WO2013150753A1 - Epoxy resin composition, prepreg, laminate, and printed wiring board - Google Patents

Epoxy resin composition, prepreg, laminate, and printed wiring board Download PDF

Info

Publication number
WO2013150753A1
WO2013150753A1 PCT/JP2013/002161 JP2013002161W WO2013150753A1 WO 2013150753 A1 WO2013150753 A1 WO 2013150753A1 JP 2013002161 W JP2013002161 W JP 2013002161W WO 2013150753 A1 WO2013150753 A1 WO 2013150753A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
epoxy resin
filler
resin composition
prepreg
Prior art date
Application number
PCT/JP2013/002161
Other languages
French (fr)
Japanese (ja)
Inventor
充修 西野
清孝 古森
中村 善彦
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201380018074.1A priority Critical patent/CN104220521A/en
Publication of WO2013150753A1 publication Critical patent/WO2013150753A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles

Definitions

  • the present invention relates to an epoxy resin composition, a prepreg, a laminate, and a printed wiring board used for the production of a printed wiring board.
  • a prepreg which is a material of a printed wiring board
  • a prepreg made of a glass composition filler, a glass cloth, and a matrix resin is known (for example, see Patent Document 1).
  • a glass composition filler having an average particle diameter of 2.0 ⁇ m or less and a CaO content of 5% by mass or more is used. Further, in this prepreg, the filling amount of the glass composition filler with respect to the total volume of the glass composition filler and the matrix resin is 10 to 70 vol%. Thus, flame retardance, drill workability, and heat resistance are improved by using a specific glass composition filler.
  • the present invention has been made in view of the above points, and an object thereof is to provide an epoxy resin composition, a prepreg, a laminated board, and a printed wiring board excellent in drill workability, through-hole connection reliability, and heat resistance. To do.
  • the epoxy resin composition according to the present invention includes an epoxy resin, a curing agent having a phenolic hydroxyl group, and an epoxy resin composition containing a filler, and the filling with respect to a total of 100 parts by mass of the epoxy resin and the curing agent.
  • the material contains 15-50 parts by weight of a glassy filler and 15-50 parts by weight of a metal hydroxide, and the glassy filler contains 53% by mass or more of SiO 2 and 13 parts by weight of Al 2 O 3. % Of SiO 2 and Al 2 O 3 in a total of 75 to 80% by mass, the average particle size is 0.5 to 10 ⁇ m, and the metal hydroxide has a heat loss at 400 ° C. of 10% by mass. It is the above, It is characterized by the above.
  • the epoxy resin composition preferably contains 0.2 to 2.0% by mass of a silane compound having at least one of an amino group, an epoxy group, and an isocyanate group based on the glassy filler.
  • the prepreg according to the present invention is characterized in that the epoxy resin composition is impregnated into a base material and semi-cured.
  • the laminate according to the present invention is formed by laminating the prepreg.
  • the printed wiring board according to the present invention is characterized in that a conductive pattern is provided on the laminated board.
  • an epoxy resin composition excellent in drill workability, through-hole connection reliability, and heat resistance can be obtained.
  • the epoxy resin composition according to the present invention contains the following epoxy resin, a curing agent having a phenolic hydroxyl group, and a filler as essential components. Furthermore, it is preferable to contain a flame retardant such as a halogen flame retardant and a phosphorus flame retardant. Thereby, sufficient flame retardance can be obtained about a prepreg, a laminated board, and a printed wiring board.
  • a flame retardant such as a halogen flame retardant and a phosphorus flame retardant.
  • an epoxy resin for example, bromine containing epoxy resins, such as brominated bisphenol A type epoxy resin, phosphorus containing epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol Use novolac epoxy resin, cresol novolac epoxy resin, bisphenol A novolac epoxy resin, biphenyl epoxy resin, alicyclic epoxy resin, diglycidyl ether compound of polyfunctional phenol, diglycidyl ether compound of polyfunctional alcohol, etc. Can do.
  • An epoxy resin can use only 1 type, or can use 2 or more types together.
  • a preferable epoxy equivalent of the epoxy resin is 100 to 1000 g / eq.
  • the curing agent is not particularly limited as long as it has a phenolic hydroxyl group.
  • Polyfunctional phenol resins, bromine-containing phenol resins, phosphorus-containing phenol resins and the like can be used. Only one type of curing agent can be used, or two or more types can be used in combination.
  • the curing agent contains halogen or phosphorus, an epoxy resin composition excellent in flame retardancy can be obtained.
  • the preferred hydroxyl equivalent of the curing agent is 50 to 1000 g / eq.
  • the epoxy resin and the curing agent are preferably reacted so that the equivalent ratio is 0.5 to 1.5, more preferably the equivalent ratio is 0.8 to 1.2.
  • the equivalent ratio of the curing agent to the epoxy resin is within the above range, insufficient curing and deterioration of physical properties of the epoxy resin composition can be suppressed.
  • a glassy filler and a metal hydroxide are used as the filler.
  • SiO 2 53% by mass or more, Al 2 O 3 of 13 wt% or more, SiO 2 and Al 2 O 3 contains a total of 75-80 wt%, an average particle size of 0 Use 5-10 ⁇ m.
  • SiO 2 is a component that forms the skeleton of the glass structure of the vitreous filler, and the content of SiO 2 needs to be 53% by mass or more in order to sufficiently obtain the strength of the glass structure.
  • Al 2 O 3 is a component effective to obtain a chemical and mechanical stability in the glass structure of the glass filler, in order to obtain a chemical and mechanical properties of the glass structure sufficient Al 2 O The content of 3 needs to be 13% by mass or more.
  • the coefficient of thermal expansion tends to increase, and heat resistance such as through-hole connection reliability and reflow heat resistance decreases.
  • the total content of SiO 2 and Al 2 O 3 exceeds 80% by mass, the drill workability is lowered and the drill is likely to be worn.
  • B 2 O 3 , CaO, MgO and the like may be contained in the glass filler.
  • the average particle diameter of the glassy filler is less than 0.5 ⁇ m, the viscosity of the epoxy resin composition increases, and sufficient moldability cannot be obtained.
  • the average particle size means the particle size at an integrated value of 50% in the particle size distribution obtained by the laser diffraction / scattering method.
  • the glassy filler as described above is a glass raw material containing SiO 2 and Al 2 O 3 in the above content in the above average particle size in a wet manner using a ball mill or a bead mill in distilled water or ion-exchanged water. It can be obtained by grinding until Moisture adhering to the pulverized glass filler is removed by heat drying.
  • the metal hydroxide one having a heat loss at 400 ° C. of 10% by mass or more (the upper limit is 50% by mass) is used.
  • aluminum hydroxide or magnesium hydroxide can be used.
  • boehmite a material with a weight loss of less than 10% by mass such as boehmite is used, the drill workability is lowered and the drill is easily worn.
  • boehmite alumina monohydrate represented by the composition of AlOOH or Al 2 O 3 ⁇ H 2 O .
  • the glass filler is contained in an amount of 15 to 50 parts by mass and the metal hydroxide is contained in an amount of 15 to 50 parts by mass with respect to 100 parts by mass in total of the epoxy resin and the curing agent.
  • the glass filler content is less than 15 parts by mass, the coefficient of thermal expansion tends to increase, and heat resistance such as through-hole connection reliability and reflow heat resistance decreases.
  • the content of the glass filler exceeds 50 parts by mass, the moldability of the prepreg deteriorates.
  • the content of the metal hydroxide is less than 15 parts by mass, the drill workability is lowered and the drill is easily worn. Conversely, when the content of the metal hydroxide exceeds 50 parts by mass, the moldability of the prepreg is lowered.
  • the epoxy resin composition contains 0.2 to 2.0% by mass of a silane compound (coupling agent) having at least one of an amino group, an epoxy group, and an isocyanate group with respect to the glassy filler.
  • a silane compound (coupling agent) having at least one of an amino group, an epoxy group, and an isocyanate group with respect to the glassy filler.
  • the silane compound is not particularly limited as long as it has at least one of an amino group, an epoxy group, and an isocyanate group.
  • aminosilane such as 3-aminopropyltriethoxysilane, ⁇ -glycidpropyl Epoxy silanes such as methyldiethoxysilane and isocyanate silanes such as 3-isocyanatopropyltriethoxysilane can be used.
  • the adhesion between organic substances (epoxy resins and curing agents, etc.) and inorganic substances (fillers, etc.) is strengthened, and heat resistance such as reflow heat resistance. Can be further improved.
  • the effect of improving the heat resistance is saturated when the content of the silane compound is about 2.0% by mass.
  • the epoxy resin composition may contain a curing accelerator such as 2-ethyl-4-methylimidazole (2E4MZ) in order to promote the reaction between the epoxy resin and the curing agent.
  • a curing accelerator such as 2-ethyl-4-methylimidazole (2E4MZ) in order to promote the reaction between the epoxy resin and the curing agent.
  • the epoxy resin composition is blended with the above epoxy resin, curing agent, filler, silane compound and curing accelerator as necessary, diluted with an appropriate solvent, and stirred with a stirrer such as a disper.
  • a stirrer such as a disper.
  • It can be prepared as a resin varnish by mixing and homogenizing.
  • the solvent for example, ethers such as ethylene glycol monomethyl ether, ketones such as acetone and methyl ethyl ketone, alcohols such as methanol and ethanol, aromatic hydrocarbons such as benzene and toluene, and the like can be used.
  • the dilution with a solvent is preferably carried out so that the solid content (non-solvent component) concentration is 60 to 80% by mass.
  • the prepreg is obtained by impregnating a substrate such as a glass cloth with the resin varnish of the epoxy resin composition obtained as described above, and drying by heating at 130 to 170 ° C. to remove the solvent in the resin varnish. It can be produced by semi-curing the epoxy resin composition. Heat drying is preferably performed so that the gel time of the prepreg is 115 to 125 seconds.
  • the gel time of the prepreg is the time from immediately after placing the resin collected from the prepreg on a plate heated to 170 ° C. until the resin is gelled.
  • the amount of resin in the prepreg is preferably 65 to 300 parts by mass with respect to 100 parts by mass of the base material.
  • the laminated plate is formed by laminating a plurality of prepregs obtained as described above.
  • a laminate is manufactured as a metal-clad laminate such as a copper-clad laminate by laminating a plurality of prepregs and a metal foil such as a copper foil on the outside and laminating the laminate by heating and pressing it.
  • the heating and pressing conditions are, for example, 140 to 200 ° C., 0.5 to 5.0 MPa, and 40 to 240 minutes.
  • the printed wiring board is formed by providing a conductor pattern on the laminated board obtained as described above.
  • a printed wiring board can be manufactured by forming a conductor pattern on the surface of a metal-clad laminate using a subtractive method.
  • this printed wiring board is used as a core material (inner layer material)
  • a multilayer printed wiring board can be manufactured. That is, the conductor pattern (inner layer pattern) of the core material is roughened by black oxidation or the like, and then a metal foil is stacked on the surface of the core material via a prepreg, and this is heated and pressed to be laminated.
  • the heating and pressing conditions at this time are, for example, 140 to 200 ° C., 0.5 to 5.0 MPa, and 40 to 240 minutes.
  • a subtractive method is used to form a conductor pattern (outer layer pattern) and plating the inner wall of the hole to form a through hole.
  • a printed wiring board can be manufactured.
  • the number of layers of the printed wiring board is not particularly limited.
  • the insulating layer is formed using an epoxy resin composition containing a predetermined curing agent and filler, the drill is less likely to be worn when drilling. Moreover, since the above-mentioned epoxy resin composition has a small coefficient of thermal expansion, the resistance value of the through hole hardly changes and the connection reliability is high. Furthermore, the printed wiring board described above is less prone to blistering when soldering components at a high temperature by, for example, a reflow method.
  • Epoxy resin “Epiclon 1121” (epoxy equivalent: 450 to 530 g / eq, bromine content: 19 to 22% by mass, about 2 intramolecular average epoxy group content, molecule, brominated bisphenol A type epoxy resin manufactured by DIC Corporation In which nitrogen is not contained).
  • VH4170 (hydroxyl equivalent: 118 g / eq, resin softening point 105 ° C., bifunctional bisphenol A content is about 25%), which is a bisphenol A type novolac resin, manufactured by DIC Corporation was used.
  • the glassy filler (1) is SiO 2 (55% by mass), Al 2 O 3 (15% by mass), B 2 O 3 (7% by mass), CaO (20% by mass), MgO (3% by mass). Was obtained by pulverizing for 1 hour in a distilled water using a ball mill until the average particle size became 2 ⁇ m.
  • the glassy filler (2) is a distilled glass raw material containing SiO 2 (58% by mass), Al 2 O 3 (17% by mass), B 2 O 3 (12% by mass), and CaO (13% by mass). It was obtained by wet milling in water using a ball mill for 1 hour until the average particle size reached 2 ⁇ m.
  • the glassy filler (3) is a distilled glass raw material containing SiO 2 (62% by mass), Al 2 O 3 (18% by mass), B 2 O 3 (12% by mass), and CaO (8% by mass). It was obtained by wet milling in water using a ball mill for 1 hour until the average particle size reached 2 ⁇ m.
  • the glassy filler (4) is composed of a glass raw material containing SiO 2 (65% by mass), Al 2 O 3 (25% by mass), and MgO (10% by mass) in an average particle size by using a ball mill in distilled water. It was obtained by grinding for 1 hour until the diameter reached 2 ⁇ m.
  • metal hydroxide aluminum hydroxide (“C-303” manufactured by Sumitomo Chemical Co., Ltd., loss of heat of 35% by mass at 400 ° C., average particle size of about 4 ⁇ m), magnesium hydroxide (manufactured by Sakai Chemical Industry Co., Ltd.) “MGZ-6R”, heat loss of 31% by mass at 400 ° C., average particle size of about 1.5 ⁇ m, boehmite (“AOH60” manufactured by Navaltech), heat loss of 5% by mass at 400 ° C., average particle size of about 0.9 ⁇ m ) was used.
  • isocyanate silane “KBE-9007” manufactured by Shin-Etsu Chemical Co., Ltd., which is 3-isocyanatopropyltriethoxysilane, was used.
  • vinyl silane “KBE-1003” manufactured by Shin-Etsu Chemical Co., Ltd., which is vinyltriethoxysilane, was used.
  • the prepreg is impregnated with the resin varnish of the above epoxy resin composition into a glass cloth (“7628 type cloth” manufactured by Nitto Boseki Co., Ltd.) as a base material, and is heated and dried at 170 ° C. by a non-contact type heating unit Then, the solvent in the resin varnish was removed and the epoxy resin composition was semi-cured.
  • the amount of resin in the prepreg is 100 parts by mass with respect to 100 parts by mass of the base material.
  • the laminated plate is composed of 5 sheets of prepreg (340mm x 510mm) and copper foil (Nikko Gould Foil Co., Ltd., thickness 35 ⁇ m, JTC foil) with a roughened surface on both sides. It was manufactured as a copper clad laminate by pressurizing and molding. The heating and pressing conditions are 170 ° C., 2.94 MPa, and 90 minutes.
  • a core material (inner layer material) was manufactured by forming a conductor pattern (inner layer pattern) on the surface of the copper clad laminate using a subtractive method. Furthermore, after roughening the inner layer pattern of this core material with multibond (manufactured by Nihon McDermid Co., Ltd.), copper foil (made by Nikko Gould Foil Co., Ltd., thickness 35 ⁇ m) on both sides of this core material via prepreg , JTC foil), and this was heated and pressed to form a laminate. The heating and pressing conditions at this time are also 170 ° C., 2.94 MPa, and 90 minutes.
  • a four-layer printed wiring board was manufactured by forming a through hole by performing 25 ⁇ m).

Abstract

The present invention provides an epoxy resin composition, prepreg, laminate, and printed wiring board offering excellent drillability, through-hole-connection reliability, and heat resistance. The present invention pertains to an epoxy resin composition containing an epoxy resin, a curing agent having a phenolic hydroxyl group, and a filler. The epoxy resin composition contains, as the filler, 15-50 parts by mass of a glassy filler and 15-50 parts by mass of a metallic hydroxide relative to 100 parts by mass in total of the epoxy resin and curing agent. The glassy filler contains 53 percent by mass or more of SiO2, 13 percent by mass of Al2O3, and 75-80 percent by mass in total of SiO2 and Al2O3, the mean particle size being 0.5-10 μm. The metallic hydroxide has a thermal reduction at 400°C of 10 percent by mass or greater.

Description

エポキシ樹脂組成物、プリプレグ、積層板、プリント配線板Epoxy resin composition, prepreg, laminate, printed wiring board
 本発明は、プリント配線板の製造に用いられるエポキシ樹脂組成物、プリプレグ、積層板、プリント配線板に関するものである。 The present invention relates to an epoxy resin composition, a prepreg, a laminate, and a printed wiring board used for the production of a printed wiring board.
 従来、プリント配線板の材料であるプリプレグとして、ガラス組成フィラー、ガラスクロス、マトリックス樹脂からなるものが知られている(例えば、特許文献1参照)。 Conventionally, as a prepreg which is a material of a printed wiring board, a prepreg made of a glass composition filler, a glass cloth, and a matrix resin is known (for example, see Patent Document 1).
 特に特許文献1に記載のプリプレグでは、ガラス組成フィラーとして、平均粒子径が2.0μm以下であり、かつ、CaO含量が5質量%以上であるものが用いられている。さらにこのプリプレグでは、ガラス組成フィラーとマトリックス樹脂の合計体積に対するガラス組成フィラーの充填量が10~70vol%である。このように、特定のガラス組成フィラーを用いることにより、難燃性、ドリル加工性及び耐熱性を向上させている。 Particularly, in the prepreg described in Patent Document 1, a glass composition filler having an average particle diameter of 2.0 μm or less and a CaO content of 5% by mass or more is used. Further, in this prepreg, the filling amount of the glass composition filler with respect to the total volume of the glass composition filler and the matrix resin is 10 to 70 vol%. Thus, flame retardance, drill workability, and heat resistance are improved by using a specific glass composition filler.
国際公開第2011/034055号([0022]、[0023])International Publication No. 2011/034055 ([0022], [0023])
 しかし、CaOを5質量%以上含むEガラスが、ドリル加工性及び耐熱性に優れているとしても、このようなEガラスは、熱膨張係数(CTE:Coefficient of thermal expansion)が大きいので、スルーホール接続信頼性に悪影響を及ぼすおそれがある。 However, even though E glass containing 5% by mass or more of CaO is excellent in drilling workability and heat resistance, such E glass has a large coefficient of thermal expansion (CTE: Coefficient of thermal expansion). Connection reliability may be adversely affected.
 本発明は上記の点に鑑みてなされたものであり、ドリル加工性、スルーホール接続信頼性、耐熱性に優れたエポキシ樹脂組成物、プリプレグ、積層板、プリント配線板を提供することを目的とするものである。 The present invention has been made in view of the above points, and an object thereof is to provide an epoxy resin composition, a prepreg, a laminated board, and a printed wiring board excellent in drill workability, through-hole connection reliability, and heat resistance. To do.
 本発明に係るエポキシ樹脂組成物は、エポキシ樹脂、フェノール性水酸基を有する硬化剤、充填材を含有するエポキシ樹脂組成物において、前記エポキシ樹脂及び前記硬化剤の合計100質量部に対して、前記充填材として、ガラス性充填材を15~50質量部及び金属水酸化物を15~50質量部含有すると共に、前記ガラス性充填材が、SiOを53質量%以上、Alを13質量%以上、SiO及びAlを合計75~80質量%含有し、平均粒径が0.5~10μmのものであり、前記金属水酸化物が、400℃における熱減量が10質量%以上のものであることを特徴とするものである。 The epoxy resin composition according to the present invention includes an epoxy resin, a curing agent having a phenolic hydroxyl group, and an epoxy resin composition containing a filler, and the filling with respect to a total of 100 parts by mass of the epoxy resin and the curing agent. The material contains 15-50 parts by weight of a glassy filler and 15-50 parts by weight of a metal hydroxide, and the glassy filler contains 53% by mass or more of SiO 2 and 13 parts by weight of Al 2 O 3. % Of SiO 2 and Al 2 O 3 in a total of 75 to 80% by mass, the average particle size is 0.5 to 10 μm, and the metal hydroxide has a heat loss at 400 ° C. of 10% by mass. It is the above, It is characterized by the above.
 前記エポキシ樹脂組成物において、アミノ基、エポキシ基、イソシアネート基の少なくともいずれかを有するシラン化合物を前記ガラス性充填材に対して0.2~2.0質量%含有することが好ましい。 The epoxy resin composition preferably contains 0.2 to 2.0% by mass of a silane compound having at least one of an amino group, an epoxy group, and an isocyanate group based on the glassy filler.
 本発明に係るプリプレグは、前記エポキシ樹脂組成物が基材に含浸されて半硬化したものであることを特徴とするものである。 The prepreg according to the present invention is characterized in that the epoxy resin composition is impregnated into a base material and semi-cured.
 本発明に係る積層板は、前記プリプレグを積層して形成されていることを特徴とするものである。 The laminate according to the present invention is formed by laminating the prepreg.
 本発明に係るプリント配線板は、前記積層板に導体パターンを設けて形成されていることを特徴とするものである。 The printed wiring board according to the present invention is characterized in that a conductive pattern is provided on the laminated board.
 本発明によれば、ドリル加工性、スルーホール接続信頼性、耐熱性に優れたエポキシ樹脂組成物を得ることができるものである。 According to the present invention, an epoxy resin composition excellent in drill workability, through-hole connection reliability, and heat resistance can be obtained.
 以下、本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described.
 本発明に係るエポキシ樹脂組成物は、次のようなエポキシ樹脂、フェノール性水酸基を有する硬化剤、充填材を必須成分として含有する。さらにハロゲン系難燃剤及びリン系難燃剤等の難燃剤を含有することが好ましい。これによりプリプレグ、積層板、プリント配線板について十分な難燃性を得ることができる。 The epoxy resin composition according to the present invention contains the following epoxy resin, a curing agent having a phenolic hydroxyl group, and a filler as essential components. Furthermore, it is preferable to contain a flame retardant such as a halogen flame retardant and a phosphorus flame retardant. Thereby, sufficient flame retardance can be obtained about a prepreg, a laminated board, and a printed wiring board.
 すなわち、エポキシ樹脂としては、特に限定されるものではないが、例えば、臭素化ビスフェノールA型エポキシ樹脂等の臭素含有エポキシ樹脂、リン含有エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、脂環式エポキシ樹脂、多官能フェノールのジグリシジルエーテル化合物、多官能アルコールのジグリシジルエーテル化合物等を用いることができる。エポキシ樹脂は1種のみを用いたり、2種以上を併用したりすることができる。特にエポキシ樹脂がハロゲンやリンを含有していると、難燃性に優れたエポキシ樹脂組成物を得ることができる。エポキシ樹脂の好ましいエポキシ当量は100~1000g/eqである。 That is, although it does not specifically limit as an epoxy resin, For example, bromine containing epoxy resins, such as brominated bisphenol A type epoxy resin, phosphorus containing epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol Use novolac epoxy resin, cresol novolac epoxy resin, bisphenol A novolac epoxy resin, biphenyl epoxy resin, alicyclic epoxy resin, diglycidyl ether compound of polyfunctional phenol, diglycidyl ether compound of polyfunctional alcohol, etc. Can do. An epoxy resin can use only 1 type, or can use 2 or more types together. In particular, when the epoxy resin contains halogen or phosphorus, an epoxy resin composition excellent in flame retardancy can be obtained. A preferable epoxy equivalent of the epoxy resin is 100 to 1000 g / eq.
 また硬化剤としては、フェノール性水酸基を有するものであれば特に限定されるものではないが、例えば、ビスフェノールA型ノボラック樹脂、ビスフェノールF型ノボラック樹脂、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビフェニル型フェノール樹脂、多官能フェノール樹脂、臭素含有フェノール樹脂、リン含有フェノール樹脂等を用いることができる。硬化剤は1種のみを用いたり、2種以上を併用したりすることができる。特に硬化剤がハロゲンやリンを含有していると、難燃性に優れたエポキシ樹脂組成物を得ることができる。硬化剤の好ましい水酸基当量は50~1000g/eqである。 Further, the curing agent is not particularly limited as long as it has a phenolic hydroxyl group. Polyfunctional phenol resins, bromine-containing phenol resins, phosphorus-containing phenol resins and the like can be used. Only one type of curing agent can be used, or two or more types can be used in combination. In particular, when the curing agent contains halogen or phosphorus, an epoxy resin composition excellent in flame retardancy can be obtained. The preferred hydroxyl equivalent of the curing agent is 50 to 1000 g / eq.
 エポキシ樹脂及び硬化剤は、好ましくは当量比が0.5~1.5、より好ましくは当量比が0.8~1.2となるように反応させる。エポキシ樹脂に対する硬化剤の当量比が上記の範囲内であることによって、エポキシ樹脂組成物の硬化不足や物性低下を抑制することができる。 The epoxy resin and the curing agent are preferably reacted so that the equivalent ratio is 0.5 to 1.5, more preferably the equivalent ratio is 0.8 to 1.2. When the equivalent ratio of the curing agent to the epoxy resin is within the above range, insufficient curing and deterioration of physical properties of the epoxy resin composition can be suppressed.
 また充填材としては、ガラス性充填材及び金属水酸化物を用いる。 Also, as the filler, a glassy filler and a metal hydroxide are used.
 ここで、ガラス性充填材としては、SiOを53質量%以上、Alを13質量%以上、SiO及びAlを合計75~80質量%含有し、平均粒径が0.5~10μmのものを用いる。SiOはガラス性充填材のガラス構造の骨格を形成する成分であり、ガラス構造の強度を十分に得るためにはSiOの含有量は53質量%以上であることが必要である。Alはガラス性充填材のガラス構造において化学的及び機械的な安定性を得るために有効な成分であり、ガラス構造の化学的及び機械的特性を十分に得るためにはAlの含有量は13質量%以上であることが必要である。SiO及びAlの合計の含有量が75質量%未満であると、熱膨張係数が大きくなりやすくなり、スルーホール接続信頼性や、リフロー耐熱性等の耐熱性が低下する。逆にSiO及びAlの合計の含有量が80質量%を超えると、ドリル加工性が低下してドリルが磨耗しやすくなる。ガラス性充填材には、SiO及びAlのほか、例えば、B、CaO、MgO等が含有されていてもよい。ガラス性充填材の平均粒径が0.5μm未満であると、エポキシ樹脂組成物の粘度が上昇し、十分な成形性を得ることができない。逆にガラス性充填材の平均粒径が10μmを超えると、導体パターンの微細化に悪影響を及ぼすと共に、プリント配線板において絶縁層を薄く形成すると絶縁信頼性が低下しやすくなる。なお、平均粒径は、レーザー回折・散乱法によって求めた粒度分布における積算値50%での粒径を意味する。 Here, as the glass filler, SiO 2 53% by mass or more, Al 2 O 3 of 13 wt% or more, SiO 2 and Al 2 O 3 contains a total of 75-80 wt%, an average particle size of 0 Use 5-10 μm. SiO 2 is a component that forms the skeleton of the glass structure of the vitreous filler, and the content of SiO 2 needs to be 53% by mass or more in order to sufficiently obtain the strength of the glass structure. Al 2 O 3 is a component effective to obtain a chemical and mechanical stability in the glass structure of the glass filler, in order to obtain a chemical and mechanical properties of the glass structure sufficient Al 2 O The content of 3 needs to be 13% by mass or more. When the total content of SiO 2 and Al 2 O 3 is less than 75% by mass, the coefficient of thermal expansion tends to increase, and heat resistance such as through-hole connection reliability and reflow heat resistance decreases. On the other hand, if the total content of SiO 2 and Al 2 O 3 exceeds 80% by mass, the drill workability is lowered and the drill is likely to be worn. In addition to SiO 2 and Al 2 O 3 , for example, B 2 O 3 , CaO, MgO and the like may be contained in the glass filler. When the average particle diameter of the glassy filler is less than 0.5 μm, the viscosity of the epoxy resin composition increases, and sufficient moldability cannot be obtained. On the contrary, if the average particle diameter of the glass filler exceeds 10 μm, it adversely affects the miniaturization of the conductor pattern, and if the insulating layer is formed thin on the printed wiring board, the insulation reliability tends to be lowered. The average particle size means the particle size at an integrated value of 50% in the particle size distribution obtained by the laser diffraction / scattering method.
 上記のようなガラス性充填材は、SiO及びAlを上記の含有量で含有するガラス原料を蒸留水又はイオン交換水中においてボールミルやビーズミル等を用いて湿式で上記の平均粒径になるまで粉砕することによって得ることができる。粉砕後のガラス性充填材に付着している水分は加熱乾燥により除去する。 The glassy filler as described above is a glass raw material containing SiO 2 and Al 2 O 3 in the above content in the above average particle size in a wet manner using a ball mill or a bead mill in distilled water or ion-exchanged water. It can be obtained by grinding until Moisture adhering to the pulverized glass filler is removed by heat drying.
 また金属水酸化物としては、400℃における熱減量が10質量%以上(上限は50質量%)のものを用いる。例えば、水酸化アルミニウムや水酸化マグネシウム等を用いることができる。ベーマイト(Boehmite)のように熱減量が10質量%未満のものを用いると、ドリル加工性が低下してドリルが磨耗しやすくなる。なお、ベーマイトはAlOOH又はAl・HOの組成で示されるアルミナ1水和物である。 As the metal hydroxide, one having a heat loss at 400 ° C. of 10% by mass or more (the upper limit is 50% by mass) is used. For example, aluminum hydroxide or magnesium hydroxide can be used. When a material with a weight loss of less than 10% by mass such as boehmite is used, the drill workability is lowered and the drill is easily worn. Note that boehmite alumina monohydrate represented by the composition of AlOOH or Al 2 O 3 · H 2 O .
 エポキシ樹脂及び硬化剤の合計100質量部に対して、ガラス性充填材は15~50質量部及び金属水酸化物は15~50質量部含有する。ガラス性充填材の含有量が15質量部未満であると、熱膨張係数が大きくなりやすくなり、スルーホール接続信頼性や、リフロー耐熱性等の耐熱性が低下する。逆にガラス性充填材の含有量が50質量部を超えると、プリプレグの成形性が低下する。金属水酸化物の含有量が15質量部未満であると、ドリル加工性が低下してドリルが磨耗しやすくなる。逆に金属水酸化物の含有量が50質量部を超えると、プリプレグの成形性が低下する。 The glass filler is contained in an amount of 15 to 50 parts by mass and the metal hydroxide is contained in an amount of 15 to 50 parts by mass with respect to 100 parts by mass in total of the epoxy resin and the curing agent. When the glass filler content is less than 15 parts by mass, the coefficient of thermal expansion tends to increase, and heat resistance such as through-hole connection reliability and reflow heat resistance decreases. On the other hand, when the content of the glass filler exceeds 50 parts by mass, the moldability of the prepreg deteriorates. When the content of the metal hydroxide is less than 15 parts by mass, the drill workability is lowered and the drill is easily worn. Conversely, when the content of the metal hydroxide exceeds 50 parts by mass, the moldability of the prepreg is lowered.
 エポキシ樹脂組成物には、アミノ基、エポキシ基、イソシアネート基の少なくともいずれかを有するシラン化合物(カップリング剤)をガラス性充填材に対して0.2~2.0質量%含有されていることが好ましい。シラン化合物としては、アミノ基、エポキシ基、イソシアネート基の少なくともいずれかを有するものであれば特に限定されるものではないが、例えば、3-アミノプロピルトリエトキシシラン等のアミノシラン、γ-グリシドプロピルメチルジエトキシシラン等のエポキシシラン、3-イソシアネートプロピルトリエトキシシラン等のイソシアネートシランを用いることができる。このようなシラン化合物が0.2質量%以上含有されていることによって、有機物(エポキシ樹脂及び硬化剤等)と無機物(充填材等)との密着力が強化され、リフロー耐熱性等の耐熱性をさらに向上させることができるものである。この耐熱性向上の効果は、シラン化合物の含有量が2.0質量%程度で飽和する。 The epoxy resin composition contains 0.2 to 2.0% by mass of a silane compound (coupling agent) having at least one of an amino group, an epoxy group, and an isocyanate group with respect to the glassy filler. Is preferred. The silane compound is not particularly limited as long as it has at least one of an amino group, an epoxy group, and an isocyanate group. For example, aminosilane such as 3-aminopropyltriethoxysilane, γ-glycidpropyl Epoxy silanes such as methyldiethoxysilane and isocyanate silanes such as 3-isocyanatopropyltriethoxysilane can be used. By containing 0.2% by mass or more of such a silane compound, the adhesion between organic substances (epoxy resins and curing agents, etc.) and inorganic substances (fillers, etc.) is strengthened, and heat resistance such as reflow heat resistance. Can be further improved. The effect of improving the heat resistance is saturated when the content of the silane compound is about 2.0% by mass.
 エポキシ樹脂組成物には、エポキシ樹脂と硬化剤との反応を促進させるため、2-エチル-4-メチルイミダゾール(2E4MZ)等の硬化促進剤が含有されていてもよい。 The epoxy resin composition may contain a curing accelerator such as 2-ethyl-4-methylimidazole (2E4MZ) in order to promote the reaction between the epoxy resin and the curing agent.
 そして、エポキシ樹脂組成物は、上記のエポキシ樹脂、硬化剤、充填材、必要に応じてシラン化合物、硬化促進剤を配合し、適当な溶媒で希釈して、これをディスパー等の攪拌機で攪拌・混合して均一化することによって樹脂ワニスとして調製することができる。溶媒としては、例えば、エチレングリコールモノメチルエーテル等のエーテル類、アセトン、メチルエチルケトン等のケトン類、メタノール、エタノール等のアルコール類、ベンゼン、トルエン等の芳香族炭化水素類等を用いることができる。溶媒による希釈は、固形分(非溶媒成分)濃度が60~80質量%となるように行うことが好ましい。 Then, the epoxy resin composition is blended with the above epoxy resin, curing agent, filler, silane compound and curing accelerator as necessary, diluted with an appropriate solvent, and stirred with a stirrer such as a disper. It can be prepared as a resin varnish by mixing and homogenizing. As the solvent, for example, ethers such as ethylene glycol monomethyl ether, ketones such as acetone and methyl ethyl ketone, alcohols such as methanol and ethanol, aromatic hydrocarbons such as benzene and toluene, and the like can be used. The dilution with a solvent is preferably carried out so that the solid content (non-solvent component) concentration is 60 to 80% by mass.
 またプリプレグは、上記のようにして得られたエポキシ樹脂組成物の樹脂ワニスをガラスクロス等の基材に含浸させ、これを130~170℃で加熱乾燥し、樹脂ワニス中の溶媒を除去して、エポキシ樹脂組成物を半硬化させることによって製造することができる。加熱乾燥は、プリプレグのゲルタイムが115~125秒となるように行うことが好ましい。プリプレグのゲルタイムは、プリプレグから採取した樹脂を170℃に加熱されたプレート上に置いた直後から上記の樹脂がゲル化するまでの時間である。プリプレグにおける樹脂量は、基材100質量部に対して、65~300質量部であることが好ましい。 The prepreg is obtained by impregnating a substrate such as a glass cloth with the resin varnish of the epoxy resin composition obtained as described above, and drying by heating at 130 to 170 ° C. to remove the solvent in the resin varnish. It can be produced by semi-curing the epoxy resin composition. Heat drying is preferably performed so that the gel time of the prepreg is 115 to 125 seconds. The gel time of the prepreg is the time from immediately after placing the resin collected from the prepreg on a plate heated to 170 ° C. until the resin is gelled. The amount of resin in the prepreg is preferably 65 to 300 parts by mass with respect to 100 parts by mass of the base material.
 また積層板は、上記のようにして得られた複数枚のプリプレグを積層して形成されている。例えば、複数枚のプリプレグを重ねると共にこの外側に銅箔等の金属箔を重ね、これを加熱加圧して積層成形することによって、銅張積層板等の金属張積層板として積層板を製造することができる。加熱加圧の条件は、例えば、140~200℃、0.5~5.0MPa、40~240分間である。 The laminated plate is formed by laminating a plurality of prepregs obtained as described above. For example, a laminate is manufactured as a metal-clad laminate such as a copper-clad laminate by laminating a plurality of prepregs and a metal foil such as a copper foil on the outside and laminating the laminate by heating and pressing it. Can do. The heating and pressing conditions are, for example, 140 to 200 ° C., 0.5 to 5.0 MPa, and 40 to 240 minutes.
 またプリント配線板は、上記のようにして得られた積層板に導体パターンを設けて形成されている。例えば、サブトラクティブ法を使用して金属張積層板の表面に導体パターンを形成することによって、プリント配線板を製造することができる。さらにこのプリント配線板をコア材(内層材)として用いると、多層プリント配線板を製造することができる。すなわち、コア材の導体パターン(内層パターン)を黒色酸化処理等で粗面化処理した後、このコア材の表面にプリプレグを介して金属箔を重ね、これを加熱加圧して積層成形する。このときの加熱加圧の条件も、例えば、140~200℃、0.5~5.0MPa、40~240分間である。次に、ドリル加工による穴あけ及びデスミア処理を行った後、サブトラクティブ法を使用して導体パターン(外層パターン)を形成すると共に穴の内壁にめっき処理を行ってスルーホールを形成することによって、多層プリント配線板を製造することができる。なお、プリント配線板の層数は特に限定されない。 The printed wiring board is formed by providing a conductor pattern on the laminated board obtained as described above. For example, a printed wiring board can be manufactured by forming a conductor pattern on the surface of a metal-clad laminate using a subtractive method. Furthermore, when this printed wiring board is used as a core material (inner layer material), a multilayer printed wiring board can be manufactured. That is, the conductor pattern (inner layer pattern) of the core material is roughened by black oxidation or the like, and then a metal foil is stacked on the surface of the core material via a prepreg, and this is heated and pressed to be laminated. The heating and pressing conditions at this time are, for example, 140 to 200 ° C., 0.5 to 5.0 MPa, and 40 to 240 minutes. Next, after drilling and desmearing, a subtractive method is used to form a conductor pattern (outer layer pattern) and plating the inner wall of the hole to form a through hole. A printed wiring board can be manufactured. The number of layers of the printed wiring board is not particularly limited.
 上記のプリント配線板においては、所定の硬化剤及び充填材を含有するエポキシ樹脂組成物を用いて絶縁層が形成されているので、ドリル加工による穴あけの際にドリルが磨耗しにくいものである。また、上記のエポキシ樹脂組成物は熱膨張係数が小さいので、スルーホールの抵抗値が変化しにくく接続信頼性も高い。さらに上記のプリント配線板は、例えばリフロー方式により高温下で部品をはんだ付けする際に膨れが発生しにくいものである。 In the above printed wiring board, since the insulating layer is formed using an epoxy resin composition containing a predetermined curing agent and filler, the drill is less likely to be worn when drilling. Moreover, since the above-mentioned epoxy resin composition has a small coefficient of thermal expansion, the resistance value of the through hole hardly changes and the connection reliability is high. Furthermore, the printed wiring board described above is less prone to blistering when soldering components at a high temperature by, for example, a reflow method.
 以下、本発明を実施例によって具体的に説明する。 Hereinafter, the present invention will be specifically described by way of examples.
 (エポキシ樹脂)
 臭素化ビスフェノールA型エポキシ樹脂であるDIC(株)製「エピクロン1121」(エポキシ当量:450~530g/eq、臭素含有率:19~22質量%、分子内平均エポキシ基含有量約2個、分子内に窒素を含有しない)を用いた。
(Epoxy resin)
“Epiclon 1121” (epoxy equivalent: 450 to 530 g / eq, bromine content: 19 to 22% by mass, about 2 intramolecular average epoxy group content, molecule, brominated bisphenol A type epoxy resin manufactured by DIC Corporation In which nitrogen is not contained).
 (硬化剤)
 ビスフェノールA型ノボラック樹脂であるDIC(株)製「VH4170」(水酸基当量:118g/eq、樹脂軟化点105℃、2官能ビスフェノールAの含有量が約25%)を用いた。
(Curing agent)
“VH4170” (hydroxyl equivalent: 118 g / eq, resin softening point 105 ° C., bifunctional bisphenol A content is about 25%), which is a bisphenol A type novolac resin, manufactured by DIC Corporation was used.
 (充填材)
 ガラス性充填材(1)~(4)を用いた。
(Filler)
Glass fillers (1) to (4) were used.
 ガラス性充填材(1)は、SiO(55質量%)、Al(15質量%)、B(7質量%)、CaO(20質量%)、MgO(3質量%)を含有するガラス原料を蒸留水中においてボールミルを用いて湿式で平均粒径が2μmになるまで1時間粉砕することによって得た。 The glassy filler (1) is SiO 2 (55% by mass), Al 2 O 3 (15% by mass), B 2 O 3 (7% by mass), CaO (20% by mass), MgO (3% by mass). Was obtained by pulverizing for 1 hour in a distilled water using a ball mill until the average particle size became 2 μm.
 ガラス性充填材(2)は、SiO(58質量%)、Al(17質量%)、B(12質量%)、CaO(13質量%)を含有するガラス原料を蒸留水中においてボールミルを用いて湿式で平均粒径が2μmになるまで1時間粉砕することによって得た。 The glassy filler (2) is a distilled glass raw material containing SiO 2 (58% by mass), Al 2 O 3 (17% by mass), B 2 O 3 (12% by mass), and CaO (13% by mass). It was obtained by wet milling in water using a ball mill for 1 hour until the average particle size reached 2 μm.
 ガラス性充填材(3)は、SiO(62質量%)、Al(18質量%)、B(12質量%)、CaO(8質量%)を含有するガラス原料を蒸留水中においてボールミルを用いて湿式で平均粒径が2μmになるまで1時間粉砕することによって得た。 The glassy filler (3) is a distilled glass raw material containing SiO 2 (62% by mass), Al 2 O 3 (18% by mass), B 2 O 3 (12% by mass), and CaO (8% by mass). It was obtained by wet milling in water using a ball mill for 1 hour until the average particle size reached 2 μm.
 ガラス性充填材(4)は、SiO(65質量%)、Al(25質量%)、MgO(10質量%)を含有するガラス原料を蒸留水中においてボールミルを用いて湿式で平均粒径が2μmになるまで1時間粉砕することによって得た。 The glassy filler (4) is composed of a glass raw material containing SiO 2 (65% by mass), Al 2 O 3 (25% by mass), and MgO (10% by mass) in an average particle size by using a ball mill in distilled water. It was obtained by grinding for 1 hour until the diameter reached 2 μm.
 なお、上記のボールミルとしては、横型ボールミル粉砕機である浅田鉄工(株)製「300L-SEM」を用いた。 As the above-mentioned ball mill, “300L-SEM” manufactured by Asada Tekko Co., Ltd., which is a horizontal ball mill pulverizer, was used.
 また金属水酸化物として、水酸化アルミニウム(住友化学(株)製「C-303」、400℃における熱減量35質量%、平均粒径約4μm)、水酸化マグネシウム(堺化学工業(株)製「MGZ-6R」、400℃における熱減量31質量%、平均粒径約1.5μm)、ベーマイト(ナバルテック社製「AOH60」、400℃における熱減量5質量%、平均粒径約0.9μm)を用いた。 Further, as the metal hydroxide, aluminum hydroxide (“C-303” manufactured by Sumitomo Chemical Co., Ltd., loss of heat of 35% by mass at 400 ° C., average particle size of about 4 μm), magnesium hydroxide (manufactured by Sakai Chemical Industry Co., Ltd.) “MGZ-6R”, heat loss of 31% by mass at 400 ° C., average particle size of about 1.5 μm, boehmite (“AOH60” manufactured by Navaltech), heat loss of 5% by mass at 400 ° C., average particle size of about 0.9 μm ) Was used.
 (シラン化合物)
 エポキシシランとして、γ-グリシドプロピルメチルジエトキシシランである信越化学工業(株)製「KBE-402」を用いた。
(Silane compound)
As the epoxy silane, “KBE-402” manufactured by Shin-Etsu Chemical Co., Ltd., which is γ-glycidpropylmethyldiethoxysilane, was used.
 イソシアネートシランとして、3-イソシアネートプロピルトリエトキシシランである信越化学工業(株)製「KBE-9007」を用いた。 As the isocyanate silane, “KBE-9007” manufactured by Shin-Etsu Chemical Co., Ltd., which is 3-isocyanatopropyltriethoxysilane, was used.
 アミノシランとして、3-アミノプロピルトリエトキシシランである信越化学工業(株)製「KBE-903」を用いた。 As the aminosilane, “KBE-903” manufactured by Shin-Etsu Chemical Co., Ltd., which is 3-aminopropyltriethoxysilane, was used.
 ビニルシランとして、ビニルトリエトキシシランである信越化学工業(株)製「KBE-1003」を用いた。 As the vinyl silane, “KBE-1003” manufactured by Shin-Etsu Chemical Co., Ltd., which is vinyltriethoxysilane, was used.
 (硬化促進剤)
 2-エチル-4-メチルイミダゾールを用いた。
(Curing accelerator)
2-Ethyl-4-methylimidazole was used.
 (エポキシ樹脂組成物)
 上記のエポキシ樹脂、硬化剤、充填材、シラン化合物、硬化促進剤を表1及び表2に示す配合量(質量部)で配合し、メチルエチルケトンで希釈して、これをディスパーで2時間攪拌・混合して均一化することによって、実施例1~11及び比較例1~9のエポキシ樹脂組成物の樹脂ワニスを調製した。溶媒による希釈は、固形分(非溶媒成分)濃度が70質量%となるように行った。
(Epoxy resin composition)
The above epoxy resin, curing agent, filler, silane compound, and curing accelerator are blended in the blending amounts (parts by mass) shown in Tables 1 and 2, diluted with methyl ethyl ketone, and stirred and mixed with a disper for 2 hours. Then, resin varnishes of the epoxy resin compositions of Examples 1 to 11 and Comparative Examples 1 to 9 were prepared. Dilution with a solvent was performed so that the solid content (non-solvent component) concentration was 70% by mass.
 (プリプレグ)
 プリプレグは、上記のエポキシ樹脂組成物の樹脂ワニスを基材であるガラスクロス(日東紡績(株)製「7628タイプクロス」)に含浸させ、これを非接触タイプの加熱ユニットにより170℃で加熱乾燥し、樹脂ワニス中の溶媒を除去して、エポキシ樹脂組成物を半硬化させることによって製造した。プリプレグにおける樹脂量は、基材100質量部に対して、100質量部である。
(Prepreg)
The prepreg is impregnated with the resin varnish of the above epoxy resin composition into a glass cloth (“7628 type cloth” manufactured by Nitto Boseki Co., Ltd.) as a base material, and is heated and dried at 170 ° C. by a non-contact type heating unit Then, the solvent in the resin varnish was removed and the epoxy resin composition was semi-cured. The amount of resin in the prepreg is 100 parts by mass with respect to 100 parts by mass of the base material.
 (積層板)
 積層板は、5枚のプリプレグ(340mm×510mm)を重ねると共にこの両側に粗化面を内側にして銅箔(日鉱グールド・フォイル(株)製、厚み35μm、JTC箔)を重ね、これを加熱加圧して積層成形することによって、銅張積層板として製造した。加熱加圧の条件は、170℃、2.94MPa、90分間である。
(Laminated board)
The laminated plate is composed of 5 sheets of prepreg (340mm x 510mm) and copper foil (Nikko Gould Foil Co., Ltd., thickness 35μm, JTC foil) with a roughened surface on both sides. It was manufactured as a copper clad laminate by pressurizing and molding. The heating and pressing conditions are 170 ° C., 2.94 MPa, and 90 minutes.
 (プリント配線板)
 上記の銅張積層板の表面にサブトラクティブ法を使用して導体パターン(内層パターン)を形成することによって、コア材(内層材)を製造した。さらにこのコア材の内層パターンをマルチボンド(日本マクダーミッド(株)製)により粗面化処理した後、このコア材の両面にプリプレグを介して銅箔(日鉱グールド・フォイル(株)製、厚み35μm、JTC箔)を重ね、これを加熱加圧して積層成形した。このときの加熱加圧の条件も、170℃、2.94MPa、90分間である。次に、ドリル加工による穴あけ(内径0.3mm×300穴)及びデスミア処理を行った後、サブトラクティブ法を使用して導体パターン(外層パターン)を形成すると共に穴の内壁に銅めっき処理(厚み25μm)を行ってスルーホールを形成することによって、4層プリント配線板を製造した。
(Printed wiring board)
A core material (inner layer material) was manufactured by forming a conductor pattern (inner layer pattern) on the surface of the copper clad laminate using a subtractive method. Furthermore, after roughening the inner layer pattern of this core material with multibond (manufactured by Nihon McDermid Co., Ltd.), copper foil (made by Nikko Gould Foil Co., Ltd., thickness 35 μm) on both sides of this core material via prepreg , JTC foil), and this was heated and pressed to form a laminate. The heating and pressing conditions at this time are also 170 ° C., 2.94 MPa, and 90 minutes. Next, after drilling (inner diameter 0.3 mm × 300 holes) and desmear treatment, a subtractive method is used to form a conductor pattern (outer layer pattern) and copper plating treatment (thickness) A four-layer printed wiring board was manufactured by forming a through hole by performing 25 μm).
 (ドリル加工性)
 上記のドリル加工による穴あけは、ドリルビットとして「PMR030MD」(Tungaloy製)を用いて、回転数110krpm、送り速度1.65m/minの条件で行った。そして、5000ショット後のドリル正面歯の磨耗率を測定し、ドリル加工性を評価した。
(Drilling workability)
The above-described drilling was performed using “PMR030MD” (manufactured by Tungaloy) as a drill bit under the conditions of a rotation speed of 110 krpm and a feed speed of 1.65 m / min. And the wear rate of the drill front tooth after 5000 shots was measured, and drill workability was evaluated.
 (スルーホール接続信頼性)
 冷熱衝撃試験機を用い、各4層プリント配線板について、-40℃(30分間)及び125℃(30分間)を1サイクルとする処理を3000サイクル繰り返して冷熱衝撃試験(ヒートショック)を行った。試験前後のスルーホールの抵抗値の変化により接続信頼性を評価した。
(Through hole connection reliability)
Using a thermal shock tester, for each four-layer printed wiring board, a thermal shock test (heat shock) was conducted by repeating 3000 cycles of -40 ° C. (30 minutes) and 125 ° C. (30 minutes) as one cycle. . The connection reliability was evaluated by the change in the resistance value of the through hole before and after the test.
 「○」:試験前後の抵抗値の変化が10%以内であるもの。 “○”: The resistance change before and after the test is within 10%.
 「△」:試験前後の抵抗値の変化が10%を超えて50%以内であるもの。 “△”: A change in resistance value before and after the test exceeds 10% and is within 50%.
 「×」:試験前後の抵抗値の変化が50%を超えるもの。 “×”: Resistance change before and after the test exceeds 50%.
 (リフロー耐熱性)
 各4層プリント配線板について、吸湿処理としてプレッシャークッカーテスト(PCT)を121℃、2時間の条件で行った。次にこの4層プリント配線板を260℃(最高温度)に設定したリフロー炉に通し、これを膨れが発生するまで繰り返した。そして、膨れが発生するまでの回数を計測して、この回数によりリフロー耐熱性を評価した。
(Reflow heat resistance)
About each 4 layer printed wiring board, the pressure cooker test (PCT) was performed on condition of 121 degreeC and 2 hours as a moisture absorption process. Next, this four-layer printed wiring board was passed through a reflow furnace set at 260 ° C. (maximum temperature), and this was repeated until blistering occurred. And the frequency | count until blistering was measured, and reflow heat resistance was evaluated by this frequency | count.
 「◎」:10回を超えなければ膨れが発生しなかったもの。 ”◎”: No swelling occurred unless the number of times exceeded 10.
 「○」:6回を超えて10回以内で膨れが発生したもの。 ○ “○”: The swelling occurred within 10 times exceeding 6 times.
 「×」:6回以内で膨れが発生したもの。 ”×”: Bulging occurs within 6 times.
 以上の結果を表1及び表2に示す。 The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2から明らかなように、各比較例のものに比べて、各実施例のものは、ドリル加工性、スルーホール接続信頼性、耐熱性に優れていることが確認された。 As is clear from Tables 1 and 2, it was confirmed that the examples were superior in drilling workability, through-hole connection reliability, and heat resistance compared to the comparative examples.

Claims (5)

  1.  エポキシ樹脂、フェノール性水酸基を有する硬化剤、充填材を含有するエポキシ樹脂組成物において、前記エポキシ樹脂及び前記硬化剤の合計100質量部に対して、前記充填材として、ガラス性充填材を15~50質量部及び金属水酸化物を15~50質量部含有すると共に、前記ガラス性充填材が、SiOを53質量%以上、Alを13質量%以上、SiO及びAlを合計75~80質量%含有し、平均粒径が0.5~10μmのものであり、前記金属水酸化物が、400℃における熱減量が10質量%以上のものであることを特徴とするエポキシ樹脂組成物。 In an epoxy resin composition containing an epoxy resin, a curing agent having a phenolic hydroxyl group, and a filler, a glassy filler of 15 to 15 is used as the filler with respect to a total of 100 parts by mass of the epoxy resin and the curing agent. 50 parts by mass and the metal hydroxides as well as containing 15 to 50 parts by weight, the glass filler is, SiO 2 53% by mass or more, Al 2 O 3 of 13 wt% or more, SiO 2 and Al 2 O 3 In an average particle size of 0.5 to 10 μm, and the metal hydroxide has a heat loss at 400 ° C. of 10% by mass or more. Epoxy resin composition.
  2.  アミノ基、エポキシ基、イソシアネート基の少なくともいずれかを有するシラン化合物を前記ガラス性充填材に対して0.2~2.0質量%含有することを特徴とする請求項1に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, comprising 0.2 to 2.0% by mass of a silane compound having at least one of an amino group, an epoxy group, and an isocyanate group with respect to the glassy filler. object.
  3.  請求項1又は2に記載のエポキシ樹脂組成物が基材に含浸されて半硬化したものであることを特徴とするプリプレグ。 A prepreg characterized in that the epoxy resin composition according to claim 1 or 2 is impregnated into a base material and semi-cured.
  4.  請求項3に記載のプリプレグを積層して形成されていることを特徴とする積層板。 A laminated board characterized by being formed by laminating the prepreg according to claim 3.
  5.  請求項4に記載の積層板に導体パターンを設けて形成されていることを特徴とするプリント配線板。 A printed wiring board, wherein the laminated board according to claim 4 is provided with a conductor pattern.
PCT/JP2013/002161 2012-04-05 2013-03-29 Epoxy resin composition, prepreg, laminate, and printed wiring board WO2013150753A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380018074.1A CN104220521A (en) 2012-04-05 2013-03-29 Epoxy resin composition, prepreg, laminate, and printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-086751 2012-04-05
JP2012086751A JP5891435B2 (en) 2012-04-05 2012-04-05 Epoxy resin composition, prepreg, metal-clad laminate, printed wiring board

Publications (1)

Publication Number Publication Date
WO2013150753A1 true WO2013150753A1 (en) 2013-10-10

Family

ID=49300256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002161 WO2013150753A1 (en) 2012-04-05 2013-03-29 Epoxy resin composition, prepreg, laminate, and printed wiring board

Country Status (4)

Country Link
JP (1) JP5891435B2 (en)
CN (1) CN104220521A (en)
TW (1) TWI537320B (en)
WO (1) WO2013150753A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176859A1 (en) * 2018-03-16 2019-09-19 日立化成株式会社 Epoxy resin composition and electronic component device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075599A1 (en) * 2005-01-13 2006-07-20 Sumitomo Bakelite Company, Ltd. Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2009007420A (en) * 2007-06-26 2009-01-15 Panasonic Electric Works Co Ltd Epoxy resin composition for sealing and semiconductor device
JP2012012591A (en) * 2010-05-31 2012-01-19 Hitachi Chem Co Ltd Prepreg, metal-clad laminate, and printed wiring board

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120177911A1 (en) * 2009-09-15 2012-07-12 Yasuyuki Kimura Prepreg
US9215803B2 (en) * 2010-05-31 2015-12-15 Hitachi Chemical Company, Ltd. Epoxy resin composition and pre-preg, support-provided resin film, metallic foil clad laminate plate and multilayer printed circuit board utilizing said composition
JP5961923B2 (en) * 2010-05-31 2016-08-03 日立化成株式会社 Epoxy resin composition, prepreg using this epoxy resin composition, resin film with support, metal foil-clad laminate and multilayer printed wiring board
JP5508632B2 (en) * 2010-06-29 2014-06-04 ダイハツ工業株式会社 Blow-by gas processing device in an internal combustion engine with an exhaust turbocharger
JP2012045887A (en) * 2010-08-30 2012-03-08 Sumitomo Bakelite Co Ltd Metal clad laminated plate and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075599A1 (en) * 2005-01-13 2006-07-20 Sumitomo Bakelite Company, Ltd. Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2009007420A (en) * 2007-06-26 2009-01-15 Panasonic Electric Works Co Ltd Epoxy resin composition for sealing and semiconductor device
JP2012012591A (en) * 2010-05-31 2012-01-19 Hitachi Chem Co Ltd Prepreg, metal-clad laminate, and printed wiring board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176859A1 (en) * 2018-03-16 2019-09-19 日立化成株式会社 Epoxy resin composition and electronic component device
JPWO2019176859A1 (en) * 2018-03-16 2021-03-11 昭和電工マテリアルズ株式会社 Epoxy resin composition and electronic component equipment
JP7351291B2 (en) 2018-03-16 2023-09-27 株式会社レゾナック Epoxy resin composition and electronic component equipment

Also Published As

Publication number Publication date
TW201402667A (en) 2014-01-16
CN104220521A (en) 2014-12-17
JP5891435B2 (en) 2016-03-23
JP2013216741A (en) 2013-10-24
TWI537320B (en) 2016-06-11

Similar Documents

Publication Publication Date Title
JP5830718B2 (en) Thermosetting resin composition, prepreg, laminate, metal foil-clad laminate, and circuit board
JP5923590B2 (en) Thermosetting epoxy resin composition, prepreg and laminate
CN104379668B (en) Resin combination, prepreg, clad with metal foil plywood and printed wiring board
JP5967558B2 (en) Resin composition, prepreg and laminate
JP5293598B2 (en) Resin composition, prepreg, laminate, multilayer printed wiring board, and semiconductor device
JP2009138201A (en) Resin composition for printed wiring board, prepreg, laminate, and printed wiring board using the same
EP2554561A1 (en) Epoxy resin composition for prepreg, prepreg, and multilayer printed circuit board
CN102633990A (en) Epoxy resin composition, prepreg made of epoxy resin composition and copper-coated laminate made of epoxy resin composition
JP2009074036A (en) Epoxy resin composition, prepreg, laminate and printed wiring board
EP2290009A1 (en) Halogen-free flame retardant resin composition, and, prepreg, laminate, and laminate for printed circuit made therefrom
JP2008050526A (en) Resin composition, prepreg and laminated board using the same
JP2000264986A (en) Prepreg and laminated plate
TW201823346A (en) Preparation method of benzoxazine-containing resin composition, and prepreg and plywood produced from resin composition
JP6604564B2 (en) Resin composition for printed wiring board, prepreg, metal-clad laminate, printed wiring board
EP2952535A1 (en) Halogen-free resin composition, and prepreg and laminate for printed circuits using same
JP4915549B2 (en) Resin composition for printed wiring board, prepreg and laminate using the same
JP5281280B2 (en) Epoxy resin composition, prepreg, metal-clad laminate, multilayer printed wiring board
JP2015229763A (en) Resin composition, prepreg, metal-clad laminate sheet, printed wiring board
JP2008127530A (en) Epoxy resin composition, prepreg, metal-clad laminate, printed wiring board and multilayer printed wiring board
JP5891435B2 (en) Epoxy resin composition, prepreg, metal-clad laminate, printed wiring board
JP3821797B2 (en) Resin composition, resin-coated metal foil and multilayer printed wiring board
WO2010071165A1 (en) Epoxy resin composition, prepreg, laminate board and multilayer board
JP2005015616A (en) Resin composition for laminated board, organic base prepreg, metallic foil-clad laminated board, and printed wiring board
JP3720337B2 (en) Organic base prepreg, laminate and printed wiring board
JP4858359B2 (en) Epoxy resin composition for prepreg, prepreg, laminate and printed wiring board using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13772604

Country of ref document: EP

Kind code of ref document: A1