WO2014181456A1 - Composition isolante, produit traité thermiquement et fil isolé associé - Google Patents

Composition isolante, produit traité thermiquement et fil isolé associé Download PDF

Info

Publication number
WO2014181456A1
WO2014181456A1 PCT/JP2013/063109 JP2013063109W WO2014181456A1 WO 2014181456 A1 WO2014181456 A1 WO 2014181456A1 JP 2013063109 W JP2013063109 W JP 2013063109W WO 2014181456 A1 WO2014181456 A1 WO 2014181456A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular weight
bismaleimide
cured product
insulating
insulating composition
Prior art date
Application number
PCT/JP2013/063109
Other languages
English (en)
Japanese (ja)
Inventor
小林 稔幸
悟 天羽
康太郎 荒谷
新太郎 武田
唯 新井
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to PCT/JP2013/063109 priority Critical patent/WO2014181456A1/fr
Priority to JP2015515724A priority patent/JP6006408B2/ja
Publication of WO2014181456A1 publication Critical patent/WO2014181456A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/292Protection against damage caused by extremes of temperature or by flame using material resistant to heat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/427Polyethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes

Definitions

  • the present invention relates to an insulating composition, a cured product, and an insulated wire using the same, and more particularly to an insulating composition suitable for coils of motors, transformers, and the like, and an insulated wire using the same.
  • Insulated wires used for coils of electrical equipment such as rotating electrical machines and transformers are generally formed in a cross-sectional shape (round shape, rectangular shape, etc.) that matches the application and shape of the coil.
  • a single-layer or multiple-layer insulation coating is formed on the outer periphery of the conductor.
  • Examples of means for increasing the partial discharge start voltage of the insulating coating include a method using a resin having a low relative dielectric constant for the insulating coating and a method of increasing the thickness of the insulating coating.
  • the relative dielectric constant of the resin varnish used is usually between 3 and 4, and there is no specific dielectric constant that is low, such as heat resistance, flexibility, solvent resistance, etc. From the other characteristics required for the enamel layer, it is not always possible to select a material having a low relative dielectric constant. Therefore, it is essential to increase the thickness of the enamel layer.
  • an enamel layer it is possible to increase the thickness by increasing the number of passes through the baking furnace in the manufacturing process.
  • the thickness of the coating made of copper oxide on the copper surface, which is a conductor grows, And the enamel layer may be reduced in adhesion.
  • an enamel layer having a thickness of 50 ⁇ m or more can be obtained by one molding.
  • a method for obtaining a resin having high heat resistance a method using a resin composition containing a bismaleimide compound is disclosed, and the molecular weight of this bismaleimide compound is usually 1000 or less.
  • a bismaleimide compound having a molecular weight of 1000 or less is used, a cured product having high heat resistance can be obtained.
  • the cured product is hard and brittle, it is difficult to apply to a use requiring flexibility. For this reason, usually, other resins such as polyimide and epoxy resin are used in combination.
  • Patent Document 1 discloses a resin composition containing a polyimide precursor and a bismaleimide compound for a thermosetting film-forming resin composition, and the aromatic bismaleimide has a molecular weight in order to obtain higher flatness. It is described that 1000 or less is preferable.
  • Patent Document 2 discloses a homogeneous bismaleimide-triazine-epoxy composition useful for the production of an electrical laminate, and includes an epoxy resin, a maleimide component containing at least one bismaleimide, and a cyanate ester component. A homogeneous solution containing is disclosed.
  • Patent Document 1 it is described that an aromatic bismaleimide having a molecular weight of 1000 or less is preferable among bismaleimide compounds in order to obtain higher flatness for the resin composition for thermosetting film formation.
  • a polyimide precursor having a specific structural unit is used in combination as another component.
  • an object of the present invention is to provide an insulating composition, a cured product, and an insulated wire using the same, which are excellent in heat resistance, flexibility and voltage resistance.
  • the insulating composition of the present invention comprises a low molecular weight bismaleimide having a molecular weight of less than 1000, a high molecular weight bismaleimide having a molecular weight of 3000 or more, and a curing agent.
  • the insulating composition of the present invention since it comprises a low molecular weight bismaleimide (molecular weight less than 1000), a curing agent, and a high molecular weight bismaleimide (molecular weight 3000 or more), an insulation cured product having both heat resistance and flexibility can be obtained. It is done. Furthermore, by using it for an insulated wire, an insulated wire having good heat resistance and voltage resistance can be obtained.
  • the present inventors have found that a cured product having heat resistance and flexibility can be obtained by blending a low molecular weight bismaleimide and a curing agent into a high molecular weight bismaleimide.
  • the insulating composition of the present invention is a composition containing a low molecular weight bismaleimide (molecular weight less than 1000), a curing agent, and a high molecular weight bismaleimide (molecular weight 3000 or more).
  • High molecular weight bismaleimide having a molecular weight of 3000 or more, having a maleimide group in the structure, and further having an imide skeleton in the structure is preferable because of excellent heat resistance.
  • Examples of such a high molecular weight bismaleimide include BMI-5000 and BMI-3000 (manufactured by Designer Molecule).
  • Examples of the low molecular weight bismaleimide include 4,4′-diphenylmethane bismaleimide, m-phenylene bismaleimide, bisphenol A diphenyl ether bismaleimide, 3,3′-dimethyl-5,5′diethyl-4,4′-diphenylmethane bismaleimide, 4,4′-diphenyl ether bismaleimide, 4,4′-diphenylsulfone bismaleimide, 1,3-bis (3-maleimidophenoxy) benzene, 1,3-bis (4-maleimidophenoxy) benzene, 1,6′- Examples thereof include bismaleimide- (2,2,4-trimethyl) hexane and polyphenylmethane maleimide.
  • the amount of the low molecular weight bismaleimide added is preferably 5 to 80% by weight, more preferably 5 to 50% by weight, based on the total solid content, from the viewpoint of heat resistance and flexibility. Increasing the amount of low molecular weight bismaleimide is not preferable because the cured product becomes hard and brittle, resulting in problems such as reduced flexibility and precipitation of low molecular weight bismaleimide in the varnish coating.
  • the curing agent to be used may be any one that cures with bismaleimide.
  • the curing agent to be used may be any one that cures with bismaleimide.
  • 2,2′-diallylbisphenol A 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2 -Bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] ether, 9,9-bis
  • Examples include (4-aminophenyl) fluorene, 4,4′-bis (4-aminophenoxy) biphenyl, 1,4-bis (4-aminophenoxy) benzene, and the like. These are not limited to those described above. These can be used alone or in combination of two or more.
  • high heat resistance can be obtained by using curable polyphenylene ether.
  • the use of a terminal styrene-modified polyphenylene ether derivative is preferable from the viewpoints of improving heat resistance and achieving both flexibility and solvent solubility.
  • Examples of such terminal styrene-modified polyphenylene ether derivatives include OPE2St (manufactured by Mitsubishi Gas Chemical Co., Inc.).
  • an organic peroxide can be used as a polymerization initiator.
  • the organic peroxide used include benzoyl peroxide, lauroyl peroxide, benzoic peroxide, t-butyl peroxide benzoic acid, t-amyl peroxyneodecanoate, t-butylperoxyneodecanoate, t- Amyl peroxyisobutyrate, di-t-butyl peroxide, dicumyl peroxide, cumene hydroperoxide, 1,1-di (t-butylperoxy) cyclohexane, 2,2-di (t-butylperoxy)
  • Examples include butane, t-butyl hydroperoxide, di (s-butyl) peroxycarbonate, methyl ethyl ketone peroxide, and the like, but are not particularly limited, and these may be used alone or in combination of two or more. Good.
  • an inorganic filler can be added.
  • the inorganic filler general silica, alumina, titanium oxide, boron nitride, silicon nitride and the like can be used.
  • the inorganic filler is preferably used after being surface-treated with a coupling agent from the viewpoint of improving mechanical properties, electrical properties and the like.
  • the coupling agent to be used known ones such as a silane coupling agent and a titanate coupling agent can be used.
  • a phenoxy resin refers to a resin having a large molecular weight among epoxy resins produced from a bisphenol compound and epichlorohydrin.
  • bisphenol A type phenoxy resin and bisphenol S type phenoxy resin can be used.
  • the bisphenol A type phenoxy resin is a phenoxy resin having a bisphenol A skeleton using 2,2-bis (p-hydroxyphenyl) propane (hereinafter referred to as “bisphenol A”) as a bisphenol compound (bisphenol A type phenoxy resin). ).
  • the bisphenol S-type phenoxy resin is a 2,2-bis (p-hydroxyphenyl) sulfone (hereinafter referred to as “bisphenol S”) as a part of a bisphenol-based compound in order to enhance the heat resistance of the bisphenol A-type phenoxy resin.
  • bisphenol S a 2,2-bis (p-hydroxyphenyl) sulfone
  • Commercially available products can be used, and examples thereof include product numbers YP-50, YP50S, and YPS007A30 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
  • the amount of phenoxy resin added is preferably 3 to 80% by weight, more preferably 3 to 50% by weight, based on the total solid content, from the viewpoints of heat resistance and flexibility.
  • the insulated wire 10 according to the present embodiment is obtained by applying and baking the above-described insulating composition (paint) on the surface of the conductor 1 having a round or square cross section.
  • the insulating coating 2 is formed and configured.
  • the film thickness of the insulating coating 2 formed of the insulating paint described above is preferably 20 ⁇ m or more.
  • the film thickness is smaller than 20 ⁇ m, it is difficult to form an insulating film having a high partial discharge start voltage although it has excellent characteristics such as heat resistance and wear resistance.
  • a film thickness of about 100 ⁇ m can be formed in one step.
  • Insulated wire 10 includes an adhesion-imparting insulating film for improving adhesion between conductor 1 and insulating film 2, and a flexibility-imparting insulating film for improving flexibility. Or the like may be formed between the conductor 1 and the insulating coating 2. Further, the insulated wire 10 according to the present embodiment is formed by forming a lubricity-imparting insulating film for imparting lubricity around the insulating film 2 or a scratch-resistant imparting insulating film for imparting scratch resistance. Also good.
  • adhesion imparting insulating coating may be formed by applying and baking an insulating paint, or extrusion using an extruder. You may form by shaping
  • an insulating paint obtained by dissolving a resin made of polyimide, polyamideimide, polyesterimide, H-type polyester, or the like between the conductor 1 and the insulating coating 2 in a solvent.
  • An organic insulating film formed by coating and baking may be provided in a single layer or multiple layers.
  • the conductor 1 used for the insulated wire 10 according to the present embodiment is made of a copper conductor, and mainly oxygen-free copper or low-oxygen copper is used.
  • a copper conductor is not limited to this,
  • the conductor which gave metal plating, such as nickel, to the outer periphery of copper can also be used.
  • the conductor 1 may have a cross-sectional shape such as a round shape or a square shape.
  • the quadrangular shape here includes one having a substantially quadrangular cross section with rounded corners as shown in FIG.
  • Terminal styrene-modified polyphenylene ether derivative (OPE2St, manufactured by Mitsubishi Gas Chemical Co., Ltd .: molecular weight 2200) 10 parts by weight, BMI-5000 (Designer Molecule) 80 parts by weight, BMI-5100 (manufactured by Daiwa Kasei Kogyo Co., Ltd.) 5 parts by weight, 5 parts by weight of 2,2′-diallylbisphenol A (DABPA, manufactured by Daiwa Kasei Kogyo Co., Ltd.) were dissolved in 100 parts by weight of tetrahydrofuran to obtain a varnish. 2 parts by weight of n-butyl 4,4-di- (t-butylperoxy) butyric acid (Perhexa V manufactured by NOF Corporation) was added to 100 parts by weight of the solid content to obtain an insulating composition.
  • OPE2St Terminal styrene-modified polyphenylene ether derivative
  • BMI-5000 Designer Mol
  • the insulating composition was cast on a PTFE (polytetrafluoroethylene) sheet and dried overnight at room temperature. Next, after heating at 120 ° C./60 minutes and then at 160 ° C./60 minutes in a warm air circulation type thermostatic bath, 180 ° C./60 minutes were heated and pressed to prepare a cured product having a thickness of 0.5 mm. The obtained cured product was cut into a length of 3 mm, a width of 3 mm, and a thickness of 0.5 mm, and then heated using a thermogravimetry apparatus Q500 manufactured by TA Instruments Inc. The decrease in thermogravimetry was measured from 100 ° C. to 500 ° C.
  • the heat resistant temperature index was calculated from the 5% weight loss temperature and the activation energy at the time of 5% weight loss.
  • the cured product molded 30 mm long ⁇ 30 mm wide ⁇ 0.5 mm thick has no cracks or other abnormalities in the coating film, and the coating film has some cracks. The case where it was seen was ⁇ , and the case where the crack was generated on the entire surface of the coating film and was hard and brittle was rated as x.
  • the withstand voltage of the cured product is a dielectric breakdown voltage (at a pressure increase rate of 2.0 kV / sec.)
  • a dielectric breakdown tester in room temperature and oil in a cured product molded 30 mm long ⁇ 30 mm wide ⁇ 0.5 mm thick. kV was measured, and the dielectric breakdown strength (kV / mm) was calculated. The dielectric breakdown strength was rated as ⁇ when it was 30 kV / mm or more and as x when it was less than 30 kV / mm.
  • Example 2 A cured product was prepared and processed in the same manner as in Example 1 except that 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP) was used instead of DABPA, and various physical properties were measured. did.
  • Example 3 A cured product was prepared and processed in the same manner as in Example 2 except that the blending amounts of BMI-5000, BMI-5100, and BAPP were changed, and various physical properties were measured.
  • Example 4 A cured product was prepared and processed in the same manner as in Example 1 except that 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane (BAPPF) was used instead of DABPA. Was measured.
  • Example 5 A cured product was prepared and processed in the same manner as in Example 1 except that BMI-3000 was used instead of BMI-5000 and the blending amount was changed, and various physical properties were measured.
  • Example 6 A cured product was prepared and processed in the same manner as in Example 1 except that cumene hydroperoxide (Tokyo Kasei Kogyo) was used instead of n-butyl 4,4-di- (t-butylperoxy) butyric acid. Various physical properties were measured.
  • cumene hydroperoxide Tokyo Kasei Kogyo
  • Example 1 A cured product was prepared and processed in the same manner as in Example 1 except that BMI-5000 was used without using the terminal styrene-modified polyphenylene ether derivative, BMI-5100, DABPA, and various physical properties were measured.
  • Comparative Example 2 A cured product was prepared and processed in the same manner as Comparative Example 1 except that BMI-5100 and DABPA were used without using BMI-5000, and various physical properties were measured.
  • Comparative Example 3 A cured product was prepared and processed in the same manner as in Comparative Example 1 except that BMI-3000 was used instead of BMI-5000, and various physical properties were measured.
  • Example 7 The insulating composition of Example 1 was cast on a PTFE (polytetrafluoroethylene) sheet and dried overnight at room temperature. Next, it was heated at 120 ° C./60 minutes and then at 160 ° C./60 minutes in a warm air circulation type thermostatic bath to obtain an insulating composition for extrusion coating. Next, a copper wire having an outer diameter of 1.25 mm was used as a conductor, and a coating layer having a thickness of 100 ⁇ m was formed on the copper wire by extrusion coating to produce an insulated wire shown in FIG.
  • PTFE polytetrafluoroethylene
  • the evaluation of the flexibility of an insulated wire is 5 for a round bar (winding rod) of an insulated wire that is 20% longer than the unstretched length and has a smooth surface and 1 to 10 times the conductor diameter of the insulated wire.
  • the coil was wound for 5 coils with one coil being wound, and it was determined by using an optical microscope whether cracks were observed in the insulating film. As a result, no crack was generated.
  • Examples 8 to 12 In the same manner as in Example 7, it was determined whether or not cracks were observed in the insulating film of the insulating compositions of Examples 2 to 6. As a result, no crack was generated.
  • the heat resistance of the cured products in Examples 1 to 6 was equal to or higher than that of Comparative Examples 1 to 3, and the flexibility was good. This is because heat resistance is improved while maintaining flexibility by adding low molecular weight bismaleimide to high molecular weight bismaleimide.
  • the insulated wires of Examples 7 to 12 using the insulating composition of Examples 1 to 6 were good with no cracks.
  • this invention is not limited to said Example, Various modifications are included.
  • the above embodiments are intended to describe the present invention in detail, and are not limited to the configurations of these embodiments. A part of the configuration of the embodiment can be replaced with another configuration, and other configurations can be added to the configuration of the embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Insulating Materials (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Insulated Conductors (AREA)
  • Polyethers (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

L'objectif de la présente invention est de proposer : une composition isolante qui possède d'excellentes propriétés de résistance thermique, de flexibilité et de tension de tenue ; un produit traité thermiquement ; et un fil isolé qui utilise cette composition isolante. Cette composition isolante est caractérisée en ce qu'elle contient un bismaléimide à faible poids moléculaire qui possède un poids moléculaire inférieur à 1 000, un bismaléimide à poids moléculaire élevé qui possède un poids moléculaire de 3 000 ou plus, et un agent de traitement thermique. Cette composition de résine isolante peut en outre contenir un polyphénylène éther qui peut être traité thermiquement en tant que composant de réticulation et une résine phénoxy en tant que composant de résine.
PCT/JP2013/063109 2013-05-10 2013-05-10 Composition isolante, produit traité thermiquement et fil isolé associé WO2014181456A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/063109 WO2014181456A1 (fr) 2013-05-10 2013-05-10 Composition isolante, produit traité thermiquement et fil isolé associé
JP2015515724A JP6006408B2 (ja) 2013-05-10 2013-05-10 絶縁組成物、硬化物およびそれを用いた絶縁電線

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/063109 WO2014181456A1 (fr) 2013-05-10 2013-05-10 Composition isolante, produit traité thermiquement et fil isolé associé

Publications (1)

Publication Number Publication Date
WO2014181456A1 true WO2014181456A1 (fr) 2014-11-13

Family

ID=51866957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063109 WO2014181456A1 (fr) 2013-05-10 2013-05-10 Composition isolante, produit traité thermiquement et fil isolé associé

Country Status (2)

Country Link
JP (1) JP6006408B2 (fr)
WO (1) WO2014181456A1 (fr)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016114287A1 (fr) * 2015-01-13 2016-07-21 日立化成株式会社 Film de résine pour carte de circuit imprimé souple, feuille métallique pourvue de résine, couche de fermeture, feuille de liaison, et carte de circuit imprimé souple
JP2016204639A (ja) * 2015-04-17 2016-12-08 日立化成株式会社 樹脂組成物、積層板及び多層プリント配線板
KR20170103873A (ko) * 2015-01-13 2017-09-13 히타치가세이가부시끼가이샤 수지 조성물, 수지층 부착 지지체, 프리프레그, 적층판, 다층 프린트 배선판 및 밀리미터파 레이더용 프린트 배선판
WO2018008643A1 (fr) * 2016-07-05 2018-01-11 日立化成株式会社 Composition de résine, film de résine, carte de câblage imprimée multicouche et procédé de production de carte de câblage imprimée multicouche
JP2018012764A (ja) * 2016-07-20 2018-01-25 日立化成株式会社 樹脂組成物、樹脂層付き支持体、プリプレグ、積層板、多層プリント配線板及びミリ波レーダー用プリント配線板
JP2018035217A (ja) * 2016-08-29 2018-03-08 旭化成株式会社 熱硬化性樹脂組成物およびそれを用いるプリプレグ、金属張積層板またはプリント配線板
CN109476923A (zh) * 2016-07-19 2019-03-15 日立化成株式会社 树脂组合物、层叠板及多层印刷线路板
CN110283528A (zh) * 2019-06-27 2019-09-27 浙江儒商科技有限公司 一种基于双马来酰亚胺的耐磨自润滑斜盘的制备方法
WO2019188189A1 (fr) * 2018-03-28 2019-10-03 パナソニックIpマネジメント株式会社 Composition de résine, et préimprégné, film revêtu de résine, feuille métallique revêtue de résine, stratifié à revêtement métallique, et carte de câblage obtenus chacun à l'aide de ladite composition de résine
WO2020095422A1 (fr) * 2018-11-08 2020-05-14 日立化成株式会社 Composition de résine ainsi qu'objet durci de celle-ci, pré-imprégné, stratifié, film de résine, carte de circuit imprimé multicouche, carte de circuit imprimé multicouche pour radar à ondes millimétriques, et dérivé de polyphénylène éther
JP2021031530A (ja) * 2019-08-20 2021-03-01 信越化学工業株式会社 熱硬化性樹脂組成物、並びにこれを用いた接着剤、フィルム、プリプレグ、積層板、回路基板及びプリント配線板
CN112969749A (zh) * 2018-11-08 2021-06-15 昭和电工材料株式会社 树脂组合物、预浸料、层叠板、树脂膜、多层印刷布线板和毫米波雷达用多层印刷布线板
CN113265220A (zh) * 2020-02-17 2021-08-17 信越化学工业株式会社 热固性树脂组合物、粘合剂、膜及使用所述热固性树脂组合物的层叠板、预浸料及电路基板
JP2022011106A (ja) * 2020-06-29 2022-01-17 株式会社日立産機システム モールド電気機器
WO2022102781A1 (fr) * 2020-11-16 2022-05-19 昭和電工マテリアルズ株式会社 Composition de résine maléimide, pré-imprégné, plaque stratifiée, film de résine, carte de circuit imprimé, et boîtier de semi-conducteur
CN112969759B (zh) * 2018-11-08 2024-06-07 株式会社力森诺科 树脂组合物、树脂组合物的固化物、预浸料、层叠板、树脂膜、多层印刷布线板、毫米波雷达用多层印刷布线板及聚苯醚衍生物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222163A (ja) * 1992-02-12 1993-08-31 Toshiba Chem Corp 耐熱性樹脂組成物
JP2006526014A (ja) * 2003-05-05 2006-11-16 アドバンスト アプライド アドヘッシブズ イミド−リンクしたマレインイミドおよびポリマレインイミド化合物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222163A (ja) * 1992-02-12 1993-08-31 Toshiba Chem Corp 耐熱性樹脂組成物
JP2006526014A (ja) * 2003-05-05 2006-11-16 アドバンスト アプライド アドヘッシブズ イミド−リンクしたマレインイミドおよびポリマレインイミド化合物

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI737589B (zh) * 2015-01-13 2021-09-01 日商昭和電工材料股份有限公司 印刷配線板用的樹脂組成物、帶樹脂層支撐體、預浸體、積層板、多層印刷配線板及其應用、毫米波雷達用印刷配線板
KR101832684B1 (ko) 2015-01-13 2018-02-26 히타치가세이가부시끼가이샤 플렉시블 프린트 배선판용 수지 필름, 수지 부착 금속박, 커버 레이 필름, 본딩 시트 및 플렉시블 프린트 배선판
CN107113968A (zh) * 2015-01-13 2017-08-29 日立化成株式会社 挠性印刷布线板用树脂膜、带有树脂的金属箔、覆盖膜、粘结片和挠性印刷布线板
KR20170103873A (ko) * 2015-01-13 2017-09-13 히타치가세이가부시끼가이샤 수지 조성물, 수지층 부착 지지체, 프리프레그, 적층판, 다층 프린트 배선판 및 밀리미터파 레이더용 프린트 배선판
CN107207724A (zh) * 2015-01-13 2017-09-26 日立化成株式会社 树脂组合物、带树脂层的支撑体、预浸渍体、层叠板、多层印刷线路板及毫米波雷达用印刷线路板
US20180002485A1 (en) * 2015-01-13 2018-01-04 Hitachi Chemical Company, Ltd. Resin composition, support with resin layer, prepreg, laminate, multilayered printed wiring board, and printed wiring board for millimeter-wave radar
US10434750B2 (en) 2015-01-13 2019-10-08 Hitachi Chemical Company, Ltd. Resin film for flexible printed circuit board, metal foil provided with resin, coverlay film, bonding sheet, and flexible printed circuit board
CN107207724B (zh) * 2015-01-13 2021-09-21 昭和电工材料株式会社 树脂组合物、带树脂层的支撑体、预浸渍体、层叠板、多层印刷线路板及毫米波雷达用印刷线路板
TWI775544B (zh) * 2015-01-13 2022-08-21 日商昭和電工材料股份有限公司 印刷配線板用的樹脂組成物、帶樹脂層支撐體、預浸體、積層板、多層印刷配線板及其應用、毫米波雷達用印刷配線板
CN113717526A (zh) * 2015-01-13 2021-11-30 昭和电工材料株式会社 树脂组合物、带树脂层的支撑体、预浸渍体及层叠板
CN107113968B (zh) * 2015-01-13 2018-10-16 日立化成株式会社 挠性印刷布线板用树脂膜、带有树脂的金属箔、覆盖膜、粘结片和挠性印刷布线板
US11286346B2 (en) 2015-01-13 2022-03-29 Showa Denko Materials Co., Ltd. Resin composition, support with resin layer, prepreg, laminate, multilayered printed wiring board, and printed wiring board for millimeter-wave radar
KR102455920B1 (ko) * 2015-01-13 2022-10-17 쇼와덴코머티리얼즈가부시끼가이샤 수지 조성물, 수지층 부착 지지체, 프리프레그, 적층판, 다층 프린트 배선판 및 밀리미터파 레이더용 프린트 배선판
WO2016114287A1 (fr) * 2015-01-13 2016-07-21 日立化成株式会社 Film de résine pour carte de circuit imprimé souple, feuille métallique pourvue de résine, couche de fermeture, feuille de liaison, et carte de circuit imprimé souple
JP2016204639A (ja) * 2015-04-17 2016-12-08 日立化成株式会社 樹脂組成物、積層板及び多層プリント配線板
WO2018008643A1 (fr) * 2016-07-05 2018-01-11 日立化成株式会社 Composition de résine, film de résine, carte de câblage imprimée multicouche et procédé de production de carte de câblage imprimée multicouche
TWI769169B (zh) * 2016-07-05 2022-07-01 日商昭和電工材料股份有限公司 樹脂組成物、樹脂膜、積層板、多層印刷配線板及多層印刷配線板的製造方法
JPWO2018008643A1 (ja) * 2016-07-05 2019-04-25 日立化成株式会社 樹脂組成物、樹脂フィルム、積層板、多層プリント配線板及び多層プリント配線板の製造方法
US11339251B2 (en) 2016-07-05 2022-05-24 Showa Denko Materials Co., Ltd. Resin composition, resin film, laminate, multilayer printed wiring board and method for producing multilayer printed wiring board
EP3483214A4 (fr) * 2016-07-05 2020-03-18 Hitachi Chemical Co., Ltd. Composition de résine, film de résine, carte de câblage imprimée multicouche et procédé de production de carte de câblage imprimée multicouche
CN109415551A (zh) * 2016-07-05 2019-03-01 日立化成株式会社 树脂组合物、树脂膜、层叠板、多层印刷线路板及多层印刷线路板的制造方法
JP7036010B2 (ja) 2016-07-05 2022-03-15 昭和電工マテリアルズ株式会社 樹脂組成物、樹脂フィルム、積層板、多層プリント配線板及び多層プリント配線板の製造方法
KR20220025080A (ko) * 2016-07-05 2022-03-03 쇼와덴코머티리얼즈가부시끼가이샤 수지 조성물, 수지 필름, 적층판, 다층 프린트 배선판 및 다층 프린트 배선판의 제조 방법
CN113321888B (zh) * 2016-07-05 2022-12-23 昭和电工材料株式会社 树脂组合物、树脂膜、预浸渍体、层叠板、多层印刷线路板及多层印刷线路板的制造方法
KR102537178B1 (ko) 2016-07-05 2023-05-30 가부시끼가이샤 레조낙 수지 조성물, 수지 필름, 적층판, 다층 프린트 배선판 및 다층 프린트 배선판의 제조 방법
CN109415551B (zh) * 2016-07-05 2021-07-27 昭和电工材料株式会社 树脂组合物、树脂膜、层叠板、多层印刷线路板及多层印刷线路板的制造方法
CN113321888A (zh) * 2016-07-05 2021-08-31 昭和电工材料株式会社 树脂组合物、树脂膜、预浸渍体、层叠板、多层印刷线路板及多层印刷线路板的制造方法
KR20190031262A (ko) * 2016-07-19 2019-03-25 히타치가세이가부시끼가이샤 수지 조성물, 적층판 및 다층 프린트 배선판
CN109476923B (zh) * 2016-07-19 2022-04-05 昭和电工材料株式会社 树脂组合物、层叠板及多层印刷线路板
KR102489990B1 (ko) * 2016-07-19 2023-01-17 쇼와덴코머티리얼즈가부시끼가이샤 수지 조성물, 적층판 및 다층 프린트 배선판
CN109476923A (zh) * 2016-07-19 2019-03-15 日立化成株式会社 树脂组合物、层叠板及多层印刷线路板
KR102332305B1 (ko) * 2016-07-19 2021-11-26 쇼와덴코머티리얼즈가부시끼가이샤 수지 조성물, 적층판 및 다층 프린트 배선판
KR20210148373A (ko) * 2016-07-19 2021-12-07 쇼와덴코머티리얼즈가부시끼가이샤 수지 조성물, 적층판 및 다층 프린트 배선판
US11377546B2 (en) 2016-07-19 2022-07-05 Showa Denko Materials Co., Ltd. Resin composition, laminate sheet, and multilayer printed wiring board
EP3489308A4 (fr) * 2016-07-19 2019-12-18 Hitachi Chemical Company, Ltd. Composition de résine, plaque stratifiée, et carte de circuit imprimé multicouche
CN114479459A (zh) * 2016-07-19 2022-05-13 昭和电工材料株式会社 树脂组合物、层叠板及多层印刷线路板
JP2018012764A (ja) * 2016-07-20 2018-01-25 日立化成株式会社 樹脂組成物、樹脂層付き支持体、プリプレグ、積層板、多層プリント配線板及びミリ波レーダー用プリント配線板
JP7102682B2 (ja) 2016-07-20 2022-07-20 昭和電工マテリアルズ株式会社 樹脂組成物、樹脂層付き支持体、プリプレグ、積層板、多層プリント配線板及びミリ波レーダー用プリント配線板
JP2018035217A (ja) * 2016-08-29 2018-03-08 旭化成株式会社 熱硬化性樹脂組成物およびそれを用いるプリプレグ、金属張積層板またはプリント配線板
JPWO2019188189A1 (ja) * 2018-03-28 2021-04-08 パナソニックIpマネジメント株式会社 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
US11365274B2 (en) 2018-03-28 2022-06-21 Panasonic Intellectual Property Management Co., Ltd. Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board each obtained using said resin composition
WO2019188189A1 (fr) * 2018-03-28 2019-10-03 パナソニックIpマネジメント株式会社 Composition de résine, et préimprégné, film revêtu de résine, feuille métallique revêtue de résine, stratifié à revêtement métallique, et carte de câblage obtenus chacun à l'aide de ladite composition de résine
JP7316572B2 (ja) 2018-03-28 2023-07-28 パナソニックIpマネジメント株式会社 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
CN112969749A (zh) * 2018-11-08 2021-06-15 昭和电工材料株式会社 树脂组合物、预浸料、层叠板、树脂膜、多层印刷布线板和毫米波雷达用多层印刷布线板
CN112969759B (zh) * 2018-11-08 2024-06-07 株式会社力森诺科 树脂组合物、树脂组合物的固化物、预浸料、层叠板、树脂膜、多层印刷布线板、毫米波雷达用多层印刷布线板及聚苯醚衍生物
CN112969749B (zh) * 2018-11-08 2024-02-02 株式会社力森诺科 树脂组合物、预浸料、层叠板、树脂膜、多层印刷布线板和毫米波雷达用多层印刷布线板
CN112969759A (zh) * 2018-11-08 2021-06-15 昭和电工材料株式会社 树脂组合物、树脂组合物的固化物、预浸料、层叠板、树脂膜、多层印刷布线板、毫米波雷达用多层印刷布线板及聚苯醚衍生物
WO2020095422A1 (fr) * 2018-11-08 2020-05-14 日立化成株式会社 Composition de résine ainsi qu'objet durci de celle-ci, pré-imprégné, stratifié, film de résine, carte de circuit imprimé multicouche, carte de circuit imprimé multicouche pour radar à ondes millimétriques, et dérivé de polyphénylène éther
JPWO2020095422A1 (ja) * 2018-11-08 2021-10-07 昭和電工マテリアルズ株式会社 樹脂組成物、樹脂組成物の硬化物、プリプレグ、積層板、樹脂フィルム、多層プリント配線板、ミリ波レーダー用多層プリント配線板及びポリフェニレンエーテル誘導体
JP7298623B2 (ja) 2018-11-08 2023-06-27 株式会社レゾナック 樹脂組成物、樹脂組成物の硬化物、プリプレグ、積層板、樹脂フィルム、多層プリント配線板、ミリ波レーダー用多層プリント配線板及びポリフェニレンエーテル誘導体
CN110283528A (zh) * 2019-06-27 2019-09-27 浙江儒商科技有限公司 一种基于双马来酰亚胺的耐磨自润滑斜盘的制备方法
JP2021031530A (ja) * 2019-08-20 2021-03-01 信越化学工業株式会社 熱硬化性樹脂組成物、並びにこれを用いた接着剤、フィルム、プリプレグ、積層板、回路基板及びプリント配線板
JP2021127438A (ja) * 2020-02-17 2021-09-02 信越化学工業株式会社 熱硬化性樹脂組成物、熱硬化性接着剤、熱硬化性樹脂フィルム並びに前記熱硬化性樹脂組成物を用いた積層板、プリプレグ、及び回路基板
JP7286569B2 (ja) 2020-02-17 2023-06-05 信越化学工業株式会社 熱硬化性樹脂組成物、熱硬化性接着剤、熱硬化性樹脂フィルム並びに前記熱硬化性樹脂組成物を用いた積層板、プリプレグ、及び回路基板
CN113265220A (zh) * 2020-02-17 2021-08-17 信越化学工业株式会社 热固性树脂组合物、粘合剂、膜及使用所述热固性树脂组合物的层叠板、预浸料及电路基板
JP2022011106A (ja) * 2020-06-29 2022-01-17 株式会社日立産機システム モールド電気機器
JP7409980B2 (ja) 2020-06-29 2024-01-09 株式会社日立産機システム モールド電気機器
WO2022102781A1 (fr) * 2020-11-16 2022-05-19 昭和電工マテリアルズ株式会社 Composition de résine maléimide, pré-imprégné, plaque stratifiée, film de résine, carte de circuit imprimé, et boîtier de semi-conducteur

Also Published As

Publication number Publication date
JP6006408B2 (ja) 2016-10-12
JPWO2014181456A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
JP6006408B2 (ja) 絶縁組成物、硬化物およびそれを用いた絶縁電線
JP5306742B2 (ja) 絶縁ワイヤ
JP6016846B2 (ja) 絶縁ワイヤおよびその製造方法
US10991478B2 (en) Insulated wire
JP6019809B2 (ja) 絶縁電線及びそれを用いたコイル
KR20170099933A (ko) 내굽힘 가공성이 우수한 절연전선, 그것을 이용한 코일 및 전자·전기 기기
JP2011252035A (ja) 絶縁塗料およびそれを用いた絶縁電線
KR20170078608A (ko) 절연 전선, 코일 및 전기·전자기기, 및 절연 전선의 제조 방법
WO2017094789A1 (fr) Fil isolé fusible par lui-même, bobine et dispositif électrique/électronique
JP2016039042A (ja) 絶縁電線、回転電機及び絶縁電線の製造方法
JP6394697B2 (ja) 絶縁電線及びコイル
JP2013206648A (ja) 絶縁電線
CN114270454A (zh) 具有热塑性绝缘部的磁导线
WO2012144361A1 (fr) Enroulement de machine tournante et son procédé de fabrication
US8809684B2 (en) Insulated wire
WO2012153636A1 (fr) Vernis de résine de polyimide, fil électrique isolé l'utilisant, bobine électrique et moteur
JP6373309B2 (ja) 絶縁電線、コイル及び電気・電子機器
CN102592752B (zh) 一种单涂层漆包线的生产方法
WO2015121999A1 (fr) Fil isolé, machine électrique rotative et procédé de fabrication de fil isolé
JP5561238B2 (ja) 絶縁電線及びその製造方法
JP6519231B2 (ja) 巻線及びその製造方法
JP2008243677A (ja) 電気絶縁用樹脂組成物、これを用いた塗料及びエナメル線
JP2016151020A (ja) ポリイミド塗料および絶縁電線
JP7409980B2 (ja) モールド電気機器
JP2011210519A (ja) 絶縁電線

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884251

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015515724

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13884251

Country of ref document: EP

Kind code of ref document: A1