JP2018035217A - Thermosetting resin composition, and prepreg, metal-clad laminate or printed wiring board using the same - Google Patents

Thermosetting resin composition, and prepreg, metal-clad laminate or printed wiring board using the same Download PDF

Info

Publication number
JP2018035217A
JP2018035217A JP2016166984A JP2016166984A JP2018035217A JP 2018035217 A JP2018035217 A JP 2018035217A JP 2016166984 A JP2016166984 A JP 2016166984A JP 2016166984 A JP2016166984 A JP 2016166984A JP 2018035217 A JP2018035217 A JP 2018035217A
Authority
JP
Japan
Prior art keywords
fine particles
thermosetting resin
mass
resin composition
resin fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016166984A
Other languages
Japanese (ja)
Other versions
JP6815792B2 (en
Inventor
昌治 杉村
Seiji Sugimura
昌治 杉村
尚史 大谷
Hisafumi Otani
尚史 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2016166984A priority Critical patent/JP6815792B2/en
Publication of JP2018035217A publication Critical patent/JP2018035217A/en
Application granted granted Critical
Publication of JP6815792B2 publication Critical patent/JP6815792B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermosetting resin composition which imparts low dielectric constant and dielectric tangent inherent to polyphenylene ether (PPE), and excellent solder heat resistance to a cured product without impairing adhesiveness when a thermosetting resin composition is cured; a prepreg formed of the thermosetting resin composition and a base material; and a laminated plate and a printed wiring board produced using the prepreg.SOLUTION: A thermosetting resin composition is formed of resin fine particles composed of at least one or more resins containing PPE and a thermosetting resin, where the resin fine particles are surface-treated with metal alkoxide having a carbon-carbon unsaturated double bond group, a treatment amount of the metal alkoxide is 0.5-5 pts.mass with respect to 100 pts.mass of the resin fine particles, and the resin fine particles are dispersed in the thermosetting resin after curing as particles.SELECTED DRAWING: Figure 1

Description

本発明は、電子基板材料として好適な、少なくともポリフェニレンエーテル(PPE)を含む樹脂微粒子と前記樹脂微粒子を含む樹脂組成物、前記樹脂組成物と基材から構成されるプリプレグ、及び前記プリプレグを用いて形成される電気・電子部品用の積層板又はプリント配線板に関する。   The present invention uses a resin fine particle containing at least polyphenylene ether (PPE), a resin composition containing the resin fine particle, a prepreg composed of the resin composition and a substrate, and the prepreg suitable as an electronic substrate material. The present invention relates to a laminated board or printed wiring board for electric / electronic parts to be formed.

近年、情報ネットワーク技術の著しい進歩、及び情報ネットワークを活用したサービスの拡大により、電子機器には情報量の大容量化、や処理速度の高速化が求められている。これらの要求に応えるために、プリント配線板用材料には、従来から求められていた難燃性、耐熱性、銅箔とのピール強度等の特性に加え、低誘電率化・低誘電正接化が求められており、樹脂組成物の改良について様々な試みが為されている。   In recent years, due to remarkable progress in information network technology and expansion of services utilizing information networks, electronic devices are required to have a large amount of information and a high processing speed. In order to meet these demands, printed circuit board materials have low dielectric constant and low dielectric loss tangent in addition to traditionally required properties such as flame retardancy, heat resistance, and peel strength with copper foil. Therefore, various attempts have been made to improve the resin composition.

PPEは、誘電率と誘電正接が低いため、前記の要求に応えられるプリント配線板用材料として好適である。一方で、PPEは、有機溶剤への溶解性に欠ける。そのため、例えば、特許文献1には、プリント配線板の製造に必要なプリプレグを製造する際、数平均分子量を2000程度に調整した低分子量PPEを用いて、溶解性を改善する方法が記載されている。しかし、このような低分子量化されたPPEは、低分子量化に伴い、その構造中に有するフェノール性水酸基の割合も増大するため、必ずしも十分な低誘電率化及び低誘電正接化を達成できていなかった。   Since PPE has a low dielectric constant and dielectric loss tangent, it is suitable as a printed wiring board material that meets the above requirements. On the other hand, PPE lacks solubility in organic solvents. Therefore, for example, Patent Document 1 describes a method for improving solubility using a low molecular weight PPE having a number average molecular weight adjusted to about 2000 when a prepreg necessary for the production of a printed wiring board is manufactured. Yes. However, such a low molecular weight PPE increases the proportion of the phenolic hydroxyl group in the structure as the molecular weight decreases, so that a sufficiently low dielectric constant and a low dielectric loss tangent can be achieved. There wasn't.

かかる問題を解決する方法としては、特許文献2に記載の通り、PPEを粉砕等の方法で微粒子化し、エポキシ樹脂等の中に微粒子のまま分散させる方法が挙げられる。しかし、低分子量化されていないPPEは、エポキシ樹脂等との反応性が低く、また、PPEとの相溶性が悪いエポキシ樹脂の場合、この方法ではエポキシ樹脂とPPE微粒子間の密着性が弱く、はんだリフロー等の、基板成型後の加熱工程において、アウトガス成分による樹脂層の破断が発生してしまう恐れがあった。   As a method for solving such a problem, as described in Patent Document 2, there is a method in which PPE is finely divided by a method such as pulverization and dispersed as fine particles in an epoxy resin or the like. However, PPE that has not been reduced in molecular weight has low reactivity with an epoxy resin or the like, and in the case of an epoxy resin having poor compatibility with PPE, this method has poor adhesion between the epoxy resin and the PPE fine particles. In a heating process after substrate molding such as solder reflow, there is a possibility that the resin layer may be broken by an outgas component.

特許第5793641号公報Japanese Patent No. 5779341 特表2015−522087号公報Special table 2015-522087 gazette

前記の状況の下、本発明が解決しようとする課題は、熱硬化性樹脂組成物を硬化させた際、接着性(例えば、多層板における層間の剥離強度、又は熱硬化性樹脂組成物の硬化物と銅箔等の金属箔との剥離強度)を損なうことなく、PPEが本来有する低い誘電率及び誘電正接と優れたはんだ耐熱性を硬化物に与えられる熱硬化性樹脂組成物、前記熱硬化性樹脂組成物と基材から成るプリプレグ、並びに前記プリプレグを用いて製造される積層板又はプリント配線板を提供することである。   Under the circumstances described above, the problem to be solved by the present invention is that when the thermosetting resin composition is cured, the adhesiveness (for example, the peel strength between layers in the multilayer board, or the curing of the thermosetting resin composition). Thermosetting resin composition capable of imparting to the cured product the low dielectric constant and dielectric loss tangent inherent in PPE and excellent soldering heat resistance without damaging the peel strength between the product and a metal foil such as copper foil) It is providing the prepreg which consists of a conductive resin composition and a base material, and the laminated board or printed wiring board manufactured using the said prepreg.

本発明者らは、上記課題を解決すべく鋭意検討し実験を重ねた結果、後述する炭素−炭素不飽和二重結合基を有する金属アルコキシドで表面処理された樹脂微粒子および熱硬化性樹脂から成る熱硬化性樹脂組成物を硬化させた際、銅箔との接着性を損なうことなく、硬化物の誘電率および誘電正接を低減させ、かつ優れたはんだ耐熱性を達成できることを見出し、本発明を完成するに至った。
すなわち、本発明は以下の通りのものである。
[1]
ポリフェニレンエーテル(PPE)を含む少なくとも1種類以上の樹脂から構成される樹脂微粒子、および熱硬化性樹脂から成る熱硬化性樹脂組成物であって、
前記樹脂微粒子は、下記式:
{式中、R、RおよびRは、各々独立して炭素数1〜3のアルキル基または水素を表し、かつZは、アリーレン基またはカルボニル基を表す}
に示す構造の炭素−炭素不飽和二重結合基を有する金属アルコキシドで表面処理されており、
前記金属アルコキシドの処理量が、前記樹脂微粒子100質量部に対して、0.5質量部〜5質量部であり、かつ
前記樹脂微粒子が、硬化後の前記熱硬化性樹脂中に粒子として分散している、
前記熱硬化性樹脂組成物。
[2]
前記金属アルコキシドが、シランカップリング剤である、[1]に記載の熱硬化性樹脂組成物。
[3]
前記シランカップリング剤が、下記式:
{式中、aは、1〜3の自然数であり、bは、0〜2の自然数であり、RおよびRは、各々独立して、炭素数1〜4のアルキル基または分岐アルキル基を表し、かつRは、炭素数1〜12のアルキレン基または分岐アルキレン基を表す}
の構造を有する少なくとも1種類以上のシランカップリング剤である、[2]に記載の熱硬化性樹脂組成物。
[4]
前記樹脂微粒子における前記シランカップリング剤の処理量が、前記樹脂微粒子100質量部に対して、1質量部〜4質量部である、[2]または[3]に記載の熱硬化性樹脂組成物。
[5]
前記熱硬化性樹脂が、エポキシ樹脂である、[1]〜[4]のいずれか1項に記載の熱硬化性樹脂組成物。
[6]
前記樹脂微粒子は、平均粒径が10μm以下であり、かつ最大粒径が30μm以下である、[1]〜[5]のいずれか1項に記載の熱硬化性樹脂組成物。
[7]
前記PPEの数平均分子量が、8,000〜30,000である、[1]〜[6]のいずれか1項に記載の熱硬化性樹脂組成物。
[8]
前記樹脂微粒子の含有量が、前記樹脂微粒子と前記熱硬化性樹脂の合計100質量部に対し、5質量部〜25質量部である、[1]〜[7]のいずれか1項に記載の熱硬化性樹脂組成物。
[9]
[1]〜[8]のいずれか1項に記載の熱硬化性樹脂組成物と基材から成る、プリプレグ。
[10]
[1]〜[8]のいずれか1項に記載の熱硬化性樹脂組成物または[9]に記載のプリプレグ、および金属箔で形成される、金属張積層板。
[11]
[10]に記載の金属張積層板から前記金属箔の一部が除去されている、プリント配線板。
As a result of intensive studies and repeated experiments to solve the above-mentioned problems, the present inventors are composed of resin fine particles surface-treated with a metal alkoxide having a carbon-carbon unsaturated double bond group, which will be described later, and a thermosetting resin. When the thermosetting resin composition is cured, it has been found that the dielectric constant and dielectric loss tangent of the cured product can be reduced and the excellent solder heat resistance can be achieved without impairing the adhesion with the copper foil. It came to be completed.
That is, the present invention is as follows.
[1]
A resin fine particle composed of at least one kind of resin containing polyphenylene ether (PPE), and a thermosetting resin composition composed of a thermosetting resin,
The resin fine particles have the following formula:
{Wherein R 1 , R 2 and R 3 each independently represents an alkyl group having 1 to 3 carbon atoms or hydrogen, and Z represents an arylene group or a carbonyl group}
Surface-treated with a metal alkoxide having a carbon-carbon unsaturated double bond group having the structure shown in FIG.
The treatment amount of the metal alkoxide is 0.5 to 5 parts by mass with respect to 100 parts by mass of the resin fine particles, and the resin fine particles are dispersed as particles in the cured thermosetting resin. ing,
The thermosetting resin composition.
[2]
The thermosetting resin composition according to [1], wherein the metal alkoxide is a silane coupling agent.
[3]
The silane coupling agent has the following formula:
{Wherein, a is a natural number of 1 to 3, b is a natural number of 0 to 2, and R 4 and R 5 are each independently an alkyl group or branched alkyl group having 1 to 4 carbon atoms. And R 6 represents an alkylene group having 1 to 12 carbon atoms or a branched alkylene group}
The thermosetting resin composition according to [2], which is at least one silane coupling agent having the structure:
[4]
The thermosetting resin composition according to [2] or [3], wherein a treatment amount of the silane coupling agent in the resin fine particles is 1 part by mass to 4 parts by mass with respect to 100 parts by mass of the resin fine particles. .
[5]
The thermosetting resin composition according to any one of [1] to [4], wherein the thermosetting resin is an epoxy resin.
[6]
The thermosetting resin composition according to any one of [1] to [5], wherein the resin fine particles have an average particle size of 10 μm or less and a maximum particle size of 30 μm or less.
[7]
The thermosetting resin composition according to any one of [1] to [6], wherein the number average molecular weight of the PPE is 8,000 to 30,000.
[8]
The content of the resin fine particles according to any one of [1] to [7], which is 5 parts by mass to 25 parts by mass with respect to a total of 100 parts by mass of the resin fine particles and the thermosetting resin. Thermosetting resin composition.
[9]
A prepreg comprising the thermosetting resin composition according to any one of [1] to [8] and a base material.
[10]
A metal-clad laminate formed of the thermosetting resin composition according to any one of [1] to [8] or the prepreg according to [9] and a metal foil.
[11]
A printed wiring board in which a part of the metal foil is removed from the metal-clad laminate according to [10].

本発明によると、硬化させると、接着性(例えば、多層板における層間の剥離強度、又は硬化性樹脂組成物の硬化物と銅箔等の金属箔との剥離強度)を損なうことなく、PPEが本来有する低い誘電率及び誘電正接と優れたはんだ耐熱性を硬化物に与えられる熱硬化性樹脂組成物、前記熱硬化性樹脂組成物と基材から成るプリプレグ、並びに前記プリプレグを用いて製造される積層板又はプリント配線板を得ることができる。   According to the present invention, when cured, PPE does not impair the adhesion (for example, the peel strength between layers in a multilayer board or the peel strength between a cured product of a curable resin composition and a metal foil such as a copper foil). A thermosetting resin composition capable of imparting a low dielectric constant and dielectric loss tangent and excellent solder heat resistance to a cured product, a prepreg composed of the thermosetting resin composition and a substrate, and the prepreg. A laminated board or a printed wiring board can be obtained.

図1(a)は、実施例1で表面処理を施した樹脂微粒子AのSEM画像であり、かつ図1(b)は、表面処理を施した樹脂微粒子AのEDXチャートである。FIG. 1A is an SEM image of the resin fine particles A subjected to surface treatment in Example 1, and FIG. 1B is an EDX chart of the resin fine particles A subjected to surface treatment. 図2(a)は、表面処理を施していないPPEのSEM画像であり、かつ図2(b)は、表面処理を施していないPPEのEDXチャートである。2A is an SEM image of PPE that has not been subjected to surface treatment, and FIG. 2B is an EDX chart of PPE that has not been subjected to surface treatment. 図3は、実施例1で得られたプリプレグAより作製した積層板のSEM画像である。FIG. 3 is an SEM image of a laminate produced from the prepreg A obtained in Example 1. 図4は、比較例1で得られたプリプレグOより作製した積層板のSEM画像である。FIG. 4 is an SEM image of a laminate produced from the prepreg O obtained in Comparative Example 1.

以下、本発明の実施態様を詳細に説明するが、本発明がこれらの態様に限定されることは意図されない。   Hereinafter, although the embodiment of the present invention is described in detail, it is not intended that the present invention be limited to these embodiments.

本発明の一態様は、熱硬化性樹脂組成物であり、前記熱硬化性樹脂組成物は、金属アルコキシドで表面処理された樹脂微粒子、および熱硬化性樹脂を含む。   One embodiment of the present invention is a thermosetting resin composition, and the thermosetting resin composition includes resin fine particles surface-treated with a metal alkoxide, and a thermosetting resin.

前記樹脂微粒子は、少なくともPPEを含む1種類以上の樹脂から構成される。樹脂微粒子が、PPEを含む複数の樹脂から構成される場合、それぞれの樹脂が均一に相溶もしくは混合していてよいし、PPEが、他の樹脂で構成される微粒子の表面を覆うような構造をしていてもよい。   The resin fine particles are composed of one or more kinds of resins including at least PPE. When the resin fine particles are composed of a plurality of resins containing PPE, the respective resins may be uniformly compatible or mixed, and the structure in which the PPE covers the surface of the fine particles composed of other resins. You may be doing.

前記樹脂微粒子は、金属アルコキシドで処理される前の樹脂微粒子100質量部に対し、PPEを25質量部〜100質量部含むことが好ましく、より好ましくは50質量部〜100質量部含むことが好ましい。樹脂微粒子は、PPEを25質量部以上含むことで、熱硬化性樹脂に添加し、硬化させた際、その硬化物にPPEが有する低い誘電率等の特性を付与できる。   The resin fine particles preferably contain 25 to 100 parts by mass, more preferably 50 to 100 parts by mass of PPE with respect to 100 parts by mass of the resin fine particles before being treated with the metal alkoxide. When the resin fine particles contain 25 parts by mass or more of PPE, when added to the thermosetting resin and cured, the cured product can be imparted with characteristics such as a low dielectric constant of the PPE.

前記樹脂微粒子が含むPPEは、好ましくは、下記一般式(1):
{式中、R1、R2、R3及びR4は、各々独立して、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリール基、置換基を有してもよいアミノ基、ニトロ基又はカルボキシル基を表す}
で表される繰返し構造単位を含む。
The PPE contained in the resin fine particles is preferably the following general formula (1):
{Wherein R1, R2, R3 and R4 each independently have a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, an alkoxy group which may have a substituent, or a substituent. Represents an aryl group which may be substituted, an amino group which may have a substituent, a nitro group or a carboxyl group}
The repeating structural unit represented by is included.

PPEの具体例としては、例えば、ポリ(2,6−ジメチル−1,4−フェニレンエーテル)、ポリ(2−メチル−6−エチル−1,4−フェニレンエーテル)、ポリ(2−メチル−6−フェニル−1,4−フェニレンエーテル)、ポリ(2,6−ジクロロ−1,4−フェニレンエーテル)等、更に、2,6−ジメチルフェノールと他のフェノール類(例えば、2,3,6−トリメチルフェノール、2−メチル−6−ブチルフェノール等)との共重合体、及び、2,6−ジメチルフェノールとビフェノール類又はビスフェノール類とをカップリングさせて得られるポリフェニレンエーテル共重合体、等が挙げられ、好ましい例は、ポリ(2,6−ジメチル−1,4−フェニレンエーテル)である。   Specific examples of PPE include poly (2,6-dimethyl-1,4-phenylene ether), poly (2-methyl-6-ethyl-1,4-phenylene ether), and poly (2-methyl-6). -Phenyl-1,4-phenylene ether), poly (2,6-dichloro-1,4-phenylene ether) and the like, and 2,6-dimethylphenol and other phenols (for example, 2,3,6-phenylene ether) And a polyphenylene ether copolymer obtained by coupling 2,6-dimethylphenol and biphenols or bisphenols, and the like. A preferred example is poly (2,6-dimethyl-1,4-phenylene ether).

尚、本願明細書中、PPEとは、置換又は非置換のフェニレンエーテル単位構造から構成されるポリマーを意味するが、本発明の作用効果を損なわない範囲で他の共重合成分を含んでもよい。   In the present specification, PPE means a polymer composed of a substituted or unsubstituted phenylene ether unit structure, but may contain other copolymerization components as long as the effects of the present invention are not impaired.

樹脂微粒子に含まれるPPEの数平均分子量は、5,000以上100,000以下が好ましく、より好ましくは8,000以上30,000以下である。PPEの数平均分子量が5,000以上になると、プリント配線板等において所望される、硬化物の耐吸水性、はんだ耐熱性、及び接着性(例えば、多層板における層間の剥離強度、又は硬化性樹脂組成物の硬化物と銅箔等との剥離強度)を良好に与える点で好ましい。また、PPEの数平均分子量を100,000以下にすることで、PPEを粉砕等の方法により、微粒子化する際に良好な加工性が得られる点で好ましい。   The number average molecular weight of PPE contained in the resin fine particles is preferably 5,000 or more and 100,000 or less, and more preferably 8,000 or more and 30,000 or less. When the number average molecular weight of PPE is 5,000 or more, water absorption resistance, solder heat resistance, and adhesiveness (for example, peeling strength between layers in a multilayer board or curability) desired for printed wiring boards and the like This is preferable in that the peel strength between the cured product of the resin composition and the copper foil or the like is favorably provided. Further, it is preferable that the number average molecular weight of PPE is 100,000 or less because good workability can be obtained when PPE is made into fine particles by a method such as pulverization.

ここで、樹脂微粒子に含まれるPPEの数平均分子量は、後述する方法でゲルパーミエーションクロマトグラフィ(GPC)測定を行い、同条件で測定した標準ポリスチレン試料の分子量と溶出時間との関係式から、標準ポリスチレン換算で測定される値を樹脂微粒子に含まれるPPEの数平均分子量とする。   Here, the number average molecular weight of the PPE contained in the resin fine particles is measured by gel permeation chromatography (GPC) by a method described later, and the standard expression from the relational expression between the molecular weight of the standard polystyrene sample measured under the same conditions and the elution time is The value measured in terms of polystyrene is defined as the number average molecular weight of PPE contained in the resin fine particles.

樹脂微粒子に含まれるPPE1分子当たりの平均フェノール性水酸基数は、本発明に係る熱硬化性樹脂組成物を硬化させて得られる硬化物と基材とを含む複合体(例えば積層板)の吸水性が高くなるのを抑制できる観点、また、前記複合体の誘電率と誘電正接が高くなるのを抑制できる観点から、好ましくは2.0個以下、より好ましくは1.85個以下、更に好ましくは1.6個以下である。   The average number of phenolic hydroxyl groups per molecule of PPE contained in the resin fine particles is the water absorption of a composite (for example, a laminate) containing a cured product obtained by curing the thermosetting resin composition according to the present invention and a substrate. Is preferably 2.0 or less, more preferably 1.85 or less, and still more preferably, from the viewpoint of suppressing the increase in the dielectric constant and the viewpoint of suppressing the increase in the dielectric constant and dielectric loss tangent of the composite. 1.6 or less.

PPE1分子当たりの平均フェノール性水酸基数は、次の方法で求めた値と定義される。高分子論文集,vol.51,No.7(1994),第480頁に記載の方法に準拠し、前記GPCの測定用に作製した樹脂微粒子の乾燥物(PPE)を、クロロホルムではなく、塩化メチレン溶液に展開させ、テトラメチルアンモニウムハイドロオキシド溶液を加えて得たサンプルの波長318nmにおける吸光度変化を紫外・可視吸光光度計で測定した値から水酸基の数を求める。別途、PPEの数平均分子量を、GPCにより求め、この値を用いてPPEの分子数を求める。これらの値から、下記式:
1分子当たりの平均フェノール性水酸基数=水酸基の数/数平均分子数
に従って、PPE1分子当たりの平均水酸基数を算出する。
The average number of phenolic hydroxyl groups per molecule of PPE is defined as a value determined by the following method. Polymer Papers, vol. 51, no. 7 (1994), page 480, the dried resin fine particles (PPE) prepared for the GPC measurement were developed in a methylene chloride solution instead of chloroform, and tetramethylammonium hydroxide was developed. The number of hydroxyl groups is determined from the value obtained by measuring the change in absorbance at a wavelength of 318 nm of the sample obtained by adding the solution with an ultraviolet / visible absorptiometer. Separately, the number average molecular weight of PPE is obtained by GPC, and the number of PPE molecules is obtained using this value. From these values, the following formula:
According to the average number of phenolic hydroxyl groups per molecule = number of hydroxyl groups / number average number of molecules, the average number of hydroxyl groups per molecule of PPE is calculated.

PPE1分子当たりの平均フェノール性水酸基数は、例えば、分子末端のフェノール性水酸基が残存しているPPEと、分子末端のフェノール性水酸基が他の官能基で変性されているPPEとを混合し、その混合比を変えることによって調整するか、又は、分子末端のフェノール性水酸基の他の官能基による置換度合を変えることによっても調整することができる。上記の官能基の態様は、特に限定されるものではなく、ベンジル基、アリル基、プロパギル基、グリシジル基、ビニルベンジル基、メタクリル基等であることができる。   The average number of phenolic hydroxyl groups per molecule of PPE is, for example, by mixing PPE in which the phenolic hydroxyl group at the molecular end remains with PPE in which the phenolic hydroxyl group at the molecular end is modified with another functional group. It can be adjusted by changing the mixing ratio or by changing the degree of substitution of the phenolic hydroxyl group at the molecular terminal with another functional group. The mode of the functional group is not particularly limited, and may be a benzyl group, an allyl group, a propargyl group, a glycidyl group, a vinylbenzyl group, a methacryl group or the like.

また、前記樹脂微粒子に含まれるPPEは、PPEと不飽和カルボン酸又は酸無水物との反応物であることができる。不飽和カルボン酸又は酸無水物の例としては、アクリル酸、メタクリル酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸、無水グルタコン酸、無水シトラコン酸等が挙げられる。反応は、PPEと不飽和カルボン酸または酸無水物を100℃〜390℃の温度範囲で加熱することによって行われる。この際、ラジカル開始剤を共存させてもよい。溶液法と溶融混合法の両方が使用できるが、押出し機等を用いる溶融混合法の方が簡便に行うことができ、本発明の目的に適している。不飽和カルボン酸又は酸無水物の割合は、PPE100重量部に対し、0.01重量部以上5.0重量部以下、好ましくは0.1重量部以上3.0重量部以下である。   Further, the PPE contained in the resin fine particles may be a reaction product of PPE and an unsaturated carboxylic acid or acid anhydride. Examples of the unsaturated carboxylic acid or acid anhydride include acrylic acid, methacrylic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, glutaconic anhydride, citraconic anhydride, and the like. The reaction is carried out by heating PPE and unsaturated carboxylic acid or acid anhydride in a temperature range of 100 ° C to 390 ° C. At this time, a radical initiator may coexist. Although both the solution method and the melt mixing method can be used, the melt mixing method using an extruder or the like can be performed more easily and is suitable for the purpose of the present invention. The ratio of unsaturated carboxylic acid or acid anhydride is 0.01 parts by weight or more and 5.0 parts by weight or less, preferably 0.1 parts by weight or more and 3.0 parts by weight or less with respect to 100 parts by weight of PPE.

PPE以外の樹脂としては、熱可塑性樹脂が好ましく、PPEとアロイ化できる熱可塑性樹脂がより好ましい。一例としては、エチレン、プロピレン、ブタジエン、イソプレン、スチレン、ジビニルベンゼン、メタクリル酸、アクリル酸、メタクリル酸エステル、アクリル酸エステル、塩化ビニル、アクリロニトリル、無水マレイン酸、酢酸ビニル、四フッ化エチレン等のビニル化合物の単独重合体及び2種以上のビニル化合物の共重合体、並びに、ポリアミド、ポリイミド、ポリカーボネート、ポリエステル、ポリアセタール、ポリフェニレンスルフィド、ポリエチレングリコール等を挙げることができる。   As the resin other than PPE, a thermoplastic resin is preferable, and a thermoplastic resin that can be alloyed with PPE is more preferable. Examples include ethylene, propylene, butadiene, isoprene, styrene, divinylbenzene, methacrylic acid, acrylic acid, methacrylic acid ester, acrylic acid ester, vinyl chloride, acrylonitrile, maleic anhydride, vinyl acetate, ethylene tetrafluoride, and other vinyls. A homopolymer of the compound and a copolymer of two or more kinds of vinyl compounds, polyamide, polyimide, polycarbonate, polyester, polyacetal, polyphenylene sulfide, polyethylene glycol and the like can be exemplified.

前記樹脂微粒子は、はんだ耐熱性試験等、急激な熱変化を熱硬化性樹脂の硬化物に与えた際、その熱変化による応力をより均一に分散させることができる観点から、平均粒径を10μm以下かつ最大粒径を30μm以下にすることが好ましい。平均粒径が10μm以下の樹脂微粒子を用いることで、優れた接着性(例えば、多層板における層間の剥離強度、又は熱硬化性樹脂組成物の硬化物と銅箔等との剥離強度)を確保するだけでなく、前記硬化物全体に対し、より均質な誘電率及び誘電正接を与えることもできる。   The resin fine particles have an average particle size of 10 μm from the viewpoint of more uniformly dispersing the stress due to the heat change when applying a rapid heat change to the cured product of the thermosetting resin, such as a solder heat resistance test. The maximum particle size is preferably 30 μm or less. By using resin fine particles with an average particle size of 10 μm or less, excellent adhesion (for example, peel strength between layers in a multilayer board or peel strength between a cured product of a thermosetting resin composition and copper foil, etc.) is ensured. In addition, a more uniform dielectric constant and dielectric loss tangent can be given to the entire cured product.

また、前記樹脂微粒子は、硬化後の熱硬化性樹脂中に均一に分散していることが好ましい。硬化後の熱硬化性樹脂中での樹脂微粒子の偏在が顕著な場合、前記偏在部を起点として、硬化物の破壊が生じる恐れがある。また、前記樹脂微粒子の熱硬化性樹脂中での分散状態を確認する方法としては、硬化後の熱硬化性樹脂組成物の断面を走査型電子顕微鏡(以下「SEM」という)で確認する方法等が挙げられる。   The resin fine particles are preferably uniformly dispersed in the cured thermosetting resin. When uneven distribution of the resin fine particles in the thermosetting resin after curing is remarkable, there is a possibility that the cured product may be broken starting from the uneven distribution portion. Moreover, as a method of confirming the dispersion state of the resin fine particles in the thermosetting resin, a method of confirming a cross section of the cured thermosetting resin composition with a scanning electron microscope (hereinafter referred to as “SEM”), etc. Is mentioned.

前記樹脂微粒子の粒径の測定方法として、一例として、後述する湿式のレーザー回折式の粒子径測定装置を用いることができる。前記湿式のレーザー回折式の粒子径測定装置を用いて測定する場合、少量の樹脂微粒子に、Triton X−100(ダウケミカル社製)等に代表されるオクチルフェノールエトキシレートを溶解させた水を添加し、超音波処理等で分散させることで測定用サンプルを調製し、水を分散媒とした前記測定装置で測定する。   As an example of the method for measuring the particle size of the resin fine particles, a wet laser diffraction particle size measuring device described later can be used. When measuring using the wet laser diffraction particle size measuring device, water in which octylphenol ethoxylate typified by Triton X-100 (manufactured by Dow Chemical Co., Ltd.) is dissolved in a small amount of resin fine particles is added. Then, a sample for measurement is prepared by dispersing by ultrasonic treatment or the like, and the measurement is performed with the measuring apparatus using water as a dispersion medium.

上述した粒径を有する樹脂微粒子を得るためには、金属アルコキシドで処理する前に、樹脂原料を微粒子へ加工することが好ましい。加工方法としては、粗大な樹脂粒を乾式粉砕、湿式粉砕等のように、樹脂粒にエネルギーを加えて加工する方法;樹脂を加温した溶媒に溶解させた後、一定速度で冷却することで再結晶化する方法;樹脂の溶液を界面活性剤を含む水等に分散させてエマルションを形成後、緩やかに加温して脱溶剤して粒子を形成させる方法等が挙げられる。コスト又は生産性の観点からは乾式粉砕が望ましい。乾式粉砕の例としては、ジェットミル、ボールミル、ターボミル等が挙げられる。また、所望の粒径の微粒子を得るために、原料粒からの加工後、篩等で分級を行い、粗大又は微細な粒子を除去してもよい。   In order to obtain the resin fine particles having the above-mentioned particle diameter, it is preferable to process the resin raw material into fine particles before the treatment with the metal alkoxide. As a processing method, coarse resin particles are processed by applying energy to resin particles such as dry pulverization, wet pulverization, etc .; by dissolving the resin in a heated solvent and then cooling it at a constant rate. A method of recrystallization; a method in which a resin solution is dispersed in water or the like containing a surfactant to form an emulsion, and then heated gently to remove the solvent to form particles. Dry pulverization is desirable from the viewpoint of cost or productivity. Examples of dry pulverization include a jet mill, a ball mill, and a turbo mill. In order to obtain fine particles having a desired particle diameter, coarse or fine particles may be removed by classifying with a sieve after processing from raw material grains.

前記樹脂微粒子は、金属アルコキシドで表面処理されており、表面処理されていない樹脂微粒子100質量部に対して、前記金属アルコキシド0.5質量部〜5質量部で処理されており、前記金属アルコキシドで1質量部〜4質量部で処理されていることがより好ましい。後述する方法で金属アルコキシドを用いて表面処理することで、本発明に係る熱硬化性樹脂組成物の硬化物に対し、良好なはんだ耐熱性を付与できる。良好なはんだ耐熱性を付与できる原理は不明だが、本態様に係る樹脂微粒子を構成する特定の数平均分子量を有するPPEは、エポキシ樹脂等の熱硬化性樹脂との反応性に乏しい。しかしながら、後述するように、炭素−炭素不飽和二重結合基を有する金属アルコキシドを加水分解した状態で処理することで本様態に係る熱硬化性樹脂組成物の硬化物のはんだ耐熱性が向上するため、前記表面処理により、その表面に水酸基、シロキサン結合等の金属アルコキシド同士の縮合により形成される化学結合、炭素‐炭素不飽和二重結合基のいずれか、又はこれらの組み合わせが露出することで、熱硬化性樹脂に対する樹脂微粒子の濡れ性が向上し、樹脂微粒子の熱硬化性樹脂中での分散性が向上することが寄与していると推定される。   The resin fine particles are surface-treated with a metal alkoxide, and are treated with 0.5 to 5 parts by mass of the metal alkoxide with respect to 100 parts by mass of the resin fine particles that are not surface-treated. More preferably, the treatment is performed at 1 to 4 parts by mass. By performing a surface treatment using a metal alkoxide by a method described later, good solder heat resistance can be imparted to the cured product of the thermosetting resin composition according to the present invention. Although the principle capable of imparting good solder heat resistance is unknown, PPE having a specific number average molecular weight constituting the resin fine particles according to this embodiment is poor in reactivity with a thermosetting resin such as an epoxy resin. However, as described later, the solder heat resistance of the cured product of the thermosetting resin composition according to this embodiment is improved by treating the metal alkoxide having a carbon-carbon unsaturated double bond group in a hydrolyzed state. Therefore, by the surface treatment, either a chemical bond formed by condensation of metal alkoxides such as a hydroxyl group or a siloxane bond, a carbon-carbon unsaturated double bond group, or a combination thereof is exposed on the surface. It is estimated that the improvement of the wettability of the resin fine particles with respect to the thermosetting resin contributes to the improvement of the dispersibility of the resin fine particles in the thermosetting resin.

前記金属アルコキシドは、下記式:
{式中、R、RおよびRは、各々独立して炭素数1〜3のアルキル基または水素を表し、かつZは、アリーレン基またはカルボニル基を表す}
に示す構造の炭素‐炭素不飽和二重結合基を有している以外、特に限定されないが、例としては、ケイ素アルコキシド(以下、「シランカップリング剤」)、チタンアルコキシド、アルミニウムアルコキシド、ジルコニウムアルコキシド等が挙げられる。
The metal alkoxide has the following formula:
{Wherein R 1 , R 2 and R 3 each independently represents an alkyl group having 1 to 3 carbon atoms or hydrogen, and Z represents an arylene group or a carbonyl group}
Although it does not specifically limit except having the carbon-carbon unsaturated double bond group of the structure shown in the following, for example, silicon alkoxide (hereinafter referred to as “silane coupling agent”), titanium alkoxide, aluminum alkoxide, zirconium alkoxide Etc.

前記金属アルコキシドは、シランカップリング剤であることが好ましい。また、より好ましくは、下記式:
{式中、aは、1〜3の自然数であり、bは、0〜2の自然数であり、RおよびRは、各々独立して、炭素数1〜4のアルキル基または分岐アルキル基を表し、かつRは、炭素数1〜12のアルキレン基または分岐アルキレン基を表す}
に示す構造を有するシランカップリング剤である。
The metal alkoxide is preferably a silane coupling agent. More preferably, the following formula:
{Wherein, a is a natural number of 1 to 3, b is a natural number of 0 to 2, and R 4 and R 5 are each independently an alkyl group or branched alkyl group having 1 to 4 carbon atoms. And R 6 represents an alkylene group having 1 to 12 carbon atoms or a branched alkylene group}
A silane coupling agent having the structure shown in FIG.

前記シランカップリング剤の例として、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、γ−メタクリロキシプロピルトリス2−プロポキシシラン、8−メタクリロキシオクチルトリメトキシシラン等が挙げられる。   Examples of the silane coupling agent include 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, and γ-methacryloxy. Examples thereof include propyltris 2-propoxysilane and 8-methacryloxyoctyltrimethoxysilane.

前記樹脂微粒子は、金属アルコキシドで表面処理する際、前記金属アルコキシドを予め水に溶解させた後に、表面処理することが好ましい。処理方法は特に限定されないが、例として、乾式処理法、湿式処理法、インテグラルブレンド法等が挙げられる。乾式処理法および湿式処理法は、主として(1)前記化合物の水溶液を調製し、(2)表面処理されていない樹脂微粒子と前記水溶液を混合し、(3)前記混合物を乾燥し、(4)乾燥により凝集した樹脂微粒子を解砕するという操作で処理される。乾式処理法と湿式処理法の違いは前記(2)の操作における樹脂微粒子と前記水溶液の混合方法にある。乾式処理法においては、前記(2)の操作において、少量の前記水溶液を、一例として、樹脂微粒子を撹拌しながらスプレー等で噴霧し混合する。また、湿式処理法は、前記(2)の操作において、多量の前記水溶液に樹脂微粒子を添加、スラリー状に分散させることで混合する。前記(3)の操作において乾燥させる際、樹脂微粒子に対して、より均質な処理状態を達成できる観点からは、乾式処理法が好ましい。   When the resin fine particles are surface-treated with a metal alkoxide, the metal alkoxide is preferably surface-treated after being previously dissolved in water. The treatment method is not particularly limited, and examples thereof include a dry treatment method, a wet treatment method, an integral blend method, and the like. The dry treatment method and the wet treatment method mainly include (1) preparing an aqueous solution of the compound, (2) mixing resin fine particles not subjected to surface treatment and the aqueous solution, (3) drying the mixture, and (4) It is processed by an operation of crushing the resin fine particles aggregated by drying. The difference between the dry treatment method and the wet treatment method lies in the method of mixing the resin fine particles and the aqueous solution in the operation (2). In the dry processing method, in the operation (2), a small amount of the aqueous solution is sprayed and mixed with the resin fine particles as an example while stirring. In the wet processing method, in the operation (2), resin fine particles are added to a large amount of the aqueous solution and dispersed in a slurry state. When drying in the operation (3), a dry processing method is preferable from the viewpoint of achieving a more uniform processing state with respect to the resin fine particles.

前記(1)の操作については、金属アルコキシドの加水分解後の安定性を高める観点から、水に対して酸又はアルカリでpHを調整してもよい。また、前記化合物を溶解させ均質な水溶液を調製できる観点、及び表面処理をしてない樹脂微粒子に対する濡れ性を向上させて均質な処理状態を達成できる観点からは、メタノール等、水と混合可能な有機溶剤を添加してもよい。   About operation of said (1), you may adjust pH with an acid or an alkali with respect to water from a viewpoint of improving the stability after hydrolysis of a metal alkoxide. Further, from the viewpoint of dissolving the above-mentioned compound to prepare a homogeneous aqueous solution and improving the wettability with respect to resin fine particles not subjected to surface treatment to achieve a homogeneous treatment state, it can be mixed with water such as methanol. An organic solvent may be added.

前記(2)の操作について、乾式処理を行う場合は、噴霧する水溶液の霧径をより微細化し、またヘンシェルミキサー等を使用して十分に撹拌する等の操作を行うことが、より均質な処理状態を樹脂微粒子に付与できる観点から好ましい。   As for the operation (2), when dry processing is performed, it is possible to make the mist diameter of the aqueous solution to be sprayed finer, and to perform sufficient operations such as using a Henschel mixer to perform more uniform processing. It is preferable from the viewpoint that the state can be imparted to the resin fine particles.

前記(3)の操作について、乾燥方法は特に限定されないが、乾燥温度又は乾燥時間を適切に管理し、水や有機溶剤を十分に除去することが、好ましい。   With respect to the operation (3), the drying method is not particularly limited, but it is preferable to appropriately manage the drying temperature or drying time and sufficiently remove water and organic solvent.

前記(4)の操作について、樹脂微粒子が凝集した場合は、適切な方法により、凝集前と同じ程度の粒径まで解砕することが好ましい。特に限定はされないが、一例として、ジェットミル、ボールミル、ターボミル等が使用できる。   In the operation (4), when the resin fine particles are aggregated, it is preferable to crush them to the same particle size as before the aggregation by an appropriate method. Although not particularly limited, for example, a jet mill, a ball mill, a turbo mill, or the like can be used.

本実施形態で使用される熱硬化性樹脂組成物は、前記樹脂微粒子と熱硬化性樹脂を含む。前記熱硬化性樹脂としては、特に限定はされないが、エポキシ樹脂、ポリイミド樹脂、ビスマレイミドトリアジン樹脂、フェノール樹脂、ビスマレイミド類、シアネートエステル類、及びポリブタジエン又はその類似化合物、並びにトリアリルイソシアヌレート、スチレン、ジビニルベンゼン等に代表されるビニル化合物類を例として挙げることができる。前記樹脂をそれぞれ単体で用いてもよいし、2種以上を組み合わせて用いてもよい。   The thermosetting resin composition used in the present embodiment includes the resin fine particles and a thermosetting resin. The thermosetting resin is not particularly limited, but epoxy resin, polyimide resin, bismaleimide triazine resin, phenol resin, bismaleimide, cyanate ester, polybutadiene or similar compound, triallyl isocyanurate, styrene Examples thereof include vinyl compounds typified by divinylbenzene and the like. Each of the resins may be used alone or in combination of two or more.

前記熱硬化性樹脂は、エポキシ樹脂であることが好ましい。特に限定されないが、エポキシ樹脂の例として脂環式エポキシ化合物、ビスフェノールA型エポキシ化合物、ビスフェノールAノボラック型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールFノボラック型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、ナフタレン型エポキシ化合物、ビフェニル型エポキシ化合物等が挙げられる。これらは、単独で用いても、2種以上を組み合わせて用いてもよい。
前記エポキシ樹脂は、硬化剤を含むことが好ましい。特に限定されないが、硬化剤の例としては、脂肪族ポリアミン、ポリアミノアミド、ポリメルカプタン、芳香族ポリアミン、酸無水物、フェノールノボラック化合物、ジシアンジアミド、シアネートエステル化合物等が挙げられる。これらは、単独で用いても、2種以上を組み合わせて用いてもよい。
前記エポキシ樹脂は、硬化促進剤を含むことができる。特に限定されないが、硬化促進剤の例として、三級アミン化合物、三級アミン化合物塩、イミダゾール化合物、ホスフィン化合物、ホスホニウム化合物塩等が挙げられる。これらは、単独で用いても、2種以上を組み合わせて用いてもよい。
The thermosetting resin is preferably an epoxy resin. Examples of epoxy resins include, but are not limited to, alicyclic epoxy compounds, bisphenol A type epoxy compounds, bisphenol A novolac type epoxy compounds, bisphenol F type epoxy compounds, bisphenol F novolac type epoxy compounds, phenol novolac type epoxy compounds, cresol novolacs. Type epoxy compound, naphthalene type epoxy compound, biphenyl type epoxy compound and the like. These may be used alone or in combination of two or more.
The epoxy resin preferably contains a curing agent. Although not particularly limited, examples of the curing agent include aliphatic polyamines, polyaminoamides, polymercaptans, aromatic polyamines, acid anhydrides, phenol novolac compounds, dicyandiamide, and cyanate ester compounds. These may be used alone or in combination of two or more.
The epoxy resin may include a curing accelerator. Although it does not specifically limit, A tertiary amine compound, a tertiary amine compound salt, an imidazole compound, a phosphine compound, a phosphonium compound salt etc. are mentioned as an example of a hardening accelerator. These may be used alone or in combination of two or more.

前記熱硬化性樹脂組成物中の樹脂微粒子の含有量は、熱硬化性樹脂との合計100質量部に対して、好ましくは5質量部〜25質量部、より好ましくは7〜20質量部である。熱硬化性樹脂組成物が樹脂微粒子を5質量部以上含むことで、前記樹脂組成物に対し、誘電率又は誘電正接の低減効果を付与でき、また樹脂微粒子の含有量を25質量部以下とすることで、接着性(例えば、多層板における層間の剥離強度、又は硬化性樹脂組成物の硬化物と銅箔等の金属箔との剥離強度)を損なうことなく、優れたはんだ耐熱性を付与できる。   The content of the resin fine particles in the thermosetting resin composition is preferably 5 to 25 parts by mass, more preferably 7 to 20 parts by mass with respect to a total of 100 parts by mass with the thermosetting resin. . When the thermosetting resin composition contains 5 parts by mass or more of resin fine particles, the resin composition can be given an effect of reducing dielectric constant or dielectric loss tangent, and the content of resin fine particles is 25 parts by mass or less. Thus, excellent solder heat resistance can be imparted without impairing adhesiveness (for example, peel strength between layers in a multilayer board or peel strength between a cured product of a curable resin composition and a metal foil such as a copper foil). .

なお、本実施形態では、熱硬化性樹脂組成物は樹脂微粒子および熱硬化性樹脂の他に、例えば、前記熱硬化性樹脂の反応開始剤又は反応促進剤、難燃剤、シリカフィラー、その他の添加剤等を、本技術分野で知られるこれらの態様と同様の様式で好ましく配合できる。そのような配合もまた本開示は包含する。また、本実施形態に係る熱硬化性樹脂組成物を用い、ワニス、プリプレグ、金属張積層板、及びプリント配線板を好ましく形成できる。   In this embodiment, the thermosetting resin composition includes, in addition to the resin fine particles and the thermosetting resin, for example, a reaction initiator or reaction accelerator for the thermosetting resin, a flame retardant, a silica filler, and other additives. Agents and the like can be preferably blended in a manner similar to these embodiments known in the art. Such formulations are also encompassed by the present disclosure. Moreover, a varnish, a prepreg, a metal-clad laminate, and a printed wiring board can be preferably formed using the thermosetting resin composition according to the present embodiment.

本実施形態に係る熱硬化性樹脂組成物は、目的に応じ、適当な添加剤を更に含有してもよい。添加剤としては、熱安定剤、酸化防止剤、UV吸収剤、界面活性剤、滑剤、充填剤、ポリマー添加剤等が挙げられる。   The thermosetting resin composition according to the present embodiment may further contain an appropriate additive depending on the purpose. Examples of the additive include a heat stabilizer, an antioxidant, a UV absorber, a surfactant, a lubricant, a filler, and a polymer additive.

本発明の別の態様は、前記熱硬化性樹脂組成物と基材とで構成されるプリプレグを提供する。例えば、前記熱硬化性樹脂とその溶剤および前記樹脂微粒子を含むワニスを、ガラスクロス等である基材に含浸させた後、熱風乾燥機等で溶剤分を乾燥除去することにより、プリプレグを製造できる。   Another aspect of the present invention provides a prepreg composed of the thermosetting resin composition and a substrate. For example, a prepreg can be produced by impregnating a base material such as a glass cloth with a varnish containing the thermosetting resin and its solvent and the resin fine particles, and then drying and removing the solvent with a hot air dryer or the like. .

基材としては、ロービングクロス、クロス、チョップドマット、サーフェシングマット等の各種ガラス布;アスベスト布、金属繊維布、及びその他の合成若しくは天然の無機繊維布;全芳香族ポリアミド繊維、全芳香族ポリエステル繊維、ポリベンゾオキサゾール繊維等の液晶繊維から得られる織布又は不織布;綿布、麻布、フェルト等の天然繊維布;カーボン繊維布、クラフト紙、コットン紙、紙−ガラス混繊糸から得られる布等の天然セルロース系基材;ポリテトラフルオロエチレン多孔質フィルム;等を単独で又は2種以上組合せて用いることができる。   As a base material, various glass cloths such as roving cloth, cloth, chopped mat, and surfacing mat; asbestos cloth, metal fiber cloth, and other synthetic or natural inorganic fiber cloth; wholly aromatic polyamide fiber, wholly aromatic polyester Woven or non-woven fabrics obtained from liquid crystal fibers such as fibers and polybenzoxazole fibers; natural fiber fabrics such as cotton cloth, linen and felt; carbon fiber cloths, kraft paper, cotton paper, cloths obtained from paper-glass mixed yarn, etc. Natural cellulosic base materials, polytetrafluoroethylene porous films, and the like can be used alone or in combination of two or more.

前記プリプレグに占める前記熱硬化性樹脂組成物の割合は、プリプレグ全量100質量部に対して、30質量部〜80質量部であることが好ましく、より好ましくは40質量部〜70質量部である。上記割合が30質量部以上である場合、プリプレグを、例えば、電子基板形成用として使用した際に優れた絶縁信頼性が得られ、80質量部以下である場合、例えば、得られる電子基板が曲げ弾性率等の機械特性に優れる。   The proportion of the thermosetting resin composition in the prepreg is preferably 30 parts by mass to 80 parts by mass, more preferably 40 parts by mass to 70 parts by mass with respect to 100 parts by mass of the total amount of prepreg. When the proportion is 30 parts by mass or more, excellent insulation reliability is obtained when the prepreg is used, for example, for forming an electronic substrate, and when the proportion is 80 parts by mass or less, for example, the obtained electronic substrate is bent. Excellent mechanical properties such as elastic modulus.

本発明の別の態様では、前記熱硬化性樹脂組成物の硬化物と基材とを含む硬化物複合体と、金属箔とが積層されている金属張積層板を形成できる。前記積層板は、好ましくは、上記硬化物複合体と金属箔とが重なって密着しているもので、電子基板の材料として好適に用いられる。金属箔としては、例えば、アルミ箔及び銅箔を用いることができ、中でも銅箔は電気抵抗が低いため好ましい。金属箔と組合せる硬化物複合体は1枚でも複数枚でもよく、用途に応じて複合体の片面又は両面に金属箔を重ねて積層板に加工する。積層板の製造方法としては、例えば、熱硬化性樹脂組成物と基材とから構成される複合体(例えば、前述のプリプレグ)を形成し、これを金属箔と重ねた後、熱硬化性樹脂組成物を硬化させることにより、硬化物積層体と金属箔とが積層されている積層板を得る方法が挙げられる。前記積層板の特に好ましい用途の1つはプリント配線板である。プリント配線板は、金属張積層板から金属箔の少なくとも一部が除去されていることが好ましい。   In another aspect of the present invention, a metal-clad laminate in which a cured product composite containing a cured product of the thermosetting resin composition and a substrate and a metal foil are laminated can be formed. The laminate is preferably one in which the cured product composite and the metal foil are in close contact with each other, and is suitably used as a material for an electronic substrate. As the metal foil, for example, an aluminum foil and a copper foil can be used, and among them, the copper foil is preferable because of its low electric resistance. The cured product composite to be combined with the metal foil may be one sheet or a plurality of sheets, and the metal foil is overlapped on one side or both sides of the composite to be processed into a laminate according to the use. As a manufacturing method of a laminated board, after forming the composite_body | complex (for example, above-mentioned prepreg) comprised from a thermosetting resin composition and a base material, for example, and laminating this with metal foil, it is thermosetting resin. The method of obtaining the laminated board on which the hardened | cured material laminated body and metal foil are laminated | stacked by hardening a composition is mentioned. One particularly preferred application of the laminate is a printed wiring board. In the printed wiring board, it is preferable that at least a part of the metal foil is removed from the metal-clad laminate.

本発明の別の態様は、前記熱硬化性樹脂組成物の硬化物と、基材とを含むプリント配線板を提供する。本発明のプリント配線板は、典型的には、上述した本発明のプリプレグを用いて、加圧加熱成型する方法で形成できる。基材としてはプリプレグに関して前述したのと同様のものが挙げられる。本発明のプリント配線板は、前記熱硬化性樹脂組成物を用いて形成されていることにより、優れた絶縁信頼性及び機械特性を有することができる。   Another aspect of the present invention provides a printed wiring board comprising a cured product of the thermosetting resin composition and a substrate. The printed wiring board of the present invention can typically be formed by a method of pressure and heat molding using the prepreg of the present invention described above. Examples of the substrate include the same materials as described above with respect to the prepreg. Since the printed wiring board of the present invention is formed using the thermosetting resin composition, it can have excellent insulation reliability and mechanical properties.

以下、実施例により、本実施形態を具体的に説明するが、本実施形態は以下の実施例により何ら限定されるものではない。   Hereinafter, the present embodiment will be specifically described by way of examples. However, the present embodiment is not limited to the following examples.

以下の実施例、比較例、及び試験例に記載した各物性は、以下の方法によって測定又は観察した。   Each physical property described in the following examples, comparative examples, and test examples was measured or observed by the following methods.

(1)PPEの数平均分子量
GPC分析を用い、分子量既知の標準ポリスチレンの溶出時間との比較で数平均分子量を求めた。
試料濃度0.2w/vol%(溶媒:クロロホルム)の測定試料を調製後、測定装置にはHLC−8220GPC(東ソー株式会社製)を用い、カラム:Shodex GPC KF−405L HQ×3(昭和電工株式会社製)、溶離液:クロロホルム、注入量:20μL、流量:0.3mL/min、カラム温度:40℃、検出器:RI、の条件下で測定を行った。
(1) Number average molecular weight of PPE Using GPC analysis, the number average molecular weight was determined by comparison with the elution time of standard polystyrene having a known molecular weight.
After preparing a measurement sample having a sample concentration of 0.2 w / vol% (solvent: chloroform), HLC-8220GPC (manufactured by Tosoh Corporation) was used as a measurement apparatus, and column: Shodex GPC KF-405L HQ × 3 (Showa Denko Co., Ltd.) (Manufactured by the company), eluent: chloroform, injection amount: 20 μL, flow rate: 0.3 mL / min, column temperature: 40 ° C., detector: RI.

(2)積層板の誘電率、誘電正接
積層板の1GHzでの誘電率及び誘電正接を、空洞共振法にて測定した。
測定装置としてネットワークアナライザー(N5230A、AgilentTechnologies社製)、および関東電子応用開発社製の空洞共振器(Cavity Resornator CPシリーズ)を用いた。
積層板を、幅約2mm、長さ90mmの大きさに切り出し、105℃±2℃のオーブンに入れ2時間乾燥させた後、23℃、相対湿度65±5%の環境下に96±5時間置いて調整した試験片を用い、23℃、相対湿度65±5%の環境下で上記測定装置を用いて誘電率、誘電正接の測定を行った。
(2) Dielectric constant and dielectric loss tangent of laminated plate The dielectric constant and dielectric loss tangent of the laminated plate at 1 GHz were measured by a cavity resonance method.
A network analyzer (N5230A, manufactured by Agilent Technologies) and a cavity resonator (Cavity Resonator CP series) manufactured by Kanto Electronics Application Development Co., Ltd. were used as measurement devices.
The laminate is cut into a size of about 2 mm in width and 90 mm in length, put in an oven at 105 ° C. ± 2 ° C. and dried for 2 hours, and then 96 ± 5 hours in an environment of 23 ° C. and relative humidity 65 ± 5%. Using the test piece that was placed and adjusted, the dielectric constant and dielectric loss tangent were measured using the above measuring apparatus in an environment of 23 ° C. and a relative humidity of 65 ± 5%.

(3)積層板の吸水率
積層板を吸水加速試験に供し、増加した質量から吸水率を求めた。
積層板を50mm角に切り出し試験片を作製した。該試験片を105℃で60分乾燥した後、質量を測定し、加速試験前の質量(g)とした。次いで、温度:121℃、圧力:2atm、時間:4時間、の条件下で加速試験を行った後の質量を測定し、加速試験後の質量(g)とした。
加速試験前の質量(g)と加速試験後の質量(g)とを用い、下記式:
吸水率(質量%)=(加速試験前の質量―加速試験後の質量)/加速試験前の質量×100
により吸水率を算出し、試験片4枚の測定値の平均値を求めた。
(3) Water Absorption Rate of Laminate Plate The laminate plate was subjected to a water absorption acceleration test, and the water absorption rate was determined from the increased mass.
The laminate was cut into 50 mm squares to produce test pieces. After the test piece was dried at 105 ° C. for 60 minutes, the mass was measured to obtain the mass (g) before the acceleration test. Subsequently, the mass after the acceleration test was performed under the conditions of temperature: 121 ° C., pressure: 2 atm, and time: 4 hours, and the mass (g) after the acceleration test was measured.
Using the mass (g) before the acceleration test and the mass (g) after the acceleration test, the following formula:
Water absorption (mass%) = (mass before acceleration test−mass after acceleration test) / mass before acceleration test × 100
Then, the water absorption was calculated, and the average value of the measured values of the four test pieces was obtained.

(4)積層板の吸水試験後のはんだ耐熱性
上記(3)に記載の吸水率の測定後の積層板を用い、288℃でのはんだ耐熱試験を行った。吸水加速試験後の積層板を、288℃のはんだ浴に20秒間浸漬し、目視による観察を行った。はんだ浴へ浸漬しても、膨れ、剥離及び白化の何れも確認されなかった積層板については「○(良好)」と評価した。また、はんだ浴への浸漬により、膨れ、剥離及び白化の何れか一部で発生した積層板は「△(許容)」、全面で発生した場合積層板は「×(不良)」と評価した。
(4) Solder heat resistance after water absorption test of laminate The solder heat test at 288 ° C. was performed using the laminate after measurement of water absorption as described in (3) above. The laminated board after the water absorption acceleration test was immersed in a solder bath at 288 ° C. for 20 seconds, and visually observed. A laminated board in which no swelling, peeling or whitening was confirmed even when immersed in a solder bath was evaluated as “◯ (good)”. Further, a laminate produced by any part of swelling, peeling and whitening by immersion in a solder bath was evaluated as “Δ (allowable)”, and when produced over the entire surface, the laminate was evaluated as “x (defective)”.

(5)積層板の銅箔引き剥がし強さ(剥離強度N/mm)
銅張積層板の銅箔を一定速度で引き剥がす際の応力を測定した。後述の方法で作製した、35μm厚の銅箔(GTS−MP箔、古川電気工業株式会社製)を用いた銅張積層板を、幅15mm×長さ150mmのサイズに切り出し、オートグラフ(AG−5000D、株式会社島津製作所製)を用い、銅箔を除去面に対し90℃の角度で50mm/分の速度で引き剥がした際の荷重の平均値を測定し、5回の測定の平均値を求めた。
(5) Copper foil peel strength of laminate (peel strength N / mm)
The stress when peeling the copper foil of the copper clad laminate at a constant speed was measured. A copper-clad laminate using a 35 μm-thick copper foil (GTS-MP foil, manufactured by Furukawa Electric Co., Ltd.) produced by the method described later was cut into a size of 15 mm wide × 150 mm long, and an autograph (AG- 5000D (manufactured by Shimadzu Corporation) was used to measure the average value of the load when the copper foil was peeled off at a speed of 50 mm / min at an angle of 90 ° C. with respect to the removal surface, and the average value of the five measurements Asked.

(6)樹脂微粒子の粒径測定
レーザー回折式粒子径測定装置(MicrotracMT3000−II マイクロトラック・ベル株式会社製)を用い、処理前後の樹脂微粒子の平均粒径および最大粒径を測定した。後述の操作で得られたデータを基に、粒径が小さい側を0として、50%粒子体積分布(d50)となる粒径を平均粒径、100%粒子体積分布(d100)となる粒径を最大粒径とした。
(粒径測定の操作)
スクリュー管に樹脂微粒子10μg、0.2wt%ヘキサメタリン酸ナトリウム水溶液10ml、及び10wt%Triton X−100水溶液数滴を加え、超音波処理機で十分に分散させ、測定用サンプルを調製した。この測定用サンプルを用いて、分散媒に水を使用した前記測定装置にて、測定条件:透過、粒子屈折率:1.60、粒子形状:非球形、溶媒(分散媒)屈折率:1.33に条件設定し、粒径を測定した。
(6) Particle size measurement of resin fine particles The average particle size and the maximum particle size of resin fine particles before and after the treatment were measured using a laser diffraction particle size measurement device (Microtrac MT3000-II manufactured by Microtrack Bell Co., Ltd.). Based on the data obtained by the operation described later, the smaller particle size is set to 0, the particle size at 50% particle volume distribution (d50) is the average particle size, and the particle size at 100% particle volume distribution (d100). Was the maximum particle size.
(Operation of particle size measurement)
A sample for measurement was prepared by adding 10 μg of fine resin particles, 10 ml of 0.2 wt% sodium hexametaphosphate aqueous solution, and several drops of 10 wt% Triton X-100 aqueous solution to a screw tube and sufficiently dispersing with an ultrasonic processor. Using this measurement sample, the measurement apparatus using water as a dispersion medium was used for measurement conditions: transmission, particle refractive index: 1.60, particle shape: non-spherical, solvent (dispersion medium) refractive index: 1. The condition was set to 33 and the particle size was measured.

(7)SEMによる積層板断面観察
積層板の断面をSEM(S−4100、株式会社日立ハイテクノロジーズ製)を用いて観察した。観察用試料は10mm角にカット後、エポマウント主剤(リファインテック株式会社社製)90質量部、エポマウント硬化剤(リファインテック株式会社社製)10質量部で混合した樹脂に包埋し、室温にて1日静置後、前記包埋物を前記試料の断面を観察できるよう切断、研磨した後、金−パラジウムをターゲットに用いたスパッタリング装置(E−1020、株式会社日立製作所製)にて前記断面に導電処理を施し、作製した。観察時は加速電圧を20kVに設定し、観察を行った。
(7) Laminate cross section observation by SEM The cross section of the laminate was observed using SEM (S-4100, manufactured by Hitachi High-Technologies Corporation). The observation sample was cut into a 10 mm square, embedded in a resin mixed with 90 parts by mass of Epomount main agent (manufactured by Refinetech Co., Ltd.) and 10 parts by mass of Epomount curing agent (manufactured by Refinetech Co., Ltd.), and room temperature. 1 day, and after cutting and polishing the embedded material so that the cross section of the sample can be observed, a sputtering apparatus using gold-palladium as a target (E-1020, manufactured by Hitachi, Ltd.) The cross section was prepared by conducting a conductive treatment. At the time of observation, the acceleration voltage was set to 20 kV and the observation was performed.

(8)EDXによる樹脂微粒子の分析
処理前後の樹脂微粒子を、SEMに付属したエネルギー分散型X線分析装置(以下「EDX」という)(EMAX ENERGY EX−250、株式会社堀場製作所製)にて分析した。測定用試料は、測定試料台に貼付した導電テープ上に前記樹脂微粒子を固着させた上で、金−パラジウムをターゲットに用いた前記スパッタリング装置に導電処理を施し、作製した。観察時は加速電圧を20kVに設定し、測定を行った。
(8) Analysis of resin fine particles by EDX Analyzing resin fine particles before and after treatment with an energy dispersive X-ray analyzer (hereinafter referred to as “EDX”) (EMAX ENERGY EX-250, manufactured by Horiba, Ltd.) attached to the SEM. did. The measurement sample was prepared by fixing the resin fine particles on a conductive tape affixed to a measurement sample stage, and conducting a conductive treatment on the sputtering apparatus using gold-palladium as a target. At the time of observation, the acceleration voltage was set to 20 kV and the measurement was performed.

<実施例1>
脱イオン水268質量部に1.0質量部の酢酸を加え、溶解させた。得られた水溶液に対し、3−メタクリロキシプロピルトリメトキシシラン23.8質量部を等量のメタノールに溶解させた溶液を、前記水溶液を撹拌しながら、ゆっくりと滴下した。3時間撹拌を継続させた後、メタノール244.6質量部を加えることで、処理液Aを調製した。
<Example 1>
To 268 parts by mass of deionized water, 1.0 part by mass of acetic acid was added and dissolved. A solution prepared by dissolving 23.8 parts by mass of 3-methacryloxypropyltrimethoxysilane in an equal amount of methanol was slowly added dropwise to the obtained aqueous solution while stirring the aqueous solution. After stirring for 3 hours, 244.6 parts by mass of methanol was added to prepare treatment liquid A.

予め、ジェットミルにより平均粒径4μm、最大粒径11μmまで粉砕したPPE(S202A、旭化成株式会社製、数平均分子量19,900、1分子当たりの平均フェノール性水酸基数1.93個)100質量部をSUS容器に加えた。前記処理液Aをハンドスプレーに入れ、PPEを撹拌しながら、PPE100質量部に対し、3−メタクリロキシプロピルトリメトキシシランの処理量が2質量部となるように、処理液A47.4質量部をSUS容器内に噴霧した。次いで、1日間自然乾燥させた後、100℃に設定した乾燥機で8時間乾燥させた。乾燥により粒子同士が凝集したサンプルを、乳鉢を用いて、解砕することで、樹脂微粒子A(平均粒径4μm、最大粒径13μm)を得た。   100 parts by mass of PPE (S202A, manufactured by Asahi Kasei Co., Ltd., number average molecular weight 19,900, average number of phenolic hydroxyl groups per molecule of 1.93) preliminarily pulverized with a jet mill to an average particle size of 4 μm and a maximum particle size of 11 μm Was added to the SUS container. While the treatment liquid A is put in a hand spray and the PPE is stirred, 47.4 parts by mass of the treatment liquid A is added so that the treatment amount of 3-methacryloxypropyltrimethoxysilane is 2 parts by mass with respect to 100 parts by mass of PPE. Sprayed into SUS container. Subsequently, after naturally drying for 1 day, it was dried with a dryer set at 100 ° C. for 8 hours. By crushing the sample in which the particles were aggregated by drying using a mortar, resin fine particles A (average particle size 4 μm, maximum particle size 13 μm) were obtained.

プリプレグを作製した際、その熱硬化性樹脂組成物中の樹脂微粒子含有量が熱硬化性樹脂との合計100質量部に対し、15質量部となるように、SUS容器に、ビスフェノールAノボラック型エポキシ樹脂(157S70B75、三菱化学株式会社製、MEKを25質量%含有)39.8質量部、臭素化ビスフェノールA型エポキシ樹脂(5050T60、三菱化学株式会社製、トルエンを40質量%含有)40.8質量部、ビスフェノールA型エポキシ樹脂(1001B80、三菱化学株式会社製、MEKを20質量%含有)7.3質量部、ビスフェノールAノボラック型樹脂(YLH129B65H、三菱化学株式会社製、MEKを35質量%含有)38.0質量部、2−エチル−4−メチルイミダゾール(四国化成株式会社)の2−メトキシエタノール溶解液(2−メトキシエタノールを50質量%含有)0.4質量部、MEK34.1質量部、および前記樹脂微粒子Aを15質量部加えた。ホモジナイザー(HM−300、HSIANGTAI MACHINERY INDUSTRY社製)にて8000rpmで10分間、全体が均一になるように分散処理を行うことで、塗工用ワニスAを得た。   When preparing the prepreg, the bisphenol A novolac epoxy is placed in the SUS container so that the resin fine particle content in the thermosetting resin composition is 15 parts by mass with respect to 100 parts by mass in total with the thermosetting resin. Resin (157S70B75, manufactured by Mitsubishi Chemical Corporation, containing 25% by mass of MEK) 39.8 parts by mass, brominated bisphenol A type epoxy resin (5050T60, manufactured by Mitsubishi Chemical Corporation, containing 40% by mass of toluene) 40.8% by mass Parts, bisphenol A type epoxy resin (1001B80, manufactured by Mitsubishi Chemical Corporation, containing 20% by mass of MEK) 7.3 parts by mass, bisphenol A novolac type resin (YLH129B65H, manufactured by Mitsubishi Chemical Corporation, containing 35% by mass of MEK) 38.0 parts by mass of 2-ethyl-4-methylimidazole (Shikoku Kasei Co., Ltd.) Butoxy ethanol solution (2-methoxyethanol and 50 wt% containing) 0.4 parts by weight, MEK34.1 parts by weight, and the resin fine particles A were added 15 parts by weight. A coating varnish A was obtained by carrying out a dispersion treatment at 8000 rpm for 10 minutes with a homogenizer (HM-300, manufactured by HSIANGTAI MACHINERY INDUSTRY) for 10 minutes.

前記塗工用ワニスAを、厚さ0.1mmのEガラス製ガラスクロス(2116スタイル、旭シェエーベル製)に含浸させ、スリットで余分なワニスを掻き落とした後、溶媒を160℃で乾燥除去し、樹脂含有量56質量%のプリプレグAを得た。   The coating varnish A was impregnated into a 0.1 mm thick E glass glass cloth (2116 style, manufactured by Asahi Schavel), the excess varnish was scraped off with a slit, and the solvent was removed by drying at 160 ° C. A prepreg A having a resin content of 56% by mass was obtained.

<実施例2>
3−メタクリロキシプロピルトリメトキシシランを8−メタクリロキシオクチルトリメトキシシランに変更する以外、実施例1と同じ方法にて樹脂微粒子B(平均粒径4μm、最大粒径13μm)を得た。また、樹脂微粒子Aを樹脂微粒子Bに変更する以外、実施例1と同じ方法にて塗工用ワニスBを得て、樹脂含有量56質量%のプリプレグBを得た。
<Example 2>
Resin fine particles B (average particle size 4 μm, maximum particle size 13 μm) were obtained in the same manner as in Example 1 except that 3-methacryloxypropyltrimethoxysilane was changed to 8-methacryloxyoctyltrimethoxysilane. Further, except that the resin fine particles A were changed to the resin fine particles B, a coating varnish B was obtained in the same manner as in Example 1 to obtain a prepreg B having a resin content of 56% by mass.

<実施例3>
3−メタクリロキシプロピルトリメトキシシランを3−メタクリロキシプロピルメチルジメトキシシランに変更する以外、実施例1と同じ方法にて樹脂微粒子C(平均粒径4μm、最大粒径13μm)を得た。また、樹脂微粒子Aを樹脂微粒子Cに変更する以外、実施例1と同じ方法にて塗工用ワニスCを得て、樹脂含有量56質量%のプリプレグCを得た。
<Example 3>
Resin fine particles C (average particle size 4 μm, maximum particle size 13 μm) were obtained in the same manner as in Example 1 except that 3-methacryloxypropyltrimethoxysilane was changed to 3-methacryloxypropylmethyldimethoxysilane. Moreover, the coating varnish C was obtained by the same method as Example 1 except having changed the resin fine particle A into the resin fine particle C, and the prepreg C with a resin content of 56 mass% was obtained.

<実施例4>
3−メタクリロキシプロピルトリメトキシシランを3−メタクリロキシプロピルトリエトキシシランに変更する以外、実施例1と同じ方法にて樹脂微粒子D(平均粒径4μm、最大粒径13μm)を得た。また、樹脂微粒子Aを樹脂微粒子Dに変更する以外、実施例1と同じ方法にて塗工用ワニスDを得て、樹脂含有量56質量%のプリプレグDを得た。
<Example 4>
Resin fine particles D (average particle size 4 μm, maximum particle size 13 μm) were obtained in the same manner as in Example 1 except that 3-methacryloxypropyltrimethoxysilane was changed to 3-methacryloxypropyltriethoxysilane. Further, except that the resin fine particles A were changed to the resin fine particles D, a coating varnish D was obtained in the same manner as in Example 1 to obtain a prepreg D having a resin content of 56% by mass.

<実施例5>
3−メタクリロキシプロピルトリメトキシシランの処理量が0.5質量部となるように、処理液の量を11.8質量部に変更する以外、実施例1と同じ方法にて樹脂微粒子E(平均粒径4μm、最大粒径12μm)を得た。また、樹脂微粒子Aを樹脂微粒子Eに変更する以外、実施例1と同じ方法にて塗工用ワニスEを得て、樹脂含有量56質量%のプリプレグEを得た。
<Example 5>
Resin fine particles E (average) in the same manner as in Example 1 except that the amount of the treatment liquid was changed to 11.8 parts by mass so that the amount of 3-methacryloxypropyltrimethoxysilane was 0.5 parts by mass. A particle size of 4 μm and a maximum particle size of 12 μm) were obtained. Moreover, the coating varnish E was obtained by the same method as Example 1 except having changed the resin fine particle A into the resin fine particle E, and the prepreg E with a resin content of 56 mass% was obtained.

<実施例6>
3−メタクリロキシプロピルトリメトキシシランの処理量が5質量部となるように、処理液の量を118.4質量部に変更する以外、実施例1と同じ方法にて樹脂微粒子F(平均粒径4μm、最大粒径14μm)を得た。また、樹脂微粒子Aを樹脂微粒子Fに変更する以外、実施例1と同じ方法にて塗工用ワニスFを得て、樹脂含有量56質量%のプリプレグFを得た。
<Example 6>
Resin fine particles F (average particle diameter) were obtained in the same manner as in Example 1 except that the amount of the treatment liquid was changed to 118.4 parts by mass so that the amount of 3-methacryloxypropyltrimethoxysilane was 5 parts by mass. 4 μm, maximum particle size 14 μm). Further, except that the resin fine particles A were changed to the resin fine particles F, a coating varnish F was obtained in the same manner as in Example 1 to obtain a prepreg F having a resin content of 56% by mass.

<実施例7>
使用するPPEの粒径を平均粒径9μm、最大粒径26μmに変更し、かつ3−メタクリロキシプロピルトリメトキシシランの処理量が0.5質量部となるように、処理液の量を11.8質量部に変更する以外、実施例1と同じ方法にて樹脂微粒子G(平均粒径9μm、最大粒径28μm)を得た。また、樹脂微粒子Aを樹脂微粒子Gに変更する以外、実施例1と同じ方法にて塗工用ワニスGを得て、樹脂含有量56質量%のプリプレグGを得た。
<Example 7>
The amount of the treatment liquid is changed so that the particle size of PPE to be used is changed to an average particle size of 9 μm and a maximum particle size of 26 μm, and the treatment amount of 3-methacryloxypropyltrimethoxysilane is 0.5 parts by mass. Resin fine particles G (average particle size 9 μm, maximum particle size 28 μm) were obtained by the same method as in Example 1 except that the amount was changed to 8 parts by mass. Further, except that the resin fine particles A were changed to the resin fine particles G, a coating varnish G was obtained in the same manner as in Example 1 to obtain a prepreg G having a resin content of 56% by mass.

<実施例8>
使用するPPEの粒径を平均粒径9μm、最大粒径26μmを変更し、3−メタクリロキシプロピルトリメトキシシランの処理量が5質量部となるよう、処理液の量を118.4質量部に変更する以外、実施例1と同じ方法にて樹脂微粒子H(平均粒径10μm、最大粒径30μm)を得た。また、樹脂微粒子Aを樹脂微粒子Hに変更する以外、実施例1と同じ方法にて塗工用ワニスHを得て、樹脂含有量56質量%のプリプレグHを得た。
<Example 8>
The average particle size is 9 μm and the maximum particle size is 26 μm, and the amount of the treatment liquid is 118.4 parts by mass so that the treatment amount of 3-methacryloxypropyltrimethoxysilane is 5 parts by mass. Except for changing, resin fine particles H (average particle size 10 μm, maximum particle size 30 μm) were obtained in the same manner as in Example 1. Moreover, the coating varnish H was obtained by the same method as Example 1 except having changed the resin fine particle A into the resin fine particle H, and the prepreg H with a resin content of 56 mass% was obtained.

<実施例9>
プリプレグを作製した際、その熱硬化性樹脂組成物中の樹脂微粒子含有量が熱硬化性樹脂との合計100質量部に対し、5質量部となるよう、樹脂微粒子Aの添加量を4.5質量部、MEKの添加量を26.4質量部に変更する以外、実施例1と同じ方法にて塗工用ワニスIを得て、樹脂含有量56質量%のプリプレグIを得た。
<Example 9>
When the prepreg was produced, the amount of resin fine particles A added was 4.5 so that the resin fine particle content in the thermosetting resin composition was 5 parts by mass with respect to 100 parts by mass in total with the thermosetting resin. A coating varnish I was obtained in the same manner as in Example 1 except that the addition amount of the mass part and MEK was changed to 26.4 parts by mass, and a prepreg I having a resin content of 56% by mass was obtained.

<実施例10>
プリプレグを作製した際、その熱硬化性樹脂組成物中の樹脂微粒子含有量が熱硬化性樹脂との合計100質量部に対し、25質量部となるよう、樹脂微粒子Aの添加量を28.3質量部、MEKの添加量を44.2質量部に変更する以外、実施例1と同じ方法にて塗工用ワニスJを得て、樹脂含有量56質量%のプリプレグJを得た。
<Example 10>
When the prepreg is produced, the amount of resin fine particles A added is 28.3 so that the resin fine particle content in the thermosetting resin composition is 25 parts by mass with respect to 100 parts by mass in total with the thermosetting resin. A coating varnish J was obtained in the same manner as in Example 1 except that the addition amount of the mass part and MEK was changed to 44.2 parts by mass, and a prepreg J having a resin content of 56% by mass was obtained.

<実施例11>
使用するPPEをS201A(旭化成株式会社製、数平均分子量25,200、1分子当たりの平均フェノール性水酸基数1.99個、平均粒径5μm、最大粒径13μm)に変更する以外、実施例1と同じ方法にて樹脂微粒子K(平均粒径5μm、最大粒径15μm)を得た。また、樹脂微粒子Aを樹脂微粒子Kに変更する以外、実施例1と同じ方法にて塗工用ワニスKを得て、樹脂含有量56質量%のプリプレグKを得た。
<Example 11>
Example 1 except that the PPE used was changed to S201A (manufactured by Asahi Kasei Corporation, number average molecular weight 25,200, average number of phenolic hydroxyl groups per molecule 1.99, average particle size 5 μm, maximum particle size 13 μm). In the same manner, resin fine particles K (average particle size 5 μm, maximum particle size 15 μm) were obtained. Further, except that the resin fine particles A were changed to resin fine particles K, a coating varnish K was obtained in the same manner as in Example 1 to obtain a prepreg K having a resin content of 56% by mass.

<実施例12>
使用するPPEをS203A(旭化成株式会社製、数平均分子量12,700、平均粒径4μm、最大粒径11μm)に変更する以外、実施例1と同じ方法にて樹脂微粒子L(平均粒径4μm、最大粒径13μm)を得た。また、樹脂微粒子Aを樹脂微粒子Lに変更する以外、実施例1と同じ方法にて塗工用ワニスLを得て、樹脂含有量56質量%のプリプレグLを得た。
<Example 12>
Resin fine particles L (average particle size of 4 μm, average particle size of 4 μm, manufactured by Asahi Kasei Co., Ltd., number average molecular weight 12,700, average particle size of 4 μm, maximum particle size of 11 μm) except that the PPE used is changed to S203A. A maximum particle size of 13 μm) was obtained. Moreover, the coating varnish L was obtained by the same method as Example 1 except having changed the resin fine particle A into the resin fine particle L, and the prepreg L with a resin content of 56 mass% was obtained.

<実施例13>
3−メタクリロキシプロピルトリメトキシシランを3−アクリロキシプロピルトリメトキシシランに変更する以外、実施例1と同じ方法にて樹脂微粒子M(平均粒径4μm、最大粒径13μm)を得た。また、樹脂微粒子Aを樹脂微粒子Mに変更する以外、実施例1と同じ方法にて塗工用ワニスMを得て、樹脂含有量56質量%のプリプレグMを得た。
<Example 13>
Resin fine particles M (average particle size 4 μm, maximum particle size 13 μm) were obtained by the same method as in Example 1 except that 3-methacryloxypropyltrimethoxysilane was changed to 3-acryloxypropyltrimethoxysilane. Further, except that the resin fine particles A were changed to the resin fine particles M, a coating varnish M was obtained by the same method as in Example 1, and a prepreg M having a resin content of 56% by mass was obtained.

<実施例14>
3−メタクリロキシプロピルトリメトキシシランをp−スチリルトリメトキシシランに変更する以外、実施例1と同じ方法にて樹脂微粒子N(平均粒径4μm、最大粒径13μm)を得た。また、樹脂微粒子Aを樹脂微粒子Nに変更する以外、実施例1と同じ方法にて塗工用ワニスNを得て、樹脂含有量56質量%のプリプレグNを得た。
<Example 14>
Resin fine particles N (average particle size 4 μm, maximum particle size 13 μm) were obtained by the same method as in Example 1 except that 3-methacryloxypropyltrimethoxysilane was changed to p-styryltrimethoxysilane. Further, except that the resin fine particles A were changed to the resin fine particles N, a coating varnish N was obtained in the same manner as in Example 1 to obtain a prepreg N having a resin content of 56% by mass.

<比較例1>
シランカップリング剤による表面処理を施していないPPEを用いて塗工用ワニスを得る以外、実施例1と同じ方法にて塗工用ワニスOを得て、樹脂含有量56質量%のプリプレグOを得た。
<Comparative Example 1>
A coating varnish O was obtained in the same manner as in Example 1 except that a coating varnish was obtained using PPE not subjected to surface treatment with a silane coupling agent, and a prepreg O having a resin content of 56% by mass was obtained. Obtained.

<比較例2>
3−メタクリロキシプロピルトリメトキシシランの処理量が6質量部となるように、処理液の量を142.1質量部に変更する以外、実施例1と同じ方法にて樹脂微粒子P(平均粒径5μm、最大粒径14μm)を得た。また、樹脂微粒子Aを樹脂微粒子Pに変更する以外、実施例1と同じ方法にて塗工用ワニスPを得て、樹脂含有量56質量%のプリプレグPを得た。
<Comparative example 2>
Resin fine particles P (average particle diameter) were obtained in the same manner as in Example 1 except that the amount of the treatment liquid was changed to 142.1 parts by mass so that the amount of 3-methacryloxypropyltrimethoxysilane was 6 parts by mass. 5 μm, maximum particle size 14 μm). Moreover, the coating varnish P was obtained by the same method as Example 1 except having changed the resin fine particle A into the resin fine particle P, and the prepreg P with a resin content of 56 mass% was obtained.

<比較例3>
3−メタクリロキシプロピルトリメトキシシランを3−グリシドキシプロピルトリメトキシシランに変更する以外、実施例1と同じ方法にて樹脂微粒子Q(平均粒径4μm、最大粒径13μm)を得た。また、樹脂微粒子Aを樹脂微粒子Qに変更する以外、実施例1と同じ方法にて塗工用ワニスQを得て、樹脂含有量56質量%のプリプレグQを得た。
<Comparative Example 3>
Resin fine particles Q (average particle size 4 μm, maximum particle size 13 μm) were obtained in the same manner as in Example 1 except that 3-methacryloxypropyltrimethoxysilane was changed to 3-glycidoxypropyltrimethoxysilane. Moreover, the coating varnish Q was obtained by the same method as Example 1 except having changed the resin fine particle A into the resin fine particle Q, and the prepreg Q with the resin content of 56 mass% was obtained.

<比較例4>
3−メタクリロキシプロピルトリメトキシシランを3−フェニルアミノプロピルトリメトキシシランに変更する以外、実施例1と同じ方法にて樹脂微粒子R(平均粒径4μm、最大粒径13μm)を得た。また、樹脂微粒子Aを樹脂微粒子Rに変更する以外、実施例1と同じ方法にて塗工用ワニスRを得て、樹脂含有量56質量%のプリプレグRを得た。
<Comparative Example 4>
Resin fine particles R (average particle size 4 μm, maximum particle size 13 μm) were obtained by the same method as in Example 1 except that 3-methacryloxypropyltrimethoxysilane was changed to 3-phenylaminopropyltrimethoxysilane. Moreover, the coating varnish R was obtained by the same method as Example 1 except having changed the resin fine particle A into the resin fine particle R, and the prepreg R with the resin content of 56 mass% was obtained.

<比較例5>
3−メタクリロキシプロピルトリメトキシシランをアリルトリメトキシシランに変更する以外、実施例1と同じ方法にて樹脂微粒子S(平均粒径4μm、最大粒径13μm)を得た。また、樹脂微粒子Aを樹脂微粒子Sに変更する以外、実施例1と同じ方法にて塗工用ワニスSを得て、樹脂含有量56質量%のプリプレグSを得た。
<Comparative Example 5>
Resin fine particles S (average particle size 4 μm, maximum particle size 13 μm) were obtained by the same method as in Example 1 except that 3-methacryloxypropyltrimethoxysilane was changed to allyltrimethoxysilane. Moreover, the coating varnish S was obtained by the same method as Example 1 except having changed the resin fine particle A into the resin fine particle S, and the prepreg S with a resin content of 56 mass% was obtained.

<比較例6>
3−メタクリロキシプロピルトリメトキシシランを3−メルカプトプロピルトリメトキシシランに変更する以外、実施例1と同じ方法にて樹脂微粒子T(平均粒径4μm、最大粒径13μm)を得た。また、樹脂微粒子Aを樹脂微粒子Tに変更する以外、実施例1と同じ方法にて塗工用ワニスTを得て、樹脂含有量56質量%のプリプレグTを得た。
<Comparative Example 6>
Resin fine particles T (average particle size 4 μm, maximum particle size 13 μm) were obtained in the same manner as in Example 1 except that 3-methacryloxypropyltrimethoxysilane was changed to 3-mercaptopropyltrimethoxysilane. Moreover, the coating varnish T was obtained by the same method as Example 1 except having changed the resin fine particle A into the resin fine particle T, and the prepreg T with the resin content of 56 mass% was obtained.

<比較例7>
樹脂微粒子を加えずに、かつMEKの添加量を15.3質量部に変更する以外、実施例1と同じ方法にて塗工用ワニスUを得て、樹脂含有量56質量%のプリプレグUを得た。
<Comparative Example 7>
A coating varnish U was obtained in the same manner as in Example 1 except that the resin fine particles were not added and the MEK addition amount was changed to 15.3 parts by mass, and a prepreg U having a resin content of 56% by mass was obtained. Obtained.

<試験例>
実施例1〜実施例14及び比較例1〜比較例7で得られたプリプレグA〜Uを用いて基板試料を作製し、電気特性(誘電率、誘電正接)、吸水率、吸水後のはんだ耐熱、銅箔剥離強度を比較評価した。
<Test example>
Substrate samples were prepared using the prepregs A to U obtained in Examples 1 to 14 and Comparative Examples 1 to 7, and electrical characteristics (dielectric constant, dielectric loss tangent), water absorption, solder heat resistance after water absorption The copper foil peel strength was comparatively evaluated.

誘電率及び誘電正接の測定用試料および積層板の断面観察用試料は次の方法で作製した。実施例又は比較例で得たプリプレグを8枚重ね、室温から昇温速度2.5℃/分で加熱しながら圧力5kg/cmの条件下で真空プレスを行い、130℃まで達したら昇温速度5℃/分で加熱しながら圧力30kg/cmの条件で真空プレスを行い、195℃まで達したら温度を195℃に保ったまま圧力30kg/cm、時間60分間の条件下で真空プレスを行うことによって積層板を作製した。該積層板を100mm角に切り出し、上述の試験片サイズに加工後、誘電率及び誘電正接の測定用試料および断面観察用試料とした。 A sample for measuring dielectric constant and dielectric loss tangent and a sample for observing the cross section of the laminate were prepared by the following method. Eight prepregs obtained in the examples or comparative examples were stacked, vacuum-pressed under the condition of a pressure of 5 kg / cm 2 while heating from room temperature at a heating rate of 2.5 ° C./min. While pressing at a rate of 5 ° C./min, vacuum pressing is performed under the condition of a pressure of 30 kg / cm 2. When the temperature reaches 195 ° C., the pressure is maintained at 195 ° C. and the pressure is 30 kg / cm 2 for 60 minutes. The laminated board was produced by performing. The laminate was cut into a 100 mm square, processed into the above-mentioned test piece size, and used as a dielectric constant and dielectric loss tangent measurement sample and a cross-sectional observation sample.

吸水率、及び吸水試験後のはんだ耐熱性を評価するための試料は次の方法で作製した。実施例または比較例で得たプリプレグを2枚重ね、その上下に厚み12μmの銅箔(GTS箔、古川電気工業株式会社製)を重ね合わせたものを、室温から昇温速度2.5℃/分で加熱しながら圧力5kg/cmの条件下で真空プレスを行い、130℃まで達したら昇温速度5℃/分で加熱しながら圧力30kg/cmの条件下で真空プレスを行い、195℃まで達したら温度を195℃に保ったまま圧力30kg/cm、時間60分間の条件下で真空プレスを行うことによって両面銅張積層板を得た。次いで、前記銅張積層板を100mm角に切り出し、銅箔をエッチングにて除去し、上述の試験片サイズに加工後、吸水率、及び吸水試験後のはんだ耐熱性を評価するための試料を得た。 A sample for evaluating the water absorption rate and the solder heat resistance after the water absorption test was prepared by the following method. Two prepregs obtained in Examples or Comparative Examples were stacked, and a copper foil having a thickness of 12 μm (GTS foil, manufactured by Furukawa Electric Co., Ltd.) was stacked on the top and bottom. Vacuum pressing is performed under conditions of a pressure of 5 kg / cm 2 while heating in minutes, and when reaching 130 ° C., vacuum pressing is performed under conditions of a pressure of 30 kg / cm 2 while heating at a heating rate of 5 ° C./min. When the temperature reached 195 ° C., a double-sided copper clad laminate was obtained by performing vacuum pressing under the conditions of a pressure of 30 kg / cm 2 and a time of 60 minutes while maintaining the temperature at 195 ° C. Next, the copper clad laminate is cut into a 100 mm square, the copper foil is removed by etching, and after processing into the above test piece size, a sample for evaluating the water absorption rate and the solder heat resistance after the water absorption test is obtained. It was.

銅箔剥離強度測定用の試料は次の方法で作製した。実施例又は比較例で得たプリプレグを2枚重ね、その上下に厚み35μmの銅箔(GTS−MP箔、古川電気工業株式会社製)を重ね合わせたものを、室温から昇温速度2.5℃/分で加熱しながら圧力5kg/cmの条件下で真空プレスを行い、130℃まで達したら昇温速度5℃/分で加熱しながら圧力30kg/cmの条件下で真空プレスを行い、195℃まで達したら温度を195℃に保ったまま圧力30kg/cm、時間60分間の条件下で真空プレスを行うことによって両面銅張積層板を作製した。この両面銅張積層板を上述の試験片サイズに加工後、銅箔剥離強度測定用の試料として用いた。 A sample for measuring the copper foil peel strength was prepared by the following method. Two prepregs obtained in Examples or Comparative Examples were stacked, and a copper foil (GTS-MP foil, manufactured by Furukawa Electric Co., Ltd.) having a thickness of 35 μm was stacked on the top and bottom, and the temperature rising rate from room temperature was 2.5. Perform vacuum pressing under the condition of pressure 5 kg / cm 2 while heating at ℃ / min, and perform the vacuum pressing under the condition of pressure 30 kg / cm 2 while heating at the heating rate of 5 ° C / min when reaching 130 ° C. When the temperature reached 195 ° C., a double-sided copper-clad laminate was produced by vacuum pressing under the conditions of a pressure of 30 kg / cm 2 and a time of 60 minutes while maintaining the temperature at 195 ° C. After processing this double-sided copper-clad laminate into the above-mentioned test piece size, it was used as a sample for measuring copper foil peel strength.

上述の積層板または両面銅張積層板を用い、誘電率、誘電正接、吸水率、及び吸水後のはんだ耐熱性、銅箔剥離強度を測定した。結果を以下の表1及び表2に示す。   Using the above laminate or double-sided copper clad laminate, the dielectric constant, dielectric loss tangent, water absorption, solder heat resistance after water absorption, and copper foil peel strength were measured. The results are shown in Tables 1 and 2 below.

前記樹脂微粒子Aおよび表面処理を施していないPPEをEDXにて分析した。樹脂微粒子Aおよび表面処理を施していないPPEのSEM画像およびEDXチャートを、それぞれ図1および図2に示す。
(図1と図2の対比)
前記2つの試料を比較すると、樹脂微粒子Aからのみ3−メタクリロキシプロピルトリメトキシシランに由来するケイ素の信号を確認できた。
The resin fine particles A and PPE not subjected to surface treatment were analyzed by EDX. An SEM image and an EDX chart of the resin fine particles A and PPE not subjected to surface treatment are shown in FIGS. 1 and 2, respectively.
(Contrast of FIG. 1 and FIG. 2)
When the two samples were compared, a silicon signal derived from 3-methacryloxypropyltrimethoxysilane was confirmed only from the resin fine particles A.

また、プリプレグAおよびプリプレグOを用いて、上述の誘電率及び誘電正接の測定用に作製した試料の断面をSEMで撮影した。プリプレグAより作製した試料およびプリプレグOから作製した試料の断面SEM画像を、それぞれ図3および図4に示す。
(図3と図4の対比)
前記2つの試料を比較すると、プリプレグAより作製した試料では、エポキシ樹脂中に樹脂微粒子が均一に分散している様子が確認された。
Moreover, the cross section of the sample produced for the measurement of the above-mentioned dielectric constant and dielectric loss tangent using prepreg A and prepreg O was photographed with SEM. Cross-sectional SEM images of a sample prepared from prepreg A and a sample prepared from prepreg O are shown in FIGS. 3 and 4, respectively.
(Contrast of FIG. 3 and FIG. 4)
When the two samples were compared, it was confirmed that in the sample prepared from prepreg A, the resin fine particles were uniformly dispersed in the epoxy resin.

Claims (11)

ポリフェニレンエーテル(PPE)を含む少なくとも1種類以上の樹脂から構成される樹脂微粒子、および熱硬化性樹脂から成る熱硬化性樹脂組成物であって、
前記樹脂微粒子は、下記式:
{式中、R、RおよびRは、各々独立して炭素数1〜3のアルキル基または水素を表し、かつZは、アリーレン基またはカルボニル基を表す}
に示す構造の炭素−炭素不飽和二重結合基を有する金属アルコキシドで表面処理されており、
前記金属アルコキシドの処理量が、前記樹脂微粒子100質量部に対して、0.5質量部〜5質量部であり、かつ
前記樹脂微粒子が、硬化後の前記熱硬化性樹脂中に粒子として分散している、
前記熱硬化性樹脂組成物。
A resin fine particle composed of at least one kind of resin containing polyphenylene ether (PPE), and a thermosetting resin composition composed of a thermosetting resin,
The resin fine particles have the following formula:
{Wherein R 1 , R 2 and R 3 each independently represents an alkyl group having 1 to 3 carbon atoms or hydrogen, and Z represents an arylene group or a carbonyl group}
Surface-treated with a metal alkoxide having a carbon-carbon unsaturated double bond group having the structure shown in FIG.
The treatment amount of the metal alkoxide is 0.5 to 5 parts by mass with respect to 100 parts by mass of the resin fine particles, and the resin fine particles are dispersed as particles in the cured thermosetting resin. ing,
The thermosetting resin composition.
前記金属アルコキシドが、シランカップリング剤である、請求項1に記載の熱硬化性樹脂組成物。   The thermosetting resin composition according to claim 1, wherein the metal alkoxide is a silane coupling agent. 前記シランカップリング剤が、下記式:
{式中、aは、1〜3の自然数であり、bは、0〜2の自然数であり、RおよびRは、各々独立して、炭素数1〜4のアルキル基または分岐アルキル基を表し、かつRは、炭素数1〜12のアルキレン基または分岐アルキレン基を表す}
の構造を有する少なくとも1種類以上のシランカップリング剤である、請求項2に記載の熱硬化性樹脂組成物。
The silane coupling agent has the following formula:
{Wherein, a is a natural number of 1 to 3, b is a natural number of 0 to 2, and R 4 and R 5 are each independently an alkyl group or branched alkyl group having 1 to 4 carbon atoms. And R 6 represents an alkylene group having 1 to 12 carbon atoms or a branched alkylene group}
The thermosetting resin composition according to claim 2, which is at least one silane coupling agent having the structure:
前記樹脂微粒子における前記シランカップリング剤の処理量が、前記樹脂微粒子100質量部に対して、1質量部〜4質量部である、請求項2または3に記載の熱硬化性樹脂組成物。   The thermosetting resin composition according to claim 2 or 3, wherein a treatment amount of the silane coupling agent in the resin fine particles is 1 part by mass to 4 parts by mass with respect to 100 parts by mass of the resin fine particles. 前記熱硬化性樹脂が、エポキシ樹脂である、請求項1〜4のいずれか1項に記載の熱硬化性樹脂組成物。   The thermosetting resin composition according to claim 1, wherein the thermosetting resin is an epoxy resin. 前記樹脂微粒子は、平均粒径が10μm以下であり、かつ最大粒径が30μm以下である、請求項1〜5のいずれか1項に記載の熱硬化性樹脂組成物。   The thermosetting resin composition according to claim 1, wherein the resin fine particles have an average particle size of 10 μm or less and a maximum particle size of 30 μm or less. 前記PPEの数平均分子量が、8,000〜30,000である、請求項1〜6のいずれか1項に記載の熱硬化性樹脂組成物。   The thermosetting resin composition according to any one of claims 1 to 6, wherein the number average molecular weight of the PPE is 8,000 to 30,000. 前記樹脂微粒子の含有量が、前記樹脂微粒子と前記熱硬化性樹脂の合計100質量部に対し、5質量部〜25質量部である、請求項1〜7のいずれか1項に記載の熱硬化性樹脂組成物。   The thermosetting according to any one of claims 1 to 7, wherein a content of the resin fine particles is 5 to 25 parts by mass with respect to 100 parts by mass in total of the resin fine particles and the thermosetting resin. Resin composition. 請求項1〜8のいずれか1項に記載の熱硬化性樹脂組成物と基材から成る、プリプレグ。   A prepreg comprising the thermosetting resin composition according to claim 1 and a base material. 請求項1〜8のいずれか1項に記載の熱硬化性樹脂組成物または請求項9に記載のプリプレグ、および金属箔で形成される、金属張積層板。   A metal-clad laminate formed by the thermosetting resin composition according to any one of claims 1 to 8, or the prepreg according to claim 9, and a metal foil. 請求項10に記載の金属張積層板から前記金属箔の一部が除去されている、プリント配線板。   A printed wiring board in which a part of the metal foil is removed from the metal-clad laminate according to claim 10.
JP2016166984A 2016-08-29 2016-08-29 Thermosetting resin composition and prepreg using it, metal-clad laminate or printed wiring board Active JP6815792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016166984A JP6815792B2 (en) 2016-08-29 2016-08-29 Thermosetting resin composition and prepreg using it, metal-clad laminate or printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016166984A JP6815792B2 (en) 2016-08-29 2016-08-29 Thermosetting resin composition and prepreg using it, metal-clad laminate or printed wiring board

Publications (2)

Publication Number Publication Date
JP2018035217A true JP2018035217A (en) 2018-03-08
JP6815792B2 JP6815792B2 (en) 2021-01-20

Family

ID=61566379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016166984A Active JP6815792B2 (en) 2016-08-29 2016-08-29 Thermosetting resin composition and prepreg using it, metal-clad laminate or printed wiring board

Country Status (1)

Country Link
JP (1) JP6815792B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63503392A (en) * 1986-05-27 1988-12-08 ゼネラル・エレクトリック・カンパニイ Functionalized polyphenylene ethers, processes for their preparation and polyphenylene ether-polyamide compositions made therefrom
JPH05163344A (en) * 1991-12-12 1993-06-29 Mitsubishi Petrochem Co Ltd Production of silylated polyphenylene ether
JPH06220323A (en) * 1993-01-26 1994-08-09 Dainippon Ink & Chem Inc Electrically conductive resin composition and container for holding electronic part
JPH10212336A (en) * 1997-01-31 1998-08-11 Matsushita Electric Works Ltd Epoxy resin composition, prepreg prepared by using this composition and laminate prepared by using this prepreg
JP2008050526A (en) * 2006-08-28 2008-03-06 Matsushita Electric Works Ltd Resin composition, prepreg and laminated board using the same
WO2014181456A1 (en) * 2013-05-10 2014-11-13 株式会社 日立製作所 Insulating composition, cured product and insulated wire using same
JP2015127144A (en) * 2012-03-19 2015-07-09 旭化成イーマテリアルズ株式会社 Prepreg containing polyphenylene ether particle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63503392A (en) * 1986-05-27 1988-12-08 ゼネラル・エレクトリック・カンパニイ Functionalized polyphenylene ethers, processes for their preparation and polyphenylene ether-polyamide compositions made therefrom
JPH05163344A (en) * 1991-12-12 1993-06-29 Mitsubishi Petrochem Co Ltd Production of silylated polyphenylene ether
JPH06220323A (en) * 1993-01-26 1994-08-09 Dainippon Ink & Chem Inc Electrically conductive resin composition and container for holding electronic part
JPH10212336A (en) * 1997-01-31 1998-08-11 Matsushita Electric Works Ltd Epoxy resin composition, prepreg prepared by using this composition and laminate prepared by using this prepreg
JP2008050526A (en) * 2006-08-28 2008-03-06 Matsushita Electric Works Ltd Resin composition, prepreg and laminated board using the same
JP2015127144A (en) * 2012-03-19 2015-07-09 旭化成イーマテリアルズ株式会社 Prepreg containing polyphenylene ether particle
WO2014181456A1 (en) * 2013-05-10 2014-11-13 株式会社 日立製作所 Insulating composition, cured product and insulated wire using same

Also Published As

Publication number Publication date
JP6815792B2 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
JP5948552B2 (en) Prepreg containing polyphenylene ether particles
JP6092520B2 (en) Prepreg containing polyphenylene ether particles
JP5970214B2 (en) Dispersion containing polyphenylene ether particles
TWI657108B (en) Epoxy resin composition, prepreg, laminate and printed circuit board
JP6163292B2 (en) Curable resin composition
US11820105B2 (en) Prepreg, metal-clad laminate, and wiring board
JP2014019740A (en) Resin composition, resin varnish, prepreg, metal-clad laminate, and printed wiring board
JP6254762B2 (en) Resin dispersion, varnish, resin composite, and laminate
TWI794212B (en) Metal-clad laminates, resin-coated metal components, and wiring boards
JP6804997B2 (en) Textile materials, prepregs, metal-clad laminates, and circuit boards
JP6080455B2 (en) Resin dispersion, resin composition, resin composition composite and laminate
JP2001081305A (en) Curable polyphenylene ether resin composition
JP6815792B2 (en) Thermosetting resin composition and prepreg using it, metal-clad laminate or printed wiring board
JP7289074B2 (en) Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board using the same
JP7300613B2 (en) Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board using the same
JP6478507B2 (en) Polyphenylene ether containing liquid
JP6254761B2 (en) Resin dispersion, varnish, resin composite, and laminate
JP6478508B2 (en) Polyphenylene ether containing liquid
JP6080604B2 (en) Polyphenylene ether resin particle dispersion and method for producing composite of resin particle and substrate
JP6204815B2 (en) Liquid mixture containing polyphenylene ether
JP2015174996A (en) polyphenylene ether powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201223

R150 Certificate of patent or registration of utility model

Ref document number: 6815792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150