JP2011210519A - Insulated wire - Google Patents

Insulated wire Download PDF

Info

Publication number
JP2011210519A
JP2011210519A JP2010076808A JP2010076808A JP2011210519A JP 2011210519 A JP2011210519 A JP 2011210519A JP 2010076808 A JP2010076808 A JP 2010076808A JP 2010076808 A JP2010076808 A JP 2010076808A JP 2011210519 A JP2011210519 A JP 2011210519A
Authority
JP
Japan
Prior art keywords
resin
insulated wire
coating
coating layer
nylon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010076808A
Other languages
Japanese (ja)
Inventor
Takanori Yamazaki
孝則 山崎
Kiyoshi Watanabe
清 渡辺
Tomiya Abe
富也 阿部
Junichi Abe
淳一 安部
Hideyuki Kikuchi
英行 菊池
Daisuke Hino
大輔 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Hitachi Magnet Wire Ltd
Original Assignee
Hitachi Cable Ltd
Hitachi Magnet Wire Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Magnet Wire Ltd filed Critical Hitachi Cable Ltd
Priority to JP2010076808A priority Critical patent/JP2011210519A/en
Publication of JP2011210519A publication Critical patent/JP2011210519A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an insulated wire with higher partial discharge starting voltage as compared with a prior art, while having an insulation coating thickness equivalent to a conventional one.SOLUTION: Of the insulated wire with an insulation coating containing at least one layer of an extrusion coating layer formed on a conductor, at least that one layer of the extrusion coating layer is made by extrusion coating of a first resin composition obtained by mixing a resin (A) consisting of polyphenylene sulfide and a resin (B) consisting of syndiotactic polystyrene. In the first resin composition, the resin (A) and the resin (B) are mixed with a ratio of parts by weight of the resin (A) to parts by weight of the resin (B) is in a range of 10/90 to 50/50.

Description

本発明は、回転電機や変圧器などの電気機器のコイルに用いられる絶縁電線に係り、特に、押出被覆層を含む絶縁被覆が形成された絶縁電線に関するものである。   The present invention relates to an insulated wire used for a coil of an electric device such as a rotating electric machine or a transformer, and more particularly to an insulated wire on which an insulation coating including an extrusion coating layer is formed.

回転電機や変圧器などの電気機器のコイルに用いられている絶縁電線(エナメル被覆絶縁電線)は、一般的に、コイルの用途・形状に合致した断面形状(例えば、丸形状や矩形状)に成形された導体の外周に単層または複数層の絶縁被覆が形成された構造をしている。該絶縁被覆を形成する方法には、樹脂を有機溶剤に溶解させた絶縁塗料を導体上に塗布・焼付けする方法と、予め調合した樹脂組成物を導体上に押出被覆する方法がある。   Insulated wires (enamel-covered insulated wires) used in coils of electrical equipment such as rotating electrical machines and transformers generally have a cross-sectional shape (for example, round shape or rectangular shape) that matches the coil application and shape. It has a structure in which a single-layer or multiple-layer insulation coating is formed on the outer periphery of the molded conductor. As a method for forming the insulating coating, there are a method in which an insulating paint in which a resin is dissolved in an organic solvent is applied and baked on the conductor, and a method in which a resin composition prepared in advance is coated on the conductor by extrusion.

近年、電気機器への小型化の要求により、コイル巻線工程において絶縁電線を高い張力下で小径のコアに高密度で巻くようになってきており、絶縁被覆には過酷な加工ストレスに耐えられる機械的特性(例えば、密着性や耐摩耗性など)が求められている。また、電気機器への高効率化・高出力化の要求からインバータ制御や高電圧化が進展している。その結果、コイルの運転温度が以前よりも上昇傾向にあり、絶縁被覆には高い耐熱性も求められている。それらに加えて、インバータサージ電圧などのより高い電圧が電気機器中のコイルに掛かることから、部分放電の発生によって絶縁被覆が劣化・損傷することがあるという問題が生じていた。   In recent years, due to the demand for miniaturization of electrical equipment, insulated wires have been wound at high density around small diameter cores under high tension in the coil winding process, and the insulation coating can withstand severe processing stress. Mechanical properties (for example, adhesion and wear resistance) are required. In addition, inverter control and higher voltage are progressing due to demands for higher efficiency and higher output of electrical equipment. As a result, the operating temperature of the coil tends to be higher than before, and the insulation coating is also required to have high heat resistance. In addition, since a higher voltage such as an inverter surge voltage is applied to the coil in the electric device, there has been a problem that the insulation coating may be deteriorated or damaged due to the occurrence of partial discharge.

部分放電による絶縁被覆の劣化・損傷を防ぐために、部分放電開始電圧の高い絶縁被覆の開発が進められている。絶縁被覆の部分放電開始電圧を高くする手段として、絶縁被覆に比誘電率の低い樹脂を用いる方法や、絶縁被覆の厚さを厚くする方法が挙げられる。   In order to prevent deterioration and damage of the insulation coating due to partial discharge, development of insulation coating with a high partial discharge starting voltage is underway. Examples of means for increasing the partial discharge start voltage of the insulating coating include a method using a resin having a low relative dielectric constant for the insulating coating and a method of increasing the thickness of the insulating coating.

例えば、特許文献1には、特定の構造を有するフッ素系ポリイミド樹脂を含む巻線の絶縁被覆材料が開示されている。特許文献1に記載の絶縁被覆材料は、比誘電率が2.3〜2.8であり、従来の絶縁塗料の比誘電率(3〜4程度)と比較して有意に低く、その結果、絶縁被覆の発熱量が抑えられて熱による劣化が抑えられるとされている。   For example, Patent Document 1 discloses an insulating coating material for a winding including a fluorine-based polyimide resin having a specific structure. The insulating coating material described in Patent Document 1 has a relative dielectric constant of 2.3 to 2.8, which is significantly lower than the relative dielectric constant (about 3 to 4) of conventional insulating coatings. It is said that the amount is reduced and deterioration due to heat is suppressed.

特許文献2では、導体の外周に、少なくとも1層のエナメル焼き付け層と、その外側に少なくとも1層の押出被覆樹脂層を有し、該エナメル焼き付け層と該押出被覆樹脂層の厚さの合計が60μm以上であり、前記エナメル焼き付け層の厚さが50μm以下であり、前記押出被覆樹脂層が、25℃における引張弾性率が1000 MPa以上であり、かつ250℃における引張弾性率が10 MPa以上である樹脂材料(ポリエーテルエーテルケトンを除く)からなることを特徴とする耐インバータサージ絶縁ワイヤが開示されている。特許文献2に記載の絶縁ワイヤは、導体と絶縁被覆層の接着強度を下げることなく、高い部分放電開始電圧(900 Vp程度)を有する絶縁ワイヤを提供することができるとされている。   In Patent Document 2, the conductor has at least one enamel baked layer on the outer periphery and at least one extruded coated resin layer on the outer side thereof, and the total thickness of the enamel baked layer and the extruded coated resin layer is 60 μm or more, the thickness of the enamel baking layer is 50 μm or less, the extrusion-coated resin layer has a tensile elastic modulus at 25 ° C. of 1000 MPa or more, and a tensile elastic modulus at 250 ° C. of 10 MPa or more. An inverter surge-insulated wire characterized by being made of a certain resin material (excluding polyether ether ketone) is disclosed. The insulated wire described in Patent Document 2 is said to be able to provide an insulated wire having a high partial discharge starting voltage (about 900 Vp) without lowering the adhesive strength between the conductor and the insulating coating layer.

また、特許文献3では、導体と前記導体を被覆する押出絶縁層を有してなる2層以上の多層絶縁電線であって、前記絶縁層の最内層以外の少なくとも1層が、ポリフェニレンスルフィド樹脂を連続層とし、オレフィン系共重合体成分を分散相とする樹脂混和物で形成され、前記樹脂混和物からなる絶縁層が、ポリフェニレンスルフィド樹脂 100質量部と、オレフィン系共重合体成分 3〜40質量部とを含有することを特徴とする多層絶縁電線が開示されている。特許文献3に記載の絶縁電線は、耐熱性と耐薬品性に優れているとされている。   Moreover, in patent document 3, it is a multilayer insulated wire of two or more layers which has a conductor and the extrusion insulation layer which coat | covers the said conductor, Comprising: At least 1 layer other than the innermost layer of the said insulation layer is polyphenylene sulfide resin. The insulating layer made of a resin mixture having a continuous layer and an olefin copolymer component as a dispersed phase, the resin mixture comprising 100 parts by mass of a polyphenylene sulfide resin, and 3 to 40 masses of an olefin copolymer component The multilayer insulated wire characterized by containing a part is disclosed. The insulated wire described in Patent Document 3 is said to be excellent in heat resistance and chemical resistance.

特開2002−56720号公報JP 2002-56720 A 特許第4177295号公報Japanese Patent No. 4177295 再公表2005−106898号公報Republished 2005-106898

しかしながら、特許文献1に記載されているようなフッ素系ポリイミド樹脂からなる絶縁塗料を用いて絶縁被覆を形成した場合、絶縁被覆の比誘電率を低くすることはできるが、フッ素系ポリイミド樹脂から形成した絶縁被覆は導体への密着性が低いため、例えば、コイル巻線工程などにおける過酷な加工ストレスによって、絶縁被覆が導体から剥離する現象(被覆浮き)が発生してしまうことが懸念される。被覆浮きは、最悪の場合に絶縁破壊を起こす要因となる。   However, when an insulating coating is formed using an insulating paint made of a fluorine-based polyimide resin as described in Patent Document 1, the dielectric constant of the insulating coating can be lowered, but it is formed from a fluorine-based polyimide resin. Since the insulating coating has low adhesion to the conductor, for example, there is a concern that a phenomenon (coating floating) of the insulating coating may be peeled off from the conductor due to severe processing stress in a coil winding process or the like. Cover floating is a cause of dielectric breakdown in the worst case.

また、前述したように、電気機器の更なる高効率化・高出力化に伴い、コイルに対して絶縁電線の占席率の向上が更に要求されるとともに、絶縁電線に対しても部分放電開始電圧の更なる向上(例えば、1500 Vp以上の部分放電開始電圧)が要求されている。ここで、特許文献2に記載されているような押出被覆樹脂層を有する従来の絶縁電線は、押出被覆樹脂層の厚さを厚くすることによって部分放電開始電圧を高くすることができると考えられるが、絶縁被覆全体の厚さも厚くなることになるため、絶縁電線の占積率を向上させることが困難になる弊害も生じる。   In addition, as described above, with further increase in efficiency and output of electrical equipment, it is required to improve the seating ratio of insulated wires for coils, and partial discharge starts for insulated wires. Further improvement in voltage (for example, partial discharge start voltage of 1500 Vp or more) is required. Here, it is considered that the conventional insulated wire having the extrusion-coated resin layer as described in Patent Document 2 can increase the partial discharge start voltage by increasing the thickness of the extrusion-coated resin layer. However, since the thickness of the entire insulation coating is also increased, there is a problem that it is difficult to improve the space factor of the insulated wires.

従って、本発明の目的は、上記の課題を解決し、従来と同等の絶縁被覆厚さを有しながら従来よりも高い部分放電開始電圧を有する絶縁電線を提供することにある。   Accordingly, an object of the present invention is to solve the above-described problems and provide an insulated wire having a partial discharge start voltage higher than that of the prior art while having an insulation coating thickness equivalent to that of the prior art.

本発明は、上記目的を達成するため、少なくとも1層の押出被覆層を含む絶縁被覆が導体上に形成されている絶縁電線であって、前記少なくとも1層の押出被覆層は、ポリフェニレンサルファイドからなる樹脂(A)とシンジオタクチックポリスチレンからなる樹脂(B)とを混合した第1の樹脂組成物を押出被覆した層であり、前記第1の樹脂組成物は、前記樹脂(A)と前記樹脂(B)とが重量部比で「(A)/(B) = 10/90 〜 50/50」の範囲で混和されていることを特徴とする絶縁電線を提供する。なお、「10/90 〜 50/50」とは、「10/90以上、50/50以下」を意味するものとする。   In order to achieve the above object, the present invention provides an insulated wire in which an insulation coating including at least one extrusion coating layer is formed on a conductor, and the at least one extrusion coating layer is made of polyphenylene sulfide. A layer obtained by extrusion-coating a first resin composition in which a resin (A) and a resin (B) made of syndiotactic polystyrene are mixed, wherein the first resin composition comprises the resin (A) and the resin Provided is an insulated wire characterized by being mixed with (B) in the range of “(A) / (B) = 10/90 to 50/50” by weight ratio. “10/90 to 50/50” means “10/90 or more and 50/50 or less”.

本発明は、上記目的を達成するため、上記の本発明に係る絶縁電線において、以下のような改良や変更を加えることができる。
(1)前記絶縁被覆は、前記導体の外周に形成された前記少なくとも1層の押出被覆層からなる第1の被覆層と前記導体との間でかつ前記導体の直上に第2の被覆層が形成された構造を有し、前記第2の被覆層は、ポリフェニレンサルファイドからなる前記樹脂(A)とポリアミドからなる樹脂(C)とを混合した第2の樹脂組成物を押出被覆した層であり、前記第2の樹脂組成物は、前記樹脂(C)と前記樹脂(A)とが重量部比で「(C)/(A) = 5/95 〜 30/70」の範囲で混和されている。なお、「5/95 〜 30/70」とは、「5/95以上、30/70以下」を意味するものとする。
(2)前記第2の被覆層は、押出被覆した後に250℃以上の温度で加熱処理されている。
(3)前記樹脂(C)は、融点が280℃以上のポリアミドからなる樹脂である。
(4)前記樹脂(C)は、ナイロン46、ナイロン6T、ナイロン6I、ナイロン9T、およびナイロンM-5Tからなる群より選ばれる少なくとも一種の樹脂を含有する。
In order to achieve the above object, the present invention can make the following improvements and changes in the insulated wire according to the present invention.
(1) The insulating coating has a second coating layer between the first coating layer formed of the at least one extrusion coating layer formed on the outer periphery of the conductor and the conductor, and immediately above the conductor. The second coating layer has a formed structure, and is a layer obtained by extrusion coating a second resin composition in which the resin (A) made of polyphenylene sulfide and the resin (C) made of polyamide are mixed. In the second resin composition, the resin (C) and the resin (A) are mixed in a weight part ratio of “(C) / (A) = 5/95 to 30/70”. Yes. “5/95 to 30/70” means “5/95 or more and 30/70 or less”.
(2) The second coating layer is heat-treated at a temperature of 250 ° C. or higher after extrusion coating.
(3) The resin (C) is a resin made of polyamide having a melting point of 280 ° C. or higher.
(4) The resin (C) contains at least one resin selected from the group consisting of nylon 46, nylon 6T, nylon 6I, nylon 9T, and nylon M-5T.

本発明によれば、従来と同等の絶縁被覆厚さを有しながら従来よりも高い部分放電開始電圧を有する絶縁電線を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the insulated wire which has a partial discharge start voltage higher than before can be provided, having the insulation coating thickness equivalent to the past.

本発明に係る絶縁電線の実施形態の1例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of embodiment of the insulated wire which concerns on this invention. 本発明に係る絶縁電線の実施形態の他の1例を示す断面模式図である。It is a cross-sectional schematic diagram which shows another example of embodiment of the insulated wire which concerns on this invention.

本発明者らは、絶縁電線における耐部分放電特性向上させるため、絶縁被覆の樹脂組成物や構造を鋭意検討した結果、ポリフェニレンサルファイドからなる樹脂(A)とシンジオタクチックポリスチレンからなる樹脂(B)とを所定の重量部比で混和した樹脂組成物を用いて押出被覆層を形成することが有効であることを見出した。本発明は、それらの知見に基づいて完成されたものである。   As a result of intensive studies on the resin composition and structure of the insulating coating in order to improve the partial discharge resistance in the insulated wire, the present inventors have found that the resin (A) made of polyphenylene sulfide and the resin (B) made of syndiotactic polystyrene It has been found that it is effective to form an extrusion coating layer using a resin composition in which is mixed in a predetermined weight part ratio. The present invention has been completed based on these findings.

以下、本発明に係る実施形態を説明する。ただし、本発明はここで取り上げた実施の形態に限定されることはなく、要旨を変更しない範囲で適宜組み合わせや改良が可能である。また、同義の部分には同じ符号を付して重複する説明を省略する。   Embodiments according to the present invention will be described below. However, the present invention is not limited to the embodiment taken up here, and can be appropriately combined and improved without departing from the scope of the invention. In addition, the same reference numerals are given to the synonymous parts, and redundant description is omitted.

図1は、本発明に係る絶縁電線の実施形態の1例を示す断面模式図である。図1に示したように、本発明に係る絶縁電線1は導体2上に絶縁被覆5(第1の被覆層3と第2の被覆層4)が形成されている。第1の被覆層3は、ポリフェニレンサルファイドからなる樹脂(A)とシンジオタクチックポリスチレンからなる樹脂(B)とを混合した第1の樹脂組成物を押出被覆した層(押出被覆層)であり、前記第1の樹脂組成物は、前記樹脂(A)と前記樹脂(B)とが重量部比で「(A)/(B) = 10/90 〜 50/50」の範囲で混和されていることを特徴とする。導体2の外周に少なくとも第1の被覆層3を形成することにより、従来と同等の絶縁被覆厚さを有しながら従来よりも高い部分放電開始電圧(例えば、1500 Vp以上の高い部分放電開始電圧)を達成することができる。   FIG. 1 is a schematic cross-sectional view showing an example of an embodiment of an insulated wire according to the present invention. As shown in FIG. 1, the insulated wire 1 according to the present invention has an insulating coating 5 (a first coating layer 3 and a second coating layer 4) formed on a conductor 2. The first coating layer 3 is a layer (extrusion coating layer) obtained by extrusion coating a first resin composition in which a resin (A) made of polyphenylene sulfide and a resin (B) made of syndiotactic polystyrene are mixed. In the first resin composition, the resin (A) and the resin (B) are mixed in a weight part ratio of “(A) / (B) = 10/90 to 50/50”. It is characterized by that. By forming at least the first coating layer 3 on the outer periphery of the conductor 2, the partial discharge start voltage higher than the conventional one (for example, a higher partial discharge start voltage of 1500 Vp or more) while having the same insulation coating thickness as the conventional one ) Can be achieved.

さらに、導体2と第1の被覆層3との間でかつ導体2の直上に第2の被覆層4を形成することは好ましい。第2の被覆層4は、ポリフェニレンサルファイドからなる樹脂(A)とポリアミドからなる樹脂(C)とを混合した第2の樹脂組成物を押出被覆した層(押出被覆層)であり、前記第2の樹脂組成物は、前記樹脂(A)と前記樹脂(C)とが重量部比で「(B)/(A) = 5/95 〜 30/70」の範囲で混和されている。第2の被覆層4を導体2の直上に形成することにより、導体2と絶縁被覆5との密着性を向上させる効果がある。言い換えると、導体2と第2の被覆層4とが良好に密着すると共に、第2の被覆層4と第1の被覆層3とが良好に密着する。なお、第2の被覆層4は密着性をより向上させる観点から形成されることが好ましいが、形成されていない場合を否定するものではない(図2参照)。図2は、本発明に係る絶縁電線の実施形態の他の1例を示す断面模式図である。   Furthermore, it is preferable to form the second coating layer 4 between the conductor 2 and the first coating layer 3 and immediately above the conductor 2. The second coating layer 4 is a layer (extrusion coating layer) obtained by extrusion coating a second resin composition obtained by mixing a resin (A) made of polyphenylene sulfide and a resin (C) made of polyamide. In the resin composition, the resin (A) and the resin (C) are mixed in a weight ratio of “(B) / (A) = 5/95 to 30/70”. By forming the second coating layer 4 directly on the conductor 2, there is an effect of improving the adhesion between the conductor 2 and the insulating coating 5. In other words, the conductor 2 and the second coating layer 4 are in good contact with each other, and the second coating layer 4 and the first coating layer 3 are in good contact with each other. In addition, although it is preferable to form the 2nd coating layer 4 from a viewpoint of improving adhesiveness more, the case where it is not formed is not denied (refer FIG. 2). FIG. 2 is a schematic cross-sectional view showing another example of the embodiment of the insulated wire according to the present invention.

第1の被覆層3において、ポリフェニレンサルファイドからなる樹脂(A)は高い耐熱性と高い機械的特性とを有するが、比誘電率が3.5程度あることから絶縁被覆中に高い比率で存在すると部分放電開始電圧を向上させることが難しくなる。そこで、比誘電率を低下させるためにシンジオタクチックポリスチレンからなる樹脂(B)を混合した第1の樹脂組成物を検討した。樹脂(A)と樹脂(B)とを混和する比率(重量部比)が「(A)/(B) > 50/50」であると、第1の被覆層3の比誘電率が十分に低くならず部分放電開始電圧の向上が不十分となる。一方、該重量部比が「(A)/(B) < 10/90」になると、樹脂(A)が少な過ぎて耐熱性や機械的特性(例えば、機械的強度や耐摩耗性)が低下する。   In the first coating layer 3, the resin (A) made of polyphenylene sulfide has high heat resistance and high mechanical properties. However, since the relative dielectric constant is about 3.5, a partial discharge occurs when it is present in a high ratio in the insulating coating. It becomes difficult to improve the starting voltage. Therefore, a first resin composition in which a resin (B) made of syndiotactic polystyrene was mixed to reduce the relative dielectric constant was examined. If the ratio (parts by weight) for mixing the resin (A) and the resin (B) is “(A) / (B)> 50/50”, the relative dielectric constant of the first coating layer 3 is sufficient. The partial discharge start voltage is not improved sufficiently. On the other hand, when the weight part ratio becomes “(A) / (B) <10/90”, the resin (A) is too little and the heat resistance and mechanical properties (for example, mechanical strength and wear resistance) decrease. To do.

一方、第2の被覆層4において、ポリフェニレンサルファイドからなる樹脂(A)のみでは導体2との密着性が十分と言えない場合がある。そこで、導体2との密着性を向上させるためにポリアミドからなる樹脂(C)を混合させた第2の樹脂組成物を検討した。樹脂(A)と樹脂(C)とを混和する比率(重量部比)が「(C)/(A) < 5/95」であると、樹脂(C)が少な過ぎて導体との密着性向上の効果が十分に得られない。一方、該重量部比が「(C)/(A) > 30/70」になると、樹脂(C)が多過ぎてポリアミドの分子構造中に持つ極性基の影響が相対的に増大し、部分放電開始電圧を低下させる要因となる。   On the other hand, in the second coating layer 4, the resin (A) made of polyphenylene sulfide alone may not be sufficient in adhesion to the conductor 2. Therefore, in order to improve the adhesion to the conductor 2, a second resin composition in which a resin (C) made of polyamide was mixed was examined. If the mixing ratio (parts by weight) of resin (A) and resin (C) is "(C) / (A) <5/95", there is too little resin (C) and adhesion to the conductor The improvement effect cannot be obtained sufficiently. On the other hand, when the weight part ratio is “(C) / (A)> 30/70”, the resin (C) is too much and the influence of the polar group in the polyamide molecular structure is relatively increased, It becomes a factor to lower the discharge start voltage.

樹脂(C)としては、融点が280℃以上のポリアミドからなる樹脂を用いることが好ましい。また、融点が280℃以上のポリアミドとしては、例えば、脂肪族ポリアミドであるナイロン46、芳香族ポリアミドであるナイロン6T(ヘキサメチレンジアミンとテレフタル酸との共縮重合体)やナイロン6I(ヘキサメチレンジアミンとイソフタル酸との共縮重合体)、ナイロン9T(ノナンジアミンとテレフタル酸との共縮重合体)、ナイロンM-5T(メチルペンタジアミンとテレフタル酸との共縮重合体)、ナイロン6T/66(ナイロン6Tとナイロン66との共重合体)、ナイロン6T/6I(ナイロン6Tとナイロン6Iとの共重合体)、ナイロン6T/6I/66(ナイロン6Tとナイロン6Iとナイロン66との共重合体)、ナイロン6T/M-5T(ナイロン6TとナイロンM-5Tとの共重合体)、ナイロン6T/6(ナイロン6Tとナイロン6との共重合体)などが挙げられる。樹脂(C)として上記のポリアミドを単独で用いてもよいし、複数を組み合わせて用いてもよい。   As the resin (C), it is preferable to use a resin made of polyamide having a melting point of 280 ° C. or higher. Examples of the polyamide having a melting point of 280 ° C. or higher include nylon 46 which is an aliphatic polyamide, nylon 6T which is an aromatic polyamide (copolycondensation polymer of hexamethylenediamine and terephthalic acid) and nylon 6I (hexamethylenediamine). And isophthalic acid), nylon 9T (nonanediamine and terephthalic acid), nylon M-5T (methylpentadiamine and terephthalic acid), nylon 6T / 66 ( Nylon 6T and nylon 66 copolymer), Nylon 6T / 6I (nylon 6T and nylon 6I copolymer), Nylon 6T / 6I / 66 (Nylon 6T, nylon 6I and nylon 66 copolymer) Nylon 6T / M-5T (a copolymer of nylon 6T and nylon M-5T), nylon 6T / 6 (a copolymer of nylon 6T and nylon 6), and the like. As the resin (C), the above polyamides may be used alone or in combination.

加えて、上記のポリアミドを主成分とし、ナイロン6(ε-カプロラクタムの重縮合体)やナイロン66(ヘキサメチレンジアミンとアジピン酸との共縮重合体)などを更に混合した樹脂(C)としてもよい。この場合、例えば、示差走査熱量計(DSC)を用いて昇温速度10℃/minの条件で該樹脂(C)を熱分析した時に、融点の主ピークを低下させないような範囲の量でナイロン6やナイロン66などを混合することが好ましい。   In addition, as a resin (C) in which the above polyamide is the main component and nylon 6 (polycondensate of ε-caprolactam) or nylon 66 (co-condensation polymer of hexamethylenediamine and adipic acid) is further mixed. Good. In this case, for example, when the resin (C) is thermally analyzed using a differential scanning calorimeter (DSC) at a temperature increase rate of 10 ° C./min, the amount of nylon is within a range that does not decrease the main peak of the melting point. 6 or nylon 66 is preferably mixed.

第2の樹脂組成物を導体2上に押出被覆した後に、250℃以上の温度で加熱処理を施すことは好ましい。これにより、導体2と第2の被覆層4との密着性が更に向上する。密着性が向上することで、絶縁電線1を小径(例えば、自己径)に屈曲させてもシワの発生を防止できるとともに耐摩耗性も向上する。加熱時間に特段の限定はないが、数十秒間から数分間保持するのが好ましい。また、加熱方法にも特段の限定はなく、電気炉やバーナー、温風加熱装置、誘導加熱装置などを用いることができる。加熱温度は、該樹脂組成物のガラス転移温度(Tg)よりも100℃以上高く、樹脂組成物の融解が開始する温度である250℃以上にすると大きな効果が得られる。なお、加熱温度が250℃未満の場合、加熱処理による更なる効果が得られないに過ぎない。   It is preferable to heat-treat at a temperature of 250 ° C. or higher after the second resin composition is extrusion coated onto the conductor 2. Thereby, the adhesiveness between the conductor 2 and the second coating layer 4 is further improved. By improving the adhesion, even if the insulated wire 1 is bent to a small diameter (for example, a self-diameter), generation of wrinkles can be prevented and wear resistance is also improved. There is no particular limitation on the heating time, but it is preferable to hold for several tens of seconds to several minutes. Also, the heating method is not particularly limited, and an electric furnace, burner, hot air heating device, induction heating device, or the like can be used. The heating temperature is 100 ° C. or more higher than the glass transition temperature (Tg) of the resin composition, and a great effect is obtained when the heating temperature is 250 ° C. or more, which is the temperature at which the resin composition starts to melt. In addition, when the heating temperature is less than 250 ° C., a further effect by the heat treatment is merely not obtained.

第1の被覆層3および第2の被覆層4の厚さは、それぞれ20μm以上であることが好ましく、絶縁被覆5全体の厚さは、70〜100μmであることが好ましい。また、各被覆層を構成する樹脂組成物中に、必要に応じて酸化防止剤や銅害防止剤、滑剤、着色剤などを添加してもよい。第1の被覆層3の外周に潤滑層を別途形成してもよい。さらに、絶縁被覆の可撓性を向上させるため、ポリオレフィン系樹脂を無水マレイン酸あるいはグリジシルメタクリレートで変性した樹脂組成物を副素材として第1および/または第2の樹脂組成物にブレンドしてもよい。   The thicknesses of the first coating layer 3 and the second coating layer 4 are each preferably 20 μm or more, and the total thickness of the insulating coating 5 is preferably 70 to 100 μm. Moreover, you may add antioxidant, a copper damage inhibitor, a lubricant, a coloring agent, etc. in the resin composition which comprises each coating layer as needed. A lubricating layer may be separately formed on the outer periphery of the first coating layer 3. Further, in order to improve the flexibility of the insulation coating, a resin composition obtained by modifying a polyolefin resin with maleic anhydride or glycidyl methacrylate is blended with the first and / or second resin composition as a secondary material. Also good.

導体2の材料にも特段の限定はなく、エナメル被覆絶縁電線で常用される材料(例えば、無酸素銅や低酸素銅など)を用いることができる。さらに、図1においては導体2として丸形状の断面を有する例を示したが、それに限定されることはなく、矩形状の断面を有する導体であってもよい。   The material of the conductor 2 is not particularly limited, and a material commonly used in enamel-coated insulated wires (for example, oxygen-free copper or low-oxygen copper) can be used. Furthermore, although the example which has a round-shaped cross section as the conductor 2 was shown in FIG. 1, it is not limited to it, The conductor which has a rectangular-shaped cross section may be sufficient.

以下、本発明を実施例に基づいて更に詳しく説明するが、本発明はこれらに限定されるものではない。なお、実施例1〜10および比較例1〜5の各絶縁被覆を構成する樹脂組成物の組成をそれぞれ後述する表1および表2に示した。   EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, this invention is not limited to these. In addition, the composition of the resin composition which comprises each insulation coating of Examples 1-10 and Comparative Examples 1-5 was shown in Table 1 and Table 2 which are mentioned later, respectively.

(実施例1〜10および比較例1〜5の作製)
導体として外径1.25 mmの銅線を用い、該銅線の外層に押出機を用いて表1・表2に示した樹脂組成物を押出被覆して、図1に示したような形状(実施例1〜8および比較例1〜5)および図2に示したような形状(実施例9〜10)の絶縁電線を作製した。実施例1〜8および比較例1〜5において、第2の被覆層の厚さを約20μmとし、絶縁被覆の全体厚さが70〜100μmになるように第1の被覆層を押出被覆した。一方、実施例9〜10において、第1の被覆層の厚さが100μmになるように押出被覆した。押出被覆時の温度は約300℃とした。さらに、絶縁被覆全体を押出被覆した後に、加熱温度(設定温度)が200〜300℃の電気炉を通して加熱処理を施した。
(Production of Examples 1 to 10 and Comparative Examples 1 to 5)
A copper wire having an outer diameter of 1.25 mm was used as a conductor, and the resin composition shown in Tables 1 and 2 was extrusion coated on the outer layer of the copper wire using an extruder to form the shape as shown in FIG. Insulated wires having the shapes (Examples 9 to 10) shown in Examples 1 to 8 and Comparative Examples 1 to 5) and FIG. 2 were produced. In Examples 1-8 and Comparative Examples 1-5, the thickness of the 2nd coating layer was about 20 micrometers, and the 1st coating layer was extrusion-coated so that the whole thickness of an insulation coating might be set to 70-100 micrometers. On the other hand, in Examples 9 to 10, extrusion coating was performed so that the thickness of the first coating layer was 100 μm. The temperature during extrusion coating was about 300 ° C. Furthermore, after the entire insulating coating was extrusion-coated, heat treatment was performed through an electric furnace having a heating temperature (set temperature) of 200 to 300 ° C.

上記のように作製した絶縁電線(実施例1〜10および比較例1〜5)に対して、次のような測定および試験を行った。   The following measurements and tests were performed on the insulated wires (Examples 1 to 10 and Comparative Examples 1 to 5) produced as described above.

(1)部分放電開始電圧測定
部分放電開始電圧の測定は次のような手順で行った。絶縁電線を500 mmの長さで2本切り出し、39 N(4 kgf)の張力を掛けながら撚り合わせて中央部の120 mmの範囲に6回の撚り部を有するツイストペアの試料を用意した。試料端部10 mmの絶縁被覆をアビソフィックス装置で剥離した。その後、絶縁被覆の乾燥のため、120℃の恒温槽中に30分間保持し、デシケータ中で室温になるまで18時間放置した。部分放電開始電圧は、部分放電自動試験システム(総研電気株式会社製、DAC-6024)を用いて測定した。測定条件は、25℃で相対湿度50%の雰囲気とし、50 Hzの電圧を10〜30 V/sで昇圧しながらツイストペア試料に荷電した。ツイストペア試料に50 pCの放電が50回発生した電圧を部分放電開始電圧(Vp)とした。
(1) Partial discharge start voltage measurement The partial discharge start voltage was measured according to the following procedure. Two insulated wires having a length of 500 mm were cut out and twisted while applying a tension of 39 N (4 kgf) to prepare a twisted pair sample having six twisted portions in the range of 120 mm at the center. The insulating coating at the 10 mm edge of the sample was peeled off with an abisofix device. Thereafter, in order to dry the insulating coating, it was kept in a constant temperature bath at 120 ° C. for 30 minutes and left in a desiccator for 18 hours until it reached room temperature. The partial discharge start voltage was measured using a partial discharge automatic test system (manufactured by Soken Denki Co., Ltd., DAC-6024). The measurement conditions were an atmosphere with a relative humidity of 50% at 25 ° C., and the twisted pair sample was charged while increasing the voltage of 50 Hz at 10 to 30 V / s. The voltage at which 50 pC discharge occurred 50 times in the twisted pair sample was defined as the partial discharge start voltage (Vp).

(2)密着性評価
密着性は、JIS C3003に準拠した急激伸張試験を実施することにより評価した。急激伸張試験の結果、絶縁被覆の浮き(剥離)の長さが破断点から2 mm以下のものを「◎:優秀の意味」、2〜20 mmのものを「○:合格の意味」、20 mmよりも長いものを「×:不合格の意味」とした。
(2) Adhesion evaluation Adhesion was evaluated by carrying out a rapid extension test based on JIS C3003. As a result of the rapid extension test, when the length of the insulation coating floats (peel) is 2 mm or less from the breaking point, “◎: Excellent meaning”, 2-20 mm of “○: Meaning of pass”, 20 Those longer than mm were defined as “x: meaning of failure”.

(3)耐熱性評価
耐熱性試験は次のような手順で行った。作製した絶縁電線を500 mmの長さで2本切り出し、39 N(4 kgf)の張力を掛けながら撚り合わせて中央部の120 mmの範囲に6回の撚り部を有するツイストペアの試料を用意した。次に、老化試験機(東洋精機株式会社製、ギヤー・オーブンSTD60P)において150℃で2000時間保持して加熱老化させた。その後、直径4 mmの丸棒(巻き付け棒)にツイストペア試料を巻き付け、50倍の光学顕微鏡を用いて絶縁被覆でのクラックの有無を調査した。クラック等(例えば、クラック、クレージング、シワ)の発生がないものを「◎:優秀の意味」、クラックの発生がないものを「○:合格の意味」、クラック等の発生があるものを「×:不合格の意味」とした。
(3) Heat resistance evaluation The heat resistance test was performed in the following procedure. Two pieces of the manufactured insulated wire were cut out at a length of 500 mm and twisted while applying a tension of 39 N (4 kgf) to prepare a twisted pair sample having six twisted parts in the range of 120 mm in the central part. . Next, it was heat-aged by holding at 150 ° C. for 2000 hours in an aging tester (manufactured by Toyo Seiki Co., Ltd., Gear Oven STD60P). Thereafter, a twisted pair sample was wound around a round bar (winding bar) having a diameter of 4 mm, and the presence or absence of cracks in the insulation coating was examined using a 50 × optical microscope. “◎: Excellent” means that no cracks (for example, cracks, crazing, wrinkles) are generated, “O: Means that pass” means that no cracks are generated, and “×” means that cracks are generated. : Meaning of failure.

実施例1〜10の樹脂組成物の組成および測定評価結果を表1に示し、比較例1〜5の樹脂組成物の組成および測定評価結果を表2に示す。   The composition and measurement evaluation results of the resin compositions of Examples 1 to 10 are shown in Table 1, and the composition and measurement evaluation results of the resin compositions of Comparative Examples 1 to 5 are shown in Table 2.

Figure 2011210519
Figure 2011210519

Figure 2011210519
Figure 2011210519

表1に示したように、本発明に係る実施例1〜10の絶縁電線は、従来技術と同等な絶縁被覆厚さ(約70〜100μm)であっても1500 Vp以上の高い部分放電開始電圧を有していることが確認された。さらに、密着性・耐熱性評価に関しても、実施例1〜10の絶縁電線は良好な特性を有していることが確認された。   As shown in Table 1, the insulated wires of Examples 1 to 10 according to the present invention have a high partial discharge starting voltage of 1500 Vp or more even with an insulation coating thickness (about 70 to 100 μm) equivalent to that of the prior art. It was confirmed that Furthermore, also about adhesiveness and heat resistance evaluation, it was confirmed that the insulated wire of Examples 1-10 has a favorable characteristic.

これらに対し、比較例1と比較例2は、第2の樹脂組成物における樹脂(A)の配合が本発明の規定よりも多い例であり、密着性評価や耐熱性評価が不合格であった。比較例3は、第1の樹脂組成物における樹脂(B)の配合が本発明の規定よりも多い例であり、耐熱性が不十分であった。比較例4は、樹脂(A)の配合が第2の樹脂組成物において本発明の規定よりも少なく、かつ第1の樹脂組成物において本発明の規定よりも多い例であり、部分放電開始電圧の向上効果が不十分であった。比較例5は、第2の樹脂組成物における樹脂(C)の融点が本発明の好ましい形態よりも低い場合の例であり、耐熱性評価が不合格であった。   On the other hand, Comparative Example 1 and Comparative Example 2 are examples in which the blending of the resin (A) in the second resin composition is larger than that of the present invention, and the adhesion evaluation and the heat resistance evaluation were unacceptable. It was. Comparative Example 3 is an example in which the blending of the resin (B) in the first resin composition is more than that of the present invention, and the heat resistance was insufficient. Comparative Example 4 is an example in which the blending of the resin (A) is less in the second resin composition than in the present invention and more in the first resin composition than in the present invention, and the partial discharge start voltage The improvement effect of was insufficient. Comparative Example 5 is an example where the melting point of the resin (C) in the second resin composition is lower than the preferred form of the present invention, and the heat resistance evaluation was unacceptable.

以上のことから、本発明に係る実施例1〜10の絶縁電線は、従来の絶縁電線と同等の絶縁被覆厚さを有しながら従来よりも高い部分放電開始電圧を有していることが実証された。   From the above, it was demonstrated that the insulated wires of Examples 1 to 10 according to the present invention have a partial discharge start voltage higher than that of the conventional one while having an insulation coating thickness equivalent to that of the conventional insulated wire. It was done.

1…絶縁電線、2…導体、3…第1の被覆層、4…第2の被覆層、5…絶縁被覆。   DESCRIPTION OF SYMBOLS 1 ... Insulated electric wire, 2 ... Conductor, 3 ... 1st coating layer, 4 ... 2nd coating layer, 5 ... Insulation coating.

Claims (5)

少なくとも1層の押出被覆層を含む絶縁被覆が導体上に形成されている絶縁電線であって、
前記少なくとも1層の押出被覆層は、ポリフェニレンサルファイドからなる樹脂(A)とシンジオタクチックポリスチレンからなる樹脂(B)とを混合した第1の樹脂組成物を押出被覆した層であり、
前記第1の樹脂組成物は、前記樹脂(A)と前記樹脂(B)とが重量部比で「(A)/(B) = 10/90 〜 50/50」の範囲で混和されていることを特徴とする絶縁電線。
An insulated wire in which an insulation coating including at least one extruded coating layer is formed on a conductor,
The at least one extrusion coating layer is a layer obtained by extrusion coating a first resin composition in which a resin (A) made of polyphenylene sulfide and a resin (B) made of syndiotactic polystyrene are mixed,
In the first resin composition, the resin (A) and the resin (B) are mixed in a weight part ratio of “(A) / (B) = 10/90 to 50/50”. An insulated wire characterized by that.
請求項1に記載の絶縁電線において、
前記絶縁被覆は、前記導体の外周に形成された前記少なくとも1層の押出被覆層からなる第1の被覆層と前記導体との間でかつ前記導体の直上に第2の被覆層が形成された構造を有し、
前記第2の被覆層は、ポリフェニレンサルファイドからなる前記樹脂(A)とポリアミドからなる樹脂(C)とを混合した第2の樹脂組成物を押出被覆した層であり、
前記第2の樹脂組成物は、前記樹脂(C)と前記樹脂(A)とが重量部比で「(C)/(A) = 5/95 〜 30/70」の範囲で混和されていることを特徴とする絶縁電線。
The insulated wire according to claim 1,
The insulating coating has a second coating layer formed between the first coating layer formed of the at least one extrusion coating layer formed on the outer periphery of the conductor and the conductor, and immediately above the conductor. Has a structure,
The second coating layer is a layer obtained by extrusion-coating a second resin composition obtained by mixing the resin (A) made of polyphenylene sulfide and the resin (C) made of polyamide.
In the second resin composition, the resin (C) and the resin (A) are mixed in a weight ratio of “(C) / (A) = 5/95 to 30/70”. An insulated wire characterized by that.
請求項2に記載の絶縁電線において、
前記第2の被覆層は、押出被覆した後に250℃以上の温度で加熱処理されていることを特徴とする絶縁電線。
The insulated wire according to claim 2,
The insulated wire according to claim 1, wherein the second coating layer is heat-treated at a temperature of 250 ° C or higher after extrusion coating.
請求項2または請求項3に記載の絶縁電線において、
前記樹脂(C)は、融点が280℃以上のポリアミドからなる樹脂であることを特徴とする絶縁電線。
In the insulated wire according to claim 2 or claim 3,
The insulated wire, wherein the resin (C) is a resin made of polyamide having a melting point of 280 ° C or higher.
請求項2乃至請求項4のいずれかに記載の絶縁電線において、
前記樹脂(C)は、ナイロン46、ナイロン6T、ナイロン6I、ナイロン9T、およびナイロンM-5Tからなる群より選ばれる少なくとも一種の樹脂を含有することを特徴とする絶縁電線。
In the insulated wire according to any one of claims 2 to 4,
The insulated wire, wherein the resin (C) contains at least one resin selected from the group consisting of nylon 46, nylon 6T, nylon 6I, nylon 9T, and nylon M-5T.
JP2010076808A 2010-03-30 2010-03-30 Insulated wire Pending JP2011210519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010076808A JP2011210519A (en) 2010-03-30 2010-03-30 Insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010076808A JP2011210519A (en) 2010-03-30 2010-03-30 Insulated wire

Publications (1)

Publication Number Publication Date
JP2011210519A true JP2011210519A (en) 2011-10-20

Family

ID=44941356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010076808A Pending JP2011210519A (en) 2010-03-30 2010-03-30 Insulated wire

Country Status (1)

Country Link
JP (1) JP2011210519A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206648A (en) * 2012-03-28 2013-10-07 Hitachi Cable Ltd Insulated wire
JP2014177617A (en) * 2013-02-12 2014-09-25 Polyplastics Co Resin composition, and coating material and insulation material using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206648A (en) * 2012-03-28 2013-10-07 Hitachi Cable Ltd Insulated wire
JP2014177617A (en) * 2013-02-12 2014-09-25 Polyplastics Co Resin composition, and coating material and insulation material using the same

Similar Documents

Publication Publication Date Title
JP5699971B2 (en) Insulated wire
TWI639168B (en) Insulated wire and method of manufacturing same
US9514863B2 (en) Inverter surge-resistant insulated wire and method of producing the same
CA2867657C (en) Inverter surge-resistant insulated wire
TWI667664B (en) Flat angle insulated wire and coil for motor generator
JP2013109874A (en) Insulated wire
JPWO2015033821A1 (en) Flat electric wire, method for manufacturing the same, and electrical equipment
JP2013033607A (en) Electric insulated wire and manufacturing method thereof
JP2014154511A (en) Insulated wire and method of manufacturing the same
JP5454297B2 (en) Insulated wire
JP2014103045A (en) Insulation wire and its manufacturing method
JP5516303B2 (en) Insulated wire and manufacturing method thereof
JP2011210519A (en) Insulated wire
JP4897963B2 (en) Multilayer insulated wire and transformer using the same
JP2015138626A (en) Insulation wire and producing method thereof, and coil for electric device and producing method thereof
JP5521568B2 (en) Insulated wire
JP5561238B2 (en) Insulated wire and manufacturing method thereof
JP6519231B2 (en) Winding and method of manufacturing the same
JP5445109B2 (en) Insulated wire
JP2015228285A (en) Coil and method for producing the same
JP2005078883A (en) Complex enamel wire
JP2015099742A (en) Inverter surge-resistant insulation wire and method for production thereof
JP2012015038A (en) Insulated electric wire
JP2014067656A (en) Insulated wire and method for producing the same