JP5260458B2 - Epoxy resin composition for prepreg and prepreg, laminate and multilayer board using the same - Google Patents

Epoxy resin composition for prepreg and prepreg, laminate and multilayer board using the same Download PDF

Info

Publication number
JP5260458B2
JP5260458B2 JP2009221475A JP2009221475A JP5260458B2 JP 5260458 B2 JP5260458 B2 JP 5260458B2 JP 2009221475 A JP2009221475 A JP 2009221475A JP 2009221475 A JP2009221475 A JP 2009221475A JP 5260458 B2 JP5260458 B2 JP 5260458B2
Authority
JP
Japan
Prior art keywords
prepreg
epoxy resin
resin composition
curing agent
resins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009221475A
Other languages
Japanese (ja)
Other versions
JP2011068788A (en
Inventor
健太郎 藤野
善彦 中村
充修 西野
孝 新保
文則 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009221475A priority Critical patent/JP5260458B2/en
Publication of JP2011068788A publication Critical patent/JP2011068788A/en
Application granted granted Critical
Publication of JP5260458B2 publication Critical patent/JP5260458B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epoxy resin composition having an inorganic filler blended therein, which can prevent the formation of a foaming hole on a surface of prepreg and does not decrease required physical properties, such as heat resistance and insulation reliability, and to provide a prepreg, laminated board and multilayer board using the same. <P>SOLUTION: The epoxy resin composition for prepreg contains: a curing agent having at least one selected from an epoxy resin, phenol curing agent and amine curing agent; an inorganic filler having at least one selected from spherical silica and aluminum hydroxide; and a component for preventing foaming on a surface which is made mainly of an acrylic copolymer. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、プリント配線板用の積層板、多層板等の製造に用いられるプリプレグ用エポキシ樹脂組成物とそれを用いたプリプレグ、積層板、多層板に関するものである。   The present invention relates to an epoxy resin composition for prepreg used for the production of a laminated board, a multilayer board and the like for printed wiring boards, and a prepreg, a laminated board and a multilayer board using the same.

プリント配線板の材料として用いられるプリプレグは、エポキシ樹脂等の熱硬化性樹脂を主成分とする樹脂組成物を溶媒で希釈してワニスとし、このワニスをガラスクロス等の基材に含浸した後、これを乾燥して、樹脂を未硬化状態(A−ステージ)から半硬化状態(B−ステージ)にすることにより作製されている。   A prepreg used as a material for a printed wiring board is obtained by diluting a resin composition mainly composed of a thermosetting resin such as an epoxy resin with a solvent to obtain a varnish, and impregnating a substrate such as a glass cloth with this varnish. It is produced by drying this to change the resin from an uncured state (A-stage) to a semi-cured state (B-stage).

そして、このようにして得たプリプレグを所定寸法に切断した後、所要枚数重ねると共にこの片面または両面に銅箔等の金属箔を重ね、これを加熱加圧して積層成形することによりプリント配線板に加工される金属張積層板を作製することができる。この段階において樹脂は、半硬化状態(B−ステージ)から完全硬化状態(C−ステージ)へと変化し、基材と共に絶縁層を形成する。   And after cutting the prepreg obtained in this way to a predetermined size, the required number of sheets are stacked and a metal foil such as a copper foil is stacked on one or both sides, and this is heated and pressed to form a printed wiring board. A metal-clad laminate to be processed can be produced. At this stage, the resin changes from a semi-cured state (B-stage) to a fully cured state (C-stage), and forms an insulating layer together with the base material.

近年では、プリント配線板の高密度化が進んでおり、高密度且つ微細な導体パターンが形成されたプリント配線板を歩留まり良く製造するためには、寸法変化の小さい積層板を用いることが望ましい。また、プリント配線板がその設置環境により高温に曝される場合、温度上昇による面方向の膨張が生じる。その際、はんだ接続による部品の表面実装を行ったときに、はんだにクラックが生じ、はんだ接続が不具合を起こす可能性がある。このような要求を満足するために、積層板の面方向の熱膨張係数を小さく抑えることが求められている。   In recent years, the density of printed wiring boards has been increasing, and in order to produce printed wiring boards with high density and fine conductor patterns with good yield, it is desirable to use laminated boards with small dimensional changes. Moreover, when a printed wiring board is exposed to high temperature by the installation environment, the expansion | swelling of the surface direction by a temperature rise arises. At that time, when the parts are surface-mounted by solder connection, the solder may crack, and the solder connection may cause a failure. In order to satisfy such a requirement, it is required to keep the thermal expansion coefficient in the plane direction of the laminated sheet small.

また、プリント配線板の層間がスルーホール等で導通される場合があるが、積層板の厚み方向の熱膨張係数が大きいと、層間の導通不良が発生する可能性がある。そのため、積層板の厚み方向の熱膨張係数を抑制することも求められている。   In addition, the layers of the printed wiring board may be conducted through through holes or the like. However, if the thermal expansion coefficient in the thickness direction of the laminated board is large, a conduction failure between the layers may occur. Therefore, it is also required to suppress the thermal expansion coefficient in the thickness direction of the laminate.

そして積層板やプリント配線板の耐熱性の向上を目的として、エポキシ樹脂組成物に無機充填材を配合することが知られており(特許文献1〜4参照)、熱膨張係数の抑制やドリル加工性、その他の点から、無機充填材として球状シリカや水酸化アルミニウムを用いることが知られている。また、このようなエポキシ樹脂組成物の硬化剤には、通常はフェノール系硬化剤やアミン系硬化剤が用いられている。   For the purpose of improving the heat resistance of laminated boards and printed wiring boards, it is known to add an inorganic filler to the epoxy resin composition (see Patent Documents 1 to 4), and the thermal expansion coefficient is suppressed and drilling is performed. From the viewpoint of properties and other points, it is known to use spherical silica or aluminum hydroxide as the inorganic filler. In addition, phenolic curing agents and amine-based curing agents are usually used as curing agents for such epoxy resin compositions.

特開2004−149577号公報JP 2004-149577 A 特開2006−143973号公報JP 2006-143974 A 特開2007−091812号公報JP 2007-091812 A 特開2009−074036号公報JP 2009-074036 A

しかしながら、このように無機充填材を配合したエポキシ樹脂組成物のワニスは、粘度が高くなる等のため基材への含浸性が低下する。   However, the varnish of the epoxy resin composition in which the inorganic filler is blended in this way has a high viscosity and the impregnation property to the base material is lowered.

その結果として、含浸工程において、基材に元々存在していた空気が、ワニスが蓋をして出て行けなくなり、乾燥後もプリプレグ表面にはこの残存空気による発泡が残り、クレータのような穴(以下、「発泡穴」という。)がプリプレグ表面に多数発生するという問題点があった。   As a result, in the impregnation process, the air originally present in the base material cannot go out by covering the varnish, and foaming due to this residual air remains on the surface of the prepreg even after drying, resulting in holes like craters. (Hereinafter, referred to as “foamed holes”) has a problem that a large number of prepreg surfaces occur.

さらに、その発泡穴により、プリプレグの粉落ちが多くなり、この粉落ちのために製造時の切り換えに時間が掛かったり、その粉が金属張積層板を成形する際に打痕の原因になったりするという問題点があった。   Furthermore, due to the foam holes, the powder of the prepreg increases, and it takes time to switch during production due to this powder falling, and the powder may cause dents when forming a metal-clad laminate. There was a problem of doing.

本発明は、以上の通りの事情に鑑みてなされたものであり、無機充填材を配合したエポキシ樹脂組成物において、プリプレグ表面の発泡穴の発生を抑制することができ、耐熱性、絶縁信頼性等の所要の物性も低下することがないプリプレグ用エポキシ樹脂組成物とそれを用いたプリプレグ、積層板、多層板を提供することを課題としている。   The present invention has been made in view of the circumstances as described above, and in an epoxy resin composition containing an inorganic filler, it is possible to suppress the occurrence of foam holes on the surface of the prepreg, and to have heat resistance and insulation reliability. It is an object of the present invention to provide an epoxy resin composition for prepreg that does not deteriorate required physical properties and the like, and a prepreg, laminate, and multilayer board using the same.

一般に、樹脂中での泡の拡散速度は、泡の半径の2乗に比例し、樹脂の粘度に反比例するが、本発明者らは、発泡が発生する機構に着目し、消泡剤を添加することにより、小さい泡を安定に存在しにくい状態を作り、大きな泡にすることで樹脂中での拡散速度を上げ、気/樹脂界面で泡を破れ易くできるのではないかと考え、鋭意検討を行った結果、特定のアクリル系共重合体を含む成分を用いることで、他の物性等を損なわずに発泡穴を抑制できることを見出し、本発明を完成するに至った。   In general, the diffusion rate of foam in a resin is proportional to the square of the radius of the foam and inversely proportional to the viscosity of the resin, but the present inventors added an antifoaming agent focusing on the mechanism of foaming. By creating a state where it is difficult for small bubbles to exist stably, the diffusion rate in the resin can be increased by making it into large bubbles, and it is thought that bubbles can be easily broken at the gas / resin interface, and intensive investigations are conducted. As a result, it has been found that by using a component containing a specific acrylic copolymer, it is possible to suppress the foaming hole without impairing other physical properties, and the present invention has been completed.

すなわち本発明は、上記の課題を解決するために、以下のことを特徴としている。   That is, the present invention is characterized by the following in order to solve the above problems.

第1に、本発明のプリプレグ用エポキシ樹脂組成物は、エポキシ樹脂、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールA型ノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、およびナフトールアラルキル樹脂から選ばれる少なくとも1種のフェノール系硬化剤およびジシアンジアミドから選ばれるいずれかの硬化剤、質量比6:1〜2:5の範囲内である球状シリカおよび水酸化アルミニウムを含む無機充填材、および、エポキシ樹脂および硬化剤の全量に対して0.5〜2.0質量%の数平均分子量15000〜19000のアクリル系共重合体を含有する。 1stly, the epoxy resin composition for prepregs of this invention is at least 1 sort (s) chosen from an epoxy resin, a phenol novolak resin, a cresol novolak resin, a bisphenol A type novolak resin, a phenol aralkyl resin, a biphenyl aralkyl resin, and a naphthol aralkyl resin. A curing agent selected from phenolic curing agents and dicyandiamide, an inorganic filler containing spherical silica and aluminum hydroxide in a mass ratio of 6: 1 to 2: 5, and an epoxy resin and a curing agent An acrylic copolymer having a number average molecular weight of 15,000 to 19000 is contained in an amount of 0.5 to 2.0% by mass based on the total amount.

第2に、本発明のプリプレグは、上記第1のプリプレグ用エポキシ樹脂組成物を基材に含浸し乾燥して得られたものである。 Secondly, the prepreg of the present invention is obtained by impregnating a substrate with the first epoxy resin composition for prepreg and drying it.

第3に、上記第2のプリプレグにおいて、基材の通気度が10cm3/cm2/sec以下である。 Third, in the second prepreg, the air permeability of the base material is 10 cm 3 / cm 2 / sec or less.

第4に、本発明の積層板は、上記第2または第3のプリプレグを所要枚数重ねて加熱加圧し積層成形したものである。 Fourth, the laminated plate of the present invention is obtained by heat molding under pressure laminated on top predetermined number of the second or third prepreg.

第5に、本発明の多層板は、上記第2または第3のプリプレグを内層用回路板に重ねて加熱加圧し積層成形したものである。 Fifth, the multilayer board of the present invention is obtained by laminating the above-mentioned second or third prepreg on the circuit board for inner layer by heating and pressing.

上記第1の発明によれば、特定のアクリル系共重合体を表面発泡抑制成分として配合することで、ワニスの表面張力が低下し、基材に元々存在していた空気を外部に追い出し、あるいは分散し易くなるため、プリプレグ表面の発泡穴の発生を大幅に抑制することができる。そのため、粉落ちや外観悪化等の不具合を抑制することができる。 According to the first aspect of the invention, by blending the specific acrylic copolymer as a surface foaming suppression component , the surface tension of the varnish is reduced, and the air originally present in the base material is expelled to the outside, or Since it becomes easy to disperse | distribute, generation | occurrence | production of the foaming hole on the surface of a prepreg can be suppressed significantly. For this reason, problems such as powder falling and appearance deterioration can be suppressed.

そして、表面発泡抑制成分のアクリル系共重合体の平均分子量を15000〜19000とすることで発泡穴の抑制作用が向上し、また耐熱性の低下を防止できる。 And the suppression effect | action of a foaming hole improves and the fall of heat resistance can be prevented because the average molecular weight of the acrylic copolymer of a surface foam suppression component shall be 15000-19000.

また、表面発泡抑制成分の配合量をエポキシ樹脂および硬化剤の全量に対して0.5〜2.0質量%とすることで発泡穴を大幅に抑制でき、また絶縁信頼性の低下を防止できる。 In addition, by 0.5 to 2.0 mass% of the amount of surface foam control component with respect to the total amount of the epoxy resin and curing agent, it can significantly suppress the foaming holes and prevent a decrease in insulation reliability it can.

上記第2の発明によれば、上記第1の発明のプリプレグ用エポキシ樹脂組成物を基材に含浸し乾燥して得られたものであるので、耐熱性や絶縁信頼性等の所要の物性を有し、さらに発泡穴の発生も抑制することができる。 According to the second invention, since the prepreg epoxy resin composition of the first invention is impregnated into a base material and dried, the required physical properties such as heat resistance and insulation reliability are obtained. And the occurrence of foaming holes can also be suppressed.

上記第3の発明によれば、基材の通気度を10cm3/cm2/sec以下とすることで、上記第2の発明の効果に加え、プリプレグ用エポキシ樹脂組成物の基材への含浸性が向上し、発泡穴の発生をさらに抑制することができる。 According to the third invention, by impregnating the base material with the epoxy resin composition for prepreg, in addition to the effect of the second invention , by setting the air permeability of the base material to 10 cm 3 / cm 2 / sec or less. Property can be improved and generation of foam holes can be further suppressed.

上記第4の発明によれば、上記第2または第3の発明のプリプレグを所要枚数重ねて加熱加圧し積層成形したものであるので、耐熱性や絶縁信頼性等の所要の物性を有し、さらに発泡穴の発生も抑制することができる。 According to the fourth aspect of the invention, the required number of the prepregs of the second or third aspect of the invention are laminated and molded by heating and pressurization, and thus have required physical properties such as heat resistance and insulation reliability, Furthermore, the generation of foam holes can be suppressed.

上記第5の発明によれば、上記第2または第3の発明のプリプレグを内層用回路板に重ねて加熱加圧し積層成形したものであるので、耐熱性や絶縁信頼性等の所要の物性を有し、さらに発泡穴の発生も抑制することができる。 According to the fifth aspect of the invention, the prepreg of the second or third aspect of the invention is laminated on a circuit board for inner layer by heating and pressurizing, so that required physical properties such as heat resistance and insulation reliability are obtained. And the occurrence of foaming holes can also be suppressed.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明のプリプレグ用エポキシ樹脂組成物に用いられるエポキシ樹脂は、1分子中に2個以上のエポキシ基を有するものであれば特に限定されないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、脂環式エポキシ樹脂、多官能フェノールのジグリシジルエーテル化合物、多官能アルコールのジグリシジルエーテル化合物、臭素含有エポキシ樹脂等が挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。   The epoxy resin used in the epoxy resin composition for prepreg of the present invention is not particularly limited as long as it has two or more epoxy groups in one molecule. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin , Phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, biphenyl type epoxy resin, alicyclic epoxy resin, polyfunctional phenol diglycidyl ether compound, polyfunctional alcohol diglycidyl ether compound, bromine Containing epoxy resin. These may be used alone or in combination of two or more.

本発明のプリプレグ用エポキシ樹脂組成物には、フェノール系硬化剤およびアミン系硬化剤から選ばれる少なくとも1種の硬化剤が配合される。   The epoxy resin composition for prepreg of the present invention is blended with at least one curing agent selected from a phenolic curing agent and an amine curing agent.

フェノール系硬化剤としては、例えば、多価フェノール化合物、多価ナフトール化合物等が挙げられる。多価フェノール化合物としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールA型ノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂等が挙げられる。多価ナフトール化合物としては、例えば、ナフトールアラルキル樹脂等が挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。   As a phenol type hardening | curing agent, a polyhydric phenol compound, a polyvalent naphthol compound, etc. are mentioned, for example. Examples of the polyhydric phenol compound include phenol novolak resin, cresol novolak resin, bisphenol A type novolak resin, phenol aralkyl resin, biphenyl aralkyl resin and the like. Examples of polyvalent naphthol compounds include naphthol aralkyl resins. These may be used alone or in combination of two or more.

アミン系硬化剤としては、例えば、ジシアンジアミド、ジアミノジフェニルメタン等が挙げられる。   Examples of the amine curing agent include dicyandiamide and diaminodiphenylmethane.

硬化剤の配合量は、硬化不足や硬化剤が未反応で残ることによる耐熱性等の性能低下を防止する点からは、エポキシ樹脂に対する当量比が0.4〜1.4となるように調整することが好ましい。   The blending amount of the curing agent is adjusted so that the equivalent ratio with respect to the epoxy resin is 0.4 to 1.4 from the viewpoint of preventing performance deterioration such as heat resistance due to insufficient curing and unreacted curing agent remaining. It is preferable to do.

本発明のプリプレグ用エポキシ樹脂組成物には、球状シリカおよび水酸化アルミニウムから選ばれる少なくとも1種を含む無機充填材が配合される。   The epoxy resin composition for prepreg of the present invention is blended with an inorganic filler containing at least one selected from spherical silica and aluminum hydroxide.

無機充填材の配合量は、熱膨張係数の抑制、耐熱性の付与、ワニス粘度等を考慮すると、エポキシ樹脂および硬化剤の合計量に対して20〜130質量%が好ましい。   The amount of the inorganic filler is preferably 20 to 130% by mass with respect to the total amount of the epoxy resin and the curing agent in consideration of suppression of thermal expansion coefficient, imparting heat resistance, varnish viscosity, and the like.

球状シリカは、ワニスの粘度やドリル加工性等を考慮すると、平均粒径が0.3〜2.0μmのものが好ましい。水酸化アルミニウムは、粘度適正やドリル加工性等を考慮すると、平均粒径が1.0〜5.0μmのものが好ましい。   Spherical silica preferably has an average particle size of 0.3 to 2.0 μm in consideration of the viscosity of varnish, drill workability, and the like. Aluminum hydroxide having an average particle diameter of 1.0 to 5.0 μm is preferable in consideration of viscosity appropriateness, drill workability, and the like.

なお、本明細書において、無機充填材の平均粒径は、ミー(Mie)散乱理論に基づくレーザ回折・散乱法により測定することができる。具体的には、レーザ回折式粒度分布測定装置により、無機充填材の粒度分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。   In the present specification, the average particle size of the inorganic filler can be measured by a laser diffraction / scattering method based on the Mie scattering theory. Specifically, the particle size distribution of the inorganic filler can be created on a volume basis by a laser diffraction particle size distribution measuring device, and the median diameter can be measured as the average particle diameter.

球状シリカと水酸化アルミニウムは、単独で用いても良いが、両者を併用することで、ドリル加工性、熱膨張係数の抑制、耐熱性の付与、成形性、接着性等をバランス良く向上させることができる。このような点からは、球状シリカと水酸化アルミニウムを質量比6:1〜2:5で併用することが好ましい。   Spherical silica and aluminum hydroxide may be used alone, but by using both in combination, drill workability, suppression of thermal expansion coefficient, imparting heat resistance, moldability, adhesion, etc. should be improved in a balanced manner. Can do. From such a point, it is preferable to use spherical silica and aluminum hydroxide in a mass ratio of 6: 1 to 2: 5.

また、無機充填材として、球状シリカと水酸化アルミニウム以外の他の無機充填材を併用することもできる。具体的には、例えば、破砕シリカ、水酸化マグネシウム、ガラス粉末、アルミナ、酸化マグネシウム、二酸化チタン、炭化カルシウム、タルク等が挙げられる。このような他の無機充填材の配合量は、好ましくは無機充填材全量に対して100質量%以下である。   Further, as the inorganic filler, other inorganic fillers other than spherical silica and aluminum hydroxide can be used in combination. Specific examples include crushed silica, magnesium hydroxide, glass powder, alumina, magnesium oxide, titanium dioxide, calcium carbide, talc, and the like. The blending amount of such other inorganic filler is preferably 100% by mass or less based on the total amount of the inorganic filler.

本発明のプリプレグ用エポキシ樹脂組成物には、アクリル系共重合体を主成分とする表面発泡抑制成分が配合される。   The epoxy resin composition for prepreg of the present invention is blended with a surface foam inhibiting component mainly composed of an acrylic copolymer.

アクリル系共重合体としては、例えば、下記式(I)で表される単量体のうち2種以上を共重合して得られるものが挙げられる。

Figure 0005260458
Examples of the acrylic copolymer include those obtained by copolymerizing two or more of the monomers represented by the following formula (I).
Figure 0005260458

(式中、R1は水素原子またはメチル基を示し、R2は炭素数1〜300のアルキル基、炭素数6〜30のアリール基、または炭素数6〜30のアリールアルキル基を示す。上記炭素数1〜300のアルキル基中のメチレン基は、−O−、−COO−または−NH−で中断されていてもよい。上記炭素数1〜300のアルキル基、炭素数6〜30のアリール基、および炭素数6〜30のアリールアルキル基は、いずれも置換基を有していてもよい。)
式(I)中、R2で示される炭素数1〜300のアルキル基としては、例えば、メチル基、エチル基、プロピル基等のほか、下記式(II)で表されるポリエーテル基およびポリエステル基が挙げられる。
(DO)kX (II)
(式中、DOは炭素原子数2〜3のオキシアルキレン基を示し、kは1〜300の整数を示し、Xは水素原子、炭素原子数1〜5のアルキル基、またはOCOHを示す。)
上記式(I)で表される単量体としては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート;メトキシジエチレングリコール(メタ)アクリレート、メトキシプロピレングリコール(メタ)アクリレート、n−ブトキシエチレングリコール(メタ)アクリレート、2−フェノキシエチル(メタ)アクリレート、トリオキシエチレンノニルフェノール(メタ)アクリレート、アセトアセトキシエチル(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート等のアルキルモノアルキレングリコール(メタ)アクリレート;エチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、iso−ブチル(メタ)アクリレート、tert−ブチル(メタ)アクリレート、オクチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等のアルキル(メタ)アクリレート;アルキルポリアルキレングリコール(メタ)アクリレート、ジアルキルアミノアルキレン(メタ)アクリレート、アルコキシアルキレン(メタ)アクリレート等が挙げられる。
(Wherein R 1 represents a hydrogen atom or a methyl group, and R 2 represents an alkyl group having 1 to 300 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an arylalkyl group having 6 to 30 carbon atoms. The methylene group in the alkyl group having 1 to 300 carbon atoms may be interrupted by —O—, —COO— or —NH—, and the above alkyl group having 1 to 300 carbon atoms or aryl having 6 to 30 carbon atoms. All of the group and the arylalkyl group having 6 to 30 carbon atoms may have a substituent.)
In the formula (I), examples of the alkyl group having 1 to 300 carbon atoms represented by R 2 include a polyether group and a polyester represented by the following formula (II) in addition to a methyl group, an ethyl group, a propyl group, and the like. Groups.
(DO) k X (II)
(In the formula, DO represents an oxyalkylene group having 2 to 3 carbon atoms, k represents an integer of 1 to 300, and X represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or OCOH.)
Examples of the monomer represented by the formula (I) include hydroxyalkyl (meth) such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 2-hydroxybutyl (meth) acrylate. Acrylate: Methoxydiethylene glycol (meth) acrylate, methoxypropylene glycol (meth) acrylate, n-butoxyethylene glycol (meth) acrylate, 2-phenoxyethyl (meth) acrylate, trioxyethylene nonylphenol (meth) acrylate, acetoacetoxyethyl (meth) ) Acrylate, alkyl monoalkylene glycol (meth) acrylate such as 2-hydroxy-3-phenoxypropyl (meth) acrylate; ethyl (meth) acrylate, n-butyl (meth) Alkyl (meth) acrylates such as acrylate, iso-butyl (meth) acrylate, tert-butyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate; alkyl polyalkylene glycol ( And (meth) acrylate, dialkylaminoalkylene (meth) acrylate, alkoxyalkylene (meth) acrylate, and the like.

上記式(I)で表される単量体のうち2種以上を共重合して得られるアクリル系重合体は、グラフト共重合体、ランダム共重合体、ブロック共重合体、および交互共重合体のいずれであってもよい。   The acrylic polymer obtained by copolymerizing two or more of the monomers represented by the above formula (I) is a graft copolymer, a random copolymer, a block copolymer, and an alternating copolymer. Any of these may be used.

アクリル系重合体は、平均分子量が好ましくは15000〜19000である。なお、平均分子量は、ゲルパーミエーションクロマトグラフ(GPC)で測定したポリスチレン換算の数平均分子量(Mn)である。   The average molecular weight of the acrylic polymer is preferably 15,000 to 19000. The average molecular weight is a polystyrene-equivalent number average molecular weight (Mn) measured by gel permeation chromatography (GPC).

アクリル系重合体の平均分子量が小さ過ぎると、基板にしたときに耐熱性が低下する場合がある。また平均分子量が大き過ぎると、発泡穴を十分に抑制できなくなる場合がある。   If the average molecular weight of the acrylic polymer is too small, the heat resistance may be lowered when it is formed into a substrate. On the other hand, if the average molecular weight is too large, the foam holes may not be sufficiently suppressed.

本発明のプリプレグ用エポキシ樹脂組成物における表面発泡抑制成分の配合量は、エポキシ樹脂および硬化剤の全量に対するアクリル系重合体の量として、好ましくは0.5〜2.0質量%である。表面発泡抑制成分の配合量が少な過ぎると、発泡穴を十分に抑制できなくなる場合があり、配合量が多過ぎると、絶縁信頼性が低下する場合がある。   The compounding amount of the surface foam suppression component in the epoxy resin composition for prepreg of the present invention is preferably 0.5 to 2.0% by mass as the amount of the acrylic polymer relative to the total amount of the epoxy resin and the curing agent. If the blending amount of the surface foam inhibiting component is too small, foam holes may not be sufficiently suppressed, and if the blending amount is too large, the insulation reliability may be lowered.

アクリル系共重合体を主成分とする表面発泡抑制成分は、液状であり、アクリル系共重合体を好ましくは40質量%以上含有し、メトキシプロピルアセテート等の溶媒を含有してもよい。   The surface foaming suppression component having an acrylic copolymer as a main component is in a liquid state, preferably contains 40% by mass or more of an acrylic copolymer, and may contain a solvent such as methoxypropyl acetate.

本発明のプリプレグ用エポキシ樹脂組成物には、本発明の効果を損なわない範囲内において、上記成分に加えて他の成分を配合することができる。このような他の成分としては、例えば、硬化促進剤、有機可とう成分等が挙げられる。   In the epoxy resin composition for prepreg of the present invention, other components can be blended in addition to the above components within the range not impairing the effects of the present invention. Examples of such other components include a curing accelerator and an organic flexible component.

硬化促進剤としては、通常のエポキシ樹脂の硬化反応を促進させるものであれば特に限定されないが、例えば、2−メチルイミダゾール、2−フェニルイミダゾール等のイミダゾール類、トリエチレンジアミン等の三級アミン類、トリフェニルホスフィン等の有機ホスフィン類等が挙げられる。これらは、1種単独で用いてもよく、2種以上を併用してもよい。   The curing accelerator is not particularly limited as long as it accelerates the curing reaction of a normal epoxy resin. For example, imidazoles such as 2-methylimidazole and 2-phenylimidazole, tertiary amines such as triethylenediamine, And organic phosphines such as triphenylphosphine. These may be used alone or in combination of two or more.

硬化促進剤の配合量は、プリプレグ用エポキシ樹脂組成物中の全樹脂成分(エポキシ樹脂と硬化剤の合計量)に対して好ましくは0.040〜0.450質量%である。   Preferably the compounding quantity of a hardening accelerator is 0.040-0.450 mass% with respect to all the resin components (total amount of an epoxy resin and a hardening | curing agent) in the epoxy resin composition for prepregs.

本発明のプリプレグ用エポキシ樹脂組成物は、エポキシ樹脂、硬化剤、無機充填材、表面発泡抑制成分、および必要に応じて他の成分を配合し、ワニスとして調製することができる。ワニスとして調製する際には、溶媒で希釈することができる。溶媒としては、例えば、エチレングリコールモノメチルエーテル等のエーテル類、アセトン、メチルエチルケトン等のケトン類、メタノール、エタノール等のアルコール類、ベンゼン、トルエン等の芳香族炭化水素類、N,N−ジメチルホルムアミド(DMF)等のアミド類等が挙げられる。   The epoxy resin composition for prepreg of the present invention can be prepared as a varnish by blending an epoxy resin, a curing agent, an inorganic filler, a surface foam suppression component, and other components as required. When preparing as a varnish, it can be diluted with a solvent. Examples of the solvent include ethers such as ethylene glycol monomethyl ether, ketones such as acetone and methyl ethyl ketone, alcohols such as methanol and ethanol, aromatic hydrocarbons such as benzene and toluene, N, N-dimethylformamide (DMF). ) And the like.

本発明のプリプレグを作製する際には、ワニスとして調製したプリプレグ用エポキシ樹脂組成物を基材に含浸する。そして、例えば乾燥機中で130〜170℃、3〜15分間の加熱乾燥をすることにより、半硬化状態(B−ステージ)にしたプリプレグを作製することができる。   When producing the prepreg of the present invention, the base material is impregnated with the epoxy resin composition for prepreg prepared as a varnish. And the prepreg made into the semi-hardened state (B-stage) can be produced, for example by performing heat drying for 3 to 15 minutes at 130-170 degreeC in dryer.

基材としては、ガラスクロス、ガラスペーパー、ガラスマット等のガラス繊維を用いることができ、その他、クラフト紙、天然繊維布、有機合成繊維布等を用いることができる。   As the substrate, glass fibers such as glass cloth, glass paper, and glass mat can be used. In addition, craft paper, natural fiber cloth, organic synthetic fiber cloth, and the like can be used.

中でも、JIS R 3420に基づいて測定した通気度が10cm3/cm2/sec以下の基材を用いることが好ましい。例えば、ガラス繊維等に開繊処理を施すことにより、ガラス繊維糸が空間的に拡がって空隙間隔が大幅に抑えられる。このようにして通気度を調整した基材を用いることで、基材への樹脂組成物の含浸性が向上し、表面発泡抑制成分を配合したことと相俟って、発泡穴の発生をさらに抑制することができる。 Especially, it is preferable to use the base material whose air permeability measured based on JISR3420 is 10 cm < 3 > / cm < 2 > / sec or less. For example, by performing a fiber-opening process on glass fibers or the like, the glass fiber yarns are spatially expanded and the gap spacing is greatly suppressed. By using the base material with adjusted air permeability in this way, the impregnation property of the resin composition to the base material is improved, and in combination with the addition of the surface foam suppression component, the generation of foam holes is further increased. Can be suppressed.

本発明の積層板は、上記のようにして得られたプリプレグを所要枚数重ね、例えば、140〜200℃、0.5〜5.0MPa、40〜240分間の条件で加熱加圧して積層成形することにより作製することができる。   The laminated board of the present invention is laminated and laminated by a required number of prepregs obtained as described above, for example, by heating and pressing under conditions of 140 to 200 ° C., 0.5 to 5.0 MPa, 40 to 240 minutes. Can be produced.

この際、片面側または両面側の最外層のプリプレグに金属箔を重ね、これらを加熱加圧して積層成形することにより、金属張積層板を作製することができる。金属箔としては、銅箔、銀箔、アルミニウム箔、ステンレス箔等を用いることができる。   At this time, a metal-clad laminate can be produced by stacking a metal foil on the outermost layer prepreg on one side or both sides and laminating these by heating and pressing. As the metal foil, copper foil, silver foil, aluminum foil, stainless steel foil or the like can be used.

本発明の多層板は、次のようにして作製することができる。予め積層板の片面または両面にアディティブ法やサブトラクティブ法等により内層用の回路を形成すると共に、酸溶液等を用いてこの回路の表面に黒化処理を施すことにより、内層用回路板を作製しておく。   The multilayer board of the present invention can be produced as follows. An inner layer circuit board is manufactured by forming an inner layer circuit on one or both sides of the laminated board in advance by the additive method or subtractive method and applying a blackening treatment to the surface of the circuit using an acid solution or the like. Keep it.

そして、この内層用回路板の片面または両面に、上記のプリプレグを所要枚数重ね、さらに必要に応じてその外面に金属箔を重ねて、これを加熱加圧して積層成形することにより多層板を作製することができる。   Then, the required number of the above prepregs are stacked on one or both sides of the circuit board for the inner layer, and further, metal foil is stacked on the outer surface as necessary, and this is heated and pressed to form a multilayer board. can do.

そして、上記のようにして作製した積層板や多層板の片面または両面にアディティブ法やサブトラクティブ法等によって回路を形成し、必要に応じて、ドリル加工やレーザ加工等により穴あけを行い、この穴にめっきを施してスルーホールやバイアホールを形成する等の工程を行うことにより、プリント配線板や多層プリント配線板を作製することができる。   Then, a circuit is formed on one or both sides of the laminate or multilayer board produced as described above by an additive method or a subtractive method, and drilling or laser processing is performed as necessary. A printed wiring board or a multilayer printed wiring board can be produced by performing a process such as forming a through hole or a via hole by plating the substrate.

以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。なお、表1の配合量は質量部を示す。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples at all. In addition, the compounding quantity of Table 1 shows a mass part.

プリプレグ用エポキシ樹脂組成物の配合成分として以下のものを用いた。
(エポキシ樹脂)
・DIC株式会社製「EPICLON 153」、分子内に窒素を含有せず臭素を含有するエポキシ樹脂、エポキシ当量 390〜410g/eq、分子内平均エポキシ基含有量2個
・東都化成株式会社製「YDB400」、臭素化ビスフェノールA型エポキシ樹脂
・ジャパンエポキシレジン株式会社製「EPON1031」、テトラファンクショナルエポキシ樹脂、エポキシ当量195〜230g/eq
・ダウケミカル株式会社製「DER593」、エポキシ当量 330〜390g/eq、臭素含有率 17〜18質量%、分子内平均エポキシ基含有量 2個、分子内に窒素および臭素を含有するエポキシ樹脂
・DIC株式会社製「EPICLON N690」、クレゾールノボラック型エポキシ樹脂、エポキシ当量 190〜240g/eq、分子内平均エポキシ基含有量 5〜3個
(硬化剤)
・DIC株式会社製「PHENOLITE VH4170」、ビスフェノールAノボラック樹脂、水酸基当量118g/eq、樹脂軟化点105℃、2官能ビスフェノールAの含有量が約25%であるビスフェノールA型ノボラック樹脂。
・ジシアンジアミド、当量 21g/eq
(硬化促進剤)
・株式会社日鉱マテリアルズ製「IM1000」、2級水酸基を含有しないトリアルコキシシリルタイプイミダゾールシラン
・四国化成工業株式会社製「キュアゾール 2E4MZ」、2−エチル−4メチルイミダゾール
(無機充填材)
・株式会社アドマテックス製「SO−25R」、球状シリカ、平均粒径 0.4〜0.6μm
・住友化学工業株式会社製「C−303」、水酸化アルミニウム、平均粒径約4μm
(有機可とう成分)
・ガンツ化成株式会社製「AC3816−N」、コア部分がアクリル樹脂、シェル部分がポリメタクリレート樹脂からなるコアシェル構造ゴム粒子。
(表面発泡抑制成分)
・ビックケミー・ジャパン株式会社製「BYK−392」、主成分:アクリル系共重合体(平均分子量:15000、17000、19000)、溶媒:メトキシプロピルアセテート、不揮発分 52%
(溶媒)
・メチルエチルケトン(MEK)
〈樹脂ワニスの調製〉
上記の配合成分を表1の配合量(質量部)で配合し、溶媒で希釈したものをディスパーで攪拌、均一化した。次いで無機充填材を所定の配合量で投入した後、さらにディスパーにて攪拌し、その後ナノミルを用いて分散させ、プリプレグ用エポキシ樹脂組成物をワニスとして調製した。このときワニス粘度がカップ粘度で40〜50sとなるように溶媒の量を調整した。
〈プリプレグの作製〉
基材として、ガラスクロス(日東紡績株式会社製「7628タイプクロス」、通気度5以下(cm3/cm2/sec)を用いた。このガラスクロスに樹脂ワニスを室温にて30〜60秒の範囲内で含浸させた後、乾燥機内で約130〜170℃で加熱乾燥した。これにより、樹脂ワニス中の溶媒を乾燥除去するとともにプリプレグ用エポキシ樹脂組成物を半硬化させて、プリプレグを作製した。このプリプレグにおける樹脂量は、ガラスクロス100質量部に対し、樹脂106質量部(樹脂47質量%)となるように調整した。
〈銅張積層板の作製〉
上記において得られたプリプレグを8枚積層し、2枚の銅箔(日鉱グールド・フォイル(株)製、厚さ18μmのJTC箔)の粗化面の間に挟み、180℃、3.0MPaの条件で120分間加熱加圧成形し、銅張積層板を作製した。
The following were used as a compounding component of the epoxy resin composition for prepregs.
(Epoxy resin)
-"EPICLON 153" manufactured by DIC Corporation, epoxy resin containing no bromine in the molecule and containing bromine, epoxy equivalent of 390-410 g / eq, 2 intramolecular average epoxy group content-"YDB400" manufactured by Toto Kasei Co., Ltd. ”,“ EPON 1031 ”manufactured by Japan Epoxy Resin Co., Ltd., tetrafunctional epoxy resin, epoxy equivalent of 195 to 230 g / eq
・ Der Chemical Co., Ltd. “DER593”, epoxy equivalent 330-390 g / eq, bromine content 17-18% by mass, intramolecular average epoxy group content 2, epoxy resin containing nitrogen and bromine in the molecule "EPICLON N690" manufactured by Co., Ltd., cresol novolac type epoxy resin, epoxy equivalent 190-240 g / eq, average intramolecular epoxy group content 5-3
(Curing agent)
-“PHENOLITE VH4170” manufactured by DIC Corporation, bisphenol A novolac resin, hydroxyl group equivalent 118 g / eq, softening point 105 ° C., and bifunctional bisphenol A content of about 25%.
Dicyandiamide, equivalent 21g / eq
(Curing accelerator)
・ "IM1000" manufactured by Nikko Materials Co., Ltd., trialkoxysilyl type imidazole silane containing no secondary hydroxyl group "Curesol 2E4MZ" manufactured by Shikoku Chemicals Co., Ltd., 2-ethyl-4methylimidazole
(Inorganic filler)
・ "SO-25R" manufactured by Admatechs Co., Ltd., spherical silica, average particle size 0.4-0.6μm
-“C-303” manufactured by Sumitomo Chemical Co., Ltd., aluminum hydroxide, average particle size of about 4 μm
(Organic flexible ingredient)
-“AC3816-N” manufactured by Gantz Kasei Co., Ltd., core-shell structure rubber particles having a core portion made of an acrylic resin and a shell portion made of a polymethacrylate resin.
(Surface foam suppression component)
"BYK-392" manufactured by Big Chemie Japan Co., Ltd., main component: acrylic copolymer (average molecular weight: 15000, 17000, 19000), solvent: methoxypropyl acetate, non-volatile content 52%
(solvent)
・ Methyl ethyl ketone (MEK)
<Preparation of resin varnish>
The above blending components were blended in the blending amounts (parts by mass) shown in Table 1, and diluted with a solvent were stirred and homogenized with a disper. Next, after adding an inorganic filler in a predetermined blending amount, the mixture was further stirred with a disper and then dispersed using a nanomill to prepare an epoxy resin composition for prepreg as a varnish. At this time, the amount of the solvent was adjusted so that the varnish viscosity was 40 to 50 s as the cup viscosity.
<Preparation of prepreg>
As a base material, a glass cloth (“7628 type cloth” manufactured by Nitto Boseki Co., Ltd.) having an air permeability of 5 or less (cm 3 / cm 2 / sec) was used. A resin varnish was applied to this glass cloth at room temperature for 30 to 60 seconds. After impregnating within the range, it was heated and dried in a dryer at about 130 to 170 ° C. Thereby, the solvent in the resin varnish was dried and removed, and the epoxy resin composition for prepreg was semi-cured to prepare a prepreg. The amount of resin in this prepreg was adjusted to be 106 parts by mass of resin (47% by mass of resin) with respect to 100 parts by mass of glass cloth.
<Preparation of copper-clad laminate>
Eight prepregs obtained above were laminated and sandwiched between roughened surfaces of two copper foils (Nikko Gould Foil Co., Ltd., JTC foil with a thickness of 18 μm), 180 ° C., 3.0 MPa A copper-clad laminate was produced by heating and pressing under conditions for 120 minutes.

このようにして得られたプリプレグと銅張積層板について、次の評価を行った。
[プリプレグの表面状態]
プリプレグの表面状態を観察し、次の基準により評価した。
○: プリプレグの表面の発泡穴の発生が少なく、外観は良好であった。
△: プリプレグの表面に発泡穴の発生が見られたものの、外観は概ね良好であった。
×: プリプレグの表面に多数の発泡穴が発生し、外観が悪化した。
[ガラス転移温度]
JIS−C6481に準拠して測定した。
[熱分解温度]
熱重量変化測定装置(TG−DTA)にて、上記において作製した銅張積層板の銅箔を剥離して測定を行い(昇温速度5℃/分)、重量減が初期に対して5%である温度を熱分解温度とした(IPC−TM650に準拠)。
[オーブン耐熱性]
上記において作製した銅張積層板をオーブンで60分間加熱した後、目視によって膨れまたは剥がれのない限界(最高)オーブン温度にて評価した。
[ピール強度]
上記において得られたプリプレグと厚さ35μmの銅箔(三井金属鉱業株式会社製)を用いて上記と同様にして銅張積層板を作製し、この銅張積層板の銅箔を引き剥がし、JIS−C6481に準拠して測定した。
[絶縁信頼性]
上記において作製した銅張積層板について絶縁抵抗試験を行った。銅張積層板に0.3φのドリルを用いてスルーホールを壁間間隔150μmで穴あけし、次いで厚さ25μmのスルーホールメッキをした後、銅箔をエッチング加工して導体パターンである回路を形成した。スルーホールは2列に並べて50個形成し、回路形成後にソルダーレジストを表面に塗布して耐CAF性評価パターンを作製した。
The following evaluation was performed on the prepreg and copper clad laminate obtained in this manner.
[Surface condition of prepreg]
The surface state of the prepreg was observed and evaluated according to the following criteria.
○: There were few foaming holes on the surface of the prepreg, and the appearance was good.
Δ: Although foam holes were observed on the surface of the prepreg, the appearance was generally good.
X: Many foaming holes generate | occur | produced on the surface of a prepreg, and the external appearance deteriorated.
[Glass-transition temperature]
It measured based on JIS-C6481.
[Pyrolysis temperature]
Using a thermogravimetric change measuring device (TG-DTA), the copper foil of the copper clad laminate prepared above was peeled off and measured (temperature increase rate 5 ° C./min), and the weight loss was 5% of the initial value. The temperature was defined as the thermal decomposition temperature (based on IPC-TM650).
[Oven heat resistance]
The copper clad laminate produced above was heated in an oven for 60 minutes, and then evaluated at the limit (maximum) oven temperature at which there was no blistering or peeling.
[Peel strength]
Using the prepreg obtained above and a 35 μm thick copper foil (Mitsui Metal Mining Co., Ltd.), a copper clad laminate was produced in the same manner as described above, and the copper foil of the copper clad laminate was peeled off. -Measured according to C6481.
[Insulation reliability]
An insulation resistance test was performed on the copper-clad laminate produced above. Through holes are drilled in a copper-clad laminate using a 0.3φ drill with an interval of 150μm between walls, then plated with a through hole of 25μm in thickness, and then the copper foil is etched to form a circuit that is a conductor pattern did. 50 through-holes were formed in two rows, and a solder resist was applied to the surface after forming the circuit to prepare a CAF resistance evaluation pattern.

そして、各回路に電線を半田付けして、電線を介して回路を電源に接続し、85℃、85%RHの恒温恒湿槽内で連続的に32Vの直流電圧を印加してスルーホール壁間の絶縁抵抗を測定した。短絡が発生するまでの時間により、以下の基準で絶縁信頼性を評価した。
○: 600時間超
△: 400〜600時間
×: 400時間未満
評価結果を表1に示す。
Then, the wires are soldered to the respective circuits, the circuits are connected to the power source via the wires, and a DC voltage of 32 V is continuously applied in a constant temperature and humidity chamber at 85 ° C. and 85% RH to form through-hole walls. The insulation resistance between them was measured. The insulation reliability was evaluated according to the following criteria according to the time until the short circuit occurred.
○: Over 600 hours Δ: 400 to 600 hours ×: Less than 400 hours Table 1 shows the evaluation results.

Figure 0005260458
Figure 0005260458

表1より、アクリル系共重合体を主成分とする表面発泡抑制成分を配合した実施例1〜9では、プリプレグ表面の発泡穴の発生が少なく、外観は良好であった。また、プリプレグの製造時において粉落ちも抑制された。さらに、ガラス転移温度、熱分解温度、オーブン耐熱性、ピール強度、および絶縁信頼性も、表面発泡抑制成分を配合しなかった比較例1、2と比べて大きな低下は見られず、高い水準を維持していた。   From Table 1, in Examples 1-9 which mix | blended the surface foam suppression component which has an acrylic copolymer as a main component, there were few generation | occurrence | production of the foaming hole on the surface of a prepreg, and the external appearance was favorable. Moreover, powder fall-off was also suppressed during the production of the prepreg. Furthermore, the glass transition temperature, thermal decomposition temperature, oven heat resistance, peel strength, and insulation reliability were not significantly reduced compared to Comparative Examples 1 and 2 in which the surface foaming suppression component was not blended. Was maintained.

一方、アクリル系共重合体を主成分とする表面発泡抑制成分を配合しなかった比較例1、2では、プリプレグの表面に多数の発泡穴が発生し、外観が悪化した。また、プリプレグの製造時において多くの粉落ちが発生した。   On the other hand, in Comparative Examples 1 and 2 in which the surface foam suppression component containing an acrylic copolymer as a main component was not blended, many foam holes were generated on the surface of the prepreg, and the appearance deteriorated. In addition, a lot of powder falling occurred during the production of the prepreg.

なお、比較例では、樹脂ワニスの含浸時間を600秒として同様の評価を行ったが、実施例では、これと比べても発泡穴の発生は同等もしくはそれ以下であり、1/10以下の含浸時間でプリプレグの外観に発生する発泡を抑制することができた。   In the comparative example, the same evaluation was performed by setting the resin varnish impregnation time to 600 seconds. However, in the examples, the generation of foamed holes was equal to or less than that, and the impregnation was 1/10 or less. It was possible to suppress foaming occurring in the appearance of the prepreg over time.

Claims (5)

エポキシ樹脂、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールA型ノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、およびナフトールアラルキル樹脂から選ばれる少なくとも1種のフェノール系硬化剤およびジシアンジアミドから選ばれるいずれかの硬化剤、質量比6:1〜2:5の範囲内である球状シリカおよび水酸化アルミニウムを含む無機充填材、および、エポキシ樹脂および硬化剤の全量に対して0.5〜2.0質量%の数平均分子量15000〜19000のアクリル系共重合体を含有することを特徴とするプリプレグ用エポキシ樹脂組成物。 Any curing agent selected from epoxy resins, phenol novolak resins, cresol novolak resins, bisphenol A type novolak resins, phenol aralkyl resins, biphenyl aralkyl resins, and naphthol aralkyl resins, and dicyandiamide , An inorganic filler containing spherical silica and aluminum hydroxide in a mass ratio of 6: 1 to 2: 5, and a number of 0.5 to 2.0% by mass relative to the total amount of epoxy resin and curing agent An epoxy resin composition for a prepreg comprising an acrylic copolymer having an average molecular weight of 15,000 to 19000. 請求項1に記載のプリプレグ用エポキシ樹脂組成物を基材に含浸し乾燥して得られたものであることを特徴とするプリプレグ。   A prepreg obtained by impregnating a base material with the epoxy resin composition for prepreg according to claim 1 and drying it. 基材の通気度が10cm3/cm2/sec以下であることを特徴とする請求項2に記載のプリプレグ。 The prepreg according to claim 2, wherein the air permeability of the substrate is 10 cm 3 / cm 2 / sec or less. 請求項2または3に記載のプリプレグを所要枚数重ねて加熱加圧し積層成形したものであることを特徴とする積層板。   A laminate comprising a plurality of the prepregs according to claim 2, which are laminated by heating and pressurizing a required number. 請求項2または3に記載のプリプレグを内層用回路板に重ねて加熱加圧し積層成形したものであることを特徴とする多層板。   A multilayer board obtained by laminating the prepreg according to claim 2 or 3 on an inner layer circuit board by heating and pressing.
JP2009221475A 2009-09-25 2009-09-25 Epoxy resin composition for prepreg and prepreg, laminate and multilayer board using the same Active JP5260458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009221475A JP5260458B2 (en) 2009-09-25 2009-09-25 Epoxy resin composition for prepreg and prepreg, laminate and multilayer board using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009221475A JP5260458B2 (en) 2009-09-25 2009-09-25 Epoxy resin composition for prepreg and prepreg, laminate and multilayer board using the same

Publications (2)

Publication Number Publication Date
JP2011068788A JP2011068788A (en) 2011-04-07
JP5260458B2 true JP5260458B2 (en) 2013-08-14

Family

ID=44014365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009221475A Active JP5260458B2 (en) 2009-09-25 2009-09-25 Epoxy resin composition for prepreg and prepreg, laminate and multilayer board using the same

Country Status (1)

Country Link
JP (1) JP5260458B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103649185B (en) * 2011-06-28 2017-06-09 住友电木株式会社 The manufacture method of prepreg, laminate, semiconductor package part and laminate
JP2013087253A (en) * 2011-10-21 2013-05-13 Panasonic Corp Epoxy resin composition, prepreg, metal-clad laminate and printed wiring board
JP6026095B2 (en) * 2011-10-31 2016-11-16 太陽インキ製造株式会社 Thermosetting resin composition, cured product thereof, and printed wiring board using the same
JP2014111719A (en) * 2012-11-12 2014-06-19 Panasonic Corp Laminate, metal-clad laminate, printed wiring board, and multilayer printed wiring board
JP6819067B2 (en) * 2016-03-31 2021-01-27 住友ベークライト株式会社 Thermosetting resin composition, resin film with carrier, printed wiring board and semiconductor device
US11647583B2 (en) 2016-04-19 2023-05-09 Panasonic Intellectual Property Management Co., Ltd. Prepreg, metal-clad laminated board, and printed wiring board
JP6934633B2 (en) * 2016-12-19 2021-09-15 パナソニックIpマネジメント株式会社 Prepreg, metal-clad laminate and printed wiring board
JP2020050797A (en) * 2018-09-27 2020-04-02 パナソニックIpマネジメント株式会社 Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and printed wiring board
CN114552198B (en) * 2022-04-25 2022-07-08 中国电子科技集团公司第二十九研究所 Precise preparation method of light high-performance circuit

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319245A (en) * 1986-07-11 1988-01-27 東芝ケミカル株式会社 Copper-lined laminated board
JPS6319246A (en) * 1986-07-11 1988-01-27 東芝ケミカル株式会社 Multilayer copper-lined laminated board
JPH0818239A (en) * 1994-07-04 1996-01-19 Hitachi Ltd Method for manufacturing multi-layer printing wiring board
JP2006137942A (en) * 2004-10-14 2006-06-01 Hitachi Chem Co Ltd Prepreg, laminated plate, metal foil-clad laminated plate and printed circuit board using the same
JP4586609B2 (en) * 2005-03-30 2010-11-24 日立化成工業株式会社 Curable resin composition, prepreg, substrate, metal foil-clad laminate and printed wiring board
JP5082373B2 (en) * 2005-10-18 2012-11-28 日立化成工業株式会社 Resin composition for printed wiring board, prepreg, substrate, metal foil-clad laminate, metal foil with resin, and printed wiring board
US8357859B2 (en) * 2007-01-16 2013-01-22 Sumitomo Bakelite Co., Ltd. Insulating resin sheet laminate and multi-layer printed circuit board including insulating resin sheet laminate
US8318292B2 (en) * 2008-03-26 2012-11-27 Sumitomo Bakelite Co., Ltd. Resin sheet with copper foil, multilayer printed wiring board, method for manufacturing multilayer printed wiring board and semiconductor device

Also Published As

Publication number Publication date
JP2011068788A (en) 2011-04-07

Similar Documents

Publication Publication Date Title
JP5260458B2 (en) Epoxy resin composition for prepreg and prepreg, laminate and multilayer board using the same
TWI682967B (en) Resin composition, prepreg, metal foil-clad laminate, resin composite sheet, and printed wiring board
TWI449749B (en) Epoxy resin composition, prepreg, metal-clad laminate and print wiring board
JP5039707B2 (en) Epoxy resin composition for printed wiring board, resin composition varnish, prepreg, metal-clad laminate, printed wiring board, and multilayer printed wiring board
JP5260400B2 (en) Multilayer board for producing multilayer printed wiring boards
JP2009074036A (en) Epoxy resin composition, prepreg, laminate and printed wiring board
JP2008050526A (en) Resin composition, prepreg and laminated board using the same
JP2018087336A (en) Resin composition and multilayer substrate
TW201412864A (en) Thermosetting resin compositions, resin films in B-stage, metal foils, copper clad boards and multi-layer build-up boards
CN110382589A (en) Resin material, stack membrane and multilayer printed-wiring board
JP4553595B2 (en) Prepreg resin composition and prepreg using the same
JP5799174B2 (en) Insulating resin film, pre-cured product, laminate and multilayer substrate
JP5398087B2 (en) Adhesive for heat dissipation substrate and heat dissipation substrate
JP2012246395A (en) Prepreg, laminated plate, and printed wiring board using thermocurable resin composition
JP5681951B2 (en) Resin composition, resin varnish, prepreg, metal-clad laminate, and printed wiring board
JP6451204B2 (en) Resin composition, prepreg, metal foil with resin, and laminate and printed wiring board using these
JP4765975B2 (en) Laminated board and printed wiring board using the same
JP2014062150A (en) Insulating resin film, production method of insulating resin film, preliminarily cured product, laminate, and multilayer substrate
KR20230050341A (en) Copper foil with a resin layer and a laminate using the same
JP2006063114A (en) Prepreg, method for producing the same and laminated plate
JP2013087253A (en) Epoxy resin composition, prepreg, metal-clad laminate and printed wiring board
JP5410804B2 (en) Epoxy resin composition, prepreg, laminate, and multilayer board
TWI778410B (en) Prepregs, Prepregs with Metal Foils, Laminates, Metal-Clad Laminates, and Printed Circuit Boards
TWI777919B (en) Prepregs, Prepregs with Metal Foils, Laminates, Metal-Clad Laminates, and Printed Circuit Boards
JP2006169481A (en) Resin composition, prepreg, and laminate

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5260458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150