WO2014175519A1 - 잉크젯 프린팅용 세라믹 잉크 조성물 및 그 제조방법 - Google Patents

잉크젯 프린팅용 세라믹 잉크 조성물 및 그 제조방법 Download PDF

Info

Publication number
WO2014175519A1
WO2014175519A1 PCT/KR2013/008810 KR2013008810W WO2014175519A1 WO 2014175519 A1 WO2014175519 A1 WO 2014175519A1 KR 2013008810 W KR2013008810 W KR 2013008810W WO 2014175519 A1 WO2014175519 A1 WO 2014175519A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
ink composition
ceramic
dispersion
inkjet printing
Prior art date
Application number
PCT/KR2013/008810
Other languages
English (en)
French (fr)
Inventor
한규성
김진호
황광택
조우석
이기찬
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Publication of WO2014175519A1 publication Critical patent/WO2014175519A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/407Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/004Pigment pastes, e.g. for mixing in paints containing an inorganic pigment
    • C09D17/007Metal oxide

Definitions

  • the present invention relates to a ceramic ink composition and a method of manufacturing the same, and more particularly, excellent dispersion stability, excellent color clarity, excellent coloring power, stable at high temperature, can be printed without clogging the nozzle during inkjet printing and ceramic It relates to a high-density ceramic ink composition for inkjet printing that can be used when printing on tiles and the like and a method of manufacturing the same.
  • Inkjet printing is a process technology for ejecting fine ink droplets from a head and patterning them at desired positions. Inkjet printing is suitable for implementing small volumes of complex shapes in a non-contact manner. Inkjet printing is a simple process, less waste of raw materials, less damage to the substrate, and is an environmentally friendly process.
  • Pigments used in inkjet printing can be largely classified into organic pigments and inorganic pigments.
  • Organic pigments have a disadvantage in that they are vivid in color, have great coloring power, and are easy to obtain desired color tone, but are inferior in heat resistance and light resistance and are mostly dissolved in organic solvents.
  • inorganic pigments have a high light resistance and heat resistance, and are stable to an organic solvent, but have a disadvantage of poor coloring power and poor color clarity.
  • the problem to be solved by the present invention is excellent dispersion stability, excellent color clarity, excellent coloring power, stable at high temperature, can be printed without clogging the nozzle during inkjet printing, inkjet printing that can be used when printing on ceramic tiles, etc. It is to provide a ceramic ink composition and a method for producing the same.
  • At least one blue ceramic pigment selected from Mg 1-x Co x Al 2 O 4 (0.1 ⁇ x ⁇ 1 ) powder and Mg 1-x Ni x Al 2 O 4 (0.1 ⁇ x ⁇ 1) powder
  • a ceramic ink composition for inkjet printing, dispersed in a dispersion, having a viscosity of 10 to 30 cps, a surface tension of 25 to 40 dyn / cm, and an average particle diameter of the ceramic pigment is 50 to 300 nm.
  • a red ceramic pigment containing CaSn 1-x Cr x SiO 4 (0.01 ⁇ x ⁇ 0.5) powder is dispersed in a dispersion, has a viscosity of 10 to 30 cps, and a surface tension of 25 to 40 dyn /. It is cm, and the average particle diameter of the ceramic pigment provides a ceramic ink composition for inkjet printing is 50 ⁇ 300nm.
  • the present invention is Zr 1-x Ce x SiO 4 (0.01 ⁇ x ⁇ 0.5) powder, Zr 1-x Pr x SiO 4 (0.01 ⁇ x ⁇ 0.5) powder and a Zr 1-x Ta x SiO 4 (0.01 ⁇ x ⁇ 0.5) at least one yellow ceramic pigment selected from powders is dispersed in the dispersion, has a viscosity of 10 to 30 cps, a surface tension of 25 to 40 dyn / cm, and an average particle diameter of the ceramic pigment is 50 to 300 nm.
  • a ceramic ink composition for phosphorus inkjet printing is provided.
  • the present invention is a black ceramic pigment containing Co (Fe 1-x Cr x ) 2 O 4 (0.01 ⁇ x ⁇ 0.5) powder is dispersed in the dispersion, the viscosity is 10 ⁇ 30 cps, the surface tension It provides a ceramic ink composition for inkjet printing of 25 to 40 dyn / cm, the average particle diameter of the ceramic pigment is 50 to 300 nm.
  • the ceramic ink composition for inkjet printing may include 10 to 43 parts by weight of the ceramic pigment with respect to 100 parts by weight of the dispersion.
  • the dispersion may include one or more selected from ethylene glycol and toluene.
  • the dispersion may further include ethanol to improve the discharge characteristics and control the viscosity and surface tension, the ethanol is included in 5 to 35% by volume of the total volume of the dispersion Can be.
  • the inkjet printing ceramic ink composition is cetyl trimethylammonium bromide (cetyl trimethylammonium bromide), cetyl trimethylammonium chloride (cetyl trimethylammonium chloride), dioctadecyldimethylammonium bromide And at least one additive selected from CH 3 (CH 2 ) 15 N (Br) (CH 3 ) 3 , wherein the additive is 0.001 to 3 weight parts based on 100 parts by weight of the dispersion in the ceramic ink composition for inkjet printing. We can include vice.
  • the inkjet printing ceramic ink composition further comprises at least one additive selected from sodium dodecyl sulfate and CH 3 (CH 2 ) 10 CH 2 OSO 3 Na, wherein the additive
  • the inkjet printing may include 0.001 to 3 parts by weight based on 100 parts by weight of the dispersion liquid in the ceramic ink composition.
  • the present invention provides at least one blue ceramic selected from Mg 1-x Co x Al 2 O 4 (0.1 ⁇ x ⁇ 1 ) powder and Mg 1-x Ni x Al 2 O 4 (0.1 ⁇ x ⁇ 1) powder.
  • Preparing a pigment grinding the ceramic pigment to have an average particle diameter of 50 to 300 nm; And dispersing the pulverized product in a dispersion to obtain a ceramic ink composition having a viscosity of 10 to 30 cps and a surface tension of 25 to 40 dyn / cm. It provides a method for producing a ceramic ink composition for inkjet printing comprising a.
  • the step of preparing a blue ceramic pigment is MgO powder which is an oxide containing magnesium (Mg) component; CoO powder which is an oxide containing a cobalt (Co) component; And Al 2 O 3 powder, which is an oxide containing aluminum (Al) component, as a starting material in a molar ratio of 1-x: x: 1 (0.1 ⁇ x ⁇ 1), or an oxide containing magnesium (Mg) component.
  • Phosphorus MgO powder NiO powder which is an oxide containing a nickel (Ni) component
  • Al 2 O 3 powder which is an oxide including an aluminum (Al) component, as a starting material in a molar ratio of 1-x: x: 1 (0.1 ⁇ x ⁇ 1); Putting the starting materials, balls and solvent into a mill to perform solid phase reactions between the oxides while mechanically mixing and grinding the starting materials; And calcining the pulverized result to obtain Mg 1-x Co x Al 2 O 4 (0.1 ⁇ x ⁇ 1 ) powder or Mg 1-x Ni x Al 2 O 4 (0.1 ⁇ x ⁇ 1) powder. can do.
  • the present invention comprises the steps of preparing a red ceramic pigment containing CaSn 1-x Cr x SiO 4 (0.01 ⁇ x ⁇ 0.5) powder; Grinding the ceramic pigment to have an average particle diameter of 50 to 300 nm; And dispersing the pulverized product in a dispersion to obtain a ceramic ink composition having a viscosity of 10 to 30 cps and a surface tension of 25 to 40 dyn / cm. It provides a method for producing a ceramic ink composition for inkjet printing comprising a.
  • the step of preparing a red ceramic pigment is CaO powder which is an oxide containing calcium (Ca) component; SnO powder which is an oxide containing a tin (Sn) component; Cr 2 O 3 powder which is an oxide containing a chromium (Cr) component; And SiO 2 powder, which is an oxide comprising a silicon (Si) component, as a starting material such that Ca, Sn, Cr, and Si achieve a molar ratio of 1: 1-x: x: 1 (0.01 ⁇ x ⁇ 0.5).
  • the present invention is Zr 1-x Ce x SiO 4 (0.01 ⁇ x ⁇ 0.5) powder, Zr 1-x Pr x SiO 4 (0.01 ⁇ x ⁇ 0.5) powder and a Zr 1-x Ta x SiO 4 (0.01 ⁇ x ⁇ 0.5) preparing at least one yellow ceramic pigment selected from powders; Grinding the ceramic pigment to have an average particle diameter of 50 to 300 nm; And dispersing the pulverized product in a dispersion to obtain a ceramic ink composition having a viscosity of 10 to 30 cps and a surface tension of 25 to 40 dyn / cm. It provides a method for producing a ceramic ink composition for inkjet printing comprising a.
  • the step of preparing the yellow ceramic pigment is ZrO 2 powder which is an oxide containing a zirconium (Zr) component; CeO 2 powder which is an oxide containing cerium (Ce) component; SiO 2 powder, an oxide containing a silicon (Si) component; prepared as a starting material in a molar ratio of 1-x: x: 1 (0.01 ⁇ x ⁇ 0.5), or ZrO 2 , an oxide containing a zirconium (Zr) component powder; Pr 2 O 3 powder which is an oxide containing praseodymium (Pr) component; And SiO 2 powder, which is an oxide including a silicon (Si) component, as a starting material such that Zr, Pr, and Si have a molar ratio of 1-x: x: 1 (0.01 ⁇ x ⁇ 0.5), or zirconium (Zr) ZrO 2 powder which is an oxide containing a component; Ta 2 O 5 powder which is an oxide containing a component;
  • the present invention comprises the steps of preparing a black ceramic pigment containing Co (Fe 1-x Cr x ) 2 O 4 (0.01 ⁇ x ⁇ 0.5) powder; Grinding the ceramic pigment to have an average particle diameter of 50 to 300 nm; And dispersing the pulverized product in a dispersion to obtain a ceramic ink composition having a viscosity of 10 to 30 cps and a surface tension of 25 to 40 dyn / cm. It provides a method for producing a ceramic ink composition for inkjet printing comprising a.
  • the step of preparing the black ceramic pigment is CoO powder which is an oxide containing a cobalt (Co) component; Fe 2 O 3 powder which is an oxide containing an iron (Fe) component; Preparing Cr 2 O 3 powder, which is an oxide including chromium (Cr) component, as a starting material in a molar ratio of 1: 1-x: x (0.01 ⁇ x ⁇ 0.5); Putting the starting materials, balls and solvent into a mill to perform solid phase reactions between the oxides while mechanically mixing and grinding the starting materials; And calcining the pulverized result to obtain Co (Fe 1-x Cr x ) 2 O 4 (0.01 ⁇ x ⁇ 0.5) powder.
  • Co cobalt
  • Fe 2 O 3 powder which is an oxide containing an iron (Fe) component
  • Cr 2 O 3 powder which is an oxide including chromium (Cr) component
  • the dispersion may include at least one material selected from ethylene glycol and toluene.
  • the dispersion further comprises ethanol to improve the discharge characteristics and control the viscosity and surface tension
  • the ethanol may contain 5 to 35% by volume in the dispersion.
  • cetyltrimethylammonium bromide when dispersed in the dispersion cetyltrimethylammonium bromide, cetyltrimethylammonium chloride, dioctadecyldimethylammonium bromide and CH 3 (CH 2 ) 15 N (Br) (CH 3 ) At least one material selected from three is further added, and the additive may be contained in the ceramic ink composition in an amount of 0.001 to 3 parts by weight based on 100 parts by weight of the dispersion.
  • the present invention provides a ceramic ink composition for inkjet printing which has excellent dispersion stability, excellent color clarity, excellent coloring power, stable at high temperature, can be printed without nozzle clogging during inkjet printing, and can be used when printing on ceramic tiles. You can get it.
  • the manufacturing method of the ceramic ink composition for inkjet printing according to the present invention is a simple process and excellent in reproducibility.
  • FIG. 2 is a graph showing CIE La * b * before calcination and CIE La * b * according to calcination temperature of CoAl 2 O 4 powder synthesized after calcination according to Experimental Example 1.
  • FIG. 2 is a graph showing CIE La * b * before calcination and CIE La * b * according to calcination temperature of CoAl 2 O 4 powder synthesized after calcination according to Experimental Example 1.
  • 3A and 3B are scanning electron microscope (SEM) images showing the microstructure of CoAl 2 O 4 powder calcined and synthesized at 1200 ° C. according to Experimental Example 1.
  • SEM scanning electron microscope
  • FIG. 4A and 4B are diagrams showing the results of EDS component analysis of CoAl 2 O 4 powder calcined and synthesized at 1200 ° C. according to Experimental Example 1.
  • FIG. 4A and 4B are diagrams showing the results of EDS component analysis of CoAl 2 O 4 powder calcined and synthesized at 1200 ° C. according to Experimental Example 1.
  • 5a to 5f are scanning electron microscope (SEM) images showing the microstructure of CoAl 2 O 4 powder according to attrition milling time.
  • Figure 6 is a graph showing the results of measuring the particle size of the CoAl 2 O 4 powder with an attention milling time using a laser scattering particle size distribution analyzer.
  • FIG. 7 is a graph showing the X-ray diffraction pattern before attrition milling and after attrition milling for 3 hours.
  • 9A and 9B are transmission electron microscope (TEM) images of CoAl 2 O 4 powder after 3 hours of attrition milling.
  • 11A and 11B are transmission electron micrographs of a ceramic ink composition for inkjet printing formed by adding cetyltrimethylammonium bromide (CTAB).
  • CTAB cetyltrimethylammonium bromide
  • 12A and 12B are transmission electron micrographs of a ceramic ink composition for inkjet printing formed by adding sodium dodecyl sulfate (SDS).
  • SDS sodium dodecyl sulfate
  • Figure 13 is a photograph showing the dispersion stability according to the surfactant and dispersion.
  • 14a to 14c is a photograph showing the coloring power according to the content of CoAl 2 O 4 powder.
  • 15A to 15B are photographs showing the droplet formation process of the ceramic ink according to the dispersion liquid.
  • At least one blue ceramic pigment selected from Mg 1-x Co x Al 2 O 4 (0.1 ⁇ x ⁇ 1 ) powder and Mg 1-x Ni x Al 2 O 4 (0.1 ⁇ x ⁇ 1) powder
  • a ceramic ink composition for inkjet printing, dispersed in a dispersion, having a viscosity of 10 to 30 cps, a surface tension of 25 to 40 dyn / cm, and an average particle diameter of the ceramic pigment is 50 to 300 nm.
  • the Mg 1-x Co x Al 2 O 4 (0.1 ⁇ x ⁇ 1) or Mg 1-x Ni x Al 2 O 4 (0.1 ⁇ x ⁇ 1) has a spinel structure, stable blue at high temperature As it develops a series of colors, it can be used as a high-definition blue ceramic pigment.
  • MgO powder may be used as an oxide powder including magnesium (Mg) component, and cobalt (Co) component may be used.
  • CoO powder may be used as the oxide powder
  • Al 2 O 3 powder may be used as the oxide powder containing aluminum (Al).
  • An oxide powder containing a magnesium (Mg) component, an oxide powder containing a cobalt (Co) component, and an oxide powder including an aluminum (Al) component have a molar ratio of 1-x: x: 1 (0.1 ⁇ x ⁇ 1). Be prepared to accomplish.
  • the content of the oxide powder containing a magnesium (Mg) component is 0 (when x is 1 at a molar ratio of 1-x: x: 1)
  • CoAl 2 O 4 powder may be synthesized.
  • the CoAl 2 O 4 has an AB 2 O 4 structure and is thermally and chemically stable as a spinel structure. CoAl 2 O 4 develops blue color stably at high temperature, so it can be used as ceramic pigment of high-definition blue system.
  • MgO powder may be used as an oxide powder containing magnesium (Mg) component, and nickel (Ni) component may be used.
  • NiO powder may be used as the oxide powder
  • Al 2 O 3 powder may be used as the oxide powder containing aluminum (Al).
  • An oxide powder containing a magnesium (Mg) component, an oxide powder containing a nickel (Ni) component, and an oxide powder containing an aluminum (Al) component have a molar ratio of 1-x: x: 1 (0.1 ⁇ x ⁇ 1). Be prepared to accomplish.
  • NiAl 2 O 4 powder may be synthesized.
  • the prepared starting materials are subjected to a solid phase reaction between the oxides while mechanically mixing and grinding.
  • the starting materials, balls and solvents are loaded into milling machines such as ball mills and attrition mills.
  • milling machines such as ball mills and attrition mills.
  • the starting materials are ground and mixed uniformly.
  • the solid phase reaction occurs between the oxide powder by the energy of the collision of the ball and the starting material, the ball and the ball, the ball and the mill.
  • the starting materials of the oxide powders react with each other by the collision energy.
  • the solvent water, alcohol such as ethanol, or the like can be used.
  • the ball used in the mill may use a ball made of ceramics such as alumina and zirconia, and the balls may be all the same size or may be used together with two or more balls.
  • the size of the ball, the weight ratio of the ball and the oxide powder, the milling time, the rotation speed of the mill, etc. are adjusted to grind to the size of the target oxide powder particles.
  • the size of the ball is preferably set in the range of about 1 to 50 mm, and the rotational speed of the mill is set in the range of about 300 to 1200 rpm.
  • Milling is preferably carried out for 1 to 48 hours in consideration of the size of the target particles, the degree of solid phase reaction and the like.
  • the ball and the starting material introduced into the mill are preferably in a weight ratio of 20 to 150: 1. If the content of the ball in the starting material is too small, there is a limit to agglomeration of the particles or to refine the size of the particles due to insufficient grinding, it is not efficient if the content of the ball in the starting material is too large.
  • Oxide powders which are starting materials by milling, are pulverized into fine-sized particles, have a uniform particle size distribution, are uniformly mixed, and chemical grinding by a ball and a solid phase reaction occur simultaneously in a mill. The mechanical and chemical treatment will be made.
  • the resultant mixture is dried using a milling machine, charged into a furnace such as an electric furnace, and subjected to a calcination process.
  • the calcination process is preferably performed for about 1 to 24 hours at a calcination temperature of about 1000 ⁇ 1450 °C. It is preferable to increase the temperature at a heating rate of 1 to 50 ° C./min until the calcination temperature. If the temperature rising rate is too slow, it takes a long time to decrease productivity, and if the temperature rising rate is too fast, thermal stress may be applied by a sudden temperature rise. Since it is possible to raise the temperature at the temperature increase rate in the above range.
  • the calcination is preferably carried out in an oxidizing atmosphere (for example, oxygen (O 2 ) or air atmosphere).
  • an oxidizing atmosphere for example, oxygen (O 2 ) or air atmosphere.
  • the resultant Mg 1-x Co x Al 2 O 4 (0.1 ⁇ x ⁇ 1 ) powder or Mg 1-x Ni x Al 2 O 4 (0.1 ⁇ x ⁇ 1) Unload the powder.
  • the furnace cooling may be allowed to cool down in a natural state by turning off the furnace power source, or to set a temperature drop rate (eg, 10 ° C./min) arbitrarily.
  • One or more blue ceramics selected from Mg 1-x Co x Al 2 O 4 (0.1 ⁇ x ⁇ 1 ) powder or Mg 1-x Ni x Al 2 O 4 (0.1 ⁇ x ⁇ 1) powder synthesized as described above A pigment is used to prepare a blue-based ceramic ink composition.
  • the blue ceramic pigment In order to uniformly grind the blue ceramic pigment, it is charged into a milling machine such as a ball mill or an attention mill. The ball and solvent are placed in a mill and the blue ceramic pigment is mechanically ground. It is preferable to grind so that the average particle diameter of a ceramic pigment may be 50-300 nm.
  • the solvent water, alcohol such as ethanol, or the like can be used.
  • the ball used in the mill may use a ball made of ceramics such as alumina and zirconia, and the balls may be all the same size or may be used together with two or more balls.
  • the size of the ball is preferably set in the range of about 1 to 50 mm, and the rotational speed of the mill is set in the range of about 100 to 1200 rpm. Milling is preferably carried out for 1 to 48 hours in consideration of the target particle size and the like.
  • the ball and the ceramic pigment introduced into the mill are preferably in a weight ratio of 20 to 150: 1. If the content of the ball in the ceramic pigment is too small, there is a limit to agglomeration of the particles or to refine the size of the particles due to insufficient grinding, it is not efficient when the content of the ball in the ceramic pigment is too large.
  • the size of the particles decreases, and the ceramic pigment is pulverized into fine sized particles, and has a uniform particle size distribution.
  • the ground ceramic pigment is dried.
  • the drying is preferably carried out at a temperature of about 30 ⁇ 150 °C.
  • a dried ceramic pigment is added to the dispersion and dispersed to prepare a blue ceramic ink composition. It is preferable to disperse the ceramic pigment in the dispersion such that the viscosity of the ceramic ink composition is in the range of 10 to 30 cps and the surface tension is in the range of 25 to 40 dyn / cm.
  • the ceramic pigment is preferably contained 10 to 43 parts by weight based on 100 parts by weight of the dispersion liquid in the ceramic ink composition for inkjet printing.
  • the dispersion may be ethylene glycol, toluene, or a mixture thereof.
  • the dispersion may further include ethanol as a non-thickener to improve the discharge characteristics of the ceramic ink composition, and to control viscosity and surface tension.
  • the ethanol is preferably contained 5 to 35% by volume in the dispersion.
  • a surfactant may be further added when the ceramic pigment is dispersed in the dispersion. It is preferable to add the surfactant to the inkjet printing ceramic ink composition to be contained in an amount of 0.001 to 3 parts by weight based on 100 parts by weight of the dispersion.
  • the surfactant is cetyl trimethylammonium bromide (CTAB), cetyl trimethylammonium chloride (CTAC), dioctadecyldimethylammonium bromide (DODAB) and CH 3 (CH 2 ) 15 N
  • CTAB cetyl trimethylammonium bromide
  • CAC cetyl trimethylammonium chloride
  • DODAB dioctadecyldimethylammonium bromide
  • CH 3 (CH 2 ) 15 N One or more cationic surfactants selected from Br) (CH 3 ) 3 or at least one anionic interface selected from sodium dodecylsulfate (SDS) and CH 3 (CH 2 ) 10 CH 2 OSO 3 Na Preference is given to using activators.
  • a red ceramic pigment containing CaSn 1-x Cr x SiO 4 (0.01 ⁇ x ⁇ 0.5) powder is dispersed in a dispersion, has a viscosity of 10 to 30 cps, and a surface tension of 25 to 40 dyn /. It is cm, and the average particle diameter of the ceramic pigment provides a ceramic ink composition for inkjet printing is 50 ⁇ 300nm.
  • the CaSn 1-x Cr x SiO 4 (0.01 ⁇ x ⁇ 0.5) powder is thermally and chemically stable.
  • CaSn 1-x Cr x SiO 4 (0.01 ⁇ x ⁇ 0.5) powder can be used as a high-density red ceramic pigment because it stably develops a red-based color at high temperature.
  • Preparation of CaSn 1-x Cr x SiO 4 (0.01 ⁇ x ⁇ 0.5) powder using the solid phase method is performed by mixing oxide powders, which are starting materials, by a target ratio, and then mixing a ball mill and an attention mill. After the solid phase reaction takes place, it is calcined at a relatively low temperature (eg, 1000 to 1450 ° C.) to obtain a spinel crystal structure.
  • a relatively low temperature eg, 1000 to 1450 ° C.
  • CaO powder may be used as an oxide powder containing a calcium (Ca) component, and a tin (Sn) component may be used.
  • SnO powder may be used as the oxide powder
  • Cr 2 O 3 powder may be used as the oxide powder containing chromium (Cr) component
  • SiO 2 powder may be used as the oxide powder including silicon (Si) component.
  • Oxide powders containing a calcium (Ca) component, oxide powders containing a tin (Sn) component, oxide powders containing a chromium (Cr) component, oxide powders containing a silicon (Si) component are Ca, Sn, Cr and Si is prepared to have a molar ratio of 1: 1-x: x: 1 (0.01 ⁇ x ⁇ 0.5).
  • the prepared starting materials are subjected to a solid phase reaction between the oxides while mechanically mixing and grinding.
  • the starting materials, balls and solvents are loaded into milling machines such as ball mills and attrition mills. Using a milling machine, the starting materials are mixed and ground. At this time, the solid phase reaction occurs between the oxide powder by the energy of the collision of the ball and the starting material, the ball and the ball, the ball and the mill. During the milling process, the starting materials of the oxide powders react with each other by the collision energy.
  • the solvent water, alcohol such as ethanol, or the like can be used.
  • the ball used in the mill may use a ball made of ceramics such as alumina and zirconia, and the balls may be all the same size or may be used together with two or more balls.
  • the size of the ball, the weight ratio of the ball and the oxide powder, the milling time, the rotation speed of the mill, etc. are adjusted to grind to the size of the target oxide powder particles.
  • the size of the ball is preferably set in the range of about 1 to 50 mm, and the rotational speed of the mill is set in the range of about 300 to 1200 rpm.
  • Milling is preferably carried out for 1 to 48 hours in consideration of the size of the target particles, the degree of solid phase reaction and the like.
  • the ball and the starting material introduced into the mill are preferably in a weight ratio of 20 to 150: 1. If the content of the ball in the starting material is too small, there is a limit to agglomeration of the particles or to refine the size of the particles due to insufficient grinding, it is not efficient if the content of the ball in the starting material is too large.
  • Oxide powders which are starting materials by milling, are pulverized into fine-sized particles, have a uniform particle size distribution, are uniformly mixed, and chemical grinding by a ball and a solid phase reaction occur simultaneously in a mill. It will be a mechanical chemical treatment.
  • the resultant mixture is dried using a milling machine, charged into a furnace such as an electric furnace, and subjected to a calcination process.
  • the calcination process is preferably performed for about 1 to 24 hours at a calcination temperature of about 1000 ⁇ 1450 °C. It is preferable to increase the temperature at a heating rate of 1 to 50 ° C./min until the calcination temperature. If the temperature rising rate is too slow, it takes a long time to decrease productivity, and if the temperature rising rate is too fast, thermal stress may be applied by a sudden temperature rise. Since it is possible to raise the temperature at a temperature rising rate in the above range, it is preferable.
  • the calcination is preferably carried out in an oxidizing atmosphere (for example, oxygen (O 2) or air atmosphere).
  • an oxidizing atmosphere for example, oxygen (O 2) or air atmosphere.
  • the furnace temperature is lowered to unload the resulting CaSn 1-x Cr x SiO 4 (0.01 ⁇ x ⁇ 0.5) powder.
  • the furnace cooling may be allowed to cool down in a natural state by turning off the furnace power source, or to set a temperature drop rate (eg, 10 ° C./min) arbitrarily.
  • a red-based ceramic ink composition is prepared using a red ceramic pigment including CaSn 1-x Cr x SiO 4 (0.01 ⁇ x ⁇ 0.5) powder synthesized as described above.
  • the red ceramic pigment In order to uniformly grind the red ceramic pigment, it is charged into a milling machine such as a ball mill or an attention mill. The ball and solvent are placed in a mill and the red ceramic pigment is mechanically ground. It is preferable to grind so that the average particle diameter of a ceramic pigment may be 50-300 nm.
  • a milling machine such as a ball mill or an attention mill.
  • the ball and solvent are placed in a mill and the red ceramic pigment is mechanically ground. It is preferable to grind so that the average particle diameter of a ceramic pigment may be 50-300 nm.
  • the solvent water, alcohol such as ethanol, or the like can be used.
  • the ball used in the mill may use a ball made of ceramics such as alumina and zirconia, and the balls may be all the same size or may be used together with two or more balls.
  • the size of the ball is preferably set in the range of about 1 to 50 mm, and the rotational speed of the mill is set in the range of about 100 to 1200 rpm. Milling is preferably carried out for 1 to 48 hours in consideration of the target particle size and the like.
  • the ball and the ceramic pigment introduced into the mill are preferably in a weight ratio of 20 to 150: 1. If the content of the ball in the ceramic pigment is too small, there is a limit to agglomeration of the particles or to refine the size of the particles due to insufficient grinding, it is not efficient when the content of the ball in the ceramic pigment is too large.
  • the size of the particles decreases, and the ceramic pigment is pulverized into fine sized particles, and has a uniform particle size distribution.
  • the ground ceramic pigment is dried.
  • the drying is preferably carried out at a temperature of about 30 ⁇ 150 °C.
  • a dried ceramic pigment is added to the dispersion and dispersed to prepare a red ceramic ink composition. It is preferable to disperse the ceramic pigment in the dispersion such that the viscosity of the ceramic ink composition is in the range of 10 to 30 cps and the surface tension is in the range of 25 to 40 dyn / cm.
  • the ceramic pigment is preferably contained 10 to 43 parts by weight based on 100 parts by weight of the dispersion liquid in the ceramic ink composition for inkjet printing.
  • the dispersion may be ethylene glycol, toluene, or a mixture thereof.
  • the dispersion may further include ethanol as a non-thickener to improve the discharge characteristics of the ceramic ink composition, and to control viscosity and surface tension.
  • the ethanol is preferably contained 5 to 35% by volume in the dispersion.
  • a surfactant may be further added when the ceramic pigment is dispersed in the dispersion.
  • the surfactant is added in an amount of 0.001 to 3 parts by weight based on 100 parts by weight of the dispersion liquid in the inkjet printing ceramic ink composition.
  • the surfactant is cetyl trimethylammonium bromide (CTAB), cetyl trimethylammonium chloride (CTAC), dioctadecyldimethylammonium bromide (DODAB) and CH 3 (CH 2 ) 15 N
  • CTAB cetyl trimethylammonium bromide
  • CAC cetyl trimethylammonium chloride
  • DODAB dioctadecyldimethylammonium bromide
  • CH 3 (CH 2 ) 15 N One or more cationic surfactants selected from Br) (CH 3 ) 3 or at least one anionic interface selected from sodium dodecylsulfate (SDS) and CH 3 (CH 2 ) 10 CH 2 OSO 3 Na Preference is given to using activators.
  • the present invention is Zr 1-x Ce x SiO 4 (0.01 ⁇ x ⁇ 0.5) powder, Zr 1-x Pr x SiO 4 (0.01 ⁇ x ⁇ 0.5) powder and a Zr 1-x Ta x SiO 4 (0.01 ⁇ x ⁇ 0.5) at least one yellow ceramic pigment selected from powders is dispersed in the dispersion, has a viscosity of 10 to 30 cps, a surface tension of 25 to 40 dyn / cm, and an average particle diameter of the ceramic pigment is 50 to 300 nm.
  • a ceramic ink composition for phosphorus inkjet printing is provided.
  • Zr 1-x Ce x SiO 4 (0.01 ⁇ x ⁇ 0.5) powder, Zr 1-x Pr x SiO 4 (0.01 ⁇ x ⁇ 0.5) powder and Zr 1-x Ta x SiO 4 (0.01 ⁇ x ⁇ 0.5) powder Is thermally and chemically stable.
  • Zr 1-x Ce x SiO 4 (0.01 ⁇ x ⁇ 0.5) powder, Zr 1-x Pr x SiO 4 (0.01 ⁇ x ⁇ 0.5) powder and Zr 1-x Ta x SiO 4 (0.01 ⁇ x ⁇ 0.5 ) Powder can be used as a ceramic pigment with high degree of yellowness because it develops yellow color stably at high temperature.
  • Zr 1-x Ce x SiO 4 (0.01 ⁇ x ⁇ 0.5) powder, Zr 1-x Pr x SiO 4 (0.01 ⁇ x ⁇ 0.5) powder, and Zr 1-x , which are yellow ceramic pigments, are solid-phase-based.
  • a method of synthesizing Ta x SiO 4 (0.01 ⁇ x ⁇ 0.5) powder will be described.
  • the powder is prepared by mixing the oxide powders as starting materials by a target ratio, performing a ball mill, an attrition mill, or the like to obtain a solid crystal reaction, and then obtaining a spinel crystal structure. For calcination at relatively low temperatures (e.g., 1000 to 1450 ° C).
  • Zr 1-x Ce x SiO 4 (0.01 ⁇ x ⁇ 0.5) powder
  • Zr 1-x Pr x SiO 4 (0.01 ⁇ x ⁇ 0.5) powder
  • Zr 1-x Ta x SiO 4 which are yellow ceramic pigments (0.01 ⁇ x ⁇ 0.5)
  • the synthesis method of the powder will be described in more detail.
  • ZrO 2 powder may be used as an oxide powder containing a zirconium (Zr) component and includes a cerium (Ce) component. CeO 2 powder may be used as the oxide powder, and SiO 2 powder may be used as the oxide powder containing a silicon (Si) component.
  • An oxide powder containing a zirconium (Zr) component, an oxide powder containing a cerium (Ce) component, and an oxide powder containing a silicon (Si) component have a molar ratio of 1-x: x: 1 (0.01 ⁇ x ⁇ 0.5). Prepare with starting material to achieve.
  • ZrO 2 powder may be used as an oxide powder containing a zirconium (Zr) component and may include a praseodymium (Pr) component.
  • Pr 2 O 3 powder may be used as the oxide powder
  • SiO 2 powder may be used as the oxide powder containing a silicon (Si) component.
  • Oxide powders containing zirconium (Zr) components, oxide powders containing praseodymium (Pr) components, and oxide powders containing silicon (Si) components have Zr, Pr and Si of 1-x: x: 1 (0.01 ⁇ x Prepare starting materials to achieve a molar ratio of ⁇ 0.5).
  • ZrO 2 powder may be used as an oxide powder containing zirconium (Zr) component, and tantalum (Ta) component is included.
  • Ta 2 O 5 powder may be used as the oxide powder
  • SiO 2 powder may be used as the oxide powder including a silicon (Si) component.
  • Oxide powders containing zirconium (Zr) components, oxide powders containing tantalum (Ta) components, and oxide powders containing silicon (Si) components have Zr, Ta and Si of 1-x: x: 1 (0.01 ⁇ x Prepare starting materials to achieve a molar ratio of ⁇ 0.5).
  • the prepared starting materials are subjected to a solid phase reaction between the oxides while mechanically mixing and grinding.
  • the starting materials, balls and solvents are loaded into milling machines such as ball mills and attrition mills.
  • milling machines such as ball mills and attrition mills.
  • the starting materials are ground and mixed uniformly.
  • the solid phase reaction occurs between the oxide powder by the energy of the collision of the ball and the starting material, the ball and the ball, the ball and the mill.
  • the starting materials of the oxide powders react with each other by the collision energy.
  • the solvent water, alcohol such as ethanol, or the like can be used.
  • the ball used in the mill may use a ball made of ceramics such as alumina and zirconia, and the balls may be all the same size or may be used together with two or more balls.
  • the size of the ball, the weight ratio of the ball and the oxide powder, the milling time, the rotation speed of the mill, etc. are adjusted to grind to the size of the target oxide powder particles.
  • the size of the ball is preferably set in the range of about 1 to 50 mm, and the rotational speed of the mill is set in the range of about 300 to 1200 rpm.
  • Milling is preferably carried out for 1 to 48 hours in consideration of the size of the target particles, the degree of solid phase reaction and the like.
  • the ball and the starting material introduced into the mill are preferably in a weight ratio of 20 to 150: 1. If the content of the ball in the starting material is too small, there is a limit to agglomeration of the particles or to refine the size of the particles due to insufficient grinding, it is not efficient if the content of the ball in the starting material is too large.
  • Oxide powders which are starting materials by milling, are pulverized into fine-sized particles, have a uniform particle size distribution, are uniformly mixed, and chemical polishing by balls and solid-phase reactions occur simultaneously in the mill. It will be a mechanical chemical treatment.
  • the resultant mixture is dried using a milling machine, charged into a furnace such as an electric furnace, and subjected to a calcination process.
  • the calcination process is preferably performed for about 1 to 24 hours at a calcination temperature of about 1000 ⁇ 1450 °C. It is preferable to increase the temperature at a heating rate of 1 to 50 ° C./min until the calcination temperature. If the temperature rising rate is too slow, it takes a long time to decrease productivity, and if the temperature rising rate is too fast, thermal stress may be applied by a sudden temperature rise. Since it is possible to raise the temperature at a temperature rising rate in the above range, it is preferable.
  • the calcination is preferably carried out in an oxidizing atmosphere (for example, oxygen (O 2) or air atmosphere).
  • an oxidizing atmosphere for example, oxygen (O 2) or air atmosphere.
  • the resultant Zr 1-x Ce x SiO 4 (0.01 ⁇ x ⁇ 0.5) powder, Zr 1-x Pr x SiO 4 (0.01 ⁇ x ⁇ 0.5) powder calcined by lowering the furnace temperature or Unload the Zr 1-x Ta x SiO 4 (0.01 ⁇ x ⁇ 0.5) powder.
  • the furnace cooling may be allowed to cool down in a natural state by turning off the furnace power source, or to set a temperature drop rate (eg, 10 ° C./min) arbitrarily.
  • the yellow ceramic pigment In order to uniformly grind the yellow ceramic pigment, it is charged into a milling machine such as a ball mill or an attention mill. The ball and the solvent are put in a mill and the yellow ceramic pigment is mechanically ground. It is preferable to grind so that the average particle diameter of a ceramic pigment may be 50-300 nm.
  • the solvent water, alcohol such as ethanol, or the like can be used.
  • the ball used in the mill may use a ball made of ceramics such as alumina and zirconia, and the balls may be all the same size or may be used together with two or more balls.
  • the size of the ball is preferably set in the range of about 1 to 50 mm, and the rotational speed of the mill is set in the range of about 100 to 1200 rpm. Milling is preferably carried out for 1 to 48 hours in consideration of the target particle size and the like.
  • the ball and the ceramic pigment introduced into the mill are preferably in a weight ratio of 20 to 150: 1. If the content of the ball in the ceramic pigment is too small, there is a limit to agglomeration of the particles or to refine the size of the particles due to insufficient grinding, it is not efficient when the content of the ball in the ceramic pigment is too large.
  • the size of the particles decreases, and the ceramic pigment is pulverized into fine sized particles, and has a uniform particle size distribution.
  • the ground ceramic pigment is dried.
  • the drying is preferably carried out at a temperature of about 30 ⁇ 150 °C.
  • the dried ceramic pigment is added to the dispersion and dispersed to prepare a yellow ceramic ink composition. It is preferable to disperse the ceramic pigment in the dispersion such that the viscosity of the ceramic ink composition is in the range of 10 to 30 cps and the surface tension is in the range of 25 to 40 dyn / cm.
  • the ceramic pigment is preferably contained 10 to 43 parts by weight based on 100 parts by weight of the dispersion liquid in the ceramic ink composition for inkjet printing.
  • the dispersion may be ethylene glycol, toluene, or a mixture thereof.
  • the dispersion may further include ethanol as a non-thickener to improve the discharge characteristics of the ceramic ink composition, and to control viscosity and surface tension.
  • the ethanol is preferably contained 5 to 35% by volume in the dispersion.
  • a surfactant may be further added when the ceramic pigment is dispersed in the dispersion.
  • the surfactant is added in an amount of 0.001 to 3 parts by weight based on 100 parts by weight of the dispersion liquid in the inkjet printing ceramic ink composition.
  • the surfactant is cetyl trimethylammonium bromide (CTAB), cetyl trimethylammonium chloride (CTAC), dioctadecyldimethylammonium bromide (DODAB) and CH 3 (CH 2 ) 15 N
  • CTAB cetyl trimethylammonium bromide
  • CAC cetyl trimethylammonium chloride
  • DODAB dioctadecyldimethylammonium bromide
  • CH 3 (CH 2 ) 15 N It is preferable to use at least one cationic surfactant selected from Br) (CH 3 ) 3 or at least one anionic surfactant selected from sodium dodecylsulfate (SDS) and CH 3 (CH 2) 10 CH 2 OSO 3 Na.
  • the present invention is a black ceramic pigment containing Co (Fe 1-x Cr x ) 2 O 4 (0.01 ⁇ x ⁇ 0.5) powder is dispersed in the dispersion, the viscosity is 10 ⁇ 30 cps, the surface tension It provides a ceramic ink composition for inkjet printing of 25 to 40 dyn / cm, the average particle diameter of the ceramic pigment is 50 to 300 nm.
  • Co (Fe 1-x Cr x ) 2 O 4 (0.01 ⁇ x ⁇ 0.5) powder is thermally and chemically stable.
  • Co (Fe 1-x Cr x ) 2 O 4 (0.01 ⁇ x ⁇ 0.5) powder can be used as a high-density black ceramic pigment because it stably develops a black color at a high temperature.
  • Production of Co (Fe 1-x Cr x ) 2 O 4 (0.01 ⁇ x ⁇ 0.5) powder using the solid phase method is performed by mixing oxide powders, which are starting materials, in a target ratio, by ball mill and attrition. mill, etc., to cause a solid phase reaction, and then calcined at a relatively low temperature (eg, 1000 to 1450 ° C.) to obtain a spinel crystal structure.
  • a relatively low temperature eg, 1000 to 1450 ° C.
  • CoO powder may be used as an oxide powder containing a cobalt (Co) component
  • iron (Fe) Fe 2 O 3 powder may be used as the oxide powder including the component
  • Cr 2 O 3 powder may be used as the oxide powder including the chromium (Cr) component.
  • the oxide powder containing the cobalt (Co) component, the oxide powder containing the iron (Fe) component, and the oxide powder containing the chromium (Cr) component have a molar ratio of 1: 1-x: x (0.01 ⁇ x ⁇ 0.5).
  • the prepared starting materials are subjected to a solid phase reaction between the oxides while mechanically mixing and grinding.
  • the starting materials, balls and solvents are loaded into milling machines such as ball mills and attrition mills.
  • milling machines such as ball mills and attrition mills.
  • the starting materials are ground and mixed uniformly.
  • the solid phase reaction occurs between the oxide powder by the energy of the collision of the ball and the starting material, the ball and the ball, the ball and the mill.
  • the starting materials of the oxide powders react with each other by the collision energy.
  • the solvent water, alcohol such as ethanol, or the like can be used.
  • the ball used in the mill may use a ball made of ceramics such as alumina and zirconia, and the balls may be all the same size or may be used together with two or more balls.
  • the size of the ball, the weight ratio of the ball and the oxide powder, the milling time, the rotation speed of the mill, etc. are adjusted to grind to the size of the target oxide powder particles.
  • the size of the ball is preferably set in the range of about 1 to 50 mm, and the rotational speed of the mill is set in the range of about 300 to 1200 rpm.
  • Milling is preferably carried out for 1 to 48 hours in consideration of the size of the target particles, the degree of solid phase reaction and the like.
  • the ball and the starting material introduced into the mill are preferably in a weight ratio of 20 to 150: 1. If the content of the ball in the starting material is too small, there is a limit to agglomeration of the particles or to refine the size of the particles due to insufficient grinding, it is not efficient if the content of the ball in the starting material is too large.
  • Oxide powders which are starting materials by milling, are pulverized into fine-sized particles, have a uniform particle size distribution, are uniformly mixed, and chemical grinding by a ball and a solid phase reaction occur simultaneously in a mill.
  • the mechanical and chemical treatment is performed.
  • the resultant mixture is dried using a milling machine, charged into a furnace, such as an electric furnace, and subjected to a calcination process.
  • the calcination process is preferably performed for about 1 to 24 hours at a calcination temperature of about 1000 ⁇ 1450 °C.
  • the calcination is preferably carried out in an oxidizing atmosphere (for example, oxygen (O 2) or air atmosphere). After carrying out the calcination process, the furnace temperature is lowered to unload the resulting calcined Co (Fe 1-x Cr x ) 2 O 4 (0.01 ⁇ x ⁇ 0.5) powder.
  • the furnace cooling may be allowed to cool down in a natural state by turning off the furnace power source, or to set a temperature drop rate (eg, 10 ° C./min) arbitrarily.
  • a black-based ceramic ink composition is prepared by using a black ceramic pigment including Co (Fe 1-x Cr x ) 2 O 4 (0.01 ⁇ x ⁇ 0.5) powder synthesized as described above.
  • the black ceramic pigment In order to uniformly grind the black ceramic pigment, it is charged into a milling machine such as a ball mill or an attention mill. The ball and solvent are placed in a mill and the black ceramic pigment is mechanically ground. It is preferable to grind so that the average particle diameter of a ceramic pigment may be 50-300 nm.
  • a milling machine such as a ball mill or an attention mill.
  • the ball and solvent are placed in a mill and the black ceramic pigment is mechanically ground. It is preferable to grind so that the average particle diameter of a ceramic pigment may be 50-300 nm.
  • the solvent water, alcohol such as ethanol, or the like can be used.
  • the ball used in the mill may use a ball made of ceramics such as alumina and zirconia, and the balls may be all the same size or may be used together with two or more balls.
  • the size of the ball is preferably set in the range of about 1 to 50 mm, and the rotational speed of the mill is set in the range of about 100 to 1200 rpm. Milling is preferably carried out for 1 to 48 hours in consideration of the target particle size and the like.
  • the ball and the ceramic pigment introduced into the mill are preferably in a weight ratio of 20 to 150: 1. If the content of the ball in the ceramic pigment is too small, there is a limit to agglomeration of the particles or to refine the size of the particles due to insufficient grinding, it is not efficient when the content of the ball in the ceramic pigment is too large.
  • the size of the particles decreases, and the ceramic pigment is pulverized into fine sized particles, and has a uniform particle size distribution.
  • the ground ceramic pigment is dried.
  • the drying is preferably carried out at a temperature of about 30 ⁇ 150 °C.
  • the dried ceramic pigment is added to the dispersion and dispersed to prepare a black ceramic ink composition. It is preferable to disperse the ceramic pigment in the dispersion such that the viscosity of the ceramic ink composition is in the range of 10 to 30 cps and the surface tension is in the range of 25 to 40 dyn / cm.
  • the ceramic pigment is preferably contained 10 to 43 parts by weight based on 100 parts by weight of the dispersion liquid in the ceramic ink composition for inkjet printing.
  • the dispersion may be ethylene glycol, toluene, or a mixture thereof.
  • the dispersion may further include ethanol as a non-thickener to improve the discharge characteristics of the ceramic ink composition, and to control viscosity and surface tension.
  • the ethanol is preferably contained 5 to 35% by volume in the dispersion.
  • a surfactant may be further added when the ceramic pigment is dispersed in the dispersion. It is preferable to add the surfactant to the inkjet printing ceramic ink composition to be contained in an amount of 0.001 to 3 parts by weight based on 100 parts by weight of the dispersion.
  • the surfactant is cetyl trimethylammonium bromide (CTAB), cetyl trimethylammonium chloride (CTAC), dioctadecyldimethylammonium bromide (DODAB) and CH 3 (CH 2 ) 15 N
  • CTAB cetyl trimethylammonium bromide
  • CAC cetyl trimethylammonium chloride
  • DODAB dioctadecyldimethylammonium bromide
  • CH 3 (CH 2 ) 15 N At least one cationic surfactant selected from Br) (CH 3 ) 3 , or at least one anionic selected from sodium dodecylsulfate (SDS) and CH 3 (CH 2 ) 10 CH 2 OSO 3 Na
  • SDS sodium dodecylsulfate
  • CoAl 2 O 4 powder a blue ceramic pigment, was synthesized using the solid phase method.
  • the production of CoAl 2 O 4 powder using the solid phase method is performed by mixing the oxide powders as starting materials by target ratio and performing a ball mill, an attrition mill, etc. It calcined at the temperature of -1400 degreeC.
  • CoO powder was used as an oxide powder containing a cobalt (Co) component
  • Al 2 O 3 powder was used as an oxide powder containing an aluminum (Al) component.
  • An oxide powder including a cobalt (Co) component and an oxide powder including an aluminum (Al) component were prepared to achieve a molar ratio of 1: 1.
  • An oxide powder containing a cobalt (Co) component was sieved through a 325 mesh sieve, and an oxide powder containing an aluminum (Al) component having an average particle diameter of about 300 ⁇ m was used.
  • the prepared starting materials were subjected to a solid phase reaction between the oxides while mechanically mixing and grinding.
  • the starting materials, balls and solvents were charged to a ball mill.
  • the starting material was ground while uniformly mixing using a milling machine.
  • the solid phase reaction occurs between the oxide powder by the energy of the collision of the ball and the starting material, the ball and the ball, the ball and the mill.
  • the starting materials of the oxide powders react with each other by the collision energy.
  • Ethanol was used as the solvent.
  • a ball made of zirconia (ZrO 2 ) was used as the ball used in the mill.
  • a ball having a size of about 1 mm was used, the rotation speed of the mill was set to about 800 rpm, and milling was performed for 3 hours. Balls and starting materials fed to the mill were about 100: 1 by weight.
  • the resulting mixture was dried using a milling machine, charged into an electric furnace and subjected to a calcination process.
  • the calcination process was performed for about 3 hours at a calcination temperature of 1000 ⁇ 1400 °C. Up to the calcination temperature was raised at a temperature increase rate of 5 °C / min. The calcination was carried out in an air atmosphere. After carrying out the calcination process, the furnace temperature was lowered to unload the resultant CoAl 2 O 4 powder. Cooling of the electric furnace was to cut off the power supply to cool in a natural state.
  • FIG. 2 is a graph showing CIE La * b * before calcination and CIE La * b * according to calcination temperature of CoAl 2 O 4 powder synthesized after calcination according to Experimental Example 1, and Table 1 shows CIE La * b *. .
  • Figure 2 'before' indicates before calcination.
  • blue color does not develop before calcination.
  • it calcined at 1000 degreeC, 1100 degreeC, 1200 degreeC, 1300 degreeC, and 1400 degreeC blue color is developed.
  • the calcination temperature is low 1000 °C was shown a dark blue, when calcined at a temperature of 1200 °C or more it was confirmed that the sharpness of blue appears.
  • the calcination temperature is low 1000 °C showed a low blue brightness, when calcined at a temperature of 1200 °C or more appeared a high blue brightness.
  • 3A and 3B are scanning electron microscope (SEM) images showing the microstructure of CoAl 2 O 4 powder calcined and synthesized at 1200 ° C. according to Experimental Example 1.
  • SEM scanning electron microscope
  • 4A and 4B show the results of the EDS component analysis of the CoAl 2 O 4 powder calcined and synthesized at 1200 ° C. according to Experimental Example 1, and the results of the component analysis for FIG. 4A are shown in Table 2 below.
  • the component analysis results for 4b are shown in Table 3 below.
  • CoAl 2 O 4 powder synthesized according to Experimental Example 1 contains cobalt (Co), aluminum (Al) and oxygen (O) components. .
  • a blue-based ceramic ink composition was prepared by using a blue ceramic pigment, which was calcined at 1200 ° C. and synthesized with CoAl 2 O 4 powder.
  • the blue ceramic pigment CoAl 2 O 4 powder was charged to an attrition mill to uniformly grind it.
  • the ball and solvent were placed in a mill and the CoAl 2 O 4 powder was mechanically ground. Ethanol was used as the solvent.
  • a ball made of zirconia (ZrO 2 ) was used as the ball used in the mill.
  • a ball having a size of about 1 mm was used, the rotation speed of the mill was set to 800 rpm, and milling was performed for 1 to 5 hours.
  • the ball and CoAl 2 O 4 powder introduced into the mill were about 100: 1 in weight ratio.
  • the ground CoAl 2 O 4 powder was dried. The drying was performed for about 1 hour at a temperature of about 80 °C.
  • FIG. 5A to 5f are scanning electron microscope (SEM) photographs showing the microstructure of CoAl 2 O 4 powder with attrition milling time
  • FIG. 6 is the particle size of CoAl 2 O 4 powder with attrition milling time. Is a graph showing the results measured using a laser scattering particle size distribution analyzer.
  • FIG. 5A shows the microstructure of CoAl 2 O 4 powder before the attrition milling
  • FIG. 5B is the case where the attrition milling is performed for 1 hour
  • FIG. 5C is the addition of the attrition milling for 2 hours.
  • FIG. 6D illustrates a case of performing attrition milling for 3 hours
  • FIG. 5E illustrates a case of performing Attrition milling for 4 hours
  • FIG. 5F illustrates a case of performing Attrition milling for 5 hours.
  • FIG. 7 is a graph showing the X-ray diffraction pattern before attrition milling and after attrition milling for 3 hours.
  • 9A and 9B are transmission electron microscope (TEM) images of CoAl 2 O 4 powder after 3 hours of attrition milling.
  • CoAl 2 O 4 powder after 3 hours of attrition milling was observed to have a particle size of about 200 nm.
  • the dried CoAl 2 O 4 powder and cetyltrimethylammonium bromide (CTAB) or sodium dodecyl sulfate (SDS) were added to the dispersion and dispersed to prepare a blue ceramic ink composition.
  • the CoAl 2 O 4 powder was contained in the ceramic ink composition for inkjet printing 15% by weight, the dispersion was contained in the inkjet printing ceramic ink composition 84.95% by weight, the cetyltrimethylammonium bromide (CTAB) or sodium dode Actual sulfate (SDS) was contained in the ceramic ink composition for inkjet printing 0.05% by weight.
  • CTAB cetyltrimethylammonium bromide
  • SDS sodium dode Actual sulfate
  • a mixed solution of ethylene glycol and ethanol was used as the dispersion.
  • FIGS. 11A and 11B are transmission electron micrographs of a ceramic ink composition for inkjet printing formed by adding cetyltrimethylammonium bromide (CTAB), and FIGS. 12A and 12B are inkjet formed by adding sodium dodecyl sulfate (SDS). It is a transmission electron microscope photograph of the ceramic ink composition for printing.
  • CTAB cetyltrimethylammonium bromide
  • SDS sodium dodecyl sulfate
  • CTAB cetyltrimethylammonium bromide
  • Table 6 shows the viscosity of the dispersion according to the content (vol%) of ethylene glycol (EG) and ethanol.
  • Table 7 below shows the viscosity and surface tension of the ceramic ink composition according to the content of the dispersion.
  • CoAl 2 O 4 powder dried according to Example 1 was added to the dispersion and dispersed to prepare a blue ceramic ink composition.
  • cetyltrimethylammonium bromide (CTAB) or sodium dodecyl sulfate (SDS) was sometimes added or not added.
  • the CoAl 2 O 4 powder was contained in the ceramic ink composition for inkjet printing 15% by weight, the dispersion was contained in the inkjet printing ceramic ink composition 84.95% by weight, the cetyltrimethylammonium bromide (CTAB) or sodium dode Actual sulfate (SDS) was contained in the ceramic ink composition for inkjet printing 0.05% by weight.
  • CTAB cetyltrimethylammonium bromide
  • SDS sodium dode Actual sulfate
  • the CoAl 2 O 4 powder was contained in the ceramic ink composition for inkjet printing 15% by weight, and the dispersion was contained in the ceramic ink composition for inkjet printing 85% by weight.
  • water or a mixed solution of ethylene glycol and ethanol was used as the dispersion.
  • Figure 13 is a photograph showing the dispersion stability according to the surfactant and dispersion.
  • 'Di' is a case where water is used as a dispersion without adding a surfactant
  • 'EG' is a case where ethylene glycol and ethanol are used as a dispersion without adding a surfactant
  • 'EG + CTA' is cetyltrimethyl.
  • Ethylene glycol and ethanol are used as ammonium bromide and dispersion
  • 'EG + SDS' is used when ethylene glycol and ethanol are used as sodium dodecyl sulfate (SDS) and dispersion.
  • CoAl 2 O 4 powder and cetyltrimethylammonium bromide (CTAB) dried according to Example 1 were added to the dispersion and dispersed to prepare a blue ceramic ink composition.
  • CTAB cetyltrimethylammonium bromide
  • the CoAl 2 O 4 powder is contained in the ceramic ink composition for inkjet printing 10 to 30% by weight
  • the dispersion is contained in the inkjet printing ceramic ink composition 69.95 to 89.95% by weight
  • CTAB cetyltrimethylammonium bromide
  • a mixed solution of ethylene glycol and ethanol 80% by volume of ethylene glycol and 20% by volume of ethanol was used.
  • FIG. 14A to 14d are photographs showing the coloring power according to the content of CoAl 2 O 4 powder.
  • FIG. 14A illustrates a case where CoAl 2 O 4 powder is contained in the ceramic ink composition for inkjet printing 10% by weight
  • FIG. 14B illustrates a case where CoAl 2 O 4 powder is included in the ceramic ink composition for inkjet printing
  • FIG. 14C Is a case where CoAl 2 O 4 powder is contained in the ceramic ink composition for inkjet printing 20% by weight.
  • Figs. 15a and 15b is CoAl 2 O 4 powder with a Drop watcher measurement picture of the ceramic ink for ink jet printing prepared by using a.
  • CoAl 2 O 4 powder to 15% by weight of the ink-jet printing ceramic ink composition, cetyltrimethylammonium bromide ( CTAB) 0.05% by weight, 84.95% by weight of the dispersion was contained,
  • Figure 15a was used as a dispersion of 80% by volume of ethylene glycol and 20% by volume of ethanol,
  • Figure 15b is a dispersion of 70% by volume of ethylene glycol and 30% by volume of ethanol Was used.
  • FIG. 15A and 15B in the case of FIG. 15A, a single ink droplet was formed 120 seconds after the ceramic ink was ejected, and in FIG. 15B, a single ink droplet was formed after 140 seconds.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

본 발명은, 분산안정성이 우수하고 색의 선명도가 우수하며 착색력이 우수하고 고온에서 안정하며 잉크젯 프린팅 시에 노즐 막힘이 없이 인쇄할 수 있고 세라믹 타일 등에 인쇄할 때 사용할 수 있는 잉크젯 프린팅용 세라믹 잉크 조성물 및 그 제조방법에 관한 것이다.

Description

잉크젯 프린팅용 세라믹 잉크 조성물 및 그 제조방법
본 발명은 세라믹 잉크 조성물 및 그 제조방법에 관한 것으로, 더욱 상세하게는 분산안정성이 우수하고 색의 선명도가 우수하며 착색력이 우수하고 고온에서 안정하며 잉크젯 프린팅 시에 노즐 막힘이 없이 인쇄할 수 있고 세라믹 타일 등에 인쇄할 때 사용할수 있는 잉크젯 프린팅용 고화도 세라믹 잉크 조성물 및 그 제조방법에 관한 것이다.
잉크젯 프린팅은 헤드로부터 미세한 잉크방울을 토출시켜 원하는 위치에 패터닝하는 공정기술이다. 잉크젯 프린팅은 비 접촉식 방식으로 작은 체적의 복잡한 형상 구현에 적합하다. 이와 같은 잉크젯 프린팅은 공정이 간단하고, 원료의 낭비가 적으며, 기판의 손상이 적고, 친환경적인 공정이다.
잉크젯 프린팅에 사용되는 안료는 크게 유기안료와 무기안료로 구분 할 수 있다.
유기안료는 색상이 선명하고, 착색력이 크며, 원하는 색조를 얻기 쉽지만, 내열성과 내광성이 떨어지고, 유기용매에 대부분 용해되어 불안정하다는 단점이 있다.
반면, 무기안료는 내광성 및 내열성이 크고, 유기용매에 안정하지만, 착색력이 약하고, 색의 선명도가 떨어지는 단점이 있다.
종래의 무기안료를 사용하는 경우, 세라믹 타일 등에 잉크젯 프린팅을 적용하는 경우에 노즐 막힘(nozzle clogging), 분산 불안정성(dispersion instability)과 같은 기술적 문제점이 발생하고 있다.
또한, 잉크젯 프린팅 기술을 세라믹 타일 등에 응용시, 미적 효과를 부각시키기 위하여 디지털 컬러 4원색인 청색(Blue)계, 적색(Red)계, 노란색(Yellow)계, 검정색(Black)계의 잉크 사용이 필요하고, 1000℃ 이상에서 열적 안정성을 가지고 색의 선명도가 우수한 잉크 조성물의 개발이 요구되고 있다.
본 발명이 해결하고자 하는 과제는 분산안정성이 우수하고 색의 선명도가 우수하며 착색력이 우수하고 고온에서 안정하며 잉크젯 프린팅 시에 노즐 막힘이 없이 인쇄할 수 있고 세라믹 타일 등에 인쇄할 때 사용할 수 있는 잉크젯 프린팅용 세라믹 잉크 조성물 및 그 제조방법을 제공함에 있다.
본 발명은 Mg1-xCoxAl2O4(0.1≤x≤1) 분말 및 Mg1-xNixAl2O4(0.1≤x≤1) 분말 중에서 선택된 1종 이상의 청색계 세라믹안료가 분산액에 분산되어 있고, 점도가 10∼30 cps 이며, 표면장력이 25∼40 dyn/cm 이고, 상기 세라믹안료의 평균 입경은 50∼300nm 인 잉크젯 프린팅용 세라믹 잉크 조성물을 제공한다.
또한, 본 발명은 CaSn1-xCrxSiO4(0.01≤x≤0.5) 분말을 포함하는 적색계 세라믹안료가 분산액에 분산되어 있고, 점도가 10∼30 cps 이며, 표면장력이 25∼40 dyn/cm 이고, 상기 세라믹안료의 평균 입경은 50∼300nm 인 잉크젯 프린팅용 세라믹 잉크 조성물을 제공한다.
나아가, 본 발명은 Zr1-xCexSiO4(0.01≤x≤0.5) 분말, Zr1-xPrxSiO4(0.01≤x≤0.5) 분말 및 Zr1-xTaxSiO4(0.01≤x≤0.5) 분말 중에서 선택된 1종 이상의 노란색계 세라믹안료가 분산액에 분산되어 있고, 점도가 10∼30 cps이며, 표면장력이 25∼40 dyn/cm이고, 상기 세라믹안료의 평균 입경은 50∼300nm인 잉크젯 프린팅용 세라믹 잉크 조성물을 제공한다.
더불어, 본 발명은 Co(Fe1-xCrx)2O4(0.01≤x≤0.5) 분말을 포함하는 검정색계 세라믹안료가 분산액에 분산되어 있고, 점도가 10∼30 cps이며, 표면장력이 25∼40 dyn/cm이고, 상기 세라믹안료의 평균 입경은 50∼300nm 인 잉크젯 프린팅용 세라믹 잉크 조성물을 제공한다.
본 발명의 바람직한 일실시예에 따르면, 상기 잉크젯 프린팅용 세라믹 잉크 조성물에 상기 분산액 100중량부에 대하여 10∼43중량부의 상기 세라믹안료를 포함할 수 있다.
본 발명의 바림직한 다른 일실시예에 따르면, 상기 분산액은 에틸렌글리콜 및 톨루엔 중에서 선택된 1종 이상을 포함할 수 있다.
본 발명의 바림직한 또 다른 일실시예에 따르면, 상기 분산액은 토출 특성을 개선하고 점도 및 표면장력 조절을 위해 에탄올을 더 포함할 수 있으며, 상기 에탄올은 분산액 전체 부피의 5∼35 부피%로 포함될 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 잉크젯 프린팅용 세라믹 잉크 조성물은 세틸트리메틸암모늄브로마이드(cetyl trimethylammonium bromide), 세틸트리메틸암모늄클로라이드(cetyl trimethylammonium chloride), 디옥타데실디메틸암모늄브로마이드(dioctadecyldimethylammonium bromide) 및 CH3(CH2)15N(Br)(CH3)3 중에서 선택된 1종 이상의 첨가물을 더 포함하며, 상기 첨가물은 상기 잉크젯 프린팅용 세라믹 잉크 조성물에 상기 분산액 100중량부에 대하여 0.001∼3중량부 포함할 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 잉크젯 프린팅용 세라믹 잉크 조성물은 소듐도데실설페이트 및 CH3(CH2)10CH2OSO3Na 중에서 선택된 1종 이상의 첨가제를 더 포함하며, 상기 첨가제는 상기 잉크젯 프린팅용 세라믹 잉크 조성물에 상기 분산액 100중량부에 대하여 0.001∼3중량부 포함할 수 있다.
나아가, 본 발명은 Mg1-xCoxAl2O4(0.1≤x≤1) 분말 및 Mg1-xNixAl2O4(0.1≤x≤1) 분말 중에서 선택된 1종 이상의 청색계 세라믹안료를 준비하는 단계; 상기 세라믹 안료를 50∼300nm의 평균 입경을 갖도록 분쇄하는 단계; 및 분쇄된 결과물을 분산액에 분산시켜 점도가 10∼30 cps이고 표면장력이 25∼40 dyn/cm인 세라믹 잉크 조성물을 얻는 단계; 를 포함하는 잉크젯 프린팅용 세라믹 잉크 조성물의 제조방법을 제공한다.
본 발명의 바람직한 일실시예에 따르면, 상기 청색계 세라믹안료를 준비하는 단계는 마그네슘(Mg) 성분을 포함하는 산화물인 MgO 분말; 코발트(Co) 성분을 포함하는 산화물인 CoO 분말; 및 알루미늄(Al) 성분을 포함하는 산화물인 Al2O3 분말;을 1-x:x:1(0.1≤x≤1)의 몰비로 출발원료로 준비하거나, 마그네슘(Mg) 성분을 포함하는 산화물인 MgO 분말; 니켈(Ni) 성분을 포함하는 산화물인 NiO 분말; 및 알루미늄(Al) 성분을 포함하는 산화물인 Al2O3 분말;을 1-x:x:1(0.1≤x≤1)의 몰비로 출발원료로 준비하는 단계; 상기 출발원료, 볼 및 용매를 밀링기에 넣고 출발원료를 기계적으로 혼합 및 분쇄하면서 산화물 간에 고상 반응을 시키는 단계; 및 분쇄된 결과물을 하소하여 Mg1-xCoxAl2O4(0.1≤x≤1) 분말 또는 Mg1-xNixAl2O4(0.1≤x≤1) 분말을 얻는 단계;를 포함할 수 있다.
더불어, 본 발명은 CaSn1-xCrxSiO4(0.01≤x≤0.5) 분말을 포함하는 적색계 세라믹안료를 준비하는 단계; 상기 세라믹안료를 50∼300nm의 평균 입경을 갖도록 분쇄하는 단계; 및 분쇄된 결과물을 분산액에 분산시켜 점도가 10∼30 cps이고 표면장력이 25∼40 dyn/cm인 세라믹 잉크 조성물을 얻는 단계; 를 포함하는 잉크젯 프린팅용 세라믹 잉크 조성물의 제조방법을 제공한다.
본 발명의 바람직한 일실시예에 따르면, 상기 적색계 세라믹안료를 준비하는 단계는 칼슘(Ca) 성분을 포함하는 산화물인 CaO 분말; 주석(Sn) 성분을 포함하는 산화물인 SnO 분말; 크롬(Cr) 성분을 포함하는 산화물인 Cr2O3 분말; 및 실리콘(Si) 성분을 포함하는 산화물인 SiO2 분말;을 Ca, Sn, Cr 및 Si가 1:1-x:x:1(0.01≤x≤0.5)의 몰비를 이루도록 출발원료로 준비하는 단계; 상기 출발원료, 볼 및 용매를 밀링기에 넣고 출발원료를 기계적으로 혼합 및 분쇄하면서 산화물 간에 고상 반응을 시키는 단계; 및 분쇄된 결과물을 하소하여 CaSn1-xCrxSiO4(0.01≤x≤0.5) 분말을 얻는 단계;를 포함할 수 있다.
게다가, 본 발명은 Zr1-xCexSiO4(0.01≤x≤0.5) 분말, Zr1-xPrxSiO4(0.01≤x≤0.5) 분말 및 Zr1-xTaxSiO4(0.01≤x≤0.5) 분말 중에서 선택된 1종 이상의 노란색계 세라믹안료를 준비하는 단계; 상기 세라믹안료를 50∼300nm의 평균 입경을 갖도록 분쇄하는 단계; 및 분쇄된 결과물을 분산액에 분산시켜 점도가 10∼30 cps이고 표면장력이 25∼40 dyn/cm인 세라믹 잉크 조성물을 얻는 단계; 를 포함하는 잉크젯 프린팅용 세라믹 잉크 조성물의 제조방법을 제공한다.
본 발명의 바람직한 일실시예에 따르면, 상기 노란색계 세라믹안료를 준비하는 단계는 지르코늄(Zr) 성분을 포함하는 산화물인 ZrO2 분말; 세륨(Ce) 성분을 포함하는 산화물인 CeO2 분말; 실리콘(Si) 성분을 포함하는 산화물인 SiO2 분말;을 1-x:x:1(0.01≤x≤0.5)의 몰비로 출발원료로 준비하거나, 지르코늄(Zr) 성분을 포함하는 산화물인 ZrO2 분말; 프라세오디뮴(Pr) 성분을 포함하는 산화물인 Pr2O3 분말; 및 실리콘(Si) 성분을 포함하는 산화물인 SiO2 분말;을 Zr, Pr 및 Si가 1-x:x:1(0.01≤x≤0.5)의 몰비를 이루도록 출발원료로 준비하거나, 지르코늄(Zr) 성분을 포함하는 산화물인 ZrO2 분말; 탄탈륨(Ta) 성분을 포함하는 산화물인 Ta2O5 분말; 및 실리콘(Si) 성분을 포함하는 산화물인 SiO2 분말;을 Zr, Ta 및 Si가 1-x:x:1(0.01≤x≤0.5)의 몰비를 이루도록 출발원료로 준비하는 단계; 상기 출발원료, 볼 및 용매를 밀링기에 넣고 출발원료를 기계적으로 혼합 및 분쇄하면서 산화물 간에 고상 반응을 시키는 단계; 및 분쇄된 결과물을 하소하여 Zr1-xCexSiO4(0.01≤x≤0.5) 분말, Zr1-xPrxSiO4(0.01≤x≤0.5) 분말 또는 Zr1-xTaxSiO4(0.01≤x≤0.5) 분말을 얻는 단계;를 포함할 수 있다.
또한, 본 발명은 Co(Fe1-xCrx)2O4(0.01≤x≤0.5) 분말을 포함하는 검정색계 세라믹안료를 준비하는 단계; 상기 세라믹안료를 50∼300nm의 평균 입경을 갖도록 분쇄하는 단계; 및 분쇄된 결과물을 분산액에 분산시켜 점도가 10∼30 cps이고 표면장력이 25∼40 dyn/cm 인 세라믹 잉크 조성물을 얻는 단계; 를 포함하는 잉크젯 프린팅용 세라믹 잉크 조성물의 제조방법을 제공한다.
본 발명의 바람직한 일실시예에 따르면, 상기 검정색계 세라믹안료를 준비하는 단계는 코발트(Co) 성분을 포함하는 산화물인 CoO 분말; 철(Fe) 성분을 포함하는 산화물인 Fe2O3 분말; 크롬(Cr) 성분을 포함하는 산화물인 Cr2O3 분말;을 1:1-x:x(0.01≤x≤0.5)의 몰비로 출발원료로 준비하는 단계; 상기 출발원료, 볼 및 용매를 밀링기에 넣고 출발원료를 기계적으로 혼합 및 분쇄하면서 산화물 간에 고상 반응을 시키는 단계; 및 분쇄된 결과물을 하소하여 Co(Fe1-xCrx)2O4(0.01≤x≤0.5) 분말을 얻는 단계;를 포함할 수 있다.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 분산액은 에틸렌글리콜 및 톨루엔 중에서 선택된 1종 이상의 물질을 포함할 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 분산액은 토출 특성을 개선하고 점도 및 표면장력 조절을 위해 에탄올을 더 포함하며, 상기 에탄올은 상기 분산액에 5∼35부피% 함유할 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 분산액에 분산시킬때 세틸트리메틸암모늄브로마이드, 세틸트리메틸암모늄클로라이드, 디옥타데실디메틸암모늄브로마이드 및 CH3(CH2)15N(Br)(CH3)3 중에서 선택된 1종 이상의 물질을 더 첨가하며, 상기 첨가물은 상기 세라믹 잉크 조성물에 상기 분산액 100중량부에 대하여 0.001∼3중량부 함유될 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 분산액에 분산시킬때 소듐도데실설페이트 및 CH3(CH2)10CH2OSO3Na 중에서 선택된 1종 이상의 물질을 더 첨가하며, 상기 첨가제는 상기 세라믹 잉크 조성물에 상기 분산액 100중량부에 대하여 0.001∼3중량부 함유될 수 있다.
본 발명은 분산안정성이 우수하고 색의 선명도가 우수하며 착색력이 우수하고 고온에서 안정하며 잉크젯 프린팅 시에 노즐 막힘이 없이 인쇄할 수 있고 세라믹 타일 등에 인쇄할 때 사용할 수 있는 잉크젯 프린팅용 세라믹 잉크 조성물을 얻을 수 있다.
또한, 본 발명에 따른 잉크젯 프린팅용 세라믹 잉크 조성물의 제조방법은 공정이 간단하고 재현성이 우수하다.
도 1은 하소 전의 X-선회절 패턴과 실험예 1에 따라 하소 후 합성된 CoAl2O4 분말의 하소 온도에 따른 X-선회절(X-ray diffraction) 패턴을 보여주는 그래프이다.
도 2는 하소 전의 CIE La*b*와 실험예 1에 따라 하소 후 합성된 CoAl2O4 분말의 하소 온도에 따른 CIE La*b*를 보여주는 그래프이다.
도 3a 및 도 3b는 실험예 1에 따라 1200℃에서 하소되어 합성된 CoAl2O4 분말의 미세구조를 보여주는 주사전자현미경(scanning electron microscope; SEM) 사진이다.
도 4a 및 도 4b는 실험예 1에 따라 1200℃에서 하소되어 합성된 CoAl2O4 분말의 EDS 성분분석을 실시한 결과를 보여주는 도면이다.
도 5a 내지 도 5f는 어트리션 밀링 시간에 따른 CoAl2O4 분말의 미세구조를 보여주는 주사전자현미경(SEM) 사진이다.
도 6은 어트리션 밀링 시간에 따른 CoAl2O4 분말의 입자 크기를 레이저 산란 입자 크기 분포 분석기(laser scattering particle size distribution analyzer)를 이용하여 측정한 결과를 나타낸 그래프이다.
도 7은 어트리션 밀링 전과 3시간 동안의 어트리션 밀링 후의 X-선회절 패턴을 보여주는 그래프이다.
도 8는 3시간 어트리션 밀링 후의 CoAl2O4 분말에 대한 EDS 성분분석을 실시한 결과를 보여주는 도면이다.
도 9a 및 도 9b는 3시간 어트리션 밀링 후의 CoAl2O4 분말에 대한 투과전자현미경(transmission electron microscope; TEM) 사진이다.
도 10는 어트리션 밀링 전과 3시간 어트리션 밀링 후의 CoAl2O4 분말에 대한 CIE La*b*를 보여주는 그래프이다.
도 11a 및 도 11b는 세틸트리메틸암모늄브로마이드(CTAB)를 첨가하여 형성한 잉크젯 프린팅용 세라믹 잉크 조성물의 투과전자현미경 사진이다.
도 12a 및 도 12b는 소듐도데실설페이트(SDS)를 첨가하여 형성한 잉크젯 프린팅용 세라믹 잉크 조성물의 투과전자현미경 사진이다.
도 13는 계면활성제와 분산액에 따른 분산안정성을 보여주는 사진이다.
도 14a 내지 도 14c는 CoAl2O4 분말의 함량에 따른 착색력을 보여주는 사진이다.
도 15a 내지 도 15b는 분산액에 따른 세라믹 잉크의 액적 형성과정을 보여주는 사진이다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세하게 설명한다. 그러나, 이하의 실시예는 이 기술분야에서 통상적인 지식을 가진 자에게 본 발명이 충분히 이해되도록 제공되는 것으로서 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 기술되는 실시예에 한정되는 것은 아니다.
본 발명은 Mg1-xCoxAl2O4(0.1≤x≤1) 분말 및 Mg1-xNixAl2O4(0.1≤x≤1) 분말 중에서 선택된 1종 이상의 청색계 세라믹안료가 분산액에 분산되어 있고, 점도가 10∼30 cps 이며, 표면장력이 25∼40 dyn/cm 이고, 상기 세라믹안료의 평균 입경은 50∼300nm 인 잉크젯 프린팅용 세라믹 잉크 조성물을 제공한다.
상기 Mg1-xCoxAl2O4(0.1≤x≤1) 또는 Mg1-xNixAl2O4(0.1≤x≤1)는 스피넬 구조를 가지며, 고온에서 안정하게 청색(blue) 계열의 색을 발색하므로 고화도 청색계 세라믹안료로 사용이 가능하다.
먼저, 고상법을 이용하여 청색계 세라믹안료인 Mg1-xCoxAl2O4(0.1≤x≤1) 분말 또는 Mg1-xNixAl2O4(0.1≤x≤1) 분말을 합성하는 방법을 설명한다.
고상법을 이용한 Mg1-xCoxAl2O4(0.1≤x≤1) 분말 또는 Mg1-xNixAl2O4(0.1≤x≤1) 분말의 제조는 출발원료가 되는 산화물 분말들을 목표하는 비율별로 섞어서 볼밀(ball mill), 어트리션밀(attrition mill) 등을 실시하여 고상 반응이 일어나게 후, 스피넬(spinel) 결정구조를 얻기 위해 비교적 낮은 온도(예컨대, 1000∼1450℃)에서 하소하는 공정을 거친다.
이하에서, 청색계 세라믹안료인 Mg1-xCoxAl2O4(0.1≤x≤1) 분말 또는 Mg1-xNixAl2O4(0.1≤x≤1) 분말의 합성방법을 더욱 구체적으로 설명한다.
출발원료를 준비한다.
Mg1-xCoxAl2O4(0.1≤x≤1) 분말을 합성하기 위한 출발원료로는 마그네슘(Mg) 성분을 포함하는 산화물 분말로 MgO 분말을 사용할 수 있고, 코발트(Co) 성분을 포함하는 산화물 분말로 CoO 분말을 사용할 수 있으며, 알루미늄(Al) 성분을 포함하는 산화물 분말로 Al2O3 분말을 사용할 수 있다. 마그네슘(Mg) 성분을 포함하는 산화물 분말, 코발트(Co) 성분을 포함하는 산화물 분말 및 알루미늄(Al) 성분을 포함하는 산화물 분말은 1-x:x:1(0.1≤x≤1)의 몰비를 이루도록 준비한다. 이때, 마그네슘(Mg) 성분을 포함하는 산화물 분말의 함량이 0 일 경우(1-x:x:1의 몰비에 서 x가 1인 경우)에는 CoAl2O4 분말을 합성하는 경우가 된다.
상기 CoAl2O4는 AB2O4 구조를 가지며, 스피넬(spinel) 구조로서 열적 및 화학적으로 안정하다. CoAl2O4는 고온에서 안정하게 청색(blue) 계열의 색을 발색하므로 고화도 청색 계통의 세라믹안료로 사용이 가능하다.
Mg1-xNixAl2O4(0.1≤x≤1) 분말을 합성하기 위한 출발원료로는 마그네슘(Mg) 성분을 포함하는 산화물 분말로 MgO 분말을 사용할 수 있고, 니켈(Ni) 성분을 포함하는 산화물 분말로 NiO 분말을 사용할 수 있으며, 알루미늄(Al) 성분을 포함하는 산화물 분말로 Al2O3 분말을 사용할 수 있다. 마그네슘(Mg) 성분을 포함하는 산화물 분말, 니켈(Ni) 성분을 포함하는 산화물 분말 및 알루미늄(Al) 성분을 포함하는 산화물 분말은 1-x:x:1(0.1≤x≤1)의 몰비를 이루도록 준비한다. 이때, 마그네슘(Mg) 성분을 포함하는 산화물 분말의 함량이 0 일 경우(1-x:x:1의 몰비에서 x가 1인 경우)에는 NiAl2O4 분말을 합성하는 경우가 된다.
준비된 출발원료를 기계적으로 혼합 및 분쇄하면서 산화물 간에 고상 반응을 시킨다.
이를 위해 출발원료, 볼 및 용매를 볼 밀링기, 어트리션 밀링기 등의 밀링기(milling machine)에 장입한다. 밀링기를 이용하여 출발원료를 균일하게 혼합하면서 분쇄한다. 이때, 볼과 출발원료, 볼과 볼, 볼과 밀링기 등의 충돌에 의한 에너지에 의하여 산화물 분말 간에 고상 반응이 일어나게 된다. 밀링 공정 동안 충돌 에너지에 의해 출발원료인 산화물 분말들이 서로 반응하게 된다. 상기 용매로는 물, 에탄올과 같은 알코올 등을 사용할 수 있다.
밀링기에 사용되는 볼은 알루미나, 지르코니아와 같은 세라믹으로 이루어진 볼을 사용할 수 있으며, 볼은 모두 같은 크기의 것일 수도 있고 2가지 이상의 크기를 갖는 볼을 함께 사용할 수도 있다.
볼의 크기, 볼과 산화물 분말의 중량비, 밀링 시간, 밀링기의 회전 속도 등을 조절하여 목표하는 산화물 분말 입자의 크기로 분쇄한다. 예를 들면, 산화물 분말 입자의 크기를 고려하여 볼의 크기는 1∼50㎜ 정도의 범위로 설정하고, 밀링기의 회전속도는 300∼1200 rpm 정도의 범위로 설정하는 것이 바람직하다. 밀링은 목표하는 입자의 크기, 고상 반응의 정도 등을 고려하여 1∼48시간 동안 실시하는 것이 바람직하다. 밀링 시간이 1시간 미만일 경우에는 충분한 고상 반응이 일어나지 않을 수 있으며, 밀링 시간이 48시간을 초과하더라도 분말의 입자 크기가 감소하는 양이 미미하여 더 이상 입자 크기를 줄이는데 한계가 있고 경제적이지 못하다. 밀링기에 투입되는 볼과 출발원료는 중량비로 20∼150:1 정도인 것이 바람직하다. 출발원료에 대한 볼의 함량이 너무 작은 경우 충분한 분쇄가 이루어지지 않아 입자의 응집이나 입자의 크기를 미세화하는데 한계가 있을 수 있으며, 출발원료에 대한 볼의 함량이 너무 큰 경우에는 효율적이지 못하다.
밀링기로 분쇄를 하면 입자의 크기가 작아지면서 반응 산화물 분말들의 직접 접촉면적이 증가하고, 고상 반응이 일어나게 된다. 밀링에 의해 출발원료인 산화물 분말들은 미세한 크기의 입자로 분쇄되고, 균일한 입자 크기 분포를 갖게 되며, 균일하게 혼합되게 되며, 밀링기 내에서 볼에 의한 기계적 연마와 고상 반응에 의한 화학적 작용이 동시에 발생하게 되어 기계화학적 처리가 이루어지게 되는 것이다.
밀링기를 이용하여 혼합이 이루어진 결과물을 건조하고, 전기로와 같은 퍼니스(furnace)에 장입하고 하소 공정을 수행한다. 상기 하소 공정은 1000∼1450℃ 정도의 하소 온도에서 1∼24시간 정도 수행하는 것이 바람직하다. 상기 하소 온도까지는 1∼50℃/min의 승온속도로 상승시키는 것이 바람직한데, 승온 속도가 너무 느린 경우에는 시간이 오래 걸려 생산성이 떨어지고 승온 속도가 너무 빠른 경우에는 급격한 온도 상승에 의해 열적 스트레스가 가해질 수 있으므로 상기범위의 승온 속도로 온도를 올리는 것이 바람직하다. 상기 하소는 산화 분위기(예컨대, 산소(O2) 또는 공기(air) 분위기)에서 실시하는 것이 바람직하다. 하소 공정을 수행한 후, 퍼니스 온도를 하강시켜 하소된 결과물인 Mg1-xCoxAl2O4(0.1≤x≤1) 분말 또는 Mg1-xNixAl2O4(0.1≤x≤1) 분말을 언로딩한다. 상기 퍼니스 냉각은 퍼니스 전원을 차단하여 자연적인 상태로 냉각되게 하거나, 임의적으로 온도 하강률(예컨대, 10℃/min)을 설정하여 냉각되게 할 수도 있다.
상기와 같이 합성된 Mg1-xCoxAl2O4(0.1≤x≤1) 분말 또는 Mg1-xNixAl2O4(0.1≤x≤1) 분말 중에서 선택된 1종 이상의 청색계 세라믹안료를 이용하여 청색 계통의 세라믹 잉크 조성물을 제조한다.
청색계 세라믹안료를 균일하게 분쇄하기 위하여 볼 밀링기, 어트리션 밀링기 등의 밀링기(milling machine)에 장입한다. 볼 및 용매를 밀링기에 넣고 청색계 세라믹안료를 기계적으로 분쇄한다. 세라믹안료의 평균 입경이 50∼300nm 범위를 이루도록 분쇄하는 것이 바람직하다. 상기 용매로는 물, 에탄올과 같은 알코올 등을 사용할 수 있다.
밀링기에 사용되는 볼은 알루미나, 지르코니아와 같은 세라믹으로 이루어진 볼을 사용할 수 있으며, 볼은 모두 같은 크기의 것일 수도 있고 2가지 이상의 크기를 갖는 볼을 함께 사용할 수도 있다.
볼의 크기, 볼과 세라믹안료의 중량비, 밀링 시간, 밀링기의 회전속도 등을 조절하여 목표하는 세라믹안료 입자의 크기로 분쇄한다. 예를 들면, 세라믹안료 입자의 크기를 고려하여 볼의 크기는 1∼50㎜ 정도의 범위로 설정하고, 밀링기의 회전속도는 100∼1200 rpm 정도의 범위로 설정하는 것이 바람직하다. 밀링은 목표하는 입자의 크기 등을 고려하여 1∼48시간 동안 실시하는 것이 바람직하다. 밀링기에 투입되는 볼과 세라믹안료는 중량비로 20∼150:1 정도인 것이 바람직하다. 세라믹안료에 대한 볼의 함량이 너무 작은 경우 충분한 분쇄가 이루어지지 않아 입자의 응집이나 입자의 크기를 미세화하는데 한계가 있을 수 있으며, 세라믹안료에 대한 볼의 함량이 너무 큰 경우에는 효율적이지 못하다.
밀링기로 분쇄를 하면 입자의 크기가 작아지면서 세라믹안료는 미세한 크기의 입자로 분쇄되고, 균일한 입자 크기 분포를 갖게 된다.
분쇄된 세라믹안료를 건조한다. 상기 건조는 30∼150℃ 정도의 온도에서 수행하는 것이 바람직하다.
건조된 세라믹안료를 분산액에 첨가하고 분산시켜 청색계 세라믹 잉크 조성물을 제조한다. 상기 세라믹 잉크 조성물의 점도가 10∼30 cps 범위이며 표면장력이 25∼40 dyn/cm 범위를 이루도록 상기 세라믹안료를 분산액에 분산시키는 것이 바람직하다. 상기 세라믹안료는 상기 잉크젯 프린팅용 세라믹 잉크 조성물에 상기 분산액 100중량부에 대하여 10∼43중량부 함유되는 것이 바람직하다. 상기 분산액은 에틸렌글리콜(ethylene glycol), 톨루엔(toluene) 또는 이들의 혼합물 등일 수 있다.
상기 분산액은 세라믹 잉크 조성물의 토출 특성 개선과, 점도 및 표면장력 조절을 위해 비증점제로 에탄올을 더 포함할 수 있다. 상기 에탄올은 분산액에 5∼35부피% 함유되는 것이 바람직하다.
상기 세라믹안료를 상기 분산액에 분산시킬 때 계면활성제를 더 첨가할 수 있다. 상기 계면활성제는 상기 잉크젯 프린팅용 세라믹 잉크 조성물에 상기 분산액 100중량부에 대하여 0.001∼3중량부 함유되게 첨가하는 것이 바람직하다. 상기 계면활성제는 세틸트리메틸암모늄브로마이드(cetyl trimethylammonium bromide; CTAB), 세틸트리메틸암모늄클로라이드(cetyl trimethylammonium chloride; CTAC), 디옥타데실디메틸암모늄브로마이드(dioctadecyldimethylammonium bromide; DODAB) 및 CH3(CH2)15N(Br)(CH3)3 중에서 선택된 1종 이상의 양이온성 계면활성제를 사용하거나, 소듐도데실설페이트(sodiumdodecylsulfate; SDS) 및 CH3(CH2)10CH2OSO3Na 중에서 선택된 1종 이상의 음이온성 계면활성제를 사용하는 것이 바람직하다.
또한, 본 발명은 CaSn1-xCrxSiO4(0.01≤x≤0.5) 분말을 포함하는 적색계 세라믹안료가 분산액에 분산되어 있고, 점도가 10∼30 cps 이며, 표면장력이 25∼40 dyn/cm 이고, 상기 세라믹안료의 평균 입경은 50∼300nm 인 잉크젯 프린팅용 세라믹 잉크 조성물을 제공한다.
상기 CaSn1-xCrxSiO4(0.01≤x≤0.5) 분말은 열적 및 화학적으로 안정하다. 또한, CaSn1-xCrxSiO4(0.01≤x≤0.5) 분말은 고온에서 안정하게 적색(red) 계열의 색을 발색하므로 고화도 적색 계통의 세라믹안료로 사용이 가능하다.
먼저, 고상법을 이용하여 적색계 세라믹안료인 CaSn1-xCrxSiO4(0.01≤x≤0.5) 분말을 합성하는 방법을 설명한다.
고상법을 이용한 CaSn1-xCrxSiO4(0.01≤x≤0.5) 분말의 제조는 출발원료가 되는 산화물 분말들을 목표하는 비율별로 섞어서 볼밀(ball mill), 어트리션밀(attrition mill) 등을 실시하여 고상 반응이 일어나게 후, 스피넬(spinel) 결정구조를 얻기 위해 비교적 낮은 온도(예컨대, 1000∼1450℃)에서 하소하는 공정을 거친다.
이하에서, 적색계 세라믹안료인 CaSn1-xCrxSiO4(0.01≤x≤0.5) 분말의 합성방법을 더욱 구체적으로 설명한다.
출발원료를 준비한다.
CaSn1-xCrxSiO4(0.01≤x≤0.5) 분말을 합성하기 위한 출발원료로는 칼슘(Ca) 성분을 포함하는 산화물 분말로 CaO 분말을 사용할 수 있고, 주석(Sn) 성분을 포함하는 산화물 분말로 SnO 분말을 사용할 수 있으며, 크롬(Cr) 성분을 포함하는 산화물 분말로 Cr2O3 분말을 사용할 수 있고, 실리콘(Si) 성분을 포함하는 산화물 분말로 SiO2 분말을 사용할 수 있다. 칼슘(Ca) 성분을 포함하는 산화물 분말, 주석(Sn) 성분을 포함하는 산화물 분말, 크롬(Cr) 성분을 포함하는 산화물 분말, 실리콘(Si) 성분을 포함하는 산화물 분말은 Ca, Sn, Cr 및 Si가 1:1-x:x:1(0.01≤x≤0.5)의 몰비를 이루도록 준비한다.
준비된 출발원료를 기계적으로 혼합 및 분쇄하면서 산화물 간에 고상 반응을 시킨다.
이를 위해 출발원료, 볼 및 용매를 볼 밀링기, 어트리션 밀링기 등의 밀링기(milling machine)에 장입한다. 밀링기를 이용하여 출발원료를 균일하게혼합하면서 분쇄한다. 이때, 볼과 출발원료, 볼과 볼, 볼과 밀링기 등의 충돌에 의한 에너지에 의하여 산화물 분말 간에 고상 반응이 일어나게 된다. 밀링 공정 동안 충돌 에너지에 의해 출발원료인 산화물 분말들이 서로 반응하게 된다. 상기 용매로는 물, 에탄올과 같은 알코올 등을 사용할 수 있다.
밀링기에 사용되는 볼은 알루미나, 지르코니아와 같은 세라믹으로 이루어진 볼을 사용할 수 있으며, 볼은 모두 같은 크기의 것일 수도 있고 2가지 이상의 크기를 갖는 볼을 함께 사용할 수도 있다.
볼의 크기, 볼과 산화물 분말의 중량비, 밀링 시간, 밀링기의 회전 속도 등을 조절하여 목표하는 산화물 분말 입자의 크기로 분쇄한다. 예를 들면, 산화물 분말 입자의 크기를 고려하여 볼의 크기는 1∼50㎜ 정도의 범위로 설정하고, 밀링기의 회전속도는 300∼1200 rpm 정도의 범위로 설정하는 것이 바람직하다. 밀링은 목표하는 입자의 크기, 고상 반응의 정도 등을 고려하여 1∼48시간 동안 실시하는 것이 바람직하다. 밀링 시간이 1시간 미만일 경우에는 충분한 고상 반응이 일어나지 않을 수 있으며, 밀링 시간이 48시간을 초과하더라도 분말의 입자 크기가 감소하는 양이 미미하여 더 이상 입자 크기를 줄이는데 한계가 있고 경제적이지 못하다. 밀링기에 투입되는 볼과 출발원료는 중량비로 20∼150:1 정도인 것이 바람직하다. 출발원료에 대한 볼의 함량이 너무 작은 경우 충분한 분쇄가 이루어지지 않아 입자의 응집이나 입자의 크기를 미세화하는데 한계가 있을 수 있으며, 출발원료에 대한 볼의 함량이 너무 큰 경우에는 효율적이지 못하다.
밀링기로 분쇄를 하면 입자의 크기가 작아지면서 반응 산화물 분말들의 직접 접촉면적이 증가하고, 고상 반응이 일어나게 된다. 밀링에 의해 출발원료인 산화물 분말들은 미세한 크기의 입자로 분쇄되고, 균일한 입자 크기 분포를 갖게 되며, 균일하게 혼합되게 되며, 밀링기 내에서 볼에 의한 기계적 연마와 고상 반응에 의한 화학적 작용이 동시에 발생하게 되어 기계화학적 처리가 이루어지게되는 것이다.
밀링기를 이용하여 혼합이 이루어진 결과물을 건조하고, 전기로와 같은 퍼니스(furnace)에 장입하고 하소 공정을 수행한다. 상기 하소 공정은 1000∼1450℃ 정도의 하소 온도에서 1∼24시간 정도 수행하는 것이 바람직하다. 상기 하소 온도까지는 1∼50℃/min의 승온속도로 상승시키는 것이 바람직한데, 승온 속도가 너무 느린 경우에는 시간이 오래 걸려 생산성이 떨어지고 승온 속도가 너무 빠른 경우에는 급격한 온도 상승에 의해 열적 스트레스가 가해질 수 있으므로 상기 범위의 승온 속도로 온도를 올리는 것이 바람직하다. 상기 하소는 산화 분위기(예컨대, 산소(O2) 또는 공기(air) 분위기)에서 실시하는 것이 바람직하다. 하소 공정을 수행한 후, 퍼니스 온도를 하강시켜 하소된 결과물인 CaSn1-xCrxSiO4(0.01≤x≤0.5) 분말을 언로딩한다. 상기 퍼니스 냉각은 퍼니스 전원을 차단하여 자연적인 상태로 냉각되게 하거나, 임의적으로 온도 하강률(예컨대, 10℃/min)을 설정하여 냉각되게 할 수도 있다.
상기와 같이 합성된 CaSn1-xCrxSiO4(0.01≤x≤0.5) 분말을 포함하는 적색계 세라믹안료를 이용하여 적색 계통의 세라믹 잉크 조성물을 제조한다.
적색계 세라믹안료를 균일하게 분쇄하기 위하여 볼 밀링기, 어트리션 밀링기 등의 밀링기(milling machine)에 장입한다. 볼 및 용매를 밀링기에 넣고 적색계 세라믹안료를 기계적으로 분쇄한다. 세라믹안료의 평균 입경이 50∼300nm 범위를 이루도록 분쇄하는 것이 바람직하다. 상기 용매로는 물, 에탄올과 같은 알코올 등을 사용할 수 있다.
밀링기에 사용되는 볼은 알루미나, 지르코니아와 같은 세라믹으로 이루어진 볼을 사용할 수 있으며, 볼은 모두 같은 크기의 것일 수도 있고 2가지 이상의 크기를 갖는 볼을 함께 사용할 수도 있다.
볼의 크기, 볼과 세라믹안료의 중량비, 밀링 시간, 밀링기의 회전속도 등을 조절하여 목표하는 세라믹안료 입자의 크기로 분쇄한다. 예를 들면, 세라믹안료 입자의 크기를 고려하여 볼의 크기는 1∼50㎜ 정도의 범위로 설정하고, 밀링기의 회전속도는 100∼1200 rpm 정도의 범위로 설정하는 것이 바람직하다. 밀링은 목표하는 입자의 크기 등을 고려하여 1∼48시간 동안 실시하는 것이 바람직하다. 밀링기에 투입되는 볼과 세라믹안료는 중량비로 20∼150:1 정도인 것이 바람직하다. 세라믹안료에 대한 볼의 함량이 너무 작은 경우 충분한 분쇄가 이루어지지 않아 입자의 응집이나 입자의 크기를 미세화하는데 한계가 있을 수 있으며, 세라믹안료에 대한 볼의 함량이 너무 큰 경우에는 효율적이지 못하다.
밀링기로 분쇄를 하면 입자의 크기가 작아지면서 세라믹안료는 미세한 크기의 입자로 분쇄되고, 균일한 입자 크기 분포를 갖게 된다.
분쇄된 세라믹안료를 건조한다. 상기 건조는 30∼150℃ 정도의 온도에서 수행하는 것이 바람직하다.
건조된 세라믹안료를 분산액에 첨가하고 분산시켜 적색계 세라믹 잉크 조성물을 제조한다. 상기 세라믹 잉크 조성물의 점도가 10∼30 cps 범위이며 표면장력이 25∼40 dyn/cm 범위를 이루도록 상기 세라믹안료를 분산액에 분산시키는 것이 바람직하다. 상기 세라믹안료는 상기 잉크젯 프린팅용 세라믹 잉크 조성물에 상기 분산액 100중량부에 대하여 10∼43중량부 함유되는 것이 바람직하다. 상기 분산액은 에틸렌글리콜(ethylene glycol), 톨루엔(toluene) 또는 이들의 혼합물 등일 수 있다.
상기 분산액은 세라믹 잉크 조성물의 토출 특성 개선과, 점도 및 표면장력 조절을 위해 비증점제로 에탄올을 더 포함할 수 있다. 상기 에탄올은 분산액에 5∼35부피% 함유되는 것이 바람직하다.
상기 세라믹안료를 상기 분산액에 분산시킬 때 계면활성제를 더 첨가할 수 있다. 상기 계면활성제는 상기 잉크젯 프린팅용 세라믹 잉크 조성물에 상기 분산액 100중량부에 대하여 0.001∼3중량부 함유되게 첨가하는 것이바람직하다. 상기 계면활성제는 세틸트리메틸암모늄브로마이드(cetyl trimethylammonium bromide; CTAB), 세틸트리메틸암모늄클로라이드(cetyl trimethylammonium chloride; CTAC), 디옥타데실디메틸암모늄브로마이드(dioctadecyldimethylammonium bromide; DODAB) 및 CH3(CH2)15N(Br)(CH3)3 중에서 선택된 1종 이상의 양이온성 계면활성제를 사용하거나, 소듐도데실설페이트(sodiumdodecylsulfate; SDS) 및 CH3(CH2)10CH2OSO3Na 중에서 선택된 1종 이상의 음이온성 계면활성제를 사용하는 것이 바람직하다.
나아가, 본 발명은 Zr1-xCexSiO4(0.01≤x≤0.5) 분말, Zr1-xPrxSiO4(0.01≤x≤0.5) 분말 및 Zr1-xTaxSiO4(0.01≤x≤0.5) 분말 중에서 선택된 1종 이상의 노란색계 세라믹안료가 분산액에 분산되어 있고, 점도가 10∼30 cps이며, 표면장력이 25∼40 dyn/cm이고, 상기 세라믹안료의 평균 입경은 50∼300nm인 잉크젯 프린팅용 세라믹 잉크 조성물을 제공한다.
Zr1-xCexSiO4(0.01≤x≤0.5) 분말, Zr1-xPrxSiO4(0.01≤x≤0.5) 분말 및 Zr1-xTaxSiO4(0.01≤x≤0.5) 분말은 열적 및 화학적으로 안정하다. 또한, Zr1-xCexSiO4(0.01≤x≤0.5) 분말, Zr1-xPrxSiO4(0.01≤x≤0.5) 분말 및 Zr1-xTaxSiO4(0.01≤x≤0.5) 분말은 고온에서 안정하게 노란색(yellow) 계열의 색을 발색하므로 고화도 노란색 계통의 세라믹안료로 사용이 가능하다.
먼저, 고상법을 이용하여 노란색계 세라믹안료인 Zr1-xCexSiO4(0.01≤x≤0.5) 분말, Zr1-xPrxSiO4(0.01≤x≤0.5) 분말 및 Zr1-xTaxSiO4(0.01≤x≤0.5) 분말을 합성하는 방법을 설명한다.
고상법을 이용한 Zr1-xCexSiO4(0.01≤x≤0.5) 분말, Zr1-xPrxSiO4(0.01≤x≤0.5) 분말 및 Zr1-xTaxSiO4(0.01≤x≤0.5) 분말의 제조는 출발원료가 되는 산화물 분말들을 목표하는 비율별로 섞어서 볼밀(ball mill), 어트리션밀(attrition mill) 등을 실시하여 고상 반응이 일어나게 후, 스피넬(spinel) 결정구조를 얻기 위해 비교적 낮은 온도(예컨대, 1000∼1450℃)에서 하소하는 공정을거친다.
이하에서, 노란색계 세라믹안료인 Zr1-xCexSiO4(0.01≤x≤0.5) 분말, Zr1-xPrxSiO4(0.01≤x≤0.5) 분말 및 Zr1-xTaxSiO4(0.01≤x≤0.5) 분말의 합성방법을 더욱 구체적으로 설명한다.
출발원료를 준비한다.
Zr1-xCexSiO4(0.01≤x≤0.5) 분말을 합성하기 위한 출발원료로는 지르코늄(Zr) 성분을 포함하는 산화물 분말로 ZrO2 분말을 사용할 수 있고, 세륨(Ce) 성분을 포함하는 산화물 분말로 CeO2 분말을 사용할 수 있으며, 실리콘(Si) 성분을 포함하는 산화물 분말로 SiO2 분말을 사용할 수 있다. 지르코늄(Zr) 성분을 포함하는 산화물 분말, 세륨(Ce) 성분을 포함하는 산화물 분말, 실리콘(Si) 성분을 포함하는 산화물 분말은 1-x:x:1(0.01≤x≤0.5)의 몰비를 이루도록 출발원료로 준비한다.
Zr1-xPrxSiO4(0.01≤x≤0.5) 분말을 합성하기 위한 출발원료로는 지르코늄(Zr) 성분을 포함하는 산화물 분말로 ZrO2 분말을 사용할 수 있고, 프라세오디뮴(Pr) 성분을 포함하는 산화물 분말로 Pr2O3 분말을 사용할 수 있으며, 실리콘(Si) 성분을 포함하는 산화물 분말로 SiO2 분말을 사용할 수 있다. 지르코늄(Zr) 성분을 포함하는 산화물 분말, 프라세오디뮴(Pr) 성분을 포함하는 산화물 분말, 실리콘(Si) 성분을 포함하는 산화물 분말은 Zr, Pr 및 Si가 1-x:x:1(0.01≤x≤0.5)의 몰비를 이루도록 출발원료로 준비한다.
Zr1-xTaxSiO4(0.01≤x≤0.5) 분말을 합성하기 위한 출발원료로는 지르코늄(Zr) 성분을 포함하는 산화물 분말로 ZrO2 분말을 사용할 수 있고, 탄탈륨(Ta)성분을 포함하는 산화물 분말로 Ta2O5 분말을 사용할 수 있으며, 실리콘(Si) 성분을 포함하는 산화물 분말로 SiO2 분말을 사용할 수 있다. 지르코늄(Zr) 성분을 포함하는 산화물 분말, 탄탈륨(Ta) 성분을 포함하는 산화물 분말, 실리콘(Si) 성분을 포함하는 산화물 분말은 Zr, Ta 및 Si가 1-x:x:1(0.01≤x≤0.5)의 몰비를 이루도록 출발원료로 준비한다.
준비된 출발원료를 기계적으로 혼합 및 분쇄하면서 산화물 간에 고상 반응을 시킨다.
이를 위해 출발원료, 볼 및 용매를 볼 밀링기, 어트리션 밀링기 등의 밀링기(milling machine)에 장입한다. 밀링기를 이용하여 출발원료를 균일하게 혼합하면서 분쇄한다. 이때, 볼과 출발원료, 볼과 볼, 볼과 밀링기 등의 충돌에 의한 에너지에 의하여 산화물 분말 간에 고상 반응이 일어나게 된다. 밀링 공정 동안 충돌 에너지에 의해 출발원료인 산화물 분말들이 서로 반응하게 된다. 상기 용매로는 물, 에탄올과 같은 알코올 등을 사용할 수 있다.
밀링기에 사용되는 볼은 알루미나, 지르코니아와 같은 세라믹으로 이루어진 볼을 사용할 수 있으며, 볼은 모두 같은 크기의 것일 수도 있고 2가지 이상의 크기를 갖는 볼을 함께 사용할 수도 있다.
볼의 크기, 볼과 산화물 분말의 중량비, 밀링 시간, 밀링기의 회전 속도 등을 조절하여 목표하는 산화물 분말 입자의 크기로 분쇄한다. 예를 들면, 산화물 분말 입자의 크기를 고려하여 볼의 크기는 1∼50㎜ 정도의 범위로 설정하고, 밀링기의 회전속도는 300∼1200 rpm 정도의 범위로 설정하는 것이 바람직하다. 밀링은 목표하는 입자의 크기, 고상 반응의 정도 등을 고려하여 1∼48시간 동안 실시하는 것이 바람직하다. 밀링 시간이 1시간 미만일 경우에는 충분한 고상 반응이 일어나지 않을 수 있으며, 밀링 시간이 48시간을 초과하더라도 분말의 입자 크기가 감소하는 양이 미미하여 더 이상 입자 크기를 줄이는데 한계가 있고 경제적이지 못하다. 밀링기에 투입되는 볼과 출발원료는 중량비로 20∼150:1 정도인 것이 바람직하다. 출발원료에 대한 볼의 함량이 너무 작은 경우 충분한 분쇄가 이루어지지 않아 입자의 응집이나 입자의 크기를 미세화하는데 한계가 있을 수 있으며, 출발원료에 대한 볼의 함량이 너무 큰 경우에는 효율적이지 못하다.
밀링기로 분쇄를 하면 입자의 크기가 작아지면서 반응 산화물 분말들의 직접 접촉면적이 증가하고, 고상 반응이 일어나게 된다. 밀링에 의해 출발원료인 산화물 분말들은 미세한 크기의 입자로 분쇄되고, 균일한 입자 크기 분포를 갖게 되며, 균일하게 혼합되게 되며, 밀링기 내에서 볼에 의한 기계적 연마와 고상반응에 의한 화학적 작용이 동시에 발생하게 되어 기계화학적 처리가 이루어지게되는 것이다.
밀링기를 이용하여 혼합이 이루어진 결과물을 건조하고, 전기로와 같은 퍼니스(furnace)에 장입하고 하소 공정을 수행한다. 상기 하소 공정은 1000∼1450℃ 정도의 하소 온도에서 1∼24시간 정도 수행하는 것이 바람직하다. 상기 하소 온도까지는 1∼50℃/min의 승온속도로 상승시키는 것이 바람직한데, 승온 속도가 너무 느린 경우에는 시간이 오래 걸려 생산성이 떨어지고 승온 속도가 너무 빠른 경우에는 급격한 온도 상승에 의해 열적 스트레스가 가해질 수 있으므로 상기 범위의 승온 속도로 온도를 올리는 것이 바람직하다. 상기 하소는 산화 분위기(예컨대, 산소(O2) 또는 공기(air) 분위기)에서 실시하는 것이 바람직하다. 하소 공정을 수행한 후, 퍼니스 온도를 하강시켜 하소된 결과물인 Zr1-xCexSiO4(0.01≤x≤0.5) 분말, Zr1-xPrxSiO4(0.01≤x≤0.5) 분말 또는 Zr1-xTaxSiO4(0.01≤x≤0.5) 분말을 언로딩한다. 상기 퍼니스 냉각은 퍼니스 전원을 차단하여 자연적인 상태로 냉각되게 하거나, 임의적으로 온도 하강률(예컨대, 10℃/min)을 설정하여 냉각되게 할 수도 있다.
상기와 같이 합성된 Zr1-xCexSiO4(0.01≤x≤0.5) 분말, Zr1-xPrxSiO4(0.01≤x≤0.5) 분말 또는 Zr1-xTaxSiO4(0.01≤x≤0.5) 분말 중에서 선택된 1종 이상의 노란색계 세라믹안료를 이용하여 노란색 계통의 세라믹 잉크 조성물을 제조한다.
노란색계 세라믹안료를 균일하게 분쇄하기 위하여 볼 밀링기, 어트리션 밀링기 등의 밀링기(milling machine)에 장입한다. 볼 및 용매를 밀링기에 넣고 노란색계 세라믹안료를 기계적으로 분쇄한다. 세라믹안료의 평균 입경이 50∼300nm 범위를 이루도록 분쇄하는 것이 바람직하다. 상기 용매로는 물, 에탄올과 같은 알코올 등을 사용할 수 있다.
밀링기에 사용되는 볼은 알루미나, 지르코니아와 같은 세라믹으로 이루어진 볼을 사용할 수 있으며, 볼은 모두 같은 크기의 것일 수도 있고 2가지 이상의 크기를 갖는 볼을 함께 사용할 수도 있다.
볼의 크기, 볼과 세라믹안료의 중량비, 밀링 시간, 밀링기의 회전속도 등을 조절하여 목표하는 세라믹안료 입자의 크기로 분쇄한다. 예를 들면, 세라믹안료 입자의 크기를 고려하여 볼의 크기는 1∼50㎜ 정도의 범위로 설정하고, 밀링기의 회전속도는 100∼1200 rpm 정도의 범위로 설정하는 것이 바람직하다. 밀링은 목표하는 입자의 크기 등을 고려하여 1∼48시간 동안 실시하는 것이 바람직하다. 밀링기에 투입되는 볼과 세라믹안료는 중량비로 20∼150:1 정도인 것이 바람직하다. 세라믹안료에 대한 볼의 함량이 너무 작은 경우 충분한 분쇄가 이루어지지 않아 입자의 응집이나 입자의 크기를 미세화하는데 한계가 있을 수 있으며, 세라믹안료에 대한 볼의 함량이 너무 큰 경우에는 효율적이지 못하다.
밀링기로 분쇄를 하면 입자의 크기가 작아지면서 세라믹안료는 미세한 크기의 입자로 분쇄되고, 균일한 입자 크기 분포를 갖게 된다.
분쇄된 세라믹안료를 건조한다. 상기 건조는 30∼150℃ 정도의 온도에서 수행하는 것이 바람직하다.
건조된 세라믹안료를 분산액에 첨가하고 분산시켜 노란색계 세라믹잉크 조성물을 제조한다. 상기 세라믹 잉크 조성물의 점도가 10∼30 cps 범위이며 표면장력이 25∼40 dyn/cm 범위를 이루도록 상기 세라믹안료를 분산액에 분산시키는 것이 바람직하다. 상기 세라믹안료는 상기 잉크젯 프린팅용 세라믹 잉크 조성물에 상기 분산액 100중량부에 대하여 10∼43중량부 함유되는 것이 바람직하다. 상기 분산액은 에틸렌글리콜(ethylene glycol), 톨루엔(toluene) 또는 이들의 혼합물 등일 수 있다.
상기 분산액은 세라믹 잉크 조성물의 토출 특성 개선과, 점도 및 표면장력 조절을 위해 비증점제로 에탄올을 더 포함할 수 있다. 상기 에탄올은 분산액에 5∼35부피% 함유되는 것이 바람직하다.
상기 세라믹안료를 상기 분산액에 분산시킬 때 계면활성제를 더 첨가할 수 있다. 상기 계면활성제는 상기 잉크젯 프린팅용 세라믹 잉크 조성물에 상기 분산액 100중량부에 대하여 0.001∼3중량부 함유되게 첨가하는 것이바람직하다. 상기 계면활성제는 세틸트리메틸암모늄브로마이드(cetyl trimethylammonium bromide; CTAB), 세틸트리메틸암모늄클로라이드(cetyl trimethylammonium chloride; CTAC), 디옥타데실디메틸암모늄브로마이드(dioctadecyldimethylammonium bromide; DODAB) 및 CH3(CH2)15N(Br)(CH3)3 중에서 선택된 1종 이상의 양이온성 계면활성제를 사용하거나, 소듐도데실설페이트(sodium dodecylsulfate; SDS) 및 CH3(CH2)10CH2OSO3Na 중에서 선택된 1종 이상의 음이온성 계면활성제를 사용하는 것이 바람직하다.
더불어, 본 발명은 Co(Fe1-xCrx)2O4(0.01≤x≤0.5) 분말을 포함하는 검정색계 세라믹안료가 분산액에 분산되어 있고, 점도가 10∼30 cps이며, 표면장력이 25∼40 dyn/cm이고, 상기 세라믹안료의 평균 입경은 50∼300nm 인 잉크젯 프린팅용 세라믹 잉크 조성물을 제공한다.
상기 Co(Fe1-xCrx)2O4(0.01≤x≤0.5) 분말은 열적 및 화학적으로 안정하다. 또한, Co(Fe1-xCrx)2O4(0.01≤x≤0.5) 분말은 고온에서 안정하게 검정색(black) 계열의 색을 발색하므로 고화도 검정색 계통의 세라믹안료로 사용이 가능하다.
먼저, 고상법을 이용하여 검정색계 세라믹안료인 Co(Fe1-xCrx)2O4(0.01≤x≤0.5) 분말을 합성하는 방법을 설명한다.
고상법을 이용한 Co(Fe1-xCrx)2O4(0.01≤x≤0.5) 분말의 제조는 출발원료가 되는 산화물 분말들을 목표하는 비율별로 섞어서 볼밀(ball mill), 어트리션밀(attrition mill) 등을 실시하여 고상 반응이 일어나게 후, 스피넬(spinel) 결정구조를 얻기 위해 비교적 낮은 온도(예컨대, 1000∼1450℃)에서 하소하는 공정을 거친다.
이하에서, 검정색계 세라믹안료인 Co(Fe1-xCrx)2O4(0.01≤x≤0.5) 분말의 합성방법을 더욱 구체적으로 설명한다.
출발원료를 준비한다.
Co(Fe1-xCrx)2O4(0.01≤x≤0.5) 분말을 합성하기 위한 출발원료로는 코발트(Co) 성분을 포함하는 산화물 분말로 CoO 분말을 사용할 수 있고, 철(Fe) 성분을 포함하는 산화물 분말로 Fe2O3 분말을 사용할 수 있으며, 크롬(Cr) 성분을 포함하는 산화물 분말로 Cr2O3 분말을 사용할 수 있다. 코발트(Co) 성분을 포함하는 산화물 분말, 철(Fe) 성분을 포함하는 산화물 분말, 크롬(Cr) 성분을 포함하는 산화물 분말은 1:1-x:x(0.01≤x≤0.5)의 몰비로 출발원료로 준비한다.
준비된 출발원료를 기계적으로 혼합 및 분쇄하면서 산화물 간에 고상 반응을 시킨다.
이를 위해 출발원료, 볼 및 용매를 볼 밀링기, 어트리션 밀링기 등의 밀링기(milling machine)에 장입한다. 밀링기를 이용하여 출발원료를 균일하게 혼합하면서 분쇄한다. 이때, 볼과 출발원료, 볼과 볼, 볼과 밀링기 등의 충돌에 의한 에너지에 의하여 산화물 분말 간에 고상 반응이 일어나게 된다. 밀링 공정 동안 충돌 에너지에 의해 출발원료인 산화물 분말들이 서로 반응하게 된다. 상기 용매로는 물, 에탄올과 같은 알코올 등을 사용할 수 있다.
밀링기에 사용되는 볼은 알루미나, 지르코니아와 같은 세라믹으로 이루어진 볼을 사용할 수 있으며, 볼은 모두 같은 크기의 것일 수도 있고 2가지 이상의 크기를 갖는 볼을 함께 사용할 수도 있다.
볼의 크기, 볼과 산화물 분말의 중량비, 밀링 시간, 밀링기의 회전 속도 등을 조절하여 목표하는 산화물 분말 입자의 크기로 분쇄한다. 예를 들면, 산화물 분말 입자의 크기를 고려하여 볼의 크기는 1∼50㎜ 정도의 범위로 설정하고, 밀링기의 회전속도는 300∼1200 rpm 정도의 범위로 설정하는 것이 바람직하다. 밀링은 목표하는 입자의 크기, 고상 반응의 정도 등을 고려하여 1∼48시간 동안 실시하는 것이 바람직하다. 밀링 시간이 1시간 미만일 경우에는 충분한 고상 반응이 일어나지 않을 수 있으며, 밀링 시간이 48시간을 초과하더라도 분말의 입자 크기가 감소하는 양이 미미하여 더 이상 입자 크기를 줄이는데 한계가 있고 경제적이지 못하다. 밀링기에 투입되는 볼과 출발원료는 중량비로 20∼150:1 정도인 것이 바람직하다. 출발원료에 대한 볼의 함량이 너무 작은 경우 충분한 분쇄가 이루어지지 않아 입자의 응집이나 입자의 크기를 미세화하는데 한계가 있을 수 있으며, 출발원료에 대한 볼의 함량이 너무 큰 경우에는 효율적이지 못하다.
밀링기로 분쇄를 하면 입자의 크기가 작아지면서 반응 산화물 분말들의 직접 접촉면적이 증가하고, 고상 반응이 일어나게 된다. 밀링에 의해 출발원료인 산화물 분말들은 미세한 크기의 입자로 분쇄되고, 균일한 입자 크기 분포를 갖게 되며, 균일하게 혼합되게 되며, 밀링기 내에서 볼에 의한 기계적 연마와 고상 반응에 의한 화학적 작용이 동시에 발생하게 되어 기계화학적 처리가 이루어지게 되는 것이다.밀링기를 이용하여 혼합이 이루어진 결과물을 건조하고, 전기로와 같은 퍼니스(furnace)에 장입하고 하소 공정을 수행한다. 상기 하소 공정은 1000∼1450℃ 정도의 하소 온도에서 1∼24시간 정도 수행하는 것이 바람직하다. 상기 하소 온도까지는 1∼50℃/min의 승온속도로 상승시키는 것이 바람직한데, 승온 속도가 너무 느린 경우에는 시간이 오래 걸려 생산성이 떨어지고 승온 속도가 너무 빠른 경우에는 급격한 온도 상승에 의해 열적 스트레스가 가해질 수 있으므로 상기 범위의 승온 속도로 온도를 올리는 것이 바람직하다. 상기 하소는 산화 분위기(예컨대, 산소(O2) 또는 공기(air) 분위기)에서 실시하는 것이 바람직하다. 하소 공정을 수행한 후, 퍼니스 온도를 하강시켜 하소된 결과물인 Co(Fe1-xCrx)2O4(0.01≤x≤0.5) 분말을 언로딩한다. 상기 퍼니스 냉각은 퍼니스 전원을 차단하여 자연적인 상태로 냉각되게 하거나, 임의적으로 온도 하강률(예컨대, 10℃/min)을 설정하여 냉각되게 할 수도 있다.
상기와 같이 합성된 Co(Fe1-xCrx)2O4(0.01≤x≤0.5) 분말을 포함하는 검정색계 세라믹안료를 이용하여 검정색 계통의 세라믹 잉크 조성물을 제조한다.
검정색계 세라믹안료를 균일하게 분쇄하기 위하여 볼 밀링기, 어트리션 밀링기 등의 밀링기(milling machine)에 장입한다. 볼 및 용매를 밀링기에 넣고 검정색계 세라믹안료를 기계적으로 분쇄한다. 세라믹안료의 평균 입경이 50∼300nm 범위를 이루도록 분쇄하는 것이 바람직하다. 상기 용매로는 물, 에탄올과 같은 알코올 등을 사용할 수 있다.
밀링기에 사용되는 볼은 알루미나, 지르코니아와 같은 세라믹으로 이루어진 볼을 사용할 수 있으며, 볼은 모두 같은 크기의 것일 수도 있고 2가지 이상의 크기를 갖는 볼을 함께 사용할 수도 있다.
볼의 크기, 볼과 세라믹안료의 중량비, 밀링 시간, 밀링기의 회전속도 등을 조절하여 목표하는 세라믹안료 입자의 크기로 분쇄한다. 예를 들면, 세라믹안료 입자의 크기를 고려하여 볼의 크기는 1∼50㎜ 정도의 범위로 설정하고, 밀링기의 회전속도는 100∼1200 rpm 정도의 범위로 설정하는 것이 바람직하다. 밀링은 목표하는 입자의 크기 등을 고려하여 1∼48시간 동안 실시하는 것이 바람직하다. 밀링기에 투입되는 볼과 세라믹안료는 중량비로 20∼150:1 정도인 것이 바람직하다. 세라믹안료에 대한 볼의 함량이 너무 작은 경우 충분한 분쇄가 이루어지지 않아 입자의 응집이나 입자의 크기를 미세화하는데 한계가 있을 수 있으며, 세라믹안료에 대한 볼의 함량이 너무 큰 경우에는 효율적이지 못하다.
밀링기로 분쇄를 하면 입자의 크기가 작아지면서 세라믹안료는 미세한 크기의 입자로 분쇄되고, 균일한 입자 크기 분포를 갖게 된다.
분쇄된 세라믹안료를 건조한다. 상기 건조는 30∼150℃ 정도의 온도에서 수행하는 것이 바람직하다.
건조된 세라믹안료를 분산액에 첨가하고 분산시켜 검정색계 세라믹잉크 조성물을 제조한다. 상기 세라믹 잉크 조성물의 점도가 10∼30 cps 범위이며 표면장력이 25∼40 dyn/cm 범위를 이루도록 상기 세라믹안료를 분산액에 분산시키는 것이 바람직하다. 상기 세라믹안료는 상기 잉크젯 프린팅용 세라믹 잉크 조성물에 상기 분산액 100중량부에 대하여 10∼43중량부 함유되는 것이 바람직하다. 상기 분산액은 에틸렌글리콜(ethylene glycol), 톨루엔(toluene) 또는 이들의 혼합물 등일 수 있다.
상기 분산액은 세라믹 잉크 조성물의 토출 특성 개선과, 점도 및 표면장력 조절을 위해 비증점제로 에탄올을 더 포함할 수 있다. 상기 에탄올은 분산액에 5∼35부피% 함유되는 것이 바람직하다.
상기 세라믹안료를 상기 분산액에 분산시킬 때 계면활성제를 더 첨가할 수 있다. 상기 계면활성제는 상기 잉크젯 프린팅용 세라믹 잉크 조성물에 상기 분산액 100중량부에 대하여 0.001∼3중량부 함유되게 첨가하는 것이 바람직하다. 상기 계면활성제는 세틸트리메틸암모늄브로마이드(cetyl trimethylammonium bromide; CTAB), 세틸트리메틸암모늄클로라이드(cetyl trimethylammonium chloride; CTAC), 디옥타데실디메틸암모늄브로마이드(dioctadecyldimethylammonium bromide; DODAB) 및 CH3(CH2)15N(Br)(CH3)3 중에서 선택된 1종 이상의 양이온성 계면활성제를 사용하거나, 소듐도데실설페이트(sodium dodecylsulfate; SDS) 및 CH3(CH2)10CH2OSO3Na 중에서 선택된 1종 이상의 음이온성 계면활성제를 사용하는 것이 바람직하다.
이하에서, 본 발명에 따른 실시예들을 구체적으로 제시하며, 다음에 제시하는 실시예들에 의하여 본 발명이 한정되는 것은 아니다.
[실시예 1]
고상법을 이용하여 청색계 세라믹안료인 CoAl2O4 분말을 합성하였다.
고상법을 이용한 CoAl2O4 분말의 제조는 출발원료가 되는 산화물 분말들을 목표하는 비율별로 섞어서 볼밀(ball mill), 어트리션밀(attrition mill) 등을 실시하여 고상 반응이 일어나게 후, 비교적 낮은 1000∼1400℃의 온도에서 하소하는 공정을 거쳤다.
이하에서, 청색계 세라믹안료인 CoAl2O4 분말의 합성방법을 더욱 구체적으로 설명한다.
출발원료를 준비하였다.
CoAl2O4 분말을 합성하기 위한 출발원료로는 코발트(Co) 성분을 포함하는 산화물 분말로 CoO 분말을 사용하였고, 알루미늄(Al) 성분을 포함하는 산화물 분말로 Al2O3 분말을 사용하였다. 코발트(Co) 성분을 포함하는 산화물 분말 및 알루미늄(Al) 성분을 포함하는 산화물 분말은 1:1의 몰비를 이루도록 준비하였다. 코발트(Co) 성분을 포함하는 산화물 분말은 325메쉬(mesh)의 체(sieve)로 체거름하여 사용하였고, 알루미늄(Al) 성분을 포함하는 산화물 분말은 평균 입경이 300㎛ 정도인 것을 사용하였다.
준비된 출발원료를 기계적으로 혼합 및 분쇄하면서 산화물 간에 고상 반응을 시켰다.
이를 위해 출발원료, 볼 및 용매를 볼 밀링기에 장입하였다. 밀링기를 이용하여 출발원료를 균일하게 혼합하면서 분쇄하였다. 이때, 볼과 출발원료, 볼과 볼, 볼과 밀링기 등의 충돌에 의한 에너지에 의하여 산화물 분말 간에 고상 반응이 일어나게 된다. 밀링 공정 동안 충돌 에너지에 의해 출발원료인 산화물 분말들이 서로 반응하게 된다. 상기 용매로는 에탄올을 사용하였다. 밀링기에 사용되는 볼은 지르코니아(ZrO2)로 이루어진 볼을 사용하였다. 볼은 1㎜ 정도 크기의 볼을 사용하였고, 밀링기의 회전속도는 800 rpm 정도로 설정하였으며, 밀링은 3시간 동안 실시하였다. 밀링기에 투입되는 볼과 출발원료는 중량비로 100:1 정도였다.
밀링기를 이용하여 혼합이 이루어진 결과물을 건조하고, 전기로에 장입하고 하소 공정을 수행하였다. 상기 하소 공정은 1000∼1400℃의 온도의 하소 온도에서 3시간 정도 수행하였다. 상기 하소 온도까지는 5℃/min의 승온속도로 상승시켰다. 상기 하소는 공기(air) 분위기에서 실시하였다. 하소 공정을 수행한 후, 퍼니스 온도를 하강시켜 하소된 결과물인 CoAl2O4 분말을 언로딩하였다. 상기 전기로의 냉각은 전원을 차단하여 자연적인 상태로 냉각되게 하였다.
도 1은 하소 전의 X-선회절 패턴과 실험예 1에 따라 하소 후 합성된 CoAl2O4 분말의 하소 온도에 따른 X-선회절(X-ray diffraction; XRD) 패턴을 보여주는 그래프이다.
도 1에서 확인되는 바와 같이, 하소 전에는 CoO와 Al2O3 결정상이 나타난다. 1000℃, 1100℃, 1200℃, 1300℃, 1400℃에서 각각 하소한 후에는 CoAl2O4 결정상만이 관찰되었다.
도 2는 하소 전의 CIE La*b*와 실험예 1에 따라 하소 후 합성된 CoAl2O4 분말의 하소 온도에 따른 CIE La*b*를 보여주는 그래프이고, 표 1은 CIE La*b*를 보여준다. 도 2에서 'before'는 하소 전을 나타내는 것이다.
표 1
L a* b*
하소전 42.38 1.08 1.09
1000℃ 34.27 -9.45 -19.64
1100℃ 40.60 -15.88 -29.34
1200℃ 42.98 -13.45 -37.82
1300℃ 35.79 -8.84 -37.03
1400℃ 38.55 -8.10 -40.15
상기 표 1에서 확인되는 바와 같이, 하소 전에는 청색을 발색하지 않는다. 1000℃, 1100℃, 1200℃, 1300℃ 및 1400℃에서 하소한 경우에는 청색을 발색하고 있다. 하소 온도가 낮은 1000℃의 경우에는 어두운 청색을 나타내었으며, 1200℃ 이상의 온도에서 하소된 경우에는 청색의 선명도가 높게 나타나는 것으로 확인되었다. 또한, 하소 온도가 낮은 1000℃의 경우에는 청색의 명도가 낮게 나타났으며, 1200℃ 이상의 온도에서 하소된 경우에는 청색의 명도가 높게 나타났다.
도 3a 및 도 3b는 실험예 1에 따라 1200℃에서 하소되어 합성된 CoAl2O4 분말의 미세구조를 보여주는 주사전자현미경(scanning electron microscope; SEM) 사진이다.
도 3a 및 도 3b를 참조하면, 실험예 1에 따라 하소되어 합성된 CoAl2O4 분말은 응집되어 있음이 관찰되었다.
도 4a 및 도 4b는 실험예 1에 따라 1200℃에서 하소되어 합성된 CoAl2O4 분말의 EDS 성분분석을 실시한 결과를 보여주고, 도 4a에 대한 성분분석 결과를 아래의 표 2에 나타내었고 도 4b에 대한 성분분석 결과를 아래의 표 3에 나타내었다.
표 2
성분 질량%(Weigth%) 원자%(Atomic%)
O K 39.97 61.10
Al K 28.47 25.81
Co K 31.56 13.10
Totals 100.00 -
표 3
성분 질량%(Weigth%) 원자%(Atomic%)
O K 39.72 61.02
Al K 28.04 25.54
Co K 32.24 13.45
Totals 100.00 -
도 4a, 도 4b, 표 2 및 표 3을 참조하면, 실험예 1에 따라 합성된 CoAl2O4 분말은 코발트(Co), 알루미늄(Al) 및 산소(O) 성분을 포함하고 있음이 확인되었다.
상기와 같이 1200℃에서 하소되어 합성된 CoAl2O4 분말인 청색계 세라믹안료를 이용하여 청색 계통의 세라믹 잉크 조성물을 제조하였다.
청색계 세라믹안료 CoAl2O4 분말을 균일하게 분쇄하기 위하여 어트리션 밀링기에 장입하였다. 볼 및 용매를 밀링기에 넣고 CoAl2O4 분말을 기계적으로 분쇄하였다. 상기 용매로는 에탄올을 사용하였다.
밀링기에 사용되는 볼은 지르코니아(ZrO2)로 이루어진 볼을 사용하였다. 볼은 1㎜ 정도 크기의 볼을 사용하였고, 밀링기의 회전속도는 800 rpm 로 설정하였으며, 밀링은 1∼5시간 동안 실시하였다. 밀링기에 투입되는 볼과 CoAl2O4 분말은 중량비로 100:1 정도였다.
분쇄된 CoAl2O4 분말을 건조하였다. 상기 건조는 80℃ 정도의 온도에서 1시간 정도 수행하였다.
도 5a 내지 도 5f는 어트리션 밀링 시간에 따른 CoAl2O4 분말의 미세구조를 보여주는 주사전자현미경(SEM) 사진이고, 도 6은 어트리션 밀링 시간에 따른 CoAl2O4 분말의 입자 크기를 레이저 산란 입자 크기 분포 분석기(laser scattering particle size distribution analyzer)를 이용하여 측정한 결과를 나타낸 그래프이다. 도 5a는 어트리션 밀링을 실시하기 전의 CoAl2O4 분말의 미세구조를 보여주고, 도 5b는 1시간 동안 어트리션 밀링을 실시한 경우이며, 도 5c는 2시간 동안 어트리션 밀링을 실시한 경우이고, 도 6d는 3시간 동안 어트리션 밀링을 실시한 경우이며, 도 5e는 4시간 동안 어트리션 밀링을 실시한 경우이고, 도 5f는 5시간 동안 어트리션 밀링을 실시한 경우이다.
도 5a 내지 도 6을 참조하면, 어트리션 밀링 시간에 증가함에 따라 CoAl2O4 분말의 입자 크기가 작아지는 것으로 나타났다. 3시간 이후에는 입자 크기의 감소 비율이 작게 나타났다.
도 7은 어트리션 밀링 전과 3시간 동안의 어트리션 밀링 후의 X-선회절 패턴을 보여주는 그래프이다.
도 7을 참조하면, 어트리션 밀링 전과 어트리션 밀링 후에도 CoAl2O4 결정상만이 관찰되었다.
도 8은 3시간 어트리션 밀링 후의 CoAl2O4 분말에 대한 EDS 성분분석을 실시한 결과를 보여주고, 그 성분분석 결과를 아래의 표 4에 나타내었다.
표 4
성분 Weigth% Atomic%
O K 34.47 57.97
Al K 25.62 25.55
Co K 29.17 13.32
Zr L 10.74 3.17
Totals 100.00 -
도 8 및 표 4를 참조하면, 어트리션 밀링에 사용된 지르코니아(ZrO2) 볼(ball)로부터 세라믹안료에 Zr 불순물이 소량 함유된 것으로 판단되며, 주요 성분 함량에는 큰 변화가 없었다.
도 9a 및 도 9b는 3시간 어트리션 밀링 후의 CoAl2O4 분말에 대한 투과전자현미경(transmission electron microscope; TEM) 사진이다.
도 9a 및 도 9b를 참조하면, 3시간 어트리션 밀링 후의 CoAl2O4 분말은 200nm 정도의 입자 크기를 가지는 것으로 관찰되었다.
도 10은 어트리션 밀링 전과 3시간 어트리션 밀링 후의 CoAl2O4 분말에 대한 CIE La*b*를 보여주는 그래프이고, 표 5는 CIE La*b*를 보여준다.
표 5
L a* b*
어트리션 밀링 전 42.98 -13.45 -37.82
어트리션 밀링 후 38.97 -8.69 -32.37
도 10 및 표 5를 참조하면, 어트리션 밀링 후에는 색상이 약간 어두워지는 것으로 나타났으나, 청색 발색에는 큰 차이가 없었다.
건조된 CoAl2O4 분말과 세틸트리메틸암모늄브로마이드(CTAB) 또는 소듐도데실설페이트(SDS)를 분산액에 첨가하고 분산시켜 청색계 세라믹 잉크 조성물을 제조하였다.
상기 CoAl2O4 분말은 상기 잉크젯 프린팅용 세라믹 잉크 조성물에 15중량% 함유되고, 상기 분산액은 상기 잉크젯 프린팅용 세라믹 잉크 조성물에 84.95중량% 함유되게 하였으며, 상기 세틸트리메틸암모늄브로마이드(CTAB) 또는 소듐도데실설페이트(SDS)는 상기 잉크젯 프린팅용 세라믹 잉크 조성물에 0.05중량% 함유되게 하였다. 상기 분산액은 에틸렌글리콜(ethylene glycol) 및 에탄올의 혼합용액을 사용하였다.
도 11a 및 도 11b는 세틸트리메틸암모늄브로마이드(CTAB)를 첨가하여 형성한 잉크젯 프린팅용 세라믹 잉크 조성물의 투과전자현미경 사진이고, 도 12a 및 도 12b는 소듐도데실설페이트(SDS)를 첨가하여 형성한 잉크젯 프린팅용 세라믹 잉크 조성물의 투과전자현미경 사진이다.
도 11a 내지 도 12b를 참조하면, 세틸트리메틸암모늄브로마이드(CTAB)를 첨가시에 분산이 잘 되어 있음이 관찰되었고, 소듐도데실설페이트(SDS)를 첨가시에는 세틸트리메틸암모늄브로마이드(CTAB)를 첨가한 경우보다 다소 응집된 모습을 보였다.
하기 표 6은 에틸렌글리콜(EG)과 에탄올의 함량(부피%)에 따른 분산액의 점도를 보여준다.
표 6
에틸렌글리콜100부피% 에틸렌글리콜 90부피%와 에탄올 10부피% 에틸렌글리콜 80부피%와 에탄올 20부피% 에틸렌글리콜 70부피%와 에탄올 30부피% 에틸렌글리콜 60부피%와 에탄올 40부피% 에틸렌글리콜 50부피%와 에탄올 50부피%
18.67 cps 14.78 cps 11.52 cps 8.85 cps 6.86 cps 5.25 cps
하기 표 7은 분산액의 함량에 따른 세라믹 잉크 조성물의 점도 및 표면장력을 보여준다.
표 7
구성 CoAl2O4 분말 15중량%, CTAB 0.05중량%, 분산액 84.95중량%(에틸렌글리콜 80부피%와 에탄올 20부피%의 혼합액) CoAl2O4 분말 15중량%, CTAB 0.05중량%, 분산액 84.95중량%(에틸렌글리콜 70부피%와 에탄올 30부피%의 혼합액)
점도 19.20 cps 15.61 cps
표면장력 33.06 dyn/cm 31.18 dyn/cm
[실시예 2]
상기 실시예 1에 따라 건조된 CoAl2O4 분말을 분산액에 첨가하고 분산시켜 청색계 세라믹 잉크 조성물을 제조하였다. 이때 경우에 따라 세틸트리메틸암모늄브로마이드(CTAB) 또는 소듐도데실설페이트(SDS)를 첨가하거나 첨가하지 않았다.
상기 CoAl2O4 분말은 상기 잉크젯 프린팅용 세라믹 잉크 조성물에 15중량% 함유되고, 상기 분산액은 상기 잉크젯 프린팅용 세라믹 잉크 조성물에 84.95중량% 함유되게 하였으며, 상기 세틸트리메틸암모늄브로마이드(CTAB) 또는 소듐도데실설페이트(SDS)는 상기 잉크젯 프린팅용 세라믹 잉크 조성물에 0.05중량% 함유되게 하였다. 계면활성제를 첨가하지 않은 경우에는 상기 CoAl2O4 분말은 상기 잉크젯 프린팅용 세라믹 잉크 조성물에 15중량% 함유되고, 상기 분산액은 상기 잉크젯 프린팅용 세라믹 잉크 조성물에 85중량% 함유되게 하였다. 상기 분산액은 물 또는 에틸렌글리콜(ethylene glycol) 및 에탄올의 혼합용액을 사용하였다.
도 13은 계면활성제와 분산액에 따른 분산안정성을 보여주는 사진이다. 도 13에서 'Di'는 계면활성제를 첨가하지 않고 분산액으로 물을 사용한 경우이고, 'EG'는 계면활성제를 첨가하지 않고 분산액으로 에틸렌글리콜과 에탄올을 사용한 경우이며, 'EG + CTA'는 세틸트리메틸암모늄브로마이드와 분산액으로 에틸렌글리콜과 에탄올을 사용한 경우이고, 'EG + SDS'는 소듐도데실설페이트(SDS)와 분산액으로 에틸렌글리콜과 에탄올을 사용한 경우이다.
도 13을 참조하면, 분산액으로 수계(물) 보다는 유기계(에틸렌글리콜)을 사용한 경우에서 분산안정성이 높은 것으로 나타났다. 에틸렌글리콜과 세틸트리메틸암모늄브로마이드(CTAB) 첨가시에 에틸렌글리콜(EG)과 분산안정성에 큰 차이가 없었으며, 에틸렌글리콜(EG)과 소듐도데실설페이트(SDS)를 첨가시에는 층분리가 다소 관찰되었다.
[실시예 3]
실시예 1에 따라 건조된 CoAl2O4 분말과 세틸트리메틸암모늄브로마이드(CTAB)를 분산액에 첨가하고 분산시켜 청색계 세라믹 잉크 조성물을 제조하였다.
상기 CoAl2O4 분말은 상기 잉크젯 프린팅용 세라믹 잉크 조성물에 10∼30중량% 함유되고, 상기 분산액은 상기 잉크젯 프린팅용 세라믹 잉크 조성물에 69.95∼89.95량% 함유되게 하였으며, 상기 세틸트리메틸암모늄브로마이드(CTAB)는 상기 잉크젯 프린팅용 세라믹 잉크 조성물에 0.05중량% 함유되게 하였다. 상기 분산액은 에틸렌글리콜(ethylene glycol) 및 에탄올의 혼합용액(에틸렌글리콜 80부피%와 에탄올 20부피%의 혼합용액)을 사용하였다.
도 14a 내지 도 14d는 CoAl2O4 분말의 함량에 따른 착색력을 보여주는 사진이다. 도 14a는 CoAl2O4 분말이 잉크젯 프린팅용 세라믹 잉크 조성물에 10중량% 함유되는 경우이고, 도 14b는 CoAl2O4 분말이 잉크젯 프린팅용 세라믹 잉크 조성물에 15중량% 함유되는 경우이며, 도 14c는 CoAl2O4 분말이 잉크젯 프린팅용 세라믹 잉크 조성물에 20중량% 함유되는 경우이다.
도 14a 내지 도 14c를 참조하면, CoAl2O4 분말이 잉크젯 프린팅용 세라믹 잉크 조성물에 15중량%이상 함유되는 경우에 착색력이 안정적인 것으로 나타났다.
도 15a 및 도 15b는 CoAl2O4 분말을 이용하여 제조된 잉크젯 프린팅용 세라믹 잉크에 대한 Drop watcher 측정 사진이다.잉크젯 프린팅용 세라믹 잉크 조성물에 CoAl2O4 분말 15중량%, 세틸트리메틸암모늄브로마이드(CTAB)0.05중량%, 분산액 84.95중량%이 함유되었으며 도 15a는 분산액으로 에틸렌글리콜 80부피%와 에탄올 20부피%의 혼합액을 사용하였고 도 15b는 분산액으로 에틸렌글리콜 70부피%와 에탄올 30부피%의 혼합액을 사용하였다.
도 15a 및 도 15b를 참조하면, 도 15a의 경우세라믹 잉크가 분출되고 나서 120 ㎲ 후 단일 잉크 액적이 형성되었고, 도 15b의 경우 140 ㎲ 후 단일 잉크 액적이 형성된 것을 관찰할 수 있다.
이상, 본 발명의 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되는 것은 아니며, 본 발명의 기술적 사상의 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능하다.

Claims (22)

  1. Mg1-xCoxAl2O4(0.1≤x≤1) 분말 및 Mg1-xNixAl2O4(0.1≤x≤1) 분말 중에서 선택된 1종 이상의 청색계 세라믹안료가 분산액에 분산되어 있고, 점도가 10∼30 cps 이며, 표면장력이 25∼40 dyn/cm 이고, 상기 세라믹안료의 평균 입경은 50∼300nm 인 잉크젯 프린팅용 세라믹 잉크 조성물.
  2. CaSn1-xCrxSiO4(0.01≤x≤0.5) 분말을 포함하는 적색계 세라믹안료가 분산액에 분산되어 있고, 점도가 10∼30 cps 이며, 표면장력이 25∼40 dyn/cm 이고, 상기 세라믹안료의 평균 입경은 50∼300nm 인 잉크젯 프린팅용 세라믹 잉크 조성물.
  3. Zr1-xCexSiO4(0.01≤x≤0.5) 분말, Zr1-xPrxSiO4(0.01≤x≤0.5) 분말 및 Zr1-xTaxSiO4(0.01≤x≤0.5) 분말 중에서 선택된 1종 이상의 노란색계 세라믹안료가 분산액에 분산되어 있고, 점도가 10∼30 cps이며, 표면장력이 25∼40 dyn/cm이고, 상기 세라믹안료의 평균 입경은 50∼300nm인 잉크젯 프린팅용 세라믹 잉크 조성물.
  4. Co(Fe1-xCrx)2O4(0.01≤x≤0.5) 분말을 포함하는 검정색계 세라믹안료가 분산액에 분산되어 있고, 점도가 10∼30 cps이며, 표면장력이 25∼40 dyn/cm이고, 상기 세라믹안료의 평균 입경은 50∼300nm 인 잉크젯 프린팅용 세라믹 잉크 조성물.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 잉크젯 프린팅용 세라믹 잉크 조성물에 상기 분산액 100중량부에 대하여 10∼43중량부의 상기 세라믹안료를 포함하는 것을 특징으로 하는 잉크젯 프린팅용 세라믹 잉크 조성물.
  6. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 분산액은 에틸렌글리콜 및 톨루엔 중에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 잉크젯 프린팅용 세라믹 잉크 조성물.
  7. 제6항에 있어서, 상기 분산액은 토출 특성을 개선하고 점도 및 표면장력 조절을 위해 에탄올을 더 포함하며, 상기 에탄올은 분산액 전체 부피의 5∼35 부피%로 포함하는 것을 특징으로 하는 잉크젯 프린팅용 세라믹 잉크 조성물.
  8. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 잉크젯 프린팅용 세라믹 잉크 조성물은 세틸트리메틸암모늄브로마이드(cetyl trimethylammonium bromide), 세틸트리메틸암모늄클로라이드(cetyl trimethylammonium chloride), 디옥타데실디메틸암모늄브로마이드(dioctadecyldimethylammonium bromide) 및 CH3(CH2)15N(Br)(CH3)3 중에서 선택된 1종 이상의 첨가물을 더 포함하며,
    상기 첨가물은 상기 잉크젯 프린팅용 세라믹 잉크 조성물에 상기 분산액 100중량부에 대하여 0.001∼3중량부 포함하는 잉크젯 프린팅용 세라믹 잉크 조성물.
  9. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 잉크젯 프린팅용 세라믹 잉크 조성물은 소듐도데실설페이트 및 CH3(CH2)10CH2OSO3Na 중에서 선택된 1종 이상의 첨가제를 더 포함하며,
    상기 첨가제는 상기 잉크젯 프린팅용 세라믹 잉크 조성물에 상기 분산액 100중량부에 대하여 0.001∼3중량부 포함하는 잉크젯 프린팅용 세라믹 잉크 조성물.
  10. Mg1-xCoxAl2O4(0.1≤x≤1) 분말 및 Mg1-xNixAl2O4(0.1≤x≤1) 분말 중에서 선택된 1종 이상의 청색계 세라믹안료를 준비하는 단계;
    상기 세라믹 안료를 50∼300nm의 평균 입경을 갖도록 분쇄하는 단계; 및
    분쇄된 결과물을 분산액에 분산시켜 점도가 10∼30 cps이고 표면장력이 25∼40 dyn/cm인 세라믹 잉크 조성물을 얻는 단계;
    를 포함하는 잉크젯 프린팅용 세라믹 잉크 조성물의 제조방법.
  11. CaSn1-xCrxSiO4(0.01≤x≤0.5) 분말을 포함하는 적색계 세라믹안료를 준비하는 단계;
    상기 세라믹안료를 50∼300nm의 평균 입경을 갖도록 분쇄하는 단계; 및
    분쇄된 결과물을 분산액에 분산시켜 점도가 10∼30 cps이고 표면장력이 25∼40 dyn/cm인 세라믹 잉크 조성물을 얻는 단계;
    를 포함하는 잉크젯 프린팅용 세라믹 잉크 조성물의 제조방법.
  12. Zr1-xCexSiO4(0.01≤x≤0.5) 분말, Zr1-xPrxSiO4(0.01≤x≤0.5) 분말 및 Zr1-xTaxSiO4(0.01≤x≤0.5) 분말 중에서 선택된 1종 이상의 노란색계 세라믹안료를 준비하는 단계;
    상기 세라믹안료를 50∼300nm의 평균 입경을 갖도록 분쇄하는 단계; 및
    분쇄된 결과물을 분산액에 분산시켜 점도가 10∼30 cps이고 표면장력이 25∼40 dyn/cm인 세라믹 잉크 조성물을 얻는 단계;
    를 포함하는 잉크젯 프린팅용 세라믹 잉크 조성물의 제조방법.
  13. Co(Fe1-xCrx)2O4(0.01≤x≤0.5) 분말을 포함하는 검정색계 세라믹안료를 준비하는 단계;
    상기 세라믹안료를 50∼300nm의 평균 입경을 갖도록 분쇄하는 단계; 및
    분쇄된 결과물을 분산액에 분산시켜 점도가 10∼30 cps이고 표면장력이 25∼40 dyn/cm 인 세라믹 잉크 조성물을 얻는 단계;
    를 포함하는 잉크젯 프린팅용 세라믹 잉크 조성물의 제조방법.
  14. 제10항에 있어서, 상기 청색계 세라믹안료를 준비하는 단계는
    마그네슘(Mg) 성분을 포함하는 산화물인 MgO 분말, 코발트(Co) 성분을 포함하는 산화물인 CoO 분말, 및 알루미늄(Al) 성분을 포함하는 산화물인 Al2O3 분말을 1-x:x:1(0.1≤x≤1)의 몰비로 출발원료로 준비하거나, 마그네슘(Mg) 성분을 포함하는 산화물인 MgO 분말, 니켈(Ni) 성분을 포함하는 산화물인 NiO 분말, 및 알루미늄(Al) 성분을 포함하는 산화물인 Al2O3 분말을 1-x:x:1(0.1≤x≤1)의 몰비로 출발원료로 준비하는 단계;
    상기 출발원료, 볼 및 용매를 밀링기에 넣고 출발원료를 기계적으로 혼합 및 분쇄하면서 산화물 간에 고상 반응을 시키는 단계; 및
    분쇄된 결과물을 하소하여 Mg1-xCoxAl2O4(0.1≤x≤1) 분말 또는 Mg1-xNixAl2O4(0.1≤x≤1) 분말을 얻는 단계;
    를 포함하는 잉크젯 프린팅용 세라믹 잉크 조성물의 제조방법.
  15. 제11항에 있어서, 상기 적색계 세라믹안료를 준비하는 단계는
    칼슘(Ca) 성분을 포함하는 산화물인 CaO 분말, 주석(Sn) 성분을 포함하는 산화물인 SnO 분말, 크롬(Cr) 성분을 포함하는 산화물인 Cr2O3 분말, 및 실리콘(Si) 성분을 포함하는 산화물인 SiO2 분말을 Ca, Sn, Cr 및 Si가 1:1-x:x:1(0.01≤x≤0.5)의 몰비를 이루도록 출발원료로 준비하는 단계;
    상기 출발원료, 볼 및 용매를 밀링기에 넣고 출발원료를 기계적으로 혼합 및 분쇄하면서 산화물 간에 고상 반응을 시키는 단계; 및
    분쇄된 결과물을 하소하여 CaSn1-xCrxSiO4(0.01≤x≤0.5) 분말을 얻는 단계;
    를 포함하는 잉크젯 프린팅용 세라믹 잉크 조성물의 제조방법.
  16. 제12항에 있어서, 상기 노란색계 세라믹안료를 준비하는 단계는
    지르코늄(Zr) 성분을 포함하는 산화물인 ZrO2 분말, 세륨(Ce) 성분을 포함하는 산화물인 CeO2 분말, 실리콘(Si) 성분을 포함하는 산화물인 SiO2 분말을 1-x:x:1(0.01≤x≤0.5)의 몰비로 출발원료로 준비하거나, 지르코늄(Zr) 성분을 포함하는 산화물인 ZrO2 분말, 프라세오디뮴(Pr) 성분을 포함하는 산화물인 Pr2O3 분말,및 실리콘(Si) 성분을 포함하는 산화물인 SiO2 분말을 Zr, Pr 및 Si가 1-x:x:1(0.01≤x≤0.5)의 몰비를 이루도록 출발원료로 준비하거나, 지르코늄(Zr) 성분을 포함하는 산화물인 ZrO2 분말, 탄탈륨(Ta) 성분을 포함하는 산화물인 Ta2O5 분말, 및 실리콘(Si) 성분을 포함하는 산화물인 SiO2 분말을 Zr, Ta 및 Si가 1-x:x:1(0.01≤x≤0.5)의 몰비를 이루도록 출발원료로 준비하는 단계;
    상기 출발원료, 볼 및 용매를 밀링기에 넣고 출발원료를 기계적으로 혼합 및 분쇄하면서 산화물 간에 고상 반응을 시키는 단계; 및
    분쇄된 결과물을 하소하여 Zr1-xCexSiO4(0.01≤x≤0.5) 분말, Zr1-xPrxSiO4(0.01≤x≤0.5) 분말 또는 Zr1-xTaxSiO4(0.01≤x≤0.5) 분말을 얻는 단계;
    를 포함하는 잉크젯 프린팅용 세라믹 잉크 조성물의 제조방법.
  17. 제13항에 있어서, 상기 검정색계 세라믹안료를 준비하는 단계는
    코발트(Co) 성분을 포함하는 산화물인 CoO 분말, 철(Fe) 성분을 포함하는 산화물인 Fe2O3 분말, 크롬(Cr) 성분을 포함하는 산화물인 Cr2O3 분말을 1:1-x:x(0.01≤x≤0.5)의 몰비로 출발원료로 준비하는 단계;
    상기 출발원료, 볼 및 용매를 밀링기에 넣고 출발원료를 기계적으로 혼합 및 분쇄하면서 산화물 간에 고상 반응을 시키는 단계; 및
    분쇄된 결과물을 하소하여 Co(Fe1-xCrx)2O4(0.01≤x≤0.5) 분말을 얻는 단계;
    를 포함하는 잉크젯 프린팅용 세라믹 잉크 조성물의 제조방법.
  18. 제10항 내지 제13항 중 어느 한 항에 있어서, 상기 세라믹안료는 잉크젯 프린팅용 세라믹 잉크 조성물 중 분산액 100중량부에 대하여 10∼43중량부 함유되는 것을 특징으로 하는 잉크젯 프린팅용 세라믹 잉크 조성물의 제조방법.
  19. 제10항 내지 제13항 중 어느 한 항에 있어서, 상기 분산액은 에틸렌글리콜 및 톨루엔 중에서 선택된 1종 이상의 물질을 포함하는 잉크젯 프린팅용 세라믹 잉크 조성물의 제조방법.
  20. 제19항에 있어서, 상기 분산액은 토출 특성을 개선하고 점도 및 표면장력 조절을 위해 에탄올을 더 포함하며, 상기 에탄올은 상기 분산액에 5∼35부피% 함유하는 잉크젯 프린팅용 세라믹 잉크 조성물의 제조방법.
  21. 제10항 내지 제13항 중 어느 한 항에 있어서, 상기 분산액에 분산시킬때 세틸트리메틸암모늄브로마이드, 세틸트리메틸암모늄클로라이드, 디옥타데실디메틸암모늄브로마이드 및 CH3(CH2)15N(Br)(CH3)3 중에서 선택된 1종 이상의 물질을 더 첨가하며,
    상기 첨가물은 세라믹 잉크 조성물 중 분산액 100중량부에 대하여 0.001∼3중량부 함유되는 잉크젯 프린팅용 세라믹 잉크 조성물의 제조방법.
  22. 제10항 내지 제13항 중 어느 한 항에 있어서, 상기 분산액에 분산시킬때 소듐도데실설페이트 및 CH3(CH2)10CH2OSO3Na 중에서 선택된 1종 이상의 물질을 더 첨가하며,
    상기 첨가제는 상기 세라믹 잉크 조성물 중 상기 분산액 100중량부에 대하여 0.001∼3중량부 함유되는 잉크젯 프린팅용 세라믹 잉크 조성물의 제조방법.
PCT/KR2013/008810 2013-04-26 2013-10-02 잉크젯 프린팅용 세라믹 잉크 조성물 및 그 제조방법 WO2014175519A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0046452 2013-04-26
KR20130046452A KR20140128510A (ko) 2013-04-26 2013-04-26 잉크젯 프린팅용 세라믹 잉크 조성물 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2014175519A1 true WO2014175519A1 (ko) 2014-10-30

Family

ID=51792062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008810 WO2014175519A1 (ko) 2013-04-26 2013-10-02 잉크젯 프린팅용 세라믹 잉크 조성물 및 그 제조방법

Country Status (2)

Country Link
KR (1) KR20140128510A (ko)
WO (1) WO2014175519A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190075226A (ko) 2017-12-21 2019-07-01 한국세라믹기술원 잉크젯 프린팅용 유리-세라믹 잉크 조성물 및 그 제조방법
KR102152600B1 (ko) 2018-09-27 2020-09-07 한국세라믹기술원 소수성 세라믹 잉크 조성물
CN111253803B (zh) * 2020-02-26 2021-08-17 武汉理工大学 一种喷墨打印用水性黄色陶瓷墨水及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09237570A (ja) * 1996-02-28 1997-09-09 Dainichiseika Color & Chem Mfg Co Ltd ブラックマトリックス用着色組成物、ブラックマトリックスの製造方法及び遮光性ブッラクマトリックスを付した発光型フラットパネルディスプレイパネル
KR20120111875A (ko) * 2011-03-31 2012-10-11 제트베스트 코포레이션 코팅층 불용 속건성 잉크젯 잉크 조성물

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09237570A (ja) * 1996-02-28 1997-09-09 Dainichiseika Color & Chem Mfg Co Ltd ブラックマトリックス用着色組成物、ブラックマトリックスの製造方法及び遮光性ブッラクマトリックスを付した発光型フラットパネルディスプレイパネル
KR20120111875A (ko) * 2011-03-31 2012-10-11 제트베스트 코포레이션 코팅층 불용 속건성 잉크젯 잉크 조성물

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AHMED, I.S. ET AL.: "Synthesis and spectral characterization of CoxMgl-xA12O4 as new nano-coloring agent of ceramic pigment.", SPECTROCHIM ACTA A., vol. 74, no. 3, 2009, pages 665 - 672 *
CAO KUN-WU ET AL.: "Synthesis and Characterization of Pr-ZrSiO4 Pigment by a Two-step Method.", JOURNAL OF INORGANIC MATERIALS., vol. 27, no. 9, 2012, pages 984 - 990 *
LOPEZ-NAVARRETE E. ET AL.: "A simple procedure for the preparation of Cr-doped tin sphene pigments in the absence of fluxes.", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY., vol. 22, 2002, pages 353 - 359 *

Also Published As

Publication number Publication date
KR20140128510A (ko) 2014-11-06

Similar Documents

Publication Publication Date Title
WO2013176358A1 (ko) 알루미나계 연마재 지립의 제조방법 및 이에 의해 제조된 알루미나계 연마재 지립
WO2014175519A1 (ko) 잉크젯 프린팅용 세라믹 잉크 조성물 및 그 제조방법
KR102027128B1 (ko) Yof계 분말의 제조방법
CN100577745C (zh) 高色浓度微细化无机颜料、其制法及无机颜料墨水组合物
CN105153809B (zh) 一种玻璃喷墨打印墨水
CN105753511B (zh) 一种龙泉青瓷青釉喷墨墨水及其制备方法
WO2015034317A1 (ko) 열전 재료 및 그 제조 방법
CN101723711A (zh) 一种陶瓷喷墨打印用锆铁红色颜料的制备方法
JP4893080B2 (ja) 加飾セラミック体
CN114873916B (zh) 一种稳色保护釉、陶瓷砖及其制备方法
CN106189501A (zh) 一种镨黄色陶瓷喷墨渗花墨水及其制备方法
WO2019132187A1 (ko) 티타늄산화물 무기안료 입자 및 그 제조방법
JP4075864B2 (ja) 加飾セラミックス体、その製造方法及び釉薬調合物
CN115124244A (zh) 透明熔块、晶质耐磨釉料、抛釉砖及其制备方法
WO2020080844A1 (ko) 열 차폐 필름 및 그 제조방법
JP2008260645A (ja) 黒色アルミナ焼結体とその製造方法
CN109233339A (zh) 呈青兰色调的钒锆蓝色料的生产方法
KR102139518B1 (ko) 글로시 세라믹 잉크 조성물 및 그 제조방법
CN106147395A (zh) 高温陶瓷大红墨水及制备方法
JP6764260B2 (ja) プリント物の製造方法、プリント物を形成するための釉薬および、プリント物
WO2017073956A1 (ko) 광소결용 잉크조성물 및 이의 제조방법
WO2012087021A2 (ko) 세라믹히터 방열플레이트 제조방법
WO2016171323A1 (ko) 칩 부품용 전극 페이스트 조성물
WO2018190538A1 (ko) 유약 첨가 분쇄물, 유약 첨가 분쇄물 제조 방법 및 도자기 제작 방법.
WO2020004751A1 (ko) 산소전달입자 제조용 원료 조성물, 이를 이용하여 제조된 산소전달입자 및 산소전달입자 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13882765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09.04.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13882765

Country of ref document: EP

Kind code of ref document: A1