1 publication Critical patent/WO2014183367A1/zh

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0014RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0014RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material
    • G11C13/0016RRAM elements whose operation depends upon chemical change comprising cells based on organic memory material comprising polymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/50Bistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO

Definitions

  • the present invention belongs to the field of organic electronics and CMOS hybrid integrated circuit technology, and in particular relates to a uniform optimized structure of an organic resistive random access memory and a preparation method thereof. Background technique
  • resistive memory has received extensive attention in the field of integrated circuits.
  • Resistive memory is a non-volatile memory, and the current market share of non-volatile memory is mainly occupied by flash memory.
  • the basic principle of the resistive memory is that the resistor embodied in the memory structure can be reversibly converted between a high-impedance state ("0" state) and a low-resistance state ("1" state) under the application of an applied voltage or current. To achieve data storage.
  • organic materials represent a huge advantage.
  • organic materials are rich in variety, simple in synthesis and preparation, and low in cost. At the same time, organic materials can be used to implement transparent electronic systems such as e-paper, electronic display (OLED). [03] The consistency of organic resistive memory has always been an important research direction. Summary of the invention
  • the present invention proposes an organic resistive memory based on parylene to improve device uniformity and a method of fabricating the same.
  • the present invention proposes an improved resistive memory structure to improve device uniformity.
  • the intermediate functional layer of the device uses parylene with excellent resistance properties, and the current-voltage (I-V) characteristic curve of the resistive process is shown in Fig. 1.
  • the device jumps from high-resistance state to low-resistance state under the excitation of forward voltage; 2—low-resistance state retention process; 3—the device is driven from low-resistance state to high-resistance under the excitation of negative voltage State transition process; 4 high resistance state to maintain the process.
  • the voltage of the upper electrode can control the resistance of the memory, causing a transition between high impedance and low resistance, that is, a transition between the two states of memory "0", "1".
  • An organic resistive memory memory can be fabricated on a silicon substrate, and the device unit is a MIM capacitor structure.
  • the top electrode of the MIM structure is Al
  • the bottom electrode is ITO (indium tin oxide)
  • the intermediate functional layer is parylene.
  • the device is characterized in that the parylene layer of the functional layer is deposited multiple times, and an ALD deposition of A1 2 0 3 (ie, atomic layer deposition) is performed between each deposition of parylene. .
  • the electrical properties of the device are controlled by controlling the deposition area of the A1 2 0 3 to form a weak region that facilitates the formation of the conductive path.
  • the parylene layer as a functional layer has a thickness of between 20 nm and 80 nm.
  • the top electrode is Al and has a thickness between 200 and 500 nm.
  • the bottom electrode is ITO and has a thickness of between 200 and 500 nm.
  • the A1 2 0 3 thickness is in the range of l-3 nm, and the pattern area is between 100 nm X 100 nm and lum X lum.
  • the polymer of the parylene is parylene type C, parylene type N or parylene type D.
  • the present invention also provides a method for preparing an organic resistive memory, comprising the following steps:
  • the bottom electrode is formed by a physical vapor deposition (PVD) method, having a thickness between 200 nm and 500 nm, and patterning the lower electrode by standard photolithography;
  • PVD physical vapor deposition
  • the first layer of parylene-C layer was grown by Polymer CVD.
  • the deposition is carried out using a polymerized CVD equipment of poly-p-xylene, and the standard parameters of the equipment are selected, the layer thickness is 20 nm, and the deposition speed is between lnm/min and lOnm/min;
  • FIG. 1 is a schematic diagram showing a current-voltage characteristic curve of a resistive process of the device of the present invention.
  • Figures 2-9 correspond to the implementation steps of the embodiment.
  • FIG. 10 is a diagrammatic illustration of Figure 2-9. detailed description
  • the Al is deposited by a PVD process with a thickness of 200 nm.
  • the top electrode is defined by photolithography and stripping in a conventional process, and the bottom electrode is taken out, as shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)

Abstract

一种有机阻变存储器及其制备方法,该器件以硅为衬底,器件单元为MIM电容结构,采用上下层状结构,该MIM结构的顶电极为Al,底电极为ΙΤΟ,中间功能层为聚对二甲苯,其特征是,功能层的聚对二甲苯分多次进行淀积,每两次聚对二甲苯的淀积之间进行一次Αl2O3的ALD淀积,通过控制Αl2O3淀积面积来形成有利于导电通道形成的薄弱区域,从而控制器件的电学特性。在不改变器件基本结构的条件下,有效地提高了器件重复操作的一致性和不同器件之间的一致性。

Description

一种有机阻变存储器及制备方法 技术领域
[01] 本发明属于有机电子学 (organic electronics)和 CMOS混合集成电路技术领域, 具体涉及一种有机阻变存储器 (organic resistive random access memory) 的一致性优 化结构及其制备方法。 背景技术
[02] 近年来, 阻变存储器在集成电路领域得到了广泛的关注, 阻变存储器属于非易 失性存储器, 非易失性存储器在当前市场上的份额主要被闪存 (flash)所占据。 随着集 成电路的进一步发展, 阻变存储器在尺寸缩小、操作电压等方面的优势使之成为了新 一代存储器中的有力竞争者。阻变存储器的基本原理在于,存储器结构所体现出的电 阻在外加电压或者电流的激励下可以在高阻态("0"状态)和低阻态(" 1 "状态)之 间实现可逆的转换, 从而实现数据的存储。 而在阻变存储器材料的选择中, 有机材料 体现了巨大的优势。 有机材料种类丰富, 合成、 制备工艺简单, 成本低。 同时, 有机 材料可以用于实现如透明纸张 (e-paper), 电子显示 (OLED) 等透明电子系统。 [03] 有机阻变存储器的一致性一直是一个重要的研究方向。 发明内容
[04] 本发明提出了一种基于聚对二甲苯的提高器件一致性的有机阻变存储器及其制 备方法。
[05] 本发明提出了一种改进的阻变存储器结构来提升器件的一致性。 器件的中间功 能层采用具有优良阻变特性的聚对二甲苯(parylene), 其阻变过程的电流 -电压(I-V) 特性曲线如图 1所示。 图中 1一器件在正向电压的激励下由高阻态向低阻态的跃变过 程; 2—低阻态保持过程; 3—器件在负向电压的激励下由低阻态向高阻态的跃变过 程; 4一高阻态保持过程。 使器件的下电极接地, 则上电极的电压可以控制存储器的 阻值, 使其发生高阻和低阻之间的转换, 即存储器 " 0", " 1 "两个状态之间的转换。
[06] 本发明的技术方案如下:
[07] 一种有机阻变存储器, 可以制备在硅衬底上, 器件单元为 MIM电容结构, 采用 上下层状结构, 该 MIM结构的顶电极为 Al, 底电极为 ITO (氧化铟锡), 中间功能 层为聚对二甲苯。 该器件的特征在于, 功能层的聚对二甲苯层分多次进行淀积, 每两 次聚对二甲苯的淀积之间进行一次 A1203的 ALD淀积 (即原子层淀积)。 通过控制 A1203淀积面积来形成有利于导电通道形成的薄弱区域, 从而控制器件的电学特性。 [08] 所述作为功能层的聚对二甲苯层厚度为 20nm到 80nm之间。
[09] 所述顶电极为 Al, 厚度在 200-500nm之间。
[10] 所述底电极为 ITO, 厚度在 200-500nm之间。
[11] 所述 A1203厚度在 l-3nm, 图形面积在 lOOnm X lOOnm到 lum X lum之间。
[12] 所述聚对二甲苯的聚合物为聚对二甲苯 C型、 聚对二甲苯 N型或聚对二甲苯 D 型。
[13] 本发明同时提供一种有机阻变存储器的制备方法, 包括如下步骤:
[14] 1 ) 在 Si衬底上生长 ITO作为底电极,该底层电极采用物理气相淀积(PVD) 方法形成, 厚度在 200nm到 500nm之间, 并采用标准光刻技术使下电极图形化;
[15] 2) 利用电子束光刻, 在底电极 ITO 上形成光刻胶图形, 利用原子层淀积 (ALD) 技术生长 lnm-3nm厚度的 A1203, 并利用剥离工艺形成局部的 A1203图形;
[16] 3 ) 利用 Polymer CVD技术生长第一层聚对二甲苯 C型 (Parylene-C) 层。 淀积采用聚对二甲苯 Polymer CVD设备,工艺选用设备的标准参数,层厚度为 20nm, 淀积速度在 lnm/min至 lOnm/min之间;
[17] 4) 再次利用电子束光刻, 在第一层聚对二甲苯 C型(Parylene-C)层上形成 光刻胶图形, 利用原子层淀积(ALD)技术生长 lnm-3nm厚度的 A1203, 并利用剥离 工艺形成局部的 A1203图形;
[18] 5 ) 利用 Polymer CVD技术生长第二层聚对二甲苯 C型 (Parylene-C) 层。 淀积采用聚对二甲苯 Polymer CVD设备,工艺选用设备的标准参数,层厚度为 20nm, 淀积速度在 lnm/min至 lOnm/min之间; [19] 6) 再次利用电子束光刻, 在第二层聚对二甲苯 C型(Parylene-C)层上形成 光刻胶图形, 利用原子层淀积(ALD)技术生长 lnm-3nm厚度的 A1203, 并利用剥离 工艺形成局部的 A1203图形;
[20] 7) 通过光刻, RIE刻蚀定义底层电极引出通孔; [21] 8 ) 采用 PVD工艺溅射 Al, 厚度在 200nm至 500nm之间, 通过常规工艺的 光刻、 剥离定义顶层电极, 同时将底电极引出。
[22] 本发明的有益效果: 在不改变器件基本结构的条件下, 有效地提高了器件的重 复操作的一致性和不同器件之间的一致性。 附图说明
[23] 图 1本发明所述器件的阻变过程的电流-电压特性曲线示意图。
[24] 图 2-图 9对应于实施例的实施步骤。
[25] 图 10为图 2-9的图例说明。 具体实施方式
[26] 下面结合附图和具体实施例对本发明进行进一步详细描述:
[27] 实施例 1:
[28] 1 ) 在 Si衬底上利用 PVD方法生长 ITO作为底电极,厚度为 200nm到 500nm 之间, 并采用标准光刻技术使下电极图形化, 如图 2所示;
[29] 2) 利用电子束光刻形成光刻胶图形, 利用 ALD生长 lnm厚度的 A1203, 并 利用剥离工艺形成局部的 A1203图形, 如图 3所示;
[30] 3 ) 利用 Polymer CVD技术生长第一层 Parylene-C层,如图 4,层厚度为 20nm;
[31] 4) 再次利用电子束光刻, 在第一层 Parylene-C层上形成光刻胶图形, 利用 ALD生长 lnm厚度的 A1203, 并利用剥离工艺形成局部的 A1203图形, 如图 5所示;
[32] 5 ) 利用 Polymer CVD技术生长第二层 Parylene-C层,如图 6,层厚度为 20nm;
[33] 6) 再次利用电子束光刻, 在第二层 Parylene-C层上形成光刻胶图形, 利用 ALD技术生长 lnm厚度的 A1203, 并利用剥离工艺形成局部的 A1203图形, 如图 7 所示;
[34] 7) 通过光刻, RIE刻蚀定义底层电极引出通孔, 如图 8所示;
[35] 8 ) 采用 PVD工艺溅射 Al, 厚度为 200nm, 通过常规工艺的光刻、剥离定义 顶层电极, 同时将底电极引出, 如图 9所示。

Claims

权 利 要 求
1. 一种有机阻变存储器, 以硅为衬底, 器件单元为 MIM电容结构, 采用上 下层状结构, 该 MIM结构的顶电极为 Al, 底电极为 ITO, 中间功能层为聚对二 甲苯, 其特征是, 功能层的聚对二甲苯层分多次进行淀积, 每两次聚对二甲苯的 淀积之间进行一次 Α1203的 ALD淀积, 通过控制 Α1203淀积面积来形成有利于 导电通道形成的薄弱区域, 从而控制器件的电学特性。
2. 如权利要求 1所述的有机阻变存储器, 其特征是, 所述作为功能层的聚 对二甲苯层厚度为 20nm到 80nm之间。
3. 如权利要求 1所述的有机阻变存储器, 其特征是, 所述顶电极 A1的厚度 在 200-500nm之间。
4. 如权利要求 1所述的有机阻变存储器, 其特征是, 所述底电极 ITO的厚 度在 200-500nm之间。
5.如权利要求 1所述的有机阻变存储器,其特征是,所述 A1203厚度在 l-3nm, 图形面积在 lOOnmX lOOnm到 lumX lum之间。
6. 如权利要求 1所述的有机阻变存储器, 其特征是, 所述聚对二甲苯的聚 合物为聚对二甲苯 C型、 聚对二甲苯 N型或聚对二甲苯 D型。
7. 一种有机阻变存储器的制备方法, 包括如下步骤:
1 ) 在 Si衬底上生长 ITO作为底电极,该底层电极采用物理气相淀积(PVD) 方法形成,厚度在 200nm到 500nm之间, 并采用标准光刻技术使下电极图形化;
2) 利用电子束光刻, 在底电极 ITO 上形成光刻胶图形, 利用原子层淀积 (ALD) 技术生长 lnm-3nm厚度的 A1203, 并利用剥离工艺形成局部的 A1203 图形;
3 ) 利用 Polymer CVD技术生长第一层聚对二甲苯 C型 (Parylene-C) 层, 淀积采用聚对二甲苯 Polymer CVD设备, 工艺选用设备的标准参数, 层厚度为
20nm, 淀积速度在 lnm/min至 10nm/min之间; 4) 再次利用电子束光刻, 在第一层聚对二甲苯 C 型 (Parylene-C) 层上形 成光刻胶图形, 利用原子层淀积(ALD )技术生长 lnm-3nm厚度的 A1203, 并利 用剥离工艺形成局部的 A1203图形;
5 ) 利用 Polymer CVD技术生长第二层聚对二甲苯 C型 (Parylene-C) 层, 淀积采用聚对二甲苯 Polymer CVD设备, 工艺选用设备的标准参数, 层厚度为 20nm, 淀积速度在 lnm/min至 10nm/min之间;
6) 再次利用电子束光刻, 在第二层聚对二甲苯 C 型 (Parylene-C) 层上形 成光刻胶图形, 利用原子层淀积(ALD )技术生长 lnm-3nm厚度的 A1203, 并利 用剥离工艺形成局部的 A1203图形;
7) 通过光刻, RIE刻蚀定义底层电极引出通孔;
8 ) 采用 PVD工艺溅射 Al, 厚度在 200nm至 500nm之间, 通过常规工艺的 光刻、 剥离定义顶层电极, 同时将底电极引出。
PCT/CN2013/084764 2013-05-13 2013-09-30 一种有机阻变存储器及制备方法 WO2014183367A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/396,037 US9431620B2 (en) 2013-05-13 2013-09-30 Organic resistive random access memory and a preparation method thereof
DE112013007065.0T DE112013007065T5 (de) 2013-05-13 2013-09-30 Organischer resistiver Direktzugriffsspeicher (RRAM) und dessen Herstellungsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310174160.3A CN103258957B (zh) 2013-05-13 2013-05-13 一种有机阻变存储器及制备方法
CN201310174160.3 2013-05-13

Publications (1)

Publication Number Publication Date
WO2014183367A1 true WO2014183367A1 (zh) 2014-11-20

Family

ID=48962766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084764 WO2014183367A1 (zh) 2013-05-13 2013-09-30 一种有机阻变存储器及制备方法

Country Status (4)

Country Link
US (1) US9431620B2 (zh)
CN (1) CN103258957B (zh)
DE (1) DE112013007065T5 (zh)
WO (1) WO2014183367A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258957B (zh) 2013-05-13 2016-05-25 北京大学 一种有机阻变存储器及制备方法
CN103887431B (zh) * 2014-02-11 2017-01-04 北京大学 一种多值非易失性有机阻变存储器及制备方法
CN108807456B (zh) * 2018-05-24 2020-01-21 中国科学院微电子研究所 一种阻变存储器的设计方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1724851A1 (en) * 2005-05-20 2006-11-22 STMicroelectronics S.r.l. Organic electrically bistable material and its use for producing a memory switch
CN101630719A (zh) * 2009-07-24 2010-01-20 北京大学 一种阻变存储器及其制备方法
CN102222512A (zh) * 2010-04-13 2011-10-19 北京大学 一种柔性有机阻变存储器及其制备方法
CN102610755A (zh) * 2012-03-26 2012-07-25 北京大学 一种超低功耗有机阻变存储器件及其制备方法
CN102723438A (zh) * 2011-03-29 2012-10-10 中国科学院微电子研究所 有机阻变型存储单元、存储器及其制备方法
CN103258957A (zh) * 2013-05-13 2013-08-21 北京大学 一种有机阻变存储器及制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102881822A (zh) * 2011-07-13 2013-01-16 北京大学 一种透明柔性阻变存储器及其制备方法
CN102306705A (zh) * 2011-09-16 2012-01-04 北京大学 一种大容量多值阻变存储器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1724851A1 (en) * 2005-05-20 2006-11-22 STMicroelectronics S.r.l. Organic electrically bistable material and its use for producing a memory switch
CN101630719A (zh) * 2009-07-24 2010-01-20 北京大学 一种阻变存储器及其制备方法
CN102222512A (zh) * 2010-04-13 2011-10-19 北京大学 一种柔性有机阻变存储器及其制备方法
CN102723438A (zh) * 2011-03-29 2012-10-10 中国科学院微电子研究所 有机阻变型存储单元、存储器及其制备方法
CN102610755A (zh) * 2012-03-26 2012-07-25 北京大学 一种超低功耗有机阻变存储器件及其制备方法
CN103258957A (zh) * 2013-05-13 2013-08-21 北京大学 一种有机阻变存储器及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BAI, WENLIANG ET AL.: "Record Low- Power Organic RRAM With Sub-20-nA Reset Current", IEEE ELECTRON DEVICE LETTERS, vol. 34, no. 2, 9 January 2013 (2013-01-09), pages 223 - 225 *

Also Published As

Publication number Publication date
CN103258957A (zh) 2013-08-21
US9431620B2 (en) 2016-08-30
CN103258957B (zh) 2016-05-25
US20160049604A1 (en) 2016-02-18
DE112013007065T5 (de) 2016-02-11

Similar Documents

Publication Publication Date Title
CN103000806B (zh) 电阻变化型非易失性存储器件及其操作方法、半导体器件
KR101157105B1 (ko) 그라핀 옥사이드의 저항 스위칭 특성을 이용한 비휘발성 메모리 소자 및 이의 제조 방법
EP3213349B1 (en) Memory apparatus and method of production thereof
JP2009521099A (ja) ナノスケール電子スイッチングデバイスのための制御層
US9053932B2 (en) Methods of preparing graphene and device including graphene
TW201003847A (en) Memory cell that employs a selectively fabricated carbon nano-tube reversible resistance-switching element formed over a bottom conductor and methods of forming the same
CN108831904B (zh) 一种垂直结构有机薄膜晶体管阵列及其制备方法
JP2012516053A (ja) 電界効果トランジスタの性能を強化する方法およびそれによって作られる電界効果トランジスタ
CN110911560B (zh) 一种平面型忆阻器及其制备方法
WO2012126186A1 (zh) 一种阻变存储器及其制备方法
WO2013007113A1 (zh) 一种透明柔性阻变存储器及其制备方法
KR20220084373A (ko) 전자 스위칭 디바이스
WO2014183367A1 (zh) 一种有机阻变存储器及制备方法
CN101599529A (zh) 具有纳米碳管的阻抗随机存储器件及其制造方法
CN103258958B (zh) 有机阻变存储器及其制备方法
CN105789442B (zh) 一种薄膜晶体管、其制作方法及相应装置
JPWO2004073079A1 (ja) スイッチング素子
JP2014516421A (ja) ピクセルキャパシタ
CN109524544B (zh) 一种阻变存储器的制备方法
Huang et al. CuO/ZnO memristors via oxygen or metal migration controlled by electrodes
WO2018166411A1 (zh) 薄膜晶体管和阵列基板
JP2009239178A (ja) 半導体装置
Chung et al. Enhancement of memory windows in Pt/Ta2O5− x/Ta bipolar resistive switches via a graphene oxide insertion layer
WO2015120657A1 (zh) 一种多值非易失性有机阻变存储器及制备方法
CN108963070A (zh) 一种阻变存储器及其制作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14396037

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884849

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112013007065

Country of ref document: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/03/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13884849

Country of ref document: EP

Kind code of ref document: A1