CN106898731A - 一种复合膜及其制备和应用 - Google Patents

一种复合膜及其制备和应用 Download PDF

Info

Publication number
CN106898731A
CN106898731A CN201510953528.5A CN201510953528A CN106898731A CN 106898731 A CN106898731 A CN 106898731A CN 201510953528 A CN201510953528 A CN 201510953528A CN 106898731 A CN106898731 A CN 106898731A
Authority
CN
China
Prior art keywords
spinning
composite membrane
reduction
preparation
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510953528.5A
Other languages
English (en)
Inventor
孙公权
夏章讯
王素力
李印华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201510953528.5A priority Critical patent/CN106898731A/zh
Publication of CN106898731A publication Critical patent/CN106898731A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种复合膜,所述复合膜微观上由石墨烯片层和穿插于石墨烯片层中的高分子聚合物纤维构成的网络结构构成;所述高分子聚合物为聚丙烯酸PAA、聚丙烯腈PAN、聚环氧乙烷PEO中的一种;所述石墨烯片层于复合膜中的质量含量为5-90%。本发明设计的复合材料一维材料组分包括了各类纺丝高分子、碳材料、金属氧化物材料等,二维材料主要基于石墨基材料,极大地增加了电极的比表面积,并通过三维多孔结构的构建,有效地强化了电极中的物质传递,同时静电纺丝技术可实现批量化的规模制备,制备过程简单、结构可控、制备效率高,为先进能源技术的高性能、低成本发展提供了新的思路。本方法所制备的材料适用于燃料电池、锂离子电池、超级电容器等多种能源体系。

Description

一种复合膜及其制备和应用
技术领域
本发明涉及纳米材料制备领域,具体的说涉及复合膜及其制备和应用。
背景技术
包括石墨烯在内的二维纳米材料由于其极为优异的电学性能、机械性能、热学性能以及极大的比表面积,将在未来的能源、环境、材料、生物医药等领域发挥巨大的作用。在先进能源器件领域,如燃料电池、二次电池、超级电容器等,对于电极材料的需求包括大的比表面积、高电子导电性、物质传输顺畅、微纳尺度结构可控等。由于二维纳米材料特殊的结构特征,往往在实际应用中难以同时满足电极材料的需求。因此,石墨烯等材料尽管具有诸多优异的性能,但在电极材料的应用中,还存在诸多的问题亟待解决。例如二维材料的片层堆积与组装,使得气、液、离子等难以实现有效的迁移与传输,制约了电极性能的提高。
鉴于此,开发一种具有三维网络结构的复合纳米材料,可能为二维纳米材料的实际应用提供一种可行的解决思路。目前针对石墨烯等材料的三维结构构建,通常有包括冷冻干燥还原、化学气相沉积、物理气相沉积等,这些方法都实现了二维纳米材料的三维化构建。可由于此类制备手段工艺的复杂性,难以有效实现批量化的放大制备,在电极材料方面的规模化应用仍存在诸多的困难需要解决。
发明内容
本发明针对现有技术的不足,提供了复合膜及其制备方法,本发明采用以下具体方案来实现。
一种复合膜,其特征在于:所述复合膜微观上由石墨烯片层和穿插于石墨烯片层中的高分子聚合物纤维构成的网络结构构成;所述高分子聚合物为聚丙烯酸PAA、聚丙烯腈PAN、聚环氧乙烷PEO中的一种;所述石墨烯片层于复合膜中的质量含量为5-90%。所述相邻石墨片层间的距离为0.5-10nm;所述高分子聚合物纤维的直径为10-500nm。
所述电导率0.1-500S/cm范围内。
所述复合膜的制备方法,包括以下步骤,
(1)纺丝溶液的配制:
于溶剂中加入高分子聚合物和氧化石墨烯粉末得溶液,所述高分子聚合物于溶液中的质量含量为2-20wt.%,持续搅拌至混合均匀得纺丝溶液;
(2)静电纺丝制备:
将步骤(1)所得纺丝溶液置于静电纺丝设备的针管内,纺丝收集基底置于旋转滚轮上进行静电纺丝成膜;所述纺丝过程中针尖偏压为10-50kV,间距5-30cm;进料速率0.01-5mL/min;
(3)还原处理:
采用氢气还原、热处理还原、水合肼还原、硼氢化钠还原中的一种对步骤(2)所得纺丝膜进行还原处理,得一维-二维纳米复合膜。
所述复合膜的制备方法,当步骤(1)所述高分子聚合物为聚丙烯酸PAA时,所述溶剂为水;当步骤(1)所述高分子聚合物为聚丙烯腈PAN时,所述溶剂为乙醇;当步骤(1)所述高分子聚合物为聚环氧乙烷PEO时,所述溶剂为乙醇。
所述复合膜的制备方法,步骤(2)所述静电纺丝的环境温度为5-80℃;旋转滚轮转速为0-500转/min;于纺丝收集基底上收集的纺丝膜的载量为0.1-10mg/cm2时结束纺丝。
当步骤(3)所述还原处理为氢气还原时,于氢气体积为5%的氢氩混合气气氛中、100-500℃条件下进行还原,还原时间为30-240min;还原时氢氩混合气气体流速为10-100mL/min;
当步骤(3)所述还原处理为热处理还原时,于氮气气氛中、300-1000℃条件下进行还原,还原时间为30-240min;还原时氮气气体流速为10-100mL/min;
当步骤(3)所述还原方法为水合肼还原时,将样品于室温条件下置于质量浓度为5-20%的水合肼溶液中,反应时间为10-60min;
当步骤(3)所述还原方法为硼氢化钠还原时,将样品于室温条件下置于摩尔浓度为0.01-5M的硼氢化钠水溶液中,pH值调节至3-11范围内,反应时间为10-60min。
所述复合膜可作为燃料电池气体扩散电极、超级电容器电极或锂离子电池正极使用。
本发明针对目前在能源器件领域对于电极等材料能量密度的较高需求,设计并制备了一种基于静电纺丝技术的复合材料。其中一维材料组分包括了各类纺丝高分子、碳材料、金属氧化物材料等,二维材料主要基于石墨基材料。这种复合结构材料极大地增加了电极的比表面积,并通过三维多孔结构的构建,有效地强化了电极中的物质传递,同时静电纺丝技术可实现批量化的规模制备,制备过程简单、结构可控、制备效率高,为先进能源技术的高性能、低成本发展提供了新的思路。本方法所制备的材料适用于燃料电池、锂离子电池、超级电容器等多种能源体系。
附图说明
图1,纳米复合膜微观结构示意图;
图2,从左至右依次为对比例1、实施例1-4所制备复合材料数码照片;
图3,对比例1(a)与实施例1(b)、2(c、d)所制备复合材料扫描电子显微镜照片。
具体实施方式
实施例1
a.纺丝溶液的配置:
将一定量的PVP粉末按照10wt.%的比例溶解在乙醇中。将采用改进的Hummer法制备的氧化石墨粉末按照5wt.%的比例分散至同样的乙醇中,超声分散1h至均匀。将上述两种分散浆液按照5:1的质量比例混合,持续搅拌至混合均匀。
b.静电纺丝制备:
将上述制备的纺丝溶液置于静电纺丝设备的针管内,纺丝收集基底置于旋转滚轮上,连接好电源后,在一定针尖偏压(30kV)、环境温度与湿度(25摄氏度,50%相对湿度)、滚轮转速(50转每分钟)条件下进行纺丝操作。当基底上纺丝材料达到一定载量(2mg/cm2)后,结束纺丝操作。
c.材料还原后处理
将上述纺丝材料按照需求裁剪成一定尺寸的方块,采用氢气还原法进行还原处理,操作条件为通入5%氢氩气混合气,流速为50mL/min,温度为200摄氏度,还原时间为120min。
实施例2
a.纺丝溶液的配置:
将一定量的PVP粉末按照10wt.%的比例溶解在乙醇中。将采用改进的Hummer法制备的氧化石墨粉末按照5wt.%的比例分散至同样的乙醇中,超声分散1h至均匀。将上述两种分散浆液按照5:2的质量比例混合,持续搅拌至混合均匀。
b.静电纺丝制备:
将上述制备的纺丝溶液置于静电纺丝设备的针管内,纺丝收集基底置于旋转滚轮上,连接好电源后,在一定针尖偏压(30kV)、环境温度与湿度(25摄氏度,50%相对湿度)、滚轮转速(50转每分钟)条件下进行纺丝操作。当基底上纺丝材料达到一定载量(2mg/cm2)后,结束纺丝操作。
c.材料还原后处理
将上述纺丝材料按照需求裁剪成一定尺寸的方块,采用氢气还原法进行还原处理,操作条件为通入5%氢氩气混合气,流速为50mL/min,温度为200摄氏度,还原时间为120min。
实施例3
a.纺丝溶液的配置:
将一定量的PVP粉末按照10wt.%的比例溶解在乙醇中。将采用改进的Hummer法制备的氧化石墨粉末按照5wt.%的比例分散至同样的乙醇中,超声分散1h至均匀。将上述两种分散浆液按照5:3的质量比例混合,持续搅拌至混合均匀。
b.静电纺丝制备:
将上述制备的纺丝溶液置于静电纺丝设备的针管内,纺丝收集基底置于旋转滚轮上,连接好电源后,在一定针尖偏压(30kV)、环境温度与湿度(25摄氏度,50%相对湿度)、滚轮转速(50转每分钟)条件下进行纺丝操作。当基底上纺丝材料达到一定载量(2mg/cm2)后,结束纺丝操作。
c.材料还原后处理
将上述纺丝材料按照需求裁剪成一定尺寸的方块,采用氢气还原法进行还原处理,操作条件为通入5%氢氩气混合气,流速为50mL/min,温度为200摄氏度,还原时间为120min。
实施例4
a.纺丝溶液的配置:
将一定量的PVP粉末按照10wt.%的比例溶解在乙醇中。将采用改进的Hummer法制备的氧化石墨粉末按照5wt.%的比例分散至同样的乙醇中,超声分散1h至均匀。将上述两种分散浆液按照5:4的质量比例混合,持续搅拌至混合均匀。
b.静电纺丝制备:
将上述制备的纺丝溶液置于静电纺丝设备的针管内,纺丝收集基底置于旋转滚轮上,连接好电源后,在一定针尖偏压(30kV)、环境温度与湿度(25摄氏度,50%相对湿度)、滚轮转速(50转每分钟)条件下进行纺丝操作。当基底上纺丝材料达到一定载量(2mg/cm2)后,结束纺丝操作。
c.材料还原后处理
将上述纺丝材料按照需求裁剪成一定尺寸的方块,采用氢气还原法进行还原处理,操作条件为通入5%氢氩气混合气,流速为50mL/min,温度为200摄氏度,还原时间为120min。
对比例1
a.纺丝溶液的配置:
将一定量的PVP粉末按照10wt.%的比例溶解在乙醇中,持续搅拌至溶解均匀。
b.静电纺丝制备:
将上述制备的纺丝溶液置于静电纺丝设备的针管内,纺丝收集基底置于旋转滚轮上,连接好电源后,在一定针尖偏压(30kV)、环境温度与湿度(25摄氏度,50%相对湿度)、滚轮转速(50转每分钟)条件下进行纺丝操作。当基底上纺丝材料达到一定载量(2mg/cm2)后,结束纺丝操作。
实施例5
a.纺丝溶液的配置:
将一定量的PEO粉末按照5wt.%的比例溶解在乙醇中。将采用改进的Hummer法制备的氧化石墨粉末按照10wt.%的比例分散至同样的乙醇中,超声分散4h至均匀。将上述两种分散浆液按照1:1的质量比例混合,持续搅拌至混合均匀。
b.静电纺丝制备:
将上述制备的纺丝溶液置于静电纺丝设备的针管内,纺丝收集基底置于旋转滚轮上,连接好电源后,在一定针尖偏压(50kV)、环境温度与湿度(50摄氏度,50%相对湿度)、滚轮转速(50转每分钟)条件下进行纺丝操作。当基底上纺丝材料达到一定载量(2mg/cm2)后,结束纺丝操作。
c.材料还原后处理
将上述纺丝材料按照需求裁剪成一定尺寸的方块,采用热处理还原法进行还原处理,操作条件为通入高纯氮气,流速为20mL/min,温度为500摄氏度,还原时间为60min。

Claims (8)

1.一种复合膜,其特征在于:所述复合膜微观上由石墨烯片层和穿插于石墨烯片层中的高分子聚合物纤维构成的网络结构构成;所述高分子聚合物为聚丙烯酸PAA、聚丙烯腈PAN、聚环氧乙烷PEO中的一种;所述石墨烯片层于复合膜中的质量含量为5-90%。
2.如权利要求1所述复合膜,其特征在于:所述相邻石墨片层间的距离为0.5-10nm;所述高分子聚合物纤维的直径为10-500nm。
3.如权利要求1所述复合膜,其特征在于:所述电导率为0.1-500S/cm范围内。
4.一种如权利要求1-3任一所述复合膜的制备方法,其特征在于:包括以下步骤,
(1)纺丝溶液的配制:
于溶剂中加入高分子聚合物和氧化石墨烯粉末得溶液,所述高分子聚合物于溶液中的质量含量为2-20wt.%,持续搅拌至混合均匀得纺丝溶液;
(2)静电纺丝制备:
将步骤(1)所得纺丝溶液置于静电纺丝设备的针管内,纺丝收集基底置于旋转滚轮上进行静电纺丝成膜;所述纺丝过程中针尖偏压为10-50kV,间距5-30cm;进料速率0.01-5mL/min;
(3)还原处理:
采用氢气还原、热处理还原、水合肼还原、硼氢化钠还原中的一种对步骤(2)所得纺丝膜进行还原处理,得复合膜。
5.如权利要求4所述复合膜的制备方法,其特征在于:
当步骤(1)所述高分子聚合物为聚丙烯酸PAA时,所述溶剂为水;当步骤(1)所述高分子聚合物为聚丙烯腈PAN时,所述溶剂为乙醇;当步骤(1)所述高分子聚合物为聚环氧乙烷PEO时,所述溶剂为乙醇。
6.如权利要求4所述复合膜的制备方法,其特征在于:
步骤(2)所述静电纺丝的环境温度为5-80℃;旋转滚轮转速为0-500转/min;于纺丝收集基底上收集的纺丝膜的载量为0.1-10mg/cm2时结束纺丝。
7.如权利要求4所述复合膜的制备方法,其特征在于:
当步骤(3)所述还原处理为氢气还原时,于氢气体积为5%的氢氩混合气气氛中、100-500℃条件下进行还原,还原时间为30-240min;还原时氢氩混合气气体流速为10-100mL/min;
当步骤(3)所述还原处理为热处理还原时,于氮气气氛中、300-1000℃条件下进行还原,还原时间为30-240min;还原时氮气气体流速为10-100mL/min;
当步骤(3)所述还原方法为水合肼还原时,将样品于室温条件下置于质量浓度为5-20%的水合肼溶液中,反应时间为10-60min;
当步骤(3)所述还原方法为硼氢化钠还原时,将样品于室温条件下置于摩尔浓度为0.01-5M的硼氢化钠水溶液中,pH值调节至3-11范围内,反应时间为10-60min。
8.一种权利要求1-3任一所述复合膜的应用,其特征在于:所述复合膜可作为燃料电池气体扩散电极、超级电容器电极或锂离子电池正极使用。
CN201510953528.5A 2015-12-17 2015-12-17 一种复合膜及其制备和应用 Pending CN106898731A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510953528.5A CN106898731A (zh) 2015-12-17 2015-12-17 一种复合膜及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510953528.5A CN106898731A (zh) 2015-12-17 2015-12-17 一种复合膜及其制备和应用

Publications (1)

Publication Number Publication Date
CN106898731A true CN106898731A (zh) 2017-06-27

Family

ID=59188681

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510953528.5A Pending CN106898731A (zh) 2015-12-17 2015-12-17 一种复合膜及其制备和应用

Country Status (1)

Country Link
CN (1) CN106898731A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109468686A (zh) * 2018-10-19 2019-03-15 南通纺织丝绸产业技术研究院 静电纺丝装置、取向多孔Gr/PAN复合纳米纤维及其制备方法
CN109505064A (zh) * 2018-11-27 2019-03-22 五邑大学 聚丙烯酸/氧化石墨烯纳米纤维薄膜及其制备方法和应用、氨气传感器
CN110648853A (zh) * 2019-09-11 2020-01-03 东华大学 一种三明治夹层结构自支撑电极材料及其制备方法
CN110911742A (zh) * 2019-12-27 2020-03-24 湖北大学 一种固态电池用聚合物电解质复合膜的制备方法
CN113823766A (zh) * 2021-11-22 2021-12-21 河南电池研究院有限公司 一种固体锂离子电池用负极及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102828267A (zh) * 2012-09-10 2012-12-19 浙江大学 一种导电的高强度的石墨烯增强的聚合物纤维的制备方法
WO2014178454A1 (ko) * 2013-04-29 2014-11-06 계명대학교 수처리용 나노섬유-그래핀 분리막 제조방법 및 이에 의해 제조된 수처리용 나노섬유—그래핀 분리막
CN104332640A (zh) * 2014-11-06 2015-02-04 中国科学院金属研究所 全钒液流电池用热还原氧化石墨烯/纳米碳纤维复合电极制备方法
CN104878590A (zh) * 2015-05-21 2015-09-02 南京理工大学 一种石墨烯导电纳米纤维膜的制备
CN104963089A (zh) * 2015-06-04 2015-10-07 中国科学技术大学 一种柔软透气的电极薄膜材料、触觉传感器及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102828267A (zh) * 2012-09-10 2012-12-19 浙江大学 一种导电的高强度的石墨烯增强的聚合物纤维的制备方法
WO2014178454A1 (ko) * 2013-04-29 2014-11-06 계명대학교 수처리용 나노섬유-그래핀 분리막 제조방법 및 이에 의해 제조된 수처리용 나노섬유—그래핀 분리막
CN104332640A (zh) * 2014-11-06 2015-02-04 中国科学院金属研究所 全钒液流电池用热还原氧化石墨烯/纳米碳纤维复合电极制备方法
CN104878590A (zh) * 2015-05-21 2015-09-02 南京理工大学 一种石墨烯导电纳米纤维膜的制备
CN104963089A (zh) * 2015-06-04 2015-10-07 中国科学技术大学 一种柔软透气的电极薄膜材料、触觉传感器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
黎云玉等: ""石墨烯-聚丙烯腈复合纳米纤维的开发及其抗菌性"", 《合成纤维》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109468686A (zh) * 2018-10-19 2019-03-15 南通纺织丝绸产业技术研究院 静电纺丝装置、取向多孔Gr/PAN复合纳米纤维及其制备方法
CN109505064A (zh) * 2018-11-27 2019-03-22 五邑大学 聚丙烯酸/氧化石墨烯纳米纤维薄膜及其制备方法和应用、氨气传感器
CN109505064B (zh) * 2018-11-27 2021-05-07 五邑大学 一种包括聚丙烯酸/氧化石墨烯纳米纤维薄膜的氨气传感器
CN110648853A (zh) * 2019-09-11 2020-01-03 东华大学 一种三明治夹层结构自支撑电极材料及其制备方法
CN110911742A (zh) * 2019-12-27 2020-03-24 湖北大学 一种固态电池用聚合物电解质复合膜的制备方法
CN110911742B (zh) * 2019-12-27 2023-09-26 湖北大学 一种固态电池用聚合物电解质复合膜的制备方法
CN113823766A (zh) * 2021-11-22 2021-12-21 河南电池研究院有限公司 一种固体锂离子电池用负极及其制备方法

Similar Documents

Publication Publication Date Title
CN106898731A (zh) 一种复合膜及其制备和应用
Jang et al. A review of functional separators for lithium metal battery applications
Li et al. Review of carbon materials for lithium‐sulfur batteries
Gao et al. 2D and 3D graphene materials: Preparation and bioelectrochemical applications
CN108530073B (zh) 一种柔性自支撑三维多孔石墨烯膜的制备方法
Lv et al. Tailoring microstructure of graphene‐based membrane by controlled removal of trapped water inspired by the phase diagram
CN103253657B (zh) 三维石墨烯∕中空碳球复合材料的制备方法
Chhetri et al. A review on nanofiber reinforced aerogels for energy storage and conversion applications
Zhang et al. Efficient fabrication of hierarchically porous graphene-derived aerogel and its application in lithium sulfur battery
CN107141007A (zh) 一种基于石墨烯的复合导热膜及其制备方法
CN105576264B (zh) 一种气体扩散电极及其制备和应用
US10193146B2 (en) Methods for manufacturing graphene based material
CN104986758A (zh) 一种锂电池用三维网络石墨烯及其制备方法
US20100189991A1 (en) Macroporous carbon nanofoam composites and methods of making the same
CN105129927A (zh) 石墨烯/碳纳米管气凝胶复合电容型脱盐电极的制备方法
Liu et al. Carbon nanomaterials with hollow structures: a mini-review
CN106531459A (zh) 一种石墨烯/活性炭复合膜的制备方法及超级电容器电极
Yeon et al. A new era of integrative ice frozen assembly into multiscale architecturing of energy materials
Jiang et al. 2D materials as ionic sieves for inhibiting the shuttle effect in batteries
CN105254920A (zh) 一种石墨烯纸预浸料的制备方法
Xuan et al. Highly efficient polyaniline trapping and covalent grafting within a three-dimensional porous graphene oxide/helical carbon nanotube skeleton for high-performance flexible supercapacitors
CN103395778B (zh) 面内网孔结构石墨烯及其制备方法
CN112086297A (zh) 石墨烯纳米碳电极材料、制备方法及锂离子电容器电极
Peng et al. Centrifugal force regularized laponite@ graphene hybrid membranes with ordered interlayer mass transfer channels and high structural stability for high-rate supercapacitors
Dai et al. Two-dimensional confined channels with high-density hydrophilic microregions for enhanced selective water transport

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170627

RJ01 Rejection of invention patent application after publication