WO2014178387A1 - 流体処理方法 - Google Patents

流体処理方法 Download PDF

Info

Publication number
WO2014178387A1
WO2014178387A1 PCT/JP2014/061905 JP2014061905W WO2014178387A1 WO 2014178387 A1 WO2014178387 A1 WO 2014178387A1 JP 2014061905 W JP2014061905 W JP 2014061905W WO 2014178387 A1 WO2014178387 A1 WO 2014178387A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
processing
control
fine particles
ratio
Prior art date
Application number
PCT/JP2014/061905
Other languages
English (en)
French (fr)
Inventor
榎村眞一
Original Assignee
エム・テクニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エム・テクニック株式会社 filed Critical エム・テクニック株式会社
Priority to US14/787,979 priority Critical patent/US11065588B2/en
Priority to JP2015514854A priority patent/JP6364593B2/ja
Priority to EP14791821.3A priority patent/EP2992954A4/en
Priority to KR1020157027873A priority patent/KR20160002749A/ko
Priority to CN201480024365.6A priority patent/CN105246585B/zh
Publication of WO2014178387A1 publication Critical patent/WO2014178387A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • B01F27/271Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator
    • B01F27/2712Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator provided with ribs, ridges or grooves on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0063Control or regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0072Crystallisation in microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0077Screening for crystallisation conditions or for crystal forms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/43Mixing liquids with liquids; Emulsifying using driven stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/22Control or regulation
    • B01F35/221Control or regulation of operational parameters, e.g. level of material in the mixer, temperature or pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/712Feed mechanisms for feeding fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1887Stationary reactors having moving elements inside forming a thin film
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/2204Mixing chemical components in generals in order to improve chemical treatment or reactions, independently from the specific application
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • B01F23/414Emulsifying characterised by the internal structure of the emulsion
    • B01F23/4146Emulsions including solid particles, e.g. as solution or dispersion, i.e. molten material or material dissolved in a solvent or dispersed in a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets

Definitions

  • the present invention relates to a fluid treatment method, and more particularly to a method for performing various treatments such as emulsification, dispersion, pulverization, precipitation of fine particles, reaction without precipitation of fine particles, and the like on one or more fluids to be treated. .
  • Techniques for processing one or a plurality of fluids to be treated such as emulsification, dispersion, pulverization, precipitation of fine particles, reaction without precipitation of fine particles, and the like are widely used in various industrial fields.
  • fluid processing methods involving the precipitation of fine particles are widely used in the production of fine particles, and are used in optical materials, magnetic materials, conductive materials, electronic materials, functional ceramics, fluorescent materials, catalytic materials, chemical materials, and the like.
  • metals, metal oxides, composite materials, and the like are expected to dramatically improve optical, electromagnetic, and mechanical properties.
  • new physical properties due to micronization such as the development of ultra-high functionality and new physical properties due to the quantum size effect.
  • Patent Document 1 and Patent Document 2 the applicant of the present application has proposed a number of processing methods and processing apparatuses for the fluid to be processed. Specifically, one or two or more introduction portions are covered between at least two processing surfaces that are disposed opposite to each other and that can be approached / separated and at least one of which rotates relative to the other. Various treatments of the fluid to be treated are introduced while introducing the fluid to be treated and passing the fluid to be treated between the treatment surfaces in a thin film fluid state between the treatment surfaces. And discharging from between both processing surfaces.
  • Patent Document 3 As a method for controlling the degree of crystallinity or crystallite size of fine particles, a simple metal, a metal ion, a metal compound, or a metal solution in which they are dissolved in a solvent, a solvothermal method as shown in Patent Document 3, There are a method of hydrothermal treatment in the subcritical or supercritical state as shown in FIG. 5 and a method of controlling the cooling temperature, a method of heat treatment in an inert atmosphere as shown in Patent Document 6, and the like. There is a problem that the energy cost is increased because it requires use in an apparatus having an excellent heat resistance and pressure resistance or in an inert atmosphere, and further requires time for processing.
  • the applicant of the present application provides a method for producing fine particles as shown in Patent Document 7, and allows a raw material fluid containing a material to be precipitated and a precipitation fluid for precipitating the material to be precipitated in the raw material fluid to approach and separate. It has been proposed to control the crystallite size when mixing between the processing surfaces to precipitate fine particles of the material to be precipitated.
  • the method disclosed in Patent Document 7 is limited to changing the type, concentration, pH, and introduction temperature and introduction speed of each fluid contained in each fluid.
  • Applicant's device which has put the devices described in Patent Document 1, Patent Document 2 and Patent Document 7 into practical use, are arranged to face each other and can be approached and separated, at least one being relative to the other To-be-processed which has become a thin film fluid between the processing surfaces by passing the processing fluid through a processing region defined by a flow path limited by at least two processing surfaces that rotate in a rotating manner
  • This is an apparatus capable of precipitating fine particles in a fluid.
  • This apparatus can be used in various ways such as emulsification, dispersion, pulverization, precipitation of fine particles, reaction without precipitation of fine particles, etc.
  • two or more kinds of fluids to be treated are used. It can be used as an apparatus for depositing fine particles.
  • an unmixed region is provided inside in the radial direction, and a mixed region is provided outside the unmixed region.
  • An inner introduction part is provided inside the unmixed area (that is, upstream), an intermediate introduction part is provided at the boundary between the unmixed area and the mixed area, and two or more types of fluids to be treated are provided as an inner introduction part and an intermediate introduction part.
  • the apparatus includes, as the unmixed region, a forced introduction region located near the center of rotation and a thin film adjustment region located far from the center of rotation.
  • the forcible introduction region is formed on at least one processing surface such that a recess that exhibits a micropump effect extends from upstream to downstream, and the thin film adjustment region includes the downstream end of the recess and the intermediate introduction portion
  • at least one kind of the fluid to be treated is forcibly introduced from the inner introduction portion into the forcible introduction region by the concave portion, and the spiral laminar flow from the forcible introduction region to the thin film adjustment region. It is adjusted to the flow under the conditions and flows into the mixing zone.
  • the width ratio (Ow / Iw) of the width (Ow) of the mixed region in the radial direction of rotation to the width (Iw) of the thin film adjustment region in the radial direction of rotation is It was set to be less than 2.00. That is, in the apparatus realized by the present application, the ratio between the width (Iw) of the thin film adjustment region and the width (Ow) of the mixing region is constant.
  • an example in which the apparatus is used as an apparatus for depositing fine particles using one kind of fluid to be treated can be given.
  • one kind of fluid to be treated is introduced from the inner introduction portion, and fine particles are deposited by applying thermal energy on the treatment surface. Therefore, an intermediate introduction part for introducing another fluid is not necessary, and there is no distinction between the unmixed area and the mixed area, and almost all the space between the processing surfaces becomes the processing area.
  • the fine particles are deposited in the processing region, and the deposited fine particles are discharged together with the fluid to be processed from the discharge portion at the downstream end of the processing region.
  • the position and area of these precipitation areas that is, the mixing area when two or more types of fluids to be treated are used, the processing area when only one type of fluid to be treated is used
  • the forced introduction In the apparatus in which the width of the thin film adjustment region and the width of the mixing region are constant when the region is provided, by changing the rotational speed of the processing surface and the introduction speed of each fluid to be processed, the deposition of fine particles can be prevented.
  • the inventor's previous work has shown to some extent that the state of the crystal can be changed. For example, when the rotational speed of the processing surface is increased, the circumferential force applied to the fluid to be processed increases, and the moving distance to the discharge portion increases.
  • the introduction speed of the fluid to be treated and thus the introduction amount per unit time, is increased, the flow velocity is increased and the movement time to reach the discharge section is shortened.
  • the inventor has attempted to control the crystallinity, the growth state of the particle diameter, and the crystallite diameter by controlling the above-described conditions.
  • the particle diameter of the obtained fine particles changes greatly, the shape of the obtained fine particles is not stable, In the constituted fine particles, the distribution of each substance constituting the composite may be uneven among the particles.
  • the fine particles are deposited using two types of fluids to be treated, that is, a raw material fluid containing a material that is a raw material of the material to be deposited and a deposition fluid for precipitating the material to be deposited,
  • the introduction speed of the body is changed, the mixing ratio of the raw material fluid and the precipitation fluid changes, and it may be difficult to obtain fine particles having target characteristics and performance.
  • the particle diameter of the obtained fine particles changes greatly, The shape may not be stable.
  • emulsification, dispersion, and pulverization are performed using two types of fluids to be treated, if the introduction speed of one fluid to be treated is changed, emulsification or mixing of the fluids to be treated is performed. The ratio will change.
  • the present invention controls the processing characteristics by controlling the area, position, and ratio of each region regardless of whether the introduction speed of the fluid to be processed and the rotation speed of the processing surface are changed.
  • the purpose is to be able to perform.
  • the crystallinity control for increasing or decreasing the crystallinity of the fine particles, or the ratio of the crystallite diameter (d) to the particle diameter (D) of the fine particles (d D / D control for increasing / decreasing / D) and CV value control for controlling the particle size distribution of fine particles.
  • yield control for increasing and decreasing the yield and purity control for increasing and decreasing the purity of the reaction can be performed.
  • particle diameter control for controlling the particle diameter of the obtained fine particles and CV value control for controlling the particle size distribution of the obtained fine particles can be performed.
  • the present invention solves the above problems by providing the following means.
  • one or two or more introduction portions are disposed between at least two processing surfaces disposed opposite to each other and capable of approaching / separating at least one rotating relative to the other.
  • the processing step passes the fluid to be processed into a processing region that is a space between the processing surfaces, with the rotation center side of both processing surfaces being upstream and the rotation outer peripheral side being downstream.
  • the ratio of the distance (Od) from the center of rotation to the outer peripheral edge with respect to the distance (Id) from the center of rotation to the introduction portion (Od / To increase or decrease Id) I, and performing control of processing characteristics of the processing.
  • the present invention can also be implemented using two types of fluids to be treated. Specifically, between at least two processing surfaces that are disposed opposite to each other and are capable of approaching / separating, at least one of which rotates relative to the other, from two or more introduction parts, An introduction step of introducing a fluid, and a processing step of performing a fluid treatment while passing a thin film fluid of the fluid to be treated between the treatment surfaces and discharging the fluid from between the two treatment surfaces.
  • the processing step allows the fluid to be processed to pass through a processing region which is a space between both processing surfaces, with the rotation center side of both processing surfaces being upstream and the outer periphery side of the rotation being downstream. Discharge from the outer peripheral edge of the processing area.
  • the introduction portion is provided at an inner introduction portion and a position farther from the center of rotation than the inner introduction portion.
  • An intermediate introduction portion, and the processing region is a mixing region located farther from the center of rotation than the intermediate introduction portion, and an unmixed region located closer to the center of rotation than the intermediate introduction portion.
  • the introducing step includes introducing at least one type of the fluid to be treated from the inner introduction portion into the unmixed region; and introducing at least one other type of the fluid to be treated from the intermediate introduction portion.
  • Introducing into the mixing region, and the processing step includes a step in which the fluid to be treated introduced from the inner introduction portion and the fluid to be treated introduced from the intermediate introduction portion are preceded.
  • Mixed in the mixing region is intended to include steps. Then, by increasing or decreasing the ratio (Od / Cd) of the distance (Od) from the center of rotation to the outer peripheral edge with respect to the distance (Cd) from the center of rotation to the intermediate introduction portion, the processing of the processing Characteristic control is performed.
  • the present invention provides at least two types of treated fluids, ie, a treated fluid containing at least one substance that is a raw material of the deposited material and a treated fluid for depositing the deposited material as the treated fluid.
  • the fluid can be used for fluid processing involving precipitation of fine particles.
  • the crystallinity control for increasing or decreasing the crystallinity of the fine particles, and d / D for increasing or decreasing the ratio (d / D) of the crystallite diameter (d) to the particle diameter (D) of the fine particles At least one of control and CV value control for controlling the particle size distribution of the fine particles can be performed.
  • the treatment region is defined by x (width) y (length) z (height), and these x (width) y (length). ) It can be understood that the position and area of the processing region are changed by increasing or decreasing x (width) and y (length) in z (height). Then, by changing these, the degree of crystallinity control to increase or decrease the crystallinity of the obtained fine particles, and the ratio (d / D) of the crystallite diameter (d) to the particle diameter (D) of the fine particles are increased or decreased. D / D control and CV value control for controlling the particle size distribution of the fine particles can be performed.
  • the fluid to be treated at least two kinds of fluids to be treated, ie, a fluid to be treated containing at least one kind of material that is a raw material of the substance to be deposited, and a fluid to be treated for depositing the substance to be precipitated.
  • the y (length) is the distance (Cd) from the center of rotation to the intermediate introduction part and the center of rotation.
  • the distance (Od) to the outer peripheral edge of the processing region is defined, and the x (width) is defined by the y (length) and the circumference ratio.
  • the y (length) is the distance (Id) from the center of rotation to the inner introduction portion, and the distance from the center of rotation to the processing area. It is defined by the distance (Od) to the outer peripheral edge, and the x (width) is defined by the y (length) and the circumference ratio.
  • a ratio (Od / Cd) between a distance (Cd) from the center of rotation to the intermediate introduction portion and a distance (Od) from the center of rotation to the outer peripheral edge of the processing region, or the rotation By increasing or decreasing the ratio (Od / Id) of the distance (Id) from the center to the inner introduction portion and the distance (Od) from the center of rotation to the outer peripheral edge of the processing region, the area of the processing region To change. (Hereinafter, when referring to both the ratio (Od / Cd) and the ratio (Od / Id), it is referred to as a diameter ratio (Od / Cd ⁇ Id).)
  • the degree of crystallization of the obtained fine particles is controlled, and the crystallite diameter (d) with respect to the particle diameter (D) of the fine particles is controlled.
  • the d / D control for increasing and decreasing the ratio (d / D) is performed.
  • the moving distance of the fluid to be processed reaching the discharge portion at the outer peripheral end of the processing region is changed, and the moving time until reaching the discharge portion is changed. Change. Furthermore, by increasing or decreasing the diameter ratio (Od / Cd ⁇ Id), the position and area (volume) of the mixing region and the processing region from the center of the rotation are not limited to the change of the time and distance. Change. In particular, in the present invention, since the fluid to be processed is moved with the inside in the radial direction as the upstream and the outside as the downstream, the processing region expands by the square of the distance toward the downstream, The energy from the processing surface is expanded accordingly.
  • the mixing and diffusion conditions of the fluid to be treated change, as well as the mixing of the fluid to be treated during the period from the introduction part to the discharge part, the reaction caused thereafter, It is considered that the crystallinity, the particle diameter, and the growth state of the crystallite diameter are changed by changing the reaction time in the order of precipitation, crystallization, or crystallite growth.
  • the crystallinity control increases the crystallinity of the fine particles by increasing the diameter ratio (Od / Cd ⁇ Id), and the diameter ratio (Od / Cd ⁇ Id). ) Can be controlled to reduce the crystallinity.
  • the diameter ratio (Od / Cd ⁇ Id) is increased to increase the crystallite diameter (d) and the crystallite diameter (D) with respect to the particle diameter (D) of the fine particles.
  • the crystallite diameter (d) is reduced and the crystal with respect to the particle diameter (D) of the fine particles is reduced. Control to lower the ratio (d / D) of the child diameter (d) is possible.
  • the change in the ratio (Od / Cd) is not particularly limited, but is preferably controlled to 1.1 or more, and more preferably 1.25 to 5.0. This confirms that the crystallinity of the obtained fine particles changes remarkably, and the ratio (d / D) of the crystallite diameter (d) to the particle diameter (D) of the fine particles changes remarkably. confirmed.
  • the intermediate introduction part is located downstream of the inner introduction part, and the thin film fluid downstream of the intermediate introduction part is formed by a fluid to be treated in which the raw material fluid and the deposition fluid are mixed. It is composed.
  • the fluid to be processed introduced between the processing surfaces from the inner introduction portion is rotated on the processing surface and the shape of the processing surface (for example, on the processing surface as necessary). It flows while spreading downstream as a thin film fluid flowing in a spiral while being influenced by the formed groove-like concave portion acting as a micropump.
  • One intermediate introduction portion may be provided, but two or more intermediate introduction portions may be provided.
  • the intermediate introduction portion can be implemented as a dot-like or circular hole opened for the treatment, and can be implemented as an annular hole continuous in the circumferential direction.
  • these intermediate introduction portions are implemented as a plurality of holes, the radial distance from the center of rotation can be made equal, and it can also be implemented as a plurality of types of holes having the same distance. it can.
  • the intermediate introduction part is implemented by introducing different types of fluids to be treated from each of a plurality of types of holes having different distances. You can also
  • the fluid to be processed introduced from the inner introduction portion is mixed with the fluid to be treated from the intermediate introduction portion or the like, flows while spreading downstream, and flows out from the discharge portion which is the downstream end.
  • the fluid to be treated is reacted in a thin film fluid to precipitate fine particles, and the precipitated fine particles are crystallized or crystallite grown. Thinks.
  • this invention can be implemented as what uses one type of to-be-processed fluid as a to-be-processed fluid.
  • This fluid to be treated is a fluid to be treated containing at least one kind of material that is a raw material of the material to be deposited, and energy is applied to the fluid to be treated from the at least two treatment surfaces in the treatment region.
  • the step of precipitating fine particles of the substance to be deposited. Therefore, the present invention is not limited to having two or more fluids to be treated, and can be implemented as using only one kind of fluid to be treated as the fluid to be treated.
  • the energy applied to the fluid to be treated includes, for example, thermal energy given to the fluid to be treated from the treatment surface (that is, heating or cooling) in addition to kinetic energy due to rotation of the treatment surface. And energy such as ultraviolet rays and ultrasonic waves.
  • the intermediate introduction portion is unnecessary, and usually one kind of fluid to be treated is introduced from the inner introduction portion at the upstream end, It will be discharged from the downstream end. Therefore, the entire area from the upstream end to the downstream end becomes the processing area, and there is no distinction between the mixed area and the unmixed area.
  • the change in the ratio (Od / Id) is not particularly limited, but is preferably controlled to 1.1 or more, more preferably 1.67 to 8.33. This confirms that the crystallinity of the obtained fine particles changes remarkably, and the ratio (d / D) of the crystallite diameter (d) to the particle diameter (D) of the fine particles changes remarkably. confirmed.
  • the position and area of the processing region are changed, thereby mixing the fluid to be processed including the raw material fluid and the precipitation fluid.
  • the diffusion conditions change, and the reaction time is changed in the order of mixing of the fluid to be treated during the period from the introduction part to the discharge part, and the subsequent reaction, precipitation, crystallization, or crystallite growth. Because of this, it is considered that the growth state of the particle diameter and the crystallite diameter is changed, and the crystallinity or the ratio (d / D) of the metal fine particles obtained by the precipitation is changed.
  • the present invention can be implemented with various modifications provided that it is possible.
  • the distance (Od) from the center of rotation to the inner introduction part or the distance (Cd) to the intermediate introduction part is not limited to the one that changes the diameter ratio (Od / Cd ⁇ Id), and the distance from the center of rotation to the introduction portion is constant.
  • the diameter ratio (Od / Cd ⁇ Id) can also be changed by changing the distance (Id) or the distance (Cd) to the intermediate introduction portion.
  • the ratio (d / D) of the fine particles is controlled because the mixing and diffusion conditions due to the change in the area of the processing region and the reaction time of the fluid to be processed in the processing region change. Can do. Further, both the distance (Id) from the center of rotation to the introduction part or the distance (Cd) from the rotation part to the intermediate introduction part and the distance (Od) from the center of rotation to the outer peripheral edge of the processing region are changed. It is also possible to make it.
  • the unmixed region includes a forced introduction region located near the center of rotation and a thin film adjustment region located far from the center of rotation.
  • the forcible introduction region is formed on at least one of the processing surfaces such that a recess that exhibits a micropump effect extends from upstream to downstream, and the thin film adjustment region includes the recess It is the area
  • the flow is adjusted to flow into the mixing region.
  • the fluid to be processed introduced from the inner introduction portion and the fluid to be treated introduced from the intermediate introduction portion are mixed in an ideal state between both processing surfaces kept at a minute interval.
  • this is an important region for precipitating the desired fine particles.
  • pulsation or pressure fluctuation may occur due to the micropump effect.
  • This pulsation and pressure fluctuation are not preferable from the viewpoint of uniform fluid treatment. Therefore, it is desirable to reduce pulsation and pressure fluctuation in the thin film adjustment region, and more desirably, it is appropriate to give the thin film adjustment region a sufficient area to reduce the influence of pulsation and pressure fluctuation to a level that can be ignored.
  • the mixed region is a region where precipitation is performed by mixing the two types of fluids to be processed. Both of them should be set to a sufficient width to achieve their purpose, but the two processing surfaces constituting these regions are smooth surfaces that are mirror-finished, or in some cases intentionally. It is necessary to be carefully designed and precisely processed, such as to form a recess, and because it is relatively rotated at a predetermined speed, its size is restricted from various viewpoints. In the processing region between at least two processing surfaces with this restriction, it is extremely important to arrange the thin film adjustment region and the mixing region in a balanced manner.
  • the crystal of the fine particles It is possible to control the degree of crystallinity (crystallinity degree control) and the ratio (d / D) of the crystallite diameter (d) of the fine particles to the particle diameter (D) of the fine particles.
  • the emulsification, dispersion, and pulverization processes can be performed by omitting pre-processing steps such as pre-emulsification, pre-dispersion, and pre-pulverization when the two types of fluids to be processed are used.
  • pre-processing steps such as pre-emulsification, pre-dispersion, and pre-pulverization when the two types of fluids to be processed are used.
  • the particle diameter or CV value can be reduced by increasing or decreasing the ratio (Od / Cd), particularly by controlling the ratio (Od / Cd) to increase.
  • the present invention controls the processing characteristics by controlling the area, position, and ratio of each region regardless of whether the introduction speed of the fluid to be processed and the rotation speed of the processing surface are changed. Was able to.
  • FIG. 1 is a schematic cross-sectional view of a fluid processing apparatus according to an embodiment of the present invention.
  • A is a schematic plan view of a first processing surface of the fluid processing apparatus shown in FIG. 1, and (B) is an enlarged view of a main part of the processing surface of the apparatus.
  • A) is sectional drawing of the half surface between processing surfaces,
  • B) is a principal part enlarged view of the processing surface for demonstrating the said 2nd introduction part.
  • (A) is a schematic diagram which shows the processing area
  • B) is a schematic diagram which shows the mixing area
  • C) is the fluid processing which concerns on other embodiment. It is a schematic diagram which shows the process area
  • (A) is a schematic diagram which shows the processing area
  • (B) is a schematic diagram which shows the processing area
  • 6 is a graph showing changes in the ratio of crystallite diameter to particle diameter (d / D) for the results of Examples 1 to 5.
  • 6 is a graph showing changes in crystallite diameter (d) for the results of Examples 1 to 5.
  • 6 is a graph showing changes in crystallinity for the results of Examples 1 to 5. It is a XRD measurement result about Example 1, 3 and 4.
  • FIG. 10 is a graph showing changes in the ratio of crystallite diameter to particle diameter (d / D) for the results of Examples 6 to 13.
  • FIG. 10 is a graph showing changes in crystallite diameter (d) for the results of Examples 6 to 13.
  • 6 is a graph showing changes in crystallinity for the results of Examples 6 to 13.
  • 4 is an SEM photograph of nickel fine particles obtained in Example 9.
  • FIG. 10 is a graph showing changes in the ratio of crystallite diameter to particle diameter (d / D) for the results of Examples 14 to 19.
  • 6 is a graph showing changes in crystallinity for the results of Examples 14 to 19.
  • 6 is a graph showing changes in the ratio of crystallite diameter to particle diameter (d / D) for the results of Examples 20 to 27.
  • 6 is a graph showing changes in crystallinity for the results of Examples 20 to 27. It is a graph which shows the change of CV value about the result of Examples 20-27.
  • 6 is a graph showing changes in volume average particle diameter for the results of Examples 28 to 35.
  • 36 is a graph showing changes in CV values for the results of Examples 28 to 35.
  • 4 is a graph showing changes in volume average particle diameter for the results of Examples 36 to 43.
  • 44 is a graph showing changes in CV values for the results of Examples 36 to 43.
  • 6 is a graph showing changes in volume average particle diameter for the results of Examples 44 to 51.
  • 6 is a graph showing changes in CV values for the results of Examples 44 to 51.
  • 6 is a graph showing a change in yield for the results of Examples 52 to 59.
  • 6 is a graph showing a change in purity with respect to the results of Examples 52 to 59.
  • 6 is a graph showing changes in crystallite diameter (d) for the results of Examples 60 to 67.
  • FIG. 6 is a graph showing changes in the ratio of crystallite diameter to particle diameter (d / D) for the results of Examples 60 to 67.
  • 6 is a graph showing changes in crystallinity for the results of Examples 60 to 67.
  • 7 is a graph showing changes in volume average particle diameter for the results of Examples 68 to 75.
  • FIG. 46 is a graph showing changes in CV values for the results of Examples 68 to 75.
  • FIG. 6 is a graph showing changes in volume average particle diameter for the results of Examples 76 to 83. It is a graph which shows the change of CV value about the result of Examples 76-83.
  • 9 is a graph showing changes in volume average particle diameter for the results of Examples 84 to 91. It is a graph which shows the change of CV value about the result of Examples 84-91.
  • 10 is a graph showing changes in volume average particle diameter for the results of Examples 92 to 99. It is a graph which shows the change of CV value about the result of Examples 92-99.
  • 6 is a graph showing changes in volume average particle diameter for the results of Examples 100 to 107.
  • 10 is a graph showing changes in CV values for the results of Examples 100 to 107.
  • 6 is a graph showing changes in volume average particle diameter for the results of Examples 108 to 115.
  • 10 is a graph showing changes in CV values for the results of Examples 108 to 115.
  • 6 is a graph showing the change in volume average particle diameter for the results of Examples 116 to 123.
  • 6 is a graph showing changes in CV values for the results of Examples 116 to 123.
  • FIG. 3 is a graph showing changes in volume average particle diameter for the results of Examples 124 to 131.
  • 6 is a graph showing changes in CV values for the results of Examples 124 to 131.
  • 6 is a graph showing changes in volume average particle diameter for the results of Examples 132 to 137.
  • 10 is a graph showing changes in CV values for the results of Examples 132 to 137.
  • the fluid processing apparatus shown in FIGS. 1 to 3 processes an object to be processed between processing surfaces in a processing unit in which at least one of approaching and separating can rotate relative to the other,
  • the first fluid which is the first fluid to be treated
  • the second fluid which is the second fluid to be treated, of the fluids to be treated is introduced between the processing surfaces from another flow path provided with the first fluid and the second fluid between the processing surfaces.
  • U indicates the upper side
  • S indicates the lower side.
  • the upper, lower, front, rear, left and right only indicate a relative positional relationship, and do not specify an absolute position.
  • R indicates the direction of rotation.
  • C indicates the centrifugal force direction (radial direction).
  • This apparatus uses at least two kinds of fluids as a fluid to be treated, and at least one kind of fluid includes at least one kind of an object to be treated and is opposed to each other so as to be able to approach and separate.
  • a processing surface that is disposed and at least one of which rotates relative to the other, and combines the fluids between the processing surfaces to form a thin film fluid.
  • This fluid processing apparatus includes first and second processing units 10 and 20 that face each other, and at least one processing unit rotates.
  • the opposing surfaces of both processing parts 10 and 20 are processing surfaces.
  • the first processing unit 10 includes a first processing surface 1
  • the second processing unit 20 includes a second processing surface 2.
  • Both processing surfaces 1 and 2 are connected to the flow path of the fluid to be processed and constitute a part of the flow path of the fluid to be processed.
  • the distance between the processing surfaces 1 and 2 can be changed as appropriate, but is usually adjusted to 1 mm or less, for example, a minute distance of about 0.1 ⁇ m to 50 ⁇ m.
  • the fluid to be processed that passes between the processing surfaces 1 and 2 becomes a forced thin film fluid forced by the processing surfaces 1 and 2.
  • the apparatus When a plurality of fluids to be processed are processed using this apparatus, the apparatus is connected to the flow path of the first fluid to be processed and forms a part of the flow path of the first fluid to be processed. At the same time, a part of the flow path of the second fluid to be treated is formed separately from the first fluid to be treated. Then, this apparatus performs fluid treatment such as mixing and reacting both fluids to be treated between the processing surfaces 1 and 2 by joining both flow paths.
  • treatment is not limited to a form in which the object to be treated reacts, but also includes a form in which only mixing and dispersion are performed without any reaction.
  • the first holder 11 that holds the first processing portion 10 the second holder 21 that holds the second processing portion 20, a contact pressure application mechanism, a rotation drive mechanism, An inner introduction part d1, an intermediate introduction part d2, and a fluid pressure imparting mechanism p are provided.
  • the first processing portion 10 is an annular body, more specifically, a ring-shaped disk.
  • the second processing unit 20 is also a ring-shaped disk.
  • the first and second processing parts 10 and 20 are made of metal, ceramic, sintered metal, wear-resistant steel, sapphire, other metals subjected to hardening treatment, hard material lining or coating, It is possible to adopt a material with plating applied.
  • at least a part of the first and second processing surfaces 1 and 2 facing each other is mirror-polished in the processing units 10 and 20.
  • the surface roughness of this mirror polishing is not particularly limited, but is preferably Ra 0.01 to 1.0 ⁇ m, more preferably Ra 0.03 to 0.3 ⁇ m.
  • At least one of the holders can be rotated relative to the other holder by a rotational drive mechanism (not shown) such as an electric motor.
  • Reference numeral 50 in FIG. 1 denotes a rotation shaft of the rotation drive mechanism.
  • the first holder 11 attached to the rotation shaft 50 rotates and is used for the first processing supported by the first holder 11.
  • the unit 10 rotates with respect to the second processing unit 20.
  • the second processing unit 20 may be rotated, or both may be rotated.
  • the first and second holders 11 and 21 are fixed, and the first and second processing parts 10 and 20 are rotated with respect to the first and second holders 11 and 21. May be.
  • At least one of the first processing unit 10 and the second processing unit 20 can be approached / separated from at least either one, and both processing surfaces 1 and 2 can be approached / separated. .
  • the second processing unit 20 approaches and separates from the first processing unit 10, and the second processing unit 20 is disposed in the storage unit 41 provided in the second holder 21. It is housed in a hauntable manner.
  • the first processing unit 10 may approach or separate from the second processing unit 20, and both the processing units 10 and 20 approach or separate from each other. It may be a thing.
  • the accommodating portion 41 is a recess that mainly accommodates a portion of the second processing portion 20 on the side opposite to the processing surface 2 side, and is a groove that has a circular shape, that is, is formed in an annular shape in plan view. .
  • the accommodating portion 41 has a sufficient clearance that allows the second processing portion 20 to rotate, and accommodates the second processing portion 20.
  • the second processing unit 20 may be arranged so that only the parallel movement is possible in the axial direction, but by increasing the clearance, the second processing unit 20 is
  • the center line of the processing unit 20 may be displaced by being inclined so as to break the relationship parallel to the axial direction of the storage unit 41. Furthermore, the center line of the second processing unit 20 and the storage unit 41 may be displaced. The center line may be displaced so as to deviate in the radial direction. As described above, it is desirable to hold the second processing unit 20 by the floating mechanism that holds the three-dimensionally displaceably.
  • the above-described fluid to be treated is subjected to both treatment surfaces 1 from the inner introduction part d1 and the intermediate introduction part d2 in a state where pressure is applied by a fluid pressure application mechanism p constituted by various pumps, potential energy, and the like.
  • the inner introduction part d1 is a passage provided in the center of the annular second holder 21, and one end of the inner introduction part d1 is formed from the inner sides of the annular treatment parts 10, 20.
  • the intermediate introduction part d2 supplies the second processed fluid to be mixed with the first processed fluid to the processing surfaces 1 and 2.
  • the intermediate introduction part d ⁇ b> 2 is a passage provided inside the second processing part 20, and one end thereof opens at the second processing surface 2.
  • the first fluid to be treated that has been pressurized by the fluid pressure imparting mechanism p is introduced from the inner introduction portion d1 into the space inside both the treatment portions 10 and 20, and the first treatment surface 1 and the second treatment surface. It passes between the working surfaces 2 and tries to pass outside the processing parts 10 and 20. Between these processing surfaces 1 and 2, the second treated fluid pressurized by the fluid pressure imparting mechanism p is supplied from the intermediate introduction part d 2, merged with the first treated fluid, mixed, Various fluid treatments such as stirring, emulsification, dispersion, reaction, crystallization, crystallization, and precipitation are performed and discharged from both treatment surfaces 1 and 2 to the outside of both treatment parts 10 and 20. In addition, the environment outside both the processing parts 10 and 20 can be set to a negative pressure by a decompression pump.
  • the contact surface pressure applying mechanism applies a force that causes the first processing surface 1 and the second processing surface 2 to approach each other to the processing portion.
  • the contact pressure applying mechanism is provided in the second holder 21 and biases the second processing portion 20 toward the first processing portion 10.
  • the contact surface pressure applying mechanism is a force that pushes in a direction in which the first processing surface 1 of the first processing unit 10 and the second processing surface 2 of the second processing unit 20 approach (hereinafter referred to as contact pressure). It is a mechanism for generating.
  • a thin film fluid having a minute film thickness of nm to ⁇ m is generated by the balance between the contact pressure and the force for separating the processing surfaces 1 and 2 such as fluid pressure. In other words, the distance between the processing surfaces 1 and 2 is kept at a predetermined minute distance by the balance of the forces.
  • the contact surface pressure applying mechanism is arranged between the accommodating portion 41 and the second processing portion 20.
  • a spring 43 that biases the second processing portion 20 in a direction approaching the first processing portion 10 and a biasing fluid introduction portion 44 that introduces a biasing fluid such as air or oil.
  • the contact surface pressure is applied by the spring 43 and the fluid pressure of the biasing fluid. Any one of the spring 43 and the fluid pressure of the urging fluid may be applied, and other force such as magnetic force or gravity may be used.
  • the second processing unit 20 causes the first treatment by the separation force generated by the pressure or viscosity of the fluid to be treated which is pressurized by the fluid pressure imparting mechanism p against the bias of the contact surface pressure imparting mechanism.
  • the first processing surface 1 and the second processing surface 2 are set with an accuracy of ⁇ m by the balance between the contact surface pressure and the separation force, and a minute amount between the processing surfaces 1 and 2 is set. An interval is set.
  • the separation force includes the fluid pressure and viscosity of the fluid to be processed, the centrifugal force due to the rotation of the processing portion, the negative pressure when the urging fluid introduction portion 44 is negatively applied, and the spring 43 being pulled. The force of the spring when it is used as a spring can be mentioned.
  • the separation force is not only generated by introducing the fluid to be treated between the processing surfaces 1 and 2 from the inner introduction portion d1, but also by introducing the fluid to be treated from the intermediate introduction portion d2.
  • the generated force is also included.
  • This contact surface pressure imparting mechanism may be provided not in the second processing unit 20 but in the first processing unit 10 or in both.
  • the separation force will be specifically described.
  • the second processing unit 20 is arranged inside the second processing surface 2 together with the second processing surface 2 (that is, the first processing surface 1 and the second processing surface 2).
  • a separation adjusting surface 23 is provided adjacent to the second processing surface 2 and located on the entrance side of the fluid to be processed between the processing surface 2 and the processing surface 2.
  • the separation adjusting surface 23 is implemented as an inclined surface, but may be a horizontal surface.
  • the pressure of the fluid to be processed acts on the separation adjusting surface 23 to generate a force in a direction in which the second processing unit 20 is separated from the first processing unit 10. Accordingly, the pressure receiving surfaces for generating the separation force are the second processing surface 2 and the separation adjusting surface 23.
  • the proximity adjustment surface 24 is formed on the second processing portion 20.
  • the proximity adjustment surface 24 is a surface opposite to the separation adjustment surface 23 in the axial direction (upper surface in FIG. 1), and the pressure of the fluid to be processed acts on the second processing portion 20. A force is generated in a direction that causes the first processing unit 10 to approach the first processing unit 10.
  • the pressure of the fluid to be processed that acts on the second processing surface 2 and the separation adjusting surface 23, that is, the fluid pressure, is understood as a force constituting an opening force in the mechanical seal.
  • the projected area A1 of the proximity adjustment surface 24 projected on a virtual plane orthogonal to the approaching / separating direction of the processing surfaces 1 and 2, that is, the protruding and protruding direction (axial direction in FIG. 1) of the second processing unit 20 The area ratio A1 / A2 of the total area A2 of the projected areas of the second processing surface 2 and the separation adjusting surface 23 of the second processing unit 20 projected onto the virtual plane is called a balance ratio K. This is important for adjusting the opening force.
  • the opening force can be adjusted by changing the balance line, that is, the area A1 of the adjustment surface 24 for proximity, by the pressure of the fluid to be processed, that is, the fluid pressure.
  • P1 represents the pressure of the fluid to be treated, that is, the fluid pressure
  • K represents the balance ratio
  • k represents the opening force coefficient
  • Ps represents the spring and back pressure
  • the proximity adjustment surface 24 may be implemented with a larger area than the separation adjustment surface 23.
  • the fluid to be processed becomes a thin film fluid forced by the two processing surfaces 1 and 2 holding the minute gaps and tends to move outside the two processing surfaces 1 and 2 which are annular.
  • the mixed fluid to be processed does not move linearly from the inside to the outside of the two processing surfaces 1 and 2, but instead has an annular radius.
  • a combined vector of the movement vector in the direction and the movement vector in the circumferential direction acts on the fluid to be processed and moves in a substantially spiral shape from the inside to the outside.
  • the rotating shaft 50 is not limited to the one arranged vertically, but may be arranged in the horizontal direction or may be arranged inclined. This is because the fluid to be processed is processed at a fine interval between the processing surfaces 1 and 2 and the influence of gravity can be substantially eliminated. Further, this contact surface pressure applying mechanism also functions as a buffer mechanism for fine vibration and rotational alignment when used in combination with a floating mechanism that holds the second processing portion 20 in a displaceable manner. In fluid motion, a dimensionless number representing the ratio of inertial force to viscous force is called Reynolds number and is expressed as follows.
  • ⁇ / ⁇ is the kinematic viscosity
  • V the representative speed
  • L the representative length
  • the density
  • the viscosity
  • the critical Reynolds number is the boundary, laminar flow below the critical Reynolds number, and turbulent flow above the critical Reynolds number.
  • Centrifugal force is a kind of inertial force in rotational motion, and is a force directed from the center to the outside.
  • a acceleration
  • m mass
  • v velocity
  • R represents a radius
  • At least one of the first and second processing parts 10 and 20 may be cooled or heated to adjust the temperature.
  • the first and second processing parts 10 and 10 are adjusted.
  • 20 are provided with temperature control mechanisms (temperature control mechanisms) J1, J2.
  • the temperature of the introduced fluid to be treated may be adjusted by cooling or heating. These temperatures can also be used for the deposition of the treated material, and also to generate Benard convection or Marangoni convection in the fluid to be treated between the first and second processing surfaces 1 and 2. May be set.
  • a groove-like recess 13 extending from the center side of the first processing portion 10 to the outside, that is, in the radial direction is formed on the first processing surface 1 of the first processing portion 10. May be implemented.
  • the planar shape of the recess 13 is curved or spirally extending on the first processing surface 1, or is not shown, but extends straight outward, L It may be bent or curved into a letter shape or the like, continuous, intermittent, or branched.
  • the concave portion 13 can be implemented as one formed on the second processing surface 2, and can also be implemented as one formed on both the first and second processing surfaces 1, 2.
  • dynamic pressure is generated by the fluid to be processed. This dynamic pressure acts in a direction that widens the space between the processing surfaces 1 and 2, and this dynamic pressure also acts as one of the aforementioned separation forces.
  • the two processing surfaces 1 and 2 are relatively rotated, thereby providing a merit that the fluid to be processed can be actively sucked into the two processing surfaces 1 and 2.
  • the portion with the groove-like recess 13 and the portion without it are arranged in the circumferential direction, the processing surfaces 1 and 2 are relatively , The pressure fluctuation may occur in the fluids to be processed on both processing surfaces 1 and 2.
  • the intermediate introduction part d2 when the intermediate introduction part d2 is provided and the fluid to be treated is introduced from here, the force applied from the fluid to be treated to both the processing surfaces 1 and 2 can be used as the aforementioned separating force. Therefore, it becomes easy to carry out by omitting the recess 13. However, even when the intermediate introduction portion d2 is not provided, the concave portion 13 can be omitted.
  • the base end of the recess 13 reaches the inner periphery of the first processing unit 10.
  • the tip of the recess 13 extends toward the outer peripheral surface of the first processing surface 1, and its depth (cross-sectional area) gradually decreases from the base end toward the tip.
  • a flat surface 16 without the recess 13 is provided between the tip of the recess 13 and the outer peripheral surface of the first processing surface 1.
  • the opening d20 is desirably provided on the downstream side (outside in this example) from the concave portion 13 of the first processing surface 1.
  • it is installed at a position facing the flat surface 16 on the outer diameter side from the point where the flow direction when introduced by the micropump effect is converted into a laminar flow direction in a spiral shape formed between the processing surfaces. It is desirable to do.
  • the distance n in the radial direction from the outermost position of the recess 13 provided in the first processing surface 1 is preferably about 0.5 mm or more.
  • the shape of the opening d20 may be circular as shown in FIGS. 2B and 3B, and although not shown, a concentric circle surrounding the central opening of the processing surface 2 that is a ring-shaped disk.
  • An annular shape may be used. Further, when the opening has an annular shape, the annular opening may be continuous or discontinuous.
  • This intermediate introduction part d2 can have directionality.
  • the introduction direction from the opening d20 of the second processing surface 2 is inclined with respect to the second processing surface 2 at a predetermined elevation angle ( ⁇ 1).
  • the elevation angle ( ⁇ 1) is set to be more than 0 degrees and less than 90 degrees, and in the case of a reaction with a higher reaction rate, it is preferably set at 1 to 45 degrees.
  • the introduction direction from the opening d20 of the second processing surface 2 has directionality in the plane along the second processing surface 2.
  • the introduction direction of the second fluid is a component in the radial direction of the processing surface that is an outward direction away from the center and a component with respect to the rotation direction of the fluid between the rotating processing surfaces. Is forward.
  • a line segment in the radial direction passing through the opening d20 and extending outward is defined as a reference line g and has a predetermined angle ( ⁇ 2) from the reference line g to the rotation direction R. This angle ( ⁇ 2) is also preferably set to more than 0 degree and less than 90 degrees.
  • This angle ( ⁇ 2) can be changed and carried out according to various conditions such as the type of fluid, reaction speed, viscosity, and rotational speed of the processing surface.
  • the intermediate introduction part d2 can have no directivity.
  • the number of the fluids to be treated and the number of flow paths are two, but may be one, or may be three or more.
  • the second fluid is introduced between the processing surfaces 1 and 2 from the intermediate introduction part d2, but this introduction part may be provided in the first processing part 10 or may be provided in both. .
  • the shape, size, and number of the opening for introduction provided in each processing portion are not particularly limited, and can be appropriately changed.
  • the second fluid is introduced from the inner introduction portion d1 and the first fluid is introduced from the intermediate introduction portion d2, contrary to the above. It may be what you do.
  • the expressions “first” and “second” in each fluid have only an implication for identification that they are the nth of a plurality of fluids, and a third or higher fluid may exist.
  • the third introduction portion, the fourth introduction portion, and further introduction portions may be formed outside the intermediate introduction portion d2, but these should also be understood as intermediate introduction portions.
  • an introduction part after the third introduction part a case where a plurality of annular introduction parts are provided concentrically can be exemplified.
  • a plurality of point-like or line-like introduction portions are arranged in a ring shape, and a plurality of ring-like introduction portion groups having different ring arrangement diameters are provided.
  • processes such as precipitation / precipitation or crystallization are disposed so as to be able to approach and separate from each other, and at least one of the processing surfaces 1 rotates with respect to the other. Occurs with forcible uniform mixing between the two.
  • the particle size and monodispersity of the processed material to be processed are the rotational speed and flow velocity of the processing units 10 and 20, the distance between the processing surfaces 1 and 2, the raw material concentration of the processed fluid, or the processed fluid It can be controlled by appropriately adjusting the solvent species and the like.
  • FIG. 4 when processing a fluid to be processed using the fluid to be processed, the processing region between the two processing surfaces 1 and 2 that rotate relatively is understood as follows. This will be described with reference to FIGS.
  • FIG. 4 is provided with an inner introduction part d1 and an intermediate introduction part d2 positioned on the outer peripheral side thereof, and is suitable for processing a fluid to be treated using two or more kinds of fluids to be treated.
  • FIG. 5 does not include the intermediate introduction part d2 but includes only the inner introduction part d1, and is suitable for processing the fluid to be processed using one type of fluid to be processed.
  • 4 and 5 are schematic views of the apparatus according to the embodiment of the present invention, and do not accurately show the dimensions of each part.
  • the treatment of the fluid to be treated includes, as described above, the treatment of precipitation of fine particles, the treatment of reaction, the treatment of emulsification, mixing, and dispersion, and the fluid to be treated suitable for the treatment is used.
  • the process of depositing fine particles two types of coatings, a raw material fluid containing at least one kind of substance that is a raw material of the substance to be deposited, and a deposition fluid for causing the second fluid to deposit the substance to be deposited.
  • a processing fluid is used.
  • the processing region is broadly understood as an unmixed region 3 on the inner side in the radial direction of rotation and an outer mixed region 6.
  • the inner end of the unmixed region 3 is defined by the inner introduction portion d1
  • the boundary between the unmixed region 3 and the mixed region 6 is defined by the intermediate introduction portion d2.
  • the outer end of the mixing region 6 is the outer end of the processing surfaces 1 and 2, and the discharge portion 14 is formed on the outer side thereof.
  • the inner introduction part d1 and the discharge part 14 are tapered portions formed on the innermost and outermost circumferences of the processing surfaces 1 and 2, respectively.
  • the processing surfaces 1 and 2 may be intentionally formed with recesses, but generally form flat surfaces that are flat with respect to each other.
  • the film thickness is specified.
  • the processing area between the processing surfaces 1 and 2 is an area excluding the tapered inner introduction part d1 and the discharge part 14.
  • the unmixed region 3 is an inner annular region existing from the inner introduction part d1 (not including the inner introduction part d1) to the intermediate introduction part d2 (not including the intermediate introduction part d2).
  • the mixing region 6 is an outer annular region existing from the intermediate introduction part d2 (including the intermediate introduction part d2) to the discharge part 14 (not including the discharge part 14).
  • the distance (Od) from the center of rotation to the outer peripheral edge (hereinafter sometimes referred to as discharge portion radius (Od)) is the distance from the center of rotation to the front of the discharge portion 14.
  • the distance (Cd) from the center of rotation to the intermediate introduction part is a distance from the center of rotation to the front of the intermediate introduction part d2.
  • the merging portion radius (Cd) is the distance from the center of rotation of the processing surfaces 1 and 2 to the point f (hereinafter referred to as the nearest point f) closest to the center, and as described above, as the intermediate introduction portion,
  • the present invention can also be applied to a case where there are a plurality of introduction parts after the third introduction part, and among these intermediate introduction parts, the distance from the center of rotation to the nearest point f in the intermediate introduction part with the smallest diameter. Let the distance be the confluence radius (Cd).
  • the unmixed region 3 is understood by being divided into an inner forced introduction region 4 and an outer thin film adjustment region 5 when the groove-shaped recess 13 is provided.
  • the forced introduction region 4 is formed with a recess 13 that exhibits a micropump effect, and the first fluid is forcibly introduced from the inner introduction part d1 between the processing surfaces by the micropump effect due to the pressure and the groove. Become fluid.
  • the thin film adjustment region 5 is a region in which the introduced first fluid is converted into a spiral flow under the influence of centrifugal force or the like due to the rotation of the processing surface, and flows out in a laminar flow condition. . In the forced introduction region 4, pulsation and pressure fluctuation may occur due to the micropump effect.
  • the distance n in the radial direction from the outermost position of the recess 13 provided in the first processing surface 1 is preferably about 0.5 mm or more.
  • the first fluid is considered to be a laminar and spiral stable thin film fluid.
  • the second fluid is introduced from the inner introduction portion d1 to the stable thin film fluid.
  • a thin film fluid composed of the first fluid and the second fluid is formed, and both fluids flow outward in a spiral shape in the mixed region 6 under laminar flow conditions and flow out from the discharge portion 14.
  • the first fluid and the second fluid are mixed in a thin film fluid under a laminar flow condition, and the above-described various processes are performed on the mixed fluid to be processed.
  • the fine particles are deposited in a thin film fluid constituted by the mixed fluid to be treated.
  • the chemical energy of the substances constituting the first fluid and the second fluid, the mechanical energy of the flowing fluid, the rotational energy of the processing surface, and if necessary, the processing surface It is believed that the applied temperature energy is involved.
  • particles are deposited and grow in the thin film fluid, and target fine particles are discharged from the discharge unit 14.
  • the fine particles in the growth process generally have a state in which amorphous and crystalline coexist in the fine particles. In the crystalline portion, one or a plurality of crystals are generated, and the crystal grows while the particles grow. grow up.
  • the first fluid introduced from the inner introduction portion d1 is a thin film under good laminar flow conditions.
  • the thin film adjustment region 5 needs to have a sufficient size as described above.
  • the sizes of the two processing surfaces 1 and 2 are mechanically limited, if the size of the thin film adjustment region 5 is increased more than necessary, the size of the mixing region 6 cannot be sufficiently secured.
  • the width ratio (Ow / Iw) of the width (Ow) of the mixed region in the radial direction of rotation to the width (Iw) of the thin film adjustment region 5 in the radial direction of rotation is appropriately set and changed. By doing so, it is possible to control the growth process of the particles and crystallites until the particles are precipitated and grow in the thin film fluid and the target fine particles are discharged from the discharge portion 14.
  • the mixed region 6 can be divided into an inner (upstream) early region 7 and an outer late region 8 as shown in FIG. 4B.
  • the precipitated fine particles are accompanied by the generation of crystallites, the progress of crystallization in the fine particles, and the growth of crystallites in the first region 7, and the growth of the particles is substantially completed in the second region 8.
  • crystallization progresses and crystallites grow mainly in the fine particles. Therefore, in the late region 8, the energy is used mainly for the progress of crystallization and the growth of crystallites.
  • the energy increases as it goes toward the outer diameter side. Further, the area of the mixed region 6 (the first region 7 and the second region 8) expands by the square of the distance. In the latter region 8, it is considered that energy is consumed mainly for the progress of crystallization and the growth of crystallites under such conditions.
  • the ratio of the discharge portion radius (Od) to the confluence portion radius (Cd) (Od / Cd) is 1 in the latter region 8. It became clear during the research process leading to the completion of the present invention that the region satisfies the condition of 25 or more. Further, it has been clarified that it is desirable that the above-mentioned width ratio (Ow / Iw) satisfies the condition of 2.0 or more.
  • the ratio (Od / Cd) is less than 1.25, and the width ratio (Ow / Iw) is 2. It was less than 0.
  • the mixing region 6 is merely constituted by only the first region 7, or even if the second region 8 exists, that region is the first region. The present inventor has only understood the mixed region 6 without recognizing the existence of the late region 8.
  • the crystallinity control for increasing or decreasing the crystallinity of the obtained fine particles, and the crystallite for the particle diameter (D) of the fine particles
  • the crystallinity control for increasing or decreasing the crystallinity of the obtained fine particles
  • the crystallite for the particle diameter (D) of the fine particles By performing at least one of the d / D control for increasing / decreasing the ratio (d / D) of the diameter (d), it is possible to change the size of the late region 8 as well as the early region 7. It is.
  • the upper limit of the ratio (Od / Cd) and the width ratio (Ow / Iw) need not be set. However, at the current technical level of rotation control, when the ratio (Od / Cd) exceeds 5.0 or the width ratio (Ow / Iw) exceeds 150.0, the crystallinity decreases. It has been confirmed that the d / D may decrease.
  • the present invention can be carried out without forming the above-described recess 13, in other words, without providing the forced introduction region 4.
  • the unmixed region 3 and the mixed region 6 exist in the same manner as described above, and the distance (Id) from the center of the rotation to the inner introduction portion (hereinafter also referred to as the introduction portion radius).
  • the introduction portion radius By increasing / decreasing the ratio (Od / Id) of the discharge portion radius (Od) with respect to a certain), it is possible to control the processing characteristics of various processing on the fluid to be processed.
  • the fluid treatment with precipitation has been mainly described.
  • the above control is also performed for other fluid treatment processes such as reaction, emulsification, dispersion, and pulverization. It can be applied by thinking.
  • the purity of the reaction changes or the yield of the reaction changes.
  • the ratio (Od / Cd) the width ratio (Ow / Iw) and the ratio (Od / Id)
  • the purity of the reaction is improved and the yield of the reaction is improved.
  • Control and CV value control for controlling the particle size distribution of the obtained fine particles can be performed. Specifically, by increasing or decreasing the ratio (Od / Cd), the width ratio (Ow / Iw), or the ratio (Od / Id), the particle diameter of fine particles obtained by emulsification, dispersion, pulverization, etc. is reduced. CV value control for controlling the particle size distribution of the obtained fine particles can be improved.
  • FIG. 5A is an example in which a groove-like recess 13 that exhibits the micropump effect is provided, and FIG. 5B is an example in which the groove-like recess 13 is not provided.
  • the ratio of the distance (Od) from the center of rotation to the outer peripheral edge of the processing region with respect to the distance (Id) from the center of rotation to the inner introduction portion can be changed by changing (Od / Id). Even in this case, the upstream end of the processing region does not include the inner introduction part d1, and the downstream end of the processing region does not include the discharge unit 14.
  • Fine particles can be deposited.
  • the intermediate introduction part d2 is unnecessary, and the area from the location beyond the inner introduction part d1 to the front of the discharge part 14 becomes the processing area.
  • particles are deposited and grow in the thin film fluid, and the target fine particles are discharged from the discharge unit 14.
  • the generation of crystallites, the progress of crystallization in the fine particles, and the growth of crystallites are performed together with the precipitation growth of the particles, and in the outer region corresponding to the latter region 8.
  • crystallization progresses and crystallites grow mainly in the fine particles.
  • At least one of d / D control for increasing and decreasing the ratio (d / D) and CV value control for controlling the particle size distribution of the fine particles can be performed.
  • the fluid to be treated is not introduced from the inner introduction part d1, but one or more kinds of fluids to be treated are introduced only from the intermediate introduction part d2.
  • the introduction part is not the inner introduction part d1 but only the intermediate introduction part d2.
  • the crystallite diameter can be confirmed by X-ray diffraction measurement.
  • K is a Scherrer constant
  • K 0.9
  • the Bragg angle ( ⁇ ) and the half width ( ⁇ o) derived from the CuK ⁇ 1 line are calculated by a profile fitting method (Peason-XII function or Pseud-Voigt function).
  • the half-value width ⁇ used in the calculation is corrected by using the following formula from the half-value width ⁇ i derived from the apparatus obtained in advance by the standard Si.
  • the crystallinity can also be calculated by a known analysis method using a diffraction pattern obtained from the X-ray diffraction measurement result. As a general method, it can be calculated using X'Pert High Score Plus, a diffraction software for X-ray diffraction patterns manufactured by PANalytical.
  • the fluid processing apparatus is not limited to the following examples, and it relates to various reactions, mixing, and dispersion as well as reactions performed by conventional microreactors and micromixers.
  • it can be used for various types of conventionally known fluid processing such as Patent Document 1, Patent Document 2, and Patent Document 7.
  • a reaction in which an acidic pigment solution prepared by dissolving at least one pigment in a strong acid such as sulfuric acid, nitric acid, and hydrochloric acid is mixed with a solution containing water to obtain pigment particles (acid pasting method).
  • a pigment solution prepared by dissolving at least one pigment in an organic solvent is a poor solvent for the pigment, and is a poor solvent compatible with the organic solvent used for the preparation of the solution A reaction (reprecipitation method) in which the pigment particles are precipitated by being put into the inside.
  • the pigment solution in which at least one kind of pigment is dissolved in either an acidic or alkaline pH adjusting solution or a mixed solution of the pH adjusting solution and an organic solvent, and the pigment contained in the pigment solution have solubility. Reaction to obtain pigment particles by mixing with a pigment deposition solution that changes the pH of the pigment solution that is not shown or has a lower solubility in the pigment than the solvent contained in the pigment solution.
  • Reaction in which metal fine particles are supported on the surface of carbon black by a liquid phase reduction method (as the metal, platinum, palladium, gold, silver, rhodium, iridium, ruthenium, osmium, cobalt, manganese, nickel, iron, chromium, molybdenum, Examples thereof include at least one metal selected from the group consisting of titanium).
  • Reaction of producing a crystal composed of fullerene molecules and fullerene nanowhiskers / nanofiber nanotubes by mixing a solution containing a first solvent dissolving fullerene and a second solvent having a solubility of fullerene smaller than that of the first solvent. .
  • the metal may be a noble metal such as gold, silver, ruthenium, rhodium, palladium, osmium, iridium, platinum, or copper, or an alloy of the two or more metals).
  • Ceramic raw materials include Al, Ba, Mg, Ca, La, Fe, Si, Ti, Zr, Pb, Sn, Zn, Cd, As, Ga, Sr, Bi, Ta, Examples include at least one selected from Se, Te, Hf, Mg, Ni, Mn, Co, S, Ge, Li, B, and Ce).
  • titanium compound as the titanium compound, tetramethoxy titanium, tetraethoxy titanium, tetra-n-propoxy titanium, tetraisopropoxy titanium, tetra-n-butoxy titanium, tetraiso
  • titanium compound tetramethoxy titanium, tetraethoxy titanium, tetra-n-propoxy titanium, tetraisopropoxy titanium, tetra-n-butoxy titanium, tetraiso
  • examples include at least one selected from tetraalkoxytitanium such as butoxytitanium and tetra-t-butoxytitanium or derivatives thereof, titanium tetrachloride, titanyl sulfate, titanium citrate, and titanium tetranitrate).
  • compound semiconductors include II-VI group compound semiconductors, III-V group compound semiconductors, Examples include group IV compound semiconductors and group I-III-VI compound semiconductors).
  • Reaction for reducing semiconductor element to produce semiconductor fine particles is an element selected from the group consisting of silicon (Si), germanium (Ge), carbon (C), and tin (Sn)) .
  • Reaction to reduce magnetic material to produce magnetic particles Nickel, cobalt, iridium, iron, platinum, gold, silver, manganese, chromium, palladium, yttrium, lanthanide (neodymium, samarium, gadolinium) , And terbium).
  • a reaction in which a biologically ingestible particulate material is precipitated by mixing a fluid in which at least one biologically ingestible particulate material is dissolved in a first solvent and a solvent that can be a second solvent having a lower solubility than the first solvent.
  • a process for obtaining microemulsion particles by mixing a fluid to be treated containing a fluid to be treated comprising at least an oil-based dispersion solvent.
  • At least one of the dispersed phase and the continuous phase contains one or more phospholipids
  • the dispersed phase contains a pharmacologically active substance
  • the continuous phase is composed of at least an aqueous dispersion solvent, and is continuous with the treated fluid of the dispersed phase.
  • Treatment to obtain liposomes by mixing the fluid to be treated in phase.
  • a process of obtaining resin fine particles by mixing a fluid in which a resin is dissolved in a solvent that is soluble and compatible with the resin and an aqueous solvent, and by precipitation or emulsification.
  • a process in which a resin melted by heating is mixed with an aqueous solvent to obtain resin fine particles by emulsification and dispersion.
  • Friedel-Crafts reaction nitration reaction, addition reaction, elimination reaction, transfer reaction, polymerization reaction, condensation reaction, coupling reaction, acylation, carbonylation, aldehyde synthesis, peptide synthesis, aldol reaction, indole reaction, electrophilic substitution Reaction, nucleophilic substitution reaction, Wittig reaction, Michael addition reaction, enamine synthesis, ester synthesis, enzyme reaction, diazo coupling reaction, oxidation reaction, reduction reaction, multistage reaction, selective addition reaction, Suzuki-Miyaura coupling reaction, Kumada-Corriu reaction, metathesis reaction, isomerization reaction, radical polymerization reaction, anion polymerization reaction, cation polymerization reaction, metal catalyzed polymerization reaction, sequential reaction, polymer synthesis, acetylene coupling reaction, episulfide synthesis, episulfide synthesis, Bamberger rearrangement, Chapman rearrangement, Claisen condensation, quinoline synthesis, Paal-Kn
  • emulsification, dispersion and pulverization in various industrial fields such as paints, inks, magnetic materials, ceramics, batteries, adhesives, electronic materials, liquid crystal color filters, pharmaceuticals, cosmetics, fragrances, foods, suspensions,
  • the treatment include stirring, emulsification, dispersion, and pulverization of the fluid to be treated such as emulsion, solid particles, polymer solution, and slurry.
  • “from the center” means “from the first introduction part d1” of the processing apparatus shown in FIG. 1, and the first fluid is introduced from the first introduction part d1.
  • the first fluid to be treated refers to the second fluid to be treated, which is introduced from the second introduction part d2 of the treatment apparatus shown in FIG. Therefore, the confluence portion radius (Cd) is the distance from the center of rotation to the second introduction portion d2, and the discharge portion radius (Od) is the distance from the center of rotation to the outer end between the processing surfaces.
  • X-ray diffraction grating measurement For X-ray diffraction grating measurement (XRD), an X-ray diffraction analyzer: X'Pert PRO PRODP made by PANalytical was used.
  • the measurement conditions in the case of nickel fine particles are Cu counter cathode, tube voltage 45 kV, tube current 40 mA, 0.016 step / 10 sec, and the measurement range is 10 to 100 [° 2 Theta] (Cu). .
  • Scherrer's formula is used for the peak near 44.5 ° of the obtained nickel diffraction pattern. Was applied to calculate the crystallite size.
  • crystallinity was calculated by the Rietvel method using the X-ray diffraction pattern of X-ray diffraction pattern manufactured by PANalytical, X'Pert High Score Plus, and the constant background method for the reference example.
  • the measurement conditions for the copper phthalocyanine (hereinafter referred to as CuPc) fine particles in Examples 20 to 27 were as follows: Cu cathode, tube voltage 45 kV, tube current 40 mA, 0.016 step / 10 sec, and measurement range 10 to 60 [° 2 Theta. ] (Cu).
  • Cu cathode Cu cathode
  • tube voltage 45 kV tube current 40 mA
  • 0.016 step / 10 sec 0.016 step / 10 sec
  • Scherrer's formula is used for the peak near 6.9 ° of the obtained CuPc diffraction pattern.
  • the degree of crystallinity was calculated by a constant background method for the reference example.
  • TEM Transmission electron microscope
  • JEM-2100 manufactured by JEOL
  • the observation magnification was set to 30,000 times or more, and the average value of 50 or more primary particle sizes was adopted as the particle size.
  • a metal solution and a reducing agent solution are mixed in a thin film fluid formed between the processing surfaces 1 and 2 using the apparatus shown in FIGS. 1 and 4A and 4B. Then, metal fine particles were deposited in the thin film fluid.
  • a reducing agent solution 70 wt% hydrazine monohydrate (HMH) / 10 wt% potassium hydroxide (KOH) in pure water (H 2 O) was added at 30 ° C. and 60 ml / min. .
  • the liquid supply temperatures of the first fluid and the second fluid are measured immediately before the introduction of the processing apparatus (more specifically, immediately before being introduced between the processing surfaces 1 and 2). did.
  • the pH of the first fluid was 4.12, and the pH of the second fluid was 14 or more (use pH test paper).
  • the liquid discharged from the processing surface was about 90 ° C.
  • the liquid after the treatment was allowed to stand until it reached room temperature, and then the nickel fine particles were allowed to settle and the supernatant liquid was removed. Then, the operation
  • the prescription conditions of the first fluid and the second fluid in Examples 1 to 5 are shown in Table 1, the liquid feeding conditions of the first fluid and the second fluid are shown in Table 2, the ratio (Od / Cd), the rotation of the processing unit Number, the peripheral speed of the processing part (peripheral speed of the outer periphery of the processing part), the particle diameter (D) calculated by the SEM observation method regarding the obtained fine particles, and the XRD measurement method.
  • the ratio to the crystallinity of Example 4 (the crystallinity of each example when the crystallinity of Example 4 is 1) is used. Table 3 shows.
  • Example 4 The crystallinity was calculated by the XRD measurement result of Example 2 by the Rietveld method, and Examples 1 to 5 (excluding Example 4) were calculated by the constant background method based on Example 4.
  • Table 3 a graph in which the horizontal axis (Od / Cd) is plotted on the vertical axis and the ratio of crystallite diameter to particle diameter (d / D) is plotted in FIG.
  • FIG. 7 is a graph plotting (Od / Cd) on the horizontal axis, crystallite diameter (d) on the vertical axis
  • FIG. 8 is a graph plotting crystallinity on the horizontal axis (Od / Cd)
  • the merging portion radius (Cd) is fixed at 38.331 mm, and the discharge portion radius (Od) is changed at each ratio. It has been made.
  • FIG. 8 shows that the crystallinity tends to increase as (Od / Cd) increases.
  • Table 4 shows the prescription conditions for the first fluid and the second fluid
  • Table 5 shows the conditions for feeding the first fluid and the second fluid.
  • Table 5 shows the ratio (Od / Cd), the rotation speed of the processing section, and the circumference of the processing section. Except that the speed (peripheral speed of the outer periphery of the processing portion) was changed to Table 6, it was carried out in the same manner as in Examples 1 to 5 to obtain a dry powder of nickel fine particles.
  • Example 6 the particle diameter (D) calculated by the SEM observation method regarding the obtained fine particles, the crystallite diameter (d) and (d / D) calculated by the XRD measurement method, crystal The ratio of the degree of crystallization to the degree of crystallization of Example 10 (the degree of crystallization of each Example when the degree of crystallization of Example 10 is 1) is shown.
  • the crystallinity was calculated by the XRD measurement result of Example 10 using the Rietveld method, and Examples 6 to 13 (excluding Example 10) were calculated using the constant background method based on Example 10.
  • FIG. 11 is a graph plotting (Od / Cd) on the horizontal axis, crystallite diameter (d) on the vertical axis, FIG. 11 is a graph plotting crystallinity on the horizontal axis (Od / Cd), and FIG. Shown in Moreover, the SEM photograph (30,000 times) of the nickel fine particle obtained in Example 9 is shown in FIG.
  • nickel fine particles can be obtained by controlling (Od / Cd) in the range of 1.25 to 5.00 under the condition that the peripheral speed of the processing portion in each example is constant. It was confirmed that the crystallite growth and crystallinity could be controlled while controlling the particle diameter of the crystallites. Further, it was confirmed that the degree of increase in the particle diameter can be controlled as compared with the degree of increase in the crystallite diameter. Therefore, it was confirmed that the ratio (d / D) of the crystallite diameter to the particle diameter of the nickel fine particles can be controlled. 10 and 11 show that the ratio (d / D) tends to increase as (Od / Cd) increases.
  • a reducing agent solution (20.0 wt% hydrazine monohydrate-3.0 wt% potassium hydroxide-0.50 wt% gelatin (alkali treated product) aqueous solution) as a second fluid at 20 ° C., 50 ml / Min. Then, the first fluid and the second fluid were mixed in the thin film fluid.
  • the liquid supply temperatures of the first fluid and the second fluid are measured immediately before the introduction of the processing apparatus (more specifically, immediately before being introduced between the processing surfaces 1 and 2). did.
  • the pH of the first fluid was 5.10, and the pH of the second fluid was 14 or more (use pH test paper).
  • the liquid discharged from the processing surface was about 20 ° C.
  • the ratio (Od / Cd) between the discharge portion radius (Od) formed between the processing surfaces and the confluence portion radius (Cd) where the fluids to be processed join between the processing surfaces is changed, and the particle size and crystallites are changed. The diameter was confirmed.
  • the prescription conditions of the first fluid and the second fluid in Examples 10 to 13 are shown in Table 7, the liquid feeding conditions of the first fluid and the second fluid are shown in Table 8, the ratio (Od / Cd), and the rotation of the processing unit Number, the peripheral speed of the processing part (peripheral speed of the outer periphery of the processing part), the particle diameter (D) calculated by the TEM observation method for the obtained fine particles, and the XRD measurement method.
  • Example 14 to 19 The degree of crystallinity was calculated by the XRD measurement result of Example 11 by the Rietveld method, and Examples 14 to 19 (excluding Example 17) were calculated by the constant background method based on Example 17. Further, regarding the results of Examples 14 to 19 obtained in Table 9, a graph in which the horizontal axis (Od / Cd) is plotted on the vertical axis and the ratio of the crystallite diameter to the particle diameter (d / D) is plotted in FIG. FIG. 15 shows a graph in which (Od / Cd) is plotted on the horizontal axis and crystallinity is plotted on the vertical axis.
  • FIG. 14 shows that the ratio (d / D) tends to increase as (Od / Cd) increases.
  • FIG. 15 shows that the crystallinity tends to increase as (Od / Cd) increases.
  • Example 20 to 27 CuPc
  • Examples 20 to 27 As in Examples 1 to 13, an organic substance is used in a thin film fluid formed between the processing surfaces 1 and 2 using an apparatus having the same principle as the apparatus disclosed in Patent Document 3. The solution and the solvent for precipitation were mixed to deposit organic fine particles in the thin film fluid.
  • an organic solution (3 wt% copper phthalocyanine pigment powder / 97 wt% concentrated sulfuric acid (concentrated sulfuric acid) is fed as a second fluid.
  • the liquid feeding conditions of the first fluid and the second fluid are shown in Table 11, and the ratio (Od / Cd), the rotational speed of the processing portion, the peripheral speed of the processing portion (the peripheral speed of the outer periphery of the processing portion), and the obtained Example 22 regarding the particle diameter (D) calculated by the TEM observation method for fine particles, the crystallite diameter (d) and (d / D) calculated by the XRD measurement method, and the crystallinity
  • the ratio to the degree of crystallization (each implementation when the degree of crystallization in Example 22 is 1)
  • the crystallinity of each of Examples 20 to 27 (excluding Example 22) was calculated by the constant background method with reference to Example 22.
  • the liquid feeding temperatures of the two fluids were measured immediately before the introduction of the processing apparatus (more specifically, immediately before being introduced between the processing surfaces 1 and 2).
  • the pH of one fluid was 6.89, and the pH of the second fluid was 1 or less (using a pH test paper)
  • the liquid discharged from the processing surface was about 20 ° C.
  • the CuPc fine particles were allowed to settle and the supernatant was removed, and then filtered using a filter cloth (caliber, 1 ⁇ m) and washed with pure water five times. A part was dried at atmospheric pressure at 25 ° C.
  • FIG. 18 is a graph in which (Od / Cd) is plotted on the horizontal axis and CV values are plotted on the vertical axis.
  • the merging portion radius (Cd) is fixed at 58 mm, and the discharge portion radius (Od) is changed at the respective ratios.
  • region is set.
  • Crystallinity control for increasing and decreasing the crystallinity of the fine particles by increasing and decreasing, d / D control for increasing and decreasing the ratio (d / D) of the crystallite diameter (d) to the particle diameter (D) of the fine particles, and the fine particles It was confirmed that CV value control for controlling the particle size distribution can be performed.
  • Examples 28-51 show examples in which emulsions were obtained from two types of fluids to be treated using the apparatus shown in FIGS. 1 and 4A and 4B.
  • An emulsification treatment was performed using a 2% Tween 80 aqueous solution as the first fluid and liquid paraffin as the second fluid.
  • the treatment conditions and results are shown in Tables 13 to 15.
  • Examples 28 to 35 are a group having a peripheral speed of 26.2 m / s
  • Examples 36 to 43 are a group having a peripheral speed of 39.3 m / s
  • Examples 44 to 51 are a group having a peripheral speed of 52.4 m / s.
  • a group. 19 to 24 are plots of Od / Cd on the horizontal axis and volume average particle diameter and CV value on the vertical axis for each of these groups.
  • Od / Cd is small, unintentional (uncontrollable) miniaturization of particles due to the occurrence of cavitation, generation of coarse particles due to short processing time, etc. have been confirmed, and there is a possibility that stable processing cannot be performed.
  • Examples 52-59 As Examples 52 to 59, an organic compound was obtained from two kinds of fluids to be treated by organic reaction (Friedel-Crafts alkylation reaction) using the apparatus shown in FIGS. 1 and 4A and 4B. Indicates.
  • Examples 60-67 Using the apparatus shown in FIG. 1 and FIG. 5 (A), acyclovir fine particles were produced by applying temperature energy to one type of fluid to be treated.
  • a 4% Tween 80/2% acyclovir aqueous solution was heated to 85 ° C. and introduced between the processing surfaces 1 and 2 from the inner introduction part.
  • the fluid to be treated was cooled between the processing surfaces, acyclovir fine particles were precipitated, and a slurry of acyclovir fine particles was discharged.
  • piping for passing the refrigerant as the temperature adjusting mechanism J2 is laid in the processing unit 20, and 10 ° C. cooling water is passed through the temperature adjusting mechanism J2, and the discharge liquid containing the acyclovir fine particles is supplied.
  • the amount of cooling water was adjusted to 40 ° C., and the treatment conditions and results are shown in Table 19.
  • Examples 68 to 75 are a group having a peripheral speed of 26.2 m / s
  • Examples 76 to 83 are a group having a peripheral speed of 39.3 m / s
  • Examples 84 to 91 are a group having a peripheral speed of 52.4 m / s.
  • Is a group. 30 to 35 are plots of Od / Id on the horizontal axis and volume average particle diameter and CV value on the vertical axis for each of these groups. It has been found that by changing the Od / Id so as to increase, the particle diameter can be controlled to be small and the CV value can be lowered.
  • the volume average particle size after the pre-dispersion treatment was 23.6 ⁇ m, and the CV value was 74.1%.
  • the pre-dispersion processing liquid was introduced between the processing parts 1 and 2, and the processing part 10 was rotated to perform precision dispersion processing. (Prescription conditions: 5wt% PR-177 / 5wt% BYK-2000 / 90wt% PGMEA / PGME)
  • Table 21 shows the processing conditions and results.
  • Examples 92 to 99 are groups having a peripheral speed of 26.2 m / s
  • Examples 100 to 107 are groups having a peripheral speed of 39.3 m / s
  • Examples 108 to 115 are groups having a peripheral speed of 52.4 m / s.
  • Is a group. 36 to 41 are plots of Od / Id on the horizontal axis and volume average particle diameter and CV value on the vertical axis for each of these groups. It was confirmed that by changing the Od / Id so as to increase, the particle diameter can be controlled to be small and the CV value can be decreased.
  • Examples 116-137 Using the apparatus shown in FIG. 1 and FIG. 5 (A), a pulverization treatment was performed on one type of fluid to be treated containing progesterone drug particles.
  • Table 22 shows the processing conditions and results.
  • Examples 116 to 123 are a group having a peripheral speed of 26.2 m / s
  • Examples 124 to 131 are a group having a peripheral speed of 39.3 m / s
  • Examples 132 to 137 are a group having a peripheral speed of 52.4 m / s.
  • Is a group. 42 to 47 are plots of Od / Id on the horizontal axis and volume average particle diameter and CV value on the vertical axis for each of these groups. It was confirmed that by changing the Od / Id so as to increase, the particle diameter can be controlled to be small and the CV value can be decreased.

Abstract

被処理流動体の処理特性を効率的に制御する流体処理方法を提供することを課題とする。 接近・離反可能な、相対的に回転する処理用面1、2を備え、被処理流動体を、処理用面1、2間の処理領域に内側から外側に向けて通過せさて薄膜流体とし、前記薄膜流体となった被処理流動体の処理を行なう。回転の中心から中間導入部d2までの距離(Cd)に対する、回転の中心から外周端までの距離(Od)の割合(Od/Cd)を変化させることにより、処理特性を制御する。

Description

流体処理方法
本発明は、流体処理方法、特に、単数又は複数の被処理流動体について、乳化、分散、粉砕、微粒子の析出、微粒子の析出を伴なわない反応等々、種々の処理を行なう方法に関するものである。
単数又は複数の被処理流動体について、乳化、分散、粉砕、微粒子の析出、微粒子の析出を伴なわない反応等々の処理を行なう技術は、種々の産業分野で多方面に活用されている。例えば、微粒子の析出を伴う流体処理方法は、微粒子の製造に際して広く実施され、光学材料、磁性材料、導電材料、電子材料、機能性セラミックス、蛍光材料、触媒材料、化学材料などで利用されている。特に金属や金属酸化物、複合化材料などは光学的、電磁気的、機械的物性を飛躍的に向上させるものとして期待されている。また、量子サイズ効果による超高機能性や新物性の発現など、微粒子化による新たな物性にも大きな期待が寄せられている。
本願出願人は、特許文献1や特許文献2に示すように、被処理流動体についての処理方法や処理装置の提案を多数行なっている。具体的には、対向して配設された、接近・離反可能な、少なくとも一方が他方に対して相対的に回転を行う少なくとも2つの処理用面間に、1又は2以上の導入部から被処理流動体を導入し、導入された被処理流動体を両処理用面間にて薄膜流体状になした状態で、両処理用面間にて通過させながら、被処理流動体の種々の処理を行ない、両処理用面間から排出するものである。
前記の本願出願人による装置は、「SS5」や「ULREA(登録商標)」の製品名で本願出願人によって実用化されており、種々の産業分野で利用され、高い評価を受けているものであるが、個々の処理の制御に関しては、未だ未解明な部分が多いのが現状であると共に、利用分野が広がるにつれて、その処理に関する要求も多様化している。
例えば、微粒子の析出を伴う処理に関しては、単に微粒子を得ることだけではなく、特定の物性を有する微粒子を得ることが求められる。より詳しくは、微粒子の物性は、粒子径だけでなく結晶化度並びに結晶子径と密接な関係に有るため、単に微粒子を作製するだけでなく、微粒子の結晶化度並びに結晶子径を精密に制御することが求められている。
微粒子の結晶化度または結晶子径の制御方法として、金属単体、金属イオン、金属化合物やそれらを溶媒に溶解した金属溶液を、特許文献3に示したようなソルボサーマル法や、特許文献4または5に示したような亜臨界または超臨界状態で水熱処理し冷却温度を制御する方法や、特許文献6に示したような不活性雰囲気下で熱処理する方法などが挙げられるが、これらの方法では耐熱性、耐圧力性に優れた装置や不活性雰囲気下で使用することを必要とし、さらに処理に時間を要するため、エネルギーコストが高くなるなどの問題点がある。
また、本願出願人によって特許文献7に示す微粒子の製造方法が提供され、被析出物質を含む原料流体と、原料流体中の被析出物質を析出させるための析出流体とを、接近・離反可能な処理用面間で混合し、被析出物質の微粒子を析出させる際に、結晶子径の制御をなすことが提案された。ところが、特許文献7にて示された方法は、各流体に含まれる被析出物質の種類、濃度、pH、並びに各流体の導入温度、導入速度を変化させることに止まっている。
特開2004-49957号公報 国際公開WO2009/008393号パンフレット 特開2008-30966号公報 特開2008-289985号公報 特表2009-518167号公報 特開2010-24478号公報 国際公開WO2013/008706号パンフレット
前記の特許文献1、特許文献2及び特許文献7に記載の装置を実用化した本出願人の装置は、対向して配設された、接近・離反可能な、少なくとも一方が他方に対して相対的に回転を行う少なくとも2つの処理用面間により制限された流路によって規定される処理領域に、被処理流動体を、通過させることによって、前記処理用面間において薄膜流体となった被処理流動体中に微粒子を析出させることができる装置である。
この装置は、乳化、分散、粉砕、微粒子の析出、微粒子の析出を伴なわない反応等々、種々の使用が可能であるが、その一つの例として、2種類以上の被処理流動体を用いて微粒子の析出を行なう装置として利用できる。その場合、前記の処理領域として、半径方向の内側に未混合領域を備え、未混合領域の外側に混合領域を備えることになる。未混合領域の内側(即ち上流側)に内側導入部を備え、未混合領域と混合領域との境界に中間導入部が設けられ、2種類以上の被処理流動体を内側導入部と中間導入部とから導入し、混合領域において微粒子の析出を行ない、処理領域の下流端の排出部から排出させるようにした装置である。そして、この実用化された装置にあっては、前記回転の中心から前記中間導入部までの距離(Cd)と、前記回転の中心から前記処理領域の外周端までの距離(Od)とが、Od/Cd=1.25未満の値となるように設定されていた。即ち、本願出願人によって実質化された装置では、前記回転の中心からの処理領域の位置と、処理領域の面積(ひいては容積)が一定であった。
また、前記装置は、前記未混合領域として、回転の中心に近い位置にある強制導入領域と、回転の中心から遠い位置にある薄膜調整領域を備えている。強制導入領域は、少なくとも1つの処理用面に、マイクロポンプ効果を発揮する凹部が上流から下流に伸びるように形成されたものであり、薄膜調整領域は、前記凹部の下流端と前記中間導入部との間の領域であり、少なくとも1種類の前記被処理流動体は、前記凹部により強制的に内側導入部から強制導入領域に導入され、この強制導入領域から薄膜調整領域においてスパイラル状の層流条件下の流れに調整されて混合領域に流されるものである。そして、前記の実用化された装置にあっては、回転の半径方向における薄膜調整領域の幅(Iw)に対する前記回転の半径方向における混合領域の幅(Ow)の幅割合(Ow/Iw)が2.00未満の値となるように設定されていた。即ち、本願出願によって実質化された装置では、薄膜調整領域の幅(Iw)と混合領域の幅(Ow)との割合が一定であった。
この装置の使用方法の他の一つの例として、1種類の被処理流動体を用いて微粒子の析出を行なう装置としても利用する例を挙げることができる。その場合、前記の処理領域として、前記の内側導入部から1種類の被処理流動体を導入し、処理用面において熱エネルギーを加えることで、微粒子の析出を行なう。従って、他の流体を導入する中間導入部は不要となり、未混合領域と混合領域との区別はなくなり、処理用面間の略全ての空間が処理領域となる。この処理領域において微粒子の析出を行ない、処理領域の下流端の排出部から、析出した微粒子を被処理流動体と共に、排出させる。そして、この実用化された装置にあっては、前記回転の中心から前記内側導入部までの距離(Id)と、前記回転の中心から前記排出部までの距離(Od)とが、Od/Id=1.67未満の値となるように設定されていた。即ち、本願出願によって実質化された装置では、前記回転の中心からの処理領域の位置と、処理領域の面積(ひいては容積)が一定であった。
これらの析出をなす領域、(即ち、2種類以上の被処理流動体を用いる場合には混合領域、1種類の被処理流動体のみを用いる場合には処理領域)の位置や面積や、強制導入領域を設けた場合における薄膜調整領域の幅と混合領域の幅とを一定とした装置において、処理用面の回転速度と各被処理流動体の導入速度などを変化させることによって、微粒子の析出から結晶の状態を変化させ得ることが、本発明者のこれまでの研究によって、ある程度、明らかにされてきた。例えば、処理用面の回転速度を高めると、被処理流動体に加えられる円周方向への力が大きくなり、排出部にまで至る移動距離が大きくなる。また、被処理流動体の導入速度、ひいては単位時間当たりの導入量を大きくすると、流速が速くなり、排出部にまで至る移動時間が短くなる。
本発明者は、前記のような条件を制御することによって、結晶化度や、粒子径及び結晶子径の成長状態を制御することを試みてきた。
ところが、被処理流動体の導入速度や処理用面の回転速度を変化させた場合、得られた微粒子の粒子径が大きく変化したり、得られた微粒子の形状が安定しなかったり、複合物から構成される微粒子にあっては複合物を構成する各物質の分布が粒子間で不均一になったりすることがある。また、被析出物質の原料となる物質を含む原料流体と、被析出物質を析出させるための析出流体との2種類の被処理流動体を用いて微粒子を析出させる際に、一方の被処理流動体の導入速度を変化させた場合には、原料流体と析出流体との混合比率が変化してしまい、目的とする特性や性能を有する微粒子を得ることが困難になることもある。
また、微粒子の析出を伴なわない反応を行なう流体処理に関しても、被処理流動体の導入速度や処理用面の回転速度を変化させた場合、目的とする反応条件を得ることができなかったり、2種類の被処理流動体を用いて反応をなす際に、一方の被処理流動体の導入速度を変化させた場合には、被処理流動体同士の混合比率が変化してしまう。
さらに、乳化、分散、粉砕の処理に関しても、被処理流動体の導入速度や処理用面の回転速度を変化させた場合、得られた微粒子の粒子径が大きく変化したり、得られた微粒子の形状が安定しなかったりするおそれがある。また、2種類の被処理流動体を用いて乳化、分散、粉砕の処理をなす際に、一方の被処理流動体の導入速度を変化させた場合には、被処理流動体同士の乳化や混合比率が変化してしまう。
そこで、本発明は、被処理流動体の導入速度や処理用面の回転速度を変化させるか否かを問わず、前記の各領域の面積や位置や割合を制御することにより、処理特性の制御を行ない得るようにすることを目的とする。
より具体的には、微粒子の析出を伴う流体処理にあっては、微粒子の結晶化度を上下させる結晶化度制御や、微粒子の粒子径(D)に対する結晶子径(d)の比率(d/D)を上下させるd/D制御や、微粒子の粒度分布を制御するCV値制御を行なうことができるようにする。また、反応を伴う流体処理にあっては、収率を上下させる収率制御や、反応の純度を上下させる純度制御を行なうことができるようにする。さらに、乳化、分散、粉砕の処理については、得られた微粒子の粒子径を制御する粒子径制御や、得られた微粒子の粒度分布を制御するCV値制御を行なうことができるようにする。
本発明は、次の手段を提供することによって、前記の課題を解決する。
本発明は、対向して配設された、接近・離反可能な、少なくとも一方が他方に対して相対的に回転を行う少なくとも2つの処理用面間に、1又は2以上の導入部から、被処理流動体を導入する導入ステップと、前記被処理流動体による薄膜流体を、処理用面間にて通過させながら、流体の処理を行ない、前記2つの処理用面間から排出する処理ステップとを備えるもので、前記処理ステップは、両処理用面の前記回転の中心側を上流とし、前記回転の外周側を下流として、両処理用面間の空間である処理領域に被処理流動体を通過させ、前記処理領域の外周端から排出するものであり、前記回転の中心から前記導入部までの距離(Id)に対する、前記回転の中心から前記外周端までの距離(Od)の割合(Od/Id)を増減させることによって、前記処理の処理特性の制御を行なうことを特徴とする。
本発明は、2種の被処理流動体を用いて実施することもできる。
具体的には、対向して配設された、接近・離反可能な、少なくとも一方が他方に対して相対的に回転を行う少なくとも2つの処理用面間に、2以上の導入部から、被処理流動体を導入する導入ステップと、前記被処理流動体による薄膜流体を、処理用面間にて通過させながら、流体の処理を行ない、前記2つの処理用面間から排出する処理ステップとを備え、前記処理ステップは、両処理用面の前記回転の中心側を上流とし、前記回転の外周側を下流として、両処理用面間の空間である処理領域に被処理流動体を通過させ、前記処理領域の外周端から排出するようにする。その際、前記被処理流動体として、少なくとも2種類の被処理流動体を用いるものであり、前記導入部として、内側導入部と、前記内側導入部よりも前記回転の中心から遠い位置に設けられた中間導入部を設け、前記処理領域は、前記中間導入部よりも前記回転の中心から遠い位置にある混合領域と、前記中間導入部よりも前記回転の中心に近い位置にある未混合領域とを備え、前記導入ステップは、少なくとも1種類の前記被処理流動体を前記内側導入部から前記未混合領域に導入するステップと、少なくとも他の1種類の前記被処理流動体を前記中間導入部から前記混合領域に導入するステップとを備え、前記処理ステップは、前記内側導入部から導入された前記被処理流動体と、前記中間導入部から導入された前記被処理流動体とが前記混合領域で混合するステップを含むものである。そして、前記回転の中心から前記中間導入部までの距離(Cd)に対する、前記回転の中心から前記外周端までの距離(Od)の割合(Od/Cd)を増減させることによって、前記処理の処理特性の制御を行なうことを特徴とする。
本発明は、前記被処理流動体として、被析出物質の原料となる物質を少なくとも1種類含む被処理流動と、前記被析出物質を析出させるための被処理流動体との少なくとも2種類の被処理流動体を用いて、微粒子の析出を伴う流体処理に利用することができる。
この微粒子の析出を伴う流体処理にあっては、前記回転の中心から前記中間導入部までの距離(Cd)に対する、前記回転の中心から前記外周端までの距離(Od)の割合(Od/Cd)を増減させることによって、前記微粒子の結晶化度を上下させる結晶化度制御と、前記微粒子の粒子径(D)に対する結晶子径(d)の比率(d/D)を上下させるd/D制御と、前記微粒子の粒度分布を制御するCV値制御との、少なくとも何れか一つの制御を行なうことができる。
この微粒子の析出を伴う流体処理にあっては、前記処理領域は、x(幅)y(長さ)z(高さ)によって規定されたものであり、これらのx(幅)y(長さ)z(高さ)のうちx(幅)とy(長さ)とを増減させることにより、前記処理領域の位置や面積を変化させるものとして理解できる。そして、これらを変化させることによって、得られた微粒子の結晶化度を上下させる結晶化度制御や、前記微粒子の粒子径(D)に対する結晶子径(d)の比率(d/D)を上下させるd/D制御や、前記微粒子の粒度分布を制御するCV値制御を行なうことができる。
より詳しくは、被析出物質の原料となる物質を少なくとも1種類含む前記被処理流動体を処理用面間に導入部から導入する導入ステップと、前記被処理流動体による前記薄膜流体を、前記処理領域にて通過させながら、前記被析出物質の微粒子を析出させる析出ステップとにより、微粒子を析出させる。
その際、前記被処理流動体として、被析出物質の原料となる物質を少なくとも1種類含む被処理流動体と、前記被析出物質を析出させるための被処理流動体との少なくとも2種類の被処理流動体とを別々の導入部から処理用面間に導入する場合には、前記y(長さ)は、前記回転の中心から前記中間導入部までの距離(Cd)と、前記回転の中心から前記処理領域の外周端までの距離(Od)によって規定され、前記x(幅)は、前記y(長さ)と円周率とによって規定される。
なお、前記被処理流動体を1種類のみ用いる場合には、前記y(長さ)は、前記回転の中心から前記内側導入部までの距離(Id)と、前記回転の中心から前記処理領域の外周端までの距離(Od)によって規定され、前記x(幅)は、前記y(長さ)と円周率とによって規定される。
そして、前記回転の中心から前記中間導入部までの距離(Cd)と、前記回転の中心から前記処理領域の外周端までの距離(Od)との割合(Od/Cd)、若しくは、前記回転の中心から前記内側導入部までの距離(Id)と、前記回転の中心から前記処理領域の外周端までの距離(Od)との割合(Od/Id)を増減させることによって、前記処理領域の面積を変化させる。(なお、以下、前記割合(Od/Cd)と前記割合(Od/Id)との両者を指して説明する場合には、径割合(Od/Cd・Id)という。)
これらの径割合(Od/Cd・Id)を変化させることによって、得られた微粒子の結晶化度を上下させる結晶化度制御と、前記微粒子の粒子径(D)に対する結晶子径(d)の比率(d/D)を上下させるd/D制御を行うものである。
このように、径割合(Od/Cd・Id)を変えることによって、前記処理領域の外周端の排出部にまで至る被処理流動体の移動距離が変化すると共に、排出部にまで至る移動時間が変化する。さらに、前記の径割合(Od/Cd・Id)を増減させることによって、単に前記の時間や距離の変化に止まらず、混合領域や処理領域の前記回転の中心からの位置や面積(容積)が変化する。特に、本発明にあっては、半径方向の内側を上流とし、外側を下流として被処理流動体を移動させるものであるため、処理領域は下流に向かうに従って、距離の2乗で拡大すると共に、処理用面からのエネルギーもそれに応じて拡大する。このような変化の条件下にて、被処理流動体の混合や拡散の条件が変化する点、並びに、導入部から排出部に至る間における前記被処理流動体の混合、その後に引き起こされる反応、析出、結晶化または結晶子成長の順に行われる反応時間を変化させる点によって、結晶化度や、粒子径及び結晶子径の成長状態が変化するものと考えられる。
本発明者の知見によれば、前記結晶化度制御は、前記径割合(Od/Cd・Id)を大きくすることにより、前記微粒子の結晶化度を上げ、前記径割合(Od/Cd・Id)を小さくすることにより、前記結晶化度を下げる制御が可能である。また、前記d/D制御は、前記径割合(Od/Cd・Id)を大きくすることにより、前記結晶子径(d)を大きくすると共に、前記微粒子の粒子径(D)に対する結晶子径(d)の比率(d/D)を上げ、前記径割合(Od/Cd・Id)を小さくすることで、前記結晶子径(d)を小さくすると共に、前記微粒子の粒子径(D)に対する結晶子径(d)の比率(d/D)を下げる制御が可能である。
その際、前記の割合(Od/Cd)の変化は、特に限定されないが、1.1以上で制御することが望ましく、より望ましくは1.25~5.0に制御する。これによって、得られた微粒子の結晶化度が顕著に変化することが確認され、前記微粒子の粒子径(D)に対する結晶子径(d)の比率(d/D)が顕著に変化することが確認された。
ここで、前記中間導入部は、前記内側導入部の下流に位置するものであり、前記中間導入部より下流の薄膜流体は、前記原料流体と前記析出流体とが混合された被処理流動体によって構成されるものである。
より具体的には、前記内側導入部から前記処理用面間に導入された被処理流動体は、処理用面の回転と前記処理用面の形状(例えば、必要に応じて前記処理用面に形成されたマイクロポンプとして作用する溝状の凹部等)の影響を受けながら、スパイラル状に流れる薄膜流体として下流に広がりながら流れていく。中間導入部は1つであってもよいが、2以上設けることもできる。また、中間導入部は、前記処理用に開口した、点状や円形状の孔として実施することもでき、周方向に連続する環状の孔として実施することができる。これらの中間導入部を複数の孔として実施する場合には、前記回転の中心からの半径方向の距離を等しいものと実施することができる他、同距離が異なる複数種類の孔として実施することもできる。
特に、また3種以上の被処理流動体が混合される場合には、中間導入部として、前記距離が異なる複数種類の孔のそれぞれから、異なる種類の被処理流動体を導入するようにして実施することもできる。
このように、内側導入部から導入された被処理流動体は、中間導入部等からの被処理流動体と混合されて下流へと広がりながら流れて、下流端である排出部から流出する。そして、これまでの研究の結果、混合後、被処理流動体は、薄膜流体中で反応がなされて、微粒子の析出がされ、析出した微粒子の結晶化または結晶子成長がなされるものと本発明者は考えている。
また、本発明は、被処理流動体として、1種類の被処理流動体を用いるものとして実施することができる。この被処理流動体は被析出物質の原料となる物質を少なくとも1種類含む被処理流動体であり、前記処理領域における前記少なくとも2つの処理用面から前記被処理流動体に対してエネルギーを加えることによって前記被析出物質の微粒子を析出させるステップを備える。従って、本発明は、2以上の被処理流動体を持ちるものに限らず、被処理流動体として、1種類のみの被処理流動体を用いるものとして実施することができる。前記被処理流動体に対して加えられるエネルギーとしては、前記処理用面の回転による運動エネルギーの他、例えば、前記処理用面から被処理流動体に与えられる熱エネルギー(即ち、加温又は冷却)や紫外線や超音波等のエネルギー等を例示することができる。
2種以上の被処理流動体を前記処理用面間で混合しない場合、前記中間導入部は不要となり、通常は、1種類の被処理流動体が、上流端の前記内側導入部から導入され、下流端から排出されることになる。従って、上流端から下流端のまでの全領域が、処理領域となり、混合領域と未混合領域との区別は存在しない。
その際、前記の割合(Od/Id)の変化は、特に限定されないが、1.1以上で制御することが望ましく、より望ましくは1.67~8.33に制御する。これによって、得られた微粒子の結晶化度が顕著に変化することが確認され、前記微粒子の粒子径(D)に対する結晶子径(d)の比率(d/D)が顕著に変化することが確認された。
本発明においては、前記径割合(Od/Cd・Id)を変えることにより、処理領域の位置や面積が変化し、これによって、前記原料流体と前記析出流体とを含む被処理流動体の混合や拡散の条件が変化すること、並びに、導入部から排出部に至る間における前記被処理流動体の混合、その後に引き起こされる反応、析出、結晶化または結晶子成長の順に行われる反応時間が変化することに起因して、粒子径及び結晶子径の成長状態が変化し、析出によって得られた金属微粒子の前記結晶化度または前記比率(d/D)が変化すると考えられるため、同様の制御が可能であることを条件に、本発明は種々変更して実施することができる。
例えば、前記回転の中心から前記内側導入部までの距離(Id)又は中間導入部までの距離(Cd)を一定にして、前記処理領域の外周端までの距離(Od)を変化させることによって、前記径割合(Od/Cd・Id)を変化させるものに止まらず、前記回転の中心から前記処理領域の外周端までの距離(Od)を一定にして、前記回転の中心から前記導入部までの距離(Id)又は中間導入部までの距離(Cd)を変化させることによって、前記径割合(Od/Cd・Id)を変化させることもできる。この場合にあっても、処理領域の面積の変化による混合や拡散の条件や、処理領域における前記被処理流動体の反応時間が変化するため、微粒子の前記比率(d/D)を制御することができる。また、前記回転の中心から前記導入部までの距離(Id)又は中間導入部までの距離(Cd)と、前記回転の中心から前記処理領域の外周端までの距離(Od)との双方を変化させることも可能である。
また、本発明の実施に際しては、前記径割合(Od/Cd・Id)を変えることにより、粒子径をさほど変化させずに、結晶化度または結晶子径の少なくとも何れか一方を変化させることができることも確認された。そのため、所望する粒子径の微粒子に対して、結晶化度や結晶子径が異なる種々の微粒子を得ることができる。言い換えれば、結晶化度や結晶子径に起因する種々の特性を持った微粒子を、種々の粒子径サイズで得ることもできる。
また、前記2種類の被処理流動体を用いる場合、前記未混合領域として、前記回転の中心に近い位置にある強制導入領域と、前記回転の中心から遠い位置にある薄膜調整領域を備えるものとすることもできる。この場合には、前記強制導入領域は、少なくとも1つの前記処理用面に、マイクロポンプ効果を発揮する凹部が上流から下流に伸びるように形成されたものであり、前記薄膜調整領域は、前記凹部の下流端と前記中間導入部との間の領域である。そして、前記少なくとも1種類の前記被処理流動体は、前記凹部により強制的に前記内側導入部から前記強制導入領域に導入され、この強制導入領域から前記薄膜調整領域においてスパイラル状の層流条件下の流れに調整されて前記混合領域に流される。薄膜調整領域は、内側導入部から導入される被処理流動体と、中間導入部から導入される被処理流動体とを、微小間隔に保たれる両処理用面間において理想的な状態で混合し、目的の微粒子を析出させるために、重要な領域である。特に、前記強制導入領域にあっては、そのマイクロポンプ効果によって脈動や圧力変動が発生するおそれがある。この脈動や圧力変動は均一な流体処理の観点からは好ましいものではない。そこで、脈動や圧力変動を前記薄膜調整領域において低減することが望ましく、より望ましくは脈動や圧力変動の影響を無視できる程度にまで低減するために充分な広さを薄膜調整領域に与えることが適当である。他方、混合領域は前述のとおり、2種の被処理流動体の混合から析出がなされる領域である。両者はその目的を達するために十分な幅に設定されるべきであるが、これらの領域を構成する前記両処理用面は、鏡面仕上げされた平滑な面であったり、場合によっては意図的に凹部が形成されるなど、慎重に設計され精密に加工される必要があり、また、所定の速度で相対的に回転させられるため、その大きさは種々の観点から制約を受ける。この制約のある少なくとも2つの処理用面間の処理領域において、薄膜調整領域と混合領域とをバランスよく配置することは極めて重要であり、これらの幅の割合を変化させることによっても、微粒子の結晶化度の制御(結晶化度制御)や、微粒子の粒子径(D)に対する前記微粒子の結晶子径(d)の比率(d/D)の制御を、なすことができる。
また、乳化、分散、粉砕の処理については、前記2種類の被処理流動体を用いる場合、プレ乳化、プレ分散、プレ粉砕等のプレ処理の工程を省略して実施することもできる。これによって、精密処理(精密乳化・精密分散・精密粉砕)に際して、処理後の粒度分布がプレ処理後の結果に依らない利点がある。言い換えれば、1種類の被処理流動体を用いた場合よりも、粒度分布がシャープになり易い。
そして、前記の割合(Od/Cd)を増減させることによって、特に前記の割合(Od/Cd)が大きくなるように制御することで、粒子径またはCV値を小さくすることが可能である。
乳化、分散、粉砕にあっては、前記径割合(Od/Cd・Id)が小さい場合、運転が不安定になり易い場合があり、キャビテーションの発生などによって、目的とは異なる微小粒子が発生する場合や、処理面積が小さい事による粗大粒子の生成等が確認された。粗大粒子を微粒子化するために、単に回転数を上昇させると、前記キャビテーションが発生しやすい条件となり、シャープな粒度分布の粒子径制御が困難であった。他方、前記径割合(Od/Cd・Id)を大きくすることで、運転が安定になり、粒子径及びCV値の制御性が向上し、粒子径の微細化並びに粒度分布をシャープにすることが可能となる。
また、有機反応等の反応の処理にあっても、前記径割合(Od/Cd・Id)が小さく、反応が不十分な場合に、単に回転数を上昇させると、前記のキャビテーションが原因となって、副生成物の発生を引き起こす場合や反応効率を下げる場合があり、前記径割合(Od/Cd・Id)を大きくすることで、前記反応の収率が向上し、前記反応の純度が上がることが確認された。
本発明は、被処理流動体の導入速度や処理用面の回転速度を変化させるか否かを問わず、前記の各領域の面積や位置や割合を制御することにより、処理特性の制御を行なうことができたものである。
本発明の実施の形態に係る流体処理装置の略断面図である。 (A)は図1に示す流体処理装置の第1処理用面の略平面図であり、(B)は同装置の処理用面の要部拡大図である。 (A)は処理用面間の半面の断面図であり、(B)は同第2導入部を説明するための処理用面の要部拡大図である。 (A)は図1に示す流体処理装置の処理領域を示す模式図であり、(B)は同装置の混合領域を示す模式図であり、(C)は他の実施の形態に係る流体処理装置の処理領域を示す模式図である。 (A)は他の実施の形態に係る流体処理装置の処理領域を示す模式図であり、(B)はさらに他の実施の形態に係る流体処理装置の処理領域を示す模式図である。 実施例1~5の結果について粒子径に対する結晶子径の比率(d/D)の変化を示すグラフである。 実施例1~5の結果について結晶子径(d)の変化を示すグラフである。 実施例1~5の結果について結晶化度の変化を示すグラフである。 実施例1、3及び4についてのXRD測定結果である。 実施例6~13の結果について粒子径に対する結晶子径の比率(d/D)の変化を示すグラフである。 実施例6~13の結果について結晶子径(d)の変化を示すグラフである。 実施例6~13の結果について結晶化度の変化を示すグラフである。 実施例9で得られたニッケル微粒子のSEM写真。 実施例14~19の結果について粒子径に対する結晶子径の比率(d/D)の変化を示すグラフである。 実施例14~19の結果について結晶化度の変化を示すグラフである。 実施例20~27の結果について粒子径に対する結晶子径の比率(d/D)の変化を示すグラフである。 実施例20~27の結果について結晶化度の変化を示すグラフである。 実施例20~27の結果についてCV値の変化を示すグラフである。 実施例28~35の結果について体積平均粒子径の変化を示すグラフである。 実施例28~35の結果についてCV値の変化を示すグラフである。 実施例36~43の結果について体積平均粒子径の変化を示すグラフである。 実施例36~43の結果についてCV値の変化を示すグラフである。 実施例44~51の結果について体積平均粒子径の変化を示すグラフである。 実施例44~51の結果についてCV値の変化を示すグラフである。 実施例52~59の結果について収率の変化を示すグラフである。 実施例52~59の結果について純度の変化を示すグラフである。 実施例60~67の結果について結晶子径(d)の変化を示すグラフである。 実施例60~67の結果について粒子径に対する結晶子径の比率(d/D)の変化を示すグラフである。 実施例60~67の結果について結晶化度の変化を示すグラフである。 実施例68~75の結果について体積平均粒子径の変化を示すグラフである。 実施例68~75の結果についてCV値の変化を示すグラフである。 実施例76~83の結果について体積平均粒子径の変化を示すグラフである。 実施例76~83の結果についてCV値の変化を示すグラフである。 実施例84~91の結果について体積平均粒子径の変化を示すグラフである。 実施例84~91の結果についてCV値の変化を示すグラフである。 実施例92~99の結果について体積平均粒子径の変化を示すグラフである。 実施例92~99の結果についてCV値の変化を示すグラフである。 実施例100~107の結果について体積平均粒子径の変化を示すグラフである。 実施例100~107の結果についてCV値の変化を示すグラフである。 実施例108~115の結果について体積平均粒子径の変化を示すグラフである。 実施例108~115の結果についてCV値の変化を示すグラフである。 実施例116~123の結果について体積平均粒子径の変化を示すグラフである。 実施例116~123の結果についてCV値の変化を示すグラフである。 実施例124~131の結果について体積平均粒子径の変化を示すグラフである。 実施例124~131の結果についてCV値の変化を示すグラフである。 実施例132~137の結果について体積平均粒子径の変化を示すグラフである。 実施例132~137の結果についてCV値の変化を示すグラフである。
以下、図面を用いて前記流体処理装置の実施の形態について説明する。
図1~図3に示す流体処理装置は、接近・離反可能な少なくとも一方が他方に対して相対的に回転する処理用部における処理用面の間で被処理物を処理するものであって、被処理流動体のうちの第1の被処理流動体である第1流体を処理用面間に導入し、前記第1流体を導入した流路とは独立し、処理用面間に通じる開口部を備えた別の流路から被処理流動体のうちの第2の被処理流動体である第2流体を処理用面間に導入して処理用面間で前記第1流体と第2流体を混合・攪拌して処理を行う装置である。なお、図1においてUは上方を、Sは下方をそれぞれ示しているが、本発明において上下前後左右は相対的な位置関係を示すに止まり、絶対的な位置を特定するものではない。図2(A)、図3(B)においてRは回転方向を示している。図3(B)においてCは遠心力方向(半径方向)を示している。
この装置は、被処理流動体として少なくとも2種類の流体を用いるものであり、そのうちで少なくとも1種類の流体については被処理物を少なくとも1種類含むものであり、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面を備え、これらの処理用面の間で前記の各流体を合流させて薄膜流体とするものであり、当該薄膜流体中において前記の被処理物を処理する装置である。この装置は、前述のとおり、複数の被処理流動体を処理することができるが、単一の被処理流動体を処理することもできる。
この流体処理装置は、対向する第1及び第2の、2つの処理用部10、20を備え、少なくとも一方の処理用部が回転する。両処理用部10、20の対向する面が、夫々処理用面となる。第1処理用部10は第1処理用面1を備え、第2処理用部20は第2処理用面2を備える。
両処理用面1、2は、被処理流動体の流路に接続され、被処理流動体の流路の一部を構成する。この両処理用面1、2間の間隔は、適宜変更して実施することができるが、通常は、1mm以下、例えば0.1μmから50μm程度の微小間隔に調整される。これによって、この両処理用面1、2間を通過する被処理流動体は、両処理用面1、2によって強制された強制薄膜流体となる。
この装置を用いて複数の被処理流動体を処理する場合、この装置は、第1の被処理流動体の流路に接続され、当該第1被処理流動体の流路の一部を形成すると共に、第1被処理流動体とは別の、第2被処理流動体の流路の一部を形成する。そして、この装置は、両流路を合流させて、処理用面1、2間において、両被処理流動体を混合し、反応させるなどの流体の処理を行なう。なお、ここで「処理」とは、被処理物が反応する形態に限らず、反応を伴わずに混合・分散のみがなされる形態も含む。
具体的に説明すると、前記の第1処理用部10を保持する第1ホルダ11と、第2処理用部20を保持する第2ホルダ21と、接面圧付与機構と、回転駆動機構と、内側導入部d1と、中間導入部d2と、流体圧付与機構pとを備える。
図2(A)へ示す通り、この実施の形態において、第1処理用部10は、環状体であり、より詳しくはリング状のディスクである。また、第2処理用部20もリング状のディスクである。第1、第2処理用部10、20の材質は、金属の他、セラミックや焼結金属、耐磨耗鋼、サファイア、その他金属に硬化処理を施したものや、硬質材をライニングやコーティング、メッキなどを施工したものを採用することができる。この実施の形態において、両処理用部10、20は、互いに対向する第1、第2の処理用面1、2の少なくとも一部が鏡面研磨されている。
この鏡面研磨の面粗度は、特に限定されないが、好ましくはRa0.01~1.0μm、より好ましくはRa0.03~0.3μmとする。
少なくとも一方のホルダは、電動機などの回転駆動機構(図示せず)にて、他方のホルダに対して相対的に回転することができる。図1の50は、回転駆動機構の回転軸を示しており、この例では、この回転軸50に取り付けられた第1ホルダ11が回転し、この第1ホルダ11に支持された第1処理用部10が第2処理用部20に対して回転する。もちろん、第2処理用部20を回転させるようにしてもよく、双方を回転させるようにしてもよい。また、この例では、第1、第2ホルダ11、21を固定しておき、この第1、第2ホルダ11、21に対して第1、第2処理用部10、20が回転するようにしてもよい。
第1処理用部10と第2処理用部20とは、少なくとも何れか一方が、少なくとも何れか他方に、接近・離反可能となっており、両処理用面1、2は、接近・離反できる。
この実施の形態では、第1処理用部10に対して、第2処理用部20が接近・離反するもので、第2ホルダ21に設けられた収容部41に、第2処理用部20が出没可能に収容されている。但し、これとは、逆に、第1処理用部10が、第2処理用部20に対して接近・離反するものであってもよく、両処理用部10、20が互いに接近・離反するものであってもよい。
この収容部41は、第2処理用部20の、主として処理用面2側と反対側の部位を収容する凹部であり、平面視において、円を呈する、即ち環状に形成された、溝である。この収容部41は、第2処理用部20を回転させ得る十分なクリアランスを持ち、第2処理用部20を収容する。なお、第2処理用部20は軸方向に平行移動のみが可能なように配置してもよいが、前記クリアランスを大きくすることにより、第2処理用部20は、収容部41に対して、処理用部20の中心線を、前記収容部41の軸方向と平行の関係を崩すように傾斜して変位できるようにしてもよく、さらに、第2処理用部20の中心線と収容部41の中心線とが半径方向にずれるように変位できるようにしてもよい。
このように、3次元的に変位可能に保持するフローティング機構によって、第2処理用部20を保持することが望ましい。
前記の被処理流動体は、各種のポンプや位置エネルギーなどによって構成される流体圧付与機構pによって圧力が付与された状態で、内側導入部d1と、中間導入部d2とから両処理用面1、2間に導入される。この実施の形態において、内側導入部d1は、環状の第2ホルダ21の中央に設けられた通路であり、その一端が、環状の両処理用部10、20の内側から、両処理用面1、2間に導入される。中間導入部d2は、第1の被処理流動体と混合させる第2の被処理流動体を処理用面1、2へ供給する。この実施の形態において、中間導入部d2は、第2処理用部20の内部に設けられた通路であり、その一端が、第2処理用面2にて開口する。流体圧付与機構pにより加圧された第1の被処理流動体は、内側導入部d1から、両処理用部10、20の内側の空間に導入され、第1処理用面1と第2処理用面2との間を通り、両処理用部10、20の外側に通り抜けようとする。これらの処理用面1、2間において、中間導入部d2から流体圧付与機構pにより加圧された第2の被処理流動体が供給され、第1の被処理流動体と合流し、混合、攪拌、乳化、分散、反応、晶出、晶析、析出などの種々の流体処理がなされ、両処理用面1、2から、両処理用部10、20の外側に排出される。なお、減圧ポンプにより両処理用部10、20の外側の環境を負圧にすることもできる。
前記の接面圧付与機構は、第1処理用面1と第2処理用面2とを接近させる方向に作用させる力を、処理用部に付与する。この実施の形態では、接面圧付与機構は、第2ホルダ21に設けられ、第2処理用部20を第1処理用部10に向けて付勢する。
前記の接面圧付与機構は、第1処理用部10の第1処理用面1と第2処理用部20の第2処理用面2とが接近する方向に押す力(以下、接面圧力という)を発生させるための機構である。この接面圧力と、流体圧力などの両処理用面1、2間を離反させる力との均衡によって、nm単位ないしμm単位の微小な膜厚を有する薄膜流体を発生させる。言い換えれば、前記力の均衡によって、両処理用面1、2間の間隔を所定の微小間隔に保つ。
図1に示す実施の形態において、接面圧付与機構は、前記の収容部41と第2処理用部20との間に配位される。具体的には、第2処理用部20を第1処理用部10に近づく方向に付勢するスプリング43と、空気や油などの付勢用流体を導入する付勢用流体導入部44とにて構成され、スプリング43と前記付勢用流体の流体圧力とによって、前記の接面圧力を付与する。このスプリング43と前記付勢用流体の流体圧力とは、いずれか一方が付与されるものであればよく、磁力や重力などの他の力であってもよい。この接面圧付与機構の付勢に抗して、流体圧付与機構pにより加圧された被処理流動体の圧力や粘性などによって生じる離反力によって、第2処理用部20は、第1処理用部10から遠ざかり、両処理用面間に微小な間隔を開ける。このように、この接面圧力と離反力とのバランスによって、第1処理用面1と第2処理用面2とは、μm単位の精度で設定され、両処理用面1、2間の微小間隔の設定がなされる。前記離反力としては、被処理流動体の流体圧や粘性と、処理用部の回転による遠心力と、付勢用流体導入部44に負圧を掛けた場合の当該負圧、スプリング43を引っ張りスプリングとした場合のバネの力などを挙げることができる。また、離反力は、両処理用面1、2間に内側導入部d1から被処理流動体を導入することによって発生する力のみならず、中間導入部d2から被処理流動体を導入することによって発生する力も含まれる。この接面圧付与機構は、第2処理用部20ではなく、第1処理用部10に設けてもよく、双方に設けてもよい。
前記の離反力について、具体的に説明すると、第2処理用部20は、前記の第2処理用面2と共に、第2処理用面2の内側(即ち、第1処理用面1と第2処理用面2との間への被処理流動体の進入口側)に位置して当該第2処理用面2に隣接する離反用調整面23を備える。この例では、離反用調整面23は、傾斜面として実施されているが、水平面であってもよい。被処理流動体の圧力が、離反用調整面23に作用して、第2処理用部20を第1処理用部10から離反させる方向への力を発生させる。従って、離反力を発生させるための受圧面は、第2処理用面2と離反用調整面23とになる。
さらに、この図1の例では、第2処理用部20に近接用調整面24が形成されている。この近接用調整面24は、離反用調整面23と軸方向において反対側の面(図1においては上方の面)であり、被処理流動体の圧力が作用して、第2処理用部20を第1処理用部10に接近させる方向への力を発生させる。
なお、第2処理用面2及び離反用調整面23に作用する被処理流動体の圧力、即ち流体圧は、メカニカルシールにおけるオープニングフォースを構成する力として理解される。処理用面1、2の接近・離反の方向、即ち第2処理用部20の出没方向(図1においては軸方向)と直交する仮想平面上に投影した近接用調整面24の投影面積A1と、当該仮想平面上に投影した第2処理用部20の第2処理用面2及び離反用調整面23との投影面積の合計面積A2との、面積比A1/A2は、バランス比Kと呼ばれ、前記オープニングフォースの調整に重要である。このオープニングフォースについては、前記バランスライン、即ち近接用調整面24の面積A1を変更することで、被処理流動体の圧力、即ち流体圧により調整できる。
摺動面の実面圧P、即ち、接面圧力のうち流体圧によるものは次式で計算される。
 P=P1×(K-k)+Ps
ここでP1は、被処理流動体の圧力即ち流体圧を示し、Kは前記のバランス比を示し、kはオープニングフォース係数を示し、Psはスプリング及び背圧力を示す。
このバランスラインの調整により摺動面の実面圧Pを調整することで処理用面1、2間を所望の微小隙間量にし、被処理流動体による流動体膜を形成させ、生成物などの処理された被処理物を微細とし、また、均一な流体処理を行うものである。
なお、図示は省略するが、近接用調整面24を離反用調整面23よりも広い面積を持ったものとして実施することも可能である。
被処理流動体は、前記の微小な隙間を保持する両処理用面1、2によって強制された薄膜流体となり、環状の両処理用面1、2の外側に移動しようとする。ところが、第1処理用部10は回転しているので、混合された被処理流動体は、環状の両処理用面1、2の内側から外側へ直線的に移動するのではなく、環状の半径方向への移動ベクトルと周方向への移動ベクトルとの合成ベクトルが被処理流動体に作用して、内側から外側へ略渦巻き状に移動する。
尚、回転軸50は、鉛直に配置されたものに限定するものではなく、水平方向に配位されたものであってもよく、傾斜して配位されたものであってよい。被処理流動体は両処理用面1、2間の微細な間隔にて処理がなされるものであり、実質的に重力の影響を排除できるからである。また、この接面圧付与機構は、前述の第2処理用部20を変位可能に保持するフローティング機構と併用することによって、微振動や回転アライメントの緩衝機構としても機能する。
流体の運動において、慣性力と粘性力の比を表す無次元数をレイノルズ数と呼び、以下のように表される。
 レイノルズ数Re=慣性力/粘性力=ρVL/μ=VL/ν
ここで、ν=μ/ρは動粘度、Vは代表速度、Lは代表長さ、ρは密度、μは粘度を示す。
臨界レイノルズ数を境界とし、臨界レイノルズ数以下では層流、臨界レイノルズ数以上では乱流になる。
前記流体装置の両処理用面1、2間は微小間隔に調整されるため、両処理用面1、2間に保有される被処理流動体の保有量は極めて少ない。そのため、代表長さLが非常に小さくなり、両処理用面1、2間を通過する強制薄膜流体の遠心力は小さく、強制薄膜中は粘性力の影響が大きくなる。
また、遠心力は、回転運動における慣性力の一種であり、中心から外側に向かう力である。慣性力は以下の式で表される。
慣性力F=ma=mv2/R
ここで、aは加速度、mは質量、vは速度、Rは半径を示す。
前記のように両処理用面1、2間に保有される被処理流動体の保有量は少ないため、質量に対する速度の割合が非常に大きくなり、質量は無視できるようになる。従って、強制薄膜流体中においては重力の影響を無視できる。そのため、本来複合微粒子として析出させることの難しい比重差のある異種の元素を含む金属または金属化合物についても作製可能である。
第1、第2処理用部10、20は、その少なくともいずれか一方を、冷却或いは加熱して、その温度を調整するようにしてもよく、図1では、第1、第2処理用部10、20に温調機構(温度調整機構)J1、J2を設けた例を図示している。また、導入される被処理流動体を冷却或いは加熱して、その温度を調整するようにしてもよい。これらの温度は、処理された被処理物の析出のために用いることもでき、また、第1、第2処理用面1、2間における被処理流動体にベナール対流若しくはマランゴニ対流を発生させるために設定してもよい。
図2に示すように、第1処理用部10の第1処理用面1には、第1処理用部10の中心側から外側に向けて、即ち径方向について伸びる溝状の凹部13を形成して実施してもよい。この凹部13の平面形状は、図2(B)へ示すように、第1処理用面1上をカーブして或いは渦巻き状に伸びるものや、図示はしないが、真っ直ぐ外方向に伸びるもの、L字状などに屈曲あるいは湾曲するもの、連続したもの、断続するもの、枝分かれするものであってもよい。また、この凹部13は、第2処理用面2に形成するものとしても実施可能であり、第1及び第2の処理用面1、2の双方に形成するものとしても実施可能である。この様な凹部13を形成することによりマイクロポンプ効果を得ることができ、被処理流動体を第1及び第2の処理用面1、2間に吸引することができる効果がある。
この凹部13により生ずるマイクロポンプ効果により、被処理流動体による動圧が発生する。この動圧は、処理用面1、2間を広げる方向に作用するものであり、この動圧も前述の離反力の一つとして作用する。
この凹部13を設けて実施した場合には、両処理用面1、2が相対的に回転することによって、両処理用面1、2に被処理流動体を積極的に吸引できるメリットが生ずる。その反面、溝状の凹部13のある部分と、ない部分(凹部13に対して相対的に凸部となる部分)とが周方向に配列されるため、両処理用面1、2が相対的に回転することによって、両処理用面1、2における被処理流動体に圧力変動が生ずるおそれがある。
従って、この凹部13を設けずに実施した場合には、前記のマイクロポンプ効果が期待できない反面、これによる圧力変動を考慮する必要がないというメリットが生じる。また、マイクロポンプの凹部13の加工は、非常に精密な作業が必要になり、コストが高くなるが、その加工がこれを設けないため低コストの装置を提供できる。また、両処理用面1、2の略全面を実質的に流体の処理のために用いることができるため、省資源となる。
特に、中間導入部d2を設けて、ここから被処理流動体を導入する場合には、この被処理流動体から両処理用面1、2に対して加わる力を前述の離反力として用いることができるため、凹部13を省略して実施することが容易となる。但し、中間導入部d2を設けない場合にも、凹部13を省略して実施することができる。
この凹部13の基端は第1処理用部10の内周に達することが望ましい。この凹部13の先端は、第1処理用部面1の外周面側に向けて伸びるもので、その深さ(横断面積)は、基端から先端に向かうにつれて、漸次減少するものとしている。
この凹部13の先端と第1処理用面1の外周面との間には、凹部13のない平坦面16が設けられている。
 前述の中間導入部d2の開口部d20を第2処理用面2に設ける場合は、対向する前記第1処理用面1の平坦面16と対向する位置に設けることが好ましい。
この開口部d20は、第1処理用面1の凹部13からよりも下流側(この例では外側)に設けることが望ましい。特に、マイクロポンプ効果によって導入される際の流れ方向が処理用面間で形成されるスパイラル状で層流の流れ方向に変換される点よりも外径側の平坦面16に対向する位置に設置することが望ましい。具体的には、図2(B)において、第1処理用面1に設けられた凹部13の最も外側の位置から、径方向への距離nを、約0.5mm以上とするのが好ましい。特に、流体中から微粒子を析出させる場合には、層流条件下にて複数の被処理流動体の混合と、微粒子の析出が行なわれることが望ましい。開口部d20の形状は、図2(B)や図3(B)に示すように円形状であってもよく、図示しないが、リング状ディスクである処理用面2の中央の開口を取り巻く同心円状の円環形状であってもよい。また、開口部を円環形状とした場合、その円環形状の開口部は連続していてもよいし、不連続であってもよい。
この中間導入部d2は方向性を持たせることができる。例えば、図3(A)に示すように、前記の第2処理用面2の開口部d20からの導入方向が、第2処理用面2に対して所定の仰角(θ1)で傾斜している。この仰角(θ1)は、0度を超えて90度未満に設定されており、さらに反応速度が速い反応の場合には1度以上45度以下で設置されるのが好ましい。
また、図3(B)に示すように、前記の第2処理用面2の開口部d20からの導入方向が、前記の第2処理用面2に沿う平面において、方向性を有するものである。この第2流体の導入方向は、処理用面の半径方向の成分にあっては中心から遠ざかる外方向であって、且つ、回転する処理用面間における流体の回転方向に対しての成分にあっては順方向である。言い換えると、開口部d20を通る半径方向であって外方向の線分を基準線gとして、この基準線gから回転方向Rへの所定の角度(θ2)を有するものである。この角度(θ2)についても、0度を超えて90度未満に設定されることが好ましい。
この角度(θ2)は、流体の種類、反応速度、粘度、処理用面の回転速度などの種々の条件に応じて、変更して実施することができる。また、中間導入部d2に方向性を全く持たせないこともできる。
前記の被処理流動体の種類とその流路の数は、図1の例では、2つとしたが、1つであってもよく、3つ以上であってもよい。図1の例では、中間導入部d2から処理用面1、2間に第2流体を導入したが、この導入部は、第1処理用部10に設けてもよく、双方に設けてもよい。また、一種類の被処理流動体に対して、複数の導入部を用意してもよい。また、各処理用部に設けられる導入用の開口部は、その形状や大きさ、数は特に制限はなく適宜変更して実施し得る。
なお、処理用面1、2間にて前記処理を行う事が出来れば良いので、前記とは逆に、内側導入部d1より第2流体を導入し、中間導入部d2より第1流体を導入するものであっても良い。つまり、各流体における第1、第2という表現は、複数存在する流体の第n番目であるという、識別のための意味合いを持つに過ぎないものであり、第3以上の流体も存在し得る。その際、中間導入部d2の外側に、第3導入部、第4導入部、さらにはそれ以上の導入部が形成され得るが、これらも中間導入部と理解されるべきである。第3導入部以降の導入部を持つ例としては、同心円状に、複数の環状の導入部を設けた場合を例示できる。また他の例としては、点状や線状の複数の導入部を環状に配置し、この環状の配列径が異なる環状の導入部群を、複数持つ場合を挙げることができる。
前記装置においては、析出・沈殿または結晶化のような処理が、図1に示すように、接近・離反可能に互いに対向して配設され、少なくとも一方が他方に対して回転する処理用面1、2の間で強制的に均一混合しながら起こる。処理された被処理物の粒子径や単分散度は処理用部10、20の回転数や流速、処理用面1、2間の距離や、被処理流動体の原料濃度、または被処理流動体の溶媒種等を適宜調整することにより、制御することができる。
本発明においては、被処理流動体を用いて被処理流動体の処理を行なう場合、相対的に回転する2つの処理用面1、2間の処理領域は、次のように理解される。これを、図4、図5を参照しつつ説明する。図4は、内側導入部d1と、その外周側に位置する中間導入部d2を備えており、2種類以上の被処理流動体を用いて被処理流動体の処理を行なう場合に適するものである。図5は、中間導入部d2を備えておらず、内側導入部d1のみを備えており、1種類の被処理流動体を用いて被処理流動体の処理を行なう場合に適するものである。
なお、図4、図5は、本発明の実施の形態に係る装置の模式図であり、各部の寸法を正確に示すものではない。
まず、図4(A)を参照して、2種類以上の被処理流動体を用いて被処理流動体の処理を行なう場合における、相対的に回転する2つの処理用面1、2間の処理領域について説明する。被処理流動体の処理は、前述のとおり、微粒子の析出の処理、反応の処理、乳化、混合、分散の処理などであり、その処理に適する被処理流動体が用いられる。例えば、微粒子の析出の処理の場合、被析出物質の原料となる物質を少なくとも1種類含む原料流体と、前記の第2流体が前記被析出物質を析出させるための析出流体との2種の被処理流動体を用いる。
処理領域は、回転の半径方向の内側の未混合領域3と、外側の混合領域6とに大別して理解される。未混合領域3の内端は内側導入部d1によって規定され、未混合領域3と混合領域6との境界は中間導入部d2によって規定される。混合領域6の外端は、処理用面1、2の外端であり、その外側に排出部14が形成される。
内側導入部d1と排出部14は、処理用面1、2の最内周と最外周に形成されたテーパ状部分である。処理用面1、2は、意図的に凹部を形成するなどされる場合もあるが、一般的には互いに平坦な平滑な平面を構成し、これらの平面間の間隔が前述の薄膜流体を所定の膜厚に規定する。これに対して、テーパ状の内側導入部d1及び排出部14においては、その間隔が徐々に広がっていくものであり、被処理流動体は所定の膜厚の薄膜流体を維持しない。従って、処理用面1、2間の処理領域は、テーパ状の内側導入部d1と排出部14とを除外した領域である。言い換えれば、未混合領域3は、内側導入部d1(内側導入部d1を含まない)から、中間導入部d2(中間導入部d2を含まない)に存在する内側の環状の領域である。また、混合領域6は、中間導入部d2(中間導入部d2を含む)から排出部14(排出部14を含まない)に存在する外側の環状の領域である。
従って、前記回転の中心から前記外周端までの距離(Od)(以下、排出部半径(Od)という場合もある)は、前記回転の中心から排出部14の手前までの距離である。
また、前記回転の中心から前記中間導入部までの距離(Cd)(以下、合流部半径(Cd)という場合もある)は、前記回転の中心から前記中間導入部d2の手前までの距離である。合流部半径(Cd)は処理用面1、2の前記回転の中心から最も中央に近い地点f(以下、最近点fという)までの距離であり、また前述のように、中間導入部として、第3導入部以降の複数の導入部を持つ場合にも適用できるものであり、これらの中間導入部のうち、前記回転の中心からの距離が最も径の小さな中間導入部における最近点fまでの距離を合流部半径(Cd)とする。
さらに未混合領域3は、前述の溝状の凹部13を設けた場合には、内側の強制導入領域4と、外側の薄膜調整領域5とに区分して理解される。
強制導入領域4には、マイクロポンプ効果を発揮する凹部13が形成され、第1流体が、その圧力と溝によるマイクロポンプ効果によって、処理用面間に内側導入部d1から強制的に導入され薄膜流体となる。薄膜調整領域5は、導入された第1流体が、処理用面の回転による遠心力等の影響を受けてスパイラル状の流れに変換されると共に、層流条件下で外方向に流れ出す領域である。強制導入領域4にあっては、そのマイクロポンプ効果によって脈動や圧力変動が発生するおそれがあるため、凹部13のない薄膜調整領域5を充分な大きさに設定することで、脈動や圧力変動を前記薄膜調整領域において低減することができる。脈動や圧力変動の影響を無視できる程度にまで低減することが最も望ましい。具体的には、前述のように、第1処理用面1に設けられた凹部13の最も外側の位置から、径方向への距離nを、約0.5mm以上とするのが好ましい。
この領域より外側にあっては、第1流体は層流でスパイラル状の安定した薄膜流体となると考えられる。この安定した薄膜流体に対して、内側導入部d1から第2流体が導入される。これによって、第1流体と第2流体とによる薄膜流体が構成され、混合領域6を、両流体は層流条件下でスパイラル状に外方向に流れ、排出部14から流出する。
この第1流体と第2流体とは、層流条件下の薄膜流体中で、混合され、混合された被処理流動体について、前述の種々の処理がなされる。
例えば、微粒子の析出の処理の場合、混合された被処理流動体によって構成される薄膜流体中で微粒子が析出する。
この微粒子の析出と、析出した微粒子の成長には、第1流体と第2流体とを構成する物質の化学エネルギー、流れる流体の機械的エネルギー、処理用面の回転エネルギー、必要によって処理用面に加えられる温度エネルギーが関与すると考えられる。このように与えられた条件に従って、薄膜流体中に粒子が析出し、成長し、目的の微粒子が排出部14から排出される。この成長過程の微粒子は、微粒子中に非晶質と結晶質とが共存した状態が一般的であり、結晶質の部分では単数又は複数の結晶が発生し、その結晶が成長しつつ、粒子が成長する。
このように、未混合領域3が、前述の溝状の凹部13を備えた強制導入領域4を有する場合、内側導入部d1から導入された第1流体が、良好な層流条件下での薄膜流体となって中間導入部d2から導入される第2流体と混合されるために薄膜調整領域5は、前述のように、充分な大きさを持つ必要がある。他方、両処理用面1、2の大きさが機械的制約を受ける以上、薄膜調整領域5の大きさを必要以上に大きくすると、混合領域6の大きさを充分に確保することがでない。そのため、前記回転の半径方向における薄膜調整領域5の幅(Iw)に対する、前記回転の半径方向における混合領域の幅(Ow)の幅割合(Ow/Iw)を適正に設定しつつ、これを変化させることによって、薄膜流体中に粒子が析出し、成長し、目的の微粒子が排出部14から排出されるまでの粒子及び結晶子の成長過程を制御することができる。
本発明者の新たな知見によると、結晶の成長は、粒子の成長(粒子径の拡大)が実質的に停止した後にも継続して行なわれることが明らかになった。従って、混合領域6は、図4(B)に示すように、内側(上流側)の前期領域7と、外側の後期領域8とに区分できることが明らかになった。析出した微粒子は、前期領域7において、粒子の析出成長と共に結晶子の発生と微粒子中の結晶化の進行と結晶子の成長がなされており、後期領域8においては実質的に粒子の成長が完了した後、主として微粒子中の結晶化の進行と結晶子の成長がなされる。従って、後期領域8においては、前記のエネルギーが主として結晶化の進行と結晶子の成長のために利用されることになる。なお、本発明に用いる装置においては、前記のエネルギー(特に、周速度で表される処理用面の回転エネルギー)は、外径側に向かうに従い大きくなる。また、混合領域6(前期領域7及び後期領域8)の面積は、距離の2乗で拡大する。後期領域8では、このような条件下で、主として結晶化の進行と結晶子の成長のためにのみ、エネルギーが消費されると考えられる。
2種類以上の被処理流動体を用いて微粒子の析出を行なう場合には、この後期領域8の領域は、排出部半径(Od)の合流部半径(Cd)に対する割合(Od/Cd)が1.25以上の条件を満たす領域であることが、本発明の完成に至る研究過程において、明らかになった。また、前述の幅割合(Ow/Iw)にあっては、2.0以上の条件を満たすことが望ましいものであることが明らかになった。
具体的には、従来の本願出願人の製造に係る装置にあっては、前記の割合(Od/Cd)が1.25未満であり、且つ、前述の幅割合(Ow/Iw)が2.0未満であった。この従来の装置にあっては、後述の実施例に示すとおり、結晶化の進行と結晶子の成長とが、粒子の成長と共に、緩やかに行なわれているに過ぎなかった。言い換えれば、前記の従来の装置にあっては、混合領域6は、前期領域7のみによって構成されたものに過ぎないものであるか、たとえ後期領域8が存在しても、その領域は前期領域7に比して僅かなものに過ぎず、本発明者は後期領域8の存在を認識することなく、混合領域6として理解するに止まっていた。
前記割合(Od/Cd)と前記幅割合(Ow/Iw)を変化させることによって、得られた微粒子の結晶化度を上下させる結晶化度制御と、前記微粒子の粒子径(D)に対する結晶子径(d)の比率(d/D)を上下させるd/D制御との、少なくとも何れか一方の制御を行なうことによって、前期領域7のみならず後期領域8の大きさを変更することが可能である。
前記の割合(Od/Cd)を1.25~5.0に制御することによって、後期領域8が存在する条件下で前記の制御を行なうことが、前記の微粒子及び結晶子の生成過程からは望ましい。また、前記幅割合(Ow/Iw)を2.0~150.0に制御することによって、後期領域8が存在する条件下で前記の制御を行なうことが、前記の微粒子及び結晶子の生成成長過程からは望ましい。
他方、前記の割合(Od/Cd)を1.1~5.0に制御することによって、後期領域8が存在しない条件下から後期領域8が存在する条件下にかけての制御が可能となる。また、前記幅割合(Ow/Iw)を2.0~150.0に制御することによって、後期領域8が存在しない条件下から後期領域8が存在する条件下にかけての制御が可能となる。このような幅広い制御は、結晶化度の変化と、前記d/Dの変化とを、よりダイナミックに招来させることができるという観点からは好ましいと言える。
なお、前記の割合(Od/Cd)や前記幅割合(Ow/Iw)の上限値は特に設定される必要はない。但し、現在の回転制御の技術水準では、前記の割合(Od/Cd)が5.0を越えたり、前記幅割合(Ow/Iw)が150.0を超えたりすると、結晶化度が低下したり、前記d/Dが低下する場合があることが確認された。これは、結晶子の成長が完了したと考えることができる一方、排出部半径(Od)、特に、排出部半径(Od)と合流部半径(Cd)の差が大きくなったり、薄膜調整領域の幅(Iw)と混合領域の幅(Ow)との差が大きくなりったすることで、薄膜流体を介して対向している処理用面の回転運動などの運転が安定になり、望ましい処理条件を維持できなくなるためであるとも考えられる。従って、機械的な精度がさらに向上することで、前記の割合(Od/Cd)が5.0を超えたり、前記幅割合(Ow/Iw)が150.0を超えた場合にあっても、結晶化度の変化と、前記d/Dの変化をもたらすことができる場合もあると考えられる。
なお、図4(C)に示すように、本発明は、前述の凹部13を形成せずに、言い換えれば強制導入領域4を設けずに実施することもできる。この場合にあっても、前述の未混合領域3と混合領域6とは前述と同様に存在し、前記回転の中心から前記内側導入部までの距離(Id)(以下、導入部半径という場合もある)に対する、排出部半径(Od)の割合(Od/Id)を増減させることによって、被処理流動体に対する種々の処理についての処理特性を制御することができる。
なお、凹部13を有する強制導入領域4を設けない結果、前述のように、マイクロポンプ効果が期待できない反面、これによる圧力変動を考慮する必要がないというメリットが生じる。
以上、析出を伴う流体処理を中心に説明したが、図4の各図の何れの場合にあっても、反応や、乳化、分散、粉砕等の他の流体処理の処理についても、前記の制御の考えて適用できる。前記の割合(Od/Cd)や前記幅割合(Ow/Iw)や前記の割合(Od/Id)を増減させることによって、反応の純度が変化したり、反応の収率が変化する。具体的には、前記の割合(Od/Cd)や前記幅割合(Ow/Iw)や前記の割合(Od/Id)を増加させることによって、反応の純度が向上し、反応の収率が向上する。また、前記の割合(Od/Cd)や前記幅割合(Ow/Iw)や割合(Od/Id)を増減させることによって、乳化、分散、粉砕等によって得られる微粒子の粒子径を制御する粒子径制御や、得られた微粒子の粒度分布を制御するCV値制御を行なうことができる。具体的には、前記の割合(Od/Cd)や前記幅割合(Ow/Iw)や割合(Od/Id)を増減させることによって、乳化、分散、粉砕等によって得られる微粒子の粒子径を小さくでき、得られた微粒子の粒度分布を制御するCV値制御を向上させることができる。
次に、図5を参照しつつ、被析出物質の原料となる物質を少なくとも1種類含む1種類の被処理流動体のみを用いて、流体処理を行なう例を説明する。図5の例では、先の図4の例に示した中間導入部d2が存在しない。また中間導入部d2が設けられた装置を用いた場合にあっても、中間導入部d2は用いずに、内側導入部d1のみから被処理流動体を前記の両処理用面1、2間に導入する。
図5(A)は、マイクロポンプ効果を発揮する溝状の凹部13が設けられている例であり、図5(B)は溝状の凹部13が設けられていない例である。
これら図5に示す装置を用いた場合にあっては、前記回転の中心から前記内側導入部までの距離(Id)に対する前記回転の中心から前記処理領域の外周端までの距離(Od)の割合(Od/Id)を変化させることによって、前記径割合を変化させることもできる。この場合にあっても、処理領域の上流端は、内側導入部d1を含まず、処理領域の下流端は、排出部14を含まない。
そして、これらの割合(Od/Id)を変化させることによって、前述と同様の各種被処理流動体に対して、各種の流体処理を行なう際の制御をなすことができる。
例えば、析出を伴う流体処理にあっては、内側導入部d1から両処理用面1、2間に導入された被処理流動体に対して熱エネルギー等のエネルギーを加えることによって、被析出物質の微粒子を析出させることができる。その場合には、中間導入部d2は不要であり、内側導入部d1を超えた箇所から排出部14の手前に至る領域が処理領域となる。この場合にあっても、2以上の被処理流動体を用いる場合と同様、薄膜流体中に粒子が析出し、成長し、目的の微粒子が排出部14から排出される。従って、前述の前期領域7に相当する内側の領域において、粒子の析出成長と共に結晶子の発生と微粒子中の結晶化の進行と結晶子の成長がなされ、後期領域8に相当する外側の領域においては実質的に粒子の成長が完了した後、主として微粒子中の結晶化の進行と結晶子の成長がなされる。その結果、1種類の被処理流動体を用いて微粒子の析出を行なう場合には、処理用面の回転の中心から内側導入部d1までの距離(Id)と、前記回転の中心から排出部14までの距離(Od)との割合(Od/Id)を変化させることによって、前記微粒子の結晶化度を上下させる結晶化度制御と、前記微粒子の粒子径(D)に対する結晶子径(d)の比率(d/D)を上下させるd/D制御と、前記微粒子の粒度分布を制御するCV値制御との、少なくとも何れか一つの制御を行なうことができる。
本発明者の知見によると、処理用面の回転の中心から内側導入部d1までの距離(Id)と、前記回転の中心から排出部14までの距離(Od)との割合(Od/Id)が1.67以上の条件を満たすことによって、前述の後期領域8に相当する外側の領域を得ることができる。従って、1種類の被処理流動体を用いて微粒子の析出を行なう場合には、前記の割合(Od/Id)を1.67~8.33に制御することによって、前述の後期領域8に相当する領域が存在する条件下で前記の制御を行なうことができる。他方、前記の割合(Od/Id)を1.67~8.33に制御することによって、前述の後期領域8に相当する領域が存在しない条件下から、当該領域が存在する条件下にかけての制御が可能となり、結晶化度の変化と、前記d/Dの変化とを、よりダイナミックに招来させることができる。
なお、前記の各実施の形態において、内側導入部d1からは被処理流動体を導入せずに、中間導入部d2のみから1種類又は2種類以上の被処理流動体を導入するようにして実施することもできる。この場合、導入部は、内側導入部d1ではなく、中間導入部d2のみとなる。
なお、結晶子径はX線回折測定により確認することができる。X線回折測定では、物質が結晶性を有している場合、結晶型に応じて決まった位置にピークが出る。そして、このピークの半値幅からSherrerの式に従って結晶子径を計算することができる。
〔Scherrer式〕
  結晶子径(d)=K・λ/(β・cosθ)
ここで、KはScherrer定数でK=0.9であり、X線(CuKα1)波長(λ)=1.54056Å(1Å=1×10-10m)である。また、CuKα1線由来のブラッグ角(θ)および半価幅(βo)はプロファイルフィッティング法(Peason-XII関数又はPseud-Voigt関数)により算出する。さらに、計算に用いた半価幅βは予め標準Siにより求めておいた装置由来の半価幅βiから下記式を用いて補正する。
Figure JPOXMLDOC01-appb-M000001
また、結晶化度についてもX線回折測定結果より得られた回折パターンを用いた公知の解析方法にて算出することが出来る。一般的な手法として、PANalytical製のX線回折パターンの回折ソフト、X‘Pert High Score Plusを使用して算出することができる。
次に、本願発明に係る流体処理装置及び処理方法を用いて実施できる処理を以下に例示する。なお、本願発明に係る流体処理装置は下記の例にのみ限定して用いられるものではなく、従来のマイクロリアクターやマイクロミキサーによってなされていた反応はもちろんのこと、その他種々の反応、混合、分散に関する処理など、例えば、特許文献1、特許文献2及び特許文献7等の従来知られた種々の流体処理に用いることができる。
少なくとも1種類の顔料を硫酸、硝酸、塩酸などの強酸に溶解し調整された顔料酸性溶液を、水を含む溶液と混合して顔料粒子を得る反応(アシッドペースティング法)。
または、少なくとも1種類の顔料を有機溶媒に溶解し調整された顔料溶液を、前記顔料に対しては貧溶媒であり、かつ前記溶液の調整に使用された有機溶媒には相溶性である貧溶媒中に投入して顔料粒子を沈殿させる反応(再沈法)。
または、酸性またはアルカリ性であるpH調整溶液或いは前記pH調整溶液と有機溶媒との混合溶液のいずれかに、少なくとも1種類の顔料を溶解した顔料溶液と、前記顔料溶液に含まれる顔料に溶解性を示さない、若しくは、前記顔料溶液に含まれる溶媒よりも前記顔料に対する溶解性が小さい、前記顔料溶液のpHを変化させる顔料析出用溶液とを混合して顔料粒子を得る反応。
カーボンブラックの表面に液相還元法によって金属微粒子を担持させる反応(前記金属としては、白金、パラジウム、金、銀、ロジウム、イリジウム、ルテニウム、オスミウム、コバルト、マンガン、ニッケル、鉄、クロム、モリブデン、チタンからなる群より選ばれる少なくとも1種の金属が例示できる)。
フラーレンを溶解している第1溶媒を含む溶液と、前記第1溶媒よりもフラーレンの溶解度が小さな第2溶媒を混合することでフラーレン分子からなる結晶及びフラーレンナノウィスカー・ナノファイバーナノチューブを製造する反応。
金属化合物を還元する反応(前記金属としては、金、銀、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金のような貴金属、又は銅、又は前記2種以上の金属の合金が例示できる)。
セラミックス原料を加水分解する反応(前記セラミックス原料としては、Al、Ba、Mg、Ca、La、Fe、Si、Ti、Zr、Pb、Sn、Zn、Cd、As、Ga、Sr、Bi、Ta、Se、Te、Hf、Mg、Ni、Mn、Co、S、Ge、Li、B、Ceの中から選ばれた少なくとも1種が例示できる)。
チタン化合物の加水分解により二酸化チタン超微粒子を析出させる反応(前記チタン化合物としては、テトラメトキシチタン、テトラエトキシチタン、テトラ-n-プロポキシチタン、テトライソプロポキシチタン、テトラ-n-ブトキシチタン、テトライソブトキシチタン、テトラ-t-ブトキシチタンなどのテトラアルコキシチタン或はその誘導体、四塩化チタン、硫酸チタニル、クエン酸チタン、及び四硝酸チタンから選ばれる少なくとも1種が例示できる)。
半導体原料である、異種の元素を有するイオンを含む流体を合流させ、共沈・析出により化合物半導体微粒子を生成する反応(化合物半導体としては、II-VI族化合物半導体、III-V族化合物半導体、IV族化合物半導体、I-III-VI族化合物半導体が例示できる)。
半導体元素を還元して半導体微粒子を生成する反応(半導体元素としては、シリコン(Si)、ゲルマニウム(Ge)、炭素(C)、および錫(Sn)からなる群から選ばれた元素が例示できる)。
磁性体原料を還元して磁性体微粒子を生成する反応(磁性体原料としては、ニッケル、コバルト、イリジウム、鉄、白金、金、銀、マンガン、クロム、パラジウム、イットリウム、ランタニド(ネオジウム、サマリウム、ガドリニウム、テルビウム)のうち少なくとも1種が例示できる)。
生体摂取物微粒子原料を少なくとも1種類、第1溶媒に溶解させた流体と、前記第1溶媒よりも溶解度の低い第2溶媒となりうる溶媒とを混合し、生体摂取物微粒子を析出させる反応。
または、酸性物質もしくは陽イオン性物質を少なくとも1種類含む流体と、塩基性物質もしくは陰イオン性物質を少なくとも1種類含む流体とを混合し、中和反応により生体摂取物微粒子を析出させる反応。
脂溶性の薬理活性物質を含有する油相成分を含む被処理流動体と、少なくとも水系分散溶媒よりなる被処理流動体とを混合すること、あるいは、水溶性の薬理活性物質を含有する水相成分を含む被処理流動体と、少なくとも油系分散溶媒よりなる被処理流動体とを混合することによりマイクロエマルション粒子を得る処理。
または、分散相もしくは連続相の少なくともどちらか一方に一種類以上のリン脂質を含み、分散相は薬理活性物質を含み、連続相は少なくとも水系分散溶媒よりなり、分散相の被処理流動体と連続相の被処理流動体とを混合することによりリポソームを得る処理。
樹脂に対して溶解性及び相溶性である溶媒に樹脂を溶解した流体と水性溶媒とを混合し、析出あるいは乳化により樹脂微粒子を得る処理。
または、加温して溶融させた樹脂と水性溶媒とを混合し、乳化・分散により樹脂微粒子を得る処理。
フリーデルクラフツ反応、ニトロ化反応、付加反応、脱離反応、転移反応、重合反応、縮合反応、カップリング反応、アシル化、カルボニル化、アルデヒド合成、ペプチド合成、アルドール反応、インドール反応、求電子置換反応、求核置換反応、Wittig反応、Michael付加反応、エナミン合成、エステル合成、酵素反応、ジアゾカップリング反応、酸化反応、還元反応、多段階反応、選択的添加反応、鈴木・宮浦カップリング反応、Kumada-Corriu反応、メタセシス反応、異性化反応、ラジカル重合反応、アニオン重合反応、カチオン重合反応、金属触媒重合反応、逐次反応、高分子合成、アセチレンカップリング反応、エピスルフィド合成、エピスルフィド合成、Bamberger転位、Chapman転位、Claisen縮合、キノリン合成、Paal-Knorrフラン合成、Paal-Knorrピロール合成、Passerini反応、Paterno-Buchi反応、カルボニル-エン反応(Prins反応)、Jacobsen転位、Koenigs-Knorrグリコシド化反応、Leuckart-Wallach反応、Horner-Wadsworth-Emmons反応、Gassman反応、野依不斉水素化反応、Perkin反応、Petasis反応、Tishchenko反応、Tishchenko反応、Ullmannカップリング、Nazarov環化、Tiffeneau-Demjanov転位、鋳型合成、二酸化セレンを用いる酸化、Reimer-Tiemann反応、 Grob開裂反応、ハロホルム反応、Malapradeグリコール酸化開裂、Hofmann脱離、Lawesson試薬によるチオカルボニル化反応、Lossen転位、FAMSOを利用する環状ケトン合成、Favorskii転位、Feist-Benaryフラン合成、Gabrielアミン合成、Glaser反応、Grignard反応、Cope脱離、Cope転位、アルキン類のジイミド還元、Eschenmoserアミノメチル化反応、[2+2]光環化反応、Appel反応、aza-Wittig反応、Bartoliインドール合成、Carroll転位、Chichibabin反応、Clemmensen還元、Combesキノリン合成 、辻-Trost反応、TEMPO酸化、四酸化オスミウムを用いるジヒドロキシル化、Fries転位、Neber転位、Barton-McCombie脱酸素化、Barton脱カルボキシル化、Seyferth-Gilbertアルキン合成、Pinnick(Kraus)酸化、伊藤-三枝酸化、Eschenmoser開裂反応、Eschenmoser-Claisen転位、Doering--LaFlammeアレン合成、Corey-Chaykovsky反応、アシロイン縮合、Wolff-Kishner還元、IBX酸化、Parikh-Doering酸化、Reissert反応、Jacobsen速度論的光学分割加水分解、ベンジル酸転位、檜山クロスカップリング、Luche還元、オキシ水銀化、Vilismeier-Haak反応、Wolff転位、KolbeSchmitt反応、Corey-Kim酸化、Cannizzaro反応、Henry反応、アルコールのアルカンへの変換、Arndt-Eistert合成、ヒドロホルミル化反応、Petersonオレフィン化、脱カルボニル化反応、Curtius転位、Wohl-Zieglarアリル位臭素化、Pfitzner-Moffatt酸化、McMurryカップリング、Barton反応、Balz-Schiemann反応、正宗-Bergman反応、Dieckmann縮合、ピナコールカップリング、Williamsonエーテル合成 、ヨードラクトン化反応、Harriesオゾン分解、、活性二酸化マンガンによる酸化、アルキンの環化三量化反応、熊田-玉尾-Corriuクロスカップリング、スルホキシドおよびセレノキシドのsyn-β脱離 、Fischerインドール合成、Oppenauer酸化、Darzens縮合反応、Alderエン反応、Sarett-Collins酸化、野崎-檜山-岸カップリング反応、Weinrebケトン合成、DASTフッ素化、Corey-Winterオレフィン合成、細見-桜井反応、PCC(PDC)を用いるアルコールの酸化、Jones酸化(Jones Oxidation)、Keckアリル化反応、永田試薬を用いるシアニド付加、根岸カップリング、Ireland-Claisen転位、Baeyer-Villiger酸化、p-メトキシベンジル(PMB or MPM)、ジメトキシベンジル(DMB)保護、脱保護、Wacker酸化、Myers不斉アルキル化、山口マクロラクトン化、向山-Coreyマクロラクトン化 、Bodeペプチド合成、Lindlar還元、均一系水素化、オルトメタル化、Wagnar-Meerwein転位、Wurtz反応、1,3-ジチアンを利用するケトン合成、Michael付加、Storkエナミンによるケトン合成、Pauson-Khandシクロペンテン合成、Tebbe反応などの、各種化学反応、特に、化合物(とりわけ有機化合物)を出発原料とする各種反応剤との反応によって、微粒子の析出を伴うか若しくは伴わない反応処理。
乳化、分散、粉砕の処理に関しては、塗料、インク、磁性体、セラミック、電池、接着剤、電子材料、液晶カラーフィルター、医薬品、化粧品、香料、食品などの種々の産業分野において、懸濁物、乳化物、固体粒子、高分子溶液、スラリー等被処理流動体の攪拌、乳化、分散、粉砕等の処理を例示し得る。
以下、実施例を挙げて本発明をさらに具体的に説明する。しかし、本発明は下記の実施例に限定されるものではない。
尚、以下の実施例において、「中央から」というのは、図1に示す処理装置の「第1導入部d1から」という意味であり、第1流体は、第1導入部d1から導入される、前述の第1被処理流動体を指し、第2流体は、図1に示す処理装置の第2導入部d2から導入される、前述の第2被処理流動体を指す。
従って、合流部半径(Cd)は、回転の中心から第2導入部d2までの距離となり、排出部半径(Od)は、回転の中心から処理用面間の外端までの距離となる。
X線回折格子測定(XRD)には、X線回折分析装置:PANalytical製のX‘Pert PRO MPDを使用した。下記実施例1~13における、ニッケル微粒子の場合の測定条件は、Cu対陰極、管電圧45kV、管電流40mA、0.016step/10sec、測定範囲は10~100[°2Theta](Cu)である。得られたニッケル微粒子の結晶子径をXRD測定より、シリコン多結晶盤の47.3°に確認されるピークを使用し、得られたニッケル回折パターンの44.5°付近のピークにScherrerの式を当てはめて結晶子径を算出した。更にPANalytical製のX線回折パターンの回折ソフト、X‘Pert High Score Plusを用いたリートベル法と、基準となる実施例に対するコンスタントバックグランウンド法にて結晶化度を算出した。
また、実施例20~27における銅フタロシアニン(以下、CuPc)微粒子の場合の測定条件は、Cu対陰極、管電圧45kV、管電流40mA、0.016step/10sec、測定範囲は10~60[°2Theta](Cu)である。得られたCuPc微粒子の結晶子径をXRD測定より、シリコン多結晶盤の47.3°に確認されるピークを使用し、得られたCuPc回折パターンの6.9°付近のピークにScherrerの式を当てはめて結晶子径を算出した。更に基準となる実施例に対するコンスタントバックグランウンド法にて結晶化度を算出した。
(走査型電子顕微鏡観察)
走査型電子顕微鏡(SEM)観察には、電界放射型走査電子顕微鏡(FE-SEM):日本電子製のJSM-7500F使用した。観察条件は、観察倍率を1万倍以上とした。粒子径は、50個以上の粒子径の平均値を採用した。
(透過型電子顕微鏡)
透過型電子顕微鏡(TEM)観察には、透過型電子顕微鏡、JEM-2100(JEOL製)を用いた。観察条件としては、観察倍率を3万倍以上とし、粒子径については、50個以上の一次粒子径の平均値を採用した。
まず実施例1~27として、図1、図4(A)(B)に示す装置を用いて、処理用面1、2間に形成される薄膜流体中で金属溶液と還元剤溶液とを混合し、薄膜流体中で金属微粒子を析出させた。
実施例1~5
中央から第1流体としてニッケル溶液(0.20M 硫酸ニッケル六水和物(Ni(SO42・6H2O)/13.4wt%純水(H2O)/0.8wt%ポリエチレングリコール600(PEG600)in エチレングリコール(EG))を、供給圧力=0.44MPaG、回転数3600rpm、135℃、800ml/min.で送液しながら、第2流体として、還元剤溶液(70wt% ヒドラジン一水和物(HMH)/10wt% 水酸化カリウム(KOH)in純水(H2O))を30℃、60ml/min.で処理用面1、2間に導入し、第1流体と第2流体とを薄膜流体中で混合した。第1流体並びに第2流体の送液温度は、第1流体と第2流体のそれぞれの温度を処理装置導入直前(より詳しくは、処理用面1、2間に導入される直前)にて測定した。また、第1流体のpHは4.12であり、第2流体のpHは14以上であった(pH試験紙を使用)。処理用面から吐出させた液は約90℃であった。前記処理後の液を室温になるまで静置した後、ニッケル微粒子を沈降させ、上澄み液を除去した。その後、純水にて洗浄する作業を3回行い、25℃の条件で大気圧にて乾燥した。乾燥後のニッケル微粒子粉体のXRD測定の結果、ニッケル微粒子が作製されたことが確認された。処理用面間に形成される排出部半径(Od)と処理用面間における被処理流動体が合流する合流部半径(Cd)との割合(Od/Cd)を変更し、粒子径並びに結晶子径の確認を行った。実施例1~5の第一流体と第二流体の処方条件を表1に、第一流体と第二流体の送液条件を表2に、前記割合(Od/Cd)、処理用部の回転数、処理用部の周速度(処理用部外周の周速度)、並びに得られた微粒子に関する前記SEM観察の方法にて算出された粒子径(D)、前記XRD測定の方法にて算出された結晶子径(d)並びに(d/D)、結晶化度については実施例4の結晶化度に対する比率(実施例4の結晶化度を1とした場合の各実施例の結晶化度)を表3に示す。結晶化度は、実施例2のXRD測定結果をリートベルト法により算出し、実施例1~5(除く実施例4)については実施例4を基準としたコンスタントバックグランウンド法にて算出した。表3に得られた実施例1~5の結果について、横軸に(Od/Cd)、縦軸に、粒子径に対する結晶子径の比率(d/D)をプロットしたグラフを図6に、横軸に(Od/Cd)、縦軸に、結晶子径(d)をプロットしたグラフを図7に、横軸に(Od/Cd)、縦軸に結晶化度をプロットしたグラフを図8に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
なお、各実施例(前記実施例1~19及び後述の実施例28~59)においては、合流部半径(Cd)を38.331mmで固定し、排出部半径(Od)をそれぞれの割合で変化させたものである。
表3及び図6~図8より、各実施例における処理用部の回転数が一定の条件において、(Od/Cd)を制御することによって、ニッケル微粒子の粒子径を制御しつつ、結晶子の成長並びに結晶化度を制御できることを確認できた。また、結晶子径が大きくなる度合いに比べて粒子径が大きくなる度合いを制御できることを確認した。よって、ニッケル微粒子の粒子径に対する結晶子径の比率(d/D)を制御できることを確認できた。また、図6、図7より、(Od/Cd)を大きくすることで、前記の比率(d/D)が大きくなる傾向を示すことがわかる。さらに、(Od/Cd)を大きくすることで、析出させたニッケル微粒子の結晶子径(d)が大きくなる傾向を示すことを確認した。更に図8より、(Od/Cd)を大きくすることで、前記結晶化度が大きくなる傾向を示すことがわかる。また、図9に示すXRD測定結果より、実施例1については、金属Ni以外のピークが見られ、Od/Cdを大きくすることによって、不純物の混入が少なくなることが示唆された。言い換えると、(Od/Cd)を大きくすることで、処理用面間において、これまで以上に目的とする反応を促進させ、高い精度で微粒子の析出反応を実行することが可能であると考えられる。
実施例6~13
第一流体と第二流体の処方条件を表4とし、第一流体と第二流体の送液条件を表5とし、割合(Od/Cd)、処理用部の回転数、処理用部の周速度(処理用部外周の周速度)を表6とした以外は、実施例1~5の場合と同様に実施して、ニッケル微粒子の乾燥粉体を得た。前記表6に、得られた微粒子に関する前記SEM観察の方法にて算出された粒子径(D)、前記XRD測定の方法にて算出された結晶子径(d)並びに(d/D)、結晶化度に関して実施例10の結晶化度に対する比率(実施例10の結晶化度を1とした場合の各実施例の結晶化度)を示す。結晶化度は、実施例10のXRD測定結果をリートベルト法により算出し、実施例6~13(除く実施例10)については実施例10を基準としたコンスタントバックグランウンド法にて算出した。表6に得られた実施例6~13の結果について、横軸に(Od/Cd)、縦軸に、粒子径に対する結晶子径の比率(d/D)をプロットしたグラフを図10に、横軸に(Od/Cd)、縦軸に、結晶子径(d)をプロットしたグラフを図11に、横軸に(Od/Cd)、縦軸に結晶化度をプロットしたグラフを図12に示す。また、実施例9で得られたニッケル微粒子のSEM写真(3万倍)を図13に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
実施例14~19
表6及び図10~図12より、各実施例における処理用部の周速度が一定の条件においては、(Od/Cd)を1.25~5.00の範囲で制御することによって、ニッケル微粒子の粒子径を制御しつつ、結晶子の成長並びに結晶化度を制御できることを確認できた。また、結晶子径が大きくなる度合いに比べて粒子径が大きくなる度合いを制御できることを確認した。よって、ニッケル微粒子の粒子径に対する結晶子径の比率(d/D)を制御できることを確認できた。また、図10、図11より、(Od/Cd)を大きくすることで、前記の比率(d/D)が大きくなる傾向を示すことがわかる。さらに、(Od/Cd)を大きくすることで、析出させたニッケル微粒子の結晶子径(d)が大きくなる傾向を示すことを確認した。更に図12より、(Od/Cd)を大きくすることで、前記結晶化度が大きくなる傾向を示すことがわかる。しかし、(Od/Cd)が5.00を超えた範囲では、(Od/Cd)と(d/D)または結晶化度との関係に特に傾向が見られなかった。
中央から第1流体として0.17wt%硝酸銀(AgNO3)-0.50wt%ゼラチン(アルカリ処理品)水溶液を、供給圧力=0.30MPaG、1700rpm、20℃、1000ml/min.で送液しながら、第2流体として、還元剤溶液(20.0wt%ヒドラジン1水和物-3.0wt%水酸化カリウム-0.50wt%ゼラチン(アルカリ処理品)水溶液)を20℃、50ml/min.で処理用面1、2間に導入し、第1流体と第2流体とを薄膜流体中で混合した。第1流体並びに第2流体の送液温度は、第1流体と第2流体のそれぞれの温度を処理装置導入直前(より詳しくは、処理用面1、2間に導入される直前)にて測定した。また、第1流体のpHは5.10であり、第2流体のpHは14以上であった(pH試験紙を使用)。処理用面から吐出させた液は約20℃であった。処理用面間に形成される排出部半径(Od)と処理用面間における被処理流動体が合流する合流部半径(Cd)との割合(Od/Cd)を変更し、粒子径並びに結晶子径の確認を行った。実施例10~13の第一流体と第二流体の処方条件を表7に、第一流体と第二流体の送液条件を表8に、前記割合(Od/Cd)、処理用部の回転数、処理用部の周速度(処理用部外周の周速度)、並びに得られた微粒子に関する前記TEM観察の方法にて算出された粒子径(D)、前記XRD測定の方法にて算出された結晶子径(d)並びに(d/D)、結晶化度に関して実施例17の結晶化度に対する比率(実施例17の結晶化度を1とした場合の各実施例の結晶化度)を、表9に示す。結晶化度は、実施例11のXRD測定結果をリートベルト法により算出し、実施例14~19(除く実施例17)については実施例17を基準としたコンスタントバックグランウンド法にて算出した。また、表9に得られた実施例14~19の結果について、横軸に(Od/Cd)、縦軸に、粒子径に対する結晶子径の比率(d/D)をプロットしたグラフを図14に、横軸に(Od/Cd)、縦軸に結晶化度をプロットしたグラフを図15に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
表9及び図14、図15より、各実施例における処理用部の回転数が一定の条件において、(Od/Cd)を制御することによって、銀微粒子の粒子径を制御しつつ、結晶子の成長並びに結晶化度を制御できることを確認できた。また、結晶子径が大きくなる度合いに比べて粒子径が大きくなる度合いを制御できることを確認した。よって、銀微粒子の粒子径に対する結晶子径の比率(d/D)を制御できることを確認できた。また、図14より、(Od/Cd)を大きくすることで、前記の比率(d/D)が大きくなる傾向を示すことがわかる。更に図15より、(Od/Cd)を大きくすることで、前記結晶化度が大きくなる傾向を示すことがわかる。
(実施例20~27:CuPc)
実施例20~27として、実施例1~13と同様に、特許文献3に示された装置と同様の原理の装置を用いて、処理用面1、2間に形成される薄膜流体中で有機物溶液と析出用溶媒とを混合し、薄膜流体中で有機物微粒子を析出させた。
中央から第1流体として析出用溶媒(純水)を、供給圧力=0.44MPaGで送液しながら、第2流体として、有機物溶液(3wt% 銅フタロシアニン顔料粉体/97wt%濃硫酸(濃硫酸は98wt%濃硫酸を使用)を処理用面1、2間に導入し、第1流体と第2流体とを薄膜流体中で混合した。第一流体と第二流体の処方条件を表10とし、第一流体と第二流体の送液条件を表11とし、割合(Od/Cd)、処理用部の回転数、処理用部の周速度(処理用部外周の周速度)並びに得られた微粒子に関する前記TEM観察の方法にて算出された粒子径(D)、前記XRD測定の方法にて算出された結晶子径(d)並びに(d/D)、結晶化度に関して実施例22の結晶化度に対する比率(実施例22の結晶化度を1とした場合の各実施例の結晶化度)を表12とした。結晶化度は、実施例20~27(除く実施例22)について、実施例22を基準としたコンスタントバックグランウンド法にて算出した。第1流体並びに第2流体の送液温度は、第1流体と第2流体のそれぞれの温度を処理装置導入直前(より詳しくは、処理用面1、2間に導入される直前)にて測定した。また、第1流体のpHは6.89であり、第2流体のpHは1以下であった(pH試験紙を使用)。処理用面から吐出させた液は約20℃であった。前記処理後中のCuPc微粒子を沈降させ、上澄み液を除去した。その後、ろ布(口径、1μm)を用いて濾集し、純水にて洗浄する作業を5回行い、得られたCuPc微粒子のウェットケーキの一部を25℃の条件で大気圧にて乾燥した。乾燥後のCuPc微粒子粉体のXRD測定の結果、CuPc微粒子が作製されたことが確認された。また、得られたウェットケーキの一部を界面活性剤(ネオゲンR-K)の水溶液にて希釈し、高速回転式乳化・分散機(CLM-0.8S、エム・テクニック株式会社製)にて分散処理し、分散液を作製した。処理用面間に形成される排出部半径(Od)と処理用面間における被処理流動体が合流する合流部半径(Cd)との割合(Od/Cd)を変更し、粒子径並びに結晶子径の確認を行った。表12に得られた実施例20~27の結果を示す。またその結果について、横軸に(Od/Cd)、縦軸に、粒子径に対する結晶子径の比率(d/D)をプロットしたグラフを図16に、横軸に(Od/Cd)、縦軸に、結晶化度をプロットしたグラフを図17に、横軸に(Od/Cd)、縦軸にCV値をプロットしたグラフを図18に示す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
なお、前記実施例20~27においては、合流部半径(Cd)を58mmで固定し、排出部半径(Od)をそれぞれの割合で変化させたものである。
表12及び図16、17、18より、処理用部の周速度が一定の条件において、(Od/Cd)を制御することによって、CuPc微粒子の粒子径を制御しつつ、結晶子の成長並びに結晶化度を制御できることを確認できた。また、結晶子径が大きくなる度合いに比べて粒子径が大きくなる度合いを制御できることを確認した。よって、CuPc微粒子の粒子径に対する結晶子径の比率(d/D)を制御できることを確認できた。また、図16、17より、(Od/Cd)を大きくすることで、前記の比率(d/D)が大きくなる傾向を示すことがわかると共に、(Od/Cd)を大きくすることで、前記結晶化度が大きくなる傾向を示すことがわかる。また、図18から、(Od/Cd)を大きくすることで、CV値を下げ得ることがわかる。またこのような傾向は、合流部半径(Cd)の値を変化させても、維持されることが確認された。
さらに、前記の各実施例において、表3、表6、表9及び表12に示すとおり、薄膜調整領域の幅(Iw)に対する、混合領域の幅(Ow)の幅割合(Ow/Iw)を増減させることによって、微粒子の結晶化度を上下させる結晶化度制御と、微粒子の粒子径(D)に対する結晶子径(d)の比率(d/D)を上下させるd/D制御と、微粒子の粒度分布を制御するCV値制御とが行なわれ得ることが確認された。
実施例28~51
実施例28~51として、図1、図4(A)(B)に示す装置を用いて、2種の被処理流動体からエマルションを得た例を示す。第一流体として2%Tween80水溶液を用い、第二流体として流動パラフィンを用いて乳化処理を行なったものであり、その処理条件と結果を表13~表15に示す。実施例28~35は周速度26.2m/sの群であり、実施例36~43は周速度39.3m/sの群であり、実施例44~51は周速度52.4m/sの群である。図19~図24は、これらの群毎に、Od/Cdを横軸に、体積平均粒子径及びCV値を縦軸にプロットしたものである。
Od/Cdが小さいと、キャビテーションの発生による粒子の意図せぬ(制御不能な)微小化や、処理時間が短い事による粗大粒子の生成等が確認され、安定的に処理出来ていない可能性が示唆された反面、Od/Cdが大きくなるように変化させることにより、粒子径を制御でき、CV値を低下させることが可能となった。また、回転数について見ると、低回転であっても高回転の場合と同等の粒子径を得ることが可能であったことから、低エネルギーで目的の粒子を得ることができることが明らかになった。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
実施例52~59
実施例52~59として、図1、図4(A)(B)に示す装置を用いて、2種の被処理流動体から有機反応(フリーデルクラフツアルキル化反応)により有機化合物を得た例を示す。
96%濃硫酸を第1流体として500mL/minで内側導入部から導入すると共に、第2流体としてベンゼンとシクロヘキセンを体積比でベンゼン/シクロヘキセン=4/5で混合した液を第2流体として560mL/minで中間導入部から処理用面間に導入したものであり、その処理条件と結果を表16~表18に示す。また、Od/Cdと、収率及び純度との関係を、図25と図26のグラフに示す。Od/Cdが大きくなるにつれて、収率及び純度がそれぞれ向上することが確認された。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
実施例60~67
図1、図5(A)に示す装置を用いて、1種類の被処理流動体に対して、温度エネルギーを与えることによって、アシクロビル微粒子を析出させ作製した。
方法:4%Tween80/2%アシクロビル水溶液を85℃に加熱し、内側導入部から処理用面1,2間に導入した。前記被処理流動体を、処理用面間において冷却し、アシクロビル微粒子を析出させ、アシクロビルの微粒子のスラリーを吐出させた。具体的には、処理用部20に温度調製機構J2として冷媒を通すための配管を敷設し、前記温度調整機構J2に10℃の冷却水を通水し、前記アシクロビルの微粒子を含む吐出液が40℃になるように冷却水量を調節したものであり、処理条件と結果を表19に示す。また、導入部半径(Id)の排出部半径(Od)に対する割合(Od/Id)と、結晶子径、d/D及び結晶化度との関係を、図27~図29のグラフに示す。Od/Idが大きくなるにつれて、結晶子径、d/D及び結晶化度がそれぞれ上昇することが確認された。
なお、実施例60~139においては、導入部半径(Id)を30mmで固定し、排出部半径(Od)をそれぞれの割合で変化させたものである。
Figure JPOXMLDOC01-appb-T000020
実施例68~91
図1、図5(A)に示す装置を用いて、1種類の被処理流動体に対して、乳化処理を行い、エマルションの作製した。
方法:29.4wt%流動パラフィン/1.33wt%と、Tween80/0.67wt%と、Span80/68.6wt%と純水とを混合し、高速回転式乳化分散機、(クレアミックスディゾルバー、製品名:CLM-0.8SD エム・テクニック製)にてプレ乳化処理した(総重量800gを3000rpmで5分間)。プレ乳化処理後の体積平均粒子径は、57.66μm、CV値は、37.5%であった。前記プレ乳化処理液を処理用部1,2間に導入し、処理用部10を回転させて精密乳化処理したものであり、処理条件と結果を表20に示す。実施例68~75は周速度26.2m/sの群であり、実施例76~83は周速度39.3m/sの群であり、実施例84~91は周速度52.4m/sの群である。図30~図35は、これらの群毎に、Od/Idを横軸に、体積平均粒子径及びCV値を縦軸にプロットしたものである。
Od/Idが大きくなるように変化させることにより、粒子径を小さく制御でき、CV値を低下させることが可能となることが知見された。
Figure JPOXMLDOC01-appb-T000021
実施例92~115
図1、図5(A)に示す装置を用いて、赤色顔料を含有する1種類の被処理流動体に対して、分散処理を行った。
方法:一次粒子径が20-30nmの赤色顔料(C.I.Pigment Red 177:PR-177)を分散剤(BYK-2000、ビックケミ―製)を溶解したプロピレングリコールモノメチルエーテルアセテート(PGMEA)と、プロピレングリコールモノメチルエーテル(PGME)の混合溶液(PGMEA/PGME=4/1 体積比)に投入し、高速回転式乳化分散機、(クレアミックスディゾルバー、製品名:CLM-0.8SD エム・テクニック製)にてプレ分散処理した(総重量800gを3000rpmで30分間)。プレ分散処理後の体積平均粒子径は、23.6μm、CV値は、74.1%であった。前記プレ分散処理液を処理用部1,2間に導入し、処理用部10を回転させて精密分散処理した。(処方条件:5wt%PR-177/5wt%BYK-2000/90wt%PGMEA/PGME)
処理条件と結果を表21に示す。実施例92~99は周速度26.2m/sの群であり、実施例100~107は周速度39.3m/sの群であり、実施例108~115は周速度52.4m/sの群である。図36~図41は、これらの群毎に、Od/Idを横軸に、体積平均粒子径及びCV値を縦軸にプロットしたものである。
Od/Idが大きくなるように変化させることにより、粒子径を小さく制御でき、CV値を低下させることが可能となることが確認された。
Figure JPOXMLDOC01-appb-T000022
実施例116~137
図1、図5(A)に示す装置を用いて、プロゲステロン薬物粒子を含有する1種類の被処理流動体に対して、粉砕処理を行った。
方法:一次粒子径が3~5μmのプロゲステロン粉末、分散助剤(HPC-H)の水溶液に投入し、高速回転式乳化分散機、(クレアミックスディゾルバー、製品名:CLM-0.8SD エム・テクニック製)にてプレ分散処理した(総重量800gを3000rpmで30分間)。プレ分散処理後の体積平均粒子径は、4.97μm、CV値は、83.4%であった。前記プレ分散処理液を処理用部1,2間に導入し、処理用部10を回転させて粉砕処理した。(処方条件:5wt%PR-177/5wt%BYK-2000/90wt%PGMEA/PGME)
処理条件と結果を表22に示す。実施例116~123は周速度26.2m/sの群であり、実施例124~131は周速度39.3m/sの群であり、実施例132~137は周速度52.4m/sの群である。図42~図47は、これらの群毎に、Od/Idを横軸に、体積平均粒子径及びCV値を縦軸にプロットしたものである。
Od/Idが大きくなるように変化させることにより、粒子径を小さく制御でき、CV値を低下させることが可能となることが確認された。
Figure JPOXMLDOC01-appb-T000023
以上の各実施例から明らかなように、Od/Cdが1.25以上となることによって、また、Od/Idが1.67以上となることによって、急激に各値が改善したことは、発明者にとっても大きな驚きであり、本発明は、かかる知見に基づき完成されたものである。

Claims (17)

  1. 対向して配設された、接近・離反可能な、少なくとも一方が他方に対して相対的に回転を行う少なくとも2つの処理用面間に、1又は2以上の導入部から、被処理流動体を導入する導入ステップと、
    前記被処理流動体による薄膜流体を、処理用面間にて通過させながら、流体の処理を行ない、前記2つの処理用面間から排出する処理ステップとを備え、
    前記処理ステップは、両処理用面の前記回転の中心側を上流とし、前記回転の外周側を下流として、両処理用面間の空間である処理領域に被処理流動体を通過させ、前記処理領域の外周端から排出するものであり、
    前記回転の中心から前記導入部までの距離(Id)に対する、前記回転の中心から前記外周端までの距離(Od)の割合(Od/Id)を増減させることによって、
    前記処理の処理特性の制御を行なうことを特徴とする流体処理方法。
  2. 対向して配設された、接近・離反可能な、少なくとも一方が他方に対して相対的に回転を行う少なくとも2つの処理用面間に、2以上の導入部から、被処理流動体を導入する導入ステップと、
    前記被処理流動体による薄膜流体を、処理用面間にて通過させながら、流体の処理を行ない、前記2つの処理用面間から排出する処理ステップとを備え、
    前記処理ステップは、両処理用面の前記回転の中心側を上流とし、前記回転の外周側を下流として、両処理用面間の空間である処理領域に被処理流動体を通過させ、前記処理領域の外周端から排出するものであり、
    前記被処理流動体として、少なくとも2種類の被処理流動体を用いるものであり、
    前記導入部として、内側導入部と、前記内側導入部よりも前記回転の中心から遠い位置に設けられた中間導入部を設け、
    前記処理領域は、前記中間導入部よりも前記回転の中心から遠い位置にある混合領域と、前記中間導入部よりも前記回転の中心に近い位置にある未混合領域とを備え、
    前記導入ステップは、少なくとも1種類の前記被処理流動体を前記内側導入部から前記未混合領域に導入するステップと、少なくとも他の1種類の前記被処理流動体を前記中間導入部から前記混合領域に導入するステップとを備え、
    前記処理ステップは、前記内側導入部から導入された前記被処理流動体と、前記中間導入部から導入された前記被処理流動体とが前記混合領域で混合するステップを含むものであり、
    前記回転の中心から前記中間導入部までの距離(Cd)に対する、前記回転の中心から前記外周端までの距離(Od)の割合(Od/Cd)を増減させることによって、
    前記処理の処理特性の制御を行なうことを特徴とする流体処理方法。
  3. 前記被処理流動体として、被析出物質の原料となる物質を少なくとも1種類含む被処理流動と、前記被析出物質の微粒子を析出させるための被処理流動体との少なくとも2種類の被処理流動体を用いるものであり、
    前記処理特性の制御として、
    前記微粒子の結晶化度を上下させる結晶化度制御と、
    前記微粒子の粒子径(D)に対する結晶子径(d)の比率(d/D)を上下させるd/D制御と、
    前記微粒子の粒度分布を制御するCV値制御との、
    少なくとも何れか一つの制御を行なうことを特徴とする請求項2記載の流体処理方法。
  4. 前記処理特性の制御として、
    前記微粒子の結晶化度を上下させる結晶化度制御と、
    前記微粒子の粒子径(D)に対する結晶子径(d)の比率(d/D)を上下させるd/D制御とを行なうものであり、
    前記結晶化度制御は、前記割合(Od/Cd)を大きくすることにより前記微粒子の結晶化度を上げ、前記割合(Od/Cd)を小さくすることにより前記結晶化度を下げる制御であり、
    前記d/D制御は、割合(Od/Cd)を大きくすることにより前記結晶子径(d)を大きくすると共に前記微粒子の粒子径(D)に対する結晶子径(d)の比率(d/D)を上げ、前記割合(Od/Cd)を小さくすることにより前記結晶子径(d)を小さくすると共に前記微粒子の粒子径(D)に対する結晶子径(d)の比率(d/D)を下げる制御であることを特徴とすることを特徴とする請求項3記載の微粒子の製造方法。
  5. 前記未混合領域として、前記回転の中心に近い位置にある強制導入領域と、前記回転の中心から遠い位置にある薄膜調整領域を備え、
    前記強制導入領域は、少なくとも1つの前記処理用面に、マイクロポンプ効果を発揮する凹部が上流から下流に伸びるように形成されたものであり、
    前記薄膜調整領域は、前記凹部の下流端と前記中間導入部との間の領域であり、
    前記少なくとも1種類の前記被処理流動体は、前記凹部により強制的に前記内側導入部から前記強制導入領域に導入され、前記薄膜調整領域において前記マイクロポンプ効果によって発生する脈動及び圧力変動が低減されてスパイラル状の層流条件下の流れに調整されて前記混合領域に流されるものであり、
    前記回転の半径方向における前記薄膜調整領域の幅(Iw)に対する、前記回転の半径方向における前記混合領域の幅(Ow)の幅割合(Ow/Iw)を増減させることによって、前記処理特性の制御を行なうことを特徴とする請求項3又は4に記載の流体処理方法。
  6. 前記結晶化度制御は、前記幅割合(Ow/Iw)を大きくすることにより前記微粒子の結晶化度を上げ、前記幅割合(Ow/Iw)を小さくすることにより前記結晶化度を下げる制御であり、
    前記d/D制御は、前記幅割合(Ow/Iw)を大きくすることにより前記結晶子径(d)を大きくすると共に前記微粒子の粒子径(D)に対する結晶子径(d)の比率(d/D)を上げ、前記幅割合(Ow/Iw)を小さくすることにより前記結晶子径(d)を小さくすると共に前記微粒子の粒子径(D)に対する結晶子径(d)の比率(d/D)を下げる制御であることを特徴とすることを特徴とする請求項5記載の微粒子の製造方法。
  7. 前記被処理流動体として、2種類の被処理流動体を用いるものであり、そのうち少なくとも1種類の被処理流動体は反応性を有する反応物質を含むものであり、
    前記処理特性の制御として、
    前記反応の収率を上下させる収率制御と、
    前記反応の純度を上下させる純度制御との、
    少なくとも何れか一つの制御を行なうことを特徴とする請求項2記載の流体処理方法。
  8. 前記収率制御は、前記割合(Od/Cd)を大きくすることにより前記収率を上げ、前記割合(Od/Cd)を小さくすることにより前記収率を下げる制御であり、
    前記純度制御は、前記割合(Od/Cd)を大きくすることにより前記純度を高め、前記割合(Od/Cd)を小さくすることにより前記純度を下げる制御であることを特徴とすることを特徴とする請求項7記載の微粒子の製造方法。
  9. 前記未混合領域として、前記回転の中心に近い位置にある強制導入領域と、前記回転の中心から遠い位置にある薄膜調整領域を備え、
    前記強制導入領域は、少なくとも1つの前記処理用面に、マイクロポンプ効果を発揮する凹部が上流から下流に伸びるように形成されたものであり、
    前記薄膜調整領域は、前記凹部の下流端と前記中間導入部との間の領域であり、
    前記少なくとも1種類の前記被処理流動体は、前記凹部により強制的に前記内側導入部から前記強制導入領域に導入され、前記薄膜調整領域において前記マイクロポンプ効果によって発生する脈動及び圧力変動が低減されて前記混合領域に流されるものであり、
    前記回転の半径方向における前記薄膜調整領域の幅(Iw)に対する、前記回転の半径方向における前記混合領域の幅(Ow)の幅割合(Ow/Iw)を増減させることによって、前記処理特性の制御を行なうことを特徴とする請求項7又は8に記載の流体処理方法。
  10. 前記収率制御は、前記幅割合(Ow/Iw)を大きくすることにより前記収率を上げ、前記幅割合(Ow/Iw)を小さくすることにより前記収率を下げる制御であり、
    前記純度制御は、前記幅割合(Ow/Iw)を大きくすることにより前記純度を高め、前記幅割合(Ow/Iw)を小さくすることにより前記純度を下げる制御であることを特徴とすることを特徴とする請求項9記載の微粒子の製造方法。
  11. 前記被処理流動体として、乳化、分散、粉砕の少なくとも何れか一つの処理の対象となる少なくとも2種類の被処理流動体を用いるものであり、
    前記処理特性の制御として、
    得られた微粒子の粒子径を制御する粒子径制御と、
    得られた微粒子の粒度分布を制御するCV値制御との、
    少なくとも何れか一つの制御を行なうことを特徴とする請求項2記載の流体処理方法。
  12. 対向して配設された、接近・離反可能な、少なくとも一方が他方に対して相対的に回転を行う少なくとも2つの処理用面間に、導入部から、一種類の被処理流動体を導入する導入ステップと、
    前記被処理流動体による薄膜流体を、処理用面間にて通過させながら、被析出物質の処理を行ない、前記2つの処理用面間から被析出物質の微粒子を排出する処理ステップとを備え、
    前記処理ステップは、両処理用面の前記回転の中心側に位置する前記導入部を上流とし、前記回転の外周側を下流として、両処理用面間の空間である処理領域に被処理流動体を通過させ、前記処理領域の外周端から排出するものであり、
    前記回転の中心から前記導入部までの距離(Id)に対する、前記回転の中心から前記外周端までの距離(Od)の割合(Od/Id)を増減させることによって、
    前記処理の処理特性の制御を行なうことを特徴とする流体処理方法。
  13. 前記被処理流動体は、被析出物質の原料となる物質を少なくとも1種類含むものであり、
    前記処理特性の制御として、
    前記微粒子の結晶化度を上下させる結晶化度制御と、
    前記微粒子の粒子径(D)に対する結晶子径(d)の比率(d/D)を上下させるd/D制御と、
    前記微粒子の粒度分布を制御するCV値制御との、
    少なくとも何れか一つの制御を行なうことを特徴とする請求項12記載の流体処理方法。
  14. 前記処理特性の制御として、
    前記微粒子の結晶化度を上下させる結晶化度制御と、
    前記微粒子の粒子径(D)に対する結晶子径(d)の比率(d/D)を上下させるd/D制御とを行なうものであり、
    前記結晶化度制御は、前記割合(Od/Id)を大きくすることにより前記微粒子の結晶化度を上げ、前記割合(Od/Id)を小さくすることにより前記結晶化度を下げる制御であり、
    前記d/D制御は、割合(Od/Id)を大きくすることにより前記結晶子径(d)を大きくすると共に前記微粒子の粒子径(D)に対する結晶子径(d)の比率(d/D)を上げ、前記割合(Od/Id)を小さくすることにより前記結晶子径(d)を小さくすると共に前記微粒子の粒子径(D)に対する結晶子径(d)の比率(d/D)を下げる制御であることを特徴とすることを特徴とする請求項13記載の微粒子の製造方法。
  15. 前記被処理流動体は、反応性を有する反応物質を含むものであり、
    前記処理特性の制御として、
    前記反応の収率を上下させる収率制御と、
    前記反応の純度を上下させる純度制御との、
    少なくとも何れか一方の制御を行なうことを特徴とする請求項12記載の流体処理方法。
  16. 前記収率制御は、前記割合(Od/Id)を大きくすることにより前記収率を上げ、前記割合(Od/Id)を小さくすることにより前記収率を下げる制御であり、
    前記純度制御は、前記割合(Od/Id)を大きくすることにより前記純度を高め、前記割合(Od/Id)を小さくすることにより前記純度を下げる制御であることを特徴とすることを特徴とする請求項15記載の微粒子の製造方法。
  17. 前記被処理流動体として、乳化、分散、粉砕の少なくとも何れか一つの処理の対象となる被処理流動体を用いるものであり、
    前記処理特性の制御として、
    得られた微粒子の粒子径を制御する粒子径制御と、
    得られた微粒子の粒度分布を制御するCV値制御との、
    少なくとも何れか一方の制御を行なうことを特徴とする請求項12記載の流体処理方法。 
PCT/JP2014/061905 2013-04-30 2014-04-28 流体処理方法 WO2014178387A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/787,979 US11065588B2 (en) 2013-04-30 2014-04-28 Fluid processing method
JP2015514854A JP6364593B2 (ja) 2013-04-30 2014-04-28 流体処理方法
EP14791821.3A EP2992954A4 (en) 2013-04-30 2014-04-28 Fluid processing method
KR1020157027873A KR20160002749A (ko) 2013-04-30 2014-04-28 유체 처리 방법
CN201480024365.6A CN105246585B (zh) 2013-04-30 2014-04-28 流体处理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013096049 2013-04-30
JP2013-096049 2013-04-30

Publications (1)

Publication Number Publication Date
WO2014178387A1 true WO2014178387A1 (ja) 2014-11-06

Family

ID=51843512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061905 WO2014178387A1 (ja) 2013-04-30 2014-04-28 流体処理方法

Country Status (6)

Country Link
US (1) US11065588B2 (ja)
EP (1) EP2992954A4 (ja)
JP (2) JP6364593B2 (ja)
KR (1) KR20160002749A (ja)
CN (1) CN105246585B (ja)
WO (1) WO2014178387A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116544118A (zh) * 2023-06-05 2023-08-04 赛晶亚太半导体科技(北京)有限公司 一种igbt模块并联式水冷散热器及制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019010521A1 (en) * 2017-07-14 2019-01-17 Flinders University Of South Australia THIN FILM VORTEX FLUID MANUFACTURING OF LIPOSOMES
CN109420540A (zh) * 2017-08-31 2019-03-05 长春市农业机械研究院 秸秆初步处理纤维破碎装置
CN114383983A (zh) * 2021-12-02 2022-04-22 湖北亿纬动力有限公司 测定正极材料一次颗粒粒径的方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003138253A (ja) * 2001-08-24 2003-05-14 Mitsubishi Chemicals Corp 蛍光体前駆体粒子及び蛍光体の製造方法
JP2004049957A (ja) 2002-07-16 2004-02-19 M Technique Co Ltd 分散乳化装置及び分散乳化方法
JP2004358322A (ja) * 2003-06-03 2004-12-24 Nippon Shokubai Co Ltd マイクロ化学装置
JP2006341232A (ja) * 2005-06-10 2006-12-21 Canon Inc 流体処理装置および流体処理方法
JP2007326066A (ja) * 2006-06-09 2007-12-20 Ebara Corp 反応装置
JP2008030966A (ja) 2006-07-26 2008-02-14 Mitsubishi Chemicals Corp 金属酸化物ナノ結晶の製造方法
JP2008289985A (ja) 2007-05-23 2008-12-04 Toyota Motor Corp 排ガス浄化触媒担体の製造方法
WO2009008393A1 (ja) 2007-07-06 2009-01-15 M.Technique Co., Ltd. 強制超薄膜回転式処理法を用いたナノ粒子の製造方法
JP2009518167A (ja) 2005-12-11 2009-05-07 エスセーエフ テクノロジーズ アクティーゼルスカブ ナノサイズ材料の製造
JP2010024478A (ja) 2008-07-16 2010-02-04 Sumitomo Osaka Cement Co Ltd 鉄微粒子及びその製造方法
JP2011509173A (ja) * 2008-04-23 2011-03-24 マイクロフルーイディクス インターナショナル コーポレイション ナノ粒子の生成及び移送及び反応システムのプロセス強化のための装置及び方法
WO2011110744A2 (en) * 2010-03-10 2011-09-15 Upm-Kymmene Corporation A method and reactor for in-line production of calcium carbonate into the production process of a fibrous web
WO2013008706A1 (ja) 2011-07-13 2013-01-17 エム・テクニック株式会社 結晶子径を制御された微粒子の製造方法
JP2013039567A (ja) * 2007-07-06 2013-02-28 M Technique Co Ltd 流体処理装置及び処理方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9723029D0 (en) 1997-11-01 1998-01-07 Sharpe John E E Improvements to fluid filtration
ATE337085T1 (de) 2002-07-16 2006-09-15 M Tech Co Ltd Verfahren und verarbeitungsgerät for flüssigkeiten
CN101784484B (zh) 2007-07-06 2013-07-17 M技术株式会社 陶瓷纳米粒子的制造方法
JP4461304B1 (ja) 2008-09-29 2010-05-12 エム・テクニック株式会社 新規な銅フタロシアニン顔料及び銅フタロシアニン微粒子の製造方法
CN102325844B (zh) 2009-03-03 2015-02-11 M技术株式会社 颜料微粒的表面处理方法
EP2556884B1 (en) * 2010-04-08 2019-07-17 M. Technique Co., Ltd. Fluid treatment device and treatment method
JP6017817B2 (ja) 2011-12-15 2016-11-02 住友化学株式会社 表面処理装置、表面処理方法、基板支持機構およびプログラム

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003138253A (ja) * 2001-08-24 2003-05-14 Mitsubishi Chemicals Corp 蛍光体前駆体粒子及び蛍光体の製造方法
JP2004049957A (ja) 2002-07-16 2004-02-19 M Technique Co Ltd 分散乳化装置及び分散乳化方法
JP2004358322A (ja) * 2003-06-03 2004-12-24 Nippon Shokubai Co Ltd マイクロ化学装置
JP2006341232A (ja) * 2005-06-10 2006-12-21 Canon Inc 流体処理装置および流体処理方法
JP2009518167A (ja) 2005-12-11 2009-05-07 エスセーエフ テクノロジーズ アクティーゼルスカブ ナノサイズ材料の製造
JP2007326066A (ja) * 2006-06-09 2007-12-20 Ebara Corp 反応装置
JP2008030966A (ja) 2006-07-26 2008-02-14 Mitsubishi Chemicals Corp 金属酸化物ナノ結晶の製造方法
JP2008289985A (ja) 2007-05-23 2008-12-04 Toyota Motor Corp 排ガス浄化触媒担体の製造方法
WO2009008393A1 (ja) 2007-07-06 2009-01-15 M.Technique Co., Ltd. 強制超薄膜回転式処理法を用いたナノ粒子の製造方法
JP2013039567A (ja) * 2007-07-06 2013-02-28 M Technique Co Ltd 流体処理装置及び処理方法
JP2011509173A (ja) * 2008-04-23 2011-03-24 マイクロフルーイディクス インターナショナル コーポレイション ナノ粒子の生成及び移送及び反応システムのプロセス強化のための装置及び方法
JP2010024478A (ja) 2008-07-16 2010-02-04 Sumitomo Osaka Cement Co Ltd 鉄微粒子及びその製造方法
WO2011110744A2 (en) * 2010-03-10 2011-09-15 Upm-Kymmene Corporation A method and reactor for in-line production of calcium carbonate into the production process of a fibrous web
WO2013008706A1 (ja) 2011-07-13 2013-01-17 エム・テクニック株式会社 結晶子径を制御された微粒子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2992954A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116544118A (zh) * 2023-06-05 2023-08-04 赛晶亚太半导体科技(北京)有限公司 一种igbt模块并联式水冷散热器及制备方法
CN116544118B (zh) * 2023-06-05 2024-03-29 赛晶亚太半导体科技(北京)有限公司 一种igbt模块并联式水冷散热器及制备方法

Also Published As

Publication number Publication date
CN105246585A (zh) 2016-01-13
JP6364593B2 (ja) 2018-08-01
JPWO2014178387A1 (ja) 2017-02-23
CN105246585B (zh) 2017-05-03
KR20160002749A (ko) 2016-01-08
US11065588B2 (en) 2021-07-20
JP2018144039A (ja) 2018-09-20
EP2992954A1 (en) 2016-03-09
US20160089641A1 (en) 2016-03-31
JP6661108B2 (ja) 2020-03-11
EP2992954A4 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
JP6661108B2 (ja) 流体処理方法
JP5959115B2 (ja) 強制薄膜式流体処理装置を用いた微粒子の生産量増加方法
JP2017035689A (ja) 微粒子の製造方法
US10166605B2 (en) Method for producing microparticles
JP5936142B2 (ja) 強制薄膜式流体処理装置を用いた処理物の付着防止方法
WO2014178388A1 (ja) 流体処理装置
JP2014050843A (ja) 微粒子の製造方法
JP6274004B2 (ja) 流体処理方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015514854

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791821

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157027873

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14787979

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014791821

Country of ref document: EP