WO2014181456A1 - Insulating composition, cured product and insulated wire using same - Google Patents

Insulating composition, cured product and insulated wire using same Download PDF

Info

Publication number
WO2014181456A1
WO2014181456A1 PCT/JP2013/063109 JP2013063109W WO2014181456A1 WO 2014181456 A1 WO2014181456 A1 WO 2014181456A1 JP 2013063109 W JP2013063109 W JP 2013063109W WO 2014181456 A1 WO2014181456 A1 WO 2014181456A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular weight
bismaleimide
cured product
insulating
insulating composition
Prior art date
Application number
PCT/JP2013/063109
Other languages
French (fr)
Japanese (ja)
Inventor
小林 稔幸
悟 天羽
康太郎 荒谷
新太郎 武田
唯 新井
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to JP2015515724A priority Critical patent/JP6006408B2/en
Priority to PCT/JP2013/063109 priority patent/WO2014181456A1/en
Publication of WO2014181456A1 publication Critical patent/WO2014181456A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/292Protection against damage caused by extremes of temperature or by flame using material resistant to heat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/427Polyethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes

Definitions

  • the present invention relates to an insulating composition, a cured product, and an insulated wire using the same, and more particularly to an insulating composition suitable for coils of motors, transformers, and the like, and an insulated wire using the same.
  • Insulated wires used for coils of electrical equipment such as rotating electrical machines and transformers are generally formed in a cross-sectional shape (round shape, rectangular shape, etc.) that matches the application and shape of the coil.
  • a single-layer or multiple-layer insulation coating is formed on the outer periphery of the conductor.
  • Examples of means for increasing the partial discharge start voltage of the insulating coating include a method using a resin having a low relative dielectric constant for the insulating coating and a method of increasing the thickness of the insulating coating.
  • the relative dielectric constant of the resin varnish used is usually between 3 and 4, and there is no specific dielectric constant that is low, such as heat resistance, flexibility, solvent resistance, etc. From the other characteristics required for the enamel layer, it is not always possible to select a material having a low relative dielectric constant. Therefore, it is essential to increase the thickness of the enamel layer.
  • an enamel layer it is possible to increase the thickness by increasing the number of passes through the baking furnace in the manufacturing process.
  • the thickness of the coating made of copper oxide on the copper surface, which is a conductor grows, And the enamel layer may be reduced in adhesion.
  • an enamel layer having a thickness of 50 ⁇ m or more can be obtained by one molding.
  • a method for obtaining a resin having high heat resistance a method using a resin composition containing a bismaleimide compound is disclosed, and the molecular weight of this bismaleimide compound is usually 1000 or less.
  • a bismaleimide compound having a molecular weight of 1000 or less is used, a cured product having high heat resistance can be obtained.
  • the cured product is hard and brittle, it is difficult to apply to a use requiring flexibility. For this reason, usually, other resins such as polyimide and epoxy resin are used in combination.
  • Patent Document 1 discloses a resin composition containing a polyimide precursor and a bismaleimide compound for a thermosetting film-forming resin composition, and the aromatic bismaleimide has a molecular weight in order to obtain higher flatness. It is described that 1000 or less is preferable.
  • Patent Document 2 discloses a homogeneous bismaleimide-triazine-epoxy composition useful for the production of an electrical laminate, and includes an epoxy resin, a maleimide component containing at least one bismaleimide, and a cyanate ester component. A homogeneous solution containing is disclosed.
  • Patent Document 1 it is described that an aromatic bismaleimide having a molecular weight of 1000 or less is preferable among bismaleimide compounds in order to obtain higher flatness for the resin composition for thermosetting film formation.
  • a polyimide precursor having a specific structural unit is used in combination as another component.
  • an object of the present invention is to provide an insulating composition, a cured product, and an insulated wire using the same, which are excellent in heat resistance, flexibility and voltage resistance.
  • the insulating composition of the present invention comprises a low molecular weight bismaleimide having a molecular weight of less than 1000, a high molecular weight bismaleimide having a molecular weight of 3000 or more, and a curing agent.
  • the insulating composition of the present invention since it comprises a low molecular weight bismaleimide (molecular weight less than 1000), a curing agent, and a high molecular weight bismaleimide (molecular weight 3000 or more), an insulation cured product having both heat resistance and flexibility can be obtained. It is done. Furthermore, by using it for an insulated wire, an insulated wire having good heat resistance and voltage resistance can be obtained.
  • the present inventors have found that a cured product having heat resistance and flexibility can be obtained by blending a low molecular weight bismaleimide and a curing agent into a high molecular weight bismaleimide.
  • the insulating composition of the present invention is a composition containing a low molecular weight bismaleimide (molecular weight less than 1000), a curing agent, and a high molecular weight bismaleimide (molecular weight 3000 or more).
  • High molecular weight bismaleimide having a molecular weight of 3000 or more, having a maleimide group in the structure, and further having an imide skeleton in the structure is preferable because of excellent heat resistance.
  • Examples of such a high molecular weight bismaleimide include BMI-5000 and BMI-3000 (manufactured by Designer Molecule).
  • Examples of the low molecular weight bismaleimide include 4,4′-diphenylmethane bismaleimide, m-phenylene bismaleimide, bisphenol A diphenyl ether bismaleimide, 3,3′-dimethyl-5,5′diethyl-4,4′-diphenylmethane bismaleimide, 4,4′-diphenyl ether bismaleimide, 4,4′-diphenylsulfone bismaleimide, 1,3-bis (3-maleimidophenoxy) benzene, 1,3-bis (4-maleimidophenoxy) benzene, 1,6′- Examples thereof include bismaleimide- (2,2,4-trimethyl) hexane and polyphenylmethane maleimide.
  • the amount of the low molecular weight bismaleimide added is preferably 5 to 80% by weight, more preferably 5 to 50% by weight, based on the total solid content, from the viewpoint of heat resistance and flexibility. Increasing the amount of low molecular weight bismaleimide is not preferable because the cured product becomes hard and brittle, resulting in problems such as reduced flexibility and precipitation of low molecular weight bismaleimide in the varnish coating.
  • the curing agent to be used may be any one that cures with bismaleimide.
  • the curing agent to be used may be any one that cures with bismaleimide.
  • 2,2′-diallylbisphenol A 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2 -Bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] ether, 9,9-bis
  • Examples include (4-aminophenyl) fluorene, 4,4′-bis (4-aminophenoxy) biphenyl, 1,4-bis (4-aminophenoxy) benzene, and the like. These are not limited to those described above. These can be used alone or in combination of two or more.
  • high heat resistance can be obtained by using curable polyphenylene ether.
  • the use of a terminal styrene-modified polyphenylene ether derivative is preferable from the viewpoints of improving heat resistance and achieving both flexibility and solvent solubility.
  • Examples of such terminal styrene-modified polyphenylene ether derivatives include OPE2St (manufactured by Mitsubishi Gas Chemical Co., Inc.).
  • an organic peroxide can be used as a polymerization initiator.
  • the organic peroxide used include benzoyl peroxide, lauroyl peroxide, benzoic peroxide, t-butyl peroxide benzoic acid, t-amyl peroxyneodecanoate, t-butylperoxyneodecanoate, t- Amyl peroxyisobutyrate, di-t-butyl peroxide, dicumyl peroxide, cumene hydroperoxide, 1,1-di (t-butylperoxy) cyclohexane, 2,2-di (t-butylperoxy)
  • Examples include butane, t-butyl hydroperoxide, di (s-butyl) peroxycarbonate, methyl ethyl ketone peroxide, and the like, but are not particularly limited, and these may be used alone or in combination of two or more. Good.
  • an inorganic filler can be added.
  • the inorganic filler general silica, alumina, titanium oxide, boron nitride, silicon nitride and the like can be used.
  • the inorganic filler is preferably used after being surface-treated with a coupling agent from the viewpoint of improving mechanical properties, electrical properties and the like.
  • the coupling agent to be used known ones such as a silane coupling agent and a titanate coupling agent can be used.
  • a phenoxy resin refers to a resin having a large molecular weight among epoxy resins produced from a bisphenol compound and epichlorohydrin.
  • bisphenol A type phenoxy resin and bisphenol S type phenoxy resin can be used.
  • the bisphenol A type phenoxy resin is a phenoxy resin having a bisphenol A skeleton using 2,2-bis (p-hydroxyphenyl) propane (hereinafter referred to as “bisphenol A”) as a bisphenol compound (bisphenol A type phenoxy resin). ).
  • the bisphenol S-type phenoxy resin is a 2,2-bis (p-hydroxyphenyl) sulfone (hereinafter referred to as “bisphenol S”) as a part of a bisphenol-based compound in order to enhance the heat resistance of the bisphenol A-type phenoxy resin.
  • bisphenol S a 2,2-bis (p-hydroxyphenyl) sulfone
  • Commercially available products can be used, and examples thereof include product numbers YP-50, YP50S, and YPS007A30 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
  • the amount of phenoxy resin added is preferably 3 to 80% by weight, more preferably 3 to 50% by weight, based on the total solid content, from the viewpoints of heat resistance and flexibility.
  • the insulated wire 10 according to the present embodiment is obtained by applying and baking the above-described insulating composition (paint) on the surface of the conductor 1 having a round or square cross section.
  • the insulating coating 2 is formed and configured.
  • the film thickness of the insulating coating 2 formed of the insulating paint described above is preferably 20 ⁇ m or more.
  • the film thickness is smaller than 20 ⁇ m, it is difficult to form an insulating film having a high partial discharge start voltage although it has excellent characteristics such as heat resistance and wear resistance.
  • a film thickness of about 100 ⁇ m can be formed in one step.
  • Insulated wire 10 includes an adhesion-imparting insulating film for improving adhesion between conductor 1 and insulating film 2, and a flexibility-imparting insulating film for improving flexibility. Or the like may be formed between the conductor 1 and the insulating coating 2. Further, the insulated wire 10 according to the present embodiment is formed by forming a lubricity-imparting insulating film for imparting lubricity around the insulating film 2 or a scratch-resistant imparting insulating film for imparting scratch resistance. Also good.
  • adhesion imparting insulating coating may be formed by applying and baking an insulating paint, or extrusion using an extruder. You may form by shaping
  • an insulating paint obtained by dissolving a resin made of polyimide, polyamideimide, polyesterimide, H-type polyester, or the like between the conductor 1 and the insulating coating 2 in a solvent.
  • An organic insulating film formed by coating and baking may be provided in a single layer or multiple layers.
  • the conductor 1 used for the insulated wire 10 according to the present embodiment is made of a copper conductor, and mainly oxygen-free copper or low-oxygen copper is used.
  • a copper conductor is not limited to this,
  • the conductor which gave metal plating, such as nickel, to the outer periphery of copper can also be used.
  • the conductor 1 may have a cross-sectional shape such as a round shape or a square shape.
  • the quadrangular shape here includes one having a substantially quadrangular cross section with rounded corners as shown in FIG.
  • Terminal styrene-modified polyphenylene ether derivative (OPE2St, manufactured by Mitsubishi Gas Chemical Co., Ltd .: molecular weight 2200) 10 parts by weight, BMI-5000 (Designer Molecule) 80 parts by weight, BMI-5100 (manufactured by Daiwa Kasei Kogyo Co., Ltd.) 5 parts by weight, 5 parts by weight of 2,2′-diallylbisphenol A (DABPA, manufactured by Daiwa Kasei Kogyo Co., Ltd.) were dissolved in 100 parts by weight of tetrahydrofuran to obtain a varnish. 2 parts by weight of n-butyl 4,4-di- (t-butylperoxy) butyric acid (Perhexa V manufactured by NOF Corporation) was added to 100 parts by weight of the solid content to obtain an insulating composition.
  • OPE2St Terminal styrene-modified polyphenylene ether derivative
  • BMI-5000 Designer Mol
  • the insulating composition was cast on a PTFE (polytetrafluoroethylene) sheet and dried overnight at room temperature. Next, after heating at 120 ° C./60 minutes and then at 160 ° C./60 minutes in a warm air circulation type thermostatic bath, 180 ° C./60 minutes were heated and pressed to prepare a cured product having a thickness of 0.5 mm. The obtained cured product was cut into a length of 3 mm, a width of 3 mm, and a thickness of 0.5 mm, and then heated using a thermogravimetry apparatus Q500 manufactured by TA Instruments Inc. The decrease in thermogravimetry was measured from 100 ° C. to 500 ° C.
  • the heat resistant temperature index was calculated from the 5% weight loss temperature and the activation energy at the time of 5% weight loss.
  • the cured product molded 30 mm long ⁇ 30 mm wide ⁇ 0.5 mm thick has no cracks or other abnormalities in the coating film, and the coating film has some cracks. The case where it was seen was ⁇ , and the case where the crack was generated on the entire surface of the coating film and was hard and brittle was rated as x.
  • the withstand voltage of the cured product is a dielectric breakdown voltage (at a pressure increase rate of 2.0 kV / sec.)
  • a dielectric breakdown tester in room temperature and oil in a cured product molded 30 mm long ⁇ 30 mm wide ⁇ 0.5 mm thick. kV was measured, and the dielectric breakdown strength (kV / mm) was calculated. The dielectric breakdown strength was rated as ⁇ when it was 30 kV / mm or more and as x when it was less than 30 kV / mm.
  • Example 2 A cured product was prepared and processed in the same manner as in Example 1 except that 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP) was used instead of DABPA, and various physical properties were measured. did.
  • Example 3 A cured product was prepared and processed in the same manner as in Example 2 except that the blending amounts of BMI-5000, BMI-5100, and BAPP were changed, and various physical properties were measured.
  • Example 4 A cured product was prepared and processed in the same manner as in Example 1 except that 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane (BAPPF) was used instead of DABPA. Was measured.
  • Example 5 A cured product was prepared and processed in the same manner as in Example 1 except that BMI-3000 was used instead of BMI-5000 and the blending amount was changed, and various physical properties were measured.
  • Example 6 A cured product was prepared and processed in the same manner as in Example 1 except that cumene hydroperoxide (Tokyo Kasei Kogyo) was used instead of n-butyl 4,4-di- (t-butylperoxy) butyric acid. Various physical properties were measured.
  • cumene hydroperoxide Tokyo Kasei Kogyo
  • Example 1 A cured product was prepared and processed in the same manner as in Example 1 except that BMI-5000 was used without using the terminal styrene-modified polyphenylene ether derivative, BMI-5100, DABPA, and various physical properties were measured.
  • Comparative Example 2 A cured product was prepared and processed in the same manner as Comparative Example 1 except that BMI-5100 and DABPA were used without using BMI-5000, and various physical properties were measured.
  • Comparative Example 3 A cured product was prepared and processed in the same manner as in Comparative Example 1 except that BMI-3000 was used instead of BMI-5000, and various physical properties were measured.
  • Example 7 The insulating composition of Example 1 was cast on a PTFE (polytetrafluoroethylene) sheet and dried overnight at room temperature. Next, it was heated at 120 ° C./60 minutes and then at 160 ° C./60 minutes in a warm air circulation type thermostatic bath to obtain an insulating composition for extrusion coating. Next, a copper wire having an outer diameter of 1.25 mm was used as a conductor, and a coating layer having a thickness of 100 ⁇ m was formed on the copper wire by extrusion coating to produce an insulated wire shown in FIG.
  • PTFE polytetrafluoroethylene
  • the evaluation of the flexibility of an insulated wire is 5 for a round bar (winding rod) of an insulated wire that is 20% longer than the unstretched length and has a smooth surface and 1 to 10 times the conductor diameter of the insulated wire.
  • the coil was wound for 5 coils with one coil being wound, and it was determined by using an optical microscope whether cracks were observed in the insulating film. As a result, no crack was generated.
  • Examples 8 to 12 In the same manner as in Example 7, it was determined whether or not cracks were observed in the insulating film of the insulating compositions of Examples 2 to 6. As a result, no crack was generated.
  • the heat resistance of the cured products in Examples 1 to 6 was equal to or higher than that of Comparative Examples 1 to 3, and the flexibility was good. This is because heat resistance is improved while maintaining flexibility by adding low molecular weight bismaleimide to high molecular weight bismaleimide.
  • the insulated wires of Examples 7 to 12 using the insulating composition of Examples 1 to 6 were good with no cracks.
  • this invention is not limited to said Example, Various modifications are included.
  • the above embodiments are intended to describe the present invention in detail, and are not limited to the configurations of these embodiments. A part of the configuration of the embodiment can be replaced with another configuration, and other configurations can be added to the configuration of the embodiment.

Abstract

The purpose of the present invention is to provide: an insulating composition which has excellent heat resistance, flexibility and withstand voltage properties; a cured product; and an insulated wire which uses this insulating composition. This insulating composition is characterized by containing a low-molecular-weight bismaleimide having a molecular weight of less than 1,000, a high-molecular-weight bismaleimide having a molecular weight of 3,000 or more, and a curing agent. This insulating resin composition may additionally contain a curable polyphenylene ether as a crosslinking component and a phenoxy resin as a resin component.

Description

絶縁組成物、硬化物およびそれを用いた絶縁電線Insulating composition, cured product, and insulated wire using the same
 本発明は、絶縁組成物、硬化物およびそれを用いた絶縁電線に係り、特に、モータや変圧器等のコイル用として好適な絶縁組成物及びそれを用いた絶縁電線に関する。 The present invention relates to an insulating composition, a cured product, and an insulated wire using the same, and more particularly to an insulating composition suitable for coils of motors, transformers, and the like, and an insulated wire using the same.
 回転電機や変圧器などの電気機器のコイルに用いられる絶縁電線(エナメル被覆絶縁電線)は、一般的に、コイルの用途・形状に合致した断面形状(丸形状や矩形状等)に成形された導体の外周に単層または複数層の絶縁被覆が形成された構造をしている。絶縁被覆を形成する方法には、樹脂を有機溶剤に溶解させた絶縁塗料を導体上に塗布・焼付けする方法と、予め調合した樹脂組成物を導体上に押出被覆する方法がある。 Insulated wires (enamel-covered insulated wires) used for coils of electrical equipment such as rotating electrical machines and transformers are generally formed in a cross-sectional shape (round shape, rectangular shape, etc.) that matches the application and shape of the coil. A single-layer or multiple-layer insulation coating is formed on the outer periphery of the conductor. There are two methods for forming an insulating coating: a method in which an insulating paint in which a resin is dissolved in an organic solvent is applied and baked on a conductor, and a method in which a resin composition prepared in advance is coated on a conductor by extrusion.
 近年、電気機器への小型化の要求により、コイル巻線工程において絶縁電線を高い張力下で小径のコアに高密度で巻くようになってきており、絶縁被覆には過酷な加工ストレスに耐えられる機械的特性(例えば、密着性や耐摩耗性など)が求められている。また、電気機器への高効率化・高出力化の要求からインバータ制御や高電圧化が進展している。その結果、コイルの運転温度が以前よりも上昇傾向にあり、絶縁被覆には高い耐熱性も求められている。それらに加えて、インバータサージ電圧などのより高い電圧が電気機器中のコイルに掛かることから、部分放電の発生によって絶縁被覆が劣化・損傷することがあるという問題が生じていた。 In recent years, due to the demand for miniaturization of electrical equipment, insulated wires have been wound at high density around small diameter cores under high tension in the coil winding process, and the insulation coating can withstand severe processing stress. Mechanical properties (for example, adhesion and wear resistance) are required. In addition, inverter control and higher voltage are progressing due to demands for higher efficiency and higher output of electrical equipment. As a result, the operating temperature of the coil tends to be higher than before, and the insulation coating is also required to have high heat resistance. In addition, since a higher voltage such as an inverter surge voltage is applied to the coil in the electric device, there has been a problem that the insulation coating may be deteriorated or damaged due to the occurrence of partial discharge.
 部分放電による絶縁被覆の劣化・損傷を防ぐために、部分放電開始電圧の高い絶縁被覆の開発が進められている。絶縁被覆の部分放電開始電圧を高くする手段として、絶縁被覆に比誘電率の低い樹脂を用いる方法や、絶縁被覆の厚さを厚くする方法が挙げられる。しかし、通常、使用される樹脂ワニスの樹脂の比誘電率は、ほとんどが3~4の間のものであり、比誘電率が特別低いものが無く、耐熱性、可とう性、耐溶剤性等といったエナメル層に求められる他の特性から、必ずしも比誘電率が低い物を選択できるという訳ではない。従ってエナメル層の厚さを厚くすることが不可欠である。エナメル層の場合には、製造工程において焼き付け炉を通す回数を増やせば厚さを厚くすることが可能であるが、導体である銅表面の酸化銅からなる被膜の厚さが成長するため、導体とエナメル層との接着力が低下することがある。これに対して、押出被覆では一度の成形で厚さ50μm以上のエナメル層が得られる。 In order to prevent deterioration and damage of the insulation coating due to partial discharge, development of insulation coating with a high partial discharge starting voltage is underway. Examples of means for increasing the partial discharge start voltage of the insulating coating include a method using a resin having a low relative dielectric constant for the insulating coating and a method of increasing the thickness of the insulating coating. However, the relative dielectric constant of the resin varnish used is usually between 3 and 4, and there is no specific dielectric constant that is low, such as heat resistance, flexibility, solvent resistance, etc. From the other characteristics required for the enamel layer, it is not always possible to select a material having a low relative dielectric constant. Therefore, it is essential to increase the thickness of the enamel layer. In the case of an enamel layer, it is possible to increase the thickness by increasing the number of passes through the baking furnace in the manufacturing process. However, since the thickness of the coating made of copper oxide on the copper surface, which is a conductor, grows, And the enamel layer may be reduced in adhesion. On the other hand, in the extrusion coating, an enamel layer having a thickness of 50 μm or more can be obtained by one molding.
 耐熱性の高い樹脂を得る方法として、ビスマレイミド化合物を含む樹脂組成物を用いる方法が開示されており、通常、このビスマレイミド化合物の分子量は1000以下である。分子量1000以下のビスマレイミド化合物を用いると耐熱性の高い硬化物が得られるが、その硬化物は硬くて脆いために、可とう性が必要とされる用途に適用するのは困難である。このため、通常、ポリイミドやエポキシ樹脂等の他の樹脂を併用して使用されている。 As a method for obtaining a resin having high heat resistance, a method using a resin composition containing a bismaleimide compound is disclosed, and the molecular weight of this bismaleimide compound is usually 1000 or less. When a bismaleimide compound having a molecular weight of 1000 or less is used, a cured product having high heat resistance can be obtained. However, since the cured product is hard and brittle, it is difficult to apply to a use requiring flexibility. For this reason, usually, other resins such as polyimide and epoxy resin are used in combination.
 特許文献1には、熱硬化膜形成用樹脂組成物について、ポリイミド前駆体、ビスマレイミド化合物を含む樹脂組成物が開示されており、芳香族ビスマレイミドについては、より高い平坦性を得るために分子量1000以下のものが好ましいと記載されている。 Patent Document 1 discloses a resin composition containing a polyimide precursor and a bismaleimide compound for a thermosetting film-forming resin composition, and the aromatic bismaleimide has a molecular weight in order to obtain higher flatness. It is described that 1000 or less is preferable.
 また、特許文献2には、電気積層板の製造に有用な均質ビスマレイミドートリアジンーエポキシ組成物が開示されており、エポキシ樹脂、少なくとも1種のビスマレイミドを含むマレイミド成分、及びシアネートエステル成分を含む均質な溶液が開示されている。 Patent Document 2 discloses a homogeneous bismaleimide-triazine-epoxy composition useful for the production of an electrical laminate, and includes an epoxy resin, a maleimide component containing at least one bismaleimide, and a cyanate ester component. A homogeneous solution containing is disclosed.
WO2008/153101号公報WO2008 / 153101 Publication 特表2012-512312号公報Special Table 2012-512312
 特許文献1に記載の方法によれば、熱硬化膜形成用樹脂組成物について、より高い平坦性を得るために、ビスマレイミド化合物のうち、分子量1000以下の芳香族ビスマレイミドが好ましいと記載されており、他の成分として特定の構造単位を有するポリイミド前駆体を併用している。
また、特許文献2に記載の方法によれば、エポキシ樹脂と少なくとも1種のビスマレイミドを含むマレイミド成分について、シアネートエステル成分を併用した組成物である。
According to the method described in Patent Document 1, it is described that an aromatic bismaleimide having a molecular weight of 1000 or less is preferable among bismaleimide compounds in order to obtain higher flatness for the resin composition for thermosetting film formation. In addition, a polyimide precursor having a specific structural unit is used in combination as another component.
Moreover, according to the method of patent document 2, it is the composition which used together the cyanate ester component about the maleimide component containing an epoxy resin and at least 1 sort (s) of bismaleimide.
 そこで、本発明の目的は、耐熱性、可とう性、耐電圧性に優れた絶縁組成物、硬化物およびそれを用いた絶縁電線を提供することにある。 Therefore, an object of the present invention is to provide an insulating composition, a cured product, and an insulated wire using the same, which are excellent in heat resistance, flexibility and voltage resistance.
 本発明の絶縁組成物は、分子量1000未満の低分子量ビスマレイミドと、分子量3000以上の高分子量ビスマレイミドと、硬化剤を含むことを特徴とする。 The insulating composition of the present invention comprises a low molecular weight bismaleimide having a molecular weight of less than 1000, a high molecular weight bismaleimide having a molecular weight of 3000 or more, and a curing agent.
 本発明の絶縁組成物によれば、低分子量ビスマレイミド(分子量1000未満)、硬化剤、高分子量ビスマレイミド(分子量3000以上)よりなるため、耐熱性と可とう性を兼ね備えた絶縁硬化物が得られる。さらに絶縁電線に用いることで耐熱性、耐電圧性の良好な絶縁電線が得られる。 According to the insulating composition of the present invention, since it comprises a low molecular weight bismaleimide (molecular weight less than 1000), a curing agent, and a high molecular weight bismaleimide (molecular weight 3000 or more), an insulation cured product having both heat resistance and flexibility can be obtained. It is done. Furthermore, by using it for an insulated wire, an insulated wire having good heat resistance and voltage resistance can be obtained.
本発明の実施の形態に係る円形形状の断面を有する絶縁電線を模式的に示す断面図である。It is sectional drawing which shows typically the insulated wire which has a circular shaped cross section which concerns on embodiment of this invention. 本発明の実施の形態に係る長方形状の断面を有する絶縁電線を模式的に示す断面図である。It is sectional drawing which shows typically the insulated wire which has a rectangular cross section which concerns on embodiment of this invention.
 本発明者らは、高分子量ビスマレイミドに低分子量ビスマレイミド、硬化剤を配合することで、耐熱性と可とう性を有する硬化物が得られることを見出した。すなわち、本発明の絶縁組成物は、低分子量ビスマレイミド(分子量1000未満)、硬化剤、高分子量ビスマレイミド(分子量3000以上)を含む組成物である。これらの絶縁組成物を導体上に押出被覆する方法によって絶縁被覆を形成すると、エナメル層の場合のように、焼き付け炉を複数回通す必要がないため、導体とエナメル層との接着力が低下することなく、押出被覆では一度の成形で厚さ50μm以上の被覆層が得られる。 The present inventors have found that a cured product having heat resistance and flexibility can be obtained by blending a low molecular weight bismaleimide and a curing agent into a high molecular weight bismaleimide. That is, the insulating composition of the present invention is a composition containing a low molecular weight bismaleimide (molecular weight less than 1000), a curing agent, and a high molecular weight bismaleimide (molecular weight 3000 or more). When an insulating coating is formed by a method of extruding these insulating compositions onto a conductor, the adhesive force between the conductor and the enamel layer is reduced because it is not necessary to pass through a baking furnace multiple times as in the case of an enamel layer. In the case of extrusion coating, a coating layer having a thickness of 50 μm or more can be obtained by one molding.
 以下、本発明の絶縁組成物の各構成について詳細に説明する。 Hereinafter, each configuration of the insulating composition of the present invention will be described in detail.
 高分子量ビスマレイミドとしては、分子量が3000以上であり、構造中にマレイミド基を有し、さらに構造中にイミド骨格を有すると、耐熱性に優れているため好ましい。このような高分子量ビスマレイミドとしては、例えば、BMI-5000、BMI-3000(Designer Molecule社製)が挙げられる。 High molecular weight bismaleimide having a molecular weight of 3000 or more, having a maleimide group in the structure, and further having an imide skeleton in the structure is preferable because of excellent heat resistance. Examples of such a high molecular weight bismaleimide include BMI-5000 and BMI-3000 (manufactured by Designer Molecule).
 低分子量ビスマレイミドとしては、4,4’-ジフェニルメタンビスマレイミド、m-フェニレンビスマレイミド、ビスフェノールAジフェニルエーテルビスマレイミド、3,3’-ジメチル-5,5’ジエチル-4,4’-ジフェニルメタンビスマレイミド、4,4’-ジフェニルエーテルビスマレイミド、4,4’-ジフェニルスルホンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン、1,6’-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、ポリフェニルメタンマレイミドなどが挙げられる。これらは、上記のものに限定されるものではない。テトラヒドロフラン等の有機溶媒に可溶であると、他の成分と混合する際に溶解し混合できるため、相溶性が向上するため好ましく、3,3’-ジメチル-5,5’ジエチル-4,4’-ジフェニルメタンビスマレイミド、ポリフェニルメタンマレイミドが特に好ましい。これらは、単独または2種以上の成分を併用することが可能である。 Examples of the low molecular weight bismaleimide include 4,4′-diphenylmethane bismaleimide, m-phenylene bismaleimide, bisphenol A diphenyl ether bismaleimide, 3,3′-dimethyl-5,5′diethyl-4,4′-diphenylmethane bismaleimide, 4,4′-diphenyl ether bismaleimide, 4,4′-diphenylsulfone bismaleimide, 1,3-bis (3-maleimidophenoxy) benzene, 1,3-bis (4-maleimidophenoxy) benzene, 1,6′- Examples thereof include bismaleimide- (2,2,4-trimethyl) hexane and polyphenylmethane maleimide. These are not limited to those described above. It is preferable that it is soluble in an organic solvent such as tetrahydrofuran because it can be dissolved and mixed when mixed with other components, so that the compatibility is improved, and 3,3′-dimethyl-5,5′diethyl-4,4 Particularly preferred are '-diphenylmethane bismaleimide and polyphenylmethane maleimide. These can be used alone or in combination of two or more components.
 低分子量ビスマレイミドの添加量は、全固形分に対して5~80重量%、さらに好ましくは5~50重量%が、耐熱性、可とう性の点から好ましい。低分子量ビスマレイミドの添加量が多くなると硬化物が硬くて脆くなるため、可とう性が低下する、ワニス塗料で低分子量ビスマレイミドが析出するなどの問題を生ずるため好ましくない。 The amount of the low molecular weight bismaleimide added is preferably 5 to 80% by weight, more preferably 5 to 50% by weight, based on the total solid content, from the viewpoint of heat resistance and flexibility. Increasing the amount of low molecular weight bismaleimide is not preferable because the cured product becomes hard and brittle, resulting in problems such as reduced flexibility and precipitation of low molecular weight bismaleimide in the varnish coating.
 本発明では、硬化剤を用いることで、耐熱性を有し、良好な可とう性が得られることから好ましい。用いる硬化剤としては、ビスマレイミドと硬化反応するものであればよく、例えば、2,2'-ジアリルビスフェノールA、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、9,9-ビス(4-アミノフェニル)フルオレン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、1,4-ビス(4-アミノフェノキシ)ベンゼン等が挙げられる。これらは、上記のものに限定されるものではない。また、これらは、単独または2種以上の成分を併用することが可能である。 In the present invention, it is preferable to use a curing agent because it has heat resistance and good flexibility can be obtained. The curing agent to be used may be any one that cures with bismaleimide. For example, 2,2′-diallylbisphenol A, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2 -Bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, bis [4- (4-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] ether, 9,9-bis Examples include (4-aminophenyl) fluorene, 4,4′-bis (4-aminophenoxy) biphenyl, 1,4-bis (4-aminophenoxy) benzene, and the like. These are not limited to those described above. These can be used alone or in combination of two or more.
 本発明では、硬化性ポリフェニレンエーテルを用いることで、高い耐熱性が得られる。なかでも末端スチレン変性ポリフェニレンエーテル誘導体を用いると、耐熱性が向上するとともに可とう性を両立でき、また、溶媒溶解性の点から好ましい。このような末端スチレン変性ポリフェニレンエーテル誘導体として例えば、OPE2St(三菱ガス化学(株)製)が挙げられる。 In the present invention, high heat resistance can be obtained by using curable polyphenylene ether. Among these, the use of a terminal styrene-modified polyphenylene ether derivative is preferable from the viewpoints of improving heat resistance and achieving both flexibility and solvent solubility. Examples of such terminal styrene-modified polyphenylene ether derivatives include OPE2St (manufactured by Mitsubishi Gas Chemical Co., Inc.).
 本発明では、有機過酸化物を重合開始剤に用いることができる。用いる有機過酸化物としては、過酸化ベンゾイル、過酸化ラウロイル、過酸化安息香酸 t-ブチル過酸化安息香酸、t-アミルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-アミルパーオキシイソブチレート、ジt-ブチルパーオキシド、ジクミルパーオキシド、クメンヒドロパーオキシド、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、2,2-ジ(t-ブチルパーオキシ)ブタン、t-ブチルハイドロパーオキシド、ジ(s-ブチル)パーオキシカーボネート、メチルエチルケトンパーオキシドなどが挙げられるが、特に制限されるものではなく、これらを1種単独もしくは2種以上を混合してもよい。 In the present invention, an organic peroxide can be used as a polymerization initiator. Examples of the organic peroxide used include benzoyl peroxide, lauroyl peroxide, benzoic peroxide, t-butyl peroxide benzoic acid, t-amyl peroxyneodecanoate, t-butylperoxyneodecanoate, t- Amyl peroxyisobutyrate, di-t-butyl peroxide, dicumyl peroxide, cumene hydroperoxide, 1,1-di (t-butylperoxy) cyclohexane, 2,2-di (t-butylperoxy) Examples include butane, t-butyl hydroperoxide, di (s-butyl) peroxycarbonate, methyl ethyl ketone peroxide, and the like, but are not particularly limited, and these may be used alone or in combination of two or more. Good.
 本発明では、無機フィラーを添加することも可能である。無機フィラーとしては、一般的なシリカ、アルミナ、酸化チタン、窒化ホウ素、窒化ケイ素などを用いることができる。無機フィラーにはカップリング剤により表面処理して用いることが、機械特性、電気特性などを改善する観点から好ましい。用いるカップリング剤としては、シランカップリング剤、チタネート系カップリング剤等、公知のものを使用できる。 In the present invention, an inorganic filler can be added. As the inorganic filler, general silica, alumina, titanium oxide, boron nitride, silicon nitride and the like can be used. The inorganic filler is preferably used after being surface-treated with a coupling agent from the viewpoint of improving mechanical properties, electrical properties and the like. As the coupling agent to be used, known ones such as a silane coupling agent and a titanate coupling agent can be used.
 本発明では、必要に応じて公知のフェノキシ樹脂を併用することが可能である。フェノキシ樹脂を併用することで、可とう性の良好な硬化物が得られる。フェノキシ樹脂とは、ビスフェノール系化合物とエピクロルヒドリンとから製造されるエポキシ樹脂のうち、分子量が大きい樹脂をいう。フェノキシ樹脂のなかでもビスフェノールA型フェノキシ樹脂やビスフェノールS型フェノキシ樹脂を用いることができる。ビスフェノールA型フェノキシ樹脂とは、ビスフェノール系化合物として、2,2-ビス(p-ヒドロキシフェニル)プロパン(以下、「ビスフェノールA」という)を用いたビスフェノールA骨格を有するフェノキシ樹脂(ビスフェノールA型フェノキシ樹脂)である。ビスフェノールS型フェノキシ樹脂とは、ビスフェノールA型フェノキシ樹脂の耐熱性を高めるために、ビスフェノール系化合物の一部に、2,2-ビス(p-ヒドロキシフェニル)スルホン(以下、「ビスフェノールS」という)を用いたビスフェノールS骨格を有するフェノキシ樹脂である。すなわち、ビスフェノールS型フェノキシ樹脂は、通常、ビスフェノールS骨格とビスフェノールA型骨格を有している。これらは市販のものを用いることができ、例えば、新日鉄住金化学(株)製の品番YP-50、YP50S、YPS007A30などが挙げられる。フェノキシ樹脂の添加量は、全固形分に対して、3~80重量%、さらに好ましくは3~50重量%が、耐熱性、可とう性の点から好ましい。
[絶縁電線およびその製造方法]
 本実施の形態に係る絶縁電線10は、図1と図2に示すように、断面が丸形状、あるいは四角形状の導体1の表面に、上述した絶縁組成物(塗料)を塗布、焼付けして形成した絶縁被膜2を有して構成される。上記で説明した絶縁塗料で形成された絶縁被膜2の膜厚は、20μm以上であることが好ましい。膜厚が20μmより小さい場合、耐熱性や耐摩耗性といった特性に優れるものの、部分放電開始電圧の高い絶縁被膜を形成することが困難となる。本実施の絶縁組成物を押出し成形することで、1回の工程で100μm程度の膜厚を形成することが可能となる。
In the present invention, a known phenoxy resin can be used in combination as necessary. By using a phenoxy resin in combination, a cured product with good flexibility can be obtained. A phenoxy resin refers to a resin having a large molecular weight among epoxy resins produced from a bisphenol compound and epichlorohydrin. Among the phenoxy resins, bisphenol A type phenoxy resin and bisphenol S type phenoxy resin can be used. The bisphenol A type phenoxy resin is a phenoxy resin having a bisphenol A skeleton using 2,2-bis (p-hydroxyphenyl) propane (hereinafter referred to as “bisphenol A”) as a bisphenol compound (bisphenol A type phenoxy resin). ). The bisphenol S-type phenoxy resin is a 2,2-bis (p-hydroxyphenyl) sulfone (hereinafter referred to as “bisphenol S”) as a part of a bisphenol-based compound in order to enhance the heat resistance of the bisphenol A-type phenoxy resin. Is a phenoxy resin having a bisphenol S skeleton. That is, the bisphenol S type phenoxy resin usually has a bisphenol S skeleton and a bisphenol A type skeleton. Commercially available products can be used, and examples thereof include product numbers YP-50, YP50S, and YPS007A30 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. The amount of phenoxy resin added is preferably 3 to 80% by weight, more preferably 3 to 50% by weight, based on the total solid content, from the viewpoints of heat resistance and flexibility.
[Insulated wire and manufacturing method thereof]
As shown in FIGS. 1 and 2, the insulated wire 10 according to the present embodiment is obtained by applying and baking the above-described insulating composition (paint) on the surface of the conductor 1 having a round or square cross section. The insulating coating 2 is formed and configured. The film thickness of the insulating coating 2 formed of the insulating paint described above is preferably 20 μm or more. When the film thickness is smaller than 20 μm, it is difficult to form an insulating film having a high partial discharge start voltage although it has excellent characteristics such as heat resistance and wear resistance. By extruding the insulating composition of the present embodiment, a film thickness of about 100 μm can be formed in one step.
 本実施の形態に係る絶縁電線10は、導体1と、絶縁被膜2との間の密着性を向上させるための密着性付与絶縁被膜や、可とう性を向上させるための可とう性付与絶縁被膜などを、導体1と絶縁被膜2との間に形成してもよい。また、本実施の形態に係る絶縁電線10は、絶縁被膜2の周囲に潤滑性を付与するための潤滑性付与絶縁被膜や、耐傷性を付与するための耐傷性付与絶縁被膜などを形成してもよい。これらの密着性付与絶縁被膜、可とう性付与絶縁被膜、潤滑性絶縁被膜、および耐傷性付与絶縁被膜は、絶縁塗料を塗布、焼付けすることによって形成してもよいし、押出機を用いた押出成形によって形成してもよい。 Insulated wire 10 according to the present embodiment includes an adhesion-imparting insulating film for improving adhesion between conductor 1 and insulating film 2, and a flexibility-imparting insulating film for improving flexibility. Or the like may be formed between the conductor 1 and the insulating coating 2. Further, the insulated wire 10 according to the present embodiment is formed by forming a lubricity-imparting insulating film for imparting lubricity around the insulating film 2 or a scratch-resistant imparting insulating film for imparting scratch resistance. Also good. These adhesion imparting insulating coating, flexibility imparting insulating coating, lubricity insulating coating, and scratch resistance imparting insulating coating may be formed by applying and baking an insulating paint, or extrusion using an extruder. You may form by shaping | molding.
 また、本実施の形態に係る絶縁電線10においては、導体1と絶縁被膜2との間に、ポリイミド、ポリアミドイミド、ポリエステルイミド、あるいはH種ポリエステル等からなる樹脂を溶媒に溶解させてなる絶縁塗料を塗布、焼付けして形成される有機絶縁被膜を単層又は多層で設けてもよい。 Moreover, in the insulated wire 10 according to the present embodiment, an insulating paint obtained by dissolving a resin made of polyimide, polyamideimide, polyesterimide, H-type polyester, or the like between the conductor 1 and the insulating coating 2 in a solvent. An organic insulating film formed by coating and baking may be provided in a single layer or multiple layers.
 本実施の形態に係る絶縁電線10に用いられる導体1は、銅導体からなり、主に無酸素銅や低酸素銅が使用される。なお、銅導体はこれに限定されるものではなく、例えば、銅の外周にニッケルなどの金属めっきを施した導体も使用可能である。また、導体1として、断面が丸形状、あるいは四角形状などの断面形状を有するものが使用できる。なお、ここでいう四角形状とは、図2に示すような角部が丸みを有する略四角形状の断面からなるものも含むものとする。 The conductor 1 used for the insulated wire 10 according to the present embodiment is made of a copper conductor, and mainly oxygen-free copper or low-oxygen copper is used. In addition, a copper conductor is not limited to this, For example, the conductor which gave metal plating, such as nickel, to the outer periphery of copper can also be used. The conductor 1 may have a cross-sectional shape such as a round shape or a square shape. In addition, the quadrangular shape here includes one having a substantially quadrangular cross section with rounded corners as shown in FIG.
 以下、実施例を説明する。
(実施例1)
 末端スチレン変性ポリフェニレンエーテル誘導体(OPE2St、三菱ガス化学(株)製:分子量2200)10重量部と、BMI-5000(Designer Molecule社製)80重量部、BMI-5100(大和化成工業(株)製)5重量部、2,2'-ジアリルビスフェノールA(DABPA、大和化成工業(株)製)5重量部をテトラヒドロフラン100重量部に溶解し、ワニスとした。固形分100重量部に対し、n-ブチル4,4-ジ-(t-ブチルパーオキシ)酪酸(日油(株)製のパーヘキサV)2重量部を加え、絶縁組成物とした。
Examples will be described below.
(Example 1)
Terminal styrene-modified polyphenylene ether derivative (OPE2St, manufactured by Mitsubishi Gas Chemical Co., Ltd .: molecular weight 2200) 10 parts by weight, BMI-5000 (Designer Molecule) 80 parts by weight, BMI-5100 (manufactured by Daiwa Kasei Kogyo Co., Ltd.) 5 parts by weight, 5 parts by weight of 2,2′-diallylbisphenol A (DABPA, manufactured by Daiwa Kasei Kogyo Co., Ltd.) were dissolved in 100 parts by weight of tetrahydrofuran to obtain a varnish. 2 parts by weight of n-butyl 4,4-di- (t-butylperoxy) butyric acid (Perhexa V manufactured by NOF Corporation) was added to 100 parts by weight of the solid content to obtain an insulating composition.
 絶縁組成物をPTFE(ポリテトラフルオロエチレン)シート上に流延し、室温にて一昼夜乾燥した。次に、温風循環式恒温槽にて、120℃/60分、次いで、160℃/60分加熱したのち、180℃/60分加熱プレスし、厚さ0.5mmの硬化物を作製した。得られた硬化物を、長さ3mm×幅3mm×厚さ0.5mmに切断した後、ティー・エイ・インスツルメント社製の熱重量測定装置Q500を用いて、昇温速度、5℃/分、10℃/分、20℃/分の各条件にて、100℃から500℃まで熱重量減少を測定した。耐熱温度指数は、5%重量減少温度および5%重量減少時の活性化エネルギーから算出した。可とう性の評価は、縦30mm×横30mm×厚さ0.5mmに成形した硬化物について、塗膜にクラック等の異常が見られず、伸びがある場合を○、塗膜に若干クラックが見られる場合を△、塗膜全面にクラックが発生して、硬くて脆い場合を×とした。また、硬化物の耐電圧は、縦30mm×横30mm×厚さ0.5mmに成形した硬化物を、室温、油中で絶縁破壊試験器により、昇圧速度2.0kV/secにて絶縁破壊電圧(kV)を測定し、絶縁破壊強度(kV/mm)を算出した。絶縁破壊強度が、30kV/mm以上を○、30kV/mm未満を×とした。
(実施例2)
 DABPAに代えて、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を用いた以外は、実施例1と同様に硬化物を作製し加工した後、諸物性を測定した。
(実施例3)
 BMI-5000、BMI-5100、BAPPの配合量を変えた以外は、実施例2と同様に硬化物を作製し加工した後、諸物性を測定した。
(実施例4)
 DABPAに代えて、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン(BAPPF)を用いた以外は、実施例1と同様に硬化物を作製し加工した後、諸物性を測定した。
(実施例5)
 BMI-5000に代えて、BMI-3000を用い、配合量を変えた以外は、実施例1と同様に硬化物を作製し加工した後、諸物性を測定した。
(実施例6)
 n-ブチル4,4-ジ-(t-ブチルパーオキシ)酪酸に代えて、クメンヒドロペルオキシド(東京化成工業)を用いた以外は、実施例1と同様に硬化物を作製し加工した後、諸物性を測定した。
(比較例1)
 末端スチレン変性ポリフェニレンエーテル誘導体、BMI-5100、DABPAを使用せず、BMI-5000を使用した以外は、実施例1と同様にして硬化物を作製し加工した後、諸物性を測定した。
(比較例2)
 BMI-5000を使用せず、BMI-5100、DABPAを使用した以外は、比較例1と同様にして硬化物を作製し加工した後、諸物性を測定した。
(比較例3)
 BMI-5000に代えて、BMI-3000を使用した以外は、比較例1と同様にして硬化物を作製し加工した後、諸物性を測定した。
The insulating composition was cast on a PTFE (polytetrafluoroethylene) sheet and dried overnight at room temperature. Next, after heating at 120 ° C./60 minutes and then at 160 ° C./60 minutes in a warm air circulation type thermostatic bath, 180 ° C./60 minutes were heated and pressed to prepare a cured product having a thickness of 0.5 mm. The obtained cured product was cut into a length of 3 mm, a width of 3 mm, and a thickness of 0.5 mm, and then heated using a thermogravimetry apparatus Q500 manufactured by TA Instruments Inc. The decrease in thermogravimetry was measured from 100 ° C. to 500 ° C. under each condition of 10 ° C./min and 20 ° C./min. The heat resistant temperature index was calculated from the 5% weight loss temperature and the activation energy at the time of 5% weight loss. For the evaluation of flexibility, the cured product molded 30 mm long × 30 mm wide × 0.5 mm thick has no cracks or other abnormalities in the coating film, and the coating film has some cracks. The case where it was seen was Δ, and the case where the crack was generated on the entire surface of the coating film and was hard and brittle was rated as x. In addition, the withstand voltage of the cured product is a dielectric breakdown voltage (at a pressure increase rate of 2.0 kV / sec.) Using a dielectric breakdown tester in room temperature and oil in a cured product molded 30 mm long × 30 mm wide × 0.5 mm thick. kV) was measured, and the dielectric breakdown strength (kV / mm) was calculated. The dielectric breakdown strength was rated as ○ when it was 30 kV / mm or more and as x when it was less than 30 kV / mm.
(Example 2)
A cured product was prepared and processed in the same manner as in Example 1 except that 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP) was used instead of DABPA, and various physical properties were measured. did.
(Example 3)
A cured product was prepared and processed in the same manner as in Example 2 except that the blending amounts of BMI-5000, BMI-5100, and BAPP were changed, and various physical properties were measured.
Example 4
A cured product was prepared and processed in the same manner as in Example 1 except that 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane (BAPPF) was used instead of DABPA. Was measured.
(Example 5)
A cured product was prepared and processed in the same manner as in Example 1 except that BMI-3000 was used instead of BMI-5000 and the blending amount was changed, and various physical properties were measured.
(Example 6)
A cured product was prepared and processed in the same manner as in Example 1 except that cumene hydroperoxide (Tokyo Kasei Kogyo) was used instead of n-butyl 4,4-di- (t-butylperoxy) butyric acid. Various physical properties were measured.
(Comparative Example 1)
A cured product was prepared and processed in the same manner as in Example 1 except that BMI-5000 was used without using the terminal styrene-modified polyphenylene ether derivative, BMI-5100, DABPA, and various physical properties were measured.
(Comparative Example 2)
A cured product was prepared and processed in the same manner as Comparative Example 1 except that BMI-5100 and DABPA were used without using BMI-5000, and various physical properties were measured.
(Comparative Example 3)
A cured product was prepared and processed in the same manner as in Comparative Example 1 except that BMI-3000 was used instead of BMI-5000, and various physical properties were measured.
 以上の実施例1~6と比較例1~3の結果を表1にまとめて示す。 The results of Examples 1 to 6 and Comparative Examples 1 to 3 are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000001
(実施例7)
 実施例1の絶縁組成物について、PTFE(ポリテトラフルオロエチレン)シート上に流延し、室温にて一昼夜乾燥した。次に、温風循環式恒温槽にて、120℃/60分、次いで、160℃/60分加熱し押出被覆用絶縁組成物を得た。次いで、導体として外径1.25mmの銅線を用い、該銅線に押出被覆により厚さ100μm被覆層を形成し、図1に示す絶縁電線を作製した。絶縁電線の可とう性の評価は、無伸長のときの長さから20%伸長させた絶縁電線を、表面が滑らかで絶縁電線の導体径の1~10倍の丸棒(巻き付け棒)に5巻き分を1コイルとして5コイル分巻き付け、光学顕微鏡を用いて絶縁皮膜に亀裂の発生が見られるかどうかで判定した。その結果、亀裂の発生はなかった。
(実施例8~12)
 実施例7と同様に実施例2~6の絶縁組成物について、絶縁皮膜に亀裂の発生が見られるかどうかを判定した。その結果、亀裂の発生はなかった。
Figure JPOXMLDOC01-appb-T000001
(Example 7)
The insulating composition of Example 1 was cast on a PTFE (polytetrafluoroethylene) sheet and dried overnight at room temperature. Next, it was heated at 120 ° C./60 minutes and then at 160 ° C./60 minutes in a warm air circulation type thermostatic bath to obtain an insulating composition for extrusion coating. Next, a copper wire having an outer diameter of 1.25 mm was used as a conductor, and a coating layer having a thickness of 100 μm was formed on the copper wire by extrusion coating to produce an insulated wire shown in FIG. The evaluation of the flexibility of an insulated wire is 5 for a round bar (winding rod) of an insulated wire that is 20% longer than the unstretched length and has a smooth surface and 1 to 10 times the conductor diameter of the insulated wire. The coil was wound for 5 coils with one coil being wound, and it was determined by using an optical microscope whether cracks were observed in the insulating film. As a result, no crack was generated.
(Examples 8 to 12)
In the same manner as in Example 7, it was determined whether or not cracks were observed in the insulating film of the insulating compositions of Examples 2 to 6. As a result, no crack was generated.
 実施例1~6における硬化物の耐熱性は、比較例1~3と比べていずれも同等以上であり、可とう性も良好であった。これは、高分子量ビスマレイミドに低分子量ビスマレイミドを添加したことにより、可とう性を維持しながら、耐熱性が向上したためである。また、実施例1~6における絶縁組成物を用いた実施例7~12の絶縁電線は、亀裂の発生はなく、良好であった。 The heat resistance of the cured products in Examples 1 to 6 was equal to or higher than that of Comparative Examples 1 to 3, and the flexibility was good. This is because heat resistance is improved while maintaining flexibility by adding low molecular weight bismaleimide to high molecular weight bismaleimide. In addition, the insulated wires of Examples 7 to 12 using the insulating composition of Examples 1 to 6 were good with no cracks.
 なお、本発明は上記の実施例に限定されるものではなく、様々な変形例が含まれる。上記の実施例は本発明を詳細に説明することを目的とするものであり、これら実施例の構成には限定されない。実施例の構成の一部を他のものに置き換えることが可能であり、実施例の構成に他の構成を加えることも可能である。 In addition, this invention is not limited to said Example, Various modifications are included. The above embodiments are intended to describe the present invention in detail, and are not limited to the configurations of these embodiments. A part of the configuration of the embodiment can be replaced with another configuration, and other configurations can be added to the configuration of the embodiment.
1…導体
2…絶縁被膜
10…絶縁電線
1 ... conductor
2… Insulation coating
10 ... Insulated wire

Claims (6)

  1.  分子量1000未満の低分子量ビスマレイミドと、分子量3000以上の高分子量ビスマレイミドと、硬化剤を含むことを特徴とする絶縁組成物。 An insulating composition comprising a low molecular weight bismaleimide having a molecular weight of less than 1000, a high molecular weight bismaleimide having a molecular weight of 3000 or more, and a curing agent.
  2.  請求項1において、前記硬化剤が、2,2'-ジアリルビスフェノールA、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパンから選ばれる少なくとも1種であることを特徴とする絶縁組成物。 2. The curing agent according to claim 1, wherein the curing agent is 2,2′-diallylbisphenol A, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2-bis [4- (4-aminophenoxy). ) Phenyl] hexafluoropropane.
  3.  請求項1または2において、さらに、架橋成分として硬化性ポリフェニレンエーテルを含有することを特徴とする絶縁組成物。 3. The insulating composition according to claim 1, further comprising curable polyphenylene ether as a crosslinking component.
  4.  請求項1乃至3のいずれかにおいて、さらに、樹脂成分としてフェノキシ樹脂を含有することを特徴とする絶縁組成物。 4. The insulating composition according to claim 1, further comprising a phenoxy resin as a resin component.
  5.  請求項1乃至4のいずれかに記載の絶縁組成物を硬化してなることを特徴とする硬化物。 A cured product obtained by curing the insulating composition according to any one of claims 1 to 4.
  6.  請求項5において、前記硬化物が絶縁電線であることを特徴とする硬化物。 6. The cured product according to claim 5, wherein the cured product is an insulated wire.
PCT/JP2013/063109 2013-05-10 2013-05-10 Insulating composition, cured product and insulated wire using same WO2014181456A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015515724A JP6006408B2 (en) 2013-05-10 2013-05-10 Insulating composition, cured product, and insulated wire using the same
PCT/JP2013/063109 WO2014181456A1 (en) 2013-05-10 2013-05-10 Insulating composition, cured product and insulated wire using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/063109 WO2014181456A1 (en) 2013-05-10 2013-05-10 Insulating composition, cured product and insulated wire using same

Publications (1)

Publication Number Publication Date
WO2014181456A1 true WO2014181456A1 (en) 2014-11-13

Family

ID=51866957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063109 WO2014181456A1 (en) 2013-05-10 2013-05-10 Insulating composition, cured product and insulated wire using same

Country Status (2)

Country Link
JP (1) JP6006408B2 (en)
WO (1) WO2014181456A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016114287A1 (en) * 2015-01-13 2016-07-21 日立化成株式会社 Resin film for flexible printed circuit board, metal foil provided with resin, coverlay film, bonding sheet, and flexible printed circuit board
JP2016204639A (en) * 2015-04-17 2016-12-08 日立化成株式会社 Resin composition, laminate and multilayer printed board
KR20170103873A (en) * 2015-01-13 2017-09-13 히타치가세이가부시끼가이샤 A resin composition, a resin layer-attached support, a prepreg, a laminate, a multilayer printed wiring board, and a millimeter wave radar printed wiring board
WO2018008643A1 (en) * 2016-07-05 2018-01-11 日立化成株式会社 Resin composition, resin film, laminate, multilayer printed wiring board and method for producing multilayer printed wiring board
JP2018012764A (en) * 2016-07-20 2018-01-25 日立化成株式会社 Resin composition, resin layer-attached support, prepreg, laminate, multilayer printed board and printed wiring board for millimeter wave radar
JP2018035217A (en) * 2016-08-29 2018-03-08 旭化成株式会社 Thermosetting resin composition, and prepreg, metal-clad laminate or printed wiring board using the same
CN109476923A (en) * 2016-07-19 2019-03-15 日立化成株式会社 Resin combination, plywood and multilayer printed circuit board
CN110283528A (en) * 2019-06-27 2019-09-27 浙江儒商科技有限公司 A kind of preparation method of the wear-resistant self-lubricating swash plate based on bismaleimide
WO2019188189A1 (en) * 2018-03-28 2019-10-03 パナソニックIpマネジメント株式会社 Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board each obtained using said resin composition
WO2020095422A1 (en) * 2018-11-08 2020-05-14 日立化成株式会社 Resin composition, cured object obtained from resin composition, prepreg, laminate, resin film, multilayered printed wiring board, multilayered printed wiring board for millimeter-wave radar, and poly(phenylene ether) derivative
JP2021031530A (en) * 2019-08-20 2021-03-01 信越化学工業株式会社 Thermosetting resin composition, and adhesive, film, prepreg, laminate, circuit board and printed wiring board using the same
CN112969749A (en) * 2018-11-08 2021-06-15 昭和电工材料株式会社 Resin composition, prepreg, laminate, resin film, multilayer printed wiring board, and multilayer printed wiring board for millimeter wave radar
CN113265220A (en) * 2020-02-17 2021-08-17 信越化学工业株式会社 Thermosetting resin composition, adhesive, film, and laminate, prepreg, and circuit board using the thermosetting resin composition
JP2022011106A (en) * 2020-06-29 2022-01-17 株式会社日立産機システム Molded electric device
WO2022102781A1 (en) * 2020-11-16 2022-05-19 昭和電工マテリアルズ株式会社 Maleimide resin composition, prepreg, laminated board, resin film, printed wiring board, and semiconductor package

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222163A (en) * 1992-02-12 1993-08-31 Toshiba Chem Corp Heat-resistant resin composition
JP2006526014A (en) * 2003-05-05 2006-11-16 アドバンスト アプライド アドヘッシブズ Imido-linked maleimide and polymaleimide compounds

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222163A (en) * 1992-02-12 1993-08-31 Toshiba Chem Corp Heat-resistant resin composition
JP2006526014A (en) * 2003-05-05 2006-11-16 アドバンスト アプライド アドヘッシブズ Imido-linked maleimide and polymaleimide compounds

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102455920B1 (en) * 2015-01-13 2022-10-17 쇼와덴코머티리얼즈가부시끼가이샤 Resin composition, support with resin layer, prepreg, laminated board, multilayer printed wiring board, and printed wiring board for millimeter wave radar
KR101832684B1 (en) 2015-01-13 2018-02-26 히타치가세이가부시끼가이샤 A resin film for a flexible printed wiring board, a metal foil with a resin, a coverlay film, a bonding sheet and a flexible printed wiring board
CN107113968A (en) * 2015-01-13 2017-08-29 日立化成株式会社 Flexible printed circuit board resin film, the metal foil with resin, cover layer, bonding sheet and flexible printed circuit board
KR20170103873A (en) * 2015-01-13 2017-09-13 히타치가세이가부시끼가이샤 A resin composition, a resin layer-attached support, a prepreg, a laminate, a multilayer printed wiring board, and a millimeter wave radar printed wiring board
CN107207724A (en) * 2015-01-13 2017-09-26 日立化成株式会社 Resin combination, the supporter of tape tree lipid layer, prepreg, plywood, multilayer printed circuit board and millimetre-wave radar printed substrate
US20180002485A1 (en) * 2015-01-13 2018-01-04 Hitachi Chemical Company, Ltd. Resin composition, support with resin layer, prepreg, laminate, multilayered printed wiring board, and printed wiring board for millimeter-wave radar
TWI737589B (en) * 2015-01-13 2021-09-01 日商昭和電工材料股份有限公司 Resin composition for printed wiring board, support with resin layer, prepreg, build-up board, multilayer printed wiring board and its application, printed wiring board for millimeter wave radar
TWI775544B (en) * 2015-01-13 2022-08-21 日商昭和電工材料股份有限公司 Resin composition for printed wiring boards, supports with resin layers, prepregs, laminates, multilayer printed wiring boards and their applications, printed wiring boards for millimeter wave radar
US10434750B2 (en) 2015-01-13 2019-10-08 Hitachi Chemical Company, Ltd. Resin film for flexible printed circuit board, metal foil provided with resin, coverlay film, bonding sheet, and flexible printed circuit board
WO2016114287A1 (en) * 2015-01-13 2016-07-21 日立化成株式会社 Resin film for flexible printed circuit board, metal foil provided with resin, coverlay film, bonding sheet, and flexible printed circuit board
CN107113968B (en) * 2015-01-13 2018-10-16 日立化成株式会社 Flexible printed circuit board resin film, the metal foil with resin, cover film, bonding sheet and flexible printed circuit board
US11286346B2 (en) 2015-01-13 2022-03-29 Showa Denko Materials Co., Ltd. Resin composition, support with resin layer, prepreg, laminate, multilayered printed wiring board, and printed wiring board for millimeter-wave radar
CN113717526A (en) * 2015-01-13 2021-11-30 昭和电工材料株式会社 Resin composition, support with resin layer, prepreg, and laminate
CN107207724B (en) * 2015-01-13 2021-09-21 昭和电工材料株式会社 Resin composition, support with resin layer, prepreg, laminate, multilayer printed wiring board, and printed wiring board for millimeter wave radar
JP2016204639A (en) * 2015-04-17 2016-12-08 日立化成株式会社 Resin composition, laminate and multilayer printed board
TWI769169B (en) * 2016-07-05 2022-07-01 日商昭和電工材料股份有限公司 Resin composition, resin film, laminate, multilayer printed wiring board, and method for producing a multilayer printed wiring board
JPWO2018008643A1 (en) * 2016-07-05 2019-04-25 日立化成株式会社 Resin composition, resin film, laminate, multilayer printed wiring board and method for producing multilayer printed wiring board
KR102537178B1 (en) 2016-07-05 2023-05-30 가부시끼가이샤 레조낙 Resin composition, resin film, laminate, multilayer printed wiring board and method for producing multilayer printed wiring board
JP7036010B2 (en) 2016-07-05 2022-03-15 昭和電工マテリアルズ株式会社 Method for manufacturing resin composition, resin film, laminated board, multilayer printed wiring board and multilayer printed wiring board
EP3483214A4 (en) * 2016-07-05 2020-03-18 Hitachi Chemical Co., Ltd. Resin composition, resin film, laminate, multilayer printed wiring board and method for producing multilayer printed wiring board
CN109415551A (en) * 2016-07-05 2019-03-01 日立化成株式会社 The manufacturing method of resin combination, resin film, plywood, multilayer printed circuit board and multilayer printed circuit board
CN113321888B (en) * 2016-07-05 2022-12-23 昭和电工材料株式会社 Resin composition, resin film, prepreg, laminate, multilayer printed wiring board, and method for producing multilayer printed wiring board
WO2018008643A1 (en) * 2016-07-05 2018-01-11 日立化成株式会社 Resin composition, resin film, laminate, multilayer printed wiring board and method for producing multilayer printed wiring board
KR20220025080A (en) * 2016-07-05 2022-03-03 쇼와덴코머티리얼즈가부시끼가이샤 Resin composition, resin film, laminate, multilayer printed wiring board and method for producing multilayer printed wiring board
US11339251B2 (en) 2016-07-05 2022-05-24 Showa Denko Materials Co., Ltd. Resin composition, resin film, laminate, multilayer printed wiring board and method for producing multilayer printed wiring board
CN109415551B (en) * 2016-07-05 2021-07-27 昭和电工材料株式会社 Resin composition, resin film, laminate, multilayer printed wiring board, and method for producing multilayer printed wiring board
CN113321888A (en) * 2016-07-05 2021-08-31 昭和电工材料株式会社 Resin composition, resin film, prepreg, laminate, multilayer printed wiring board, and method for producing multilayer printed wiring board
CN109476923B (en) * 2016-07-19 2022-04-05 昭和电工材料株式会社 Resin composition, laminate, and multilayer printed wiring board
US11377546B2 (en) 2016-07-19 2022-07-05 Showa Denko Materials Co., Ltd. Resin composition, laminate sheet, and multilayer printed wiring board
KR102489990B1 (en) * 2016-07-19 2023-01-17 쇼와덴코머티리얼즈가부시끼가이샤 Resin composition, laminate sheet, and multilayer printed wiring board
KR20190031262A (en) * 2016-07-19 2019-03-25 히타치가세이가부시끼가이샤 Resin composition, laminate and multilayer printed wiring board
EP3489308A4 (en) * 2016-07-19 2019-12-18 Hitachi Chemical Company, Ltd. Resin composition, laminate sheet, and multilayer printed wiring board
KR102332305B1 (en) * 2016-07-19 2021-11-26 쇼와덴코머티리얼즈가부시끼가이샤 Resin composition, laminated board and multilayer printed wiring board
CN109476923A (en) * 2016-07-19 2019-03-15 日立化成株式会社 Resin combination, plywood and multilayer printed circuit board
KR20210148373A (en) * 2016-07-19 2021-12-07 쇼와덴코머티리얼즈가부시끼가이샤 Resin composition, laminate sheet, and multilayer printed wiring board
JP2018012764A (en) * 2016-07-20 2018-01-25 日立化成株式会社 Resin composition, resin layer-attached support, prepreg, laminate, multilayer printed board and printed wiring board for millimeter wave radar
JP7102682B2 (en) 2016-07-20 2022-07-20 昭和電工マテリアルズ株式会社 Resin composition, support with resin layer, prepreg, laminated board, multilayer printed wiring board and printed wiring board for millimeter wave radar
JP2018035217A (en) * 2016-08-29 2018-03-08 旭化成株式会社 Thermosetting resin composition, and prepreg, metal-clad laminate or printed wiring board using the same
US11365274B2 (en) 2018-03-28 2022-06-21 Panasonic Intellectual Property Management Co., Ltd. Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board each obtained using said resin composition
JP7316572B2 (en) 2018-03-28 2023-07-28 パナソニックIpマネジメント株式会社 Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board using the same
JPWO2019188189A1 (en) * 2018-03-28 2021-04-08 パナソニックIpマネジメント株式会社 Resin composition, and prepreg using it, film with resin, metal foil with resin, metal-clad laminate and wiring board
WO2019188189A1 (en) * 2018-03-28 2019-10-03 パナソニックIpマネジメント株式会社 Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board each obtained using said resin composition
CN112969759A (en) * 2018-11-08 2021-06-15 昭和电工材料株式会社 Resin composition, cured product of resin composition, prepreg, laminate, resin film, multilayer printed wiring board for millimeter wave radar, and polyphenylene ether derivative
JP7298623B2 (en) 2018-11-08 2023-06-27 株式会社レゾナック Resin composition, cured product of resin composition, prepreg, laminate, resin film, multilayer printed wiring board, multilayer printed wiring board for millimeter wave radar, and polyphenylene ether derivative
CN112969749A (en) * 2018-11-08 2021-06-15 昭和电工材料株式会社 Resin composition, prepreg, laminate, resin film, multilayer printed wiring board, and multilayer printed wiring board for millimeter wave radar
CN112969749B (en) * 2018-11-08 2024-02-02 株式会社力森诺科 Resin composition, prepreg, laminate, resin film, multilayer printed wiring board, and multilayer printed wiring board for millimeter wave radar
JPWO2020095422A1 (en) * 2018-11-08 2021-10-07 昭和電工マテリアルズ株式会社 Resin composition, cured product of resin composition, prepreg, laminated board, resin film, multi-layer printed wiring board, multi-layer printed wiring board for millimeter-wave radar and polyphenylene ether derivative
WO2020095422A1 (en) * 2018-11-08 2020-05-14 日立化成株式会社 Resin composition, cured object obtained from resin composition, prepreg, laminate, resin film, multilayered printed wiring board, multilayered printed wiring board for millimeter-wave radar, and poly(phenylene ether) derivative
CN110283528A (en) * 2019-06-27 2019-09-27 浙江儒商科技有限公司 A kind of preparation method of the wear-resistant self-lubricating swash plate based on bismaleimide
JP2021031530A (en) * 2019-08-20 2021-03-01 信越化学工業株式会社 Thermosetting resin composition, and adhesive, film, prepreg, laminate, circuit board and printed wiring board using the same
JP2021127438A (en) * 2020-02-17 2021-09-02 信越化学工業株式会社 Thermosetting resin composition, thermosetting adhesive, thermosetting resin film, and laminate, prepreg, and circuit board using thermosetting resin composition
JP7286569B2 (en) 2020-02-17 2023-06-05 信越化学工業株式会社 Thermosetting resin composition, thermosetting adhesive, thermosetting resin film, and laminate, prepreg, and circuit board using the thermosetting resin composition
CN113265220A (en) * 2020-02-17 2021-08-17 信越化学工业株式会社 Thermosetting resin composition, adhesive, film, and laminate, prepreg, and circuit board using the thermosetting resin composition
JP2022011106A (en) * 2020-06-29 2022-01-17 株式会社日立産機システム Molded electric device
JP7409980B2 (en) 2020-06-29 2024-01-09 株式会社日立産機システム mold electrical equipment
WO2022102781A1 (en) * 2020-11-16 2022-05-19 昭和電工マテリアルズ株式会社 Maleimide resin composition, prepreg, laminated board, resin film, printed wiring board, and semiconductor package

Also Published As

Publication number Publication date
JPWO2014181456A1 (en) 2017-02-23
JP6006408B2 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
JP6006408B2 (en) Insulating composition, cured product, and insulated wire using the same
JP5306742B2 (en) Insulated wire
JP6016846B2 (en) Insulated wire and manufacturing method thereof
US10991478B2 (en) Insulated wire
JP6019809B2 (en) Insulated wire and coil using the same
KR20170099933A (en) Insulated electrical wire having excellent resistance to bending process, coil and electronic/electric equipment using same
JP2011252035A (en) Insulating varnish and insulated wire formed by using the same
KR20170078608A (en) Insulated electric wire, coil, electric/electronic device, and method for manufacturing insulated electric wire
JP5699971B2 (en) Insulated wire
JP2016039042A (en) Insulated wire, rotary electric machine and method for producing insulated wire
JP6394697B2 (en) Insulated wires and coils
CN114270454A (en) Magnet wire with thermoplastic insulation
WO2012144361A1 (en) Rotary machine coil and method for producing same
US8809684B2 (en) Insulated wire
JP6373309B2 (en) Insulated wires, coils and electrical / electronic equipment
CN102592752B (en) Production method of single-coating enamelled wire
WO2015121999A1 (en) Insulated wire, rotary electric machinery, and method for producing insulated wire
JP5561238B2 (en) Insulated wire and manufacturing method thereof
JP6519231B2 (en) Winding and method of manufacturing the same
JP2008243677A (en) Resin composition for electric insulation, and coating and enamel wire using it
JP2016151020A (en) Polyimide coating material and insulated wire
JP7409980B2 (en) mold electrical equipment
JP2011210519A (en) Insulated wire
JP6887967B2 (en) Insulated electric wire, its manufacturing method, coil, electrical / electronic equipment and electrical / electronic equipment manufacturing method
JP6265896B2 (en) Solvent-free wire enamel composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884251

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015515724

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13884251

Country of ref document: EP

Kind code of ref document: A1