WO2014178454A1 - 수처리용 나노섬유-그래핀 분리막 제조방법 및 이에 의해 제조된 수처리용 나노섬유—그래핀 분리막 - Google Patents

수처리용 나노섬유-그래핀 분리막 제조방법 및 이에 의해 제조된 수처리용 나노섬유—그래핀 분리막 Download PDF

Info

Publication number
WO2014178454A1
WO2014178454A1 PCT/KR2013/003735 KR2013003735W WO2014178454A1 WO 2014178454 A1 WO2014178454 A1 WO 2014178454A1 KR 2013003735 W KR2013003735 W KR 2013003735W WO 2014178454 A1 WO2014178454 A1 WO 2014178454A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanofiber
water treatment
graphene
weight
parts
Prior art date
Application number
PCT/KR2013/003735
Other languages
English (en)
French (fr)
Inventor
변홍식
진유동
정혜민
Original Assignee
계명대학교
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 계명대학교 filed Critical 계명대학교
Publication of WO2014178454A1 publication Critical patent/WO2014178454A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0067Inorganic membrane manufacture by carbonisation or pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0211Graphene or derivates thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/39Electrospinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration

Definitions

  • the present invention relates to a method for producing a nanofiber-graphene membrane for water treatment and a nanofiber-graphene membrane for water treatment prepared by the same. More specifically, nanofiber-graphene membrane for water treatment having excellent mechanical strength and chemical resistance by electrospinning a spinning solution containing polyvinylidene fluoride (PVdF) resin and graphene oxide (GO) to improve hydrophilic properties It relates to a manufacturing method and a nanofiber-graphene separation membrane for water treatment produced thereby.
  • PVdF polyvinylidene fluoride
  • GO graphene oxide
  • Membrane process is an energy-saving process that does not involve phase change or temperature and pressure which is inevitably involved in most separation processes. It is combined with various separators and developed membrane material. Its use has been highlighted in various fields such as treatment, ultrapure water production, hemodialysis and filtration plasma separation. Separation membranes can be used to remove colloids, bacteria, oils, proteins, salts, viruses, and solutes dissolved in water or salts dissolved in water.
  • the separation membrane can be classified according to pore size and purpose, microfiltration membrane, ultrafiltration membrane, nanofiltration membrane, reverse osmosis membrane , Pervaporat ion membrane and gas separation membrane, and the like, which are mainly used for water treatment or liquid separation membrane processes, include microfiltration membranes, ultrafiltration membranes, and reverse osmosis membranes. Important factors that characterize liquid separators that exhibit good performance include good flux, high selectivity and fouling resistance.
  • PVdF polyvinylidene fluoride
  • PVdF polyvinylidene fluoride
  • the PVdF is known as a polymer having excellent chemical stability and excellent physical properties such as mechanical strength, but the membrane made of PVdF has a main chain containing fluorine. Due to its high hydrophobic nature, the membrane is filtered during the membrane filtering process, causing contamination of the membrane surface called fouling, increasing the water permeation pressure during filtration and gradually decreasing the production volume, ultimately filtering the water treatment membrane. There was a disadvantage that the function is degraded.
  • Korean Patent Laid-Open Publication No. 2013-0030954 et al. Introduces a material containing a hydrophilic functional group, such as polyvinylpyridone and polyethylene glycol, It also secured hydrophilicity.
  • Graphene is an allotrope of carbon, which refers to a two-dimensional single sheet composed of sp 2 common carbon atoms arranged in a honeycomb hexagon.
  • Graphene Oxide GO is manufactured using a method of oxidizing the graphene with a strong acid and an oxidizing agent, and the like, and has a high specific surface area, including various hydrophilic groups such as hydroxy, epoxy and carbonyl groups. It has the ability to interact with the polymer matrix due to its ion exchange capacity.
  • graphene oxide has been attracting attention recently because it can be easily manufactured from raw materials and its manufacturing cost is relatively low.
  • the nanofibers can be produced by an electrospinning method, which is a technology for producing fibers of fine diameter by spinning a fiber raw material spinning solution (solution or melt) in a charged state, and research on this has been actively conducted in recent years.
  • the nanofibers produced by electrospinning have various properties that cannot be obtained from conventional fibers, and the web composed of these nanofibers can be used in various fields as a separator-type material having a porosity, It is difficult to maintain the strength and there are many problems to be solved from the viewpoint of handleability and the like.
  • the present inventors have continued to study the polyvinylidene fluoride resin Electrospinning the spinning solution containing graphene oxide to improve the non-hydrophilic properties to prepare a nanofiber separator excellent in mechanical strength and chemical resistance to complete the present invention.
  • An object of the present invention is to provide a method for producing a fouling-resistant nanofiber separator excellent in chemical resistance and fouling resistance.
  • Another object of the present invention is to provide a method for producing a fouling-resistant nanofiber separator having excellent water permeability.
  • Still another object of the present invention is to provide a method for producing a fouling resistant nanofiber separator having excellent mechanical properties.
  • Still another object of the present invention is to provide a method of manufacturing a separator that can reduce the production cost.
  • Still another object of the present invention is to provide a fouling-resistant nanofiber separator prepared by the fouling-resistant nanofiber separator manufacturing method.
  • One aspect of the present invention relates to a method for producing a fouling-resistant nanofiber separator;
  • the method for producing a fouling-resistant nanofiber separator comprises the steps of preparing a spinning solution comprising polyamideimide, glycol, dimethylacetamide and tetrahydrofuran; Electrospinning the spinning solution to form nanofiber webs; And heat-treating the nanofiber web.
  • the spinning solution is 100 parts by weight of polyamideimide, about 5 to about 30 parts by weight of glycol, about 220 to about 250 parts by weight of dimethylacetamide and about 140 to about 180 parts by weight of tetrahydrofuran.
  • the weight average molecular weight (Mw) of the polyamideimide is characterized in that from about 100,000 g / mol to about 500,000 g / mol.
  • the electrospinning is characterized in that the radiation voltage is about 10kV to about 20kV, spinning distance of about 7cm to about 10cm and spinning speed of about 0.5m / hr to about 1.5m.e / hr.
  • the heat treatment step is characterized in that the heat treatment at about K) 0 o C to about 300 o C by laminating a plurality of nanofiber web.
  • the fouling-resistant nanofiber separator comprises polyamideimide, glycol and dimethylacetamide, a plurality of pores are formed, the pore size is about 0.01 // m to 1.0 about, porosity is about 45% to about 75%.
  • the surface contact angle of the fouling-resistant nanofiber separator is characterized in that about 30 degrees to about 50 degrees.
  • the surface of the nanofiber-graphene membrane for water treatment according to the present invention has an improved hydrophilic property, which is excellent in chemical resistance to organic solvents and excellent in fouling resistance, and thus, a simple manufacturing process can reduce production cost and tensile strength.
  • Excellent mechanical properties such as elongation may be suitable for membranes for water treatment, in particular for membranes for precision filtration.
  • FIG. 1 (a) schematically shows a nanofiber-graphene separator for water treatment according to one embodiment of the present invention
  • FIG. 1 (b) shows nanoparticles for water treatment according to another embodiment of the present invention.
  • the fiber-graphene separator is shown schematically.
  • SEM scanning electron microscope
  • Figure 3 is a graph showing the FT-IR infrared absorption spectrum of the graphene oxide prepared in Example 2 for the present invention.
  • FIG. 4 is a graph showing the tensile strength of Examples 1 to 4 and Comparative Example 1 of the present invention.
  • 5 is a graph showing the elongation of Examples 1 to 4 and Comparative Example 1 of the present invention.
  • 6 is a photograph of measuring the surface contact angle of the nanofiber-graphene separator for water treatment according to Examples 1 to 4 and Comparative Example 1.
  • nanofiber refers to nanoscale and may include micro units.
  • a plurality of nanofibers are spun through electrospinning in a spinning solution to form a structure.
  • Web and the void space between nanofiber webs constituting the nanofiber separator is defined as” pore.
  • pore size, thickness and porosity of the nanofiber-graphene membrane for water treatment of the present invention Pore size, thickness and porosity after the nanofiber web is laminated and heat treated define .
  • One aspect of the present invention relates to a method for preparing a nanofiber-graphene separator for water treatment and a nanofiber-graphene separator for water treatment prepared thereby.
  • the method for preparing the nanofiber-graphene membrane for water treatment includes: preparing a spinning solution; (b)
  • the method for preparing a nanofiber-graphene membrane for water treatment may include preparing a spinning solution including a polyvinylidene fluoride (PVdF) mixed solution and a graphene oxide dispersion, glycol and polyacrylic acid; Electrospinning the spinning solution to form nanofiber webs; And heat treating the nanofiber web.
  • PVdF polyvinylidene fluoride
  • L0 step includes.
  • L5 is a step of preparing a spinning solution comprising a polyvinylidene fluoride (PVdF) mixed solution, a graphene oxide dispersion, glycol and polyacrylic acid.
  • PVdF polyvinylidene fluoride
  • the spinning solution includes 100 parts by weight of the polyvinylidene fluoride mixed solution, about 50 to about 100 parts by weight of the graphene oxide dispersion, about 5 to about 30 parts by weight of glycol, and about 40 to about 70 parts by weight of polyacrylic acid. Can be prepared.
  • the polyvinylidene fluoride mixed solution may include polyvinylidene fluoride resin, 25 dimethylacetamide and acetone.
  • the mixed solution may include 100 parts by weight of polyvinylidene fluoride resin, about 200 to about 250 parts by weight of dimethylacetamide (DMAc), and about 280 to about 330 parts by weight of acetone. It may have a viscosity suitable for forming the spinning solution in the above range, it may be easy to form the internal pore size of the present invention.
  • PVdF is included to provide chemical resistance and mechanical strength to the nanofiber-graphene separator for water treatment.
  • the PVdF resin a conventional one may be used.
  • the PVdF resin may use a random, block copolymer or a combination thereof. have.
  • the weight average molecular weight (Mw) of the PVdF resin may be about 200,000 g / mol to about 800,000 g / mol.
  • the PVdF resin may have an appropriate viscosity in the weight average molecular weight to form a nanofiber web excellent in mechanical strength when the spinning solution is electrospun.
  • the dimethylacetamide (DMAc) may serve as a solvent in the mixed solution together with the aceron.
  • the dimethylacetamide may be included in an amount of about 200 to about 250 parts by weight based on 100 parts by weight of the PVdF resin. Preferably about 210 to about 240 parts by weight. More preferably, it may be included in about 220 to about 240 parts by weight.
  • the PVdF resin can be easily dissolved in the above range, and a stable spinning solution can be prepared to facilitate the electrospinning, thereby producing nanofiber webs having excellent mechanical strength.
  • Acetone may act as a solvent in the mixed solution together with the dimethylacetamide.
  • the acetone may be included in about 280 to about 330 parts by weight based on 100 parts by weight of the PVdF resin. Preferably from about 290 to about 320 parts by weight / more preferably from about 290 to about 310 parts by weight.
  • the PVdF resin can be easily dissolved in the above range, and a stable spinning solution can be prepared to facilitate the electrospinning, thereby producing nanofiber webs having excellent mechanical strength.
  • the graphene oxide dispersion may be prepared by dispersing graphene oxide in a solvent.
  • the graphene oxide may be prepared using a conventional method. For example, mixing graphite with a strong acid; Mixing the mixed abyss with a strong oxidizing agent; And adjusting the pH of the mixed graphite to neutrality.
  • the strong acid may use at least one strong acid among hydrochloric acid, sulfuric acid, and nitric acid, and the strong oxidizing agent may use potassium permanganate.
  • the surface of each layer in the graphite may be oxidized, and thus some carbon may be bonded to oxygen to have a carbonyl group.
  • the abyss may use a size of about 0.1 to about 1.0 ⁇ . Excellent dispersibility in the solvent in the above range, it can be easily combined with the PVdF resin can be improved mechanical properties.
  • the graphene oxide dispersion may be prepared by dispersing the graphene oxide prepared as described above in a solvent.
  • the solvent is cyclohexane, 1,2-dichiroethane (1,2-clichioroethane), dichlorobenzene (chlorobenzene), dichloromethane (dichloromethane), diethyl ether (dimethyl ether), dimethylether (dimethylether) ), Dimethyl formamide (DMF), dimethyl sulfoxide (DMS0) and the like can be used. These can be used individually or in mixture of 2 or more types. When using this kind of solvent, the graphene oxide can be easily dispersed.
  • the solvent and the graphene oxide may be mixed with each other, sonicated, and dispersed to prepare a dispersion.
  • the graphene oxide dispersion may be included in about 50 to about 150 parts by weight based on 100 parts by weight of the PVdF mixed solution. Preferably about 60 to about 130 parts by weight may be included. More preferably, about 70 to about 120 parts by weight may be included. It can provide a viscosity suitable for the electrospinning of the spinning solution in the above range.
  • the graphene oxide may be reduced to include about 0.5 to about 5.0 weight% based on the total weight of the spinning solution. Preferably from about 0.5 to about 3.5 percent by weight. More preferably about 0.5 to about 2 weight percent.
  • the hydrophilic properties of the nanofiber-graphene membrane for water treatment in the above range may be excellent in mechanical strength and chemical resistance-. The hydrophilic property is lowered when the graphene oxide is included in an amount less than 0.5% by weight. When the graphene oxide is included in an amount exceeding 5.0% by weight, it is difficult to disperse the graphene oxide in the PVdF mixed solution, thereby reducing the elongation. Physical properties of the nanofiber-graphene separation membrane may be lowered. Glycols and polyacrylic acids
  • the glycol is excellent in hydrophilicity, to control the pore size of the nanofiber-graphene membrane for water treatment, to improve the hydrophilicity by modifying the surface to hydrophilic, and to improve the water permeability at low chemical pressure and low pressure Included.
  • the glycol is ethylene glycol, propylene glycol, propylen eglycol, 1,3-butanediol (1,3-13 ⁇ 31 diol), 1,4-butanediol (1,4-13 ⁇ & 1 diol), Neopentyl glycol, diethylene glycol, triethylene glycol, polyethylene glycol, 1,6-hexanediol, 3_methyl- 1,5-pentanediol (3-me thyl-l, 5-pent aned iol) And trimethylol propane may be used. These can be used individually or in mixture of 2 or more types. Preferably diethylene glycol, triethylene glycol or polyethylene glycol can be used. More preferably polyethylene glycol can be used.
  • the glycol may be included in an amount of about 5 to about 30 parts by weight based on 100 parts by weight of the PVdF mixed solution. Preferably from about 5 to about 25 parts by weight. More preferably from about 10 to about 20 increments. Within this range, hydrophilic modification of the nanofiber-graphene separation membrane for water treatment is facilitated, thereby reducing the size of the droplet contact angle to improve fouling resistance, and properly forming pore sizes, thereby improving chemical resistance and mechanical strength. It can be done.
  • the polyacrylic acid (Polyacrylic acid, PAA) is to improve the hydrophilic properties of the nanofiber-graphene membrane for water treatment with the glycol in the present invention, to adjust the pore size, and to quickly the electrospinning of the spinning solution It may be included for the purpose of forming a nanofiber web.
  • the polyacrylic acid may be included in an amount of about 40 to about 70 parts by weight based on 100 parts by weight of the PVdF mixed solution. Preferably about 45 to about 65 parts by weight. More preferably from about 45 to about 60 parts by weight.
  • the pore size of the nanofiber-graphene separation membrane for water treatment may be appropriately formed to improve chemical resistance and mechanical strength.
  • the step is to form a nanofiber web by electrospinning the prepared spinning solution.
  • the electrospinning may be performed by placing a collector on a grounded conductive substrate, using the grounded conductive substrate as a cathode, and using a spinning nozzle with a pump to control an amount of discharge per hour as an anode.
  • the thickness, porosity, and pore size of the nanofiber separator can be easily adjusted by controlling parameters such as voltage, radiation flow rate, and radiation distance.
  • the electrospinning may be carried out under conditions of a radiation voltage of about 10 kV to about 20 kV, a radiation distance of about 7 cm to about 10 cm, and a radiation rate of about 0.5 m £ / hr to about 1.5 / hr.
  • a radiation voltage of about 10 kV to about 20 kV
  • a radiation distance of about 7 cm to about 10 cm
  • a radiation rate of about 0.5 m £ / hr to about 1.5 / hr.
  • the electrospinning is carried out at a relative humidity of about 35% to about 50% Can be. Under the above conditions, the nanofiber web can be easily formed.
  • the step is a step of heat-treating the nanofiber web.
  • the nanofiber webs can be laminated with each other to achieve excellent mechanical strength and water permeability to control the thickness, porosity and pore size of the nanofiber webs.
  • the nanofiber web may be laminated in two to ten layers. Preferably it can be laminated in 6 to 10 layers.
  • the nanofiber web When stacking the nanofiber web in the above range can form a suitable pore size, excellent mechanical strength and chemical resistance can be prepared for the nanofiber-graphene separation membrane for water treatment.
  • the heat treatment may be performed by heating the laminated nanofiber web at about 100 ° C. to about 300 ° C.
  • the heat treatment can greatly enhance the mechanical strength of the nanofiber-graphene membrane for water treatment.
  • the formed nanofiber web may be laminated in two to ten layers, and then subjected to heat treatment at about 100 ° C. to about 300 ° C. for about 15 hours to about 30 hours.
  • Crosslinking of the components contained in the nanofiber web during the heat treatment under the above conditions can be prepared, the nanofiber-graphene separator for water treatment excellent in mechanical strength and chemical resistance.
  • Another aspect of the present invention relates to a nanofiber-graphene separator for water treatment prepared by the method for preparing a nanofiber-graphene separator for water treatment.
  • the nanofiber-graphene separation membrane 100 for water treatment has a nanofiber web form consisting of a plurality of nanofibers 10, and the nanofibers 10
  • the organic component including polyvinylidene fluoride and polyacrylic acid may be impregnated with an inorganic component 20 including graphene oxide.
  • the "impregnation" is fixed as the inorganic component 20 is completely inserted into the inside of the nanofiber 10, as shown in Figure 1 (a), or the nanofiber ( 10) is defined as including a part of the protruding state on the surface.
  • the average diameter of the nanofibers 10 constituting the nanofiber-graphene separator 100 for water treatment is about lOOnm to about lOOOOrai.
  • the thickness of the nanofiber-graphene separator 100 for water treatment is about
  • the surface contact angle of the nanofiber-graphene separation membrane 100 for water treatment may be about 40 degrees to about 60 degrees. Preferably about 40 degrees to about 55 degrees. More preferably, it may be about 40 degrees to about 50 degrees. In the above range, the contamination resistance and water permeability of the nanofiber-graphene separation membrane 100 for water treatment of the present invention may be excellent.
  • the size of the plurality of pores formed in the nanofiber-graphene separation membrane 100 for water treatment may be about 0.01 to about 0.3 mi. Preferably about 0.0 / m to about 0.3. More preferably about 0.1 to about 0. aii.
  • the separator 100 of the present invention has excellent water permeability and water treatment performance, and may have excellent mechanical strength.
  • the inorganic component 20 may have a size of about 0.1 ⁇ 2m to about 0.7. Preferably about 0.45 / to about 0.6 / m. In the above range, the mechanical strength and structural stability of the nanofiber-graphene separation membrane 100 for water treatment may be excellent.
  • the porosity of the nanofiber-graphene separation membrane 100 for water treatment may be about 30% to about 60%. Preferably from about 35% to about 55%. More preferably about 35% to about 50%.
  • water permeability is excellent, and structural stability and mechanical strength may be excellent.
  • the nanofiber-graphene separation membrane 100 for water treatment is excellent in mechanical properties such as elongation and tensile strength.
  • the tensile strength of the separator 100 may be about 260 kg / crf to about 380 kg / crf. Therefore, the nanofiber-graphene separation membrane 100 for water treatment may be suitable for use as a separation membrane for water treatment, in particular for a membrane for precision filtration (MF).
  • MF membrane for precision filtration
  • PVdF polyvinylidene fluoride
  • a 150 mL capacity beaker was prepared, and 3 g of flake graphite (Flake Graphite), 2.55 g of NaN0 3 and 35.5 mL of H 2 S0 4 were added thereto. After placing the beaker in a water bath at 0 ° C., 3 g of KMn0 4 was slowly added into the beaker and stirred for 5 hours to prepare a mixture, followed by removing the water at 0 ° C. It was left for days. In the beaker
  • the prepared graphene oxide was dispersed in dimethylformamide (hereinafter referred to as DMF) to disperse the graphene oxide using ultrasonic waves to prepare a graphene oxide dispersion.
  • DMF dimethylformamide
  • a spinning solution including 110 parts by weight of the graphene oxide dispersion, 13.5 parts by weight of glycol (polyethylene glycol) and 53.5 parts by weight of polyacrylic acid was prepared based on 100 parts by weight of the prepared PVdF mixed solution. At this time, the graphene oxide dispersed in the graphene oxide dispersion was adjusted to 0.5% by weight based on the total weight of the spinning solution.
  • the spinning solution was electrospun to form a nanofiber web.
  • the voltage 17kV, the spinning speed 0.7ml / hr and the spinning distance (tip to collector distance, TCD) is 10cm, in 5 spinning environment was electrospun while maintaining a relative humidity of 35% to 50% to form a nanofiber web.
  • the nanofiber web was laminated in 8 layers and placed between glass plates, and heat treatment was performed using a dry oven for 24 hours at a normal pressure of L0 at a temperature of 270 ° C. After the heat treatment, the impurities remaining on the surface were completely removed using methanol and distilled water to prepare a nanofiber-graphene membrane for water treatment.
  • Example 2
  • Nanofiber web was prepared in the same manner as in Example 1 except that the graphene oxide dispersion was adjusted such that L5 graphene oxide was adjusted to 1 wt% with respect to the total weight of the dispersion.
  • Example 3
  • Nanofiber web was prepared in the same manner as in Example 1 except that the graphene oxide dispersion was adjusted to 1.5% by weight based on the total weight of the spinning solution.
  • Example 4
  • the nanofiber-graphene membrane for water treatment was prepared in the same manner as in Example 1 except that the graphene oxide dispersion was adjusted to 2 wt% with respect to the total weight of the spinning solution. Comparative Example 1
  • Thickness m The nanofiber separators of Examples 1 to 4 and Comparative Example 1 prepared above were measured using a thickness gauge manufactured by Mitutoyo, and the results are shown in Table 1 below.
  • Figure 3 is a graph showing the FT- I CFourier Transform Infrared Spectroscopy) infrared sawtooth spectrum for the graphene oxide included in Example 1 of the present invention.
  • Absorption peak intensity of 3,000 cm “1 to 3,700 cm " 1 section was observed as the 0H group was observed.
  • 1,627 ⁇ 1 the absorption peak of water molecules was observed. This indicates that the graphene oxide is not completely dried and water molecules still remain.
  • the carboxyl group absorption peak of 00 stretching vibration was observed.
  • FIGS. 4 and 5 are graph showing the tensile strength of Examples 1 to 4 and Comparative Example 1
  • Figure 5 is a graph showing the elongation of Examples 1 to 4 and Comparative Example 1.
  • the tensile strength increased as the amount of graphene oxide was increased, and the elongation increased with the amount of graphene oxide, but decreased with the amount of graphene oxide.
  • the hydrogen bond formed between the graphene oxide and the PVdF resin increased the tensile strength.
  • the amount of the graphene oxide added is above a certain level, it may be difficult to disperse the graphene oxide in the PVdF resin, resulting in agglomeration. Therefore, the elongation can be seen to decrease.
  • Figure 6 is a photograph measuring the surface contact angle of the nanofiber-graphene separator for water treatment according to Examples 1 to 4 and Comparative Example 1.
  • the surface contact angles of Examples 1 to 4 were measured to be lower than the surface contact angles of the separator of Comparative Example 1 that does not include graphene oxide, and thus, the nanofibrous graphene separator for water treatment of the present invention. It was found that the hydrophilic characteristics were excellent.
  • the nanofiber-graphene membrane for water treatment according to the present invention can be found to be widely used for water treatment membranes, and particularly suitable for use in precision filtration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Artificial Filaments (AREA)

Abstract

본 발명은 수처리용 나노섬유-그래핀 분리막 제조방법 및 이에 의해 제조된 수처리용 나노섬유-그래핀 분리막에 관한 것이다. 상기 수처리용 나노섬유-그래핀 분리막 제조방법은 폴리비닐리덴플루오라이드 (PVdF) 혼합용액, 산화그래핀 분산액, 글리콜 및 폴리아크릴산을 포함하는 방사용액을 준비하는 단계; 상기 방사용액을 전기방사하여 나노섬유웹을 형성하는 단계; 및 상기 나노섬유웹을 열처리하는 단계;를 포함하며, 상기 산화그래핀 분산액에 포함된 산화그래핀은 상기 방사용액 전체중량에 대하여 약 0.5 중량% 내지 약 5 중량%로 포함되는 것올 특징으로 한다.

Description

【명세서】
【발명의 명칭】
수처리용 나노섬유—그래핀 분리막 제조방법 및 이에 의해 제조된 수처리용 나노섬유—그래핀 분리막
【기술분야】
본 발명은 수처리용 나노섬유-그래핀 분리막 제조방법 및 이에 의해 제조된 수처리용 나노섬유-그래핀 분리막에 관한 것이다. 더욱 상세하게는, 폴리비닐리덴플루오라이드 (PVdF) 수지 및 산화그래핀 (GO)을 포함하는 방사용액을 전기방사하여 친수 특성을 향상시켜 기계적 강도 및 내화학성이 우수한 수처리용 나노섬유-그래핀 분리막 제조방법 및 이에 의해 제조된 수처리용 나노섬유-그래핀 분리막에 관한 것이다.
【배경기술】
분리막을 이용한 공정은 대부분의 분리공정에서 필연적으로 수반하게 되는 상변화 또는 온도 및 압력 변화를 수반하지 않는 에너지 절약형 공정으로 다양한 분리장치와의 조합 및 분리막 소재 개발로 최근 해수담수화, 식품가공, 각종 폐수처리, 초순수 제조, 혈액 투석 및 여과ᅳ 혈장 분리 등 여러 분야에 활용됨으로써 그 증요성이 크게 부각되고 있다. 분리막을 이용하여 콜로이드, 세균, 오일, 단백질, 염, 바이러스 둥 기타 여러 물에 분산된 용질 또는 물에 용해된 염을 제거할 수 있다.
상기 분리막은 기공 크기 및 웅용 목적에 따라 분류할 수 있으며, 정밀여과막 (Microf i ltration membrane) , 한외여과막 (Ultraf i ltration membrane) , 나노여과막 (Nanof itration membrane, ) , 역삼투압막 (Reverse Osmosis membrane) , 투과증발막 (Pervaporat ion membrane) 및 기체투과막 (Gas separation membrane) 등이 있으며, 수처리 또는 액체용 분리막 공정에 주로 사용되는 분리막은 정밀여과막, 한외여과막 및 역삼투압막이 있다. 우수한 성능을 나타내는 액체용 분리막을 특징짓는 중요한 요소에는 우수한 투과유량, 고선택성 및 내오염성이 포함된다.
이러한 분리막에 사용되는 재료로는, 불소계 고분자인 폴리비닐리덴플루오라이드 (P0ly(vinylidene fluoride), PVdF)가 최근 주목받고 있다. 상기 PVdF는 화학적 안정성이 우수하며, 기계적 강도 등의 물리적 성질이 우수한 고분자로 알려져 있으나, PVdF 로 제조된 분리막은 주쇄가 불소를 포함하여 소수성 성질이 강하기 때문에, 막여과 공정시 PVdF 여과막 표면에 오염원이 흡착하여 파울링이라 불리는 막 표면 오염이 유발되어, 여과시 작용하는 수투과압력을 상승시키고 생산수량을 점차 감소시켜 궁극적으로 수처리막의 여과기능이 저하되는 단점이 있었다. 이러한 PVdF 분리막의 파울링 현상을 억제하고 수투과 성능을 향상시키기 위해 대한민국 공개특허 제 2013-0030954호 등에는 폴리비닐피를리돈, 폴리에틸렌 글리콜과 같은 친수성 작용기를 포함하는 물질을 도입하여 PVdF 분리막 표면의 친수성을 확보하기도 하였다.
한편, 그래핀 (Graphene)은 탄소의 동소체로서, sp2 흔성 탄소 원자들이 벌집 형태의 육각형태로 배열되어 이루어진, 2차원 단일 시트 (tw으 dimensional single sheet)를 일컫는다. 산화그래핀 (Graphene Oxide, GO)은 상기 그래핀을 강산 및 산화제로 산화시키는 방법 등을 사용하여 제조되는 것으로, 하이드록시, 에폭시, 카르보닐 그룹과 같이 다양한 친수성 그룹들을 포함하여, 높은 비표면적 및 이온 교환 능력을 가지고 있어 고분자 매트릭스와 쉽게 상호작용할 수 있는 장점이 있다. 또한 카본나노튜브, 풀러렌 등에 비해 그래핀 옥사이드는 원 재료로부터 제조가 용이한 제조가 가능하여 제조비용이 상대적으로 저렴하여 최근 주목받고 있다.
한편, 수처리 분야에서 나노섬유 (nanofiber) 분리막을 사용하는 기술이 최근 주목받고 있다. 상기 나노섬유는 섬유 원료 방사액 (용액 또는 용융체)을 하전상태에서 방사하여 미세 직경의 섬유를 제조하는 기술인 전기방사 (electrospinning)법으로 제조할 수 있으며, 최근 이에 대한 연구가 활발히 진행되고 있다.
통상적인 전기방사법은 전극의 한 극은 방사노즐부에, 다른 한 극은 콜렉터에 위치한 서로 반대 극성을 가지는 두 전극 사이에서, 하전된 고분자 방사액 (용액 또는 용융체)올 방사노즐부를 거쳐 공기증으로 토출하고, 이어서 공기 중에서 하전 필라멘트의 연신 및 또 다른 필라맨트 분기를 거쳐 극세섬유를 제조하는 방법이다. 즉, 하전된 토출 필라멘트는 노즐과 집속장치 (col lector) 사이에 형성된 전기장 내에서 상호 반발 등 전기적 영향으로 심한 요동을 거치면서 극세화된다.
전기방사에 의해 제조되는 나노섬유는 기존의 섬유에서는 얻을 수 없는 다양한 물성을 가지게 되며, 이러한 나노섬유로 구성된 웹은 다공성을 갖는 분리막형 소재로서 다양한 분야에 웅용될 수 있으나, 전술한 나노섬유 만으로는 적절한 강도를 유지하기 어렵고 취급성 등의 관점에서도 해결되어야 할 문제가 다수 존재하였다.
이에 본 발명자는 연구를 거듭하여 폴리비닐리덴플루오라이드 수지에 산화그래핀을 포함하는 방사용액을 전기방사하여 비친수성 특성을 향상시켜 기쩨적 강도 및 내화학성이 우수한 나노섬유 분리막을 제조하여 본 발명을 완성하였다.
【발명의 상세한 설명】
【기술적 과제】
본 발명의 목적은 내화학성 및 내오염성이 우수한 내오염성 나노섬유 분리막 제조방법을 제공하는 것이다.
본 발명의 다른 목적은 수투과 특성이 우수한 내오염성 나노섬유 분리막 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 기계적 물성이 우수한 내오염성 나노섬유 분리막 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 생산 단가를 절감할 수 있는 분리막 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 내오염성 나노섬유 분리막 제조방법에 의해 제조된 내오염성 나노섬유 분리막올 제공하는 것이다.
【기술적 해결방법】
본 발명의 하나의 관점은 내오염성 나노섬유 분리막 제조방법에 관한 것이다ᅳ 상기 내오염성 나노섬유 분리막 제조방법은 폴리아미드이미드, 글리콜, 디메틸아세트아마이드 및 테트라하이드로퓨란을 포함하는 방사용액을 준비하는 단계; 상기 방사용액을 전기방사하여 나노섬유웹을 형성하는 단계; 및 상기 나노섬유웹을 열처리하는 단계;를 포함하는 것을 특징으로 한다.
상기 방사용액은 폴리아미드이미드 100 중량부, 글리콜 약 5 내지 약 30 중량부, 디메틸아세트아마이드 약 220 내지 약 250 중량부 및 테트라하이드로퓨란 약 140 내지 약 180 중량부로 포함하는 것을 특징으로 한다.
상기 폴리아미드이미드의 중량평균 분자량 (Mw)은 약 100,000 g/mol 내지 약 500,000 g/mol인 것을 특징으로 한다.
상기 전기방사는 방사전압 약 10kV 내지 약 20kV, 방사거리 약 7cm 내지 약 10cm 및 방사속도 약 0.5m /hr 내지 약 1.5m.e/hr의 조건으로 실시하는 것을 특징으로 한다.
상기 열처리 단계는 복수의 나노섬유웹을 적층하여 약 K)0oC 내지 약 300oC에서 열처리 하는 것을 특징으로 한다.
본 발명의 다른 관점은 상기 내오염성 나노섬유 분리막 제조방법에 의해 제조된 내오염성 나노섬유 분리막에 관한 것이다. 상기 내오염성 나노섬유 분리막은 폴리아미드이미드, 글리콜 및 디메틸아세트아마이드를 포함하고, 복수의 기공이 형성되며, 상기 기공의 크기는 약 0.01//m 내지 1.0 약 이고, 기공도는 약 45% 내지 약 75%인 것을 특징으로 한다.
한 구체예에서 상기 내오염성 나노섬유 분리막의 표면 접촉각은 약 30도 내지 약 50도인 것을 특징으로 한다.
【유리한 효과】
본 발명에 따른 수처리용 나노섬유-그래핀 분리막의 표면은 친수 특성이 향상되어 유기용매에 대한 내화학성이 우수하고 내오염성이 우수하며, 제조공정이 간단하여 생산 단가를 절감할 수 있고, 인장강도, 연신율 등의 기계적 물성이 우수하여 수처리용 분리막 용도, 특히 정밀여과용 분리막 용도로 적합할 수 있다.
【도면의 간단한 설명】 도 1(a)는 본 발명의 한 구체예에 따른 수처리용 나노섬유-그래핀 분리막을 개략적으로 나타내고, 도 1(b)는 본 발명의 다른 구체예에 따른 수처리용 나노섬유-그래핀 분리막을 개략적으로 나타낸다.
도 2는 본 발명에 대한 실시예 1~4 및 비교예 1에 따른 수처리용 나노섬유- 그래핀 분리막의 주사전자현미경 (SEM) 사진이다.
도 3은 본 발명에 대한 실시예 2에서 제조된 산화그래핀의 FT-IR 적외선 흡수 스펙트럼을 나타낸 그래프이다.
도 4는 본 발명의 실시예 1~4 및 비교예 1의 인장강도를 나타낸 그래프이다. 도 5는 본 발명의 실시예 1~4 및 비교예 1의 연신율을 나타낸 그래프이다. 도 6은 상기 실시예 1~4 및 비교예 1에 따른 수처리용 나노섬유-그래핀 분리막의 표면 접촉각을 측정한사진이다.
【발명의 실시를 위한 최선의 형태】
본 명세서에 기재된 "나노' '라는 용어는 나노 스케일을 의미하며, 마이크로 단위를 포함할 수도 있다. 본 발명에서 방사용액에서 전기방사를 통해 복수 개의 나노섬유가 방사되어 구조물을 형성한 것을 "나노섬유웹" 으로 정의하며, 상기 나노섬유 분리막을 구성하는 나노섬유웹 사이의 빈 공간을 "기공" 으로 정의한다. 또한, 본 발명의 수처리용 나노섬유-그래핀 분리막의 기공크기, 두께 및 기공도는 상기 나노섬유웹이 적층되어 열처리된 이후의 기공크기, 두께 및 기공도로 정의한다 .
본 발명의 하나의 관점은 수처리용 나노섬유-그래핀 분리막 제조방법 및 이에 의해 제조된 수처리용 나노섬유-그래핀 분리막에 관한 것이다. 한 구체예에서 상기 수처리용 나노섬유-그래핀 분리막 제조방법은 ) 방사용액 준비단계; (b)
5 나노섬유웹 형성단계; 및 (C) 열처리 단계;를 포함한다.
보다 구체적으로, 상기 수처리용 나노섬유-그래핀 분리막 제조방법은 폴리비닐리덴플루오라이드 (PVdF) 흔합용액ᅳ 산화그래핀 분산액, 글리콜 및 폴리아크릴산을 포함하는 방사용액을 준비하는 단계; 상기 방사용액을 전기방사하여 나노섬유웹을 형성하는 단계; 및 상기 나노섬유웹을 열처리하는
L0 단계 ;를 포함한다 .
이하, 본 발명에 따른 수처리용 나노섬유-그래핀 분리막 제조방법을 단계별로 상세히 설명한다.
(a) 방사용액 준비단계
L5 상기 단계는 폴리비닐리덴플루오라이드 (PVdF) 흔합용액, 산화그래핀 분산액, 글리콜 및 폴리아크릴산을 포함하는 방사용액을 준비하는 단계이다.
한 구체예에서 상기 방사용액은 폴리비닐리덴플루오라이드 흔합용액 100 중량부, 산화그래핀 분산액 약 50 내지 약 100 중량부, 글리콜 약 5 내지 약 30 중량부 및 폴리아크릴산 약 40 내지 약 70 중량부를 포함하여 제조될 수 있다.
20 상기 범위로 포함시 상기 방사용액의 점도가 우수하여 상기 수처리용 나노섬유- 그래핀 분리막을 용이하게 형성사킬 수 있다. 폴리비닐리덴플루오라이드 흔합용액
상기 폴리비닐리덴플루오라이드 흔합용액은 폴리비닐리덴플루오라이드 수지, 25 디메틸아세트아마이드 및 아세톤을 포함할 수 있다. 한 구체예에서 상기 흔합용액은 폴리비닐리덴플루오라이드 수지 100 중량부, 디메틸아세트아마이드 (DMAc) 약 200 내지 약 250 중량부 및 아세톤 약 280 내지 약 330 중량부를 포함할 수 있다. 상기 범위에서 상기 방사용액 형성에 적절한 점도를 가질 수 있으며, 본 발명의 내부기공 크기를 형성하기 용이할 수 있다.
30 상기 폴리비닐리덴플루오라이드 수지 (Poly vinylidene fluoride), 이하
PVdF)는 상기 수처리용 나노섬유-그래핀 분리막에 내화학성 및 기계적 강도를 제공하기 위해 포함된다. 상기 PVdF 수지로는 통상적인 것이 사용될 수 있다. 예를 들면, 상기 PVdF 수지는 랜덤, 블록 공중합체 또는 이들의 흔합물을 사용할 수 있다.
한 구체예에서, 상기 PVdF 수지의 중량평균 분자량 (Mw)은 약 200,000 g/mol 내지 약 800,000 g/mol일 수 있다. 상기 중량평균 분자량에서 상기 PVdF 수지가 적절한 점도를 가질 수 있어 상기 방사용액을 전기방사시 기계적 강도가 우수한 나노섬유웹을 형성할 수 있다.
상기 디메틸아세트아마이드 (Dimethylacetamide, DMAc)는 상기 아세론과 함께 상기 흔합용액에서 용매역할을 할 수 있다. 상기 디메틸아세트아마이드는 상기 PVdF 수지 100 중량부에 대하여 약 200 내지 약 250 중량부로 포함될 수 있다. 바람직하게는 약 210 내지 약 240 중량부로 포함될 수 있다. 더욱 바람직하게는 약 220 내지 약 240 중량부로 포함될 수 있다. 상기 범위에서 상기 PVdF 수지를 용이하게 용해시키고, 상기 전기방사하기 용이하도록 안정한 방사용액을 제조할 수 있어 기계적 강도가 우수한 나노섬유웹을 제조할 수 있다.
상기 아세톤 (acetone)은 상기 디메틸아세트아마이드와 함께, 상기 흔합용액에서 용매역할을 할 수 있다. 상기 아세톤은 상기 PVdF 수지 100 중량부에 대하여 약 280 내지 약 330 증량부로 포함될 수 있다. 바람직하게는 약 290 내지 약 320 중량부로 포함될 수 있다/더욱 바람직하게는 약 290 내지 약 310 증량부로 포함될 수 있다. 상기 범위에서 상기 PVdF 수지를 용이하게 용해시키고, 상기 전기방사하기 용이하도록 안정한 방사용액을 제조할 수 있어 기계적 강도가 우수한 나노섬유웹을 제조할 수 있다.
,
산화그래핀 분산액
상기 산화그래핀 분산액은 산화그래핀을 제조하여 용매에 분산시킨 것일 수 있다. 본 발명에서 상기 산화그래핀은 통상적인 방법을 사용하여 제조할 수 있다. 예를 들면, 흑연을 강산과 흔합하는 단계; 상기 흔합된 혹연을 강산화제와 흔합하는 단계 ; 및 상기 흔합된 흑연의 pH를 중성으로 조절하는 단계 ;를 포함할 수 있다.
한 구체예에서 상기 강산은 염산, 황산 및 질산 중에서 1종 이상의 강산을 사용할 수 있으며, 상기 강산화제는 과망간산칼륨을 사용할 수 있다. 상기와 같이 제조시 흑연 내 각 층의 표면이 산화되어, 탄소의 일부가 산소와 결합하게 되어 카보닐기를 갖게 될 수 있다.
한 구체예에서, 상기 혹연은 약 0.1 내지 약 1.0^ 의 크기인 것을 사용할 수 있다. 상기 범위에서 용매에서의 분산성이 우수하며, 상기 PVdF 수지와 쉽게 결합하여 기계적 물성이 향상될 수 있다. 상기와 같이 제조된 산화그래핀을 용매에 투입하여 분산시켜 상기 산화그래핀 분산액을 제조할 수 있다. 이때, 상기 용매로는 시클로핵산 (cyclohexane), 1,2-디클로로에탄 (1,2-clichioroethane), 디클로로벤젠 (chlorobenzene), 디클로로메탄 (dichloromethane), 디에틸 에테르 (diethyl ether), 디메틸에테르 (dimethylether ), 디메틸포름아미드 (dimethyl iormamide (DMF)), 디메틸 설폭사이드 (dimethyl sulfoxide (DMS0)) 등을 사용할 수 있다. 이들은 단독 내지 2종 이상 흔합하여 사용할 수 있다. 상기 종류의 용매를 사용시 상기 산화그래핀이 용이하게 분산될 수 있다.
한 구체예에서 전술한 용매와 상기 산화그래핀을 흔합하고 초음파 처리하여 분산시켜 분산액으로 제조할 수 있다.
상기 산화그래핀 분산액은 상기 PVdF 흔합용액 100 중량부에 대하여 약 50 내지 약 150 중량부 포함될 수 있다. 바람직하게는 약 60 내지 약 130 중량부 포함될 수 있다. 더욱 바람직하게는 약 70 내지 약 120 중량부 포함될 수 있다. 상기 범위에서 상기 방사용액의 전기방사에 적합한 점도를 제공할 수 있다.
한 구체예에서 상기 산화그래핀을 상기 방사용액 전체중량에 대하여 약 0.5 내지 약 5.0 중량 %로 포함되도록 :절할 수 있다. 바람직하게는 약 0.5 내지 약 3.5 증량 %일 수 있다. 더욱 바람직하게는 약 0.5 내지 약 2 중량 %일 수 있다. 상기 범위에서 상기 수처리용 나노섬유-그래핀 분리막의 친수 특성이 우수하면서 기계적 강도 및 내화학성이 우수할 수 있디-. 상기 산화그래핀을 0.5 증량 % 미만으로 포함시 친수 특성이 저하되는 단점이 있으며, 5.0 중량 %를 초과하여 포함시 상기 PVdF 흔합용액에서 상기 산화그래핀의 분산이 어려워져 연신율이 감소하게 되어 상기 수처리용 나노섬유-그래핀 분리막의 물성이 저하될 수 있다. 글리콜 및 폴리아크릴산
상기 글리콜은 친수성이 우수하며, 상기 수처리용 나노섬유—그래핀 분리막의 기공 크기를 조절하고, 표면을 친수성으로 개질하여 친수화도를 향상시키고, 내화학성 및 낮은 압력에서 수투과도를 향상시키기 위한 목적으로 포함된다.
상기 글리콜로는 에틸렌글리콜 (ethylene glycol), 프로필렌글리콜 (propylen eglycol), 1,3-부탄디올(1,3-13^31 diol), 1,4-부탄디올(1,4-13^&1 diol), 네오펜틸글리콜 (neopentyl glycol), 디에틸렌글리콜 (diethylene glycol), 트리에틸렌글리콜 (triethylene glycol), 폴리에틸렌글리콜 (polyethylene glycol), 1,6ᅳ핵산디올 (1,6-hexane diol), 3_메틸 -1,5-펜탄디올( 3-me thyl-l,5-pent aned iol) 및 트리메틸올프로판 (trimethylol propane) 등이 사용될 수 있다. 이들은 단독 또는 2종 이상 흔합하여 사용할 수 있다. 바람직하게는 디에틸렌글리콜, 트리에틸렌글리콜 또는 폴리에틸렌글리콜을 사용될 수 있다. 더욱 바람직하게는 폴리에틸렌글리콜이 사용될 수 있다.
상기 글리콜은 상기 PVdF 흔합용액 100 증량부에 대하여 약 5 내지 약 30 중량부로 포함될 수 있다. 바람직하게는 약 5 내지 약 25 중량부로 포함될 수 있다. 더욱 바람직하게는 약 10 내지 약 20 증량부로 포함될 수 있다. 상기 범위에서 상기 수처리용 나노섬유-그래핀 분리막의 친수성 개질을 용이하게 하여 액적 (液滴) 표면 접촉각의 크기가 줄어들어 내오염성을 향상시키고, 기공 크기를 적절하게 형성하여 내화학성 및 기계적 강도를 우수하게 할 수 있다.
상기 폴리아크릴산 (Polyacrylic acid, PAA)은 본 발명에서 상기 글리콜과 함께 상기 수처리용 나노섬유-그래핀 분리막의 친수성질을 향상시키고, 기공 크기를 조절할 수 있으며, 상기 방사용액의 전기방사시 신속하게 상기 나노섬유웹을 형성시키는 목적으로 포함될 수 있다.
한 구체예에서 상기 폴리아크릴산은 상기 PVdF 흔합용액 100 중량부에 대하여 약 40 내지 약 70 중량부로 포함될 수 있다. 바람직하게는 약 45 내지 약 65 중량부로 포함될 수 있다. 더욱 바람직하게는 약 45 내지 약 60 중량부로 포함될 수 있다. 상기 범위에서 상기 수처리용 나노섬유—그래핀 분리막의 기공 크기를 적절하게 형성하여 내화학성 및 기계적 강도를 우수하게 할 수 있다. '
(b) 나노섬유웹 형성단계
상기 단계는 상기 준비된 방사용액을 전기방사하여 나노섬유웹을 형성하는 단계이다.
상기 전기방사는 집전체 (collector)를 접지된 전도성 기판 상에 위치시키고 상기 접지된 전도성 기판을 음극으로 사용하고, 시간당 토출량이 조절되는 펌프가 부착된 방사노즐을 양극으로 사용하여 실시할 수 있다. 본 발명에서 상기 전기방사법을 사용시 전압, 방사유량, 방사거리등의 변수 조절을 통해 상기 나노섬유 분리막의 두께, 기공도 및 기공 크기 등을 용이하게 조절할 수 있다.
한 구체예에서 상기 전기방사는 방사전압 약 10kV 내지 약 20kV, 방사거리 약 7cm 내지 약 10cm 및 방사속도 약 0.5m£/hr 내지 약 1.5 /hr의 조건으로 실시할 수 있다. 상기 조건에서 전기방사시 형성되는 상기 나노섬유웹의 기공도 및 기공의 크기가 적절하게 형성되어 기계적 강도 및 내화학성이 우수할 수 있다.
한 구체예에서 상기 전기방사는 약 35% 내지 약 50%의 상대습도에서 실시할 수 있다. 상기 조건에서 상기 나노섬유웹을 용이하게 형성할 수 있다.
(C) 열처리 단계
상기 단계는 상기 나노섬유웹을 열처리하는 단계이다. 상기 나노섬유웹은 우수한 기계적 강도 및 수투과도를 달성하기 위하여 서로 적층하여 상기 나노섬유 웹의 두께, 기공도 및 기공의 크기를 조절할 수 있다ᅳ
한 구체예에서 상기 나노섬유웹을 2층 내지 10층으로 적층할 수 있다. 바람직하게는 6층 내지 10층으로 적층할 수 있다. 상기 범위로 나노섬유 웹을 적층시 적절한 기공 크기를 형성할 수 있으며, 기계적 강도 및 내화학성이 우수한 수처리용 나노섬유-그래핀 분리막이 제조될 수 있다.
상기 열처리는 상기 적층된 나노섬유웹을 약 100oC 내지 약 300oC에서 가열하여 이루어질 수 있다. 상기 열처리를 통하여 수처리용 나노섬유—그래핀 분리막의 기계적 강도를 크게 강화시킬 수 있다.
한 구체예에서 상기 형성된 나노섬유웹을 2층 내지 10층 적층하여 약 100°C 내지 약 300oC에서, 약 15시간 내지 약 30시간 동안 열처리를 실시할 수 있다. 상기 조건에서 열처리시 상기 나노섬유웹에 포함된 성분들의 가교가 진행되어 기계적 강도 및 내화학성이 우수한 수처리용 나노섬유-그래핀 분리막이 제조될 수 있다. 본 발명의 다른 관점은 상기 수처리용 나노섬유-그래핀 분리막의 제조방법에 의해 제조된 수처리용 나노섬유-그래핀 분리막에 관한 것이다.
도 1(a)는 본 발명의 한 구체예에 따른 수처리용 나노섬유-그래핀 분리막을 개략적으로 나타내고, 도 1(b)는 본 발명의 다른 구체예에 따른 수처리용 나노섬유-그래핀 분리막을 개략적으로 나타낸다. 도 1(a) 및 도 1(b)를 참조하면, 상기 수처리용 나노섬유-그래핀 분리막 (100)은 복수 개의 나노섬유 (10)로 이루어진 나노섬유웹 형태를 가지며, 상기 나노섬유 (10)는 폴리비닐리덴플루오라이드와 폴리아크릴산을 포함하는 유기성분에 산화그래핀을 포함하는 무기성분 (20)이 함침된 형태일 수 있다. 이때, 본 발명에서 상기 "함침" 은 도 1(a)와 같이 상기 무기성분 (20)이 상기 나노섬유 (10)의 내부에 완전히 삽입되어 고정되거나, 도 1(b)와 같이 상기 나노섬유 (10)의 표면에 일부 돌출된 상태를 포함하는 것으로 정의한다.
도 2는 본 발명에 대한 실시예 및 비교예 1에 따른 수처리용 나노섬유- 그래핀 분리막 (100)의 주사전자현미경 (SEM) 사진이다. 상기 도 2를 참조하면, 상기 수처리용 나노섬유-그래핀 분리막 (100)을 구성하는 나노섬유 (10)의 평균 직경은 약 lOOnm 내지 약 lOOOrai 일 수 있다. 바람직하게는 약 200删 내지 약 800nm 일 수 있다. 더욱 바람직하게는 약 300 nm 내지 약 700nm 일 수 있다. 상기 범위의 직경에서 우수한 내화학성과 기계적 강도를 가질 수 있어 본 발명의 목적을 용이하게 달성할 수 있다.
한 구체예에서 상기 수처리용 나노섬유—그래핀 분리막 (100)의 두께는 약
50; 내지 약 90 m 일 수 있다. 바람직하게는 약 6 내지 약 85 일 수 있다. 더욱 바람직하게는 약 65卿 내지 약 80//m 일 수 있다. 상기 범위의 두께에서 상기 수처리용 나노섬유ᅳ그래핀 분리막 (100)의 구조적 안정성과 기계적 강도가 우수할 수 있다.
상기 수처리용 나노섬유-그래핀 분리막 (100)의 표면 접촉각은 약 40도 내지 약 60도 일 수 있다. 바람직하게는 약 40도 내지 약 55도 일 수 있다. 더욱 바람직하게는 약 40도 내지 약 50도 일 수 있다. 상기 범위에서 본 발명의 수처리용 나노섬유-그래핀 분리막 (100)의 내오염 특성 및 수투과도가 우수할 수 있다.
상기 수처리용 나노섬유-그래핀 분리막 (100)에 형성된 복수 개의 기공의 크기는 약 0.01 내지 약 0.3mi일 수 있다. 바람직하게는 약 0.0 /m 내지 약 0.3 일 수 있다. 더욱 바람직하게는 약 0.1 내지 약 0. aii 일 수 있다. 상기 크기의 기공이 형성시 본 발명의 분리막 (100)은 수투과도 및 수처리 성능이 우수하며, 기계적 강도가 우수할 수 있다.
한 구체예에서, 상기 무기성분 (20)의 크기는 약 0.½m ~ 약 0.7 일 수 있다. 바람직하게는 약 0.45/ 내지 약 0.6 /m 일 수 있다. 상기 범위에서 상기 수처리용 나노섬유-그래핀 분리막 (100)의 기계적 강도 및 구조적 안정성이 우수할 수 있다.
또한, 상기 수처리용 나노섬유-그래핀 분리막 (100)의 기공도는 약 30% 내지 약 60%일 수 있다. 바람직하게는 약 35% 내지 약 55% 일 수 있다. 더욱 바람직하게는 약 35% 내지 약 50% 일 수 있다. 상기 기공도로 분리막 (100)이 형성시 수투과도가 우수하며, 구조적 안정성 및 기계적 강도가 우수할 수 있다. 상기 수처리용 나노섬유-그래핀 분리막 (100)은 연신율 및 인장강도 등의 기계적 물성이 우수하다. 예를 들면, 상기 분리막 (100)의 인장강도는 약 260 kg/crf 내지 약 380 kg/crf 일 수 있다. 따라서 상기 수처리용 나노섬유-그래핀 분리막 (100)은 수처리용 분리막 용도, 특히 정밀여과 (MF)용 분리막 용도로 적합할 수 있다. 이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 하기 실시예는 본 발명의 이해를 돕기 위한 것으로, 본 발명의 범위가 하기 실시예에 한정되지는 않는다. 여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 층분히 기술적으로 유추할 수 있는 것이므로 그 5 설명을 생략하기로 한다. 실시예 및 비교예
실시예 1
폴리비닐리덴플루오라이드 (PVdF) 흔합용액 제조
.0 소수성 호모폴리머로 구성된 폴리비닐리덴플루오라이드 (Arkema; ynar 761) 수지 100 중량부, Ν,Ν-디메틸아세트아마이드 (Duksan Pure Chemcal Co. Ltd. , Korea) 230 중량부 및 아세톤 (Duksan Pure Chemcal Co. Ltd. , Korea) 300 중량부를 포함하는 PVdF 흔합용액을 제조하였다.
^5 산화그래핀 분산액 제조
150mL 용량의 비커를 준비하고, 편상흑연 (Flake Graphite) 3g, NaN03 2.55g 및 H2S04 35.5mL를 투입하였다. 상기 비커를 0°C의 water bath에 위치시킨 후, KMn04 3g을 천천히 상기 비커 내부로 첨가하여 5시간 동안 교반하여 흔합물을 제조한 다음, 상기 0°C의 water를 제거하고, 상온에서 3일 동안 방치하였다. 상기 비커 내
>0 흔합물은 3일 동안 방치하는 동안 갈색의 페이스트 형태가 되었다. 그 다음에, 상기 흔합물에 ¾S04를 투입하여 3시간 동안 교반하고 H202 5mL를 첨가하였다. 이때 상기 흔합물의 색상은 밝은 노란색으로 변하였다. 그 다음에, 4% H2S04 및 1.5% ¾02를 넣어 세척 및 원심분리 하였고, 증류수를 이용하여 pH가 증성이 될 때까지 세척하고 원심 분리하였다. 마지막으로, 상기 원심분리된 흔합물을 진공 상태에서
IS 건조하여 파우더 형태의 산화그래핀을 제조하였다.
상기 제조된 산화그래핀을 디메틸포름아미드 (이하 DMF)에 분산시켜 초음파를 사용하여 상기 산화그래핀을 분산하여 산화그래핀 분산액을 제조하였다ᅳ 방사용액 제조
30 상기 제조된 PVdF 흔합용액 100 중량부에 대하여, 산화그래핀 분산액 110 중량부, 글리콜 (폴리에틸렌글리콜) 13.5 중량부 및 폴리아크릴산 53.5 중량부를 포함하는 방사용액을 제조하였다. 이때, 상기 산화그래핀 분산액에 분산되는 산화그래핀은 상기 방사용액 전체중량에 대하여 0.5 중량 %가 되도록 조절하였다. 전기방사
상기 방사용액을 전기방사하여 나노섬유 웹을 형성하였다. 이때 전압 17kV, 방사속도 0.7ml/hr 및 방사거리 (tip to collector distance, TCD)가 10cm이며, 5 방사환경으로는 상대습도 35% 내지 50%으로 유지하면서 전기방사하여 나노섬유웹을 형성하였다. 열처리
상기 나노섬유웹을 8겹으로 적층하여 유리판 사이에 넣고 270°C의 온도로 L0 상압에서, 24 시간동안 dry oven을 이용하여 열처리를 진행하였다. 열처리 진행 후 메탄올과 distilled water를 이용하여 표면에 잔류하고 있는 불순물을 완전히 제거하여 수처리용 나노섬유-그래핀 분리막을 제조하였다. 실시예 2
L5 산화그래핀이 상기 분산액 전체중량에 대하여 1 중량%가 되도록 조절한 산화그래핀 분산액을 사용한 것을 제외하고 실시예 1과 동일한 방법으로 나노섬유웹을 제조하였다. 실시예 3
20 산화그래핀이 상기 방사용액 전체중량에 대하여 1.5 증량%가 되도록 조절한 산화그래핀 분산액을 사용한 것을 제외하고 실시예 1과 동일한 방법으로 나노섬유웹을 제조하였다. 실시예 4
?5 산화그래핀이 상기 방사용액 전체중량에 대하여 2 중량 %가 되도록 조절한 산화그래핀 분산액을 사용한 것을 제외하고 실시예 1과 동일한 방법으로 수처리용 나노섬유-그래핀 분리막을 제조하였다. 비교예 1
10 산화그래핀 분산액을 포함하지 않고 상기 PVdF 흔합용액 100 중량부, 폴리에틸렌글리콜 20 중량부 및 폴리아크릴산 110 중량부를 흔합하여 방사용액을 제조한 다음, 실시예 1과 동일한 방법으로 수처리용 나노섬유-그래핀 분리막을 제조하였다. 시험예
(1) 두께 m): 상기 제조된 실시예 1~4 및 비교예 1의 나노섬유 분리막에 대하여 Mitutoyo 사의 Thickness gauge를 이용하여 측정하여 그 결과를 하기 표 1에 기재하였다.
(2) 기공크기 m): 상기 제조된 실시예 1~4 및 비교예 1의 나노섬유 분리막의 기공크기를 PMI automated Perm-porometer (Porous Materials Inc.)를 이용하여 측정하여 그 결과를 하기 표 1에 기재하였다.
(3) 기공도 (%): 제조된 실시예 1~4 및 비교예 1의 분리막을 일정한 온도의 오본에서 24시간 건조 후의 무게를 측정하고 (Wdry) n-butanol(Junsei Chemcal Co. Ltd.)에 3시간 동안 함침 하여 무게를 측정하였다 0Vwet). 상기 측정된 값을 하기 식 1에 대입하여 기공도를 계산하였다.
[식 1]
Porosity (%)二
Figure imgf000015_0001
Wwet: n-butan 에 함침된 막의 무게
Wdry: 건조된 막의 무게
pb: n-butanol의 밀도
Vdry: 건조된 막의 부피
(4) 인장강도 (kg/cnf) 및 연신율 (%): 실시예 1~4 및 비교예 1에 대하여, 만능인장시험기 (KYUNG-SUNG)를 이용하여 ASTM D882에 따라 각각 10cm X 3cm의 시편형태로 제작하여 5.0 mtti Tiin-l의 속도로 인장강도 및 연신율을 측정하였다. 시편 고정은 90psi의 에어 그립과 25 隱 X25 画의 고무 jawface을 이용하여 측정하였다. 그 결과를 도 4 및 도 5에 기재하였다.
(5) 표면 접촉각 (° ): 실시예 1~4 및 비교예 1에서 제조된 분리막을 상온에서 contact testing machine를 이용하여 표면의 접촉각 (contact angle)을 측정하여 그 결과를 하기 표 1에 기재하였다.
【표 1] 평가항목 두께 기공크기 기공도 Γᄆ극저초가
\2 ᄇ ! ᄀ
Figure imgf000016_0001
한편, 도 3은 본 발명의 실시예 1에 포함된 산화그래핀에 대한 FT- I CFour ier Transform Infrared Spectroscopy) 적외선 톱수 스펙트럼을 도시한 그래프이다. 상기 도 3에서 관찰된 1,630 cm-1 의 흡수피크 강도는 C=C의 신축진동으로 보이며, sp2 결합특성을 나타내는 것으로 관찰되었다. 3,000 cm"1 내지 3,700 cm"1 구간의 흡수피크 강도는 0H 기로 보이는 흡수피크가 관찰되었다. 1,627 ατΓ1 에서는 물 분자의 흡수피크가 관찰되었다. 이것은 상기 산화그래핀이 완전히 건조가 되지 않아 물 분자가 여전히 남아 있다는 것을 나타낸다. 1,720 cm_ 1에서는 00 신축진동 (stretching vibration)의 카르복실 그룹 (carboxyl group) 흡수 피크가 관찰되었다. 1,050 cm"1 에서는 OOC 홉수 피크가 관찰되었고, 869 cm"1 에서 에폭시 그룹 (epoxy group, -CH(O)CH)의 흡수피크가 관찰되었다. 이것은 상기 산화그래핀에는 적어도 -OH, -C00H, -C=0, 및 -CH(0)CH의 4종류의 기능기 그룹을 가지고 있다는 것을 나타낸다.
도 4는 상기 실시예 1~4 및 비교예 1의 인장강도를 나타낸 그래프이고, 도 5는 상기 실시예 1~4 및 비교예 1의 연신율를 나타낸 그래프이다. 상기 도 4 및 도 5를 참조하면, 상기 산화그래핀의 첨가량을 증가시킬수록 인장강도가 증가하였으며, 연신율은 산화그래핀의 첨가량에 따라 증가하나 첨가량이 증가할 수록 감소되는 경향을 나타내었다. 이는 상기 산화그래핀과 상기 PVdF 수지 간에 형성되는 수소결합이 인장강도를 증가시킨 요인이라고 볼 수 있다. 하지만 상기 산화그래핀의 첨가량이 일정 수준 이상일 경우, 상기 PVdF 수지 내에서 상기 산화그래핀의 분산이 어려워져 뭉치는 현상을 나타낼 수 있다. 따라서 연신율이 감소하는 것으로 볼 수 있다.
도 6은 상기 실시예 1~4 및 비교예 1에 따른 수처리용 나노섬유-그래핀 분리막의 표면 접촉각을 측정한 사진이다. 상기 도 6에서, 상기 실시예 1~4의 표면 접촉각은 산화그래핀이 포함되지 않은 비교예 1의 분리막의 표면 접촉각에 비해 낮게 측정되었으며, 이를 통해 본 발명의 수처리용 나노섬유ᅳ그래핀 분리막의 친수성 특성이 우수한 것을 알 수 있었다.
따라서 상기 측정결과를 종합하였을 때 본 발명에 따른 수처리용 나노섬유- 그래핀 분리막은 수처리 분리막 용도로 층분히 활용될 수 있으며, 특히 정밀여과 용도로 사용하기 적합함을 알 수 있었다.

Claims

【청구의 범위】
【청구항 1】
폴리비닐리덴플루오라이드 (PVdF) 흔합용액, 산화그래핀 분산액, 글리콜 및 폴리아크릴산을 포함하는 방사용액을 준비하는 단계;
5 상기 방사용액을 전기방사하여 나노섬유웹을 형성하는 단계; 및
상기 나노섬유웹을 열처리하는 단계;
를 포함하며,
상기 산화그래핀 분산액에 포함된 산화그래핀은 상기 방사용액 전체중량에 대하여 약 0.5 중량 % 내지 약 5 중량 %로 포함되는 것을 특징으로 하는 수처리용 L0- 나노섬유-그래핀 분리막 제조방법.…
【청구항 2]
제 1항에 있어서, 상기 방사용액은 폴리비닐리덴플루오라이드 흔합용액 100 중량부, 산화그래핀 분산액 약 50 내지 약 150 중량부, 글리콜 약 5 내지 약 30 L5 중량부 및 폴리아크릴산 약 40 내지 약 70 중량부를 포함하는 것을 특징으로 하는 수처리용 나노섬유—그래핀 분리막 제조방법.
【청구항 3】
제 1항에 있어서, 상기 폴리비닐리덴플루오라이드 흔합용액은 ?0 폴리비닐리덴플루오라이드 수지 100 중량부, 디메틸아세트아마이드 (DMAc) 약 200 내지 약 250 중량부 및 아세톤 약 280 내지 약 330 중량부를 포함하는 것을 특징으로 하는 수처리용 나노섬유-그래핀 분리막 제조방법.
【청구항 4】
25 제 1항에 있어서, 상기 폴리비닐리덴플루오라이드 수지의 중량평균 분자량 (Mw)은 약 200,000 g/mol 내지 약 800,000 g/mol인 것을 특징으로 하는 수처리용 나노섬유-그래핀 분리막 제조방법
【청구항 5]
30 제 1항에 있어서, 상기 전기방사는 방사전압 약 10kV 내지 약 20kV, 방사거리 약 7cm 내지 약 10cm 및 방사속도 약 0.5m£/hr 내지 약 1.5 /hr의 조건으로 실시하는 것을 특징으로 하는 수처리용 나노섬유-그래핀 분리막 제조방법. 【청구항 61
제 1항에 있어서, 상기 열처리 단계는 약 100 °C 내지 약 300°C에서 열처리 하는 것을 특징으로 하는 수처리용 나노섬유-그래핀 분리막 제조방법.
【청구항 7】
복수 개의 나노섬유로 이루어진 나노섬유웹 형태를 가지고,
복수 개의 기공이 형성되며,
상기 나노섬유는 폴리비닐리덴플루오라이드와 폴리아크릴산을 포함하는 유기성분에 산화그래핀을 포함하는 무기성분이 함침된 수처리용 나노섬유-그래핀 분리막.
【청구항 8】
제 7항에 있어서, 상기 기공 크기는 약 0.01ᅳ «m 내지 약 0.3 이고, 기공도는 약 30% 내지 약 60%인 것올 특징으로 하는 수처리용 나노섬유-그래핀 분리막.
【청구항 91
제 7항에 있어서, 상기 무기성분의 크기는 약 0.4圆~ 약 0.7 인 것을 특징으로 하는 수처리용 나노섬유-그래핀 분리막.
【청구항 10]
제 7항에 있어서, 상기 수처리용 나노섬유-그래핀 분리막의 표면 접촉각은 약 40도 내지 약 60도인 것을 특징으로 하는 수처리용 나노섬유-그래핀 분리막.
PCT/KR2013/003735 2013-04-29 2013-04-30 수처리용 나노섬유-그래핀 분리막 제조방법 및 이에 의해 제조된 수처리용 나노섬유—그래핀 분리막 WO2014178454A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130047660A KR101423757B1 (ko) 2013-04-29 2013-04-29 수처리용 나노섬유-그래핀 분리막 제조방법 및 이에 의해 제조된 수처리용 나노섬유-그래핀 분리막
KR10-2013-0047660 2013-04-29

Publications (1)

Publication Number Publication Date
WO2014178454A1 true WO2014178454A1 (ko) 2014-11-06

Family

ID=51748886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003735 WO2014178454A1 (ko) 2013-04-29 2013-04-30 수처리용 나노섬유-그래핀 분리막 제조방법 및 이에 의해 제조된 수처리용 나노섬유—그래핀 분리막

Country Status (2)

Country Link
KR (1) KR101423757B1 (ko)
WO (1) WO2014178454A1 (ko)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106898731A (zh) * 2015-12-17 2017-06-27 中国科学院大连化学物理研究所 一种复合膜及其制备和应用
CN108421424A (zh) * 2018-03-05 2018-08-21 苏州甫众塑胶有限公司 一种处理工业废水的纳米纤维膜及其制备方法
CN109786619A (zh) * 2017-11-13 2019-05-21 北京碳阳科技有限公司 一种电池隔膜及其制备方法
CN111214962A (zh) * 2019-12-10 2020-06-02 中国科学院过程工程研究所 一种褶皱氧化石墨烯/纳米纤维复合膜及其制备方法和应用
CN111717966A (zh) * 2019-03-20 2020-09-29 中国石油化工股份有限公司 硫酸盐还原菌电过滤灭菌装置与石墨烯纳米纤维无纺布及其制备方法
CN112251914A (zh) * 2020-10-27 2021-01-22 中原工学院 一种压电性能良好的耐高温复合纳米纤维膜及其制备方法
CN112251913A (zh) * 2020-10-27 2021-01-22 中原工学院 一种形貌均匀的纳米复合导电纤维膜及其制备方法和应用
CN112957926A (zh) * 2021-02-08 2021-06-15 杭州楠大环保科技有限公司 用于污水处理工艺的超滤膜及其制备方法
CN113457472A (zh) * 2021-03-15 2021-10-01 波塞冬(江苏)新材料科技有限公司 一种石墨烯改性pvdf高性能复合膜及其制备方法
CN115350602A (zh) * 2022-08-08 2022-11-18 东莞理工学院 一种用于油水分离的具有光热和电热效应的疏水亲油膜及其制备方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101543260B1 (ko) 2014-08-29 2015-08-10 동아대학교 산학협력단 수증기 차단성 투명 고분자 복합필름
CN104451952B (zh) * 2014-10-28 2016-08-24 大连理工大学 一种还原性石墨烯包裹四氧化三钴复合纳米纤维及其制备工艺
KR101580243B1 (ko) * 2014-11-20 2015-12-24 한국기계연구원 산화 그래핀 복합 적층체 및 이의 제조방법
CN105038045A (zh) * 2015-07-13 2015-11-11 西安理工大学 一种氧化石墨烯/聚偏氟乙烯复合薄膜的制备方法
CN105200666B (zh) * 2015-08-26 2017-09-15 辽宁石油化工大学 一种超疏水/超亲油空心微球状pvdf纳米纤维的制备方法
KR101750275B1 (ko) 2015-12-28 2017-06-26 한국세라믹기술원 전기방사법을 이용한 페로브스카이트 필름 제조 방법
KR102055725B1 (ko) * 2016-12-15 2019-12-13 주식회사 아모그린텍 필터여재, 이의 제조방법 및 이를 포함하는 필터유닛
KR102060566B1 (ko) * 2017-02-03 2019-12-30 주식회사 엘지화학 탄소나노튜브 섬유의 제조방법 및 이로 제조된 탄소나노튜브 섬유
KR101918677B1 (ko) * 2017-03-09 2019-02-08 전남대학교산학협력단 필라멘트형 망상구조를 갖는 그래핀/고분자나노섬유 멤브레인 및 그 멤브레인 제조방법
KR102312961B1 (ko) * 2017-08-30 2021-10-15 광주과학기술원 막오염 저감용 압전성 멤브레인 및 이의 제조방법
KR102083007B1 (ko) * 2017-12-22 2020-02-28 울산과학기술원 그래핀 산화물을 포함하는 폴리비닐리덴 플루오라이드 나노섬유의 제조방법 및 이를 이용한 스마트 섬유의 제조방법
JP2021526960A (ja) * 2018-06-08 2021-10-11 日東電工株式会社 選択透過性酸化グラフェン膜
KR102220811B1 (ko) 2018-12-21 2021-02-26 한국에너지기술연구원 나노 기공을 갖는 초박막 그래핀 멤브레인 제조 방법
CN109529638A (zh) * 2018-12-25 2019-03-29 武汉艾科滤膜技术有限公司 一种耐高温精密截留分子量超滤膜及其制备方法
KR102238906B1 (ko) * 2019-03-05 2021-04-13 광주과학기술원 정삼투용 산화그래핀 복합 전기방사 나노섬유 분리막 및 그 제조 방법
KR102223372B1 (ko) * 2019-05-21 2021-03-05 서울대학교산학협력단 물-기름 분리 장치
CN111691061B (zh) * 2020-05-20 2022-04-15 深圳大学 一种光热、压电热双机制加热膜及其制备方法和加热服
WO2022099570A1 (zh) * 2020-11-13 2022-05-19 浙江大学 一种纳米纤维及其制备方法
CN113975978B (zh) * 2021-12-10 2023-05-26 江苏巨之澜科技有限公司 一种石墨烯增强光热蒸发膜、膜组件及污水浓缩处理装置
CN114507941B (zh) * 2022-02-15 2023-07-07 肇庆学院 一种用于可见光催化杀菌的纤维膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288625A (ja) * 2000-02-04 2001-10-19 Ulvac Japan Ltd グラファイトナノファイバー、電子放出源及びその作製方法、該電子放出源を有する表示素子、並びにリチウムイオン二次電池
US20100297502A1 (en) * 2009-05-19 2010-11-25 Nanosys, Inc. Nanostructured Materials for Battery Applications
KR20110073109A (ko) * 2009-12-23 2011-06-29 한국화학연구원 강도가 개선된 다공성 지지체, 그를 이용한 강화 복합전해질 막, 그 막을 구비한 막-전극 어셈블리 및 연료전지
KR20110099475A (ko) * 2010-03-02 2011-09-08 건국대학교 산학협력단 동심원성 다중노즐을 이용한 구배 나노섬유 재료의 제조방법 및 상기 방법으로 제조된 구배 나노섬유
KR20130030954A (ko) * 2011-09-20 2013-03-28 제일모직주식회사 박막 복합 분리막 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288625A (ja) * 2000-02-04 2001-10-19 Ulvac Japan Ltd グラファイトナノファイバー、電子放出源及びその作製方法、該電子放出源を有する表示素子、並びにリチウムイオン二次電池
US20100297502A1 (en) * 2009-05-19 2010-11-25 Nanosys, Inc. Nanostructured Materials for Battery Applications
KR20110073109A (ko) * 2009-12-23 2011-06-29 한국화학연구원 강도가 개선된 다공성 지지체, 그를 이용한 강화 복합전해질 막, 그 막을 구비한 막-전극 어셈블리 및 연료전지
KR20110099475A (ko) * 2010-03-02 2011-09-08 건국대학교 산학협력단 동심원성 다중노즐을 이용한 구배 나노섬유 재료의 제조방법 및 상기 방법으로 제조된 구배 나노섬유
KR20130030954A (ko) * 2011-09-20 2013-03-28 제일모직주식회사 박막 복합 분리막 및 그 제조방법

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106898731A (zh) * 2015-12-17 2017-06-27 中国科学院大连化学物理研究所 一种复合膜及其制备和应用
CN109786619A (zh) * 2017-11-13 2019-05-21 北京碳阳科技有限公司 一种电池隔膜及其制备方法
CN108421424A (zh) * 2018-03-05 2018-08-21 苏州甫众塑胶有限公司 一种处理工业废水的纳米纤维膜及其制备方法
CN111717966A (zh) * 2019-03-20 2020-09-29 中国石油化工股份有限公司 硫酸盐还原菌电过滤灭菌装置与石墨烯纳米纤维无纺布及其制备方法
CN111717966B (zh) * 2019-03-20 2022-06-17 中国石油化工股份有限公司 硫酸盐还原菌电过滤灭菌装置与石墨烯纳米纤维无纺布及其制备方法
CN111214962A (zh) * 2019-12-10 2020-06-02 中国科学院过程工程研究所 一种褶皱氧化石墨烯/纳米纤维复合膜及其制备方法和应用
CN112251913A (zh) * 2020-10-27 2021-01-22 中原工学院 一种形貌均匀的纳米复合导电纤维膜及其制备方法和应用
CN112251914B (zh) * 2020-10-27 2022-02-08 中原工学院 用于制备压电材料的耐高温复合纳米纤维膜及其制备方法
CN112251914A (zh) * 2020-10-27 2021-01-22 中原工学院 一种压电性能良好的耐高温复合纳米纤维膜及其制备方法
CN112957926A (zh) * 2021-02-08 2021-06-15 杭州楠大环保科技有限公司 用于污水处理工艺的超滤膜及其制备方法
CN112957926B (zh) * 2021-02-08 2022-10-25 杭州楠大环保科技有限公司 用于污水处理工艺的超滤膜及其制备方法
CN113457472A (zh) * 2021-03-15 2021-10-01 波塞冬(江苏)新材料科技有限公司 一种石墨烯改性pvdf高性能复合膜及其制备方法
CN115350602A (zh) * 2022-08-08 2022-11-18 东莞理工学院 一种用于油水分离的具有光热和电热效应的疏水亲油膜及其制备方法
CN115350602B (zh) * 2022-08-08 2023-07-28 东莞理工学院 一种用于油水分离的具有光热和电热效应的疏水亲油膜及其制备方法

Also Published As

Publication number Publication date
KR101423757B1 (ko) 2014-08-04

Similar Documents

Publication Publication Date Title
WO2014178454A1 (ko) 수처리용 나노섬유-그래핀 분리막 제조방법 및 이에 의해 제조된 수처리용 나노섬유—그래핀 분리막
Tan et al. Controllable exfoliation of natural silk fibers into nanofibrils by protein denaturant deep eutectic solvent: nanofibrous strategy for multifunctional membranes
Khayet et al. Dual-layered electrospun nanofibrous membranes for membrane distillation
Ahmed et al. A review on electrospinning for membrane fabrication: Challenges and applications
Essalhi et al. Self-sustained webs of polyvinylidene fluoride electrospun nanofibers at different electrospinning times: 1. Desalination by direct contact membrane distillation
US9010547B2 (en) High flux fluid separation membranes comprising a cellulose or cellulose derivative layer
Attia et al. Comparison between dual-layer (superhydrophobic–hydrophobic) and single superhydrophobic layer electrospun membranes for heavy metal recovery by air-gap membrane distillation
Ding et al. Investigation of silica nanoparticle distribution in nanoporous polystyrene fibers
Xiong et al. Fabrication of ultrafine fibrous polytetrafluoroethylene porous membranes by electrospinning
TWI381073B (zh) A polymer fiber body, a method for producing the same, and a filter for fluid filtration
JP5062630B2 (ja) 複合繊維体、その製造方法、フィルタ及び流体濾過方法
WO2015084266A1 (en) A composite nanofiber membrane for membrane distillation and a method of fabrication thereof
Kianfar et al. Electrospinning of fluorinated polymers: current state of the art on processes and applications
JP5880892B2 (ja) ナノ粒子状ファイバー溶液、その製造方法、ナノ粒子状ファイバー製濾過フィルター及びその製造方法
Yan et al. Nanostructured superior oil-adsorbent nanofiber composites using one-step electrospinning of polyvinylidene fluoride/nanocellulose
Kao et al. Using coaxial electrospinning to fabricate core/shell-structured polyacrylonitrile–polybenzoxazine fibers as nonfouling membranes
Miao et al. Hierarchical aramid nanofibrous membranes from a nanofiber-based solvent-induced phase inversion process
Otitoju et al. Polyethersulfone composite hollow-fiber membrane prepared by in-situ growth of silica with highly improved oily wastewater separation performance
Al-Husaini et al. Synthesis of functional hydrophilic polyethersulfone-based electrospun nanofibrous membranes for water treatment
Kim et al. Thermally stable and highly porous separator based on cellulose acetate by glycolic acid
Guo et al. Improvement of PVDF nanofiltration membrane potential, separation and anti-fouling performance by electret treatment
KR101478982B1 (ko) 내오염성 나노섬유 분리막 제조방법 및 이에 의해 제조된 내오염성 나노섬유 분리막
EP2484432B1 (en) Microfiltration membrane
Shahgaldi et al. Investigation of the effect of electrospun polyethersulfone nanofibers in membrane
Ugur et al. Highly thermally resistant, hydrophobic poly (vinyl alcohol)–silica hybrid nanofibers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13883662

Country of ref document: EP

Kind code of ref document: A1