WO2014178164A1 - 空気調和機の室内ユニット - Google Patents

空気調和機の室内ユニット Download PDF

Info

Publication number
WO2014178164A1
WO2014178164A1 PCT/JP2014/001643 JP2014001643W WO2014178164A1 WO 2014178164 A1 WO2014178164 A1 WO 2014178164A1 JP 2014001643 W JP2014001643 W JP 2014001643W WO 2014178164 A1 WO2014178164 A1 WO 2014178164A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
tube
refrigerant
transfer tube
indoor
Prior art date
Application number
PCT/JP2014/001643
Other languages
English (en)
French (fr)
Inventor
遼太 須原
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP14792236.3A priority Critical patent/EP2957842B1/en
Priority to ES14792236.3T priority patent/ES2655896T3/es
Priority to AU2014260968A priority patent/AU2014260968B2/en
Priority to CN201480005365.1A priority patent/CN104937353B/zh
Priority to US14/777,813 priority patent/US9568221B2/en
Publication of WO2014178164A1 publication Critical patent/WO2014178164A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels

Definitions

  • the present invention relates to an indoor unit of an air conditioner, and particularly relates to a refrigerant path of an indoor heat exchanger.
  • the air conditioner disclosed in Patent Document 1 includes an indoor unit provided on a ceiling.
  • the indoor unit includes an indoor fan and an indoor heat exchanger through which air carried by the indoor fan passes.
  • the cooling operation and the heating operation are performed by switching the refrigerant flow in the refrigerant circuit.
  • the refrigerant compressed by the compressor flows through the indoor heat exchanger of the indoor unit.
  • the refrigerant dissipates heat to the indoor air and condenses.
  • the condensed refrigerant is decompressed by the expansion valve and then evaporated by the outdoor heat exchanger of the outdoor unit.
  • the evaporated refrigerant is sucked into the compressor and compressed.
  • the cooling operation the refrigerant compressed by the compressor flows through the outdoor heat exchanger of the outdoor unit. In the outdoor heat exchanger, the refrigerant dissipates heat to the outdoor air and condenses.
  • the condensed refrigerant is decompressed by the expansion valve and then flows through the indoor heat exchanger of the indoor unit.
  • the refrigerant absorbs heat from the indoor air and evaporates.
  • the evaporated refrigerant is sucked into the compressor and compressed.
  • the indoor heat exchanger disclosed in Patent Document 1, a plurality of fins and a heat transfer tube penetrating the fins are provided, and three tube rows are formed side by side in a direction intersecting the airflow direction. Is provided. That is, the indoor heat exchanger is configured by a so-called cross fin type heat exchanger. And in such an indoor heat exchanger, in order to improve heating performance, it is common to make a refrigerant
  • the present invention has been made in view of such a point, and an object thereof is to provide an indoor unit of an air conditioner that can obtain both heating capacity and cooling capacity in a balanced manner.
  • a first invention is an indoor unit of an air conditioner that is provided on a ceiling and performs switching between cooling and heating.
  • the indoor unit is arranged around an indoor fan (27) and the indoor fan (27), And an indoor heat exchanger (32) through which the air conveyed by the fan (27) passes.
  • the indoor heat exchanger (32) includes a plurality of fins (70) and a heat transfer tube passing through the fins (70).
  • the indoor unit of the air conditioner having three or more rows (L1, L2, L3) of the plurality of tube rows (L1, L2, L3) formed so that the heat transfer tubes (71) intersect in the direction of the airflow
  • all counter flow portions in which the refrigerant flows sequentially from the most downstream tube row (L3) in the airflow direction toward the most upstream tube row (L1)
  • the refrigerant flows from the most upstream tube row (L1) in the airflow direction toward the most downstream tube row (L3).
  • the refrigerant moves from the heat transfer tube (71) of any one of the plurality of tube rows (L1, L2, L3) to the tube row downstream in the airflow direction from the tube row.
  • a second region (R2) having a second refrigerant path (84, 85) that forms a part of the counterflow portion (94) flowing in the row is formed.
  • a first region (R1) having a relatively high air flow rate and a second region (R2) having a relatively low air flow rate are formed.
  • a first refrigerant path (81, 82, 83) is formed in the first region (R1), and a second refrigerant path (84, 85) is formed in the second region (R2). In these regions, the refrigerant flowing through the refrigerant paths (81 to 85) and the air passing through the indoor heat exchanger (32) exchange heat.
  • the indoor heat exchanger (32) functions as a condenser.
  • the refrigerant flows in order from the most downstream tube row (L3) in the airflow direction toward the most upstream tube row (L1).
  • a counterflow part (all counterflow part (91)) is formed over L1, L2, L3).
  • the indoor heat exchanger (32) functions as an evaporator.
  • the refrigerant flows in order from the most upstream tube row (L1) in the airflow direction toward the most downstream tube row (L3).
  • a parallel flow portion (all parallel flow portions (92)) is formed over L2, L3).
  • the first region (R1) has a higher air flow rate than the second region (R2), the heat exchange rate in the first region (R1) does not extremely decrease.
  • the second refrigerant path (84, 85) during cooling a part of the counterflow portion (94) is formed.
  • the plurality of tube rows (L1, L2, L3) are an upstream tube row (L1) positioned at the most upstream in the airflow direction and the most downstream in the airflow direction.
  • the refrigerant is the heat transfer tubes (71) in the upwind tube rows (L1) and the intermediate tube rows (L2).
  • the heat transfer tube (71) and the heat transfer tube (71) of the leeward tube row (L3) are all formed in parallel flow part (92) in order, and the second refrigerant path (84,85)
  • the refrigerant is the heat transfer tube of the intermediate tube row (L2) (71) through the heat transfer tube (71) of the leeward tube row (L3) and a partially parallel flow portion (93), and the refrigerant flows in the heat transfer tube (71) of the leeward tube row (L3), the intermediate tube row ( L2) heat transfer tube (71) and a part of the counter flow portion (94) flowing in sequence through the heat transfer tube (71) of the upwind tube row (L1) are formed together.
  • Partially parallel flow section (93) that flows in sequence through the heat transfer tube (71) in the tube row (L1), the heat transfer tube (71) in the intermediate tube row (L2), and the heat transfer tube (71) in the leeward tube row (L3)
  • a counterflow portion (94) in which the refrigerant flows from the heat transfer tube (71) of the leeward tube row (L3) to the heat transfer tube (71) of the intermediate tube row (L2), It is characterized by the fact that the refrigerant flows out from the heat transfer tubes (71) in the row (L2).
  • the refrigerant in the first region (R1) of the indoor heat exchanger (32) during heating, is a heat transfer tube (71) in the leeward tube row (L3) and a heat transfer tube in the intermediate tube row (L2) ( 71) and the heat transfer tubes (71) in the windward tube row (L1) are sequentially flowed to form all counter flow portions (91).
  • the refrigerant flows from the heat transfer tube (71) of the intermediate tube row (L2) to the heat transfer tube (71) of the leeward tube row (L3).
  • a part of the parallel flow part (93) is formed, and the refrigerant is connected to the leeward tube row (L3), the heat transfer tube (71), the intermediate tube row (L2), the heat transfer tube (71), and the upwind tube row ( It flows through the heat transfer tubes (71) of L1) in order, and a part of the counterflow portion (94) is formed.
  • the refrigerant is a heat transfer tube (71) in the upwind tube row (L1) and a heat transfer tube (71) in the intermediate tube row (L2). Then, the heat flow tubes (71) in the leeward tube row (L3) flow in order, and the all parallel flow portion (92) is formed.
  • the refrigerant is a heat transfer tube (71) in the upwind tube row (L1), a heat transfer tube (71) in the intermediate tube row (L2), It flows in order through the heat transfer tube (71) of the leeward tube row (L3), and a partial parallel flow portion (93) is formed.
  • the refrigerant flows in order from the heat transfer tube (71) of the leeward tube row (L3) to the heat transfer tube (71) of the intermediate tube row (L2).
  • the flow partially forms a counterflow portion (94).
  • the second refrigerant path (84, 85) includes a plurality of refrigerants flowing out of the partial parallel flow portion (93) during the cooling.
  • a diverting part (76, 77) for diverting to the partially counterflow part (94) is formed.
  • the refrigerant that has partially flowed out of the parallel flow portion (93) passes through a plurality of flow dividing portions (76, 77). A part of the flow is diverted to the counterflow part (94), and then flows out of the second refrigerant path (84, 85).
  • the downstream tube rows (L2, L3) are provided in parallel, and therefore these tube rows (L2, L3) are provided in series. In comparison, the pressure loss of the refrigerant is reduced.
  • a drain pan (36) is disposed below the indoor heat exchanger (32), and the indoor heat exchanger (32) At least a part of the two regions (R2) is located inside the drain pan (36).
  • the flow velocity of the air flowing through the second region (R2) is reduced.
  • a part of the counterflow portion (94) is formed during cooling, so that the heat exchange rate during cooling increases and the cooling performance can be improved.
  • all counter flow portions (91) are formed in the first refrigerant path (81, 82, 83) in the first region (R1), and two refrigerants in the second region (R2). Since the counterflow portion (94) is partially formed in the path (84, 85), it becomes easy to ensure the temperature difference between the refrigerant and the air over the entire area. As a result, a relatively high heating capacity can be obtained in the indoor heat exchanger (32).
  • the present invention in the second region (R2) where the air velocity of air is relatively low, a part of the counterflow portion (94) is formed during cooling, so that the parallel flow is performed over the entire region of the second region (R2). Compared with the case where the portion is formed, the heat exchange rate of the second region (R2) can be increased. As a result, during cooling, heat transfer between the refrigerant and air in the second region (R2) can be promoted, and cooling performance can be improved.
  • the indoor heat exchanger (32) having three tube rows (L1, L2, L3) it is possible to realize a refrigerant path that exhibits the effects of the first invention.
  • the pressure loss in the second refrigerant path (84, 85) during cooling can be reduced. As a result, it is possible to prevent the power during cooling from increasing due to an increase in pressure loss. Further, by reducing the pressure loss of the second refrigerant path (84, 85), it is possible to avoid the refrigerant from drifting only to the first refrigerant path (81, .82, 83). A sufficient flow rate of the refrigerant in the refrigerant path (84, 85) can be secured.
  • FIG. 1 is a schematic piping system diagram showing a configuration of a refrigerant circuit of an air conditioner according to an embodiment.
  • FIG. 2 is a perspective view illustrating an appearance of the indoor unit according to the embodiment.
  • FIG. 3 is a longitudinal sectional view showing the internal structure of the indoor unit according to the embodiment.
  • FIG. 4 is a plan view of the interior of the indoor unit according to the embodiment as viewed from the top plate side.
  • FIG. 5 is an enlarged longitudinal sectional view of the indoor heat exchanger according to the embodiment and the peripheral structure thereof.
  • FIG. 6 is a schematic configuration diagram illustrating a refrigerant path of the indoor heat exchanger during heating according to the embodiment.
  • FIG. 1 is a schematic piping system diagram showing a configuration of a refrigerant circuit of an air conditioner according to an embodiment.
  • FIG. 2 is a perspective view illustrating an appearance of the indoor unit according to the embodiment.
  • FIG. 3 is a longitudinal sectional view showing the internal structure of the indoor unit according to the embodiment.
  • FIG. 7 is a schematic configuration diagram illustrating a refrigerant path of the indoor heat exchanger during cooling according to the embodiment.
  • FIG. 8 is a partially enlarged view showing the refrigerant path in the first region of the indoor heat exchanger during heating according to the embodiment.
  • FIG. 9 is a partially enlarged view showing the refrigerant path in the second region of the indoor heat exchanger during heating according to the embodiment.
  • FIG. 10 is a partially enlarged view showing the refrigerant path in the first region of the indoor heat exchanger during cooling according to the embodiment.
  • FIG. 11 is a partially enlarged view showing the refrigerant path in the second region of the indoor heat exchanger during cooling according to the embodiment.
  • the embodiment of the present invention is an air conditioner (10) that performs indoor cooling and heating.
  • the air conditioner (10) includes an outdoor unit (11) installed outdoors and an indoor unit (20) installed indoors.
  • the outdoor unit (11) and the indoor unit (20) are connected to each other by two connecting pipes (2, 3).
  • a refrigerant circuit (C) is comprised in an air conditioner (10).
  • a vapor compression refrigeration cycle is performed by circulating the filled refrigerant.
  • the outdoor unit (11) is provided with a compressor (12), an outdoor heat exchanger (13), an outdoor expansion valve (14), and a four-way switching valve (15).
  • the compressor (12) compresses the low-pressure refrigerant and discharges the compressed high-pressure refrigerant.
  • a compression mechanism such as a scroll type or a rotary type is driven by the compressor motor (12a).
  • the rotation speed (operation frequency) of the compressor motor (12a) is variable by an inverter device.
  • the outdoor heat exchanger (13) is a fin-and-tube heat exchanger.
  • An outdoor fan (16) is installed in the vicinity of the outdoor heat exchanger (13). In the outdoor heat exchanger (13), the air conveyed by the outdoor fan (16) and the refrigerant exchange heat.
  • the outdoor fan (16) is constituted by a propeller fan driven by an outdoor fan motor (16a).
  • the outdoor fan motor (16a) is configured such that its rotational speed is variable by an inverter device.
  • the outdoor expansion valve (14) is an electronic expansion valve with a variable opening.
  • the four-way switching valve (15) has first to fourth ports.
  • the first port is connected to the discharge side of the compressor (12)
  • the second port is connected to the suction side of the compressor (12)
  • the third port is the outdoor heat exchanger (13 )
  • the fourth port is connected to the gas-side stop valve (5).
  • the four-way selector valve (15) switches between a first state (state indicated by a solid line in FIG. 1) and a second state (state indicated by a broken line in FIG. 1).
  • the first port communicates with the third port
  • the second port communicates with the fourth port.
  • the four-way selector valve (15) in the second state the first port communicates with the fourth port and the second port communicates with the third port.
  • the two communication pipes consist of a liquid communication pipe (2) and a gas communication pipe (3).
  • One end of the liquid communication pipe (2) is connected to the liquid side closing valve (4), and the other end is connected to the liquid side end of the indoor heat exchanger (32).
  • One end of the gas communication pipe (3) is connected to the gas side shut-off valve (5), and the other end is connected to the gas side end of the indoor heat exchanger (32).
  • the indoor unit (20) is provided with an indoor heat exchanger (32) and an indoor expansion valve (39).
  • the indoor heat exchanger (32) is a fin-and-tube heat exchanger.
  • An indoor fan (27) is installed in the vicinity of the indoor heat exchanger (32).
  • the indoor fan (27) is a centrifugal blower driven by an indoor fan motor (27a).
  • the indoor fan motor (27a) is configured to have a variable rotational speed by an inverter device.
  • the indoor expansion valve (39) is connected to the liquid end side of the indoor heat exchanger (32) in the refrigerant circuit (C).
  • the indoor expansion valve (39) is an electronic expansion valve having a variable opening.
  • the indoor unit (20) of the air conditioner (10) is configured to be embedded in the ceiling. That is, as shown in FIG. 3, the indoor unit (20) is fitted and attached to the opening (O) of the ceiling (U) facing the indoor space (R).
  • the indoor unit (20) has an indoor unit main body (21) and a decorative panel (40) attached to the lower part of the indoor unit main body (21).
  • the indoor unit body (21) has a box-shaped casing (22) having a substantially rectangular parallelepiped shape.
  • the casing (22) has a substantially square top plate (23) in plan view and four substantially rectangular side plates (24) extending downward from the peripheral edge of the top plate (23), and the bottom surface An opening is formed in the.
  • a vertically long box-shaped electrical component box (25) is attached to one side plate (24a) of the four side plates (24).
  • a liquid side connection pipe (6) and a gas side connection pipe (7) connected to the indoor heat exchanger (32) pass through the side plate (24a).
  • a liquid communication pipe (2) is connected to the liquid side connection pipe (6), and a gas communication pipe (3) is connected to the gas side connection pipe (7).
  • an indoor fan (27), a bell mouth (31), an indoor heat exchanger (32), and a drain pan (36) are accommodated.
  • the indoor fan (27) is disposed in the center of the casing (22).
  • the indoor fan (27) includes an indoor fan motor (27a), a hub (28), a shroud (29), and an impeller (30).
  • the indoor fan motor (27a) is supported by the top plate (23) of the casing (22).
  • the hub (28) is fixed to the lower end of the drive shaft (27b) that is rotationally driven by the indoor fan motor (27a).
  • the hub (28) includes an annular base (28a) formed radially outward of the indoor fan motor (27a), and a central bulge (28b) bulging downward from the inner peripheral edge of the base (28a). ).
  • the shroud (29) is disposed below the base (28a) so as to face the base (28a) of the hub (28).
  • a circular central suction port (29a) communicating with the inside of the bell mouth (31) is formed in the lower portion of the shroud (29).
  • the impeller (30) is disposed in a blade accommodating space (29b) between the hub (28) and the shroud (29).
  • the impeller (30) is composed of a plurality of turbo blades (30a) arranged so as to be along the rotation direction of the drive shaft (27b).
  • the bell mouth (31) is located below the indoor fan (27).
  • the bell mouth (31) has a circular opening at the upper end and the lower end, respectively, and is formed in a cylindrical shape whose opening area increases toward the decorative panel (40).
  • the internal space (31a) of the bell mouth (31) communicates with the blade housing space (29b) of the indoor fan (27).
  • the indoor heat exchanger (32) is provided with a refrigerant pipe (heat transfer tube) bent so as to surround the indoor fan (27).
  • the indoor heat exchanger (32) is installed on the upper surface of the drain pan (36) so as to stand up.
  • the air blown to the side from the indoor fan (27) passes through the indoor heat exchanger (32).
  • the indoor heat exchanger (32) constitutes an evaporator that cools the air during the cooling operation, and constitutes a condenser (heat radiator) that heats the air during the heating operation.
  • a drain pan (36) is disposed below the indoor heat exchanger (32).
  • the drain pan (36) has an inner wall part (36a), an outer wall part (36b), and a water receiving part (36c).
  • the inner wall portion (36a) is formed along the inner peripheral edge portion of the indoor heat exchanger (32), and is configured by an annular vertical wall standing upward.
  • the outer wall portion (36b) is formed along the four side plates (24) of the casing (22), and is configured by an annular vertical wall that stands upward.
  • the water receiving part (36c) is formed between the inner wall part (36a) and the outer wall part (36b), and is constituted by a groove for collecting condensed water generated in the indoor heat exchanger (32).
  • each main body side blowing channel (37) each extending along the four side plates (24) are formed through the top and bottom of the outer wall (36b) of the drain pan (36).
  • Each main body side blowing channel (37) communicates the space on the downstream side of the indoor heat exchanger (32) with the four panel side blowing channels (43) of the decorative panel (40).
  • the indoor unit main body (21) is provided with a main body side heat insulating member (38).
  • the main body side heat insulating member (38) is formed in a substantially box shape whose lower side is opened.
  • the main body side heat insulating member (38) is formed along the top plate side heat insulating portion (38a) formed along the top plate (23) of the casing (22) and the side plate (24) of the casing (22).
  • a circular through hole (38c) through which the upper end of the indoor fan motor (27a) passes is formed at the center of the top plate heat insulating part (38a).
  • the side plate side heat insulating part (38b) is installed in the outer part of the main body side outlet channel (37) in the outer wall part (36b) of the drain pan (36).
  • the decorative panel (40) is attached to the lower surface of the casing (22).
  • the decorative panel (40) includes a panel body (41) and a suction grill (60).
  • the panel body (41) is formed in a rectangular frame shape in plan view.
  • the panel body (41) is formed with one panel side suction channel (42) and four panel side outlet channels (43).
  • the panel-side suction channel (42) is formed at the center of the panel body (41).
  • a suction port (42a) facing the indoor space (R) is formed at the lower end of the panel-side suction flow path (42).
  • the panel-side suction channel (42) allows the suction port (42a) to communicate with the internal space (31a) of the bell mouth (31).
  • a frame-like inner panel member (44) is fitted in the panel-side suction flow path (42).
  • a dust collection filter (45) that captures dust in the air sucked from the suction port (42a) is provided inside the panel-side suction flow path (42).
  • Each panel side outlet channel (43) is formed outside the panel side inlet channel (42) so as to surround the panel side inlet channel (42).
  • Each panel side blowing channel (43) extends along four sides of each panel side suction channel (42). Air outlets (43a) facing the indoor space (R) are formed at the lower ends of the panel-side outlet channels (43), respectively.
  • Each panel side blowing flow path (43) makes the corresponding blower outlet (43a) and the corresponding main body side blowing flow path (37) communicate.
  • an inner heat insulating part (46) is provided inside the panel side blowing channel (43) (on the center part side of the panel body (41)).
  • the outer side heat insulation part (47) is provided in the outer side (outer edge part side of a panel main body (41)) of the panel side blowing flow path (43).
  • An inner seal member (48) interposed between the panel main body (41) and the drain pan (36) is provided on the upper surfaces of the inner heat insulating portion (46) and the outer heat insulating portion (47).
  • the outer panel member (49) is fitted into the inner edge of the outer heat insulating portion (47).
  • the outer panel member (49) has an inner wall portion (50) that constitutes an inner wall surface of the main body side outlet channel (37), and a lower end portion of the inner wall portion (50) toward an outer edge portion of the panel main body (41). And an extending portion (51) extending.
  • the extension part (51) is formed in a rectangular frame shape along the lower surface of the ceiling (U).
  • An outer seal member (52) interposed between the extension part (51) and the ceiling (U) is provided on the upper surface of the extension part (51).
  • each body side blowing passage (37) is provided with a wind direction adjusting blade (53) for adjusting the wind direction of the air (blowing air) flowing through the body side blowing passage (37).
  • the wind direction adjusting blade (53) is formed across both ends in the longitudinal direction of the main body outlet channel (37) along the side plate (24) of the casing (22).
  • the wind direction adjusting blade (53) is configured to be rotatable about an axis of rotation (53a) extending in the longitudinal direction.
  • the suction grill (60) is attached to the lower end (that is, the suction port (42a)) of the panel side suction flow path (42).
  • the suction grill (60) includes a grill main body (61) facing the suction inlet (42a) and a rectangular extension (65 extending outward from the grill main body (61) toward each outlet (43a). ).
  • the grill body (61) is formed in a substantially square shape in plan view.
  • a large number of suction holes (63) are arranged in a lattice pattern in the grill body (61). These suction holes (63) are constituted by through holes that penetrate the grill body (61) in the thickness direction (vertical direction).
  • the suction hole (63) is formed in a square shape in the opening cross section.
  • the extension portion (65) of the suction grill (60) is formed in a rectangular frame shape extending outward from the grill body (61) toward the outlet (43a).
  • the extension part (65) overlaps with the panel body (41) in the vertical direction so as to overlap the lower surface of the inner heat insulating part (46).
  • the side edge part of the extension part (65) has shifted to the suction inlet (42a) rather than the inner edge part of the blower outlet (43a).
  • the four-way switching valve (15) shown in FIG. 1 is in a state indicated by a solid line, and the compressor (12), the indoor fan (27), and the outdoor fan (16) are in an operating state.
  • the refrigerant circuit (C) a refrigeration cycle is performed in which the outdoor heat exchanger (13) serves as a condenser and the indoor heat exchanger (32) serves as an evaporator.
  • the high-pressure refrigerant compressed by the compressor (12) flows through the outdoor heat exchanger (13) and exchanges heat with outdoor air.
  • the outdoor heat exchanger (13) the high-pressure refrigerant dissipates heat to the outdoor air and condenses.
  • the refrigerant condensed in the outdoor heat exchanger (13) is sent to the indoor unit (20).
  • the refrigerant flows through the indoor heat exchanger (32) after being decompressed by the indoor expansion valve (39).
  • room air flows upward in order through the suction port (42a), the panel-side suction flow path (42), and the internal space (31a) of the bell mouth (31), and accommodates the blades of the indoor fan (27). It is sucked into the space (29b).
  • the air in the blade accommodating space (29b) is conveyed by the impeller (30) and blown out radially between the hub (28) and the shroud (29).
  • This air passes through the indoor heat exchanger (32) and exchanges heat with the refrigerant.
  • the refrigerant absorbs heat from the indoor air and evaporates, and the air is cooled by the refrigerant.
  • the air cooled by the indoor heat exchanger (32) is diverted to each main body side outlet passage (37), then flows downward through the panel side outlet passage (43), and passes through the outlet (43a) to the indoor space ( To R).
  • the refrigerant evaporated in the indoor heat exchanger (32) is sucked into the compressor (12) and compressed again. .
  • the four-way switching valve (15) shown in FIG. 1 is in a state indicated by a broken line, and the compressor (12), the indoor fan (27), and the outdoor fan (16) are in an operating state.
  • the refrigerant circuit (C) a refrigeration cycle is performed in which the indoor heat exchanger (32) serves as a condenser and the outdoor heat exchanger (13) serves as an evaporator.
  • the high-pressure refrigerant compressed by the compressor (12) flows through the indoor heat exchanger (32) of the indoor unit (20).
  • room air flows upward in order through the suction port (42a), the panel-side suction flow path (42), and the internal space (31a) of the bell mouth (31), and accommodates the blades of the indoor fan (27). It is sucked into the space (29b).
  • the air in the blade accommodating space (29b) is conveyed by the impeller (30) and blown out radially between the hub (28) and the shroud (29). This air passes through the indoor heat exchanger (32) and exchanges heat with the refrigerant.
  • the refrigerant dissipates heat to the indoor air and condenses, and the air is heated by the refrigerant.
  • the air heated by the indoor heat exchanger (32) is diverted to each main body-side outlet passage (37), then flows downward through the panel-side outlet passage (43), and passes through the outlet (43a) to the indoor space ( To R).
  • the refrigerant condensed in the indoor heat exchanger (32) is depressurized by the outdoor expansion valve (14) and then flows through the outdoor heat exchanger (13).
  • the outdoor heat exchanger (13) the refrigerant absorbs heat from the outdoor air and evaporates.
  • the refrigerant evaporated in the outdoor heat exchanger (13) is sucked into the compressor (12) and compressed again.
  • the indoor heat exchanger (32) is installed on the upper surface of the drain pan (36) so as to surround the periphery of the indoor fan (27).
  • the indoor heat exchanger (32) includes a plurality of fins (70) and a plurality of heat transfer tubes (71) passing through the plurality of fins (70).
  • the plurality of fins (70) are formed in a vertically long plate shape extending vertically so as to be orthogonal to the air conveyed to the indoor fan (27).
  • Each heat transfer tube (71) is bent so as to surround the periphery of the indoor fan (27), and is disposed along the side plate (24) of the casing (22).
  • the fins (70) are arranged at predetermined intervals along the longitudinal direction of the heat transfer tube (71) (see FIG. 4).
  • the indoor heat exchanger (32) has a plurality of (three rows in this embodiment) tube rows (L1, L2, L3) formed in a direction crossing the airflow direction (right direction in FIG. 5). . That is, these tube rows (L1, L2, L3) are arranged along the width direction of the fin (70). Three pipe rows (L1, L2, L3) are located on the most upstream side in the airflow direction (the side closest to the indoor fan (27)) and on the most downstream side (in the room) The leeward tube row (L3) located on the farthest side of the fan (27) and the intermediate tube row (L2) located between the leeward tube row (L1) and the leeward tube row (L3). In each tube row (L1, L2, L3), a plurality (12 in this embodiment) of heat transfer tubes (71) are arranged in the vertical direction.
  • the first region (R1) is formed in the upper half and the second region (R2) is formed in the lower half.
  • the first region (R1) most of the region is opposed to the blowout passage (72) of the indoor fan (27) (that is, the passage formed between the hub (28) and the shroud (29)).
  • the flow velocity of the air passing through the first region (R1) is relatively large.
  • the second region (R2) most of the region does not face the blowing passage (72) of the indoor fan (27).
  • a plurality of (three in this embodiment) series paths are arranged in the vertical direction. Arranged. Specifically, in the first region (R1), the upper series path (81) is formed on the uppermost side, the lower series path (83) is formed on the lowermost side, and the upper series path (81) and the lower series path ( 83), an intermediate series path (82) is formed.
  • These serial paths (81, 82, 83) constitute a first refrigerant path formed in the first region (R1).
  • a gas side header (73) and a liquid shunt (74) are connected to each serial path (81, 82, 83) (see FIG. 4).
  • the gas side header (73) is connected to the gas connection pipe (3) of the refrigerant circuit (C) via the gas side connection pipe (7), and the liquid shunt (74) is connected to the liquid side connection pipe (6).
  • the windward first heat transfer tube (L1-1) is formed on the upper side of each of the upwind tube rows (L1) of each series path (81, 82, 83), and the windward side is on the lower side.
  • An upper second heat transfer tube (L1-2) is formed.
  • an intermediate first heat transfer tube (L2-1) is formed on the upper side, and an intermediate second heat transfer tube on the lower side. (L2-2) is formed.
  • a leeward first heat transfer tube (L3-1) is formed on the upper side, and a second leeward heat transfer tube on the lower side.
  • a row (L3-2) is formed.
  • the upwind second heat transfer pipe (L1-) is directed from the branch pipe (73a) of the gas side header (73) toward the branch flow path (74a) of the liquid flow divider (74). 2), Upward first heat transfer tube (L1-1), Intermediate first heat transfer tube (L2-1), Intermediate second heat transfer tube (L2-2), Downward second heat transfer tube (L3-2), and Downwind
  • the 1st heat exchanger tube (L3-1) is connected in order.
  • These heat transfer tubes (71) are connected to each other via a U-shaped portion (75) bent into a U-shape.
  • two parallel paths (84, 85) are arranged in the vertical direction in the second region (R2) of the indoor heat exchanger (32). Specifically, in the second region (R2), the upper parallel path (84) is formed closer to the upper side, and the lower parallel path (85) is formed closer to the lower side.
  • These parallel paths (84, 85) constitute a second refrigerant path formed in the second region (R2).
  • a gas side header (73) and a liquid shunt (74) are connected to each parallel path (84, 85).
  • eight heat transfer tubes (71) are connected between the branch pipe (73a) of the gas side header (73) and the branch flow path (74a) of the liquid flow divider (74). That is, the number of the heat transfer tubes (71) in the upper parallel path (84) is larger than the number of the heat transfer tubes (71) in the series path (81, 82, 83).
  • the windward tube row (L1) of the upper parallel path (84) is formed with the windward third heat transfer tube (L1-3) on the upper side and the windward fourth on the lower side.
  • Heat transfer tubes (L1-4) are formed.
  • the intermediate tube row (L2) of the upper parallel path (84) from the upper side to the lower side, the intermediate third heat transfer tube (L2-3), the intermediate fourth heat transfer tube (L2-4), and the intermediate The fifth heat transfer tubes (L2-5) are arranged in order.
  • the leeward tube row (L3) of the upper parallel path (84) has a leeward third heat transfer tube (L3-3), a leeward fourth heat transfer tube (L3-4), and leeward from the upper side to the lower side.
  • the fifth heat transfer tubes (L3-5) are arranged in order.
  • the upper third heat transfer tube (L1-3), the intermediate third heat transfer tube (L2-3), and the leeward third heat transfer tube (L3-3) are connected in order.
  • Upward fourth heat transfer tube (L1-4), upwind third heat transfer tube (L1-3), intermediate third heat transfer tube (L2-3), and leeward third heat transfer tube (L3-3) are U-shaped They are connected to each other via the part (75).
  • first branch pipe (76) constituting the branch part is connected to one end (liquid side end part) of the leeward third heat transfer pipe (L3-3).
  • the other end of the first branch pipe (76) is branched into two connection pipes (76a, 76b).
  • one connecting pipe (76a) is connected to one end (gas side end) of the leeward fourth heat transfer pipe (L3-4), and the other connecting pipe (76b) is the leeward fifth pipe. It is connected to one end (gas side end) of the heat transfer tube (L3-5).
  • the other end of the leeward fourth heat transfer tube (L3-4) is connected to the flow dividing channel (74a) of the liquid flow divider (74) through the intermediate fourth heat transfer tube (L2-4).
  • the other end of the leeward fifth heat transfer tube (L3-5) is connected to the flow dividing channel (74a) of the liquid flow divider (74) via the intermediate fifth heat transfer tube (L2-5).
  • the leeward tube row (L3) of the lower parallel path (85) has an intermediate sixth heat transfer tube (L3-6), an intermediate seventh heat transfer tube (L3-7), and an intermediate eighth tube from the upper side to the lower side.
  • Heat transfer tubes (L3-8) are arranged in order.
  • one end of the second branch pipe (77) constituting the branch part is connected to one end (liquid side end part) of the leeward eighth heat transfer pipe (L3-8).
  • the other end of the second branch pipe (77) is branched into two connection pipes (77a, 77b).
  • one connecting pipe (77a) is connected to one end (gas side end) of the leeward sixth heat transfer pipe (L3-6), and the other connecting pipe (77b) is connected to the leeward seventh pipe. It is connected to one end (gas side end) of the heat transfer tube (L3-7).
  • the other end of the leeward sixth heat transfer tube (L3-6) is connected to the flow dividing channel (74a) of the liquid flow divider (74) through the intermediate sixth heat transfer tube (L2-6).
  • the other end of the leeward seventh heat transfer tube (L3-7) is connected to the flow dividing channel (74a) of the liquid flow divider (74) through the intermediate seventh heat transfer tube (L2-7).
  • the liquid refrigerant that has flowed out of the branch channel (74a) of the liquid distributor (74) flows into each serial path (81, 82, 83).
  • the refrigerant flowing into each series path (81, 82, 83) is the leeward first heat transfer tube (L3-1), the leeward second heat transfer tube (L3-2), the intermediate second heat transfer tube (L2-2), the intermediate The first heat transfer pipe (L2-1), the upwind first heat transfer pipe (L1-1), and the upwind second heat transfer pipe (L1-2) flow in order, and the branch pipe (73a) of the gas side header (73) To leak.
  • the refrigerant is the heat transfer tube (71) in the leeward tube row (L3), the heat transfer tube (71) in the intermediate tube row (L2), and the windward tube row. It flows through the heat transfer tubes (71) of (L1) in order.
  • a counter flow part (all counter flow part (91)) is formed over the whole area from the wind upper end part to the wind lower end part.
  • the refrigerant in the flow dividing channel (74a) of the liquid flow divider (74) flows into the intermediate fourth heat transfer tube (L2-4) and the intermediate fifth heat transfer tube (L2-5).
  • the refrigerant flowing into the intermediate fourth heat transfer pipe (L2-4) flows through the leeward fourth heat transfer pipe (L3-4) and out to the first branch pipe (76), and the intermediate fifth heat transfer pipe (L2-5).
  • the refrigerant that has flowed into the flow flows through the leeward fifth heat transfer pipe (L3-5) and flows out to the first branch pipe (76).
  • the refrigerant combined in the first branch pipe (76) is the leeward third heat transfer tube (L3-3), the intermediate third heat transfer tube (L2-3), the upwind third heat transfer tube (L1-3), the upwind It flows through 4 heat exchanger tubes (L1-4) in order and flows out to the branch pipe (73a) of the gas side header (73).
  • the refrigerant is leeward third heat transfer tube (L3-3), intermediate third heat transfer tube (L2-3), and windward third heat transfer tube (L1-3).
  • a counter flow portion (94) is formed in a part of the upper parallel path (84).
  • the refrigerant flows from the intermediate fourth heat transfer tube (L2-4) to the leeward fourth heat transfer tube (L3-4), and the refrigerant flows to the intermediate fifth heat transfer tube (L2- By flowing from 5) to the leeward fifth heat transfer tube (L3-5), a parallel flow portion (93) is formed in a part of the upper parallel path (84).
  • the refrigerant in the branch flow path (74a) of the liquid flow divider (74) flows into the intermediate sixth heat transfer pipe (L2-6) and the intermediate seventh heat transfer pipe (L2-7).
  • the refrigerant flowing into the intermediate sixth heat transfer pipe (L2-6) flows through the leeward sixth heat transfer pipe (L3-6) and out to the second branch pipe (77), and the intermediate seventh heat transfer pipe (L2-7).
  • the refrigerant that has flowed in flows through the leeward seventh heat transfer pipe (L3-7) and flows out to the second branch pipe (7).
  • the refrigerant combined in the second branch pipe (7) is the leeward eighth heat transfer tube (L3-8), the middle eighth heat transfer tube (L2-8), the upwind eighth heat transfer tube (L1-8), the upwind 7 heat transfer pipe (L1-7), upwind sixth heat transfer pipe (L1-6), and upwind fifth heat transfer pipe (L1-5) flow in order, to the branch pipe (73a) of the gas side header (73) leak.
  • the refrigerant is the leeward eighth heat transfer tube (L3-8), the intermediate eighth heat transfer tube (L2-8), and the windward eighth heat transfer tube (L1-8).
  • a counter flow portion (94) is formed in a part of the lower parallel path (85).
  • the refrigerant flows from the intermediate sixth heat transfer tube (L2-6) to the leeward sixth heat transfer tube (L3-6), and the refrigerant flows into the intermediate seventh heat transfer tube (L2- By flowing from 7) to the leeward seventh heat transfer tube (L3-7), a parallel flow portion (93) is formed in part of the lower parallel path (85).
  • the refrigerant is the heat transfer tube (71) in the leeward tube row (L3), the heat transfer tube (71) in the intermediate tube row (L2), and the windward tube row (L1).
  • a counterflow portion (94) that sequentially flows through the heat transfer tube (71).
  • a temperature difference between the refrigerant and the air can be secured from the windward tube row (L1) to the leeward tube row (L3), and the heat exchange rate of the second region (R2). Will increase.
  • the refrigerant flowing out of the branch pipe (73a) of the gas side header (73) It flows into the serial path (81, 82, 83).
  • the refrigerant that has flowed into each series path (81, 82, 83) consists of the second windward heat transfer tube (L1-2), the first windward heat transfer tube (L1-1), and the first intermediate heat transfer tube (L2-1).
  • the intermediate second heat transfer tube (L2-2), the leeward second heat transfer tube (L3-2), and the leeward first heat transfer tube (L3-1) in order, and the flow dividing channel (74a) of the liquid flow divider (74) To leak.
  • the refrigerant is the heat transfer tube (71) in the upwind tube row (L1), the heat transfer tube (71) in the intermediate tube row (L2), and the downwind tube row. It flows through the heat transfer tubes (71) of (L3) in order.
  • a parallel flow portion (all parallel flow portions (92)) is formed over the entire region from the wind upper end portion to the wind lower end portion.
  • the first region (R1) is formed to face the blowing passage (72) of the indoor fan (27), and the flow velocity of air passing between the fins (70) is relatively large. For this reason, even if the parallel flow portion (92) is formed over the entire first region (R1), the heat exchange rate of the first region (R1) can be secured to some extent.
  • the refrigerant in the branch pipe (73a) of the gas side header (73) is sent to the upwind fourth heat transfer pipe (L1-4), upwind third heat transfer pipe (L1-3), It flows through the 3 heat transfer tubes (L2-3) and the leeward third heat transfer tube (L3-3) in this order.
  • the refrigerant flowing into the leeward third heat transfer pipe (L3-3) flows into the first branch pipe (76), and is divided into two connection pipes (76a, 76b), and then the leeward fourth heat transfer pipe (L3-4). ) And the leeward fifth heat transfer tube (L3-5).
  • the refrigerant that has flowed into the leeward fourth heat transfer tube (L3-4) flows through the intermediate fourth heat transfer tube (L2-4), and then flows out to the branch channel (74a) of the liquid flow divider (74).
  • the refrigerant that has flowed into the leeward fifth heat transfer tube (L3-5) flows through the intermediate fifth heat transfer tube (L2-5), and flows out to the flow dividing channel (74a) of the liquid flow divider (74). In this way, in the upper parallel path (84) during cooling, the refrigerant is used for the upwind third heat transfer tube (L1-3), the intermediate third heat transfer tube (L2-3), and the downwind third heat transfer tube (L3-3).
  • a parallel flow part (93) is formed in a part of the upper parallel path (84).
  • the refrigerant flows from the leeward fourth heat transfer tube (L3-4) to the intermediate fourth heat transfer tube (L2-4), and the refrigerant flows to the leeward fifth heat transfer tube (L3-4).
  • a counter flow portion (94) is formed in a part of the upper parallel path (84).
  • the refrigerant in the branch pipe (73a) of the gas side header (73) is sent to the upwind fifth heat transfer pipe (L1-5), upwind sixth heat transfer pipe (L1-6), upwind It flows through the seventh heat transfer tube (L1-7), the upwind eighth heat transfer tube (L1-8), the intermediate eighth heat transfer tube (L2-8), and the leeward eighth heat transfer tube (L3-8) in this order.
  • the refrigerant that has flowed into the leeward eighth heat transfer pipe (L3-8) flows into the second branch pipe (77) and is divided into two connection pipes (77a, 77b), and then the leeward sixth heat transfer pipe (L3-6). ) And the leeward seventh heat transfer tube (L3-7).
  • the refrigerant that has flowed into the leeward sixth heat transfer tube (L3-6) flows through the intermediate sixth heat transfer tube (L2-6), and then flows out to the branch channel (74a) of the liquid flow divider (74).
  • the refrigerant that has flowed into the leeward seventh heat transfer tube (L3-7) flows through the intermediate seventh heat transfer tube (L2-7), and flows out to the flow dividing channel (74a) of the liquid flow divider (74).
  • the refrigerant is the windward eighth heat transfer tube (L1-8), the intermediate eighth heat transfer tube (L2-8), and the leeward eighth heat transfer tube (L3-8).
  • a parallel flow part (93) is formed in a part of the lower parallel path (85).
  • the refrigerant flows from the leeward sixth heat transfer tube (L3-6) to the intermediate sixth heat transfer tube (L2-6), and the refrigerant flows into the leeward seventh heat transfer tube (L3- By flowing from 7) to the intermediate seventh heat transfer tube (L2-7), a counter flow portion (94) is formed in a part of the lower parallel path (85).
  • the counter flow portion (94) extends from the heat transfer tube (71) of the leeward tube row (L3) to the heat transfer tube (71) of the intermediate tube row (L2). It is formed. For this reason, even in the second region (R2) through which air having a relatively low flow rate passes, heat transfer between the air and the refrigerant can be promoted, and cooling performance can be ensured.
  • the heat exchange rate of the second region (R2) can be increased.
  • heat transfer between the refrigerant and air in the second region (R2) can be promoted, and cooling performance can be improved.
  • the shunt pipe (96, 97) is provided in the parallel path (84, 85) of the second region (R2), and a part of the heat transfer tubes (71) are connected in parallel.
  • the pressure loss of a refrigerant flow path can be reduced and the motive power of a compressor (12) can be reduced.
  • a refrigerant path can be configured by connecting more heat transfer tubes (71) than in the first region (R1). Accordingly, a sufficient heat exchange rate can be obtained even in the second region (R2) where the air flow rate is small.
  • the pressure loss of the refrigerant flow path is reduced to prevent the refrigerant from drifting to each series path (81, 82, 83) in the first region (R1). it can.
  • first refrigerant path three refrigerant paths (81, 82, 83) (first refrigerant path) are formed in the first area (R1), and the second area (R2) is formed.
  • second refrigerant path Have two refrigerant paths (84, 85) (second refrigerant path), but the first refrigerant path may be one, two, four or more, or the second refrigerant path.
  • One or three or more paths may be used.
  • the indoor unit (20) of the air conditioner (1) of the above embodiment is configured to be embedded in a ceiling that is fitted into the opening (O) of the ceiling (U).
  • the indoor unit (20) may be configured to be suspended from the ceiling and suspended from the ceiling disposed in the indoor space (R).
  • the present invention is useful for the refrigerant path of the indoor heat exchanger of the indoor unit of the air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

 室内熱交換器には、暖房時において、全対向流部を形成し、冷房時において、全並行流部を形成する第1の冷媒パスを有する第1領域と、第1領域よりも空気の流速が小さく構成され、冷房時と暖房時の双方において、一部並行流部と、一部対向流部とを共に形成する第2の冷媒パスを有する第2領域とが形成される。

Description

空気調和機の室内ユニット
  本発明は、空気調和機の室内ユニットに関し、特に室内熱交換器の冷媒のパスに係るものである。
  従来より、室内の冷房や暖房を行う空気調和機が知られている。例えば特許文献1に開示の空気調和機は、天井に設けられる室内ユニットを備えている。室内ユニットは、室内ファンと、室内ファンが搬送する空気が通過する室内熱交換器とを備えている。
  空気調和機では、冷媒回路の冷媒の流れが切り換えられることで、冷房運転と暖房運転とが行われる。暖房運転では、圧縮機で圧縮された冷媒が、室内ユニットの室内熱交換器を流れる。室内熱交換器では、冷媒が室内空気へ放熱して凝縮する。凝縮した冷媒は、膨張弁で減圧された後、室外ユニットの室外熱交換器で蒸発する。蒸発した冷媒は、圧縮機に吸入されて圧縮される。冷房運転では、圧縮機で圧縮された冷媒が、室外ユニットの室外熱交換器を流れる。室外熱交換器では、冷媒が室外空気へ放熱して凝縮する。凝縮した冷媒は、膨張弁で減圧された後、室内ユニットの室内熱交換器を流れる。室内熱交換器では、冷媒が室内空気から吸熱して蒸発する。蒸発した冷媒は、圧縮機に吸入されて圧縮される。
特開2011-122819号公報
  ところで、特許文献1に開示の室内熱交換器では、複数のフィンと、該フィンを貫通する伝熱管とが設けられ、伝熱管が気流方向に交差する方向に並んで形成される3つの管列が設けられる。つまり、室内熱交換器は、いわゆるクロスフィン式の熱交換器で構成される。そして、このような室内熱交換器では、暖房性能を向上させるために、冷媒と空気とを直交対向流とするのが一般的である。即ち、暖房運転の室内熱交換器では、冷媒が気流方向の最下流の管列から最上流の管列に向かって順に流れることで、3つの管列に亘って対向流部(全対向流部)が形成される。この結果、室内熱交換器では、最上流側の管列から最下流側の管列に亘って、冷媒と空気との温度差を確保でき、暖房性能を向上させることができる。
  一方、このような室内熱交換器では、冷房運転において、暖房運転とは冷媒の流れる方向が反転することで、冷媒が気流方向の最上流側の管列から最下流の管列に向かって順に流れることになる。つまり、冷房運転の室内熱交換器では、3つの管列に亘って並行流部(全並行流部)が形成される。すると、室内熱交換器では、最下流の管列において、冷媒と空気との温度差が小さくなってしまい、冷房性能が低下してしまう。特に、室内熱交換器では、例えばドレンパンの内部に位置する領域において、空気の風速が相対的に小さくなってしまう。この結果、冷房時の室内熱交換器では、このような風速が小さな領域において、冷媒と空気とが十分に伝熱せず、十分な冷房能力を得ることができないという問題があった。
  本発明は、かかる点に鑑みてなされたものであり、その目的は、暖房能力と冷房能力との双方をバランスよく得ることができる空気調和機の室内ユニットを提供することである。
  第1の発明は、天井に設けられ、冷房と暖房とを切り換えて行う空気調和機の室内ユニットであって、室内ファン(27)と、該室内ファン(27)の周囲に配置され、該室内ファン(27)が搬送する空気が通過する室内熱交換器(32)とを備え、該室内熱交換器(32)は、複数のフィン(70)と、該フィン(70)を貫通する伝熱管(71)とを備え、該伝熱管(71)が気流方向に交差する方向に並んで形成される複数の管列(L1,L2,L3)を3列以上有する空気調和機の室内ユニットを対象とし、上記室内熱交換器(32)には、上記暖房時において、冷媒が気流方向の最下流の管列(L3)から最上流の管列(L1)に向かって順に流れる全対向流部(91)を形成し、冷房時において、冷媒が気流方向の最上流の管列(L1)から最下流の管列(L3)に向かって順に流れる全並行流部(92)を形成する第1の冷媒パス(81,82,83)を有する第1領域(R1)と、上記第1領域(R1)よりも空気の流速が小さく構成され、冷房時と暖房時の双方において、冷媒が上記複数の管列(L1,L2,L3)のいずれかの管列の伝熱管(71)から該管列よりも気流方向の下流側の管列に流れる一部並行流部(93)と、冷媒が上記複数の管列(L1,L2,L3)のいずれかの管列の伝熱管(71)から該管列よりも気流方向の上流側の管列に流れる一部対向流部(94)とを共に形成する第2の冷媒パス(84,85)を有する第2領域(R2)とが形成されることを特徴とする。
  第1の発明の室内熱交換器(32)には、空気の流速が比較的大きな第1領域(R1)と、空気の流速が比較的小さな第2領域(R2)とが形成される。第1領域(R1)には第1の冷媒パス(81,82,83)が形成され、第2領域(R2)には第2の冷媒パス(84,85)が形成される。これらの領域では、各冷媒パス(81~85)を流れる冷媒と、室内熱交換器(32)を通過する空気とが熱交換する。
  具体的に、暖房時には、室内熱交換器(32)が凝縮器として機能する。暖房時の第1の冷媒パス(81,82,83)では、冷媒が気流方向の最下流の管列(L3)から最上流の管列(L1)に向かって順に流れ、全ての管列(L1,L2,L3)に亘って対向流部(全対向流部(91))が形成される。このため、第1領域(R1)では、最下流の管列(L3)から最上流の管列(L1)に亘って冷媒と空気との温度差が確保され、熱交換率が増大する。一方、暖房時の第2の冷媒パス(84,85)では、一部並行流部(93)と一部対向流部(94)とが併存する状態となる。暖房時には、第1領域(R1)の熱交換率が増大するため、第2領域(R2)に一部並行流部(93)を形成したとしても、十分な暖房性能を得ることができる。
  また、冷房時には、室内熱交換器(32)が蒸発器として機能する。冷房時の第1の冷媒パス(84,85)では、冷媒が気流方向の最上流の管列(L1)から最下流の管列(L3)に向かって順に流れ、全ての管列(L1,L2,L3)に亘って並行流部(全並行流部(92))が形成される。しかし、第1領域(R1)は、第2領域(R2)と比較して空気の流速が大きいため、第1領域(R1)での熱交換率が極端に低下してしまうことがない。一方、冷房時の第2の冷媒パス(84,85)では、一部対向流部(94)が形成される。このため、空気の流速が比較的小さい第2領域(R2)であっても、ある程度の熱交換率を得ることができる。この結果、冷房時の室内熱交換器(32)では、全ての領域に並行流部が形成される場合と比較して、冷房性能を向上できる。
  第2の発明は、第1の発明において、上記複数の管列(L1,L2,L3)は、上記気流方向の最上流に位置する風上管列(L1)と、上記気流方向の最下流に位置する風下管列(L3)と、上記風上管列(L1)と風下管列(L3)との間の位置する中間管列(L2)とで構成され、上記第1の冷媒パス(81,82,83)は、上記暖房時において、冷媒が上記風下管列(L3)の伝熱管(71)、上記中間管列(L2)の伝熱管(71)、上記風上管列(L1)の伝熱管(71)を順に流れる全対向流部(91)を形成し、上記冷房時において、冷媒が上記風上管列(L1)の伝熱管(71)、上記中間管列(L2)の伝熱管(71)、上記風下管列(L3)の伝熱管(71)を順に流れる全並行流部(92)を形成し、上記第2の冷媒パス(84,85)は、上記暖房時において、冷媒が上記中間管列(L2)の伝熱管(71)から上記風下管列(L3)の伝熱管(71)を流れる一部並行流部(93)と、冷媒が上記風下管列(L3)の伝熱管(71)、上記中間管列(L2)の伝熱管(71)、上記風上管列(L1)の伝熱管(71)を順に流れる一部対向流部(94)とを共に形成し、上記冷房時において、冷媒が上記風上管列(L1)の伝熱管(71)、上記中間管列(L2)の伝熱管(71)、上記風下管列(L3)の伝熱管(71)を順に流れる一部並行流部(93)と、冷媒が上記風下管列(L3)の伝熱管(71)から上記中間管列(L2)の伝熱管(71)に流れる一部対向流部(94)とを共に形成し、該中間管列(L2)の伝熱管(71)から冷媒を流出させるように構成されることを特徴とする。
  第2の発明では、暖房時の室内熱交換器(32)の第1領域(R1)において、冷媒が風下管列(L3)の伝熱管(71)、中間管列(L2)の伝熱管(71)、風上管列(L1)の伝熱管(71)を順に流れ、全対向流部(91)が形成される。また、暖房時の室内熱交換器(32)の第2領域(R2)では、冷媒が中間管列(L2)の伝熱管(71)から風下管列(L3)の伝熱管(71)に流れ、一部並行流部(93)が形成されるとともに、冷媒が風下管列(L3)、の伝熱管(71)、中間管列(L2)の伝熱管(71)、及び風上管列(L1)の伝熱管(71)を順に流れ、一部対向流部(94)が形成される。
  また、冷房時の室内熱交換器(32)の第1領域(R1)においては、冷媒が風上管列(L1)の伝熱管(71)、中間管列(L2)の伝熱管(71)、風下管列(L3)の伝熱管(71)を順に流れ、全並行流部(92)が形成される。また、冷房時の室内熱交換器(32)の第2領域(R2)では、冷媒が風上管列(L1)の伝熱管(71)、中間管列(L2)の伝熱管(71)、風下管列(L3)の伝熱管(71)を順に流れ、一部並行流部(93)が形成される。また、冷房時の室内熱交換器(32)の第2領域(R2)では、冷媒が風下管列(L3)の伝熱管(71)から中間管列(L2)の伝熱管(71)を順に流れ、一部対向流部(94)が形成される。
  第3の発明は、第1又は第2の発明において、上記第2の冷媒パス(84,85)には、上記冷房時において、上記一部並行流部(93)を流出した冷媒を複数の上記一部対向流部(94)へ分流させる分流部(76,77)が形成されることを特徴とする。
  第3の発明では、第2領域(R2)の第2冷媒パス(84,85)において、一部並行流部(93)を流出した冷媒が、分流部(76,77)を介して複数の一部対向流部(94)へ分流し、その後に第2冷媒パス(84,85)を流出する。つまり、冷房時の第2冷媒パス(84,85)では、その下流側の管列(L2,L3)が並列に設けられるため、これらの管列(L2,L3)を直列に設けた場合と比較して、冷媒の圧力損失が小さくなる。
  第4の発明は、第1乃至第3のいずれか1つの発明において上記室内熱交換器(32)の下側には、ドレンパン(36)が配置され、上記室内熱交換器(32)の第2領域(R2)の少なくとも一部が、上記ドレンパン(36)の内部に位置していることを特徴とする。
  第4の発明では、第2領域(R2)の少なくとも一部がドレンパン(36)の内部に位置することで、第2領域(R2)を流れる空気の流速が小さくなる。この第2領域(R2)では、冷房時において、一部対向流部(94)が形成されるため、冷房時の熱交換率が増大し、冷房性能を向上できる。
  本発明によれば、暖房時において、第1領域(R1)の第1冷媒パス(81,82,83)に全対向流部(91)を形成し、且つ第2領域(R2)の2冷媒パス(84,85)に一部対向流部(94)を形成しているため、冷媒と空気の温度差が全域に亘って確保し易くなる。この結果、室内熱交換器(32)では、比較的高い暖房能力を得ることができる。
  また、本発明によれば、比較的空気の風速が小さい第2領域(R2)において、冷房時に一部対向流部(94)を形成したため、第2領域(R2)の全域に亘って並行流部が形成される場合と比較して、第2領域(R2)の熱交換率を増大できる。この結果、冷房時において、第2領域(R2)での冷媒と空気との伝熱を促進でき、冷房性能を向上できる。
  第2の発明によれば、3つの管列(L1,L2,L3)を有する室内熱交換器(32)において、第1の発明の作用効果を奏する冷媒のパスを実現できる。
  第3の発明によれば、冷房時における第2の冷媒パス(84,85)での圧力損失を低減できる。この結果、圧力損失の増大に起因して、冷房時の動力が増大してしまうことを防止できる。また、第2の冷媒パス(84,85)の圧力損失を低下させることで、冷媒が第1の冷媒パス(81,.82,83)ばかりに偏流してしまうことを回避でき、第2の冷媒パス(84,85)の冷媒の流量を十分に確保できる。
図1は、実施形態に係る空気調和機の冷媒回路の構成を示す概略の配管系統図である。 図2は、実施形態に係る室内ユニットの外観を示す斜視図である。 図3は、実施形態に係る室内ユニットの内部構造を示す縦断面図である。 図4は、実施形態に係る室内ユニットの内部を天板側から視た平面図である。 図5は、実施形態に係る室内熱交換器、及びその周辺構造を拡大した縦断面図である。 図6は、実施形態に係る暖房時の室内熱交換器の冷媒のパスを表した概略構成図である。 図7は、実施形態に係る冷房時の室内熱交換器の冷媒のパスを表した概略構成図である。 図8は、実施形態に係る暖房時の室内熱交換器の第1領域の冷媒のパスを表した部分拡大図である。 図9は、実施形態に係る暖房時の室内熱交換器の第2領域の冷媒のパスを表した部分拡大図である。 図10は、実施形態に係る冷房時の室内熱交換器の第1領域の冷媒のパスを表した部分拡大図である。 図11は、実施形態に係る冷房時の室内熱交換器の第2領域の冷媒のパスを表した部分拡大図である。
  以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
  本発明の実施形態は、室内の冷房及び暖房を行う空気調和機(10)である。図1に示すように、空気調和機(10)は、室外に設置される室外ユニット(11)と、室内に設置される室内ユニット(20)とを有する。室外ユニット(11)と室内ユニット(20)とは、2本の連絡配管(2,3)によって互いに接続される。これにより、空気調和機(10)では、冷媒回路(C)が構成される。冷媒回路(C)では、充填された冷媒が循環することで、蒸気圧縮式の冷凍サイクルが行われる。
  〈冷媒回路の構成〉
  室外ユニット(11)には、圧縮機(12)、室外熱交換器(13)、室外膨張弁(14)、及び四方切換弁(15)が設けられる。圧縮機(12)は、低圧の冷媒を圧縮し、圧縮後の高圧の冷媒を吐出する。圧縮機(12)では、スクロール式、ロータリ式等の圧縮機構が圧縮機モータ(12a)によって駆動される。圧縮機モータ(12a)は、インバータ装置によって、その回転数(運転周波数)が可変に構成されている。
  室外熱交換器(13)は、フィン・アンド・チューブ式の熱交換器である。室外熱交換器(13)の近傍には、室外ファン(16)が設置される。室外熱交換器(13)では、室外ファン(16)が搬送する空気と冷媒とが熱交換する。室外ファン(16)は、室外ファンモータ(16a)によって駆動されるプロペラファンによって構成される。室外ファンモータ(16a)は、インバータ装置によって、その回転数が可変に構成される。
  室外膨張弁(14)は、開度が可変な電子膨張弁で構成される。四方切換弁(15)は、第1から第4までのポートを有している。四方切換弁(15)では、第1ポートが圧縮機(12)の吐出側に接続し、第2ポートが圧縮機(12)の吸入側に接続し、第3ポートが室外熱交換器(13)のガス側端部に接続し、第4ポートがガス側閉鎖弁(5)に接続している。四方切換弁(15)は、第1状態(図1の実線で示す状態)と第2状態(図1の破線で示す状態)とに切り換わる。第1状態の四方切換弁(15)では、第1ポートと第3ポートが連通し且つ第2ポートと第4ポートが連通する。第2状態の四方切換弁(15)では、第1ポートと第4ポートが連通し且つ第2ポートと第3ポートが連通する。
  2本の連絡配管は、液連絡配管(2)及びガス連絡配管(3))によって構成される。液連絡配管(2)は、一端が液側閉鎖弁(4)に接続され、他端が室内熱交換器(32)の液側端部に接続される。ガス連絡配管(3)は、一端がガス側閉鎖弁(5)に接続され、他端が室内熱交換器(32)のガス側端部に接続される。
  室内ユニット(20)には、室内熱交換器(32)と室内膨張弁(39)とが設けられる。室内熱交換器(32)は、フィン・アンド・チューブ式の熱交換器である。室内熱交換器(32)の近傍には、室内ファン(27)が設置される。室内ファン(27)は、室内ファンモータ(27a)によって駆動される遠心式の送風機である。室内ファンモータ(27a)は、インバータ装置によって、その回転数が可変に構成されている。室内膨張弁(39)は、冷媒回路(C)において室内熱交換器(32)の液端部側に接続される。室内膨張弁(39)は、開度が可変な電子膨張弁で構成される。
  〈室内ユニットの詳細構造〉
  空気調和機(10)の室内ユニット(20)の詳細構造について図2~図4を参照しながら説明する。本実施形態の室内ユニット(20)は、天井埋込式に構成されている。つまり、室内ユニット(20)は、図3に示すように、室内空間(R)に面する天井(U)の開口部(O)に嵌め込まれて取り付けられる。室内ユニット(20)は、室内ユニット本体(21)と、該室内ユニット本体(21)の下部に取り付けられる化粧パネル(40)とを有している。
  -室内ユニット本体-
  図2及び図3に示すように、室内ユニット本体(21)は、略直方体形状の箱形のケーシング(22)を有している。ケーシング(22)は、平面視において略正方形状の天板(23)と、該天板(23)の周縁部から下方に延びる略矩形状の4枚の側板(24)とを有し、下面に開口が形成されている。図2に示すように、4つの側板(24)のうちの1つの側板(24a)には、縦長の箱形の電装品箱(25)が取り付けられる。また、この側板(24a)には、室内熱交換器(32)と接続する液側接続管(6)とガス側接続管(7)とが貫通している。液側接続管(6)には、液連絡配管(2)が接続され、ガス側接続管(7)には、ガス連絡配管(3)が接続される。
  ケーシング(22)の内部には、室内ファン(27)と、ベルマウス(31)と、室内熱交換器(32)と、ドレンパン(36)とが収容されている。
  図3及び図4に示すように、室内ファン(27)は、ケーシング(22)の内部中央に配置されている。室内ファン(27)は、室内ファンモータ(27a)と、ハブ(28)と、シュラウド(29)と、羽根車(30)とを有している。室内ファンモータ(27a)は、ケーシング(22)の天板(23)に支持されている。ハブ(28)は、室内ファンモータ(27a)の回転駆動される駆動軸(27b)の下端に固定されている。ハブ(28)は、室内ファンモータ(27a)の径方向外方に形成される環状の基部(28a)と、該基部(28a)の内周縁部から下方に膨出する中央膨出部(28b)とを有している。
  シュラウド(29)は、ハブ(28)の基部(28a)に対向するように、該基部(28a)の下側に配置される。シュラウド(29)の下部には、ベルマウス(31)の内部と連通する円形の中央吸込口(29a)が形成される。羽根車(30)は、ハブ(28)とシュラウド(29)との間の羽根収容空間(29b)に配置されている。羽根車(30)は、駆動軸(27b)の回転方向に沿うように配列された複数のターボ翼(30a)によって構成されている。
  ベルマウス(31)は、室内ファン(27)の下側に配置されている。ベルマウス(31)は、上端及び下端にそれぞれ円形の開口を有し、化粧パネル(40)に向かうにつれて開口面積が拡大した筒状に形成される。ベルマウス(31)の内部空間(31a)は、室内ファン(27)の羽根収容空間(29b)に連通している。
  図4に示すように、室内熱交換器(32)は、室内ファン(27)の周囲を囲むように冷媒配管(伝熱管)が曲げられて配設されている。室内熱交換器(32)は、上方に起立するようにドレンパン(36)の上面に設置されている。室内熱交換器(32)には、室内ファン(27)から側方へ吹き出された空気が通過する。室内熱交換器(32)は、冷房運転時に空気を冷却する蒸発器を構成し、暖房運転時に空気を加熱する凝縮器(放熱器)を構成する。
  図3及び図4に示すように、室内熱交換器(32)の下側には、ドレンパン(36)が配置される。ドレンパン(36)は、内壁部(36a)と外壁部(36b)と水受部(36c)とを有している。内壁部(36a)は、室内熱交換器(32)の内周縁部に沿って形成され、上方に立設する環状の縦壁によって構成される。外壁部(36b)は、ケーシング(22)の4枚の側板(24)に沿って形成され、上方に立設する環状の縦壁によって構成される。水受部(36c)は、内壁部(36a)と外壁部(36b)との間に形成され、室内熱交換器(32)で発生した凝縮水を回収するための溝によって構成される。また、ドレンパン(36)の外壁部(36b)には、各々が4枚の側板(24)に沿って延びる4つの本体側吹出流路(37)が上下に貫通して形成される。各本体側吹出流路(37)は、室内熱交換器(32)の下流側の空間と、化粧パネル(40)の4つのパネル側吹出流路(43)とを連通させる。
  また、室内ユニット本体(21)には、本体側断熱部材(38)が設けられている。本体側断熱部材(38)は、下側が開放する略箱状に形成される。本体側断熱部材(38)は、ケーシング(22)の天板(23)に沿って形成される天板側断熱部(38a)と、ケーシング(22)の側板(24)に沿って形成される側板側断熱部(38b)とを有している。天板側断熱部(38a)の中央部には、室内ファンモータ(27a)の上端部が貫通する円形の貫通穴(38c)が形成される。側板側断熱部(38b)は、ドレンパン(36)の外壁部(36b)のうち本体側吹出流路(37)の外側部位に設置される。
  -化粧パネル-
  化粧パネル(40)は、ケーシング(22)の下面に取り付けられる。化粧パネル(40)は、パネル本体(41)と吸込グリル(60)とを備えている。
  パネル本体(41)は、平面視において矩形の枠状に形成されている。パネル本体(41)には、1つのパネル側吸込流路(42)と、4つのパネル側吹出流路(43)とが形成される。
  図3に示すように、パネル側吸込流路(42)は、パネル本体(41)の中央部に形成されている。パネル側吸込流路(42)の下端には、室内空間(R)に臨む吸込口(42a)が形成される。パネル側吸込流路(42)は、吸込口(42a)とベルマウス(31)の内部空間(31a)とを連通させる。パネル側吸込流路(42)には、枠状の内側パネル部材(44)が内嵌している。また、パネル側吸込流路(42)の内部には、吸込口(42a)から吸い込んだ空気中の塵埃を捕捉する集塵フィルタ(45)が設けられる。
  各パネル側吹出流路(43)は、パネル側吸込流路(42)の周囲を囲むように、該パネル側吸込流路(42)の外側に形成される。各パネル側吹出流路(43)は、各パネル側吸込流路(42)の四辺に沿ってそれぞれ延びている。各パネル側吹出流路(43)の下端には、室内空間(R)に臨む吹出口(43a)がそれぞれ形成される。各パネル側吹出流路(43)は、対応する吹出口(43a)と、対応する本体側吹出流路(37)とを連通させる。
  図3に示すように、パネル側吹出流路(43)の内側(パネル本体(41)の中央部側)には、内側断熱部(46)が設けられている。また、パネル側吹出流路(43)の外側(パネル本体(41)の外縁部側)には、外側断熱部(47)が設けられている。内側断熱部(46)及び外側断熱部(47)の上面には、パネル本体(41)とドレンパン(36)との間に介設される内側シール部材(48)が設けられる。
  外側断熱部(47)の内縁部には、外側パネル部材(49)が内嵌している。外側パネル部材(49)は、本体側吹出流路(37)の内壁面を構成する内壁部(50)と、該内壁部(50)の下端部からパネル本体(41)の外縁部に向かって延出する延出部(51)とを有している。延出部(51)は、天井(U)の下面に沿った矩形枠状に形成されている。延出部(51)の上面には、該延出部(51)と天井(U)の間に介設される外側シール部材(52)が設けられる。
  また、各本体側吹出流路(37)には、本体側吹出流路(37)を流れる空気(吹出空気)の風向を調節するための風向調節羽根(53)が設けられている。風向調節羽根(53)は、ケーシング(22)の側板(24)に沿うように本体側吹出流路(37)の長手方向の両端に亘って形成される。風向調節羽根(53)は、その長手方向に延びる回動軸(53a)を軸心として回動自在に構成される。
  吸込グリル(60)は、パネル側吸込流路(42)の下端(即ち、吸込口(42a))に取り付けられる。吸込グリル(60)は、吸込口(42a)に面するグリル本体(61)と、グリル本体(61)から各吹出口(43a)側に向かって外側に延出する矩形状の延長部(65)とを有している。グリル本体(61)は、平面視において略正方形状に形成されている。グリル本体(61)には、多数の吸込孔(63)が格子状に配列される。これらの吸込孔(63)は、グリル本体(61)を厚さ方向(上下方向)に貫通する貫通孔によって構成される。吸込孔(63)は、その開口断面の形状が正方形状に形成される。
  吸込グリル(60)の延長部(65)は、グリル本体(61)から吹出口(43a)に向かって外方に延出する矩形枠状に形成される。延長部(65)は、内側断熱部(46)の下面と重なるように、パネル本体(41)と上下方向にオーバーラップしている。また、延長部(65)の側方端部は、吹出口(43a)の内側縁部よりも吸込口(42a)寄りにシフトしている。
  -運転動作-
  次いで、本実施形態に係る空気調和機(10)の運転動作について説明する。空気調和機(10)では、冷房運転と暖房運転とが切り換えて行われる。
  〈冷房運転〉
  冷房運転では、図1に示す四方切換弁(15)が実線で示す状態となり、圧縮機(12)、室内ファン(27)、室外ファン(16)が運転状態となる。これにより、冷媒回路(C)では、室外熱交換器(13)が凝縮器となり、室内熱交換器(32)が蒸発器となる冷凍サイクルが行われる。
  具体的には、圧縮機(12)で圧縮された高圧冷媒は、室外熱交換器(13)を流れ、室外空気と熱交換する。室外熱交換器(13)では、高圧冷媒が室外空気へ放熱して凝縮する。室外熱交換器(13)で凝縮した冷媒は、室内ユニット(20)へ送られる。室内ユニット(20)では、冷媒が室内膨張弁(39)で減圧された後、室内熱交換器(32)を流れる。
  室内ユニット(20)では、室内空気が吸込口(42a)、パネル側吸込流路(42)、ベルマウス(31)の内部空間(31a)を順に上方に流れ、室内ファン(27)の羽根収容空間(29b)へ吸い込まれる。羽根収容空間(29b)の空気は、羽根車(30)によって搬送され、ハブ(28)とシュラウド(29)の間から径方向外方へ吹き出される。この空気は、室内熱交換器(32)を通過し、冷媒と熱交換する。室内熱交換器(32)では、冷媒が室内空気から吸熱して蒸発し、空気が冷媒によって冷却される。
  室内熱交換器(32)で冷却された空気は、各本体側吹出流路(37)に分流した後、パネル側吹出流路(43)を下方に流れ、吹出口(43a)より室内空間(R)へ供給される。また、室内熱交換器(32)で蒸発した冷媒は、圧縮機(12)に吸入され再び圧縮される。    
  〈暖房運転〉
  暖房運転では、図1に示す四方切換弁(15)が破線で示す状態となり、圧縮機(12)、室内ファン(27)、室外ファン(16)が運転状態となる。これにより、冷媒回路(C)では、室内熱交換器(32)が凝縮器となり、室外熱交換器(13)が蒸発器となる冷凍サイクルが行われる。
  具体的には、圧縮機(12)で圧縮された高圧冷媒は、室内ユニット(20)の室内熱交換器(32)を流れる。室内ユニット(20)では、室内空気が吸込口(42a)、パネル側吸込流路(42)、ベルマウス(31)の内部空間(31a)を順に上方に流れ、室内ファン(27)の羽根収容空間(29b)へ吸い込まれる。羽根収容空間(29b)の空気は、羽根車(30)によって搬送され、ハブ(28)とシュラウド(29)の間から径方向外方へ吹き出される。この空気は、室内熱交換器(32)を通過し、冷媒と熱交換する。室内熱交換器(32)では、冷媒が室内空気へ放熱して凝縮し、空気が冷媒によって加熱される。
  室内熱交換器(32)で加熱された空気は、各本体側吹出流路(37)に分流した後、パネル側吹出流路(43)を下方に流れ、吹出口(43a)より室内空間(R)へ供給される。また、室内熱交換器(32)で凝縮した冷媒は、室外膨張弁(14)で減圧された後、室外熱交換器(13)を流れる。室外熱交換器(13)では、冷媒が室外空気から吸熱して蒸発する。室外熱交換器(13)で蒸発した冷媒は、圧縮機(12)に吸入され再び圧縮される。
  〈室内熱交換器、及びその周辺構造〉
  次いで、本実施形態に係る室内熱交換器(32)、及びその周辺構造について図3~図11を参照しながら詳細に説明する。
  本実施形態に係る室内熱交換器(32)は、室内ファン(27)の周囲を囲むようにドレンパン(36)の上面に設置されている。室内熱交換器(32)は、複数のフィン(70)と、該複数のフィン(70)を貫通する複数の伝熱管(71)とを備えている。複数のフィン(70)は、室内ファン(27)に搬送される空気と直交するように上下に延びる縦長板状に形成される。各伝熱管(71)は、室内ファン(27)の周囲を囲むように屈曲し、ケーシング(22)の側板(24)に沿うように配設されている。各フィン(70)は、伝熱管(71)の長手方向に沿って互いに所定の間隔を置いて配列されている(図4を参照)。
  室内熱交換器(32)は、気流方向(図5の右方向)に交差する方向に形成される複数(本実施形態では3列)の管列(L1,L2,L3)を有している。つまり、これらの管列(L1,L2,L3)は、フィン(70)の幅方向に沿って配列される。3つの管列(L1,L2,L3)は、気流方向の最上流側(室内ファン(27)に最も近い側)に位置する風上管列(L1)と、気流方向の最下流側(室内ファン(27)に最も遠い側)に位置する風下管列(L3)と、風上管列(L1)と風下管列(L3)の間に位置する中間管列(L2)によって構成される。各管列(L1,L2,L3)には、それぞれ複数(本実施形態では12本)の伝熱管(71)が上下方向に配列されている。
  図5~図7に示すように、室内熱交換器(32)には、上側略半分に第1領域(R1)が形成され、下側略半分に第2領域(R2)が形成される。第1領域(R1)では、そのほとんどの領域が室内ファン(27)の吹出通路(72)(即ち、ハブ(28)とシュラウド(29)の間に形成される通路)に対向している。このため、室内熱交換器(32)では、第1領域(R1)を通過する空気の流速が比較的大きくなる。これに対し、第2領域(R2)では、そのほとんどの領域が室内ファン(27)の吹出通路(72)に対向していない。つまり、第2領域(R2)は、上側の部位がシュラウド(29)及びベルマウス(31)の外周面に対向し、下側の部位がドレンパン(36)の内部に位置している。このため、室内熱交換器(32)では、第2領域(R2)を通過する空気の流速が第1領域(R1)を通過する空気の流速よりも小さくなっている。
  図6~8に示すように、室内熱交換器(32)の第1領域(R1)には、複数(本実施形態では、3つ)の直列パス(81,82,83)が上下方向に配列される。具体的に、第1領域(R1)では、最も上側に上段直列パス(81)が形成され、最も下側に下段直列パス(83)が形成され、上段直列パス(81)と下段直列パス(83)の間に中間直列パス(82)が形成される。これらの直列パス(81,82,83)は、第1領域(R1)に形成される第1の冷媒パスを構成する。
  各直列パス(81,82,83)には、ガス側ヘッダ(73)及び液分流器(74)が接続される(図4を参照)。ガス側ヘッダ(73)は、ガス側接続管(7)を介して冷媒回路(C)のガス連絡配管(3)と接続し、液分流器(74)は、液側接続管(6)を介して冷媒回路(C)の液連絡配管(2)と接続している。各直列パス(81,82,83)では、ガス側ヘッダ(73)の分岐管(73a)と、液分流器(74)の分流路(74a)の間に6本の伝熱管(71)が接続される。
  具体的に、各直列パス(81,82,83)の風上管列(L1)のそれぞれには、上側寄りに風上第1伝熱管(L1-1)が形成され、下側寄りに風上第2伝熱管(L1-2)が形成される。また、各直列パス(81,82,83)の中間管列(L2)のそれぞれには、上側寄りに中間第1伝熱管(L2-1)が形成され、下側寄りに中間第2伝熱管(L2-2)が形成される。また、各直列パス(81,82,83)の風下管列(L3)のそれぞれには、上側寄りに風下第1伝熱管(L3-1)が形成され、下側寄りに風下第2伝熱管列(L3-2)が形成される。
  各直列パス(81,82,83)では、ガス側ヘッダ(73)の分岐管(73a)から液分流器(74)の分流路(74a)に向かって、風上第2伝熱管(L1-2)、風上第1伝熱管(L1-1)、中間第1伝熱管(L2-1)、中間第2伝熱管(L2-2)、風下第2伝熱管(L3-2)、及び風下第1伝熱管(L3-1)が順に接続されている。これらの伝熱管(71)は、U字状に折り曲げられたU字部(75)を介して互いに接続される。
  図6、図7、図9に示すように、室内熱交換器(32)の第2領域(R2)には、2つの並列パス(84,85)が上下方向に配列される。具体的に、第2領域(R2)では、上側寄りに上段並列パス(84)が形成され、下側寄りに下段並列パス(85)が形成される。これらの並列パス(84,85)は、第2領域(R2)に形成される第2の冷媒パスを構成する。
  各並列パス(84,85)には、ガス側ヘッダ(73)及び液分流器(74)が接続される。上段並列パス(84)では、ガス側ヘッダ(73)の分岐管(73a)と、液分流器(74)の分流路(74a)の間に8本の伝熱管(71)が接続される。つまり、上段並列パス(84)の伝熱管(71)の本数は、直列パス(81,82,83)の伝熱管(71)の本数よりも多くなっている。
  図9に示すように、上段並列パス(84)の風上管列(L1)には、上側寄りに風上第3伝熱管(L1-3)が形成され、下側寄りに風上第4伝熱管(L1-4)が形成される。また、上段並列パス(84)の中間管列(L2)には、上側から下側に向かって、中間第3伝熱管(L2-3)、中間第4伝熱管(L2-4)、及び中間第5伝熱管(L2-5)が順に配列される。また、上段並列パス(84)の風下管列(L3)には、上側から下側に向かって、風下第3伝熱管(L3-3)、風下第4伝熱管(L3-4)、及び風下第5伝熱管(L3-5)が順に配列される。
  上段並列パス(84)では、ガス側ヘッダ(73)の分岐管(73a)から液分流器(74)の分流路(74a)に向かって、風上第4伝熱管(L1-4)、風上第3伝熱管(L1-3)、中間第3伝熱管(L2-3)、及び風下第3伝熱管(L3-3)が順に接続されている。風上第4伝熱管(L1-4)、風上第3伝熱管(L1-3)、中間第3伝熱管(L2-3)、及び風下第3伝熱管(L3-3)は、U字部(75)を介して互いに接続される。
  風下第3伝熱管(L3-3)の一端(液側端部)には、分流部を構成する第1分流配管(76)の一端が接続されている。第1分流配管(76)の他端は、2つの接続管(76a,76b)に分岐している。第1分流配管(76)では、一方の接続管(76a)が風下第4伝熱管(L3-4)の一端(ガス側端部)に接続し、他方の接続管(76b)が風下第5伝熱管(L3-5)の一端(ガス側端部)に接続している。風下第4伝熱管(L3-4)の他端は、中間第4伝熱管(L2-4)を介して液分流器(74)の分流路(74a)と接続している。また、風下第5伝熱管(L3-5)の他端は、中間第5伝熱管(L2-5)を介して液分流器(74)の分流路(74a)と接続している。
  下段並列パス(85)では、ガス側ヘッダ(73)の分岐管(73a)と、液分流器(74)の分流路(74a)の間に10本の伝熱管(71)が接続される。つまり、下段並列パス(85)の伝熱管(71)の本数は、直列パス(81,82,83)の伝熱管(71)や上段並列パス(84)の伝熱管(71)の本数よりも多くなっている。
  図9に示すように、下段並列パス(85)の風上管列(L1)には、上側から下側に向かって、風上第5伝熱管(L1-5)、風上第6伝熱管(L1-6)、風上第7伝熱管(L1-7)、及び風上第8伝熱管(L1-8)が順に配列されている。下段並列パス(85)の中間管列(L2)には、上側から下側に向かって、中間第6伝熱管(L2-6)、中間第7伝熱管(L2-7)、及び中間第8伝熱管(L2-8)が順に配列される。下段並列パス(85)の風下管列(L3)には、上側から下側に向かって、中間第6伝熱管(L3-6)、中間第7伝熱管(L3-7)、及び中間第8伝熱管(L3-8)が順に配列される。
  下段並列パス(85)では、ガス側ヘッダ(73)の分岐管(73a)から液分流器(74)の分流路(74a)に向かって、風上第5伝熱管(L1-5)、風上第6伝熱管(L1-6)、風上第7伝熱管(L1-7)、風上第8伝熱管(L1-8)、中間第8伝熱管(L2-8)、及び風下第8伝熱管(L3-8)が順に接続されている。風上第5伝熱管(L1-5)、風上第6伝熱管(L1-6)、風上第7伝熱管(L1-7)、風上第8伝熱管(L1-8)、中間第8伝熱管(L2-8)、及び風下第8伝熱管(L3-8)は、U字部(75)を介して互いに接続される。また、風下第8伝熱管(L3-8)の一端(液側端部)には、分流部を構成する第2分流配管(77)の一端が接続されている。第2分流配管(77)の他端は、2つの接続管(77a,77b)に分岐している。第2分流配管(77)では、一方の接続管(77a)が風下第6伝熱管(L3-6)の一端(ガス側端部)に接続し、他方の接続管(77b)が風下第7伝熱管(L3-7)の一端(ガス側端部)に接続している。風下第6伝熱管(L3-6)の他端は、中間第6伝熱管(L2-6)を介して液分流器(74)の分流路(74a)と接続している。また、風下第7伝熱管(L3-7)の他端は、中間第7伝熱管(L2-7)を介して液分流器(74)の分流路(74a)と接続している。
  〈暖房運転時の冷媒パス〉
  上述した暖房運転中の室内熱交換器(32)では、第1領域(R1)の各直列パス(81,82,83)において、3つの管列(L1,L2,L3)に亘って対向流部(全対向流部(91))が形成される。また、暖房運転中の室内熱交換器(32)では、第2領域(R2)の各並列パス(84,85)において、並行流部(93)と対向流部(94)との双方が形成される。
  具体的には、図8に示すように、暖房運転中の室内熱交換器(32)の第1領域(R1)では、液分流器(74)の分流路(74a)を流出した液冷媒が各直列パス(81,82,83)に流入する。各直列パス(81,82,83)に流入した冷媒は、風下第1伝熱管(L3-1)、風下第2伝熱管(L3-2)、中間第2伝熱管(L2-2)、中間第1伝熱管(L2-1)、風上第1伝熱管(L1-1)、及び風上第2伝熱管(L1-2)を順に流れ、ガス側ヘッダ(73)の分岐管(73a)に流出する。
  このように、暖房時の直列パス(81,82,83)では、冷媒が風下管列(L3)の伝熱管(71)、中間管列(L2)の伝熱管(71)、風上管列(L1)の伝熱管(71)を順に流れる。これにより、暖房時の直列パス(81,82,83)では、風上端部から風下端部までの全域に亘って対向流部(全対向流部(91))が形成される。この結果、第1領域(R1)では、風上管列(L1)から風下管列(L3)に亘って冷媒と空気との温度差を確保でき、第1領域(R1)の熱交換率が増大する。
  また、図9に示すように、暖房運転中の室内熱交換器(32)の第2領域(R2)では、液分流器(74)の分流路(74a)を流出した液冷媒が上段並列パス(84)と下段並列パス(85)とにそれぞれ流入する。
  上段並列パス(84)では、液分流器(74)の分流路(74a)の冷媒が、中間第4伝熱管(L2-4)と中間第5伝熱管(L2-5)とに流入する。中間第4伝熱管(L2-4)に流入した冷媒は、風下第4伝熱管(L3-4)を流れて第1分流配管(76)に流出し、中間第5伝熱管(L2-5)に流入した冷媒は、風下第5伝熱管(L3-5)を流れて第1分流配管(76)に流出する。第1分流配管(76)で合流した冷媒は、風下第3伝熱管(L3-3)、中間第3伝熱管(L2-3)、風上第3伝熱管(L1-3)、風上第4伝熱管(L1-4)を順に流れ、ガス側ヘッダ(73)の分岐管(73a)に流出する。このように、暖房時の上段並列パス(84)では、冷媒が風下第3伝熱管(L3-3)、中間第3伝熱管(L2-3)、及び風上第3伝熱管(L1-3)を順に流れることで、上段並列パス(84)の一部に対向流部(94)が形成される。また、暖房時の上段並列パス(84)では、冷媒が中間第4伝熱管(L2-4)から風下第4伝熱管(L3-4)へ流れ、且つ冷媒が中間第5伝熱管(L2-5)から風下第5伝熱管(L3-5)へ流れることで、上段並列パス(84)の一部に並行流部(93)が形成される。
  下段並列パス(95)では、液分流器(74)の分流路(74a)の冷媒が、中間第6伝熱管(L2-6)と中間第7伝熱管(L2-7)とに流入する。中間第6伝熱管(L2-6)に流入した冷媒は、風下第6伝熱管(L3-6)を流れて第2分流配管(77)に流出し、中間第7伝熱管(L2-7)に流入した冷媒は、風下第7伝熱管(L3-7)を流れて第2分流配管(7)に流出する。第2分流配管(7)で合流した冷媒は、風下第8伝熱管(L3-8)、中間第8伝熱管(L2-8)、風上第8伝熱管(L1-8)、風上第7伝熱管(L1-7)、風上第6伝熱管(L1-6)、及び風上第5伝熱管(L1-5)を順に流れ、ガス側ヘッダ(73)の分岐管(73a)に流出する。このように、暖房時の下段並列パス(85)では、冷媒が風下第8伝熱管(L3-8)、中間第8伝熱管(L2-8)、及び風上第8伝熱管(L1-8)を順に流れることで、下段並列パス(85)の一部に対向流部(94)が形成される。また、暖房時の下段並列パス(85)では、冷媒が中間第6伝熱管(L2-6)から風下第6伝熱管(L3-6)へ流れ、且つ冷媒が中間第7伝熱管(L2-7)から風下第7伝熱管(L3-7)へ流れることで、下段並列パス(85)の一部に並行流部(93)が形成される。
  このように、暖房時の並列パス(84,85)では、冷媒が風下管列(L3)の伝熱管(71)、中間管列(L2)の伝熱管(71)、風上管列(L1)の伝熱管(71)を順に流れる対向流部(94)が形成される。この結果、第2領域(R2)においても、風上管列(L1)から風下管列(L3)に亘って冷媒と空気との温度差を確保でき、第2領域(R2)の熱交換率が増大する。
  〈冷房運転時の冷媒パス〉
  上述した冷房運転中の室内熱交換器(32)では、第1領域(R1)の各直列パス(81,82,83)において、3つの管列(L1,L2,L3)に亘って並行流部(全並行流部(92))が形成される。また、冷房運転中の室内熱交換器(32)では、第2領域(R2)の各並列パス(84,85)において、並行流部(93)と対向流部(94)との双方が形成される。
  具体的には、図10に示すように、冷房運転中の室内熱交換器(32)の第1領域(R1)では、ガス側ヘッダ(73)の分岐管(73a)を流出した冷媒が各直列パス(81,82,83)に流入する。各直列パス(81,82,83)に流入した冷媒は、風上第2伝熱管(L1-2)、風上第1伝熱管(L1-1)、中間第1伝熱管(L2-1)、中間第2伝熱管(L2-2)、風下第2伝熱管(L3-2)、及び風下第1伝熱管(L3-1)を順に流れ、液分流器(74)の分流路(74a)に流出する。
  このように、冷房時の直列パス(81,82,83)では、冷媒が風上管列(L1)の伝熱管(71)、中間管列(L2)の伝熱管(71)、風下管列(L3)の伝熱管(71)を順に流れる。これにより、冷房時の直列パス(81,82,83)では、風上端部から風下端部までの全域に亘って並行流部(全並行流部(92))が形成される。第1領域(R1)は、室内ファン(27)の吹出通路(72)に対向して形成されており、フィン(70)の間を通過する空気の流速が比較的大きい。このため、第1領域(R1)の全域に並行流部(92)を形成したとしても、第1領域(R1)の熱交換率をある程度確保することができる。
  また、図11に示すように、冷房運転中の室内熱交換器(32)の第2領域(R2)では、ガス側ヘッダ(73)の分岐管(73a)を流出した冷媒が上段並列パス(84)と下段並列パス(85)とにそれぞれ流入する。
  上段並列パス(84)では、ガス側ヘッダ(73)の分岐管(73a)の冷媒が、風上第4伝熱管(L1-4)、風上第3伝熱管(L1-3)、中間第3伝熱管(L2-3)、及び風下第3伝熱管(L3-3)を順に流れる。風下第3伝熱管(L3-3)に流入した冷媒は、第1分流配管(76)に流入し、2つの接続管(76a,76b)に分流した後、風下第4伝熱管(L3-4)と風下第5伝熱管(L3-5)とに流出する。風下第4伝熱管(L3-4)に流入した冷媒は、中間第4伝熱管(L2-4)を流れ、液分流器(74)の分流路(74a)に流出する。風下第5伝熱管(L3-5)に流入した冷媒は、中間第5伝熱管(L2-5)を流れ、液分流器(74)の分流路(74a)に流出する。このように、冷房時の上段並列パス(84)では、冷媒が風上第3伝熱管(L1-3)、中間第3伝熱管(L2-3)、及び風下第3伝熱管(L3-3)を順に流れることで、上段並列パス(84)の一部に並行流部(93)が形成される。また、冷房時の上段並列パス(84)では、冷媒が風下第4伝熱管(L3-4)から中間第4伝熱管(L2-4)へ流れ、且つ冷媒が風下第5伝熱管(L3-5)から中間第5伝熱管(L2-5)へ流れることで、上段並列パス(84)の一部に対向流部(94)が形成される。
  下段並列パス(85)では、ガス側ヘッダ(73)の分岐管(73a)の冷媒が、風上第5伝熱管(L1-5)、風上第6伝熱管(L1-6)、風上第7伝熱管(L1-7)、風上第8伝熱管(L1-8)、中間第8伝熱管(L2-8)、風下第8伝熱管(L3-8)を順に流れる。風下第8伝熱管(L3-8)に流入した冷媒は、第2分流配管(77)に流入し、2つの接続管(77a,77b)に分流した後、風下第6伝熱管(L3-6)と風下第7伝熱管(L3-7)とに流出する。風下第6伝熱管(L3-6)に流入した冷媒は、中間第6伝熱管(L2-6)を流れ、液分流器(74)の分流路(74a)に流出する。風下第7伝熱管(L3-7)に流入した冷媒は、中間第7伝熱管(L2-7)を流れ、液分流器(74)の分流路(74a)に流出する。このように、冷房時の下段並列パス(85)では、冷媒が風上第8伝熱管(L1-8)、中間第8伝熱管(L2-8)、風下第8伝熱管(L3-8)を順に流れることで、下段並列パス(85)の一部に並行流部(93)が形成される。また、冷房時の下段並列パス(85)では、冷媒が風下第6伝熱管(L3-6)から中間第6伝熱管(L2-6)へ流れ、且つ冷媒が風下第7伝熱管(L3-7)から中間第7伝熱管(L2-7)へ流れることで、下段並列パス(85)の一部に対向流部(94)が形成される。
  このように、冷房時の第2領域(R2)では、風下管列(L3)の伝熱管(71)から中間管列(L2)の伝熱管(71)に亘って対向流部(94)が形成される。このため、比較的流速が小さい空気が通過する第2領域(R2)であっても、空気と冷媒の伝熱を促進することができ、冷房性能を確保できる。
  -実施形態の効果-
  上記実施形態によれば、暖房時において、第1領域(R1)の直列パス(81,82,83)に全対向流部(91)を形成し、且つ第2領域(R2)の各並列パス(84,85)に一部対向流部(94)を形成しているため、冷媒と空気の温度差が全域に亘って確保し易くなる。この結果、室内熱交換器(32)では、比較的高い暖房能力を得ることができる。
  また、上記実施形態によれば、比較的空気の風速が小さい第2領域(R2)において、冷房時に一部対向流部(94)を形成するため、第2領域(R2)の全域に亘って並行流部が形成される場合と比較して、第2領域(R2)の熱交換率を増大できる。この結果、冷房時において、第2領域(R2)での冷媒と空気との伝熱を促進でき、冷房性能を向上できる。
  また、上記実施形態によれば、第2領域(R2)の並列パス(84,85)に分流配管(96,97)を設け、一部の伝熱管(71)を並列に繋いでいる。このため、各伝熱管(71)を直列に繋ぐ構成と比較して、冷媒流路の圧力損失を低減でき、圧縮機(12)の動力を削減できる。また、第2領域(R2)では、第1領域(R1)よりも多くの伝熱管(71)を繋いで冷媒パスを構成できる。従って、空気の流速が小さい第2領域(R2)においても、十分な熱交換率を得ることができる。また、並列パス(84,85)では、冷媒流路の圧力損失を低減させることで、冷媒が第1領域(R1)の各直列パス(81,82,83)へ偏流してしまうことも防止できる。
  《その他の実施形態》
  上記実施形態については、以下のような構成としてもよい。
  上記実施形態では、3つの管列(L1,L2,L3)を有する室内熱交換器(32)に本発明を適用しているが、4つ以上の管列を有する室内熱交換器(32)に本発明を適用してもよい。
  また、上述した実施形態の室内熱交換器(32)では、第1領域(R1)に3つの冷媒パス(81,82,83)(第1の冷媒パス)を形成し、第2領域(R2)に2つの冷媒パス(84,85)(第2の冷媒パス)を形成しているが、第1の冷媒パスを1つ、2つ、又は4つ以上としてもよいし、第2の冷媒パスを1つ、又は3つ以上としてもよい。
  また、上記実施形態の空気調和機(1)の室内ユニット(20)は、天井(U)の開口部(O)に嵌め込まれる天井埋込式に構成されていた。しかしながら、室内ユニット(20)は、天井に吊り下げられ、室内空間(R)に配置される天井吊下式に構成されていてもよい。
  以上説明したように、本発明は、空気調和機の室内ユニットの室内熱交換器の冷媒のパスについて有用である。
10  空気調和機
20  室内ユニット
27  室内ファン
32  室内熱交換器
36  ドレンパン
70  フィン
71  伝熱管
76  第1分流配管(分流部)
77  第2分流配管(分流部)
81  上段直列パス(第1の冷媒パス)
82  中間直列パス(第1の冷媒パス)
83  下段直列パス(第1の冷媒パス)
84  上段並列パス(第2の冷媒パス)
85  下段並列パス(第2の冷媒パス)
91  対向流部(全対向流部)
92  並行流部(全並行流部)
93  並行流部(一部並行流部)
94  対向流部(一部対向流部)
L1  風上管列
L2  中間管列
L3  風下管列
R1  第1領域
R2  第2領域

Claims (4)

  1.   天井に設けられ、冷房と暖房とを切り換えて行う空気調和機の室内ユニットであって、室内ファン(27)と、該室内ファン(27)の周囲に配置され、該室内ファン(27)が搬送する空気が通過する室内熱交換器(32)とを備え、
      上記室内熱交換器(32)は、複数のフィン(70)と、該フィン(70)を貫通する伝熱管(71)とを備え、該伝熱管(71)が気流方向に交差する方向に並んで形成される複数の管列(L1,L2,L3)を3列以上有する空気調和機の室内ユニットであって、
      上記室内熱交換器(32)には、
       上記暖房時において、冷媒が気流方向の最下流の管列(L3)から最上流の管列(L1)に向かって順に流れる全対向流部(91)を形成し、冷房時において、冷媒が気流方向の最上流の管列(L1)から最下流の管列(L3)に向かって順に流れる全並行流部(92)を形成する第1の冷媒パス(81,82,83)を有する第1領域(R1)と、
      上記第1領域(R1)よりも空気の流速が小さく構成され、冷房時と暖房時の双方において、冷媒が上記複数の管列(L1,L2,L3)のいずれかの管列の伝熱管(71)から該管列よりも気流方向の下流側の管列に流れる一部並行流部(93)と、冷媒が上記複数の管列(L1,L2,L3)のいずれかの管列の伝熱管(71)から該管列よりも気流方向の上流側の管列に流れる一部対向流部(94)とを共に形成する第2の冷媒パス(84,85)を有する第2領域(R2)とが形成される
      ことを特徴とする空気調和機の室内ユニット。
  2.   請求項1において、
      上記複数の管列(L1,L2,L3)は、上記気流方向の最上流に位置する風上管列(L1)と、上記気流方向の最下流に位置する風下管列(L3)と、上記風上管列(L1)と風下管列(L3)との間の位置する中間管列(L2)とで構成され、
      上記第1の冷媒パス(81,82,83)は、
       上記暖房時において、冷媒が上記風下管列(L3)の伝熱管(71)、上記中間管列(L2)の伝熱管(71)、上記風上管列(L1)の伝熱管(71)を順に流れる全対向流部(91)を形成し、
       上記冷房時において、冷媒が上記風上管列(L1)の伝熱管(71)、上記中間管列(L2)の伝熱管(71)、上記風下管列(L3)の伝熱管(71)を順に流れる全並行流部(92)を形成し、
      上記第2の冷媒パス(84,85)は、
       上記暖房時において、冷媒が上記中間管列(L2)の伝熱管(71)から上記風下管列(L3)の伝熱管(71)を流れる一部並行流部(93)と、冷媒が上記風下管列(L3)の伝熱管(71)、上記中間管列(L2)の伝熱管(71)、上記風上管列(L1)の伝熱管(71)を順に流れる一部対向流部(94)とを共に形成し、
      上記冷房時において、冷媒が上記風上管列(L1)の伝熱管(71)、上記中間管列(L2)の伝熱管(71)、上記風下管列(L3)の伝熱管(71)を順に流れる一部並行流部(93)と、冷媒が上記風下管列(L3)の伝熱管(71)から上記中間管列(L2)の伝熱管(71)に流れる一部対向流部(94)とを共に形成し、該中間管列(L2)の伝熱管(71)から冷媒を流出させるように構成される
      ことを特徴とする空気調和機の室内ユニット。
  3.   請求項1又は2において、
      上記第2の冷媒パス(84,85)には、上記冷房時において、上記一部並行流部(93)を流出した冷媒を複数の上記一部対向流部(94)へ分流させる分流部(76,77)が形成される
      ことを特徴とする空気調和機の室内ユニット。
  4.   請求項1乃至3のいずれか1つにおいて
      上記室内熱交換器(32)の下側には、ドレンパン(36)が配置され、
      上記室内熱交換器(32)の第2領域(R2)の少なくとも一部が、上記ドレンパン(36)の内部に位置している
      ことを特徴とする空気調和機の室内ユニット。
PCT/JP2014/001643 2013-04-30 2014-03-20 空気調和機の室内ユニット WO2014178164A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14792236.3A EP2957842B1 (en) 2013-04-30 2014-03-20 Indoor unit for air conditioning device
ES14792236.3T ES2655896T3 (es) 2013-04-30 2014-03-20 Unidad de interior para dispositivo de acondicionamiento de aire
AU2014260968A AU2014260968B2 (en) 2013-04-30 2014-03-20 Indoor unit for air conditioning device
CN201480005365.1A CN104937353B (zh) 2013-04-30 2014-03-20 空调机的室内机组
US14/777,813 US9568221B2 (en) 2013-04-30 2014-03-20 Indoor unit for air conditioning device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-095121 2013-04-30
JP2013095121A JP5644889B2 (ja) 2013-04-30 2013-04-30 空気調和機の室内ユニット

Publications (1)

Publication Number Publication Date
WO2014178164A1 true WO2014178164A1 (ja) 2014-11-06

Family

ID=51843309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001643 WO2014178164A1 (ja) 2013-04-30 2014-03-20 空気調和機の室内ユニット

Country Status (7)

Country Link
US (1) US9568221B2 (ja)
EP (1) EP2957842B1 (ja)
JP (1) JP5644889B2 (ja)
CN (1) CN104937353B (ja)
AU (1) AU2014260968B2 (ja)
ES (1) ES2655896T3 (ja)
WO (1) WO2014178164A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105402925A (zh) * 2015-12-15 2016-03-16 江苏朗肯空气空调有限公司 一种低环温喷液式空气源三联供机组
WO2023013347A1 (ja) * 2021-08-02 2023-02-09 パナソニックIpマネジメント株式会社 冷凍サイクル装置
US11892178B2 (en) * 2016-12-28 2024-02-06 Daikin Industries, Ltd. Heat exchanger unit and air conditioner using the same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102491602B1 (ko) * 2015-10-23 2023-01-25 삼성전자주식회사 공기조화기
KR101770643B1 (ko) * 2015-12-10 2017-08-23 엘지전자 주식회사 실외 열교환기 및 이를 포함하는 공기조화기
CN105546661B (zh) * 2016-02-19 2018-11-06 珠海格力电器股份有限公司 空调器
GB2562646B (en) * 2016-02-22 2020-10-28 Mitsubishi Electric Corp Refrigeration cycle apparatus
EP3460358A4 (en) * 2016-05-19 2019-05-15 Mitsubishi Electric Corporation EXTERNAL UNIT AND REFRIGERATION CYCLE DEVICE COMPRISING THE SAME
CN106765556A (zh) * 2016-11-30 2017-05-31 青岛海尔空调器有限总公司 一种空调器及其控制系统和方法
EP3604969A4 (en) * 2017-03-27 2020-04-01 Daikin Industries, Ltd. INDOOR AIR CONDITIONING UNIT
WO2018180934A1 (ja) 2017-03-27 2018-10-04 ダイキン工業株式会社 熱交換器及び冷凍装置
ES2959400T3 (es) * 2017-12-13 2024-02-26 Mitsubishi Electric Corp Unidad de intercambio de calor y dispositivo de acondicionamiento de aire que tiene la misma montada en él
CN109341149A (zh) * 2018-11-08 2019-02-15 中车大连机车研究所有限公司 一种co2跨临界循环空调用气体冷却器
JP7170841B2 (ja) * 2019-03-26 2022-11-14 三菱電機株式会社 熱交換器および冷凍サイクル装置
EP4141348A4 (en) * 2020-04-20 2023-08-09 Mitsubishi Electric Corporation REFRIGERATION CIRCUIT DEVICE
WO2022244126A1 (ja) * 2021-05-19 2022-11-24 三菱電機株式会社 空気調和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5862469A (ja) * 1981-10-08 1983-04-13 三菱重工業株式会社 ヒ−トポンプ式冷凍装置
JPS63231123A (ja) * 1987-03-18 1988-09-27 Hitachi Ltd 空気調和機の熱交換装置
JP2000304380A (ja) * 1999-04-22 2000-11-02 Aisin Seiki Co Ltd 熱交換器
JP2002195675A (ja) * 2001-11-09 2002-07-10 Toshiba Kyaria Kk 空気調和装置
JP2007192442A (ja) * 2006-01-18 2007-08-02 Daikin Ind Ltd 熱交換器
JP2011122819A (ja) 2009-11-04 2011-06-23 Daikin Industries Ltd 熱交換器及びそれを備えた室内機
WO2012114719A1 (ja) * 2011-02-23 2012-08-30 ダイキン工業株式会社 空気調和機用熱交換器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4053014A (en) * 1975-05-23 1977-10-11 Westinghouse Electric Corporation Finned tube coil
US4089368A (en) * 1976-12-22 1978-05-16 Carrier Corporation Flow divider for evaporator coil
US4434843A (en) * 1978-04-17 1984-03-06 International Environmental Manufacturing Co. Heat exchanger apparatus
DE3938842A1 (de) * 1989-06-06 1991-05-29 Thermal Waerme Kaelte Klima Verfluessiger fuer ein kaeltemittel einer fahrzeugklimaanlage
US4995453A (en) * 1989-07-05 1991-02-26 Signet Systems, Inc. Multiple tube diameter heat exchanger circuit
US5219023A (en) * 1992-03-09 1993-06-15 General Motors Corporation Three row condenser with high efficiency flow path
US6116048A (en) * 1997-02-18 2000-09-12 Hebert; Thomas H. Dual evaporator for indoor units and method therefor
JP3521323B2 (ja) * 1998-12-18 2004-04-19 株式会社日立製作所 天井埋込形の室内機
US6382310B1 (en) * 2000-08-15 2002-05-07 American Standard International Inc. Stepped heat exchanger coils
US7032411B2 (en) * 2002-08-23 2006-04-25 Global Energy Group, Inc. Integrated dual circuit evaporator
KR100656083B1 (ko) * 2005-01-31 2006-12-11 엘지전자 주식회사 공조기의 열교환기
CN101248321A (zh) * 2005-06-23 2008-08-20 卡里尔公司 对制冷电路中蒸发器进行除霜的方法
WO2007061420A1 (en) * 2005-11-28 2007-05-31 Carrier Commercial Refrigeration, Inc. Refrigerated case
KR100782195B1 (ko) * 2006-08-10 2007-12-04 엘지전자 주식회사 공기 조화기
US20080141695A1 (en) * 2006-12-18 2008-06-19 Samsung Electronics Co., Ltd. Ceiling type air conditioner and control method thereof
EP2444751B1 (en) * 2009-06-19 2019-01-30 Daikin Industries, Ltd. Ceiling-mounted air conditioning unit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5862469A (ja) * 1981-10-08 1983-04-13 三菱重工業株式会社 ヒ−トポンプ式冷凍装置
JPS63231123A (ja) * 1987-03-18 1988-09-27 Hitachi Ltd 空気調和機の熱交換装置
JP2000304380A (ja) * 1999-04-22 2000-11-02 Aisin Seiki Co Ltd 熱交換器
JP2002195675A (ja) * 2001-11-09 2002-07-10 Toshiba Kyaria Kk 空気調和装置
JP2007192442A (ja) * 2006-01-18 2007-08-02 Daikin Ind Ltd 熱交換器
JP2011122819A (ja) 2009-11-04 2011-06-23 Daikin Industries Ltd 熱交換器及びそれを備えた室内機
WO2012114719A1 (ja) * 2011-02-23 2012-08-30 ダイキン工業株式会社 空気調和機用熱交換器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2957842A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105402925A (zh) * 2015-12-15 2016-03-16 江苏朗肯空气空调有限公司 一种低环温喷液式空气源三联供机组
US11892178B2 (en) * 2016-12-28 2024-02-06 Daikin Industries, Ltd. Heat exchanger unit and air conditioner using the same
WO2023013347A1 (ja) * 2021-08-02 2023-02-09 パナソニックIpマネジメント株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
US9568221B2 (en) 2017-02-14
EP2957842B1 (en) 2017-11-01
JP5644889B2 (ja) 2014-12-24
ES2655896T3 (es) 2018-02-22
JP2014215017A (ja) 2014-11-17
AU2014260968B2 (en) 2015-09-10
EP2957842A1 (en) 2015-12-23
EP2957842A4 (en) 2016-03-30
CN104937353B (zh) 2016-10-05
US20160138839A1 (en) 2016-05-19
CN104937353A (zh) 2015-09-23

Similar Documents

Publication Publication Date Title
JP5644889B2 (ja) 空気調和機の室内ユニット
JP5811134B2 (ja) 空気調和機の室内ユニット
JP5581671B2 (ja) 空調室外機
WO2010146852A1 (ja) 天井設置型空気調和装置
WO2013160957A1 (ja) 熱交換器、室内機及び冷凍サイクル装置
EP2993423B1 (en) Decorative panel and air-conditioner in-room unit provided with same
JP6179414B2 (ja) 冷凍装置の熱源ユニットの熱交換器、および、それを備えた熱源ユニット
JP6149494B2 (ja) 化粧パネル、及び空気調和機の室内ユニット
KR101550550B1 (ko) 공기 조화기
JP2016200338A (ja) 空気調和機
JP6253513B2 (ja) 空気調和機の室内ユニット
JP5450206B2 (ja) 空気調和装置の室外ユニット
CN111448423B (zh) 空气调节机
JP5803974B2 (ja) 化粧パネル及びそれを備えた空気調和機の室内ユニット
JP6070390B2 (ja) 空気調和機の室内ユニット
JP7357137B1 (ja) 空気調和機
WO2023233572A1 (ja) 熱交換器及び冷凍サイクル装置
JP2024048908A (ja) 空気調和装置
JP2014215022A (ja) 空気調和機の室内ユニット
CN117479998A (zh) 除湿装置
JP2010216674A (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14792236

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014260968

Country of ref document: AU

REEP Request for entry into the european phase

Ref document number: 2014792236

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014792236

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14777813

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE