JP2008050526A - Resin composition, prepreg and laminated board using the same - Google Patents

Resin composition, prepreg and laminated board using the same Download PDF

Info

Publication number
JP2008050526A
JP2008050526A JP2006230764A JP2006230764A JP2008050526A JP 2008050526 A JP2008050526 A JP 2008050526A JP 2006230764 A JP2006230764 A JP 2006230764A JP 2006230764 A JP2006230764 A JP 2006230764A JP 2008050526 A JP2008050526 A JP 2008050526A
Authority
JP
Japan
Prior art keywords
resin
resin composition
prepreg
mass
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006230764A
Other languages
Japanese (ja)
Inventor
Tomoyuki Abe
智之 阿部
Kamio Yonemoto
神夫 米本
Shunji Araki
俊二 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2006230764A priority Critical patent/JP2008050526A/en
Publication of JP2008050526A publication Critical patent/JP2008050526A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition which contains PPE resin particles, an epoxy resin, a curing agent and an inorganic filler, in which the PPE particles are uniformly dispersed in the epoxy resin and which has a low dielectric constant, and to provide, using the composition, a prepreg excellent in impregnation property and a laminated board excellent in moldability, moisture absorption resistance and heat resistance. <P>SOLUTION: The resin composition contains (A) polyphenylene ether resin particles having an average particle size of 10-50 μm and a number average mol. wt. of 1,000-3,000, (B) an epoxy resin, (C) a curing agent and (D) an inorganic filler. The prepreg is prepared by impregnating a base material with the resin composition and semicuring the resultant composition. The laminated board is prepared by pressurizing the prepreg and a metal foil under heat, to form a laminate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電子機器に用いられる多層プリント配線板などのプリント配線板の材料である積層板、この積層板の製造に使用するプリプレグ、及びこのプリプレグの製造に使用する樹脂組成物に関するものである。   The present invention relates to a laminate which is a material of a printed wiring board such as a multilayer printed wiring board used in an electronic device, a prepreg used in the production of the laminated board, and a resin composition used in the production of the prepreg. .

ポリフェニレンエーテル樹脂(以下、ポリフェニレンエーテルを「PPE」という場合がある)、エポキシ樹脂および硬化剤を含む熱硬化性樹脂組成物のワニスをガラスクロス等の基材に含浸させてプリプレグを作製し、これを用いて積層板を得ることは、従来より行われている。このPPE−エポキシ樹脂系の熱硬化性樹脂組成物を用いたプリプレグから得られる積層板は、優れた高周波特性、特に、広い温度範囲および湿度範囲において一定の誘電率と誘電正接を示し、且つ誘電正接が小さいという特性を備えている。それゆえに、この積層板は、衛星通信波領域で使用されるXバンド(10GHz)領域において好適に使用される。   A prepreg is prepared by impregnating a base material such as a glass cloth with a varnish of a thermosetting resin composition containing a polyphenylene ether resin (hereinafter sometimes referred to as “PPE”), an epoxy resin and a curing agent. It has been conventionally performed to obtain a laminate using A laminate obtained from a prepreg using this PPE-epoxy resin-based thermosetting resin composition exhibits excellent high-frequency characteristics, in particular, a constant dielectric constant and a dielectric loss tangent in a wide temperature range and humidity range. It has the characteristic that the tangent is small. Therefore, this laminate is preferably used in the X band (10 GHz) region used in the satellite communication wave region.

このPPE−エポキシ樹脂系の熱硬化性樹脂組成物を用いて得られる積層板では、PPEの末端水酸基とエポキシ樹脂のエポキシ基とを反応させることにより、PPEとエポキシ樹脂が架橋した硬化物が形成される。   In the laminate obtained by using this PPE-epoxy resin-based thermosetting resin composition, a cured product in which PPE and the epoxy resin are cross-linked is formed by reacting the terminal hydroxyl group of PPE with the epoxy group of the epoxy resin. Is done.

例えば、高分子量のPPEとフェノール化合物とをラジカル反応開始剤の存在下で再分配反応させることによって、低分子量化したPPEとフェノール化合物が縮合した変性フェノール化合物を生成させ、これをPPE樹脂として用い、積層板を製造する技術がある(特許文献1)。この積層板では、PPE樹脂として用いた変性フェノール化合物の末端に存在するフェノール性水酸基とエポキシ樹脂中のエポキシ基が反応して強固な架橋構造が形成される。そのため、この積層板は層間剥離が生じにくく耐熱性等に優れるという特性を有していた。   For example, by redistributing a high molecular weight PPE and a phenol compound in the presence of a radical reaction initiator, a modified phenol compound in which a low molecular weight PPE and a phenol compound are condensed is generated and used as a PPE resin. There is a technique for manufacturing a laminated plate (Patent Document 1). In this laminated board, the phenolic hydroxyl group present at the end of the modified phenol compound used as the PPE resin reacts with the epoxy group in the epoxy resin to form a strong cross-linked structure. Therefore, this laminated board has the characteristic that it is hard to produce delamination and is excellent in heat resistance.

しかし、高分子量のPPEは溶解性が悪く、そのため、ラジカル反応開始剤の存在下で再分配反応させる際に用いる溶媒として、ベンゼンやトルエンのような芳香族炭化水素系溶媒やクロロホルムのようなハロゲン化炭化水素系溶媒等の環境問題の点で好ましくない溶媒を用いる必要があった。   However, high molecular weight PPE has poor solubility, and as a solvent used for the redistribution reaction in the presence of a radical reaction initiator, an aromatic hydrocarbon solvent such as benzene or toluene, or a halogen such as chloroform. It was necessary to use an unfavorable solvent in view of environmental problems such as a hydrofluoric solvent.

また、多層プリント配線板の材料である積層板の製造に用いられる樹脂組成物には、様々な特性を付与するために、無機充填剤や有機充填剤等の充填剤が添加される。例えば、積層板の強度を高めるために無機充填剤が添加される。しかし、上記のPPE−エポキシ樹脂系の樹脂組成物を用いて得られる積層板では、樹脂組成物自体で強固な架橋構造が形成されるため、充填剤が添加されると、剛性がさらに増加する分だけ脆くなり、その後の加工時における耐クラック性が低下するという問題があった。   In addition, a filler such as an inorganic filler or an organic filler is added to a resin composition used for manufacturing a laminated board, which is a material for a multilayer printed wiring board, in order to impart various characteristics. For example, an inorganic filler is added to increase the strength of the laminate. However, in the laminate obtained by using the above PPE-epoxy resin-based resin composition, a rigid cross-linked structure is formed by the resin composition itself, and therefore the rigidity further increases when a filler is added. There was a problem that it became brittle by the amount and the crack resistance during the subsequent processing was lowered.

さらに、PPE−エポキシ樹脂系の樹脂組成物に一般的に添加される充填剤は、誘電率が高いため、誘電特性に優れるというPPE樹脂本来の特性が損なわれるという問題もあった。
特許第3339301号
Furthermore, since the filler generally added to the PPE-epoxy resin-based resin composition has a high dielectric constant, there is a problem that the original characteristic of the PPE resin, which is excellent in dielectric characteristics, is impaired.
Patent No. 3339301

このような状況の下で、本発明の課題は、PPE樹脂として変性フェノール化合物を用いることなく、PPE樹脂と、エポキシ樹脂と、硬化剤と、無機充填剤とを含有する樹脂組成物であって、PPE樹脂がエポキシ樹脂中に均一に分散し、誘電率の低い樹脂組成物を提供することにある。   Under such circumstances, an object of the present invention is a resin composition containing a PPE resin, an epoxy resin, a curing agent, and an inorganic filler without using a modified phenol compound as the PPE resin. , PPE resin is uniformly dispersed in an epoxy resin, providing a resin composition having a low dielectric constant.

また、本発明の課題は、この樹脂組成物を用いて含浸性に優れたプリプレグおよび成形性、耐吸湿性および耐熱性に優れた積層板を提供することにある。   Another object of the present invention is to provide a prepreg excellent in impregnation property and a laminate excellent in moldability, moisture absorption resistance and heat resistance using this resin composition.

上記課題を解決する本発明の一局面は、(A)平均粒子径が10〜50μm、数平均分子量が1000〜3000のポリフェニレンエーテル樹脂粒子、(B)エポキシ樹脂、(C)硬化剤、および(D)無機充填剤を含有する樹脂組成物である。上記構成によれば、樹脂組成物中でPPE樹脂が粒子としてエポキシ樹脂中に均一に分散し、粘性に優れ、かつ硬化後の強度、耐吸湿性および耐熱性が良好な樹脂組成物が得られる。   One aspect of the present invention that solves the above problems includes (A) polyphenylene ether resin particles having an average particle diameter of 10 to 50 μm and a number average molecular weight of 1000 to 3000, (B) an epoxy resin, (C) a curing agent, and ( D) A resin composition containing an inorganic filler. According to the above configuration, a resin composition in which the PPE resin is uniformly dispersed in the epoxy resin as particles in the resin composition, has excellent viscosity, and has excellent strength, moisture absorption resistance and heat resistance after curing. .

上記(A)ポリフェニレンエーテル樹脂粒子の含有量は、(A)ポリフェニレンエーテル樹脂粒子と(B)エポキシ樹脂と(C)硬化剤の総量100質量部中、30〜80質量部であることが好ましい。上記構成によれば、PPE樹脂の粒子がエポキシ樹脂中に均一に分散した海島構造を形成することができ、もって熱的および機械的な応力を緩和することが可能となる。   The content of the (A) polyphenylene ether resin particles is preferably 30 to 80 parts by mass in 100 parts by mass of the total amount of (A) polyphenylene ether resin particles, (B) epoxy resin and (C) curing agent. According to the above configuration, it is possible to form a sea-island structure in which particles of PPE resin are uniformly dispersed in the epoxy resin, and thus it is possible to relieve thermal and mechanical stress.

また、上記(D)無機充填剤は、比誘電率が3以下であることが好ましい。上記構成によれば、本来PPE樹脂が有する優れた誘電特性が損なわれることなく、誘電率の低い樹脂組成物が得られる。   The inorganic filler (D) preferably has a relative dielectric constant of 3 or less. According to the above configuration, a resin composition having a low dielectric constant can be obtained without impairing the excellent dielectric properties inherently possessed by the PPE resin.

そして、上記(D)無機充填剤の含有量は、(A)ポリフェニレンエーテル樹脂粒子と(B)エポキシ樹脂と(C)硬化剤の総量100質量部に対して、60〜120質量部であることが好ましい。上記構成によれば、上記樹脂組成物を用いて得られる積層板に十分な剛性と良好な成形性および耐熱性が付与される。   And content of the said (D) inorganic filler is 60-120 mass parts with respect to 100 mass parts of total amounts of (A) polyphenylene ether resin particle, (B) epoxy resin, and (C) hardening | curing agent. Is preferred. According to the said structure, sufficient rigidity and favorable moldability and heat resistance are provided to the laminated board obtained using the said resin composition.

また、上記樹脂組成物のワニスを基材に含浸し、乾燥し半硬化させて得られるプリプレグは、取り扱い性や含浸性に優れる。さらに、上記樹脂組成物を基材に含浸する際に、変性フェノール化合物を調製する際に用いられる芳香族炭化水素系溶媒やハロゲン化炭化水素系溶媒を用いる必要がない。   Moreover, the prepreg obtained by impregnating the base material with the varnish of the resin composition, drying and semi-curing is excellent in handling property and impregnation property. Furthermore, when the base material is impregnated with the resin composition, it is not necessary to use an aromatic hydrocarbon solvent or a halogenated hydrocarbon solvent used for preparing the modified phenol compound.

上記基材は、ガラス織布または不織布であることが好ましい。上記構成によれば、機械的強度が優れた積層板が得られる。   The substrate is preferably a glass woven fabric or a nonwoven fabric. According to the said structure, the laminated board excellent in mechanical strength is obtained.

また、プリプレグ中には、(A)ポリフェニレンエーテル樹脂粒子と(B)エポキシ樹脂と(C)硬化剤の総量を60〜75質量%含有することが好ましい。上記構成によれば、プリプレグの積層成形後に成形性が良好な積層板が得られる。   Moreover, it is preferable to contain 60-75 mass% of total amounts of (A) polyphenylene ether resin particle, (B) epoxy resin, and (C) hardening | curing agent in a prepreg. According to the said structure, the laminated board with favorable moldability after lamination | stacking shaping | molding of a prepreg is obtained.

そして、上記プリプレグと金属箔とを加熱加圧し、積層成形することにより、成形性、耐吸湿性および耐熱性に優れた積層板が得られる。   And the laminated board excellent in a moldability, moisture absorption resistance, and heat resistance is obtained by heat-pressing the said prepreg and metal foil, and carrying out lamination molding.

本発明によれば、誘電率が低く、かつ硬化後の強度、耐吸湿性および耐熱性が良好な樹脂組成物が得られる。本発明の樹脂組成物を用いて、芳香族炭化水素系溶媒やハロゲン化炭化水素系溶媒を用いることなく、基材への含浸性に優れたプリプレグおよび成形性、耐吸湿性および耐熱性に優れた積層板が得られる。   According to the present invention, a resin composition having a low dielectric constant and good strength after curing, moisture absorption resistance and heat resistance can be obtained. Using the resin composition of the present invention, without using an aromatic hydrocarbon solvent or a halogenated hydrocarbon solvent, a prepreg excellent in impregnation into a substrate and excellent moldability, moisture absorption resistance and heat resistance A laminated board is obtained.

上記したように、本発明の一局面は、(A)平均粒子径が10〜50μm、数平均分子量が1000〜3000のポリフェニレンエーテル樹脂粒子、(B)エポキシ樹脂、(C)硬化剤、および(D)無機充填剤を含有する樹脂組成物である。   As described above, one aspect of the present invention is that (A) polyphenylene ether resin particles having an average particle diameter of 10 to 50 μm and a number average molecular weight of 1000 to 3000, (B) an epoxy resin, (C) a curing agent, and ( D) A resin composition containing an inorganic filler.

(A)ポリフェニレンエーテル樹脂(PPE樹脂)は、いわゆるポリフェニレンエーテルを主骨格とするものであれば、フェノール誘導体の単独重合体や共重合体、またフェノール誘導体と他の単量体との共重合体であって、電子機器部品材料として用いられるものを特に制限なく使用することができる。この様なPPE樹脂としては、例えば、ポリ(2,6−ジメチル−1,4−フェニレンオキサイド)を挙げることができる。また、PPEのメチル基を、例えば、アリル基、エポキシ基、ビニル基等で置換したPPE樹脂を用いることもできる。   (A) The polyphenylene ether resin (PPE resin) is a homopolymer or copolymer of a phenol derivative, or a copolymer of a phenol derivative and another monomer as long as it has a so-called polyphenylene ether as a main skeleton. And what is used as an electronic equipment component material can be especially used without a restriction | limiting. Examples of such PPE resin include poly (2,6-dimethyl-1,4-phenylene oxide). Moreover, PPE resin which substituted the methyl group of PPE with the allyl group, the epoxy group, the vinyl group etc. can also be used, for example.

PPE樹脂粒子は、体積基準の平均粒子径が10〜50μmの範囲にあるものを用いる。平均粒子径が10μm未満であると、樹脂組成物を溶媒に溶解させた樹脂ワニスの粘度が高くなり、基材への含浸性が低下し、得られるプリプレグの取り扱い性が悪くなる。また、平均粒子径が50μmを超えるとPPE樹脂の粒子がエポキシ樹脂中に均一に分散しにくくなり、エポキシ樹脂中に沈降する恐れがある。なお、PPE樹脂粒子は、平均粒子径が20〜40μmの範囲にあるものを用いるのが好ましい。平均粒子径は、レーザー回折式粒度分布測定装置により測定することができる。用いるPPE樹脂粒子の平均粒子径は、例えばメチルエチルケトン等の有機溶媒中に分散させて、フィルタリングすることにより調整することができる。   PPE resin particles having a volume-based average particle diameter in the range of 10 to 50 μm are used. When the average particle size is less than 10 μm, the viscosity of the resin varnish in which the resin composition is dissolved in the solvent is increased, the impregnation property to the substrate is lowered, and the handleability of the resulting prepreg is deteriorated. On the other hand, when the average particle diameter exceeds 50 μm, the particles of the PPE resin are difficult to uniformly disperse in the epoxy resin and may settle in the epoxy resin. In addition, it is preferable to use what has an average particle diameter in the range of 20-40 micrometers as a PPE resin particle. The average particle diameter can be measured with a laser diffraction particle size distribution measuring apparatus. The average particle diameter of the PPE resin particles used can be adjusted by dispersing in an organic solvent such as methyl ethyl ketone and filtering.

また、PPE樹脂粒子は、数平均分子量が1000〜3000の範囲にあるものを用いる。数平均分子量が1000未満であると、樹脂組成物を硬化させた時に硬化物の機械的強度や耐熱性が低下しやすくなる。また、数平均分子量が3000を超えると、樹脂組成物を半硬化させた時に半硬化物の溶融粘度が増大し、積層板の金属箔の引き剥がし強度、半田耐熱性、メッキ染み込み性等の性能が阻害されやすくなる。なお、PPE樹脂粒子は、数平均分子量が1500〜2500の範囲にあるものを用いるのが好ましい。   In addition, PPE resin particles having a number average molecular weight in the range of 1000 to 3000 are used. When the number average molecular weight is less than 1000, the mechanical strength and heat resistance of the cured product are likely to decrease when the resin composition is cured. When the number average molecular weight exceeds 3000, the melt viscosity of the semi-cured product increases when the resin composition is semi-cured, and the peel strength of the metal foil of the laminate, solder heat resistance, plating penetration, etc. Is easily disturbed. The PPE resin particles preferably have a number average molecular weight in the range of 1500 to 2500.

PPE樹脂粒子の含有量は、PPE樹脂粒子とエポキシ樹脂と硬化剤を含む樹脂成分の総量100質量部中、30〜80質量部であることが好ましい。30質量部未満では、誘電特性に優れるというPPE樹脂本来の特性が生かされず、十分な誘電特性を有する積層板が得られにくくなる。80質量部を超えると、PPE樹脂の粒子がエポキシ樹脂中に均一に分散した海島構造を形成することが困難となり、樹脂組成物の硬化系に悪影響を与えやすい。なお、PPE樹脂粒子の含有量は、PPE樹脂粒子とエポキシ樹脂と硬化剤を含む樹脂成分の総量100質量部中、40〜70質量部であることがさらに好ましい。   It is preferable that content of PPE resin particle is 30-80 mass parts in 100 mass parts of total amounts of the resin component containing PPE resin particles, an epoxy resin, and a hardening | curing agent. If it is less than 30 parts by mass, the original characteristic of the PPE resin that is excellent in dielectric characteristics is not utilized, and it becomes difficult to obtain a laminate having sufficient dielectric characteristics. If it exceeds 80 parts by mass, it will be difficult to form a sea-island structure in which the particles of PPE resin are uniformly dispersed in the epoxy resin, which tends to adversely affect the curing system of the resin composition. In addition, it is more preferable that content of PPE resin particle is 40-70 mass parts in 100 mass parts of total amounts of the resin component containing PPE resin particles, an epoxy resin, and a hardening | curing agent.

(B)エポキシ樹脂は、分子内にエポキシ基を2個以上有するエポキシ樹脂であればよく、一般に公知のものを使用することができる。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、ヒダントイン型エポキシ樹脂、脂環式エポキシ樹脂、ビフェニル型エポキシ樹脂、多官能エポキシ樹脂等を挙げることができる。これらのエポキシ樹脂は、単独で用いたり2種類以上を併用したりすることができる。また、これら樹脂を臭素化した難燃化エポキシ樹脂も使用することができる。なお、分子内にエポキシ基を1個有するエポキシ樹脂を併用することもできる。   (B) The epoxy resin should just be an epoxy resin which has 2 or more of epoxy groups in a molecule | numerator, Generally a well-known thing can be used. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, isocyanurate type epoxy resin, hydantoin type epoxy resin, alicyclic epoxy resin, biphenyl Type epoxy resin, polyfunctional epoxy resin, and the like. These epoxy resins can be used alone or in combination of two or more. Moreover, the flame retardant epoxy resin which brominated these resin can also be used. An epoxy resin having one epoxy group in the molecule can be used in combination.

(C)硬化剤としては、従来から一般的に用いられているものを使用することができ、上記エポキシ樹脂の硬化剤として使用可能なものであれば特に制限はない。例えば、第1アミンや第2アミンなどのアミン系硬化剤、ビスフェノールAやビスフェノールFなどのフェノール系硬化剤、酸無水物系硬化剤などを挙げることができる。これらの硬化剤は単独で用いたり2種類以上を併用したりすることができる。   (C) As a hardening | curing agent, what was generally used conventionally can be used, and if it can be used as a hardening | curing agent of the said epoxy resin, there will be no restriction | limiting in particular. Examples thereof include amine-based curing agents such as primary amines and secondary amines, phenol-based curing agents such as bisphenol A and bisphenol F, and acid anhydride-based curing agents. These curing agents can be used alone or in combination of two or more.

硬化剤は、上記エポキシ樹脂に対して当量比で0.05〜0.2当量配合することが好ましい。   The curing agent is preferably blended in an equivalent ratio of 0.05 to 0.2 equivalents with respect to the epoxy resin.

硬化剤には、樹脂組成物の硬化反応を促進するために、必要により硬化促進剤を添加することも好ましい。硬化促進剤としては、例えば、2−エチル−4−メチルイミダゾール等のイミダゾール類、トリエチレンジアミン等の三級アミン類、トリブチルホスフィン等の有機ホスフィン類、テトラフェニルホスホニウムテトラフェニルボレート等のテトラフェニルボロン塩等が挙げられ、2種類以上を併用してもよい。   In order to accelerate the curing reaction of the resin composition, it is also preferable to add a curing accelerator as necessary to the curing agent. Examples of the curing accelerator include imidazoles such as 2-ethyl-4-methylimidazole, tertiary amines such as triethylenediamine, organic phosphines such as tributylphosphine, and tetraphenylboron salts such as tetraphenylphosphonium tetraphenylborate. 2 or more types may be used in combination.

(D)無機充填剤は、絶縁性を有していれば特に限定はなく、樹脂組成物に付与したい性質に応じて選択すればよいが、比誘電率が3以下の無機充填剤であることが好ましい。無機充填剤の比誘電率が3を超えると、本来PPE樹脂が有する優れた誘電特性が損なわれ、積層板の誘電特性に悪影響を及ぼしやすくなる。このような無機充填剤としては、例えば、窒化ホウ素、シリカ、タルク、焼成タルク、水酸化アルミニウム、水酸化マグネシウム、カオリン、アルミナ等を挙げることができる。特に、六方晶窒化ホウ素は比誘電率が1.6であり、好ましく用いることができる。無機充填剤は、単独で用いても2種類以上を併用してもよい。   (D) The inorganic filler is not particularly limited as long as it has insulating properties, and may be selected according to the property to be imparted to the resin composition. However, it is an inorganic filler having a relative dielectric constant of 3 or less. Is preferred. When the relative dielectric constant of the inorganic filler exceeds 3, the excellent dielectric properties inherently possessed by the PPE resin are impaired, and the dielectric properties of the laminate are liable to be adversely affected. Examples of such inorganic fillers include boron nitride, silica, talc, calcined talc, aluminum hydroxide, magnesium hydroxide, kaolin, and alumina. In particular, hexagonal boron nitride has a relative dielectric constant of 1.6 and can be preferably used. An inorganic filler may be used independently or may use 2 or more types together.

無機充填剤として、比誘電率が低い窒化ホウ素と他の無機充填剤を併用する場合、他の無機充填剤としては、粒子形状がほぼ球形であるシリカを併用することが好ましい。特に、シリカとしてはほぼ球形である溶融シリカを用いるのが好ましい。破砕状シリカのように球形でないシリカを用いると、樹脂組成物の流れ性やドリル摩耗率の悪化につながる恐れがある。また、他の無機充填剤として、水酸化アルミニウムや水酸化マグネシウムのような金属水酸化物を併用すると、得られる積層板の誘電率が高くなってしまう恐れがあり、好ましくない。さらに、タルクやクレー(ケイ酸アルミニウム)を大量に併用すると、硬化後の樹脂の吸水率が増大し、性能劣化を招きやすくなる。   When boron nitride having a low dielectric constant and another inorganic filler are used in combination as the inorganic filler, it is preferable to use silica having a substantially spherical particle shape as the other inorganic filler. In particular, it is preferable to use fused silica having a substantially spherical shape as silica. Use of non-spherical silica such as crushed silica may lead to deterioration of the flowability of the resin composition and the drill wear rate. Moreover, when other metal fillers such as aluminum hydroxide and magnesium hydroxide are used in combination as the other inorganic fillers, the dielectric constant of the resulting laminate may increase, which is not preferable. Furthermore, when talc and clay (aluminum silicate) are used together in large quantities, the water absorption rate of the cured resin increases, which tends to cause performance deterioration.

無機充填剤の含有量は、ポリフェニレンエーテル樹脂粒子とエポキシ樹脂と硬化剤を含む樹脂成分の総量100質量部に対して、60〜120質量部であることが好ましい。60質量部未満であると、得られる積層板の剛性が不十分となりやすい。120質量部を超えると、積層板の成形時の耐クラック性が損なわれてカスレやボイドが発生しやすく、また耐熱性が低下しやすくなる。   It is preferable that content of an inorganic filler is 60-120 mass parts with respect to 100 mass parts of total amounts of the resin component containing a polyphenylene ether resin particle, an epoxy resin, and a hardening | curing agent. If the amount is less than 60 parts by mass, the rigidity of the resulting laminated plate tends to be insufficient. When it exceeds 120 parts by mass, the crack resistance at the time of molding the laminated plate is impaired, so that burrs and voids are likely to occur, and the heat resistance tends to be lowered.

無機充填剤の粒径は、0.2〜3μmの範囲のものであるのが好ましい。無機充填材の粒径をこの範囲とすることにより、大粒径のものを添加する場合よりもドリル摩耗率や折損を改善することができ、また、樹脂組成物の良好な流れ性が得られ、成形時のカスレを低減することができる。   The particle size of the inorganic filler is preferably in the range of 0.2 to 3 μm. By making the particle size of the inorganic filler within this range, the drill wear rate and breakage can be improved as compared with the case of adding a large particle size, and good flowability of the resin composition can be obtained. It is possible to reduce scraping during molding.

無機充填剤は、その表面に、カップリング剤による表面処理を施すことが好ましい。この表面処理により硬化後の樹脂と無機充填剤粒子との界面の密着性が向上し、誘電率の上昇を招く吸湿を防ぐことができる。カップリング剤としては、一般的なシラン化合物を使用することができる。例えば、ビニルシラン、エポキシシラン、メタクリロキシシラン、カチオニックシラン化合物等を使用することができる。   The inorganic filler is preferably subjected to a surface treatment with a coupling agent on the surface thereof. By this surface treatment, the adhesion at the interface between the cured resin and the inorganic filler particles is improved, and moisture absorption that causes an increase in dielectric constant can be prevented. As a coupling agent, a general silane compound can be used. For example, vinyl silane, epoxy silane, methacryloxy silane, cationic silane compound, etc. can be used.

表面処理の際には、表面処理前の無機充填剤100質量部に対して、0.5〜2質量部の上記シランカップリング剤を添加することが好ましい。シランカップリング剤の配合量が少ない場合は、積層板の成形時に樹脂と無機充填剤との充分な密着性を得ることができないことがあり、一方、多い場合は成形後の積層板の耐熱性が低下するおそれがある。   In the surface treatment, it is preferable to add 0.5 to 2 parts by mass of the silane coupling agent with respect to 100 parts by mass of the inorganic filler before the surface treatment. If the amount of the silane coupling agent is small, sufficient adhesion between the resin and the inorganic filler may not be obtained during molding of the laminate, whereas if it is large, the heat resistance of the laminate after molding may be insufficient. May decrease.

無機充填剤の表面処理方法は特に問わないが、表面を均一に処理する必要から、湿式法によることが好ましい。具体的には、シランカップリング剤の溶液に無機充填剤を加えてスラリー化したり或いは浸漬した後に、加熱乾燥する。   The surface treatment method of the inorganic filler is not particularly limited, but is preferably a wet method because the surface needs to be uniformly treated. Specifically, an inorganic filler is added to the silane coupling agent solution to form a slurry or soak, and then dried by heating.

本実施形態に係る樹脂組成物は、上記のPPE樹脂粒子とエポキシ樹脂と硬化剤を含む樹脂成分に上記無機充填剤を加え、必要に応じてその他の成分を配合した上で、ディスパー、ミル等で均一に混合することにより調製することができる。   The resin composition according to the present embodiment adds the inorganic filler to the resin component including the PPE resin particles, the epoxy resin, and the curing agent, and blends other components as necessary, and then a disper, a mill, and the like. Can be prepared by mixing uniformly.

そして、本実施形態に係るプリプレグは、基材に上記樹脂組成物を含浸させ、この後、加熱により乾燥し、次いで基材中の樹脂組成物をBステージ状態にまで半硬化させることによって製造することができる。   And the prepreg which concerns on this embodiment is manufactured by making the base material impregnate the said resin composition, and drying by heating after that, and then semi-hardening the resin composition in a base material to a B-stage state. be able to.

樹脂組成物を基材に含浸させるにあたっては、公知の方法を採用することができる。例えば、有機溶媒に上記の樹脂組成物を溶解させて樹脂ワニスを調製し、この樹脂ワニスを基材に含浸させればよい。ここで使用される有機溶媒としては、例えば、メチルエチルケトン等のケトン類、アルコール類を挙げることができる。これらの有機溶媒は単独で用いたり2種類以上を併用したりすることができる。本実施形態においては、樹脂組成物中に含まれるPPE樹脂として変性フェノール化合物を用いることはないので、変性フェノール化合物を調製する際に用いられるトルエンのような芳香族炭化水素系溶媒やクロロホルムのようなハロゲン化炭化水素系溶媒を用いる必要がない。   For impregnating the substrate with the resin composition, a known method can be employed. For example, the resin composition may be dissolved in an organic solvent to prepare a resin varnish, and the substrate may be impregnated with the resin varnish. Examples of the organic solvent used here include ketones such as methyl ethyl ketone, and alcohols. These organic solvents can be used alone or in combination of two or more. In this embodiment, since a modified phenol compound is not used as the PPE resin contained in the resin composition, an aromatic hydrocarbon solvent such as toluene or chloroform used when preparing the modified phenol compound is used. It is not necessary to use a halogenated hydrocarbon solvent.

基材としては、例えばガラスクロス、アラミドクロス、ポリエステルクロス、ガラス不織布、アラミド不織布、ポリエステル不織布、パルプ紙、リンター紙等が挙げられる。なお、ガラスクロスを用いると、機械強度が優れた積層板が得られ、特に偏平処理加工したガラスクロスが好ましい。偏平加工としては例えば、ガラスクロスを適宜の圧力でプレスロールにて連続的に加圧してヤーンを偏平に圧縮することにより行うことができる。なお、基材の厚みとしては0.04〜0.3mmのものを一般的に使用できる。   Examples of the substrate include glass cloth, aramid cloth, polyester cloth, glass nonwoven fabric, aramid nonwoven fabric, polyester nonwoven fabric, pulp paper, linter paper and the like. When a glass cloth is used, a laminate having excellent mechanical strength can be obtained, and a flat glass processed glass cloth is particularly preferable. The flattening can be performed, for example, by continuously pressing the glass cloth with a press roll with an appropriate pressure and compressing the yarn flatly. In addition, as a thickness of a base material, the thing of 0.04-0.3 mm can generally be used.

乾燥および半硬化する際の加熱条件は樹脂組成物の組成等によって適宜設定することができるが、例えば、150〜170℃で4〜7分間とすることができる。   The heating conditions for drying and semi-curing can be appropriately set depending on the composition of the resin composition, etc., and can be, for example, 150 to 170 ° C. for 4 to 7 minutes.

プリプレグ中の樹脂含有率は基材の厚さとその使用目的に応じて適宜設定すればよいが、基材としてガラスクロスを用いた場合、ガラスの誘電率は樹脂に比べて大きいため、できるだけ樹脂量を増やした方が誘電特性的には有利となる。プリプレグ中には、PPE樹脂とエポキシ樹脂と硬化剤を含む樹脂成分の総量を60〜75質量%含有することが好ましい。プリプレグ中の樹脂含有率をこの範囲とすることにより、プリプレグを積層成形した後に成形性が良好な積層板が得られる。   The resin content in the prepreg may be appropriately set according to the thickness of the base material and the purpose of use. However, when glass cloth is used as the base material, the dielectric constant of the glass is larger than that of the resin. Increasing the value is advantageous in terms of dielectric characteristics. The prepreg preferably contains 60 to 75 mass% of the total amount of the resin components including the PPE resin, the epoxy resin, and the curing agent. By setting the resin content in the prepreg within this range, a laminate having good moldability after the prepreg is laminated is obtained.

本実施形態に係る積層板は、上記のプリプレグと銅箔等の金属箔を用いて形成することができる。プリプレグは一枚あるいは複数枚重ねて使用することができ、このプリプレグの片方あるいは両方の外側に金属箔を重ねた後、加熱加圧成形してプリプレグの樹脂組成物を硬化させて絶縁層を形成すると共に、この樹脂組成物の硬化により金属箔と絶縁層を一体化することによって、片面あるいは両面金属箔張り積層板を形成することができる。   The laminated board which concerns on this embodiment can be formed using metal foils, such as said prepreg and copper foil. One or a plurality of prepregs can be used, and after a metal foil is stacked on one or both sides of this prepreg, the resin composition of the prepreg is cured by heating and pressing to form an insulating layer. In addition, a single-sided or double-sided metal foil-clad laminate can be formed by integrating the metal foil and the insulating layer by curing the resin composition.

積層成形の際における加熱加圧条件は、製造する積層板の厚みやプリプレグの樹脂組成物の種類等により適宜設定することができるが、例えば、温度を190〜210℃、圧力を3.5〜4.0Pa、時間を120〜150分間とすることができる。   The heating and pressurizing conditions at the time of laminate molding can be appropriately set depending on the thickness of the laminate to be produced, the type of the resin composition of the prepreg, etc. 4.0 Pa and time can be 120 to 150 minutes.

得られた積層板に、ドリル加工あるいは炭酸ガスレーザーによりスルーホール用等の孔を形成したり、スルーホールめっきを施したり、サブトラクティブ法などで回路形成を行うことにより、プリント配線板を形成することができる。   A printed wiring board is formed by forming holes for through-holes by drilling or carbon dioxide gas laser, through-hole plating, or circuit formation by a subtractive method on the obtained laminated board be able to.

以下に、実施例を示すことによって本発明を更に詳細に説明するが、本発明の範囲はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail by way of examples, but the scope of the present invention is not limited thereto.

実施例1
表1に示す配合で樹脂組成物を調製した。樹脂組成物は、ポリフェニレンエーテル(PPE)樹脂粒子とエポキシ樹脂と硬化剤(硬化促進剤を含む)とを含有する樹脂成分と無機充填剤を混合して調製した。
Example 1
A resin composition was prepared with the formulation shown in Table 1. The resin composition was prepared by mixing a resin component containing polyphenylene ether (PPE) resin particles, an epoxy resin, and a curing agent (including a curing accelerator) and an inorganic filler.

PPE樹脂粒子としては、数平均分子量が2000、平均粒子径が20μmのものを用いた。40質量部のPPE樹脂粒子と、エポキシ樹脂として、30質量部の臭素化ビスフェノールA型エポキシ樹脂(日本化薬製の「EPPN501H」)と、28.5質量部のフェノールノボラック型エポキシ樹脂(旭チバ製の「EPN1182」)、硬化剤として1質量部のジアミノジフェニルメタン(ジャパンエポキシレジン製の「エタキュア」)、硬化促進剤として0.5質量部の2−エチル−4−メチル−イミダゾール(四国化成製)を用いて樹脂成分とした。無機充填剤としては、40質量部の六方晶チッ化ホウ素と、80質量部の表面処理シリカ(粒径形状がほぼ球形で平均粒径が0.5μmのアドマテックス製合成シリカに、エポキシシランカップリング処理を施したもの。以下、「シリカA」という場合がある)を混合して用いた。   As the PPE resin particles, those having a number average molecular weight of 2000 and an average particle diameter of 20 μm were used. 40 parts by mass of PPE resin particles, 30 parts by mass of brominated bisphenol A type epoxy resin (“EPPN501H” manufactured by Nippon Kayaku) and 28.5 parts by mass of phenol novolac type epoxy resin (Asahi Ciba) “EPN1182”), 1 part by weight of diaminodiphenylmethane (“Etacure” manufactured by Japan Epoxy Resin) as a curing agent, 0.5 part by weight of 2-ethyl-4-methyl-imidazole (manufactured by Shikoku Chemicals) as a curing accelerator ) Was used as a resin component. Examples of inorganic fillers include 40 parts by mass of hexagonal boron nitride and 80 parts by mass of surface-treated silica (Adaptex synthetic silica having an approximately spherical particle size and an average particle size of 0.5 μm). A ring-treated product (hereinafter sometimes referred to as “silica A”) was used in combination.

上記の樹脂成分と無機充填剤を含有する樹脂組成物100質量部をメチルエチルケトン(MEK)90質量部に溶解させて樹脂ワニスを調製し、この樹脂ワニスを厚さ80μmのガラスクロスに含浸した。この樹脂ワニスを含浸したガラスクロスを加熱し、乾燥すると共に樹脂組成物を半硬化させることによって、樹脂成分の含有率が60質量%のプリプレグを作製した。   A resin varnish was prepared by dissolving 100 parts by mass of the resin composition containing the resin component and the inorganic filler in 90 parts by mass of methyl ethyl ketone (MEK), and impregnating the resin varnish into a glass cloth having a thickness of 80 μm. The glass cloth impregnated with the resin varnish was heated and dried, and the resin composition was semi-cured to prepare a prepreg having a resin component content of 60% by mass.

次に、上記のプリプレグを複数枚重ね合わせると共に、これらのプリプレグの両外側に厚み18μmの銅箔を重ね、これを温度200℃、圧力3.5MPa、時間120分間の条件で加熱加圧成形することによって、厚み1.0mmの両面銅張り積層板を作製した。   Next, a plurality of the above prepregs are stacked, and a copper foil having a thickness of 18 μm is stacked on both outer sides of these prepregs, and this is heated and pressed under conditions of a temperature of 200 ° C., a pressure of 3.5 MPa, and a time of 120 minutes. Thus, a double-sided copper-clad laminate having a thickness of 1.0 mm was produced.

実施例2
無機充填材として、120質量部の六方晶チッ化ホウ素のみを用いた以外は、上記実施例1と同様にして樹脂組成物を調整し、これを用いてプリプレグおよび両面銅張り積層板を作製した。
Example 2
A resin composition was prepared in the same manner as in Example 1 except that only 120 parts by mass of hexagonal boron nitride was used as the inorganic filler, and a prepreg and a double-sided copper-clad laminate were produced using this resin composition. .

実施例3
PPE樹脂粒子として、数平均分子量が1000のものを用いた以外は、上記実施例1と同様にして樹脂組成物を調整し、これを用いてプリプレグおよび両面銅張り積層板を作製した。
Example 3
A resin composition was prepared in the same manner as in Example 1 except that a PPE resin particle having a number average molecular weight of 1000 was used, and a prepreg and a double-sided copper-clad laminate were produced using the resin composition.

実施例4
PPE樹脂粒子として、平均粒子径が50μmのものを用いた以外は、上記実施例1と同様にして樹脂組成物を調整し、これを用いてプリプレグおよび両面銅張り積層板を作製した。
Example 4
A resin composition was prepared in the same manner as in Example 1 except that PPE resin particles having an average particle diameter of 50 μm were used, and prepregs and double-sided copper-clad laminates were produced using the resin compositions.

実施例5
プリプレグ中の樹脂成分の含有率が75質量%となるように、樹脂ワニスをガラスクロスに含浸し、樹脂組成物を半硬化させてプリプレグを作製した以外は、上記実施例1と同様にしてプリプレグおよび両面銅張り積層板を作製した。
Example 5
A prepreg was prepared in the same manner as in Example 1 except that a glass cloth was impregnated with a resin varnish so that the resin component content in the prepreg was 75% by mass, and the resin composition was semi-cured to prepare a prepreg. And the double-sided copper clad laminated board was produced.

実施例6
無機充填材として、60質量部の六方晶チッ化ホウ素のみを用いた以外は、上記実施例1と同様にして樹脂組成物を調整し、これを用いてプリプレグおよび両面銅張り積層板を作製した。
Example 6
A resin composition was prepared in the same manner as in Example 1 except that only 60 parts by mass of hexagonal boron nitride was used as the inorganic filler, and a prepreg and a double-sided copper-clad laminate were produced using this resin composition. .

実施例7
無機充填材として、80質量部の表面処理シリカ(シリカA)に代えて、40質量部のシリカAと40質量部の未表面処理シリカ(粒径形状がほぼ球形で平均粒径が0.5μmのアドマテックス製合成シリカであって表面処理を施さないもの。以下、「シリカB」という場合がある)との混合物を用いた以外は、上記実施例1と同様にして樹脂組成物を調整し、これを用いてプリプレグおよび両面銅張り積層板を作製した。
Example 7
As an inorganic filler, instead of 80 parts by mass of surface-treated silica (silica A), 40 parts by mass of silica A and 40 parts by mass of non-surface-treated silica (particle size is almost spherical and average particle size is 0.5 μm) A resin composition prepared in the same manner as in Example 1 except that a mixture with Admatex synthetic silica, which is not subjected to surface treatment, may be referred to as “silica B” in the following. Using this, a prepreg and a double-sided copper-clad laminate were produced.

実施例8
70質量部のPPE樹脂粒子と、エポキシ樹脂として28.5質量部のフェノールノボラック型エポキシ樹脂を用いた以外は、上記実施例1と同様にして樹脂組成物を調整し、これを用いてプリプレグおよび両面銅張り積層板を作製した。
Example 8
A resin composition was prepared in the same manner as in Example 1 except that 70 parts by mass of PPE resin particles and 28.5 parts by mass of a phenol novolac type epoxy resin were used as the epoxy resin. A double-sided copper-clad laminate was produced.

実施例9
無機充填材として、140質量部の六方晶チッ化ホウ素のみを用いた以外は、上記実施例1と同様にして樹脂組成物を調整し、これを用いてプリプレグおよび両面銅張り積層板を作製した。
Example 9
A resin composition was prepared in the same manner as in Example 1 except that only 140 parts by mass of hexagonal boron nitride was used as the inorganic filler, and a prepreg and a double-sided copper-clad laminate were produced using this resin composition. .

実施例10
プリプレグ中の樹脂成分の含有率が80質量%となるように、樹脂ワニスをガラスクロスに含浸し、樹脂組成物を半硬化させてプリプレグを作製した以外は、上記実施例1と同様にしてプリプレグおよび両面銅張り積層板を作製した。
Example 10
A prepreg was prepared in the same manner as in Example 1 except that a resin cloth varnish was impregnated into a glass cloth so that the content of the resin component in the prepreg was 80% by mass, and the resin composition was semi-cured to prepare a prepreg. And the double-sided copper clad laminated board was produced.

比較例1
高分子量のPPEとフェノール化合物とをラジカル反応開始剤の存在下で再分配反応させて、低分子量化したPPEとフェノール化合物が縮合した変性フェノール化合物を生成させ、これをPPE樹脂として用いた。
Comparative Example 1
A high molecular weight PPE and a phenol compound were redistributed in the presence of a radical reaction initiator to produce a modified phenol compound obtained by condensing a low molecular weight PPE and a phenol compound, and this was used as a PPE resin.

変性フェノール化合物は、100質量部の高分子量PPE(分子量:約15000、日本GEプラスチック製)と3.5質量部のビスフェノールA(フェノール化合物)とをトルエン溶媒中で加熱溶融して混合した後、4.5質量部の過酸化ベンゾイル(日本油脂製のラジカル開始剤)を配合して再分配反応させることによって調製した。得られた変性フェノール化合物の40質量部と、エポキシ樹脂として、40質量部の臭素化ビスフェノールA型エポキシ樹脂(日本化薬製の「EPPN501H」)と、18.5質量部のフェノールノボラック型エポキシ樹脂(旭チバ製の「EPN1182」)、硬化剤として1質量部のジアミノジフェニルメタン(ジャパンエポキシレジン製の「エタキュア」)、硬化促進剤として0.5質量部の2−エチル−4−メチル−イミダゾール(四国化成製)、無機充填剤として、60質量部の未表面処理シリカ(シリカB)を用いて、樹脂組成物とした。   The modified phenol compound is obtained by mixing 100 parts by mass of high molecular weight PPE (molecular weight: about 15000, made by Japan GE Plastics) and 3.5 parts by mass of bisphenol A (phenol compound) by heating and melting in a toluene solvent. It was prepared by blending 4.5 parts by mass of benzoyl peroxide (a radical initiator made by NOF Corporation) and causing a redistribution reaction. 40 parts by mass of the modified phenolic compound obtained, 40 parts by mass of brominated bisphenol A type epoxy resin (“EPPN501H” manufactured by Nippon Kayaku) and 18.5 parts by mass of phenol novolac type epoxy resin as epoxy resins ("EPN1182" manufactured by Asahi Ciba), 1 part by mass of diaminodiphenylmethane ("Etacure" manufactured by Japan Epoxy Resin) as a curing agent, and 0.5 part by mass of 2-ethyl-4-methyl-imidazole (as a curing accelerator) Shikoku Kasei) and 60 parts by mass of non-surface-treated silica (silica B) as an inorganic filler were used as a resin composition.

この樹脂組成物100質量部をトルエン100質量部に溶解させて樹脂ワニスを調製し、この樹脂ワニスを厚さ80μmのガラスクロスに含浸し、ガラスクロスを加熱して樹脂組成物を半硬化させることによって、樹脂成分の含有率が60質量%のプリプレグを作製した。   A resin varnish is prepared by dissolving 100 parts by mass of this resin composition in 100 parts by mass of toluene, impregnating the resin varnish into a glass cloth having a thickness of 80 μm, and heating the glass cloth to semi-cure the resin composition. Thus, a prepreg having a resin component content of 60% by mass was produced.

上記のプリプレグを複数枚重ね合わせると共に、これらのプリプレグの両外側に厚み18μmの銅箔を重ね、これを温度200℃、圧力3.5MPa、時間120分間の条件で加熱加圧成形することによって、厚み1.0mmの両面銅張り積層板を作製した。   A plurality of the above prepregs are overlaid, and a copper foil having a thickness of 18 μm is overlaid on both outer sides of these prepregs, and this is heated and pressed under conditions of a temperature of 200 ° C., a pressure of 3.5 MPa, and a time of 120 minutes, A double-sided copper-clad laminate with a thickness of 1.0 mm was produced.

比較例2
PPE樹脂粒子として、数平均分子量が4000のものを用いた以外は、上記実施例1と同様にして樹脂組成物を調整し、これを用いてプリプレグおよび両面銅張り積層板を作製した。
Comparative Example 2
A resin composition was prepared in the same manner as in Example 1 except that a PPE resin particle having a number average molecular weight of 4000 was used, and a prepreg and a double-sided copper-clad laminate were produced using the resin composition.

比較例3
PPE樹脂粒子として、平均粒子径が100μmのものを用いた以外は、上記実施例1と同様にして樹脂組成物を調整し、これを用いてプリプレグおよび両面銅張り積層板を作製した。
Comparative Example 3
Except for using PPE resin particles having an average particle diameter of 100 μm, a resin composition was prepared in the same manner as in Example 1, and a prepreg and a double-sided copper-clad laminate were produced using the resin composition.

比較例4
PPE樹脂粒子として、平均粒子径が5μmのものを用いた以外は、上記実施例1と同様にして樹脂組成物を調整し、これを用いてプリプレグおよび両面銅張り積層板を作製した。
Comparative Example 4
Except for using PPE resin particles having an average particle diameter of 5 μm, a resin composition was prepared in the same manner as in Example 1, and a prepreg and a double-sided copper-clad laminate were prepared using the resin composition.

試験例
上記の実施例1〜10及び比較例1〜4で調製した樹脂ワニスについて、初期粘度と保存性の評価を、また作製したプリプレグについて、外観、取り扱い性および含浸性の評価を、さらに両面銅張り積層板について、成形性、ガラス転移温度、吸水率、比誘電率および耐熱性の評価を、それぞれ行なった。
Test Example About the resin varnishes prepared in Examples 1 to 10 and Comparative Examples 1 to 4 above, the initial viscosity and storage stability were evaluated, and the prepreg produced was further evaluated for appearance, handleability and impregnation. The copper clad laminate was evaluated for formability, glass transition temperature, water absorption, relative permittivity, and heat resistance.

樹脂ワニスは、固形分60質量%に調製後の初期粘度を測定し、120〜200cpsのものを○、200cpsを超えるものを×と評価した。また、樹脂ワニスの保存性は、樹脂組成物の均一な分散が保持されるものを○、凝集等を起こすものを×と評価した。   The resin varnish was measured for the initial viscosity after preparation at a solid content of 60% by mass, and evaluated as “◯” when the viscosity was 120 to 200 cps and “X” when it exceeded 200 cps. Moreover, the preservability of the resin varnish was evaluated as “◯” when the uniform dispersion of the resin composition was maintained, and “X” when aggregation occurred.

プリプレグの外観は、目視で観察し、凹凸が発生しなかったものを○、凹凸が多く発生したものを×と評価した。また、プリプレグの取り扱い性は、表面からの粉落ちがないものを○、表面からの粉落ちがあるものを×と評価した。プリプレグの含浸性は、基材からの樹脂はがれが発生しないものを○、基材からの樹脂はがれが発生するものを×と評価した。   The appearance of the prepreg was visually observed and evaluated as “◯” when no irregularities were generated and “X” when many irregularities were generated. Moreover, the handleability of the prepreg was evaluated as ○ when the powder did not fall off from the surface, and × when the powder had fallen off from the surface. The impregnation property of the prepreg was evaluated as ◯ when the resin did not peel off from the base material, and x when the resin peeled off from the base material occurred.

両面銅張り積層板の成形性は、表面の銅箔をエッチングにて除去し、積層板の表面のカスレや積層板断面のボイドの有無を観察し、カスレやボイドが無いものを○、カスレやボイドが少し有るものを△、カスレやボイドが多く有るものを×と評価した。また、ガラス転移温度は、成形性の指標として、DMA測定装置を用いてガラス転移点(Tg)を測定した。両面銅張り積層板の吸水率は、吸湿性の指標として、得られた両面銅張り積層板の表面の銅箔をエッチングにて除去し、50mm角に切り取り、温度121℃、湿度100%の釜に300時間入れる前後の重量増加値を測定した。また、比誘電率は、JIS C 6481に基づいて両面銅張り積層板の1GHzにおける誘電特性を測定した。さらに、耐熱性は、得られた両面銅張り積層板を50mm×50mmのサイズに切り取り、260℃のオーブンに1時間入れた後、銅箔の剥離を観察し、剥離の無いものを○、剥離の有るものを×と評価した。   The moldability of the double-sided copper-clad laminate is determined by removing the copper foil on the surface by etching, observing the surface of the laminate and the presence or absence of voids in the cross section of the laminate. A case having a small amount of void was evaluated as Δ, and a case having a lot of voids and voids was evaluated as ×. Moreover, the glass transition temperature measured the glass transition point (Tg) using the DMA measuring apparatus as a formability parameter | index. The water absorption rate of the double-sided copper-clad laminate is an index of hygroscopicity, where the copper foil on the surface of the obtained double-sided copper-clad laminate is removed by etching, cut into 50 mm squares, and a pot with a temperature of 121 ° C and a humidity of 100%. The weight increase value before and after 300 hours was measured. Moreover, the dielectric constant measured the dielectric characteristic in 1 GHz of a double-sided copper clad laminated board based on JISC6481. Furthermore, the heat resistance is obtained by cutting the obtained double-sided copper-clad laminate into a size of 50 mm × 50 mm and placing it in an oven at 260 ° C. for 1 hour, and then observing the peeling of the copper foil. Those with no were evaluated as x.

以上の結果を表1に示す。   The results are shown in Table 1.

Figure 2008050526
Figure 2008050526

実施例1〜8に示すように、平均粒子径が10〜50μm、数平均分子量が1000〜3000のPPE樹脂粒子、エポキシ樹脂、硬化剤、および無機充填剤を含有する樹脂組成物から調製された樹脂ワニスは、初期粘度および保存性が良好であり、またこれを用いて作製されたプリプレグは、外観、取り扱い性および含浸性に優れ、さらに得られた両面銅張り積層板は、成形性、耐吸湿性、誘電特性および耐熱性に優れたものであることが分かる。   As shown in Examples 1 to 8, it was prepared from a resin composition containing PPE resin particles having an average particle diameter of 10 to 50 μm and a number average molecular weight of 1000 to 3000, an epoxy resin, a curing agent, and an inorganic filler. The resin varnish has good initial viscosity and storage stability, and the prepreg produced using this resin is excellent in appearance, handleability and impregnation, and the obtained double-sided copper-clad laminate has excellent moldability and resistance. It can be seen that it is excellent in hygroscopicity, dielectric properties and heat resistance.

なお、無機充填剤の含有量が大きい樹脂組成物(実施例9)では、得られる樹脂ワニスの初期粘度および保存性は、実施例2のそれらに比して不十分であった。また、樹脂成分の含有率が高いプリプレグから得られる積層板(実施例10)は、実施例5のそれに比べて成形性および耐吸湿性が若干劣ることがわかる。   In addition, in the resin composition (Example 9) with a large content of the inorganic filler, the initial viscosity and storage stability of the obtained resin varnish were insufficient as compared with those in Example 2. It can also be seen that the laminate (Example 10) obtained from the prepreg having a high resin component content is slightly inferior in moldability and moisture absorption resistance to that of Example 5.

特に、実施例1〜10で得られた両面銅張り積層板の吸水率は、上記の条件下すなわち温度121℃、湿度100%において300時間後に測定された重量増加率で0.6〜1.0%ときわめて低く、PPE樹脂として変性フェノール化合物を用いた比較例1のそれ(1.2%)と比べるとき、耐吸湿性に優れた積層板が得られたことがわかる。   In particular, the water absorption rate of the double-sided copper-clad laminates obtained in Examples 1 to 10 is 0.6 to 1 in terms of the weight increase rate measured after 300 hours under the above conditions, that is, at a temperature of 121 ° C. and a humidity of 100%. When compared with that of Comparative Example 1 (1.2%) using a modified phenolic compound as a PPE resin, it was found that a laminate having excellent moisture absorption resistance was obtained.

一方、数平均分子量が大きいPPE樹脂粒子を用いた樹脂組成物から得られた積層板(比較例2)は、成形性が十分ではなかった。平均粒子径が大きいPPE樹脂粒子(比較例3)および平均粒子径が小さいPPE樹脂粒子(比較例4)を用いた樹脂組成物では、得られる樹脂ワニス、プリプレグおよび積層板のほとんどの評価が不満足なものであった。   On the other hand, the laminate (Comparative Example 2) obtained from the resin composition using PPE resin particles having a large number average molecular weight did not have sufficient moldability. In a resin composition using PPE resin particles having a large average particle size (Comparative Example 3) and PPE resin particles having a small average particle size (Comparative Example 4), most evaluations of the resulting resin varnish, prepreg and laminate are unsatisfactory. It was something.

Claims (8)

(A)平均粒子径が10〜50μm、数平均分子量が1000〜3000のポリフェニレンエーテル樹脂粒子、(B)エポキシ樹脂、(C)硬化剤、および(D)無機充填剤を含有する樹脂組成物。   (A) A resin composition containing polyphenylene ether resin particles having an average particle diameter of 10 to 50 μm and a number average molecular weight of 1000 to 3000, (B) an epoxy resin, (C) a curing agent, and (D) an inorganic filler. 前記(A)ポリフェニレンエーテル樹脂粒子の含有量は、(A)ポリフェニレンエーテル樹脂粒子と(B)エポキシ樹脂と(C)硬化剤の総量100質量部中、30〜80質量部である請求項1に記載の樹脂組成物。   The content of the (A) polyphenylene ether resin particles is 30 to 80 parts by mass in 100 parts by mass of the total amount of (A) polyphenylene ether resin particles, (B) epoxy resin and (C) curing agent. The resin composition as described. 前記(D)無機充填剤は、比誘電率が3以下である請求項1に記載の樹脂組成物。   The resin composition according to claim 1, wherein the (D) inorganic filler has a relative dielectric constant of 3 or less. 前記(D)無機充填剤の含有量は、(A)ポリフェニレンエーテル樹脂粒子と(B)エポキシ樹脂と(C)硬化剤の総量100質量部に対して、60〜120質量部である請求項1に記載の樹脂組成物。   The content of the (D) inorganic filler is 60 to 120 parts by mass with respect to 100 parts by mass as a total of (A) polyphenylene ether resin particles, (B) epoxy resin, and (C) curing agent. The resin composition described in 1. 請求項1〜4のいずれかに記載の樹脂組成物のワニスを基材に含浸し、乾燥し半硬化させて得られるプリプレグ。   A prepreg obtained by impregnating a base material with the varnish of the resin composition according to claim 1, drying and semi-curing the base material. 前記基材は、ガラス織布または不織布である請求項5に記載のプリプレグ。   The prepreg according to claim 5, wherein the substrate is a glass woven fabric or a nonwoven fabric. プリプレグ中に、(A)ポリフェニレンエーテル樹脂粒子と(B)エポキシ樹脂と(C)硬化剤の総量を60〜75質量%含有する請求項5に記載のプリプレグ。   The prepreg according to claim 5, wherein the prepreg contains 60 to 75 mass% of a total amount of (A) polyphenylene ether resin particles, (B) epoxy resin, and (C) a curing agent. 請求項5〜7のいずれかに記載のプリプレグと金属箔とを加熱加圧し、積層成形することにより得られる積層板。   The laminated board obtained by heat-pressing the prepreg and metal foil in any one of Claims 5-7, and carrying out lamination molding.
JP2006230764A 2006-08-28 2006-08-28 Resin composition, prepreg and laminated board using the same Pending JP2008050526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006230764A JP2008050526A (en) 2006-08-28 2006-08-28 Resin composition, prepreg and laminated board using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006230764A JP2008050526A (en) 2006-08-28 2006-08-28 Resin composition, prepreg and laminated board using the same

Publications (1)

Publication Number Publication Date
JP2008050526A true JP2008050526A (en) 2008-03-06

Family

ID=39234864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006230764A Pending JP2008050526A (en) 2006-08-28 2006-08-28 Resin composition, prepreg and laminated board using the same

Country Status (1)

Country Link
JP (1) JP2008050526A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221350A (en) * 2008-03-17 2009-10-01 Konica Minolta Opto Inc Resin composition, its production method, and optical element using the same
JP2009221039A (en) * 2008-03-14 2009-10-01 Shin Kobe Electric Mach Co Ltd Inorganic nitride particle and resin composition mixed with the same
WO2010109948A1 (en) * 2009-03-26 2010-09-30 パナソニック電工株式会社 Epoxy resin composition, prepreg, metal foil with resin, resin sheet, laminate and multi-layer board
JP2011012193A (en) * 2009-07-03 2011-01-20 Denki Kagaku Kogyo Kk Resin composition and use thereof
WO2011152402A1 (en) * 2010-06-02 2011-12-08 三菱瓦斯化学株式会社 Resin composition, and prepreg and laminated sheet using same
WO2012001347A1 (en) 2010-06-29 2012-01-05 Ucl Business Plc Products with oral health benefits
WO2012026012A1 (en) 2010-08-26 2012-03-01 電気化学工業株式会社 Resin composition, molded object and substrate material both obtained from the resin composition, and circuit board including the substrate material
WO2013141255A1 (en) * 2012-03-19 2013-09-26 旭化成イーマテリアルズ株式会社 Prepreg comprising polyphenylene ether particles
WO2014003818A1 (en) * 2012-06-29 2014-01-03 Sabic Innovative Plastics Ip B.V. Ultrafine poly(phenylene ether) particles and compositions derived therefrom
CN103717635A (en) * 2011-07-19 2014-04-09 松下电器产业株式会社 Resin composition, resin varnish, prepreg, metal-clad laminate, and printed wiring board
US9051465B1 (en) 2012-02-21 2015-06-09 Park Electrochemical Corporation Thermosetting resin composition containing a polyphenylene ether and a brominated fire retardant compound
US9175160B2 (en) 2013-08-28 2015-11-03 Sabic Global Technologies B.V. Blend of poly(phenylene ether) particles and polyoxymethylene, article thereof, and method of preparation
US9243164B1 (en) 2012-02-21 2016-01-26 Park Electrochemical Corporation Thermosetting resin composition containing a polyphenylene ether and a brominated fire retardant compound
US9447227B2 (en) 2013-10-03 2016-09-20 Sabic Global Technologies B.V. Flexible polyurethane foam and associated method and article
US9493621B2 (en) 2013-07-23 2016-11-15 Sabic Global Technologies B.V. Rigid foam and associated article and method
CN107109048A (en) * 2014-11-19 2017-08-29 沙特基础工业全球技术有限公司 The method of clear coat composition, compound prepared therefrom and layered product and formation compound containing particle poly- (phenylene ether)
JP2018035217A (en) * 2016-08-29 2018-03-08 旭化成株式会社 Thermosetting resin composition, and prepreg, metal-clad laminate or printed wiring board using the same
KR20180048612A (en) 2015-08-26 2018-05-10 덴카 주식회사 Thermoconductive resin composition
WO2021059911A1 (en) * 2019-09-27 2021-04-01 パナソニックIpマネジメント株式会社 Resin composition, prepreg, resin-equipped film, resin-equipped metal foil, metal-cladded layered sheet, and wiring board

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009221039A (en) * 2008-03-14 2009-10-01 Shin Kobe Electric Mach Co Ltd Inorganic nitride particle and resin composition mixed with the same
JP2009221350A (en) * 2008-03-17 2009-10-01 Konica Minolta Opto Inc Resin composition, its production method, and optical element using the same
WO2010109948A1 (en) * 2009-03-26 2010-09-30 パナソニック電工株式会社 Epoxy resin composition, prepreg, metal foil with resin, resin sheet, laminate and multi-layer board
US10307990B2 (en) 2009-03-26 2019-06-04 Panasonic Intellectual Property Management Co., Ltd. Epoxy resin composition, prepreg, resin-coated metal foil, resin sheet, laminate and multilayer board
JP2011012193A (en) * 2009-07-03 2011-01-20 Denki Kagaku Kogyo Kk Resin composition and use thereof
WO2011152402A1 (en) * 2010-06-02 2011-12-08 三菱瓦斯化学株式会社 Resin composition, and prepreg and laminated sheet using same
JP5849948B2 (en) * 2010-06-02 2016-02-03 三菱瓦斯化学株式会社 Resin composition and prepreg and laminate using the same
US10017660B2 (en) 2010-06-02 2018-07-10 Mitsubishi Gas Chemical Company, Inc. Resin composition, and prepreg and laminated sheet using the same
WO2012001347A1 (en) 2010-06-29 2012-01-05 Ucl Business Plc Products with oral health benefits
WO2012026012A1 (en) 2010-08-26 2012-03-01 電気化学工業株式会社 Resin composition, molded object and substrate material both obtained from the resin composition, and circuit board including the substrate material
US8921458B2 (en) 2010-08-26 2014-12-30 Denki Kagaku Kogyo Kabushiki Kaisha Resin composition, molded object and substrate material both obtained from the resin composition, and circuit board including the substrate material
CN103717635A (en) * 2011-07-19 2014-04-09 松下电器产业株式会社 Resin composition, resin varnish, prepreg, metal-clad laminate, and printed wiring board
US9528026B2 (en) 2011-07-19 2016-12-27 Panasonic Intellectual Property Management Co., Ltd. Resin composition, resin varnish, prepreg, metal-clad laminate, and printed wiring board
US9051465B1 (en) 2012-02-21 2015-06-09 Park Electrochemical Corporation Thermosetting resin composition containing a polyphenylene ether and a brominated fire retardant compound
US9243164B1 (en) 2012-02-21 2016-01-26 Park Electrochemical Corporation Thermosetting resin composition containing a polyphenylene ether and a brominated fire retardant compound
JP2014139022A (en) * 2012-03-19 2014-07-31 Asahi Kasei E-Materials Corp Prepreg containing polyphenylene ether particle
JP5580952B2 (en) * 2012-03-19 2014-08-27 旭化成イーマテリアルズ株式会社 Prepreg containing polyphenylene ether particles
JP2015127144A (en) * 2012-03-19 2015-07-09 旭化成イーマテリアルズ株式会社 Prepreg containing polyphenylene ether particle
WO2013141255A1 (en) * 2012-03-19 2013-09-26 旭化成イーマテリアルズ株式会社 Prepreg comprising polyphenylene ether particles
KR101529453B1 (en) * 2012-03-19 2015-06-18 아사히 가세이 이-매터리얼즈 가부시키가이샤 Prepreg comprising polyphenylene ether particles
KR101505358B1 (en) 2012-03-19 2015-03-23 아사히 가세이 이-매터리얼즈 가부시키가이샤 Prepreg comprising polyphenylene ether particles
US9485861B2 (en) 2012-03-19 2016-11-01 Asahi Kasei E-Materials Corporation Prepreg comprising polyphenylene ether particles
US9258891B2 (en) 2012-03-19 2016-02-09 Asahi Kasei E-Materials Corporation Prepreg comprising polyphenylene ether particles
US9611385B2 (en) 2012-06-29 2017-04-04 Sabic Global Technologies B.V. Ultrafine poly(phenylene ether) particles and compositions derived therefrom
JP2015522087A (en) * 2012-06-29 2015-08-03 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Ultrafine poly (phenylene ether) particles and compositions derived therefrom
WO2014003818A1 (en) * 2012-06-29 2014-01-03 Sabic Innovative Plastics Ip B.V. Ultrafine poly(phenylene ether) particles and compositions derived therefrom
CN104411768A (en) * 2012-06-29 2015-03-11 沙特基础创新塑料Ip私人有限责任公司 Ultrafine poly(phenylene ether) particles and compositions derived therefrom
JP2016128589A (en) * 2012-06-29 2016-07-14 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Ultrafine poly(phenylene ether) particle and composition derived therefrom
US9493621B2 (en) 2013-07-23 2016-11-15 Sabic Global Technologies B.V. Rigid foam and associated article and method
US9175160B2 (en) 2013-08-28 2015-11-03 Sabic Global Technologies B.V. Blend of poly(phenylene ether) particles and polyoxymethylene, article thereof, and method of preparation
JP2016532726A (en) * 2013-10-03 2016-10-20 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Flexible polyurethane foam and related methods and articles
US9447227B2 (en) 2013-10-03 2016-09-20 Sabic Global Technologies B.V. Flexible polyurethane foam and associated method and article
CN107109048A (en) * 2014-11-19 2017-08-29 沙特基础工业全球技术有限公司 The method of clear coat composition, compound prepared therefrom and layered product and formation compound containing particle poly- (phenylene ether)
EP3221402A4 (en) * 2014-11-19 2018-06-06 SABIC Global Technologies B.V. Particulate poly(phenylene ether)-containing varnish composition, composite and laminate prepared therefrom, and method of forming composite
US10647877B2 (en) 2014-11-19 2020-05-12 Sabic Global Technologies B.V. Particulate poly(phenylene ether)-containing varnish composition, composite and laminate prepared therefrom, and method of forming composite
KR20180048612A (en) 2015-08-26 2018-05-10 덴카 주식회사 Thermoconductive resin composition
JP2018035217A (en) * 2016-08-29 2018-03-08 旭化成株式会社 Thermosetting resin composition, and prepreg, metal-clad laminate or printed wiring board using the same
WO2021059911A1 (en) * 2019-09-27 2021-04-01 パナソニックIpマネジメント株式会社 Resin composition, prepreg, resin-equipped film, resin-equipped metal foil, metal-cladded layered sheet, and wiring board
CN114402032A (en) * 2019-09-27 2022-04-26 松下知识产权经营株式会社 Resin composition, prepreg, film with resin, metal foil with resin, metal-foil-clad laminate, and wiring board
US20220389189A1 (en) * 2019-09-27 2022-12-08 Panasonic Intellectual Property Management Co., Ltd. Resin composition, prepreg, resin-equipped film, resin-equipped metal foil, metal-cladded layered sheet, and wiring board

Similar Documents

Publication Publication Date Title
JP2008050526A (en) Resin composition, prepreg and laminated board using the same
JP6754999B2 (en) Resin composition, low dielectric constant resin sheet, prepreg, metal foil laminated board, high frequency circuit board and multilayer wiring board
TWI665240B (en) Prepreg and metal-clad laminated board, printed wiring board
KR101677736B1 (en) Thermosetting resin composition for semiconductor package and Prepreg and Metal Clad laminate using the same
JP6512521B2 (en) Laminated board, metal-clad laminated board, printed wiring board, multilayer printed wiring board
JP2009138201A (en) Resin composition for printed wiring board, prepreg, laminate, and printed wiring board using the same
WO2014132654A1 (en) Resin composition for printed wiring board, prepreg and metal-clad laminate
JP6981634B2 (en) A resin composition, a prepreg containing the resin composition, a laminated board containing the resin composition, and a resin-attached metal foil containing the resin composition.
JP5260400B2 (en) Multilayer board for producing multilayer printed wiring boards
JP5260458B2 (en) Epoxy resin composition for prepreg and prepreg, laminate and multilayer board using the same
JP5547032B2 (en) Thermally conductive resin composition, resin sheet, prepreg, metal laminate and printed wiring board
JP4915549B2 (en) Resin composition for printed wiring board, prepreg and laminate using the same
JP2015229763A (en) Resin composition, prepreg, metal-clad laminate sheet, printed wiring board
CN109486111B (en) Thermosetting resin composition and application thereof
JP2008127530A (en) Epoxy resin composition, prepreg, metal-clad laminate, printed wiring board and multilayer printed wiring board
JP2005209489A (en) Insulation sheet
JP4487590B2 (en) Resin composition used for production of laminate, prepreg and laminate using the same
JP4858359B2 (en) Epoxy resin composition for prepreg, prepreg, laminate and printed wiring board using the same
JPH11181124A (en) Prepreg
KR101420542B1 (en) Epoxy resin composition for insulating film, insulating film for printed circuit board and manufacturing method thereof and printed circuit board having the same
JP5410804B2 (en) Epoxy resin composition, prepreg, laminate, and multilayer board
JP6695074B2 (en) Resin composition, prepreg, metal foil with resin, metal-clad laminate and wiring board
WO2013150753A1 (en) Epoxy resin composition, prepreg, laminate, and printed wiring board
JPH11181123A (en) Prepreg
KR20140002354A (en) Composition, insulating film made therefrom, and multilayer printed circuit boards having the same